WorldWideScience

Sample records for synaptic proteins linked

  1. Stochastic lattice model of synaptic membrane protein domains

    Science.gov (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A.

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  2. Stochastic lattice model of synaptic membrane protein domains.

    Science.gov (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  3. Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress

    Science.gov (United States)

    Grønli, Janne; Soulé, Jonathan; Bramham, Clive R.

    2014-01-01

    Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function. PMID:24478645

  4. Emerging Links between Homeostatic Synaptic Plasticity and Neurological Disease

    Directory of Open Access Journals (Sweden)

    Dion eDickman

    2013-11-01

    Full Text Available Homeostatic signaling systems are ubiquitous forms of biological regulation, having been studied for hundreds of years in the context of diverse physiological processes including body temperature and osmotic balance. However, only recently has this concept been brought to the study of excitatory and inhibitory electrical activity that the nervous system uses to establish and maintain stable communication. Synapses are a primary target of neuronal regulation with a variety of studies over the past 15 years demonstrating that these cellular junctions are under bidirectional homeostatic control. Recent work from an array of diverse systems and approaches has revealed exciting new links between homeostatic synaptic plasticity and a variety of seemingly disparate neurological and psychiatric diseases. These include autism spectrum disorders, intellectual disabilities, schizophrenia, and Fragile X Syndrome. Although the molecular mechanisms through which defective homeostatic signaling may lead to disease pathogenesis remain unclear, rapid progress is likely to be made in the coming years using a powerful combination of genetic, imaging, electrophysiological, and next generation sequencing approaches. Importantly, understanding homeostatic synaptic plasticity at a cellular and molecular level may lead to developments in new therapeutic innovations to treat these diseases. In this review we will examine recent studies that demonstrate homeostatic control of postsynaptic protein translation, retrograde signaling, and presynaptic function that may contribute to the etiology of complex neurological and psychiatric diseases.

  5. Stochastic single-molecule dynamics of synaptic membrane protein domains

    Science.gov (United States)

    Kahraman, Osman; Li, Yiwei; Haselwandter, Christoph A.

    2016-09-01

    Motivated by single-molecule experiments on synaptic membrane protein domains, we use a stochastic lattice model to study protein reaction and diffusion processes in crowded membranes. We find that the stochastic reaction-diffusion dynamics of synaptic proteins provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the single-molecule trajectories observed for synaptic proteins, and spatially inhomogeneous protein lifetimes at the cell membrane. Our results suggest that central aspects of the single-molecule and collective dynamics observed for membrane protein domains can be understood in terms of stochastic reaction-diffusion processes at the cell membrane.

  6. Linking Network Activity to Synaptic Plasticity during Sleep: Hypotheses and Recent Data.

    Science.gov (United States)

    Puentes-Mestril, Carlos; Aton, Sara J

    2017-01-01

    Research findings over the past two decades have supported a link between sleep states and synaptic plasticity. Numerous mechanistic hypotheses have been put forth to explain this relationship. For example, multiple studies have shown structural alterations to synapses (including changes in synaptic volume, spine density, and receptor composition) indicative of synaptic weakening after a period of sleep. Direct measures of neuronal activity and synaptic strength support the idea that a period of sleep can reduce synaptic strength. This has led to the synaptic homeostasis hypothesis (SHY), which asserts that during slow wave sleep, synapses are downscaled throughout the brain to counteract net strengthening of network synapses during waking experience (e.g., during learning). However, neither the cellular mechanisms mediating these synaptic changes, nor the sleep-dependent activity changes driving those cellular events are well-defined. Here we discuss potential cellular and network dynamic mechanisms which could underlie reductions in synaptic strength during sleep. We also discuss recent findings demonstrating circuit-specific synaptic strengthening (rather than weakening) during sleep. Based on these data, we explore the hypothetical role of sleep-associated network activity patterns in driving synaptic strengthening. We propose an alternative to SHY-namely that depending on experience during prior wake, a variety of plasticity mechanisms may operate in the brain during sleep. We conclude that either synaptic strengthening or synaptic weakening can occur across sleep, depending on changes to specific neural circuits (such as gene expression and protein translation) induced by experiences in wake. Clarifying the mechanisms underlying these different forms of sleep-dependent plasticity will significantly advance our understanding of how sleep benefits various cognitive functions.

  7. Metabolic Turnover of Synaptic Proteins: Kinetics, Interdependencies and Implications for Synaptic Maintenance

    Science.gov (United States)

    Cohen, Laurie D.; Zuchman, Rina; Sorokina, Oksana; Müller, Anke; Dieterich, Daniela C.; Armstrong, J. Douglas; Ziv, Tamar; Ziv, Noam E.

    2013-01-01

    Chemical synapses contain multitudes of proteins, which in common with all proteins, have finite lifetimes and therefore need to be continuously replaced. Given the huge numbers of synaptic connections typical neurons form, the demand to maintain the protein contents of these connections might be expected to place considerable metabolic demands on each neuron. Moreover, synaptic proteostasis might differ according to distance from global protein synthesis sites, the availability of distributed protein synthesis facilities, trafficking rates and synaptic protein dynamics. To date, the turnover kinetics of synaptic proteins have not been studied or analyzed systematically, and thus metabolic demands or the aforementioned relationships remain largely unknown. In the current study we used dynamic Stable Isotope Labeling with Amino acids in Cell culture (SILAC), mass spectrometry (MS), Fluorescent Non–Canonical Amino acid Tagging (FUNCAT), quantitative immunohistochemistry and bioinformatics to systematically measure the metabolic half-lives of hundreds of synaptic proteins, examine how these depend on their pre/postsynaptic affiliation or their association with particular molecular complexes, and assess the metabolic load of synaptic proteostasis. We found that nearly all synaptic proteins identified here exhibited half-lifetimes in the range of 2–5 days. Unexpectedly, metabolic turnover rates were not significantly different for presynaptic and postsynaptic proteins, or for proteins for which mRNAs are consistently found in dendrites. Some functionally or structurally related proteins exhibited very similar turnover rates, indicating that their biogenesis and degradation might be coupled, a possibility further supported by bioinformatics-based analyses. The relatively low turnover rates measured here (∼0.7% of synaptic protein content per hour) are in good agreement with imaging-based studies of synaptic protein trafficking, yet indicate that the metabolic load

  8. Arc protein: a flexible hub for synaptic plasticity and cognition.

    Science.gov (United States)

    Nikolaienko, Oleksii; Patil, Sudarshan; Eriksen, Maria Steene; Bramham, Clive R

    2017-09-07

    Mammalian excitatory synapses express diverse types of synaptic plasticity. A major challenge in neuroscience is to understand how a neuron utilizes different types of plasticity to sculpt brain development, function, and behavior. Neuronal activity-induced expression of the immediate early protein, Arc, is critical for long-term potentiation and depression of synaptic transmission, homeostatic synaptic scaling, and adaptive functions such as long-term memory formation. However, the molecular basis of Arc protein function as a regulator of synaptic plasticity and cognition remains a puzzle. Recent work on the biophysical and structural properties of Arc, its protein-protein interactions and post-translational modifications have shed light on the issue. Here, we present Arc protein as a flexible, multifunctional and interactive hub. Arc interacts with specific effector proteins in neuronal compartments (dendritic spines, nuclear domains) to bidirectionally regulate synaptic strength by distinct molecular mechanisms. Arc stability, subcellular localization, and interactions are dictated by synaptic activity and post-translational modification of Arc. This functional versatility and context-dependent signaling supports a view of Arc as a highly specialized master organizer of long-term synaptic plasticity, critical for information storage and cognition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Conserved properties of Drosophila Insomniac link sleep regulation and synaptic function.

    Science.gov (United States)

    Li, Qiuling; Kellner, David A; Hatch, Hayden A M; Yumita, Tomohiro; Sanchez, Sandrine; Machold, Robert P; Frank, C Andrew; Stavropoulos, Nicholas

    2017-05-01

    Sleep is an ancient animal behavior that is regulated similarly in species ranging from flies to humans. Various genes that regulate sleep have been identified in invertebrates, but whether the functions of these genes are conserved in mammals remains poorly explored. Drosophila insomniac (inc) mutants exhibit severely shortened and fragmented sleep. Inc protein physically associates with the Cullin-3 (Cul3) ubiquitin ligase, and neuronal depletion of Inc or Cul3 strongly curtails sleep, suggesting that Inc is a Cul3 adaptor that directs the ubiquitination of neuronal substrates that impact sleep. Three proteins similar to Inc exist in vertebrates-KCTD2, KCTD5, and KCTD17-but are uncharacterized within the nervous system and their functional conservation with Inc has not been addressed. Here we show that Inc and its mouse orthologs exhibit striking biochemical and functional interchangeability within Cul3 complexes. Remarkably, KCTD2 and KCTD5 restore sleep to inc mutants, indicating that they can substitute for Inc in vivo and engage its neuronal targets relevant to sleep. Inc and its orthologs localize similarly within fly and mammalian neurons and can traffic to synapses, suggesting that their substrates may include synaptic proteins. Consistent with such a mechanism, inc mutants exhibit defects in synaptic structure and physiology, indicating that Inc is essential for both sleep and synaptic function. Our findings reveal that molecular functions of Inc are conserved through ~600 million years of evolution and support the hypothesis that Inc and its orthologs participate in an evolutionarily conserved ubiquitination pathway that links synaptic function and sleep regulation.

  10. BDNF-induced local protein synthesis and synaptic plasticity.

    Science.gov (United States)

    Leal, Graciano; Comprido, Diogo; Duarte, Carlos B

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is an important regulator of synaptic transmission and long-term potentiation (LTP) in the hippocampus and in other brain regions, playing a role in the formation of certain forms of memory. The effects of BDNF in LTP are mediated by TrkB (tropomyosin-related kinase B) receptors, which are known to be coupled to the activation of the Ras/ERK, phosphatidylinositol 3-kinase/Akt and phospholipase C-γ (PLC-γ) pathways. The role of BDNF in LTP is best studied in the hippocampus, where the neurotrophin acts at pre- and post-synaptic levels. Recent studies have shown that BDNF regulates the transport of mRNAs along dendrites and their translation at the synapse, by modulating the initiation and elongation phases of protein synthesis, and by acting on specific miRNAs. Furthermore, the effect of BDNF on transcription regulation may further contribute to long-term changes in the synaptic proteome. In this review we discuss the recent progress in understanding the mechanisms contributing to the short- and long-term regulation of the synaptic proteome by BDNF, and the role in synaptic plasticity, which is likely to influence learning and memory formation. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Synaptic proteins and receptors defects in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Jianling eChen

    2014-09-01

    Full Text Available Recent studies have found that hundreds of genetic variants, including common and rare variants, rare and de novo mutations, and common polymorphisms have contributed to the occurrence of autism spectrum disorders (ASDs. The mutations in a number of genes such as neurexin, neuroligin, postsynaptic density protein 95 (PSD-95, SH3 and multiple ankyrin repeat domains 3 (SHANK3, synapsin, gephyrin, cadherin (CDH and protocadherin (PCDH, thousand-and-one-amino acid 2 kinase (TAOK2, and contactin (CNTN, have been shown to play important roles in the development and function of synapses. In addition, synaptic receptors, such as gamma-aminobutyric acid (GABA receptors and glutamate receptors, have also been associated with ASDs. This review will primarily focus on the defects of synaptic proteins and receptors associated with ASDs and their roles in the pathogenesis of ASDs via synaptic pathways.

  12. SynGAP regulates protein synthesis and homeostatic synaptic plasticity in developing cortical networks.

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    Full Text Available Disrupting the balance between excitatory and inhibitory neurotransmission in the developing brain has been causally linked with intellectual disability (ID and autism spectrum disorders (ASD. Excitatory synapse strength is regulated in the central nervous system by controlling the number of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs. De novo genetic mutations of the synaptic GTPase-activating protein (SynGAP are associated with ID and ASD. SynGAP is enriched at excitatory synapses and genetic suppression of SynGAP increases excitatory synaptic strength. However, exactly how SynGAP acts to maintain synaptic AMPAR content is unclear. We show here that SynGAP limits excitatory synaptic strength, in part, by suppressing protein synthesis in cortical neurons. The data presented here from in vitro, rat and mouse cortical networks, demonstrate that regulation of translation by SynGAP involves ERK, mTOR, and the small GTP-binding protein Rheb. Furthermore, these data show that GluN2B-containing NMDARs and the cognitive kinase CaMKII act upstream of SynGAP and that this signaling cascade is required for proper translation-dependent homeostatic synaptic plasticity of excitatory synapses in developing cortical networks.

  13. Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders.

    Science.gov (United States)

    Sala, Carlo; Vicidomini, Cinzia; Bigi, Ilaria; Mossa, Adele; Verpelli, Chiara

    2015-12-01

    Shank/ProSAP proteins are essential to synaptic formation, development, and function. Mutations in the family of SHANK genes are strongly associated with autism spectrum disorders (ASD) and other neurodevelopmental and neuropsychiatric disorders, such as intellectual disability (ID), and schizophrenia. Thus, the term 'Shankopathies' identifies a number of neuronal diseases caused by alteration of Shank protein expression leading to abnormal synaptic development. With this review we want to summarize the major genetic, molecular, behavior and electrophysiological studies that provide new clues into the function of Shanks and pave the way for the discovery of new therapeutic drugs targeted to treat patients with SHANK mutations and also patients affected by other neurodevelopmental and neuropsychiatric disorders. Shank/ProSAP proteins are essential to synaptic formation, development, and function. Mutations in the family of SHANK genes are strongly associated with autism spectrum disorders (ASD) and other neurodevelopmental and neuropsychiatric disorders, such as intellectual disability (ID), and schizophrenia (SCZ). With this review we want to summarize the major genetic, molecular, behavior and electrophysiological studies that provide new clues into the function of Shanks and pave the way for the discovery of new therapeutic drugs targeted to treat patients with SHANK mutations. © 2015 International Society for Neurochemistry.

  14. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    Science.gov (United States)

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  15. SynProt: A Database for Proteins of Detergent-Resistant Synaptic Protein Preparations

    Science.gov (United States)

    Pielot, Rainer; Smalla, Karl-Heinz; Müller, Anke; Landgraf, Peter; Lehmann, Anne-Christin; Eisenschmidt, Elke; Haus, Utz-Uwe; Weismantel, Robert; Gundelfinger, Eckart D.; Dieterich, Daniela C.

    2012-01-01

    Chemical synapses are highly specialized cell–cell contacts for communication between neurons in the CNS characterized by complex and dynamic protein networks at both synaptic membranes. The cytomatrix at the active zone (CAZ) organizes the apparatus for the regulated release of transmitters from the presynapse. At the postsynaptic side, the postsynaptic density constitutes the machinery for detection, integration, and transduction of the transmitter signal. Both pre- and postsynaptic protein networks represent the molecular substrates for synaptic plasticity. Their function can be altered both by regulating their composition and by post-translational modification of their components. For a comprehensive understanding of synaptic networks the entire ensemble of synaptic proteins has to be considered. To support this, we established a comprehensive database for synaptic junction proteins (SynProt database) primarily based on proteomics data obtained from biochemical preparations of detergent-resistant synaptic junctions. The database currently contains 2,788 non-redundant entries of rat, mouse, and some human proteins, which mainly have been manually extracted from 12 proteomic studies and annotated for synaptic subcellular localization. Each dataset is completed with manually added information including protein classifiers as well as automatically retrieved and updated information from public databases (UniProt and PubMed). We intend that the database will be used to support modeling of synaptic protein networks and rational experimental design. PMID:22737123

  16. Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity

    Science.gov (United States)

    Jang, Sung-Soo; Chung, Hee Jung

    2016-01-01

    Alzheimer's disease (AD) is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β (Aβ) peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβ oligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβ levels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets. PMID:27019755

  17. Neuronal signaling modulates protein homeostasis in Caenorhabditis elegans post-synaptic muscle cells.

    Science.gov (United States)

    Garcia, Susana M; Casanueva, M Olivia; Silva, M Catarina; Amaral, Margarida D; Morimoto, Richard I

    2007-11-15

    Protein homeostasis maintains proper intracellular balance by promoting protein folding and clearance mechanisms while minimizing the stress caused by the accumulation of misfolded and damaged proteins. Chronic expression of aggregation-prone proteins is deleterious to the cell and has been linked to a wide range of conformational disorders. The molecular response to misfolded proteins is highly conserved and generally studied as a cell-autonomous process. Here, we provide evidence that neuronal signaling is an important modulator of protein homeostasis in post-synaptic muscle cells. In a forward genetic screen in Caenorhabditis elegans for enhancers of polyglutamine aggregation in muscle cells, we identified unc-30, a neuron-specific transcription factor that regulates the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). We used additional sensors of protein conformational states to show that defective GABA signaling or increased acetylcholine (ACh) signaling causes a general imbalance in protein homeostasis in post-synaptic muscle cells. Moreover, exposure to GABA antagonists or ACh agonists has a similar effect, which reveals that toxins that act at the neuromuscular junction are potent modifiers of protein conformational disorders. These results demonstrate the importance of intercellular communication in intracellular homeostasis.

  18. Roles for Regulator of G Protein Signaling Proteins in Synaptic Signaling and Plasticity.

    Science.gov (United States)

    Gerber, Kyle J; Squires, Katherine E; Hepler, John R

    2016-02-01

    The regulator of G protein signaling (RGS) family of proteins serves critical roles in G protein-coupled receptor (GPCR) and heterotrimeric G protein signal transduction. RGS proteins are best understood as negative regulators of GPCR/G protein signaling. They achieve this by acting as GTPase activating proteins (GAPs) for Gα subunits and accelerating the turnoff of G protein signaling. Many RGS proteins also bind additional signaling partners that either regulate their functions or enable them to regulate other important signaling events. At neuronal synapses, GPCRs, G proteins, and RGS proteins work in coordination to regulate key aspects of neurotransmitter release, synaptic transmission, and synaptic plasticity, which are necessary for central nervous system physiology and behavior. Accumulating evidence has revealed key roles for specific RGS proteins in multiple signaling pathways at neuronal synapses, regulating both pre- and postsynaptic signaling events and synaptic plasticity. Here, we review and highlight the current knowledge of specific RGS proteins (RGS2, RGS4, RGS7, RGS9-2, and RGS14) that have been clearly demonstrated to serve critical roles in modulating synaptic signaling and plasticity throughout the brain, and we consider their potential as future therapeutic targets. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Protein Linked to Atopic Dermatitis

    Science.gov (United States)

    ... Research Matters NIH Research Matters January 14, 2013 Protein Linked to Atopic Dermatitis Normal skin from a ... in mice suggests that lack of a certain protein may trigger atopic dermatitis, the most common type ...

  20. Comparing development of synaptic proteins in rat visual, somatosensory, and frontal cortex

    Science.gov (United States)

    Pinto, Joshua G. A.; Jones, David G.; Murphy, Kathryn M.

    2013-01-01

    Two theories have influenced our understanding of cortical development: the integrated network theory, where synaptic development is coordinated across areas; and the cascade theory, where the cortex develops in a wave-like manner from sensory to non-sensory areas. These different views on cortical development raise challenges for current studies aimed at comparing detailed maturation of the connectome among cortical areas. We have taken a different approach to compare synaptic development in rat visual, somatosensory, and frontal cortex by measuring expression of pre-synaptic (synapsin and synaptophysin) proteins that regulate vesicle cycling, and post-synaptic density (PSD-95 and Gephyrin) proteins that anchor excitatory or inhibitory (E-I) receptors. We also compared development of the balances between the pairs of pre- or post-synaptic proteins, and the overall pre- to post-synaptic balance, to address functional maturation and emergence of the E-I balance. We found that development of the individual proteins and the post-synaptic index overlapped among the three cortical areas, but the pre-synaptic index matured later in frontal cortex. Finally, we applied a neuroinformatics approach using principal component analysis and found that three components captured development of the synaptic proteins. The first component accounted for 64% of the variance in protein expression and reflected total protein expression, which overlapped among the three cortical areas. The second component was gephyrin and the E-I balance, it emerged as sequential waves starting in somatosensory, then frontal, and finally visual cortex. The third component was the balance between pre- and post-synaptic proteins, and this followed a different developmental trajectory in somatosensory cortex. Together, these results give the most support to an integrated network of synaptic development, but also highlight more complex patterns of development that vary in timing and end point among the

  1. Comparing development of synaptic proteins in rat visual, somatosensory, and frontal cortex.

    Science.gov (United States)

    Pinto, Joshua G A; Jones, David G; Murphy, Kathryn M

    2013-01-01

    Two theories have influenced our understanding of cortical development: the integrated network theory, where synaptic development is coordinated across areas; and the cascade theory, where the cortex develops in a wave-like manner from sensory to non-sensory areas. These different views on cortical development raise challenges for current studies aimed at comparing detailed maturation of the connectome among cortical areas. We have taken a different approach to compare synaptic development in rat visual, somatosensory, and frontal cortex by measuring expression of pre-synaptic (synapsin and synaptophysin) proteins that regulate vesicle cycling, and post-synaptic density (PSD-95 and Gephyrin) proteins that anchor excitatory or inhibitory (E-I) receptors. We also compared development of the balances between the pairs of pre- or post-synaptic proteins, and the overall pre- to post-synaptic balance, to address functional maturation and emergence of the E-I balance. We found that development of the individual proteins and the post-synaptic index overlapped among the three cortical areas, but the pre-synaptic index matured later in frontal cortex. Finally, we applied a neuroinformatics approach using principal component analysis and found that three components captured development of the synaptic proteins. The first component accounted for 64% of the variance in protein expression and reflected total protein expression, which overlapped among the three cortical areas. The second component was gephyrin and the E-I balance, it emerged as sequential waves starting in somatosensory, then frontal, and finally visual cortex. The third component was the balance between pre- and post-synaptic proteins, and this followed a different developmental trajectory in somatosensory cortex. Together, these results give the most support to an integrated network of synaptic development, but also highlight more complex patterns of development that vary in timing and end point among the

  2. SynProt: A Comprehensive Database for Proteins of the Detergent-Resistant Synaptic Junctions Fraction

    Directory of Open Access Journals (Sweden)

    Rainer ePielot

    2012-06-01

    Full Text Available Chemical synapses are highly specialized cell-cell contacts for communication between neurons in the CNS characterized by complex and dynamic protein networks at both synaptic membranes. The cytomatrix at the active zone (CAZ organizes the apparatus for the regulated release of transmitters from the presynapse. At the postsynaptic side, the postsynaptic density constitutes the machinery for detection, integration and transduction of the transmitter signal. Both pre- and postsynaptic protein networks represent the molecular substrates for synaptic plasticity. Their function can be altered both by regulating their composition and by post-translational modification of their components. For a comprehensive understanding of synaptic networks the entire ensemble of synaptic proteins has to be considered. To support this, we established a comprehensive database for synaptic junction proteins (SynProt database primarily based on proteomics data obtained from biochemical preparations of detergent-resistant synaptic junctions. The database currently contains 2,788 non-redundant entries of rat, mouse and some human proteins, which mainly have been manually extracted from twelve proteomic studies and annotated for synaptic subcellular localization. Each dataset is completed with manually added information including protein classifiers as well as automatically retrieved and updated information from public databases (UniProt and PubMed. We intend that the database will be used to support modeling of synaptic protein networks and rational experimental design.

  3. GluR2 protein-protein interactions and the regulation of AMPA receptors during synaptic plasticity.

    OpenAIRE

    Duprat, Fabrice; Daw, Michael; Lim, Wonil; Collingridge, Graham; Isaac, John

    2003-01-01

    AMPA-type glutamate receptors mediate most fast excitatory synaptic transmissions in the mammalian brain. They are critically involved in the expression of long-term potentiation and long-term depression, forms of synaptic plasticity that are thought to underlie learning and memory. A number of synaptic proteins have been identified that interact with the intracellular C-termini of AMPA receptor subunits. Here, we review recent studies and present new experimental data on the roles of these i...

  4. Linking Cholinergic Interneurons, Synaptic Plasticity, and Behavior during the Extinction of a Cocaine-Context Association.

    Science.gov (United States)

    Lee, Junuk; Finkelstein, Joel; Choi, Jung Yoon; Witten, Ilana B

    2016-06-01

    Despite the fact that cholinergic interneurons are a key cell type within the nucleus accumbens, a relationship between synaptic plasticity and the in vivo activity of cholinergic interneurons remains to be established. Here, we identify a three-way link between the activity of cholinergic interneurons, synaptic plasticity, and learning in mice undergoing the extinction of a cocaine-context association. We found that activity of cholinergic interneurons regulates extinction learning for a cocaine-context association and generates a sustained reduction in glutamatergic presynaptic strength onto medium spiny neurons. Interestingly, activation of cholinergic interneurons does not support reinforcement learning or plasticity by itself, suggesting that these neurons have a modulatory rather than a reinforcing function. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Synaptic vesicle proteins under conditions of rest and activation: analysis by 2-D difference gel electrophoresis.

    Science.gov (United States)

    Burré, Jacqueline; Beckhaus, Tobias; Corvey, Carsten; Karas, Michael; Zimmermann, Herbert; Volknandt, Walter

    2006-09-01

    Synaptic vesicles are organelles of the nerve terminal that secrete neurotransmitters by fusion with the presynaptic plasma membrane. Vesicle fusion is tightly controlled by depolarization of the plasma membrane and a set of proteins that may undergo post-translational modifications such as phosphorylation. In order to identify proteins that undergo modifications as a result of synaptic activation, we induced massive exocytosis and analysed the synaptic vesicle compartment by benzyldimethyl-n-hexadecylammonium chloride (BAC)/SDS-PAGE and difference gel electrophoresis (DIGE) followed by MALDI-TOF-MS. We identified eight proteins that revealed significant changes in abundance following nerve terminal depolarization. Of these, six were increased and two were decreased in abundance. Three of these proteins were phosphorylated as detected by Western blot analysis. In addition, we identified an unknown synaptic vesicle protein whose abundance increased on synaptic activation. Our results demonstrate that depolarization of the presynaptic compartment induces changes in the abundance of synaptic vesicle proteins and post-translational protein modification.

  6. Interaction between the glutamate transporter GLT1b and the synaptic PDZ domain protein PICK1

    DEFF Research Database (Denmark)

    Bassan, Merav; Liu, Hongguang; Madsen, Kenneth L

    2008-01-01

    Synaptic plasticity is implemented by the interaction of glutamate receptors with PDZ domain proteins. Glutamate transporters provide the only known mechanism of clearance of glutamate from excitatory synapses, and GLT1 is the major glutamate transporter. We show here that GLT1 interacts...... expressing PICK1 and GLT1b. In addition, expression of GLT1b in COS7 cells changed the distribution of PICK1, bringing it to the surface. GLT1b and PICK1 co-localized with each other and with synaptic markers in hippocampal neurons in culture. Phorbol ester, an activator of protein kinase C (PKC), a known...

  7. The Roles of Protein Expression in Synaptic Plasticity and Memory Consolidation

    Directory of Open Access Journals (Sweden)

    Tali eRosenberg

    2014-11-01

    Full Text Available The amount and availability of proteins are regulated by their synthesis, degradation, and transport. These processes can specifically, locally, and temporally regulate a protein or a population of proteins, thus affecting numerous biological processes in health and disease states. Accordingly, malfunction in the processes of protein turnover and localization underlies different neuronal diseases. However, as early as a century ago, it was recognized that there is a specific need for normal macromolecular synthesis in a specific fragment of the learning process, memory consolidation, which takes place minutes to hours following acquisition. Memory consolidation is the process by which fragile short-term memory is converted into stable long-term memory. It is accepted today that synaptic plasticity is a cellular mechanism of learning and memory processes. Interestingly, similar molecular mechanisms subserve both memory and synaptic plasticity consolidation. In this review, we survey the current view on the connection between memory consolidation processes and proteostasis, i.e., maintaining the protein contents at the neuron and the synapse. In addition, we describe the technical obstacles and possible new methods to determine neuronal proteostasis of synaptic function and better explain the process of memory and synaptic plasticity consolidation.

  8. Role for a novel Usher protein complex in hair cell synaptic maturation.

    Directory of Open Access Journals (Sweden)

    Marisa Zallocchi

    Full Text Available The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23, protocadherin-15 (PCDH15 and the very large G-protein coupled receptor 1 (VLGR1 have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1-/- mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzer(av3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well.

  9. The brain-tumor related protein podoplanin regulates synaptic plasticity and hippocampus-dependent learning and memory.

    Science.gov (United States)

    Cicvaric, Ana; Yang, Jiaye; Krieger, Sigurd; Khan, Deeba; Kim, Eun-Jung; Dominguez-Rodriguez, Manuel; Cabatic, Maureen; Molz, Barbara; Acevedo Aguilar, Juan Pablo; Milicevic, Radoslav; Smani, Tarik; Breuss, Johannes M; Kerjaschki, Dontscho; Pollak, Daniela D; Uhrin, Pavel; Monje, Francisco J

    2016-12-01

    Podoplanin is a cell-surface glycoprotein constitutively expressed in the brain and implicated in human brain tumorigenesis. The intrinsic function of podoplanin in brain neurons remains however uncharacterized. Using an established podoplanin-knockout mouse model and electrophysiological, biochemical, and behavioral approaches, we investigated the brain neuronal role of podoplanin. Ex-vivo electrophysiology showed that podoplanin deletion impairs dentate gyrus synaptic strengthening. In vivo, podoplanin deletion selectively impaired hippocampus-dependent spatial learning and memory without affecting amygdala-dependent cued fear conditioning. In vitro, neuronal overexpression of podoplanin promoted synaptic activity and neuritic outgrowth whereas podoplanin-deficient neurons exhibited stunted outgrowth and lower levels of p-Ezrin, TrkA, and CREB in response to nerve growth factor (NGF). Surface Plasmon Resonance data further indicated a physical interaction between podoplanin and NGF. This work proposes podoplanin as a novel component of the neuronal machinery underlying neuritogenesis, synaptic plasticity, and hippocampus-dependent memory functions. The existence of a relevant cross-talk between podoplanin and the NGF/TrkA signaling pathway is also for the first time proposed here, thus providing a novel molecular complex as a target for future multidisciplinary studies of the brain function in the physiology and the pathology. Key messages Podoplanin, a protein linked to the promotion of human brain tumors, is required in vivo for proper hippocampus-dependent learning and memory functions. Deletion of podoplanin selectively impairs activity-dependent synaptic strengthening at the neurogenic dentate-gyrus and hampers neuritogenesis and phospho Ezrin, TrkA and CREB protein levels upon NGF stimulation. Surface plasmon resonance data indicates a physical interaction between podoplanin and NGF. On these grounds, a relevant cross-talk between podoplanin and NGF as well

  10. Long lasting protein synthesis- and activity-dependent spine shrinkage and elimination after synaptic depression.

    Directory of Open Access Journals (Sweden)

    Yazmín Ramiro-Cortés

    Full Text Available Neuronal circuits modify their response to synaptic inputs in an experience-dependent fashion. Increases in synaptic weights are accompanied by structural modifications, and activity dependent, long lasting growth of dendritic spines requires new protein synthesis. When multiple spines are potentiated within a dendritic domain, they show dynamic structural plasticity changes, indicating that spines can undergo bidirectional physical modifications. However, it is unclear whether protein synthesis dependent synaptic depression leads to long lasting structural changes. Here, we investigate the structural correlates of protein synthesis dependent long-term depression (LTD mediated by metabotropic glutamate receptors (mGluRs through two-photon imaging of dendritic spines on hippocampal pyramidal neurons. We find that induction of mGluR-LTD leads to robust and long lasting spine shrinkage and elimination that lasts for up to 24 hours. These effects depend on signaling through group I mGluRs, require protein synthesis, and activity. These data reveal a mechanism for long lasting remodeling of synaptic inputs, and offer potential insights into mental retardation.

  11. SynSysNet: integration of experimental data on synaptic protein-protein interactions with drug-target relations

    NARCIS (Netherlands)

    von Eichborn, J.; Dunkel, M.; Gohlke, B.O.; Preissner, S.C.; Hoffmann, M.F.; Bauer, J.M.J.; Armstrong, J.D.; Schaefer, M.H.; Andrade-Navarro, M.A.; Le Novere, N.; Croning, M.D.R.; Grant, S.G.N.; van Nierop, P.; Smit, A.B.; Preissner, R.

    2013-01-01

    We created SynSysNet, available online at http://bioinformatics.charite.de/ synsysnet, to provide a platform that creates a comprehensive 4D network of synaptic interactions. Neuronal synapses are fundamental structures linking nerve cells in the brain and they are responsible for neuronal

  12. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    Science.gov (United States)

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  13. Fragile X mental retardation protein regulates trans-synaptic signaling in Drosophila

    Directory of Open Access Journals (Sweden)

    Samuel H. Friedman

    2013-11-01

    Fragile X syndrome (FXS, the most common inherited determinant of intellectual disability and autism spectrum disorders, is caused by loss of the fragile X mental retardation 1 (FMR1 gene product (FMRP, an mRNA-binding translational repressor. A number of conserved FMRP targets have been identified in the well-characterized Drosophila FXS disease model, but FMRP is highly pleiotropic in function and the full spectrum of FMRP targets has yet to be revealed. In this study, screens for upregulated neural proteins in Drosophila fmr1 (dfmr1 null mutants reveal strong elevation of two synaptic heparan sulfate proteoglycans (HSPGs: GPI-anchored glypican Dally-like protein (Dlp and transmembrane Syndecan (Sdc. Our recent work has shown that Dlp and Sdc act as co-receptors regulating extracellular ligands upstream of intracellular signal transduction in multiple trans-synaptic pathways that drive synaptogenesis. Consistently, dfmr1 null synapses exhibit altered WNT signaling, with changes in both Wingless (Wg ligand abundance and downstream Frizzled-2 (Fz2 receptor C-terminal nuclear import. Similarly, a parallel anterograde signaling ligand, Jelly belly (Jeb, and downstream ERK phosphorylation (dpERK are depressed at dfmr1 null synapses. In contrast, the retrograde BMP ligand Glass bottom boat (Gbb and downstream signaling via phosphorylation of the transcription factor MAD (pMAD seem not to be affected. To determine whether HSPG upregulation is causative for synaptogenic defects, HSPGs were genetically reduced to control levels in the dfmr1 null background. HSPG correction restored both (1 Wg and Jeb trans-synaptic signaling, and (2 synaptic architecture and transmission strength back to wild-type levels. Taken together, these data suggest that FMRP negatively regulates HSPG co-receptors controlling trans-synaptic signaling during synaptogenesis, and that loss of this regulation causes synaptic structure and function defects characterizing the FXS disease state.

  14. Synaptic proteins and receptors defects in autism spectrum disorders

    OpenAIRE

    Chen, Jianling; Yu, Shunying; Fu, Yingmei; Li, Xiaohong

    2014-01-01

    Recent studies have found that hundreds of genetic variants, including common and rare variants, rare and de novo mutations, and common polymorphisms have contributed to the occurrence of autism spectrum disorders (ASDs). The mutations in a number of genes such as neurexin, neuroligin, postsynaptic density protein 95 (PSD-95), SH3 and multiple ankyrin repeat domains 3 (SHANK3), synapsin, gephyrin, cadherin (CDH) and protocadherin (PCDH), thousand-and-one-amino acid 2 kinase (TAOK2), and conta...

  15. Studying Protein Synthesis-Dependent Synaptic Changes in Tuberous Sclerosis

    Science.gov (United States)

    2013-04-01

    and infantile spasm in TSC is treatable with Vigabatrin, a GABA transaminase inhibitor. This indicates that abnormal protein synthesis may skew the...microscopic duplication of 22q13 including the Shank3 gene manifested with infantile hypotonia, developmental delay and growth deficiency (6). Shank1...deviation toward hyperexcitability was not corrected at least 30 minute after rapamycin treatment (100 µM). This may be because the effect of

  16. Botulinum neurotoxin D uses synaptic vesicle protein SV2 and gangliosides as receptors.

    Directory of Open Access Journals (Sweden)

    Lisheng Peng

    2011-03-01

    Full Text Available Botulinum neurotoxins (BoNTs include seven bacterial toxins (BoNT/A-G that target presynaptic terminals and act as proteases cleaving proteins required for synaptic vesicle exocytosis. Here we identified synaptic vesicle protein SV2 as the protein receptor for BoNT/D. BoNT/D enters cultured hippocampal neurons via synaptic vesicle recycling and can bind SV2 in brain detergent extracts. BoNT/D failed to bind and enter neurons lacking SV2, which can be rescued by expressing one of the three SV2 isoforms (SV2A/B/C. Localization of SV2 on plasma membranes mediated BoNT/D binding in both neurons and HEK293 cells. Furthermore, chimeric receptors containing the binding sites for BoNT/A and E, two other BoNTs that use SV2 as receptors, failed to mediate the entry of BoNT/D suggesting that BoNT/D binds SV2 via a mechanism distinct from BoNT/A and E. Finally, we demonstrated that gangliosides are essential for the binding and entry of BoNT/D into neurons and for its toxicity in vivo, supporting a double-receptor model for this toxin.

  17. Repetitive transcranial magnetic stimulation effectively facilitates spatial cognition and synaptic plasticity associated with increasing the levels of BDNF and synaptic proteins in Wistar rats.

    Science.gov (United States)

    Shang, Yingchun; Wang, Xin; Shang, Xueliang; Zhang, Hui; Liu, Zhipeng; Yin, Tao; Zhang, Tao

    2016-10-01

    Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique, by which cognitive deficits can be alleviated. Furthermore, rTMS may facilitate learning and memory. However, its underlying mechanism is still little known. The aim of this study was to investigate if the facilitation of spatial cognition and synaptic plasticity, induced by rTMS, is regulated by enhancing pre- and postsynaptic proteins in normal rats. Morris water maze (MWM) test was performed to examine the spatial cognition. The synaptic plasticity, including long-term potentiation (LTP) and depotentiation (DEP), presynaptic plasticity paired-pulse facilitation (PPF), from the hippocampal Schaffer collaterals to CA1 region was subsequently measured using in vivo electrophysiological techniques. The expressions of brain-derived neurotrophic factor (BDNF), presynaptic protein synaptophysin (SYP) and postsynaptic protein NR2B were measured by Western blot. Our data show that the spatial learning/memory and reversal learning/memory in rTMS rats were remarkably enhanced compared to that in the Sham group. Furthermore, LTP and DEP as well as PPF were effectively facilitated by 5Hz-rTMS. Additionally, the expressions of BDNF, SYP and NR2B were significantly increased via magnetic stimulation. The results suggest that rTMS considerably increases the expressions of BDNF, postsynaptic protein NR2B and presynaptic protein SYP, and thereby significantly enhances the synaptic plasticity and spatial cognition in normal animals. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. CCL2-ethanol interactions and hippocampal synaptic protein expression in a transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Donna eGruol

    2014-04-01

    Full Text Available Chronic exposure to ethanol produces a number of detrimental effects on behavior. Neuroadaptive changes in brain structure or function underlie these behavioral changes and may be transient or persistent in nature. Central to the functional changes are alterations in the biology of neuronal and glial cells of the brain. Recent data show that ethanol induces glial cells of the brain to produce elevated levels of neuroimmune factors including CCL2, a key innate immune chemokine. Depending on the conditions of ethanol exposure, the upregulated levels of CCL2 can be transient or persistent and outlast the period of ethanol exposure. Importantly, results indicate that the upregulated levels of CCL2 may lead to CCL2-ethanol interactions that mediate or regulate the effects of ethanol on the brain. Glial cells are in close association with neurons and regulate many neuronal functions. Therefore, effects of ethanol on glial cells may underlie some of the effects of ethanol on neurons. To investigate this possibility, we are studying the effects of chronic ethanol on hippocampal synaptic function in a transgenic mouse model that expresses elevated levels of CCL2 in the brain through enhanced glial expression, a situation know to occur in alcoholics. Both CCL2 and ethanol have been reported to alter synaptic function in the hippocampus. In the current study, we determined if interactions are evident between CCL2 and ethanol at level of hippocampal synaptic proteins. Two ethanol exposure paradigms were used; the first involved ethanol exposure by drinking and the second involved ethanol exposure in a paradigm that combines drinking plus ethanol vapor. The first paradigm does not produce dependence on ethanol, whereas the second paradigm is commonly used to produce ethanol dependence. Results show modest effects of both ethanol exposure paradigms on the level of synaptic proteins in the hippocampus of CCL2 transgenic mice compared with their non

  19. The Networks of Genes Encoding Palmitoylated Proteins in Axonal and Synaptic Compartments Are Affected in PPT1 Overexpressing Neuronal-Like Cells

    Directory of Open Access Journals (Sweden)

    Francesco Pezzini

    2017-08-01

    Full Text Available CLN1 disease (OMIM #256730 is an early childhood ceroid-lipofuscinosis associated with mutated CLN1, whose product Palmitoyl-Protein Thioesterase 1 (PPT1 is a lysosomal enzyme involved in the removal of palmitate residues from S-acylated proteins. In neurons, PPT1 expression is also linked to synaptic compartments. The aim of this study was to unravel molecular signatures connected to CLN1. We utilized SH-SY5Y neuroblastoma cells overexpressing wild type CLN1 (SH-p.wtCLN1 and five selected CLN1 patients’ mutations. The cellular distribution of wtPPT1 was consistent with regular processing of endogenous protein, partially detected inside Lysosomal Associated Membrane Protein 2 (LAMP2 positive vesicles, while the mutants displayed more diffuse cytoplasmic pattern. Transcriptomic profiling revealed 802 differentially expressed genes (DEGs in SH-p.wtCLN1 (as compared to empty-vector transfected cells, whereas the number of DEGs detected in the two mutants (p.L222P and p.M57Nfs*45 was significantly lower. Bioinformatic scrutiny linked DEGs with neurite formation and neuronal transmission. Specifically, neuritogenesis and proliferation of neuronal processes were predicted to be hampered in the wtCLN1 overexpressing cell line, and these findings were corroborated by morphological investigations. Palmitoylation survey identified 113 palmitoylated protein-encoding genes in SH-p.wtCLN1, including 25 ones simultaneously assigned to axonal growth and synaptic compartments. A remarkable decrease in the expression of palmitoylated proteins, functionally related to axonal elongation (GAP43, CRMP1 and NEFM and of the synaptic marker SNAP25, specifically in SH-p.wtCLN1 cells was confirmed by immunoblotting. Subsequent, bioinformatic network survey of DEGs assigned to the synaptic annotations linked 81 DEGs, including 23 ones encoding for palmitoylated proteins. Results obtained in this experimental setting outlined two affected functional modules (connected to

  20. Emerging Link between Alzheimer’s Disease and Homeostatic Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Sung-Soo Jang

    2016-01-01

    Full Text Available Alzheimer’s disease (AD is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β (Aβ peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβ oligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβ levels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets.

  1. Temporal requirements of the fragile X mental retardation protein in modulating circadian clock circuit synaptic architecture

    Directory of Open Access Journals (Sweden)

    Cheryl L Gatto

    2009-08-01

    Full Text Available Loss of fragile X mental retardation 1 (FMR1 gene function is the most common cause of inherited mental retardation and autism spectrum disorders, characterized by attention disorder, hyperactivity and disruption of circadian activity cycles. Pursuit of effective intervention strategies requires determining when the FMR1 product (FMRP is required in the regulation of neuronal circuitry controlling these behaviors. In the well-characterized Drosophila disease model, loss of the highly conserved dFMRP causes circadian arrhythmicity and conspicuous abnormalities in the circadian clock circuitry. Here, a novel Sholl Analysis was used to quantify over-elaborated synaptic architecture in dfmr1-null small ventrolateral neurons (sLNvs, a key subset of clock neurons. The transgenic Gene-Switch system was employed to drive conditional neuronal dFMRP expression in the dfmr1-null mutant background in order to dissect temporal requirements within the clock circuit. Introduction of dFMRP during early brain development, including the stages of neurogenesis, neuronal fate specification and early pathfinding, provided no rescue of dfmr1 mutant phenotypes. Similarly, restoring normal dFMRP expression in the adult failed to restore circadian circuit architecture. In sharp contrast, supplying dFMRP during a transient window of very late brain development, wherein synaptogenesis and substantial subsequent synaptic reorganization (e.g. use-dependent pruning occur, provided strong morphological rescue to reestablish normal sLNvs synaptic arbors. We conclude that dFMRP plays a developmentally restricted role in sculpting synaptic architecture in these neurons that cannot be compensated for by later reintroduction of the protein at maturity.

  2. Deletion of PTEN produces autism-like behavioral deficits and alterations in synaptic proteins

    Directory of Open Access Journals (Sweden)

    Joaquin N Lugo

    2014-04-01

    Full Text Available Many genes have been implicated in the underlying cause of autism but each gene accounts for only a small fraction of those diagnosed with autism. There is increasing evidence that activity-dependent changes in neuronal signaling could act as a convergent mechanism for many of the changes in synaptic proteins. One candidate signaling pathway that may have a critical role in autism is the PI3K/AKT/mTOR pathway. A major regulator of this pathway is the negative repressor phosphatase and tensin homolog (PTEN. In the current study we examined the behavioral and molecular consequences in mice with neuron subset-specific deletion of PTEN.The knockout (KO mice showed deficits in social chamber and social partition test. KO mice demonstrated alterations in repetitive behavior, as measured in the marble burying test and hole-board test. They showed no changes in ultrasonic vocalizations emitted on postnatal day 10 or 12 compared to wildtype (WT mice. They exhibited less anxiety in the elevated-plus maze test and were more active in the open field test compared to WT mice. In addition to the behavioral alterations, KO mice had elevation of phosphorylated AKT, phosphorylated S6, and an increase in S6K. KO mice had a decrease in mGluR but an increase in total and phosphorylated fragile x mental retardation protein. The disruptions in intracellular signaling may be why the KO mice had a decrease in the dendritic potassium channel Kv4.2 and a decrease in the synaptic scaffolding proteins PSD-95 and SAP102. These findings demonstrate that deletion of PTEN results in long-term alterations in social behavior, repetitive behavior, activity, and anxiety. In addition, deletion of PTEN significantly alters mGluR signaling and many synaptic proteins in the hippocampus. Our data demonstrates that deletion of PTEN can result in many of the behavioral features of autism and may provide insights into the regulation of intracellular signaling on synaptic proteins.

  3. Age-related changes in synaptic markers and monocyte subsets link the cognitive decline of APPSwe/PS1 mice.

    Directory of Open Access Journals (Sweden)

    Gaelle eNaert

    2012-11-01

    Full Text Available Alzheimer’s disease (AD is characterized by a progressive memory decline and numerous pathological abnormalities, including amyloid β (Aβ accumulation in the brain and synaptic dysfunction. Here we wanted to study whether these brain changes were associated with alteration in the population of monocyte subsets since accumulating evidence supports the concept that the innate immune system plays a role in the etiology of this disease. We then determined the immune profile together with expression of genes encoding synaptic proteins and neurotrophins in APPSwe/PS1 mice and their age-matched wild-type littermates. We found that the progressive cognitive decline and the dramatic decrease in the expression of numerous synaptic markers and neurotrophins correlated with a major defect in the subset of circulating inflammatory monocytes. Indeed the number of CX3CR1lowLy6-ChighCCR2+Gr1+ monocytes remained essentially similar between 5 weeks and 6 months of age in APPSwe/PS1 mice, while these cells significantly increased in 6 month-old wild-type littermates. Of great interest is that the onset of cognitive decline was closely associated with the accumulation of soluble Αβ, disruption of synaptic activity, alteration in the BDNF system and a defective production in the subset of CX3CR1lowLy6-ChighCCR2+Gr1+ monocytes. However, these memory impairments can be prevented or restored by boosting the monocytic production, using a short treatment of macrophage colony-stimulating factor (M-CSF. In conclusion, low CCR2+ monocyte production by the hematopoietic system may be a direct biomarker of the cognitive decline in a context of AD.

  4. Elevated progranulin contributes to synaptic and learning deficit due to loss of fragile X mental retardation protein.

    Science.gov (United States)

    Zhang, Kun; Li, Yu-Jiao; Guo, Yanyan; Zheng, Kai-Yin; Yang, Qi; Yang, Le; Wang, Xin-Shang; Song, Qian; Chen, Tao; Zhuo, Min; Zhao, Ming-Gao

    2017-12-01

    Fragile X syndrome is an inheritable form of intellectual disability caused by loss of fragile X mental retardation protein (FMRP, encoded by the FMR1 gene). Absence of FMRP caused overexpression of progranulin (PGRN, encoded by GRN), a putative tumour necrosis factor receptor ligand. In the present study, we found that progranulin mRNA and protein were upregulated in the medial prefrontal cortex of Fmr1 knock-out mice. In Fmr1 knock-out mice, elevated progranulin caused insufficient dendritic spine pruning and late-phase long-term potentiation in the medial prefrontal cortex of Fmr1 knock-out mice. Partial progranulin knock-down restored spine morphology and reversed behavioural deficits, including impaired fear memory, hyperactivity, and motor inflexibility in Fmr1 knock-out mice. Progranulin increased levels of phosphorylated glutamate ionotropic receptor GluA1 and nuclear factor kappa B in cultured wild-type neurons. Tumour necrosis factor receptor 2 antibody perfusion blocked the effects of progranulin on GluA1 phosphorylation; this result indicates that tumour necrosis factor receptor 2 is required for progranulin-mediated GluA1 phosphorylation and late-phase long-term potentiation expression. However, high basal level of progranulin in Fmr1 knock-out mice prevented further facilitation of synaptic plasticity by exogenous progranulin. Partial downregulation of progranulin or tumour necrosis factor receptor 2/nuclear factor kappa B signalling restored synaptic plasticity and memory deficits in Fmr1 knock-out mice. These findings suggest that elevated PGRN is linked to cognitive deficits of fragile X syndrome, and the progranulin/tumour necrosis factor receptor 2 signalling pathway may be a putative therapeutic target for improving cognitive deficits in fragile X syndrome. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. The human synaptic vesicle protein, SV2A, functions as a galactose transporter in Saccharomyces cerevisiae.

    Science.gov (United States)

    Madeo, Marianna; Kovács, Attila D; Pearce, David A

    2014-11-28

    SV2A is a synaptic vesicle membrane protein expressed in neurons and endocrine cells and involved in the regulation of neurotransmitter release. Although the exact function of SV2A still remains elusive, it was identified as the specific binding site for levetiracetam, a second generation antiepileptic drug. Our sequence analysis demonstrates that SV2A has significant homology with several yeast transport proteins belonging to the major facilitator superfamily (MFS). Many of these transporters are involved in sugar transport into yeast cells. Here we present evidence showing, for the first time, that SV2A is a galactose transporter. We expressed human SV2A in hexose transport-deficient EBY.VW4000 yeast cells and demonstrated that these cells are able to grow on galactose-containing medium but not on other fermentable carbon sources. Furthermore, the addition of the SV2A-binding antiepileptic drug levetiracetam to the medium inhibited the galactose-dependent growth of hexose transport-deficient EBY.VW4000 yeast cells expressing human SV2A. Most importantly, direct measurement of galactose uptake in the same strain verified that SV2A is able to transport extracellular galactose inside the cells. The newly identified galactose transport capability of SV2A may have an important role in regulating/modulating synaptic function. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Inhibition of protein kinase C affects on mode of synaptic vesicle exocytosis due to cholesterol depletion

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Alexey M., E-mail: fysio@rambler.ru; Zakyrjanova, Guzalija F., E-mail: guzik121192@mail.ru; Yakovleva, Anastasia A., E-mail: nastya1234qwer@mail.ru; Zefirov, Andrei L., E-mail: zefiroval@rambler.ru

    2015-01-02

    Highlights: • We examine the involvement of PKC in MCD induced synaptic vesicle exocytosis. • PKC inhibitor does not decrease the effect MCD on MEPP frequency. • PKC inhibitor prevents MCD induced FM1-43 unloading. • PKC activation may switch MCD induced exocytosis from kiss-and-run to a full mode. • Inhibition of phospholipase C does not lead to similar change in exocytosis. - Abstract: Previous studies demonstrated that depletion of membrane cholesterol by 10 mM methyl-beta-cyclodextrin (MCD) results in increased spontaneous exocytosis at both peripheral and central synapses. Here, we investigated the role of protein kinase C in the enhancement of spontaneous exocytosis at frog motor nerve terminals after cholesterol depletion using electrophysiological and optical methods. Inhibition of the protein kinase C by myristoylated peptide and chelerythrine chloride prevented MCD-induced increases in FM1-43 unloading, whereas the frequency of spontaneous postsynaptic events remained enhanced. The increase in FM1-43 unloading still could be observed if sulforhodamine 101 (the water soluble FM1-43 quencher that can pass through the fusion pore) was added to the extracellular solution. This suggests a possibility that exocytosis of synaptic vesicles under these conditions could occur through the kiss-and-run mechanism with the formation of a transient fusion pore. Inhibition of phospholipase C did not lead to similar change in MCD-induced exocytosis.

  7. The quantum physics of synaptic communication via the SNARE protein complex.

    Science.gov (United States)

    Georgiev, Danko D; Glazebrook, James F

    2018-01-31

    Twenty five years ago, Sir John Carew Eccles together with Friedrich Beck proposed a quantum mechanical model of neurotransmitter release at synapses in the human cerebral cortex. The model endorsed causal influence of human consciousness upon the functioning of synapses in the brain through quantum tunneling of unidentified quasiparticles that trigger the exocytosis of synaptic vesicles, thereby initiating the transmission of information from the presynaptic towards the postsynaptic neuron. Here, we provide a molecular upgrade of the Beck and Eccles model by identifying the quantum quasiparticles as Davydov solitons that twist the protein α-helices and trigger exocytosis of synaptic vesicles through helical zipping of the SNARE protein complex. We also calculate the observable probabilities for exocytosis based on the mass of this quasiparticle, along with the characteristics of the potential energy barrier through which tunneling is necessary. We further review the current experimental evidence in support of this novel bio-molecular model as presented. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Ethanol extract of the seed of Zizyphus jujuba var. spinosa potentiates hippocampal synaptic transmission through mitogen-activated protein kinase, adenylyl cyclase, and protein kinase A pathways.

    Science.gov (United States)

    Jo, So Yeon; Jung, In Ho; Yi, Jee Hyun; Choi, Tae Joon; Lee, Seungheon; Jung, Ji Wook; Yun, Jeanho; Lee, Young Choon; Ryu, Jong Hoon; Kim, Dong Hyun

    2017-03-22

    As the seed of Zizyphus jujuba var. spinosa (Bunge) Hu ex H.F. Chow (Rhamnaceae) has been used to sleep disturbances in traditional Chinese and Korean medicine, many previous studies have focused on its sedative effect. Recently, we reported the neuroprotective effect of the effect of Z. jujuba var. spinosa. However, its effects on synaptic function have not yet been studied. In this project, we examined the action of ethanol extract of the seed of Z. jujuba var. spinosa (DHP1401) on synaptic transmission in the hippocampus. To investigate the effects of DHP1401, field recordings were conducted using hippocampal slices (400µm). Object recognition test was introduced to examine whether DHP1401 affect normal recognition memory. DHP1401 (50μg/ml) induced a significant increase in synaptic activity in Shaffer collateral pathway in a concentration-dependent manner. This increase of synaptic responses was blocked by NBQX, a broad spectrum α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist, but not IEM-1460, a Ca 2+ -permeable AMPAR blocker. Moreover, U0126, a mitogen-activated protein kinase inhibitor, SQ22536, an adenylyl cyclase inhibitor, and PKI, a protein kinase A inhibitor, blocked DHP1401-induced increase in synaptic transmission. Finally, DHP1401 facilitated object recognition memory. These results suggest that DHP1401 increase synaptic transmission through increase of synaptic AMPAR transmission via MAPK, AC and PAK. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  9. The destructive effect of botulinum neurotoxins on the SNARE protein: SNAP-25 and synaptic membrane fusion

    Directory of Open Access Journals (Sweden)

    Bin Lu

    2015-06-01

    Full Text Available Synaptic exocytosis requires the assembly of syntaxin 1A and SNAP-25 on the plasma membrane and synaptobrevin 2 (VAMP2 on the vesicular membrane to bridge the two opposite membranes. It is believed that the three SNARE proteins assemble in steps along the dynamic assembly pathway. The C-terminus of SNAP-25 is known to be the target of botulinum neurotoxins (BoNT/A and BoNT/E that block neurotransmitters release in vivo. In this study, we employed electron paramagnetic resonance (EPR spectroscopy to investigate the conformation of the SNAP-25 C-terminus in binary and ternary SNARE complexes. The fluorescence lipid mixing assay shows that the C-terminal of SNAP-25 is essential for membrane fusion, and that the truncated SNAP-25 mutants cleaved by BoNT/A and BoNT/E display different inhibition effects on membrane fusion: SNAP-25E (Δ26 abolishes the fusion activity of the SNARE complex, while SNAP-25A (Δ9 loses most of its function, although it can still form a SDS-resistant SNARE complex as the wild-type SNAP-25. CW-EPR spectra validate the unstable structures of the SNARE complex formed by SNAP-25 mutants. We propose that the truncated SNAP-25 mutants will disrupt the assembly of the SNARE core complex, and then inhibit the synaptic membrane fusion accordingly.

  10. Neuron-specific chromatin remodeling: a missing link in epigenetic mechanisms underlying synaptic plasticity, memory, and intellectual disability disorders.

    Science.gov (United States)

    Vogel-Ciernia, Annie; Wood, Marcelo A

    2014-05-01

    Long-term memory formation requires the coordinated regulation of gene expression. Until recently nucleosome remodeling, one of the major epigenetic mechanisms for controlling gene expression, had been largely unexplored in the field of neuroscience. Nucleosome remodeling is carried out by chromatin remodeling complexes (CRCs) that interact with DNA and histones to physically alter chromatin structure and ultimately regulate gene expression. Human exome sequencing and gene wide association studies have linked mutations in CRC subunits to intellectual disability disorders, autism spectrum disorder and schizophrenia. However, how mutations in CRC subunits were related to human cognitive disorders was unknown. There appears to be both developmental and adult specific roles for the neuron specific CRC nBAF (neuronal Brg1/hBrm Associated Factor). nBAF regulates gene expression required for dendritic arborization during development, and in the adult, contributes to long-term potentiation, a form of synaptic plasticity, and long-term memory. We propose that the nBAF complex is a novel epigenetic mechanism for regulating transcription required for long-lasting forms of synaptic plasticity and memory processes and that impaired nBAF function may result in human cognitive disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Expression of synaptic proteins in the hippocampus and spatial learning in chicks following prenatal auditory stimulation.

    Science.gov (United States)

    Chaudhury, Sraboni; Jain, Suman; Wadhwa, Shashi

    2010-07-01

    Prenatal auditory stimulation by species-specific sound influences the expression and levels of calcium-binding proteins in the chick hippocampus, which is important to learning and memory. Stimulation by sitar music additionally produces structural changes in the hippocampus. Synapse density, which influences the synaptic plasticity, is also increased following both types of sound stimulation. Here we report the expression of mRNA as well as levels of synaptic proteins (synaptophysin, synapsin I and PSD-95) in the hippocampus of developing chicks subjected to prenatal auditory stimulation. Further, to evaluate the behavioral outcome following acoustic stimulation, posthatch day 1 (PH1) chicks were analyzed by T-maze test for spatial learning. Fertilized zero day eggs were incubated under normal conditions and subjected to patterned sounds of species-specific or sitar music at 65 dB levels for 15 min/h over 24 h at a frequency range of 100-6,300 Hz for a period of 11 days from embryonic day (E) 10 until hatching. Following both types of prenatal acoustic stimulation, a significant increase in the levels of synaptophysin mRNA and protein was found from E12, whereas that of synapsin I and PSD-95 was observed from E16, suggesting early maturation of the excitatory synapse. A significant decrease in the time taken to reach the target over the 3 trials in both sound-stimulated groups indicates improved spatial learning. In the music-stimulated group, however, the time taken to reach the target was reduced from the very first trial, which may point to an involvement of other behavioral attributes in facilitating spatial navigation. Copyright 2010 S. Karger AG, Basel.

  12. Disruption of Axonal Transport Perturbs Bone Morphogenetic Protein (BMP) - Signaling and Contributes to Synaptic Abnormalities in Two Neurodegenerative Diseases

    Science.gov (United States)

    Kang, Min Jung; Hansen, Timothy J.; Mickiewicz, Monique; Kaczynski, Tadeusz J.; Fye, Samantha; Gunawardena, Shermali

    2014-01-01

    Formation of new synapses or maintenance of existing synapses requires the delivery of synaptic components from the soma to the nerve termini via axonal transport. One pathway that is important in synapse formation, maintenance and function of the Drosophila neuromuscular junction (NMJ) is the bone morphogenetic protein (BMP)-signaling pathway. Here we show that perturbations in axonal transport directly disrupt BMP signaling, as measured by its downstream signal, phospho Mad (p-Mad). We found that components of the BMP pathway genetically interact with both kinesin-1 and dynein motor proteins. Thick vein (TKV) vesicle motility was also perturbed by reductions in kinesin-1 or dynein motors. Interestingly, dynein mutations severely disrupted p-Mad signaling while kinesin-1 mutants showed a mild reduction in p-Mad signal intensity. Similar to mutants in components of the BMP pathway, both kinesin-1 and dynein motor protein mutants also showed synaptic morphological defects. Strikingly TKV motility and p-Mad signaling were disrupted in larvae expressing two human disease proteins; expansions of glutamine repeats (polyQ77) and human amyloid precursor protein (APP) with a familial Alzheimer's disease (AD) mutation (APPswe). Consistent with axonal transport defects, larvae expressing these disease proteins showed accumulations of synaptic proteins along axons and synaptic abnormalities. Taken together our results suggest that similar to the NGF-TrkA signaling endosome, a BMP signaling endosome that directly interacts with molecular motors likely exist. Thus problems in axonal transport occurs early, perturbs BMP signaling, and likely contributes to the synaptic abnormalities observed in these two diseases. PMID:25127478

  13. Disruption of axonal transport perturbs bone morphogenetic protein (BMP)--signaling and contributes to synaptic abnormalities in two neurodegenerative diseases.

    Science.gov (United States)

    Kang, Min Jung; Hansen, Timothy J; Mickiewicz, Monique; Kaczynski, Tadeusz J; Fye, Samantha; Gunawardena, Shermali

    2014-01-01

    Formation of new synapses or maintenance of existing synapses requires the delivery of synaptic components from the soma to the nerve termini via axonal transport. One pathway that is important in synapse formation, maintenance and function of the Drosophila neuromuscular junction (NMJ) is the bone morphogenetic protein (BMP)-signaling pathway. Here we show that perturbations in axonal transport directly disrupt BMP signaling, as measured by its downstream signal, phospho Mad (p-Mad). We found that components of the BMP pathway genetically interact with both kinesin-1 and dynein motor proteins. Thick vein (TKV) vesicle motility was also perturbed by reductions in kinesin-1 or dynein motors. Interestingly, dynein mutations severely disrupted p-Mad signaling while kinesin-1 mutants showed a mild reduction in p-Mad signal intensity. Similar to mutants in components of the BMP pathway, both kinesin-1 and dynein motor protein mutants also showed synaptic morphological defects. Strikingly TKV motility and p-Mad signaling were disrupted in larvae expressing two human disease proteins; expansions of glutamine repeats (polyQ77) and human amyloid precursor protein (APP) with a familial Alzheimer's disease (AD) mutation (APPswe). Consistent with axonal transport defects, larvae expressing these disease proteins showed accumulations of synaptic proteins along axons and synaptic abnormalities. Taken together our results suggest that similar to the NGF-TrkA signaling endosome, a BMP signaling endosome that directly interacts with molecular motors likely exist. Thus problems in axonal transport occurs early, perturbs BMP signaling, and likely contributes to the synaptic abnormalities observed in these two diseases.

  14. Changes in the expression of collapsin response mediator protein-2 during synaptic plasticity in the mouse hippocampus.

    Science.gov (United States)

    Kadoyama, Keiichi; Matsuura, Kenji; Nakamura-Hirota, Tooru; Takano, Masaoki; Otani, Mieko; Matsuyama, Shogo

    2015-11-01

    We have previously reported that nicotine application to the adult mouse causing long-term potentiation-like facilitation in vivo in the hippocampus can serve as a model of synaptic plasticity. The present study clarifies the involvement of collapsin response mediator protein-2 (CRMP2) in synaptic plasticity. CRMP2 was detected in hippocampal neurons of adult mice. The levels of CRMP2 mRNA and protein were increased 2-24 hr and 4-24 hr, respectively, after application of nicotine (3 mg/kg, i.p.), finally returning to the basal level by 48 hr. Furthermore, the ratio of phosphorylated CRMP2 (pCRMP2) at Thr514 residue, an inactive form, to total CRMP2 levels was not changed during synaptic plasticity expressed by nicotine, indicating an enhanced level of non-pCRMP2. This increase of CRMP2 was inhibited by blockade of nicotinic acetylcholine receptors (nAChRs) and required activation of both α4β2 and α7 nAChRs. Although the level of ubiquitinated CRMP2 was increased 8 hr after nicotine treatment, the ratio of ubiquitinated CRMP2 to total CRMP2 protein was similar for nicotine-treated and nontreated mice. This study demonstrates that the expression of CRMP2 increases in hippocampal neurons during synaptic plasticity and that the increment is due mainly to mRNA expression. We propose that CRMP2, particularly non-pCRMP2, could contribute to long-lasting synaptic plasticity. © 2015 Wiley Periodicals, Inc.

  15. Synaptic Determinants of Rett Syndrome

    Science.gov (United States)

    Boggio, Elena M.; Lonetti, Giuseppina; Pizzorusso, Tommaso; Giustetto, Maurizio

    2010-01-01

    There is mounting evidence showing that the structural and molecular organization of synaptic connections is affected both in human patients and in animal models of neurological and psychiatric diseases. As a consequence of these experimental observations, it has been introduced the concept of synapsopathies, a notion describing brain disorders of synaptic function and plasticity. A close correlation between neurological diseases and synaptic abnormalities is especially relevant for those syndromes including also mental retardation in their symptomatology, such as Rett syndrome (RS). RS (MIM312750) is an X-linked dominant neurological disorder that is caused in the majority of cases by mutations in methyl-CpG-binding protein 2 (MeCP2). This review will focus on the current knowledge of the synaptic alterations produced by mutations of the gene MeCP2 in mouse models of RS and will highlight prospects experimental therapies currently in use. Different experimental approaches have revealed that RS could be the consequence of an impairment in the homeostasis of synaptic transmission in specific brain regions. Indeed, several forms of experience-induced neuronal plasticity are impaired in the absence of MeCP2. Based on the results presented in this review, it is reasonable to propose that understanding how the brain is affected by diseases such as RS is at reach. This effort will bring us closer to identify the neurobiological bases of human cognition. PMID:21423514

  16. Synaptic determinants of Rett syndrome

    Directory of Open Access Journals (Sweden)

    Elena M B Boggio

    2010-08-01

    Full Text Available There is mounting evidence showing that the structural and molecular organization of synaptic connections are affected both in human patients and in animal models of neurological and psychiatric diseases. As a consequence of these experimental observations, it has been introduced the concept of synapsopathies, a notion describing brain disorders of synaptic function and plasticity. A close correlation between neurological diseases and synaptic abnormalities is especially relevant for those syndromes including also mental retardation in their symptomatology, such as Rett Syndrome (RS. RS (MIM312750 is an X-linked dominant neurological disorder that is caused, in the majority of cases by mutations in methyl-CpG-binding protein 2 (MeCP2. This review will focus on the current knowledge of the synaptic alterations produced by mutations of the gene MeCP2 in mouse models of RS and will highlight prospects experimental therapies currently in use. Different experimental approaches have revealed that RS could be the consequence of an impairment in the homeostasis of synaptic transmission in specific brain regions. Indeed, several forms of experience-induced neuronal plasticity are impaired in the absence of MeCP2. Based on the results presented in this review, it is reasonable to propose that understanding how the brain is affected by diseases such as RS is at reach. This effort will bring us closer to identify the neurobiological bases of human cognition.

  17. Immune labeling and purification of a 71-kDa glutamate-binding protein from brain synaptic membranes

    International Nuclear Information System (INIS)

    Chen, J.W.; Cunningham, M.D.; Galton, N.; Michaelis, E.K.

    1988-01-01

    Immunoblot studies of synaptic membranes isolated from rat brain using antibodies raised against a previously purified glutamate-binding protein (GBP) indicated labeling of an ∼ 70-kDa protein band. Since the antibodies used were raised against a 14-kDa GBP, the present studies were undertaken to explore the possibility that the 14-kDa protein may have been a proteolytic fragment of a larger M/sub r/ protein in synaptic membranes. The major protein enriched in the most highly purified fractions was a 71-kDa glycoprotein, but a 63-kDa protein was co-purified during most steps of the isolation procedure. The glutamate-binding characteristics of these isolated protein fractions were very similar to those previously described for the 14-kDa GBP, including estimated dissociation constants for L-glutamate binding of 0.25 and 1 + M, inhibition of glutamate binding by azide and cyanide, and a selectivity of the ligand binding site for L-glutamate and L-aspartate. The neuroexcitatory analogs of L-glutamate and L-aspartate, ibotenate, quisqualate, and D-glutamate, inhibited L[ 3 H]glutamate binding to the isolated proteins, as did the antagonist of L-glutamate-induced neuronal excitation, L-glutamate diethylester. On the basis of the lack of any detectable glutamate-related enzyme activity associated with the isolated proteins and the presence of distinguishing sensitivities to analogs that inhibit glutamate transport carriers in synaptic membranes, it is proposed that the 71-kDa protein may be a component of a physiologic glutamate receptor complex in neuronal membranes

  18. Changes in hippocampal synaptic functions and protein expression in monosodium glutamate-treated obese mice during development of glucose intolerance.

    Science.gov (United States)

    Sasaki-Hamada, Sachie; Hojo, Yuki; Koyama, Hajime; Otsuka, Hayuma; Oka, Jun-Ichiro

    2015-05-01

    Glucose is the sole neural fuel for the brain and is essential for cognitive function. Abnormalities in glucose tolerance may be associated with impairments in cognitive function. Experimental obese model mice can be generated by an intraperitoneal injection of monosodium glutamate (MSG; 2 mg/g) once a day for 5 days from 1 day after birth. MSG-treated mice have been shown to develop glucose intolerance and exhibit chronic neuroendocrine dysfunction associated with marked cognitive malfunctions at 28-29  weeks old. Although hippocampal synaptic plasticity is impaired in MSG-treated mice, changes in synaptic transmission remain unknown. Here, we investigated whether glucose intolerance influenced cognitive function, synaptic properties and protein expression in the hippocampus. We demonstrated that MSG-treated mice developed glucose intolerance due to an impairment in the effectiveness of insulin actions, and showed cognitive impairments in the Y-maze test. Moreover, long-term potentiation (LTP) at Schaffer collateral-CA1 pyramidal synapses in hippocampal slices was impaired, and the relationship between the slope of extracellular field excitatory postsynaptic potential and stimulus intensity of synaptic transmission was weaker in MSG-treated mice. The protein levels of vesicular glutamate transporter 1 and GluA1 glutamate receptor subunits decreased in the CA1 region of MSG-treated mice. These results suggest that deficits in glutamatergic presynapses as well as postsynapses lead to impaired synaptic plasticity in MSG-treated mice during the development of glucose intolerance, though it remains unknown whether impaired LTP is due to altered inhibitory transmission. It may be important to examine changes in glucose tolerance in order to prevent cognitive malfunctions associated with diabetes. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density

    Science.gov (United States)

    Ferron, Laurent; Nieto-Rostro, Manuela; Cassidy, John S.; Dolphin, Annette C.

    2014-04-01

    Fragile X syndrome (FXS), the most common heritable form of mental retardation, is characterized by synaptic dysfunction. Synaptic transmission depends critically on presynaptic calcium entry via voltage-gated calcium (CaV) channels. Here we show that the functional expression of neuronal N-type CaV channels (CaV2.2) is regulated by fragile X mental retardation protein (FMRP). We find that FMRP knockdown in dorsal root ganglion neurons increases CaV channel density in somata and in presynaptic terminals. We then show that FMRP controls CaV2.2 surface expression by targeting the channels to the proteasome for degradation. The interaction between FMRP and CaV2.2 occurs between the carboxy-terminal domain of FMRP and domains of CaV2.2 known to interact with the neurotransmitter release machinery. Finally, we show that FMRP controls synaptic exocytosis via CaV2.2 channels. Our data indicate that FMRP is a potent regulator of presynaptic activity, and its loss is likely to contribute to synaptic dysfunction in FXS.

  20. Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A

    Science.gov (United States)

    Benoit, Roger M.; Frey, Daniel; Hilbert, Manuel; Kevenaar, Josta T.; Wieser, Mara M.; Stirnimann, Christian U.; McMillan, David; Ceska, Tom; Lebon, Florence; Jaussi, Rolf; Steinmetz, Michel O.; Schertler, Gebhard F. X.; Hoogenraad, Casper C.; Capitani, Guido; Kammerer, Richard A.

    2014-01-01

    Botulinum neurotoxin A (BoNT/A) belongs to the most dangerous class of bioweapons. Despite this, BoNT/A is used to treat a wide range of common medical conditions such as migraines and a variety of ocular motility and movement disorders. BoNT/A is probably best known for its use as an antiwrinkle agent in cosmetic applications (including Botox and Dysport). BoNT/A application causes long-lasting flaccid paralysis of muscles through inhibiting the release of the neurotransmitter acetylcholine by cleaving synaptosomal-associated protein 25 (SNAP-25) within presynaptic nerve terminals. Two types of BoNT/A receptor have been identified, both of which are required for BoNT/A toxicity and are therefore likely to cooperate with each other: gangliosides and members of the synaptic vesicle glycoprotein 2 (SV2) family, which are putative transporter proteins that are predicted to have 12 transmembrane domains, associate with the receptor-binding domain of the toxin. Recently, fibroblast growth factor receptor 3 (FGFR3) has also been reported to be a potential BoNT/A receptor. In SV2 proteins, the BoNT/A-binding site has been mapped to the luminal domain, but the molecular details of the interaction between BoNT/A and SV2 are unknown. Here we determined the high-resolution crystal structure of the BoNT/A receptor-binding domain (BoNT/A-RBD) in complex with the SV2C luminal domain (SV2C-LD). SV2C-LD consists of a right-handed, quadrilateral β-helix that associates with BoNT/A-RBD mainly through backbone-to-backbone interactions at open β-strand edges, in a manner that resembles the inter-strand interactions in amyloid structures. Competition experiments identified a peptide that inhibits the formation of the complex. Our findings provide a strong platform for the development of novel antitoxin agents and for the rational design of BoNT/A variants with improved therapeutic properties.

  1. Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis.

    Science.gov (United States)

    Arendt, Kristin L; Zhang, Zhenjie; Ganesan, Subhashree; Hintze, Maik; Shin, Maggie M; Tang, Yitai; Cho, Ahryon; Graef, Isabella A; Chen, Lu

    2015-10-20

    Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca(2+) levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca(2+)-levels to RA synthesis remains unknown. Here we identify the Ca(2+)-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca(2+)-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity.

  2. Quantitative proteomics identifies altered O-GlcNAcylation of structural, synaptic and memory-associated proteins in Alzheimer's disease: Brain protein O-GlcNAcylation in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sheng [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Yang, Feng [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Petyuk, Vladislav A. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Shukla, Anil K. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Monroe, Matthew E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Gritsenko, Marina A. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Rodland, Karin D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Smith, Richard D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Qian, Wei-Jun [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Gong, Cheng-Xin [New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York USA; Liu, Tao [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA

    2017-07-28

    Protein modification by O-linked beta-N-acetylglucosamine (O-GlcNAc) is emerging as an important factor in the pathogenesis of sporadic Alzheimer’s disease. Herein we report the most comprehensive, quantitative proteomics analysis for protein O-GlcNAcylation in post-mortem human brains with and without Alzheimer’s using isobaric tandem mass tags labeling, chemoenzymatic photocleavage enrichment and liquid chromatography coupled to mass spectrometry. A total of 1,850 O-GlcNAc peptides covering 1,094 O-GlcNAcylation sites were identified from 530 proteins in the human brain. 128 O-GlcNAc peptides covering 78 proteins were altered significantly in Alzheimer’s brain as compared to controls (q<0.05). Moreover, alteration of the O-GlcNAc peptide abundance could be attributed more to O-GlcNAcylation level than to protein level changes. The altered O-GlcNAcylated proteins belong to several structural and functional categories, including synaptic proteins, cytoskeleton proteins, and memory-associated proteins. These findings suggest that dysregulation of O-GlcNAcylation of multiple brain proteins may be involved in the development of sporadic Alzheimer’s disease.

  3. Synaptic Plasticity and Translation Initiation

    Science.gov (United States)

    Klann, Eric; Antion, Marcia D.; Banko, Jessica L.; Hou, Lingfei

    2004-01-01

    It is widely accepted that protein synthesis, including local protein synthesis at synapses, is required for several forms of synaptic plasticity. Local protein synthesis enables synapses to control synaptic strength independent of the cell body via rapid protein production from pre-existing mRNA. Therefore, regulation of translation initiation is…

  4. Reward memory relieves anxiety-related behavior through synaptic strengthening and protein kinase C in dentate gyrus.

    Science.gov (United States)

    Lei, Zhuofan; Liu, Bei; Wang, Jin-Hui

    2016-04-01

    Anxiety disorders are presumably associated with negative memory. Psychological therapies are widely used to treat this mental deficit in human beings based on the view that positive memory competes with negative memory and relieves anxiety status. Cellular and molecular processes underlying psychological therapies remain elusive. Therefore, we have investigated its mechanisms based on a mouse model in which food reward at one open-arm of the elevated plus-maze was used for training mice to form reward memory and challenge the open arms. Mice with the reward training showed increased entries and stay time in reward open-arm versus neutral open-arm as well as in open-arms versus closed-arms. Accompanying with reward memory formation and anxiety relief, glutamatergic synaptic transmission in dentate gyrus in vivo and dendritic spines in granule cells became upregulated. This synaptic up-regulation was accompanied by the expression of more protein kinase C (PKC) in the dendritic spines. The inhibition of PKC by chelerythrine impaired the formation of reward memory, the relief of anxiety-related behavior and the up-regulation of glutamate synapses. Our results suggest that reward-induced positive memory relieves mouse anxiety-related behavior by strengthening synaptic efficacy and PKC in the hippocampus, which imply the underlying cellular and molecular processes involved in the beneficial effects of psychological therapies treating anxiety disorders. © 2015 Wiley Periodicals, Inc.

  5. UNC-16/JIP3 regulates early events in synaptic vesicle protein trafficking via LRK-1/LRRK2 and AP complexes.

    Directory of Open Access Journals (Sweden)

    Bikash Choudhary

    2017-11-01

    Full Text Available JIP3/UNC-16/dSYD is a MAPK-scaffolding protein with roles in protein trafficking. We show that it is present on the Golgi and is necessary for the polarized distribution of synaptic vesicle proteins (SVPs and dendritic proteins in neurons. UNC-16 excludes Golgi enzymes from SVP transport carriers and facilitates inclusion of specific SVPs into the same transport carrier. The SVP trafficking roles of UNC-16 are mediated through LRK-1, whose localization to the Golgi is reduced in unc-16 animals. UNC-16, through LRK-1, also enables Golgi-localization of the μ-subunit of the AP-1 complex. AP1 regulates the size but not the composition of SVP transport carriers. Additionally, UNC-16 and LRK-1 through the AP-3 complex regulates the composition but not the size of the SVP transport carrier. These early biogenesis steps are essential for dependence on the synaptic vesicle motor, UNC-104 for axonal transport. Our results show that UNC-16 and its downstream effectors, LRK-1 and the AP complexes function at the Golgi and/or post-Golgi compartments to control early steps of SV biogenesis. The UNC-16 dependent steps of exclusion, inclusion and motor recruitment are critical for polarized distribution of neuronal cargo.

  6. Role of the ubiquitin ligase E6AP/UBE3A in controlling levels of the synaptic protein Arc

    Science.gov (United States)

    Kühnle, Simone; Mothes, Benedikt; Matentzoglu, Konstantin; Scheffner, Martin

    2013-01-01

    Inactivation of the ubiquitin ligase E6 associated protein (E6AP) encoded by the UBE3A gene has been associated with development of the Angelman syndrome. Recently, it was reported that in mice, loss of E6AP expression results in increased levels of the synaptic protein Arc and a concomitant impaired synaptic function, providing an explanation for some phenotypic features of Angelman syndrome patients. Accordingly, E6AP has been shown to negatively regulate activity-regulated cytoskeleton-associated protein (Arc) and it has been suggested that E6AP targets Arc for ubiquitination and degradation. In our study, we provide evidence that Arc is not a direct substrate for E6AP and binds only weakly to E6AP, if at all. Furthermore, we show that down-regulation of E6AP expression stimulates estradiol-induced transcription of the Arc gene. Thus, we propose that Arc protein levels are controlled by E6AP at the transcriptional rather than at the posttranslational level. PMID:23671107

  7. Expressions of visual pigments and synaptic proteins in neonatal chick retina exposed to light of variable photoperiods.

    Science.gov (United States)

    Jha, Kumar Abhiram; Nag, Tapas C; Wadhwa, Shashi; Roy, Tara Sankar

    2016-12-01

    Light causes damage to the retina, which is one of the supposed factors for age-related macular degeneration in human. Some animal species show drastic retinal changes when exposed to intense light (e.g. albino rats). Although birds have a pigmented retina, few reports indicated its susceptibility to light damage. To know how light influences a cone-dominated retina (as is the case with human), we examined the effects of moderate light intensity on the retina of white Leghorn chicks (Gallus g. domesticus). The newly hatched chicks were initially acclimatized at 500 lux for 7 days in 12 h light: 12 h dark cycles (12L:12D). From posthatch day (PH) 8 until PH 30, they were exposed to 2000 lux at 12L:12D, 18L:6D (prolonged light) and 24L:0D (constant light) conditions. The retinas were processed for transmission electron microscopy and the level of expressions of rhodopsin, S- and L/M cone opsins, and synaptic proteins (Synaptophysin and PSD-95) were determined by immunohistochemistry and Western blotting. Rearing in 24L:0D condition caused disorganization of photoreceptor outer segments. Consequently, there were significantly decreased expressions of opsins and synaptic proteins, compared to those seen in 12L:12D and 18L:6D conditions. Also, there were ultrastructural changes in outer and inner plexiform layer (OPL, IPL) of the retinas exposed to 24L:0D condition. Our data indicate that the cone-dominated chick retina is affected in constant light condition, with changes (decreased) in opsin levels. Also, photoreceptor alterations lead to an overall decrease in synaptic protein expressions in OPL and IPL and death of degenerated axonal processes in IPL.

  8. Sex differences in the effects of pre- and postnatal caffeine exposure on behavior and synaptic proteins in pubescent rats.

    Science.gov (United States)

    Sallaberry, Cássia; Ardais, Ana Paula; Rocha, Andréia; Borges, Maurício Felisberto; Fioreze, Gabriela T; Mioranzza, Sabrina; Nunes, Fernanda; Pagnussat, Natália; Botton, Paulo Henrique S; Porciúncula, Lisiane O

    2018-02-02

    Few studies have addressed the effects of caffeine in the puberty and/or adolescence in a sex dependent manner. Considering that caffeine intake has increased in this population, we investigated the behavioral and synaptic proteins changes in pubescent male and female rats after maternal consumption of caffeine. Adult female Wistar rats started to receive water or caffeine (0.1 and 0.3g/L in drinking water; low and moderate dose, respectively) during the active cycle at weekdays, two weeks before mating. The treatment lasted up to weaning and the offspring received caffeine until the onset of puberty (30-34days old). Behavioral tasks were performed to evaluate locomotor activity (open field task), anxious-like behavior (elevated plus maze task) and recognition memory (object recognition task) and synaptic proteins levels (proBDNF, BDNF, GFAP and SNAP-25) were verified in the hippocampus and cerebral cortex. While hyperlocomotion was observed in both sexes after caffeine treatment, anxiety-related behavior was attenuated by caffeine (0.3g/L) only in females. While moderate caffeine worsened recognition memory in females, an improvement in the long-term memory was observed in male rats for both doses. Coincident with memory improvement in males, caffeine increased pro- and BDNF in the hippocampus and cortex. Females presented increased proBDNF levels in both brain regions, with no effects of caffeine. While GFAP was not altered, moderate caffeine intake increased SNAP-25 in the cortex of female rats. Our findings revealed that caffeine promoted cognitive benefits in males associated with increased BDNF levels, while females showed less anxiety. Our findings revealed that caffeine promotes distinct behavioral outcomes and alterations in synaptic proteins during brain development in a sex dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Differential regulation of synaptic and extrasynaptic α4 GABA(A) receptor populations by protein kinase A and protein kinase C in cultured cortical neurons.

    Science.gov (United States)

    Bohnsack, John Peyton; Carlson, Stephen L; Morrow, A Leslie

    2016-06-01

    The GABAA α4 subunit exists in two distinct populations of GABAA receptors. Synaptic GABAA α4 receptors are localized at the synapse and mediate phasic inhibitory neurotransmission, while extrasynaptic GABAA receptors are located outside of the synapse and mediate tonic inhibitory transmission. These receptors have distinct pharmacological and biophysical properties that contribute to interest in how these different subtypes are regulated under physiological and pathological states. We utilized subcellular fractionation procedures to separate these populations of receptors in order to investigate their regulation by protein kinases in cortical cultured neurons. Protein kinase A (PKA) activation decreases synaptic α4 expression while protein kinase C (PKC) activation increases α4 subunit expression, and these effects are associated with increased β3 S408/409 or γ2 S327 phosphorylation respectively. In contrast, PKA activation increases extrasynaptic α4 and δ subunit expression, while PKC activation has no effect. Our findings suggest synaptic and extrasynaptic GABAA α4 subunit expression can be modulated by PKA to inform the development of more specific therapeutics for neurological diseases that involve deficits in GABAergic transmission. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Changes in mGlu5 receptor-dependent synaptic plasticity and coupling to homer proteins in the hippocampus of Ube3A hemizygous mice modeling angelman syndrome.

    Science.gov (United States)

    Pignatelli, Marco; Piccinin, Sonia; Molinaro, Gemma; Di Menna, Luisa; Riozzi, Barbara; Cannella, Milena; Motolese, Marta; Vetere, Gisella; Catania, Maria Vincenza; Battaglia, Giuseppe; Nicoletti, Ferdinando; Nisticò, Robert; Bruno, Valeria

    2014-03-26

    Angelman syndrome (AS) is caused by the loss of Ube3A, an ubiquitin ligase that commits specific proteins to proteasomal degradation. How this defect causes autism and other pathological phenotypes associated with AS is unknown. Long-term depression (LTD) of excitatory synaptic transmission mediated by type 5 metabotropic glutamate (mGlu5) receptors was enhanced in hippocampal slices of Ube3A(m-/p+) mice, which model AS. No changes were found in NMDA-dependent LTD induced by low-frequency stimulation. mGlu5 receptor-dependent LTD in AS mice was sensitive to the protein synthesis inhibitor anisomycin, and relied on the same signaling pathways as in wild-type mice, e.g., the mitogen-activated protein kinase (MAPK) pathway, the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycine pathway, and protein tyrosine phosphatase. Neither the stimulation of MAPK and PI3K nor the increase in Arc (activity-regulated cytoskeleton-associated protein) levels in response to mGlu5 receptor activation were abnormal in hippocampal slices from AS mice compared with wild-type mice. mGlu5 receptor expression and mGlu1/5 receptor-mediated polyphosphoinositide hydrolysis were also unchanged in the hippocampus of AS mice. In contrast, AS mice showed a reduced expression of the short Homer protein isoform Homer 1a, and an increased coupling of mGlu5 receptors to Homer 1b/c proteins in the hippocampus. These findings support the link between Homer proteins and monogenic autism, and lay the groundwork for the use of mGlu5 receptor antagonists in AS.

  11. Differential regulation of synaptic AP-2/clathrin vesicle uncoating in synaptic plasticity.

    Science.gov (United States)

    Candiello, Ermes; Mishra, Ratnakar; Schmidt, Bernhard; Jahn, Olaf; Schu, Peter

    2017-11-17

    AP-1/σ1B-deficiency causes X-linked intellectual disability. AP-1/σ1B -/- mice have impaired synaptic vesicle recycling, fewer synaptic vesicles and enhanced endosome maturation mediated by AP-1/σ1A. Despite defects in synaptic vesicle recycling synapses contain two times more endocytic AP-2 clathrin-coated vesicles. We demonstrate increased formation of two classes of AP-2/clathrin coated vesicles. One which uncoats readily and a second with a stabilised clathrin coat. Coat stabilisation is mediated by three molecular mechanisms: reduced recruitment of Hsc70 and synaptojanin1 and enhanced μ2/AP-2 phosphorylation and activation. Stabilised AP-2 vesicles are enriched in the structural active zone proteins Git1 and stonin2 and synapses contain more Git1. Endocytosis of the synaptic vesicle exocytosis regulating Munc13 isoforms are differentially effected. Regulation of synaptic protein endocytosis by the differential stability of AP-2/clathrin coats is a novel molecular mechanism of synaptic plasticity.

  12. Neto1 is a novel CUB-domain NMDA receptor-interacting protein required for synaptic plasticity and learning.

    Directory of Open Access Journals (Sweden)

    David Ng

    2009-02-01

    Full Text Available The N-methyl-D-aspartate receptor (NMDAR, a major excitatory ligand-gated ion channel in the central nervous system (CNS, is a principal mediator of synaptic plasticity. Here we report that neuropilin tolloid-like 1 (Neto1, a complement C1r/C1s, Uegf, Bmp1 (CUB domain-containing transmembrane protein, is a novel component of the NMDAR complex critical for maintaining the abundance of NR2A-containing NMDARs in the postsynaptic density. Neto1-null mice have depressed long-term potentiation (LTP at Schaffer collateral-CA1 synapses, with the subunit dependency of LTP induction switching from the normal predominance of NR2A- to NR2B-NMDARs. NMDAR-dependent spatial learning and memory is depressed in Neto1-null mice, indicating that Neto1 regulates NMDA receptor-dependent synaptic plasticity and cognition. Remarkably, we also found that the deficits in LTP, learning, and memory in Neto1-null mice were rescued by the ampakine CX546 at doses without effect in wild-type. Together, our results establish the principle that auxiliary proteins are required for the normal abundance of NMDAR subunits at synapses, and demonstrate that an inherited learning defect can be rescued pharmacologically, a finding with therapeutic implications for humans.

  13. The Human Synaptic Vesicle Protein, SV2A, Functions as a Galactose Transporter in Saccharomyces cerevisiae * ♦

    Science.gov (United States)

    Madeo, Marianna; Kovács, Attila D.; Pearce, David A.

    2014-01-01

    SV2A is a synaptic vesicle membrane protein expressed in neurons and endocrine cells and involved in the regulation of neurotransmitter release. Although the exact function of SV2A still remains elusive, it was identified as the specific binding site for levetiracetam, a second generation antiepileptic drug. Our sequence analysis demonstrates that SV2A has significant homology with several yeast transport proteins belonging to the major facilitator superfamily (MFS). Many of these transporters are involved in sugar transport into yeast cells. Here we present evidence showing, for the first time, that SV2A is a galactose transporter. We expressed human SV2A in hexose transport-deficient EBY.VW4000 yeast cells and demonstrated that these cells are able to grow on galactose-containing medium but not on other fermentable carbon sources. Furthermore, the addition of the SV2A-binding antiepileptic drug levetiracetam to the medium inhibited the galactose-dependent growth of hexose transport-deficient EBY.VW4000 yeast cells expressing human SV2A. Most importantly, direct measurement of galactose uptake in the same strain verified that SV2A is able to transport extracellular galactose inside the cells. The newly identified galactose transport capability of SV2A may have an important role in regulating/modulating synaptic function. PMID:25326386

  14. MAPK3 at the Autism-Linked Human 16p11.2 Locus Influences Precise Synaptic Target Selection at Drosophila Larval Neuromuscular Junctions.

    Science.gov (United States)

    Park, Sang Mee; Park, Hae Ryoun; Lee, Ji Hye

    2017-02-01

    Proper synaptic function in neural circuits requires precise pairings between correct pre- and post-synaptic partners. Errors in this process may underlie development of neuropsychiatric disorders, such as autism spectrum disorder (ASD). Development of ASD can be influenced by genetic factors, including copy number variations (CNVs). In this study, we focused on a CNV occurring at the 16p11.2 locus in the human genome and investigated potential defects in synaptic connectivity caused by reduced activities of genes located in this region at Drosophila larval neuromuscular junctions, a well-established model synapse with stereotypic synaptic structures. A mutation of rolled , a Drosophila homolog of human mitogen-activated protein kinase 3 ( MAPK3 ) at the 16p11.2 locus, caused ectopic innervation of axonal branches and their abnormal defasciculation. The specificity of these phenotypes was confirmed by expression of wild-type rolled in the mutant background. Albeit to a lesser extent, we also observed ectopic innervation patterns in mutants defective in Cdk2, Gα q , and Gp93, all of which were expected to interact with Rolled MAPK3. A further genetic analysis in double heterozygous combinations revealed a synergistic interaction between rolled and Gp93 . In addition, results from RT-qPCR analyses indicated consistently reduced rolled mRNA levels in Cdk2 , Gα q , and Gp93 mutants. Taken together, these data suggest a central role of MAPK3 in regulating the precise targeting of presynaptic axons to proper postsynaptic targets, a critical step that may be altered significantly in ASD.

  15. Comparative study of human and mouse postsynaptic proteomes finds high compositional conservation and abundance differences for key synaptic proteins.

    Directory of Open Access Journals (Sweden)

    Alex Bayés

    Full Text Available Direct comparison of protein components from human and mouse excitatory synapses is important for determining the suitability of mice as models of human brain disease and to understand the evolution of the mammalian brain. The postsynaptic density is a highly complex set of proteins organized into molecular networks that play a central role in behavior and disease. We report the first direct comparison of the proteome of triplicate isolates of mouse and human cortical postsynaptic densities. The mouse postsynaptic density comprised 1556 proteins and the human one 1461. A large compositional overlap was observed; more than 70% of human postsynaptic density proteins were also observed in the mouse postsynaptic density. Quantitative analysis of postsynaptic density components in both species indicates a broadly similar profile of abundance but also shows that there is higher abundance variation between species than within species. Well known components of this synaptic structure are generally more abundant in the mouse postsynaptic density. Significant inter-species abundance differences exist in some families of key postsynaptic density proteins including glutamatergic neurotransmitter receptors and adaptor proteins. Furthermore, we have identified a closely interacting set of molecules enriched in the human postsynaptic density that could be involved in dendrite and spine structural plasticity. Understanding synapse proteome diversity within and between species will be important to further our understanding of brain complexity and disease.

  16. An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jiou Wang

    2009-01-01

    Full Text Available The nature of toxic effects exerted on neurons by misfolded proteins, occurring in a number of neurodegenerative diseases, is poorly understood. One approach to this problem is to measure effects when such proteins are expressed in heterologous neurons. We report on effects of an ALS-associated, misfolding-prone mutant human SOD1, G85R, when expressed in the neurons of Caenorhabditis elegans. Stable mutant transgenic animals, but not wild-type human SOD1 transgenics, exhibited a strong locomotor defect associated with the presence, specifically in mutant animals, of both soluble oligomers and insoluble aggregates of G85R protein. A whole-genome RNAi screen identified chaperones and other components whose deficiency increased aggregation and further diminished locomotion. The nature of the locomotor defect was investigated. Mutant animals were resistant to paralysis by the cholinesterase inhibitor aldicarb, while exhibiting normal sensitivity to the cholinergic agonist levamisole and normal muscle morphology. When fluorescently labeled presynaptic components were examined in the dorsal nerve cord, decreased numbers of puncta corresponding to neuromuscular junctions were observed in mutant animals and brightness was also diminished. At the EM level, mutant animals exhibited a reduced number of synaptic vesicles. Neurotoxicity in this system thus appears to be mediated by misfolded SOD1 and is exerted on synaptic vesicle biogenesis and/or trafficking.

  17. Decreased astrocytic thrombospondin-1 secretion after chronic ammonia treatment reduces the level of synaptic proteins: in vitro and in vivo studies.

    Science.gov (United States)

    Jayakumar, Arumugam R; Tong, Xiao Y; Curtis, Kevin M; Ruiz-Cordero, Roberto; Shamaladevi, Nagarajarao; Abuzamel, Missa; Johnstone, Joshua; Gaidosh, Gabriel; Rama Rao, Kakulavarapu V; Norenberg, Michael D

    2014-11-01

    Chronic hepatic encephalopathy (CHE) is a major complication in patients with severe liver disease. Elevated blood and brain ammonia levels have been implicated in its pathogenesis, and astrocytes are the principal neural cells involved in this disorder. Since defective synthesis and release of astrocytic factors have been shown to impair synaptic integrity in other neurological conditions, we examined whether thrombospondin-1 (TSP-1), an astrocytic factor involved in the maintenance of synaptic integrity, is also altered in CHE. Cultured astrocytes were exposed to ammonia (NH₄Cl, 0.5-2.5 mM) for 1-10 days, and TSP-1 content was measured in cell extracts and culture media. Astrocytes exposed to ammonia exhibited a reduction in intra- and extracellular TSP-1 levels. Exposure of cultured neurons to conditioned media from ammonia-treated astrocytes showed a decrease in synaptophysin, PSD95, and synaptotagmin levels. Conditioned media from TSP-1 over-expressing astrocytes that were treated with ammonia, when added to cultured neurons, reversed the decline in synaptic proteins. Recombinant TSP-1 similarly reversed the decrease in synaptic proteins. Metformin, an agent known to increase TSP-1 synthesis in other cell types, also reversed the ammonia-induced TSP-1 reduction. Likewise, we found a significant decline in TSP-1 level in cortical astrocytes, as well as a reduction in synaptophysin content in vivo in a rat model of CHE. These findings suggest that TSP-1 may represent an important therapeutic target for CHE. Defective release of astrocytic factors may impair synaptic integrity in chronic hepatic encephalopathy. We found a reduction in the release of the astrocytic matricellular proteins thrombospondin-1 (TSP-1) in ammonia-treated astrocytes; such reduction was associated with a decrease in synaptic proteins caused by conditioned media from ammonia-treated astrocytes. Exposure of neurons to CM from ammonia-treated astrocytes, in which TSP-1 is over

  18. Reactive Oxygen Species-Mediated Loss of Synaptic Akt1 Signaling Leads to Deficient Activity-Dependent Protein Translation Early in Alzheimer's Disease.

    Science.gov (United States)

    Ahmad, Faraz; Singh, Kunal; Das, Debajyoti; Gowaikar, Ruturaj; Shaw, Eisha; Ramachandran, Arathy; Rupanagudi, Khader Valli; Kommaddi, Reddy Peera; Bennett, David A; Ravindranath, Vijayalakshmi

    2017-12-01

    Synaptic deficits are known to underlie the cognitive dysfunction seen in Alzheimer's disease (AD). Generation of reactive oxygen species (ROS) by β-amyloid has also been implicated in AD pathogenesis. However, it is unclear whether ROS contributes to synaptic dysfunction seen in AD pathogenesis and, therefore, we examined whether altered redox signaling could contribute to synaptic deficits in AD. Activity dependent but not basal translation was impaired in synaptoneurosomes from 1-month old presymptomatic APP Swe /PS1ΔE9 (APP/PS1) mice, and this deficit was sustained till middle age (MA, 9-10 months). ROS generation leads to oxidative modification of Akt1 in the synapse and consequent reduction in Akt1-mechanistic target of rapamycin (mTOR) signaling, leading to deficiency in activity-dependent protein translation. Moreover, we found a similar loss of activity-dependent protein translation in synaptoneurosomes from postmortem AD brains. Loss of activity-dependent protein translation occurs presymptomatically early in the pathogenesis of AD. This is caused by ROS-mediated loss of pAkt1, leading to reduced synaptic Akt1-mTOR signaling and is rescued by overexpression of Akt1. ROS-mediated damage is restricted to the synaptosomes, indicating selectivity. We demonstrate that ROS-mediated oxidative modification of Akt1 contributes to synaptic dysfunction in AD, seen as loss of activity-dependent protein translation that is essential for synaptic plasticity and maintenance. Therapeutic strategies promoting Akt1-mTOR signaling at synapses may provide novel target(s) for disease-modifying therapy in AD. Antioxid. Redox Signal. 27, 1269-1280.

  19. Identification of the antiepileptic racetam binding site in the synaptic vesicle protein 2A by molecular dynamics and docking simulations

    Science.gov (United States)

    Correa-Basurto, José; Cuevas-Hernández, Roberto I.; Phillips-Farfán, Bryan V.; Martínez-Archundia, Marlet; Romo-Mancillas, Antonio; Ramírez-Salinas, Gema L.; Pérez-González, Óscar A.; Trujillo-Ferrara, José; Mendoza-Torreblanca, Julieta G.

    2015-01-01

    Synaptic vesicle protein 2A (SV2A) is an integral membrane protein necessary for the proper function of the central nervous system and is associated to the physiopathology of epilepsy. SV2A is the molecular target of the anti-epileptic drug levetiracetam and its racetam analogs. The racetam binding site in SV2A and the non-covalent interactions between racetams and SV2A are currently unknown; therefore, an in silico study was performed to explore these issues. Since SV2A has not been structurally characterized with X-ray crystallography or nuclear magnetic resonance, a three-dimensional (3D) model was built. The model was refined by performing a molecular dynamics simulation (MDS) and the interactions of SV2A with the racetams were determined by docking studies. A reliable 3D model of SV2A was obtained; it reached structural equilibrium during the last 15 ns of the MDS (50 ns) with remaining structural motions in the N-terminus and long cytoplasmic loop. The docking studies revealed that hydrophobic interactions and hydrogen bonds participate importantly in ligand recognition within the binding site. Residues T456, S665, W666, D670 and L689 were important for racetam binding within the trans-membrane hydrophilic core of SV2A. Identifying the racetam binding site within SV2A should facilitate the synthesis of suitable radio-ligands to study treatment response and possibly epilepsy progression. PMID:25914622

  20. Identification of the antiepileptic racetam binding site in the vesicle synaptic protein 2A by molecular dynamics and docking simulations

    Directory of Open Access Journals (Sweden)

    José eCorrea-Basurto

    2015-04-01

    Full Text Available Synaptic vesicle protein 2A (SV2A is an integral membrane protein necessary for the proper function of the central nervous system (CNS and is associated to the physiopathology of epilepsy. SV2A is the molecular target of the anti-epileptic drug levetiracetam (LEV and its racetam analogues. The racetam binding site in SV2A and the non-covalent interactions between racetams and SV2A are currently unknown; therefore, an in silico study was performed to explore these issues. Since SV2A has not been structurally characterized with X-ray crystallography or nuclear magnetic resonance, a three-dimensional (3D model was built. The model was refined by performing a molecular dynamics simulation (MDS and the interactions of SV2A with the racetams were determined by docking studies. A reliable 3D model of SV2A was obtained; it reached structural equilibrium during the last 15 ns of the MDS (50 ns with remaining structural motions in the N-terminus and long cytoplasmic loop. The docking studies revealed that hydrophobic interactions and hydrogen bonds participate importantly in ligand recognition within the binding site. Residues T456, S665, W666, D670 and L689 were important for racetam binding within the trans-membrane hydrophilic core of SV2A. Identifying the racetam binding site within SV2A should facilitate the synthesis of suitable radio-ligands to study treatment response and possibly epilepsy progression.

  1. Calcium/calmodulin-dependent protein kinase II is a ubiquitous molecule in human long-term memory synaptic plasticity: A systematic review

    Directory of Open Access Journals (Sweden)

    Negar Ataei

    2015-01-01

    Conclusions: The studies have shown the most important intracellular signal of long-term memory is calcium-dependent signals. Calcium linked calmodulin can activate CaMKII. After receiving information for learning and memory, CaMKII is activated by Glutamate, the most important neurotransmitter for memory-related plasticity. Glutamate activates CaMKII and it plays some important roles in synaptic plasticity modification and long-term memory.

  2. CYFIP family proteins between autism and intellectual disability: links with Fragile X syndrome

    Directory of Open Access Journals (Sweden)

    Barbara eBardoni

    2014-03-01

    Full Text Available Intellectual disability (ID and autism spectrum disorders (ADS have in common alterations in some brain circuits and brain abnormalities, such as synaptic transmission and dendritic spines morphology. Recent studies have indicated a differential expression for specific categories of genes as a cause for both types of disease, while an increasing number of genes is recognized to produce both disorders. An example is the Fragile X Mental retardation gene, FMR1, whose silencing causes the Fragile X syndrome, the most common form of intellectual disability and autism, also characterized by physical hallmarks. FMRP, the protein encoded by FMR1, is an RNA-binding protein with an important role in translational control. Among the interactors of FMRP, CYFIP1/2 proteins are good candidates for intellectual disability and autism, on the bases of their genetic implication and functional properties, even if the precise functional significance of the CYFIP/FMRP interaction is not understood yet. CYFIP1 and CYFIP2 represent a link between Rac1, the Wave complex and FMRP, favoring the cross talk between actin polymerization and translational control

  3. X-ray-mediated cross linking of protein and DNA

    International Nuclear Information System (INIS)

    Minsky, B.D.; Braun, A.

    1977-01-01

    Using a simple filter assay for the binding of BSA or lysozyme to DNA, two mechanisms of x-ray-mediated cross linking are shown to occur. One, a fast reaction, appears to involve a radical intermediate, is inhibited by high pH and salt, and seems to be enhanced by deoxygenation. The second mechanism, a slow time-dependent component, differs from the fast reaction in its stimulation by histidine, its inhibition by catalase, and the lack of an oxygen effect. Separate irradiation of DNA or water does not lead to cross linking. However, separate irradiation of protein leads to cross linking which proceeds with slow-component kinetics

  4. The role of c-AMP-dependent protein kinase in spinal cord and post synaptic dorsal column neurons in a rat model of visceral pain

    OpenAIRE

    Wu, Jing; Su, Guangxiao; Ma, Long; Zhang, Xuan; Lei, Yongzhong; Lin, Qing; Nauta, Haring J.W.; Li, Junfa; Fang, Li

    2007-01-01

    Visceral noxious stimulation induces central neuronal plasticity changes and suggests that the c-AMP-dependent protein kinase (PKA) signal transduction cascade contributes to long-term changes in nociceptive processing at the spinal cord level. Our previous studies reported the clinical neurosurgical interruption of post synaptic dorsal column neuron (PSDC) pathway by performing midline myelotomy effectively alleviating the intractable visceral pain in patients with severe pain. However, the ...

  5. Modulation of Synaptic Plasticity by Exercise Training as a Basis for Ischemic Stroke Rehabilitation.

    Science.gov (United States)

    Nie, Jingjing; Yang, Xiaosu

    2017-01-01

    In recent years, rehabilitation of ischemic stroke draws more and more attention in the world, and has been linked to changes of synaptic plasticity. Exercise training improves motor function of ischemia as well as cognition which is associated with formation of learning and memory. The molecular basis of learning and memory might be synaptic plasticity. Research has therefore been conducted in an attempt to relate effects of exercise training to neuroprotection and neurogenesis adjacent to the ischemic injury brain. The present paper reviews the current literature addressing this question and discusses the possible mechanisms involved in modulation of synaptic plasticity by exercise training. This review shows the pathological process of synaptic dysfunction in ischemic roughly and then discusses the effects of exercise training on scaffold proteins and regulatory protein expression. The expression of scaffold proteins generally increased after training, but the effects on regulatory proteins were mixed. Moreover, the compositions of postsynaptic receptors were changed and the strength of synaptic transmission was enhanced after training. Finally, the recovery of cognition is critically associated with synaptic remodeling in an injured brain, and the remodeling occurs through a number of local regulations including mRNA translation, remodeling of cytoskeleton, and receptor trafficking into and out of the synapse. We do provide a comprehensive knowledge of synaptic plasticity enhancement obtained by exercise training in this review.

  6. Molecular Signatures Underlying Synaptic Vesicle Cargo Retrieval

    Science.gov (United States)

    Mori, Yasunori; Takamori, Shigeo

    2018-01-01

    Efficient retrieval of the synaptic vesicle (SV) membrane from the presynaptic plasma membrane, a process called endocytosis, is crucial for the fidelity of neurotransmission, particularly during sustained neural activity. Although multiple modes of endocytosis have been identified, it is clear that the efficient retrieval of the major SV cargos into newly formed SVs during any of these modes is fundamental for synaptic transmission. It is currently believed that SVs are eventually reformed via a clathrin-dependent pathway. Various adaptor proteins recognize SV cargos and link them to clathrin, ensuring the efficient retrieval of the cargos into newly formed SVs. Here, we summarize our current knowledge of the molecular signatures within individual SV cargos that underlie efficient retrieval into SV membranes, as well as discuss possible contributions of the mechanisms under physiological conditions. PMID:29379416

  7. Increased signaling by the autism-related Engrailed-2 protein enhances dendritic branching and spine density, alters synaptic structural matching, and exaggerates protein synthesis.

    Directory of Open Access Journals (Sweden)

    Asma Soltani

    Full Text Available Engrailed 1 (En1 and 2 (En2 code for closely related homeoproteins acting as transcription factors and as signaling molecules that contribute to midbrain and hindbrain patterning, to development and maintenance of monoaminergic pathways, and to retinotectal wiring. En2 has been suggested to be an autism susceptibility gene and individuals with autism display an overexpression of this homeogene but the mechanisms remain unclear. We addressed in the present study the effect of exogenously added En2 on the morphology of hippocampal cells that normally express only low levels of Engrailed proteins. By means of RT-qPCR, we confirmed that En1 and En2 were expressed at low levels in hippocampus and hippocampal neurons, and observed a pronounced decrease in En2 expression at birth and during the first postnatal week, a period characterized by intense synaptogenesis. To address a putative effect of Engrailed in dendritogenesis or synaptogenesis, we added recombinant En1 or En2 proteins to hippocampal cell cultures. Both En1 and En2 treatment increased the complexity of the dendritic tree of glutamatergic neurons, but only En2 increased that of GABAergic cells. En1 increased the density of dendritic spines both in vitro and in vivo. En2 had similar but less pronounced effect on spine density. The number of mature synapses remained unchanged upon En1 treatment but was reduced by En2 treatment, as well as the area of post-synaptic densities. Finally, both En1 and En2 elevated mTORC1 activity and protein synthesis in hippocampal cells, suggesting that some effects of Engrailed proteins may require mRNA translation. Our results indicate that Engrailed proteins can play, even at low concentrations, an active role in the morphogenesis of hippocampal cells. Further, they emphasize the over-regulation of GABA cell morphology and the vulnerability of excitatory synapses in a pathological context of En2 overexpression.

  8. Increased signaling by the autism-related Engrailed-2 protein enhances dendritic branching and spine density, alters synaptic structural matching, and exaggerates protein synthesis.

    Science.gov (United States)

    Soltani, Asma; Lebrun, Solène; Carpentier, Gilles; Zunino, Giulia; Chantepie, Sandrine; Maïza, Auriane; Bozzi, Yuri; Desnos, Claire; Darchen, François; Stettler, Olivier

    2017-01-01

    Engrailed 1 (En1) and 2 (En2) code for closely related homeoproteins acting as transcription factors and as signaling molecules that contribute to midbrain and hindbrain patterning, to development and maintenance of monoaminergic pathways, and to retinotectal wiring. En2 has been suggested to be an autism susceptibility gene and individuals with autism display an overexpression of this homeogene but the mechanisms remain unclear. We addressed in the present study the effect of exogenously added En2 on the morphology of hippocampal cells that normally express only low levels of Engrailed proteins. By means of RT-qPCR, we confirmed that En1 and En2 were expressed at low levels in hippocampus and hippocampal neurons, and observed a pronounced decrease in En2 expression at birth and during the first postnatal week, a period characterized by intense synaptogenesis. To address a putative effect of Engrailed in dendritogenesis or synaptogenesis, we added recombinant En1 or En2 proteins to hippocampal cell cultures. Both En1 and En2 treatment increased the complexity of the dendritic tree of glutamatergic neurons, but only En2 increased that of GABAergic cells. En1 increased the density of dendritic spines both in vitro and in vivo. En2 had similar but less pronounced effect on spine density. The number of mature synapses remained unchanged upon En1 treatment but was reduced by En2 treatment, as well as the area of post-synaptic densities. Finally, both En1 and En2 elevated mTORC1 activity and protein synthesis in hippocampal cells, suggesting that some effects of Engrailed proteins may require mRNA translation. Our results indicate that Engrailed proteins can play, even at low concentrations, an active role in the morphogenesis of hippocampal cells. Further, they emphasize the over-regulation of GABA cell morphology and the vulnerability of excitatory synapses in a pathological context of En2 overexpression.

  9. Cerebellin 4, a synaptic protein, enhances inhibitory activity and resistance of neurons to amyloid-β toxicity.

    Science.gov (United States)

    Chacón, Pedro J; del Marco, Ángel; Arévalo, Ángeles; Domínguez-Giménez, Paloma; García-Segura, Luis Miguel; Rodríguez-Tébar, Alfredo

    2015-02-01

    Imbalances between excitatory and inhibitory transmissions in the brain anticipate the neuronal damage and death that occur in the neurodegenerative diseases like Alzheimer's disease (AD). We previously showed that amyloid-β (Aß), a natural peptide involved in the onset and development of AD, counteracts the neurotrophic activity of the nerve growth factor (NGF) by dampening the γ-aminobutyric acid (GABA)ergic connectivity of cultured hippocampal neurons. Neuronal plasticity is partly controlled by the NGF-promoted expression of the homologue of enhancer-of-split 1 (Hes1), a transcription factor that regulates the formation of GABAergic synapses. We now show that Hes1 controls the expression of cerebellin 4 (Cbln4), a member of a small family of secreted synaptic proteins, and we present the evidence that Cbln4 plays an essential role in the formation and maintenance of inhibitory GABAergic connections. Cbln4 immunoreactivity was found in the hippocampus, mostly in the dendrites and somata of pyramidal neurons. In the CA1, the hippocampal region where the first neurons degenerate in AD, Cbln4 immunoreactivity was associated with GABAergic synapses (detected by vesicular inhibitory amino acid transporter [VGAT] immunostaining), which appear to surround and embrace the somata of CA1 pyramidal neurons (basket cells). Moreover, significant decreases of Hes1, Cbln4, and VGAT immunoreactivities and messenger RNA expression were found in the hippocampus of a mouse model of AD. We also found that either the overexpression of Cbln4 in cultured hippocampal neurons or the application of recombinant Cbln4 to the cultures increased the number of GABAergic varicosities, rescuing neurons from Aß-induced death. In contrast, knockdown of Cbln4 gene in cultured neurons was followed by a large reduction of GABAergic connections. Such an effect was reverted by exogenously added Cbln4. These findings suggest a therapeutic potential for Cbln4 in the treatment of AD. Copyright

  10. Effects of neonatal exposure to the flame retardant tetrabromobisphenol-A, aluminum diethylphosphinate or zinc stannate on long-term potentiation and synaptic protein levels in mice.

    Science.gov (United States)

    Hendriks, Hester S; Koolen, Lucas A E; Dingemans, Milou M L; Viberg, Henrik; Lee, Iwa; Leonards, Pim E G; Ramakers, Geert M J; Westerink, Remco H S

    2015-12-01

    Brominated flame retardants such as tetrabromobisphenol-A (TBBPA) may exert (developmental) neurotoxic effects. However, data on (neuro)toxicity of halogen-free flame retardants (HFFRs) are scarce. Recent in vitro studies indicated a high neurotoxic potential for some HFFRs, e.g., zinc stannate (ZS), whereas the neurotoxic potential of other HFFRs, such as aluminum diethylphosphinate (Alpi), appears low. However, the in vivo (neuro)toxicity of these compounds is largely unknown. We therefore investigated effects of neonatal exposure to TBBPA, Alpi or ZS on synaptic plasticity in mouse hippocampus. Male C57bl/6 mice received a single oral dose of 211 µmol/kg bw TBBPA, Alpi or ZS on postnatal day (PND) 10. On PND 17-19, effects on hippocampal synaptic plasticity were investigated using ex vivo extracellular field recordings. Additionally, we measured levels of postsynaptic proteins involved in long-term potentiation (LTP) as well as flame retardant concentrations in brain, muscle and liver tissues. All three flame retardants induced minor, but insignificant, effects on LTP. Additionally, TBBPA induced a minor decrease in post-tetanic potentiation. Despite these minor effects, expression of selected synaptic proteins involved in LTP was not affected. The flame retardants could not be measured in significant amounts in the brains, suggesting low bioavailability and/or rapid elimination/metabolism. We therefore conclude that a single neonatal exposure on PND 10 to TBBPA, Alpi or ZS does affect neurodevelopment and synaptic plasticity only to a small extent in mice. Additional data, in particular on persistence, bioaccumulation and (in vivo) toxicity, following prolonged (developmental) exposure are required for further (human) risk assessment.

  11. IL-1 receptor accessory protein-like 1 associated with mental retardation and autism mediates synapse formation by trans-synaptic interaction with protein tyrosine phosphatase δ.

    Science.gov (United States)

    Yoshida, Tomoyuki; Yasumura, Misato; Uemura, Takeshi; Lee, Sung-Jin; Ra, Moonjin; Taguchi, Ryo; Iwakura, Yoichiro; Mishina, Masayoshi

    2011-09-21

    Mental retardation (MR) and autism are highly heterogeneous neurodevelopmental disorders. IL-1-receptor accessory protein-like 1 (IL1RAPL1) is responsible for nonsyndromic MR and is associated with autism. Thus, the elucidation of the functional role of IL1RAPL1 will contribute to our understanding of the pathogenesis of these mental disorders. Here, we showed that knockdown of endogenous IL1RAPL1 in cultured cortical neurons suppressed the accumulation of punctate staining signals for active zone protein Bassoon and decreased the number of dendritic protrusions. Consistently, the expression of IL1RAPL1 in cultured neurons stimulated the accumulation of Bassoon and spinogenesis. The extracellular domain (ECD) of IL1RAPL1 was required and sufficient for the presynaptic differentiation-inducing activity, while both the ECD and cytoplasmic domain were essential for the spinogenic activity. Notably, the synaptogenic activity of IL1RAPL1 was specific for excitatory synapses. Furthermore, we identified presynaptic protein tyrosine phosphatase (PTP) δ as a major IL1RAPL1-ECD interacting protein by affinity chromatography. IL1RAPL1 interacted selectively with certain forms of PTPδ splice variants carrying mini-exon peptides in Ig-like domains. The synaptogenic activity of IL1RAPL1 was abolished in primary neurons from PTPδ knock-out mice. IL1RAPL1 showed robust synaptogenic activity in vivo when transfected into the cortical neurons of wild-type mice but not in PTPδ knock-out mice. These results suggest that IL1RAPL1 mediates synapse formation through trans-synaptic interaction with PTPδ. Our findings raise an intriguing possibility that the impairment of synapse formation may underlie certain forms of MR and autism as a common pathogenic pathway shared by these mental disorders.

  12. Caffeine and modafinil given during 48 h sleep deprivation modulate object recognition memory and synaptic proteins in the hippocampus of the rat.

    Science.gov (United States)

    Wadhwa, M; Sahu, S; Kumari, P; Kauser, H; Ray, K; Panjwani, U

    2015-11-01

    We aimed to evaluate the effect of caffeine/modafinil on sleep deprivation (SD) induced alterations in recognition memory and synaptic proteins. The data revealed a beneficial effect of caffeine/modafinil against deficit in the familiar object retrieval performance and object exploration ratio after 48 h SD. Caffeine treatment prevented the SD induced down-regulation of synaptophysin and synapsin I proteins with no change in PSD-95 protein in hippocampus. However, modafinil administration improved the down-regulation of synaptophysin, synapsin I and PSD-95 proteins in hippocampus. Hence, caffeine/modafinil can serve as counter measures in amelioration of SD induced consequences at behavioural and protein levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The RNA-binding protein, ZC3H14, is required for proper poly(A) tail length control, expression of synaptic proteins, and brain function in mice.

    Science.gov (United States)

    Rha, Jennifer; Jones, Stephanie K; Fidler, Jonathan; Banerjee, Ayan; Leung, Sara W; Morris, Kevin J; Wong, Jennifer C; Inglis, George Andrew S; Shapiro, Lindsey; Deng, Qiudong; Cutler, Alicia A; Hanif, Adam M; Pardue, Machelle T; Schaffer, Ashleigh; Seyfried, Nicholas T; Moberg, Kenneth H; Bassell, Gary J; Escayg, Andrew; García, Paul S; Corbett, Anita H

    2017-10-01

    A number of mutations in genes that encode ubiquitously expressed RNA-binding proteins cause tissue specific disease. Many of these diseases are neurological in nature revealing critical roles for this class of proteins in the brain. We recently identified mutations in a gene that encodes a ubiquitously expressed polyadenosine RNA-binding protein, ZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), that cause a nonsyndromic, autosomal recessive form of intellectual disability. This finding reveals the molecular basis for disease and provides evidence that ZC3H14 is essential for proper brain function. To investigate the role of ZC3H14 in the mammalian brain, we generated a mouse in which the first common exon of the ZC3H14 gene, exon 13 is removed (Zc3h14Δex13/Δex13) leading to a truncated ZC3H14 protein. We report here that, as in the patients, Zc3h14 is not essential in mice. Utilizing these Zc3h14Δex13/Δex13mice, we provide the first in vivo functional characterization of ZC3H14 as a regulator of RNA poly(A) tail length. The Zc3h14Δex13/Δex13 mice show enlarged lateral ventricles in the brain as well as impaired working memory. Proteomic analysis comparing the hippocampi of Zc3h14+/+ and Zc3h14Δex13/Δex13 mice reveals dysregulation of several pathways that are important for proper brain function and thus sheds light onto which pathways are most affected by the loss of ZC3H14. Among the proteins increased in the hippocampi of Zc3h14Δex13/Δex13 mice compared to control are key synaptic proteins including CaMK2a. This newly generated mouse serves as a tool to study the function of ZC3H14 in vivo. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Synaptic Cell Adhesion

    OpenAIRE

    Missler, Markus; Südhof, Thomas C.; Biederer, Thomas

    2012-01-01

    Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that inc...

  15. Antagonism of brain insulin-like growth factor-1 receptors blocks estradiol effects on memory and levels of hippocampal synaptic proteins in ovariectomized rats

    Science.gov (United States)

    Nelson, Britta S.; Springer, Rachel C.; Daniel, Jill M.

    2013-01-01

    Rationale Treatment with estradiol, the primary estrogen produced by the ovaries, enhances hippocampus-dependent spatial memory and increases levels of hippocampal synaptic proteins in ovariectomized rats. Increasing evidence indicates that the ability of estradiol to impact the brain and behavior is dependent upon its interaction with insulin-like growth factor-1 (IGF-1). Objectives The goal of the current experiment was to test the hypothesis that the ability of estradiol to impact hippocampus-dependent memory and levels of hippocampal synaptic proteins is dependent on its interaction with IGF-1. Methods Adult rats were ovariectomized and implanted with estradiol or control capsules and trained on a radial-maze spatial memory task. After training, rats were implanted with intracerebroventricular cannulae attached to osmotic minipumps (flow rate 0.15 μl/hr). Half of each hormone treatment group received continuous delivery of JB1 (300 μg/ml), an IGF-1 receptor antagonist, and half received delivery of aCSF vehicle. Rats were tested on trials in the radial-arm maze during which delays were imposed between the 4th and 5th arm choices. Hippocampal levels of synaptic proteins were measured by western blotting. Results Estradiol treatment resulted in significantly enhanced memory. JB1 blocked that enhancement. Estradiol treatment resulted in significantly increased hippocampal levels of postsynaptic density protein 95 (PSD-95), spinophilin, and synaptophysin. JB1 blocked the estradiol-induced increase of PSD-95 and spinophilin and attenuated the increase of synaptophysin. Conclusions Results support a role for IGF-1 receptor activity in estradiol-induced enhancement of spatial memory that may be dependent on changes in synapse structure in the hippocampus brought upon by estradiol/IGF-1 interactions. PMID:24146138

  16. Two Mutations Preventing PDZ-Protein Interactions of GluR1 Have Opposite Effects on Synaptic Plasticity

    Science.gov (United States)

    Boehm, Jannic; Ehrlich, Ingrid; Hsieh, Helen; Malinow, Roberto

    2006-01-01

    The regulated trafficking of GluR1 contributes significantly to synaptic plasticity, but studies addressing the function of the GluR1 C-terminal PDZ-ligand domain in this process have produced conflicting results. Here, we resolve this conflict by showing that apparently similar C-terminal mutations of the GluR1 PDZ-ligand domain result in…

  17. Transgenic plants for therapeutic proteins: linking upstream and downstream strategies.

    Science.gov (United States)

    Cramer, C L; Boothe, J G; Oishi, K K

    1999-01-01

    We have described two very different and innovative plant-based production systems--postharvest production and recovery of recombinant product from tobacco leaves using an inducible promoter and oleosin-mediated recovery of recombinant product from oilseeds using a seed-specific promoter. Both base technologies are broadly applicable to numerous classes of pharmaceutical and industrial proteins. As with any emerging technology, the key to success may lie in identifying those products and applications that would most benefit from the unique advantages offered by each system. The postharvest tobacco leaf system appears effective for proteins requiring complex posttranslational processing and endomembrane targeting. Because of the remarkable fecundity and biomass production capacity of tobacco, biomass scale-up is very rapid and production costs are low. Clearly the development of equally cost-effective extraction and purification technologies will be critical for full realization of the commercial opportunities afforded by transgenic plant-based bioproduction. The recovery of protein from tobacco leaves or oleosin-partitioned proteins by oil-body separations represent significant break-throughs for cost-effective commercialization strategies. Additional low-cost, high-affinity separation technologies need to be developed for effective scale-up purification of plant-synthesized recombinant proteins. Clearly successful commercialization of plant-synthesized biopharmaceuticals must effectively link upstream strategies involving gene and protein design with downstream strategies for reproducible GMP-level recovery of bioactive recombinant protein. Both the tobacco and oilseed systems are uniquely designed to address issues of biomass storage, product recovery, quality assurance, and regulatory scrutiny in addition to issues of transgene expression and protein processing.

  18. Identification of Naegleria fowleri proteins linked to primary amoebic meningoencephalitis.

    Science.gov (United States)

    Jamerson, Melissa; Schmoyer, Jacqueline A; Park, Jay; Marciano-Cabral, Francine; Cabral, Guy A

    2017-03-01

    Naegleria fowleri (N. fowleri) causes primary amoebic meningoencephalitis, a rapidly fatal disease of the central nervous system. N. fowleri can exist in cyst, flagellate or amoebic forms, depending on environmental conditions. The amoebic form can invade the brain following introduction into the nasal passages. When applied intranasally to a mouse model, cultured N. fowleri amoebae exhibit low virulence. However, upon serial passage in mouse brain, the amoebae acquire a highly virulent state. In the present study, a proteomics approach was applied to the identification of N. fowleri amoeba proteins whose expression was associated with the highly virulent state in mice. Mice were inoculated intranasally with axenically cultured amoebae or with mouse-passaged amoebae. Examination by light and electron microscopy revealed no morphological differences. However, mouse-passaged amoebae were more virulent in mice as indicated by exhibiting a two log10 titre decrease in median infective dose 50 (ID50). Scatter plot analysis of amoebic lysates revealed a subset of proteins, the expression of which was associated with highly virulent amoebae. MS-MS indicated that this subset contained proteins that shared homology with those linked to cytoskeletal rearrangement and the invasion process. Invasion assays were performed in the presence of a select inhibitor to expand on the findings. The collective results suggest that N. fowleri gene products linked to cytoskeletal rearrangement and invasion may be candidate targets in the management of primary amoebic meningoencephalitis.

  19. LET dependence of DNA-protein cross-links

    International Nuclear Information System (INIS)

    Blakely, E.A.; Chang, P.Y.; Bjornstad, K.A.

    1995-08-01

    We have preliminary data indicating a fluence-dependent yield of particle-induced protein cross-links (DPC's) with a dependency on LET and particle residual energy. Our data indicate that the DPC yield for hamster fibroblasts in vitro irradiated at 32 keV/μm is similar to that reported for hamster cells irradiated with cobalt-60 gamma rays. At 100-120 keV/μm there is some evidence for an enhanced DPC yield with increasing particle fluence, but there are differences in the yields that are dependent on particle track structure

  20. CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila

    DEFF Research Database (Denmark)

    Zweier, Christiane; de Jong, Eiko K; Zweier, Markus

    2009-01-01

    Heterozygous copy-number variants and SNPs of CNTNAP2 and NRXN1, two distantly related members of the neurexin superfamily, have been repeatedly associated with a wide spectrum of neuropsychiatric disorders, such as developmental language disorders, autism spectrum disorders, epilepsy...... neuropsychiatric disorders and to severe MR as reported here, evidence for a synaptic role of the CNTNAP2-encoded protein CASPR2 has so far been lacking. Using Drosophila as a model, we now show that, as known for fly Nrx-I, the CASPR2 ortholog Nrx-IV might also localize to synapses. Overexpression of either...

  1. EDITORIAL: Synaptic electronics Synaptic electronics

    Science.gov (United States)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    Conventional computers excel in logic and accurate scientific calculations but make hard work of open ended problems that human brains handle easily. Even von Neumann—the mathematician and polymath who first developed the programming architecture that forms the basis of today's computers—was already looking to the brain for future developments before his death in 1957 [1]. Neuromorphic computing uses approaches that better mimic the working of the human brain. Recent developments in nanotechnology are now providing structures with very accommodating properties for neuromorphic approaches. This special issue, with guest editors James K Gimzewski and Dominique Vuillaume, is devoted to research at the serendipitous interface between the two disciplines. 'Synaptic electronics', looks at artificial devices with connections that demonstrate behaviour similar to synapses in the nervous system allowing a new and more powerful approach to computing. Synapses and connecting neurons respond differently to incident signals depending on the history of signals previously experienced, ultimately leading to short term and long term memory behaviour. The basic characteristics of a synapse can be replicated with around ten simple transistors. However with the human brain having around 1011 neurons and 1015 synapses, artificial neurons and synapses from basic transistors are unlikely to accommodate the scalability required. The discovery of nanoscale elements that function as 'memristors' has provided a key tool for the implementation of synaptic connections [2]. Leon Chua first developed the concept of the 'The memristor—the missing circuit element' in 1971 [3]. In this special issue he presents a tutorial describing how memristor research has fed into our understanding of synaptic behaviour and how they can be applied in information processing [4]. He also describes, 'The new principle of local activity, which uncovers a minuscule life-enabling "Goldilocks zone", dubbed the

  2. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    Science.gov (United States)

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use. Copyright © 2016. Published by Elsevier Ltd.

  3. Isolation of Synaptosomes, Synaptic Plasma Membranes, and Synaptic Junctional Complexes.

    Science.gov (United States)

    Michaelis, Mary L; Jiang, Lei; Michaelis, Elias K

    2017-01-01

    Isolation of synaptic nerve terminals or synaptosomes provides an opportunity to study the process of neurotransmission at many levels and with a variety of approaches. For example, structural features of the synaptic terminals and the organelles within them, such as synaptic vesicles and mitochondria, have been elucidated with electron microscopy. The postsynaptic membranes are joined to the presynaptic "active zone" of transmitter release through cell adhesion molecules and remain attached throughout the isolation of synaptosomes. These "post synaptic densities" or "PSDs" contain the receptors for the transmitters released from the nerve terminals and can easily be seen with electron microscopy. Biochemical and cell biological studies with synaptosomes have revealed which proteins and lipids are most actively involved in synaptic release of neurotransmitters. The functional properties of the nerve terminals, such as responses to depolarization and the uptake or release of signaling molecules, have also been characterized through the use of fluorescent dyes, tagged transmitters, and transporter substrates. In addition, isolated synaptosomes can serve as the starting material for the isolation of relatively pure synaptic plasma membranes (SPMs) that are devoid of organelles from the internal environment of the nerve terminal, such as mitochondria and synaptic vesicles. The isolated SPMs can reseal and form vesicular structures in which transport of ions such as sodium and calcium, as well as solutes such as neurotransmitters can be studied. The PSDs also remain associated with the presynaptic membranes during isolation of SPM fractions, making it possible to isolate the synaptic junctional complexes (SJCs) devoid of the rest of the plasma membranes of the nerve terminals and postsynaptic membrane components. Isolated SJCs can be used to identify the proteins that constitute this highly specialized region of neurons. In this chapter, we describe the steps involved

  4. Changes in cortical N-methyl-D-aspartate receptors and post-synaptic density protein 95 in schizophrenia, mood disorders and suicide.

    Science.gov (United States)

    Dean, Brian; Gibbons, Andrew S; Boer, Simone; Uezato, Akihito; Meador-Woodruff, James; Scarr, Elizabeth; McCullumsmith, Robert E

    2016-03-01

    In humans, depending on dose, blocking the N-methyl-D-aspartate receptor (NMDAR) with ketamine can cause psychomimetic or antidepressant effects. The overall outcome for drugs such as ketamine depends on dose and the number of its available binding sites in the central nervous system, and to understand something of the latter variable we measure NMDAR in the frontal pole, dorsolateral prefrontal, anterior cingulate and parietal cortices from people with schizophrenia, bipolar disorder, major depressive disorders and age/sex matched controls. We measured levels of NMDARs (using [(3)H]MK-801 binding) and NMDAR sub-unit mRNAs (GRINs: using in situ hybridisation) as well as post-synaptic density protein 95 (anterior cingulate cortex only; not major depressive disorders: an NMDAR post-synaptic associated protein) in bipolar disorder, schizophrenia and controls. Compared to controls, levels of NMDAR were lower in the outer laminae of the dorsolateral prefrontal cortex (-17%, p = 0.01) in people with schizophrenia. In bipolar disorder, levels of NMDAR binding (laminae IV-VI; -19%, p suicide completers, levels of GRIN2B mRNA were higher in parietal cortex (+20%, p suicide completion and may contribute to different responses to ketamine. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  5. Dataset of integrin-linked kinase protein: Protein interactions in cardiomyocytes identified by mass spectrometry

    Directory of Open Access Journals (Sweden)

    Alexandra Traister

    2016-06-01

    Full Text Available Using hearts from mice overexpressing integrin linked kinase (ILK behind the cardiac specific promoter αMHC, we have performed immunoprecipitation and mass spectrometry to identify novel ILK protein:protein interactions that regulate cardiomyocyte activity and calcium flux. Integrin linked kinase complexes were captured from mouse heart lysates using a commercial antibody, with subsequent liquid chromatography tandem mass spectral analysis. Interacting partners were identified using the MASCOT server, and important interactions verified using reverse immunoprecipitation and mass spectrometry. All ILK interacting proteins were identified in a non-biased manner, and are stored in the ProteomeXchange Consortium via the PRIDE partner repository (reference ID PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD001053. The functional role of identified ILK interactions in cardiomyocyte function and arrhythmia were subsequently confirmed in human iPSC-cardiomyocytes.

  6. Dataset of integrin-linked kinase protein: Protein interactions in cardiomyocytes identified by mass spectrometry.

    Science.gov (United States)

    Traister, Alexandra; Lu, Mingliang; Coles, John G; Maynes, Jason T

    2016-06-01

    Using hearts from mice overexpressing integrin linked kinase (ILK) behind the cardiac specific promoter αMHC, we have performed immunoprecipitation and mass spectrometry to identify novel ILK protein:protein interactions that regulate cardiomyocyte activity and calcium flux. Integrin linked kinase complexes were captured from mouse heart lysates using a commercial antibody, with subsequent liquid chromatography tandem mass spectral analysis. Interacting partners were identified using the MASCOT server, and important interactions verified using reverse immunoprecipitation and mass spectrometry. All ILK interacting proteins were identified in a non-biased manner, and are stored in the ProteomeXchange Consortium via the PRIDE partner repository (reference ID PRIDE: PXD001053). The functional role of identified ILK interactions in cardiomyocyte function and arrhythmia were subsequently confirmed in human iPSC-cardiomyocytes.

  7. Understanding Alzheimer's disease by global quantification of protein phosphorylation and sialylated N-linked glycosylation profiles

    DEFF Research Database (Denmark)

    Lassen, Pernille S.; Thygesen, Camilla; Larsen, Martin R.

    2017-01-01

    elucidated them in neurodegenerative diseases such as Alzheimer's disease. Here, we comprehensively review Alzheimer's pathology in relation to protein phosphorylation and glycosylation on synaptic plasticity from neuroproteomics data. Moreover, we highlight several mass spectrometry-based sample processing...... technologies including an in-house developed TiO2-SIMAC-TiO2-based enrichment protocol to isolate and enrich phosphorylated and glycosylated peptides enabling to elucidate hopefully new early disease biomarkers....

  8. Imbalance of excitatory/inhibitory synaptic protein expression in iPSC-derived neurons from FOXG1+/− patients and in foxg1+/− mice

    Science.gov (United States)

    Patriarchi, Tommaso; Amabile, Sonia; Frullanti, Elisa; Landucci, Elisa; Lo Rizzo, Caterina; Ariani, Francesca; Costa, Mario; Olimpico, Francesco; W Hell, Johannes; M Vaccarino, Flora; Renieri, Alessandra; Meloni, Ilaria

    2016-01-01

    Rett syndrome (RTT) is a severe neurodevelopmental disorder associated with mutations in either MECP2, CDKL5 or FOXG1. The precise molecular mechanisms that lead to the pathogenesis of RTT have yet to be elucidated. We recently reported that expression of GluD1 (orphan glutamate receptor δ-1 subunit) is increased in iPSC-derived neurons obtained from patients with mutations in either MECP2 or CDKL5. GluD1 controls synaptic differentiation and shifts the balance between excitatory and inhibitory synapses toward the latter. Thus, an increase in GluD1 might be a critical factor in the etiology of RTT by affecting the excitatory/inhibitory balance in the developing brain. To test this hypothesis, we generated iPSC-derived neurons from FOXG1+/− patients. We analyzed mRNA and protein levels of GluD1 together with key markers of excitatory and inhibitory synapses in these iPSC-derived neurons and in Foxg1+/− mouse fetal (E11.5) and adult (P70) brains. We found strong correlation between iPSC-derived neurons and fetal mouse brains, where GluD1 and inhibitory synaptic markers (GAD67 and GABA AR-α1) were increased, whereas the levels of a number of excitatory synaptic markers (VGLUT1, GluA1, GluN1 and PSD-95) were decreased. In adult mice, GluD1 was decreased along with all GABAergic and glutamatergic markers. Our findings further the understanding of the etiology of RTT by introducing a new pathological event occurring in the brain of FOXG1+/− patients during embryonic development and its time-dependent shift toward a general decrease in brain synapses. PMID:26443267

  9. Photolytic Cross-Linking to Probe Protein-Protein and Protein-Matrix Interactions in Lyophilized Powders.

    Science.gov (United States)

    Iyer, Lavanya K; Moorthy, Balakrishnan S; Topp, Elizabeth M

    2015-09-08

    Protein structure and local environment in lyophilized formulations were probed using high-resolution solid-state photolytic cross-linking with mass spectrometric analysis (ssPC-MS). In order to characterize structure and microenvironment, protein-protein, protein-excipient, and protein-water interactions in lyophilized powders were identified. Myoglobin (Mb) was derivatized in solution with the heterobifunctional probe succinimidyl 4,4'-azipentanoate (SDA) and the structural integrity of the labeled protein (Mb-SDA) confirmed using CD spectroscopy and liquid chromatography/mass spectrometry (LC-MS). Mb-SDA was then formulated with and without excipients (raffinose, guanidine hydrochloride (Gdn HCl)) and lyophilized. The freeze-dried powder was irradiated with ultraviolet light at 365 nm for 30 min to produce cross-linked adducts that were analyzed at the intact protein level and after trypsin digestion. SDA-labeling produced Mb carrying up to five labels, as detected by LC-MS. Following lyophilization and irradiation, cross-linked peptide-peptide, peptide-water, and peptide-raffinose adducts were detected. The exposure of Mb side chains to the matrix was quantified based on the number of different peptide-peptide, peptide-water, and peptide-excipient adducts detected. In the absence of excipients, peptide-peptide adducts involving the CD, DE, and EF loops and helix H were common. In the raffinose formulation, peptide-peptide adducts were more distributed throughout the molecule. The Gdn HCl formulation showed more protein-protein and protein-water adducts than the other formulations, consistent with protein unfolding and increased matrix interactions. The results demonstrate that ssPC-MS can be used to distinguish excipient effects and characterize the local protein environment in lyophilized formulations with high resolution.

  10. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders

    Science.gov (United States)

    Durand, Christelle M.; Betancur, Catalina; Boeckers, Tobias M.; Bockmann, Juergen; Chaste, Pauline; Fauchereau, Fabien; Nygren, Gudrun; Rastam, Maria; Gillberg, I Carina; Anckarsäter, Henrik; Sponheim, Eili; Goubran-Botros, Hany; Delorme, Richard; Chabane, Nadia; Mouren-Simeoni, Marie-Christine; de Mas, Philippe; Bieth, Eric; Rogé, Bernadette; Héron, Delphine; Burglen, Lydie; Gillberg, Christopher; Leboyer, Marion; Bourgeron, Thomas

    2007-01-01

    SHANK3 (also known as ProSAP2) regulates the structural organization of dendritic spines and is a binding partner of neuroligins; genes encoding neuroligins are mutated in autism and Asperger syndrome. Here, we report that a mutation of a single copy of SHANK3 on chromosome 22q13 can result in language and/or social communication disorders. These mutations concern only a small number of individuals, but they shed light on one gene dosage-sensitive synaptic pathway that is involved in autism spectrum disorders. PMID:17173049

  11. Cog-Wheel Octameric Structure of RS1, the Discoidin Domain Containing Retinal Protein Associated with X-Linked Retinoschisis.

    Directory of Open Access Journals (Sweden)

    Martin Bush

    Full Text Available RS1, also known as retinoschisin, is a disulphide-linked, discoidin domain containing homo-oligomeric protein that plays a crucial role in maintaining the cellular and synaptic organization of the retina. This is highlighted by the finding that over 130 mutations in RS1 cause X-linked retinoschisis, a retinal degenerative disease characterized by the splitting of the retinal cell layers, disruption of the photoreceptor-bipolar synapses, degeneration of photoreceptors, and severe loss in central vision. In this study, we investigated the arrangement of the RS1 subunits within the oligomer complex using single particle electron microscopy. RS1 was seen as two stacked rings with each ring displaying a symmetrical cog wheel-like structure with eight teeth or projections corresponding to the RS1 subunits. Three dimensional reconstruction and molecular modelling indicated that the discoidin domain, the principal functional unit of RS1, projects outward, and the Rs1 domain and C-terminal segment containing intermolecular disulphide bonds are present in the inner ring to form the core octameric structure. These studies provide a basis for further understanding the role of the novel core RS1 octameric complex in retinal cell biology and X-linked retinoschisis.

  12. Molecular Recognition within Synaptic Scaffolds

    DEFF Research Database (Denmark)

    Erlendsson, Simon

    -length structural model of the PICK1 dimer in-solution. We found the PICK1 BAR dimer to resemble an elongated crescent-shaped structure, spanning ~160 Å, with the PICK1 PDZ domains loosely attached to the BAR domain. This finding is in contrast to previous findings for other BAR domain proteins, where adjacent......Scaffolding proteins are abundant participants and regulators of the extensive intracellular framework required for maintaining cellular functions such as cellular adhesion and signal transduction cascades. In excitatory neuronal synapses these scaffolding proteins often contain one or more PDZ...... domains, responsible for tethering their respective synaptic protein ligands. Therefore, understanding the specificity and binding mechanisms of PDZ domain proteins is essential to understand regulation of synaptic plasticity. PICK1 is a PDZ domain-containing scaffolding protein predominantly expressed...

  13. Preventive Effects of Resveratrol on Endocannabinoid System and Synaptic Protein Modifications in Rat Cerebral Cortex Challenged by Bilateral Common Carotid Artery Occlusion and Reperfusion

    Directory of Open Access Journals (Sweden)

    Gianfranca Carta

    2018-01-01

    Full Text Available This study aims to evaluate the putative roles of a single acute dose of resveratrol (RVT in preventing cerebral oxidative stress induced by bilateral common carotid artery occlusion, followed by reperfusion (BCCAO/R and to investigate RVT’s ability to preserve the neuronal structural integrity. Frontal and temporal-occipital cortices were examined in two groups of adult Wistar rats, sham-operated and submitted to BCCAO/R. In both groups, 6 h before surgery, half the rats were gavage-fed with a single dose of RVT (40 mg/per rat in 300 µL of sunflower oil as the vehicle, while the second half received the vehicle alone. In the frontal cortex, RVT pre-treatment prevented the BCCAO/R-induced increase of lipoperoxides, augmented concentrations of palmitoylethanolamide and docosahexaenoic acid, increased relative levels of the cannabinoid receptors type 1 (CB1 and 2 (CB2, and peroxisome-proliferator-activated-receptor (PPAR-α proteins. Increased expression of CB1/CB2 receptors mirrored that of synaptophysin and post-synaptic density-95 protein. No BCCAO/R-induced changes occurred in the temporal-occipital cortex. Collectively, our results demonstrate that, in the frontal cortex, RVT pre-treatment prevents the BCCAO/R-induced oxidative stress and modulates the endocannabinoid and PPAR-α systems. The increased expression of synaptic structural proteins further suggests the possible efficacy of RVT as a dietary supplement to preserve the nervous tissue metabolism and control the physiological response to the hypoperfusion/reperfusion challenge.

  14. Oxidation of myosin by haem proteins generates myosin radicals and protein cross-links

    DEFF Research Database (Denmark)

    Lametsch, Marianne Lund; Luxford, Catherine; Skibsted, Leif Horsfelt

    2008-01-01

    as a result of the reaction with activated haem proteins (horseradish peroxidase/H2O2) and met-myoglobin/H2O2) has been investigated by EPR spectroscopy and amino-acid consumption, product formation has been characterized by HPLC, and changes in protein integrity have been determined by SDS/PAGE. Multiple...... of thiyl and tyrosyl radicals is consistent with the observed consumption of cysteine and tyrosine residues, the detection of di-tyrosine by HPLC and the detection of both reducible (disulfide bond) and non-reducible cross-links between myosin molecules by SDS/PAGE. The time course of radical formation...

  15. Analysis of protein-nucleic acid interactions by photochemical cross-linking and mass spectrometry

    DEFF Research Database (Denmark)

    Steen, Hanno; Jensen, Ole Nørregaard

    2002-01-01

    Photochemical cross-linking is a commonly used method for studying the molecular details of protein-nucleic acid interactions. Photochemical cross-linking aids in defining nucleic acid binding sites of proteins via subsequent identification of cross-linked protein domains and amino acid residues...... and for sequencing of peptide-nucleic acid heteroconjugates. The combination of photochemical cross-linking and MS provides a fast screening method to gain insights into the overall structure and formation of protein-oligonucleotide complexes. Because the analytical methods are continuously refined and protein...

  16. Diacylglycerol Kinases in the Coordination of Synaptic Plasticity.

    Science.gov (United States)

    Lee, Dongwon; Kim, Eunjoon; Tanaka-Yamamoto, Keiko

    2016-01-01

    Synaptic plasticity is activity-dependent modification of the efficacy of synaptic transmission. Although, detailed mechanisms underlying synaptic plasticity are diverse and vary at different types of synapses, diacylglycerol (DAG)-associated signaling has been considered as an important regulator of many forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Recent evidences indicate that DAG kinases (DGKs), which phosphorylate DAG to phosphatidic acid to terminate DAG signaling, are important regulators of LTP and LTD, as supported by the results from mice lacking specific DGK isoforms. This review will summarize these studies and discuss how specific DGK isoforms distinctly regulate different forms of synaptic plasticity at pre- and postsynaptic sites. In addition, we propose a general role of DGKs as coordinators of synaptic plasticity that make local synaptic environments more permissive for synaptic plasticity by regulating DAG concentration and interacting with other synaptic proteins.

  17. Recent advances in understanding synaptic abnormalities in Rett syndrome [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Michael Johnston

    2015-12-01

    Full Text Available Rett syndrome is an extremely disabling X-linked nervous system disorder that mainly affects girls in early childhood and causes autism-like behavior, severe intellectual disability, seizures, sleep disturbances, autonomic instability, and other disorders due to mutations in the MeCP2 (methyl CpG-binding protein 2 transcription factor. The disorder targets synapses and synaptic plasticity and has been shown to disrupt the balance between glutamate excitatory synapses and GABAergic inhibitory synapses. In fact, it can be argued that Rett syndrome is primarily a disorder of synaptic plasticity and that agents that can correct this imbalance may have beneficial effects on brain development. This review briefly summarizes the link between disrupted synaptic plasticity mechanisms and Rett syndrome and early clinical trials that aim to target these abnormalities to improve the outcome for these severely disabled children.

  18. Basic mechanisms for recognition and transport of synaptic cargos

    NARCIS (Netherlands)

    M.A. Schlager (Max); C.C. Hoogenraad (Casper)

    2009-01-01

    textabstractSynaptic cargo trafficking is essential for synapse formation, function and plasticity. In order to transport synaptic cargo, such as synaptic vesicle precursors, mitochondria, neurotransmitter receptors and signaling proteins to their site of action, neurons make use of molecular motor

  19. Pushing synaptic vesicles over the RIM.

    Science.gov (United States)

    Kaeser, Pascal S

    2011-05-01

    In a presynaptic nerve terminal, neurotransmitter release is largely restricted to specialized sites called active zones. Active zones consist of a complex protein network, and they organize fusion of synaptic vesicles with the presynaptic plasma membrane in response to action potentials. Rab3-interacting molecules (RIMs) are central components of active zones. In a recent series of experiments, we have systematically dissected the molecular mechanisms by which RIMs operate in synaptic vesicle release. We found that RIMs execute two critical functions of active zones by virtue of independent protein domains. They tether presyanptic Ca(2+) channels to the active zone, and they activate priming of synaptic vesicles by monomerizing homodimeric, constitutively inactive Munc13. These data indicate that RIMs orchestrate synaptic vesicle release into a coherent process. In conjunction with previous studies, they suggest that RIMs form a molecular platform on which plasticity of synaptic vesicle release can operate.

  20. Olfactory receptor signaling is regulated by the post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) scaffold multi-PDZ domain protein 1.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2009-12-01

    The unique ability of mammals to detect and discriminate between thousands of different odorant molecules is governed by the diverse array of olfactory receptors expressed by olfactory sensory neurons in the nasal epithelium. Olfactory receptors consist of seven transmembrane domain G protein-coupled receptors and comprise the largest gene superfamily in the mammalian genome. We found that approximately 30% of olfactory receptors possess a classical post-synaptic density 95, Drosophila discs large, zona-occludens 1 (PDZ) domain binding motif in their C-termini. PDZ domains have been established as sites for protein-protein interaction and play a central role in organizing diverse cell signaling assemblies. In the present study, we show that multi-PDZ domain protein 1 (MUPP1) is expressed in the apical compartment of olfactory sensory neurons. Furthermore, on heterologous co-expression with olfactory sensory neurons, MUPP1 was shown to translocate to the plasma membrane. We found direct interaction of PDZ domains 1 + 2 of MUPP1 with the C-terminus of olfactory receptors in vitro. Moreover, the odorant-elicited calcium response of OR2AG1 showed a prolonged decay in MUPP1 small interfering RNA-treated cells. We have therefore elucidated the first building blocks of the putative \\'olfactosome\\

  1. Synaptically Driven Phosphorylation of Ribosomal Protein S6 Is Differentially Regulated at Active Synapses versus Dendrites and Cell Bodies by MAPK and PI3K/mTOR Signaling Pathways

    Science.gov (United States)

    Pirbhoy, Patricia Salgado; Farris, Shannon; Steward, Oswald

    2017-01-01

    High-frequency stimulation of the medial perforant path triggers robust phosphorylation of ribosomal protein S6 (rpS6) in activated dendritic domains and granule cell bodies. Here we dissect the signaling pathways responsible for synaptically driven rpS6 phosphorylation in the dentate gyrus using pharmacological agents to inhibit PI3-kinase/mTOR…

  2. The backbone of the post-synaptic density originated in a unicellular ancestor of choanoflagellates and metazoans

    Directory of Open Access Journals (Sweden)

    Manuel Michaël

    2010-02-01

    Full Text Available Abstract Background Comparative genomics of the early diverging metazoan lineages and of their unicellular sister-groups opens new window to reconstructing the genetic changes which preceded or accompanied the evolution of multicellular body plans. A recent analysis found that the genome of the nerve-less sponges encodes the homologues of most vertebrate post-synaptic proteins. In vertebrate excitatory synapses, these proteins assemble to form the post-synaptic density, a complex molecular platform linking membrane receptors, components of their signalling pathways, and the cytoskeleton. Newly available genomes from Monosiga brevicollis (a member of Choanoflagellata, the closest unicellular relatives of animals and Trichoplax adhaerens (a member of Placozoa: besides sponges, the only nerve-less metazoans offer an opportunity to refine our understanding of post-synaptic protein evolution. Results Searches for orthologous proteins and reconstruction of gene gains/losses based on the taxon phylogeny indicate that post-synaptic proteins originated in two main steps. The backbone scaffold proteins (Shank, Homer, DLG and some of their partners were acquired in a unicellular ancestor of choanoflagellates and metazoans. A substantial additional set appeared in an exclusive ancestor of the Metazoa. The placozoan genome contains most post-synaptic genes but lacks some of them. Notably, the master-scaffold protein Shank might have been lost secondarily in the placozoan lineage. Conclusions The time of origination of most post-synaptic proteins was not concomitant with the acquisition of synapses or neural-like cells. The backbone of the scaffold emerged in a unicellular context and was probably not involved in cell-cell communication. Based on the reconstructed protein composition and potential interactions, its ancestral function could have been to link calcium signalling and cytoskeleton regulation. The complex later became integrated into the evolving

  3. Quantitative Proteomics of Synaptic and Nonsynaptic Mitochondria: Insights for Synaptic Mitochondrial Vulnerability

    Science.gov (United States)

    2015-01-01

    Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage. PMID:24708184

  4. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    Science.gov (United States)

    Kostic, N.M.; Chen, J.

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme. No Drawings

  5. Spontaneous Glutamatergic Synaptic Activity Regulates Constitutive COX-2 Expression in Neurons: OPPOSING ROLES FOR THE TRANSCRIPTION FACTORS CREB (cAMP RESPONSE ELEMENT BINDING) PROTEIN AND Sp1 (STIMULATORY PROTEIN-1).

    Science.gov (United States)

    Hewett, Sandra J; Shi, Jingxue; Gong, Yifan; Dhandapani, Krishnan; Pilbeam, Carol; Hewett, James A

    2016-12-30

    Burgeoning evidence supports a role for cyclooxygenase metabolites in regulating membrane excitability in various forms of synaptic plasticity. Two cyclooxygenases, COX-1 and COX-2, catalyze the initial step in the metabolism of arachidonic acid to prostaglandins. COX-2 is generally considered inducible, but in glutamatergic neurons in some brain regions, including the cerebral cortex, it is constitutively expressed. However, the transcriptional mechanisms by which this occurs have not been elucidated. Here, we used quantitative PCR and also analyzed reporter gene expression in a mouse line carrying a construct consisting of a portion of the proximal promoter region of the mouse COX-2 gene upstream of luciferase cDNA to characterize COX-2 basal transcriptional regulation in cortical neurons. Extracts from the whole brain and from the cerebral cortex, hippocampus, and olfactory bulbs exhibited high luciferase activity. Moreover, constitutive COX-2 expression and luciferase activity were detected in cortical neurons, but not in cortical astrocytes, cultured from wild-type and transgenic mice, respectively. Constitutive COX-2 expression depended on spontaneous but not evoked excitatory synaptic activity and was shown to be N-methyl-d-aspartate receptor-dependent. Constitutive promoter activity was reduced in neurons transfected with a dominant-negative cAMP response element binding protein (CREB) and was eliminated by mutating the CRE-binding site on the COX-2 promoter. However, mutation of the stimulatory protein-1 (Sp1)-binding site resulted in an N-methyl-d-aspartate receptor-dependent enhancement of COX-2 promoter activity. Basal binding of the transcription factors CREB and Sp1 to the native neuronal COX-2 promoter was confirmed. In toto, our data suggest that spontaneous glutamatergic synaptic activity regulates constitutive neuronal COX-2 expression via Sp1 and CREB protein-dependent transcriptional mechanisms. © 2016 by The American Society for Biochemistry

  6. Synaptic dysfunction in amygdala in intellectual disorder models.

    Science.gov (United States)

    Aincy, Marianne; Meziane, Hamid; Herault, Yann; Humeau, Yann

    2018-06-08

    The amygdala is a part of the limbic circuit that has been extensively studied in terms of synaptic connectivity, plasticity and cellular organization since decades (Ehrlich et al., 2009; Ledoux, 2000; Maren, 2001). Amygdala sub-nuclei, including lateral, basolateral and central amygdala appear now as "hubs" providing in parallel and in series neuronal processing enabling the animal to elicit freezing or escaping behavior in response to external threats. In rodents, these behaviors are easily observed and quantified following associative fear conditioning. Thus, studies on amygdala circuit in association with threat/fear behavior became very popular in laboratories and are often used among other behavioral tests to evaluate learning abilities of mouse models for various neuropsychiatric conditions including genetically encoded intellectual disabilities (ID). Yet, more than 100 human X-linked genes - and several hundreds of autosomal genes - have been associated with ID in humans. These mutations introduced in mice can generate social deficits, anxiety dysregulations and fear learning impairments (McNaughton et al., 2008; Houbaert et al., 2013; Jayachandran et al., 2014; Zhang et al., 2015). Noteworthy, a significant proportion of the coded ID gene products are synaptic proteins. It is postulated that the loss of function of these proteins could destabilize neuronal circuits by global changes of the balance between inhibitory and excitatory drives onto neurons. However, whereas amygdala related behavioral deficits are commonly observed in ID models, the role of most of these ID-genes in synaptic function and plasticity in the amygdala are only sparsely studied. We will here discuss some of the concepts that emerged from amygdala-targeted studies examining the role of syndromic and non-syndromic ID genes in fear-related behaviors and/or synaptic function. Along describing these cases, we will discuss how synaptic deficits observed in amygdala circuits could impact

  7. A unique deubiquitinase that deconjugates phosphoribosyl-linked protein ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jiazhang; Yu, Kaiwen; Fei, Xiaowen; Liu, Yao; Nakayasu, Ernesto S.; Piehowski, Paul D.; Shaw, Jared B.; Puvar, Kedar; Das, Chittaranjan; Liu, Xiaoyun; Luo, Zhao-Qing

    2017-05-12

    Ubiquitination regulates many aspects of host immunity and thus is a common target for infectious agents. Recent studies revealed that members of the SidE effector family of the bacterial pathogen Legionella pneumophila attacked several small GTPases associated with the endoplasmic reticulum by a novel ubiquitination mechanism that does not require the E1 and E2 enzymes of the host ubiquitination machinery. Following ubiquitin activation by ADP- ribosylation via a mono-ADP-ribosylation motif, ADP-ribosylated ubiquitin is cleaved by a phosphodiesterasedomainwithinSdeA,whichisconcomitantwiththelinkof phosphoribosylated ubiquitin to serine residues in the substrate. Here we demonstrate that the activity of SidEs is regulated by SidJ, another effector encoded by a gene situated in the locus coding for three members of the SidE family (SdeC, SdeB and SdeA). SidJ functions to remove ubiquitin from SidEs-modified substrates by cleaving the phosphodiester bond that links phosphoribosylated ubiquitin to protein substrates. Further, the deubiquitinase activity of SidJ is essential for its role in L. pneumophila infection. Finally, the activity of SidJ is required for efficiently reducing the abundance of ubiquitinated Rab33b in infected cells within a few hours after bacterial uptake. Our results establish SidJ as a deubiquitinase that functions to impose temporal regulation of the activity of the SidE effectors. The identification of SidJ may shed light on future study of signaling cascades mediated by this unique ubiquitination that also potentially regulates cellular processes in eukaryotic cells.

  8. Elevation of synaptic protein is associated with the antidepressant-like effects of ferulic acid in a chronic model of depression.

    Science.gov (United States)

    Liu, Ya-Min; Hu, Chun-Yue; Shen, Ji-Duo; Wu, Su-Hui; Li, Yu-Cheng; Yi, Li-Tao

    2017-02-01

    Ferulic acid is a hydroxycinnamic acid that widely presents in plant cell wall components. It has been demonstrated that ferulic acid can reverse depressive-like behaviors in both forced swimming test and tail suspension test. However, it is unclear whether chronic ferulic acid treatment can ameliorate the depressive-like behaviors in chronic unpredictable mild stress (CUMS). Because of the putative relationship between neurotrophic system and antidepressant-like activity, we also investigated the effects of chronic ferulic acid on the brain-derived neurotrophic factor (BDNF), postsynaptic protein PSD95, presynaptic protein synapsin I in both prefrontal cortex and hippocampus. The results showed that ferulic acid significantly alleviated CUMS-induced depressive-like behaviors in sucrose preference test and forced swimming test. In addition, ferulic acid significantly up-regulated the levels of BDNF, PSD95 and synapsin I in the prefrontal cortex and hippocampus. The present data indicated that ferulic acid exerted the antidepressant-like effects on behaviors by increasing neurotrophin-related synaptic protein levels in CUMS mice. Copyright © 2016. Published by Elsevier Inc.

  9. [A Method for Protein Photo-cross-linking in Living Cells Facilitating Analysis of Physiological Interactions of Proteins].

    Science.gov (United States)

    Hino, Nobumasa

    2015-01-01

    In living cells, most proteins form complexes with other proteins to exert their functions. Since protein functions are regulated in response to changes in the cellular environment, the components of the complexes can vary; therefore, proteins often interact in a weak and transient manner. To capture such labile protein interactions, we have developed a method for photo-cross-linking of proteins directly interacting in mammalian cells; this method involves expansion of the genetic code and site-specific incorporation of photoreactive amino acids into proteins. Upon cross-linking, protein complexes are stabilized by a covalent bond and can be readily isolated from cell extracts without the problems usually associated with simple affinity purification methods such as co-immunoprecipitation. Photo-cross-linkers have another benefit: they react exclusively with molecules within a range defined by the linker length. This property becomes useful for determining the binding interface of two proteins because the linkers can be introduced in a site-directed manner with our method. In this review, we first describe the expansion of the genetic code of mammalian cells for the incorporation of non-natural amino acids into proteins. Then, we introduce our recent applications and developments of the cross-linking method: identification of intracellular binding partners of the signaling protein growth factor receptor binding protein 2; analysis of the binding between membrane proteins on the cell surface; and a novel photoreactive amino acid that enables wide-ranging photo-cross-linking.

  10. Exposure of Neonatal Mice to Tobacco Smoke Disturbs Synaptic Proteins and Spatial Learning and Memory from Late Infancy to Early Adulthood.

    Science.gov (United States)

    Torres, Larissa Helena; Garcia, Raphael C T; Blois, Anne M M; Dati, Lívia M M; Durão, Ana Carolina; Alves, Adilson Silva; Pacheco-Neto, Maurílio; Mauad, Thais; Britto, Luiz R G; Xavier, Gilberto Fernando; Camarini, Rosana; Marcourakis, Tania

    2015-01-01

    Exposure to environmental tobacco smoke (ETS) in the early postnatal period has been associated with several diseases; however, little is known about the brain effects of ETS exposure during this critical developmental period or the long-term consequences of this exposure. This study investigated the effects of the early postnatal ETS exposure on both reference and working memory, synaptic proteins and BDNF from late infancy to early adulthood (P3-P73). BALB/c mice were exposed to ETS generated from 3R4F reference research cigarettes (0.73 mg of nicotine/cigarette) from P3 to P14. Spatial reference and working memory were evaluated in the Morris water maze during infancy (P20-P29), adolescence (P37-P42) and adulthood (P67-P72). Synapsin, synaptophysin, PSD95 and brain-derived neurotrophic factor (BDNF) were assessed at P15, P35 and P65 by immunohistochemistry and immunoblotting. Mice that were exposed to ETS during the early postnatal period showed poorer performance in the spatial reference memory task. Specifically, the ETS-exposed mice exhibited a significantly reduced time and distance traveled in the target quadrant and in the platform location area than the controls at all ages evaluated. In the spatial working memory task, ETS disrupted the maintenance but not the acquisition of the critical spatial information in both infancy and adolescence. ETS also induced changes in synaptic components, including decreases in synapsin, synaptophysin, PSD95 and BDNF levels in the hippocampus. Exposure to ETS in the early postnatal period disrupts both spatial reference and working memory; these results may be related to changes in synaptogenesis in the hippocampus. Importantly, most of these effects were not reversed even after a long exposure-free period.

  11. Implication of Genetic Deletion of Wdr13 in Mice: Mild Anxiety, Better Performance in Spatial Memory Task, With Upregulation of Multiple Synaptic Proteins

    Directory of Open Access Journals (Sweden)

    Shiladitya Mitra

    2016-08-01

    Full Text Available WDR13 expresses from the X chromosome and has a highly conserved coding sequence. There have been multiple associations of WDR13 with memory. However, its detailed function in context of brain and behavior remains unknown. We characterized the behavioral phenotype of two months old male mice lacking the homologue of WDR13 gene (Wdr13-/0. Taking cue from analysis of its expression in the brain, we chose hippocampus for molecular studies to delineate its function. Wdr13-/0 mice spent less time in the central area of the open field test and with the novel object in novel object recognition test as compared to the wild-type. However, these mice didn’t show any significant changes in total time spent in arms or frequency of arm entries in elevated plus maze. In the absence of Wdr13, there was a significant upregulation of synaptic proteins, viz., SYN1, RAB3A, CAMK2A etc accompanied with increased spine density of hippocampal CA1 neurons and better spatial memory in mice as measured by increased time spent in target quadrant of Morris water maze during probe test. Parallel study from our lab has established c-JUN, ER α/ β and HDAC 1,3,7 as interacting partners of WDR13. WDR13 represses transcription from AP1 (c-JUN responsive and ERE (Estrogen Receptor Element promoters. We hypothesized that absence of Wdr13 would resulted in de-regulated expression of a number of genes including multiple synaptic genes leading to the observed phenotype. Knocking down Wdr13 in Neuro2a cell lines led to increased transcripts of Camk2a and Nrxn2 consistent with in-vivo results. Summarily, our data provides functional evidence for the role of Wdr13 in brain.

  12. Aberrant location of inhibitory synaptic marker proteins in the hippocampus of dystrophin-deficient mice: implications for cognitive impairment in duchenne muscular dystrophy.

    Science.gov (United States)

    Krasowska, Elżbieta; Zabłocki, Krzysztof; Górecki, Dariusz C; Swinny, Jerome D

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a neuromuscular disease that arises from mutations in the dystrophin-encoding gene. Apart from muscle pathology, cognitive impairment, primarily of developmental origin, is also a significant component of the disorder. Convergent lines of evidence point to an important role for dystrophin in regulating the molecular machinery of central synapses. The clustering of neurotransmitter receptors at inhibitory synapses, thus impacting on synaptic transmission, is of particular significance. However, less is known about the role of dystrophin in influencing the precise expression patterns of proteins located within the pre- and postsynaptic elements of inhibitory synapses. To this end, we exploited molecular markers of inhibitory synapses, interneurons and dystrophin-deficient mouse models to explore the role of dystrophin in determining the stereotypical patterning of inhibitory connectivity within the cellular networks of the hippocampus CA1 region. In tissue from wild-type (WT) mice, immunoreactivity of neuroligin2 (NL2), an adhesion molecule expressed exclusively in postsynaptic elements of inhibitory synapses, and the vesicular GABA transporter (VGAT), a marker of GABAergic presynaptic elements, were predictably enriched in strata pyramidale and lacunosum moleculare. In acute contrast, NL2 and VGAT immunoreactivity was relatively evenly distributed across all CA1 layers in dystrophin-deficient mice. Similar changes were evident with the cannabinoid receptor 1, vesicular glutamate transporter 3, parvalbumin, somatostatin and the GABAA receptor alpha1 subunit. The data show that in the absence of dystrophin, there is a rearrangement of the molecular machinery, which underlies the precise spatio-temporal pattern of GABAergic synaptic transmission within the CA1 sub-field of the hippocampus.

  13. Utilizing Mechanistic Cross-Linking Technology to Study Protein-Protein Interactions: An Experiment Designed for an Undergraduate Biochemistry Lab

    Science.gov (United States)

    Finzel, Kara; Beld, Joris; Burkart, Michael D.; Charkoudian, Louise K.

    2017-01-01

    Over the past decade, mechanistic cross-linking probes have been used to study protein-protein interactions in natural product biosynthetic pathways. This approach is highly interdisciplinary, combining elements of protein biochemistry, organic chemistry, and computational docking. Herein, we described the development of an experiment to engage…

  14. Object-Place Recognition Learning Triggers Rapid Induction of Plasticity-Related Immediate Early Genes and Synaptic Proteins in the Rat Dentate Gyrus

    Directory of Open Access Journals (Sweden)

    Jonathan Soulé

    2008-01-01

    Full Text Available Long-term recognition memory requires protein synthesis, but little is known about the coordinate regulation of specific genes. Here, we examined expression of the plasticity-associated immediate early genes (Arc, Zif268, and Narp in the dentate gyrus following long-term object-place recognition learning in rats. RT-PCR analysis from dentate gyrus tissue collected shortly after training did not reveal learning-specific changes in Arc mRNA expression. In situ hybridization and immunohistochemistry were therefore used to assess possible sparse effects on gene expression. Learning about objects increased the density of granule cells expressing Arc, and to a lesser extent Narp, specifically in the dorsal blade of the dentate gyrus, while Zif268 expression was elevated across both blades. Thus, object-place recognition triggers rapid, blade-specific upregulation of plasticity-associated immediate early genes. Furthermore, Western blot analysis of dentate gyrus homogenates demonstrated concomitant upregulation of three postsynaptic density proteins (Arc, PSD-95, and α-CaMKII with key roles in long-term synaptic plasticity and long-term memory.

  15. Klotho regulates CA1 hippocampal synaptic plasticity.

    Science.gov (United States)

    Li, Qin; Vo, Hai T; Wang, Jing; Fox-Quick, Stephanie; Dobrunz, Lynn E; King, Gwendalyn D

    2017-04-07

    Global klotho overexpression extends lifespan while global klotho-deficiency shortens it. As well, klotho protein manipulations inversely regulate cognitive function. Mice without klotho develop rapid onset cognitive impairment before they are 2months old. Meanwhile, adult mice overexpressing klotho show enhanced cognitive function, particularly in hippocampal-dependent tasks. The cognitive enhancing effects of klotho extend to humans with a klotho polymorphism that increases circulating klotho and executive function. To affect cognitive function, klotho could act in or on the synapse to modulate synaptic transmission or plasticity. However, it is not yet known if klotho is located at synapses, and little is known about its effects on synaptic function. To test this, we fractionated hippocampi and detected klotho expression in both pre and post-synaptic compartments. We find that loss of klotho enhances both pre and post-synaptic measures of CA1 hippocampal synaptic plasticity at 5weeks of age. However, a rapid loss of synaptic enhancement occurs such that by 7weeks, when mice are cognitively impaired, there is no difference from wild-type controls. Klotho overexpressing mice show no early life effects on synaptic plasticity, but decreased CA1 hippocampal long-term potentiation was measured at 6months of age. Together these data suggest that klotho affects cognition, at least in part, by regulating hippocampal synaptic plasticity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Synaptic Homeostasis and Its Immunological Disturbance in Neuromuscular Junction Disorders

    Directory of Open Access Journals (Sweden)

    Masaharu Takamori

    2017-04-01

    Full Text Available In the neuromuscular junction, postsynaptic nicotinic acetylcholine receptor (nAChR clustering, trans-synaptic communication and synaptic stabilization are modulated by the molecular mechanisms underlying synaptic plasticity. The synaptic functions are based presynaptically on the active zone architecture, synaptic vesicle proteins, Ca2+ channels and synaptic vesicle recycling. Postsynaptically, they are based on rapsyn-anchored nAChR clusters, localized sensitivity to ACh, and synaptic stabilization via linkage to the extracellular matrix so as to be precisely opposed to the nerve terminal. Focusing on neural agrin, Wnts, muscle-specific tyrosine kinase (a mediator of agrin and Wnts signalings and regulator of trans-synaptic communication, low-density lipoprotein receptor-related protein 4 (the receptor of agrin and Wnts and participant in retrograde signaling, laminin-network (including muscle-derived agrin, extracellular matrix proteins (participating in the synaptic stabilization and presynaptic receptors (including muscarinic and adenosine receptors, we review the functional structures of the synapse by making reference to immunological pathogenecities in postsynaptic disease, myasthenia gravis. The synapse-related proteins including cortactin, coronin-6, caveolin-3, doublecortin, R-spondin 2, amyloid precursor family proteins, glia cell-derived neurotrophic factor and neurexins are also discussed in terms of their possible contribution to efficient synaptic transmission at the neuromuscular junction.

  17. The induction of cytochrome P450 2E1 by ethanol leads to the loss of synaptic proteins via PPARα down-regulation.

    Science.gov (United States)

    Na, Shufang; Li, Jie; Zhang, Huibo; Li, Yueran; Yang, Zheqiong; Zhong, Yanjun; Dong, Guicheng; Yang, Jing; Yue, Jiang

    2017-06-15

    Ethanol, one of the most commonly abused substances throughout history, is a substrate and potent inducer of cytochrome P450 2E1 (CYP2E1). Our previous study showed that brain CYP2E1 was induced by chronic ethanol treatment and was associated with ethanol-induced neurotoxicity in rats. We therefore investigated the possible mechanism of brain CYP2E1 involvement in ethanol-induced neurodegeneration. Compared with the controls, chronic ethanol treatment (3.0g/kg, i.g., 160days) significantly increased CYP2E1 mRNA levels in the rat cortex, but the mRNA levels of peroxisome proliferator-activated receptor α (PPARα) and the pre- and post-synaptic proteins (synaptophysin, SYP, and drebrin1, DBN1) were decreased. Ethanol treatment dose-dependently induced CYP2E1 mRNA expression, and CYP2E1 overexpression exacerbated the ethanol-induced neurotoxicity. Pretreatment with p38 inhibitor (SB202190) and ERK1/2 inhibitor (U0126) attenuated the induction of CYP2E1 mRNA and protein levels by ethanol; however, no change was observed with JNK inhibitor pretreatment. Ethanol exposure or CYP2E1 overexpression significantly decreased PPARα, SYP, and DBN1 expression as indicated by the data from real-time RT-PCR, Western blotting and immunocytochemistry. The activation of PPARα by WY14643 increased the activity of the SYP and DBN1 promoters and attenuated the inhibition of these genes by ethanol. The specific siRNA for CYP2E1 significantly attenuated the ethanol-induced inhibition of PPARα, SYP and DBN1 mRNA levels. These results suggest that the induction of CYP2E1 by ethanol may be mediated via the p38 and ERK1/2 signaling pathways in neurons but not via the JNK pathway. The CYP2E1-PPARα axis may play a role in ethanol-induced neurotoxicity via the alteration of the genes related with synaptic function. Copyright © 2017. Published by Elsevier B.V.

  18. Synaptic Ribbons Require Ribeye for Electron Density, Proper Synaptic Localization, and Recruitment of Calcium Channels

    Directory of Open Access Journals (Sweden)

    Caixia Lv

    2016-06-01

    Full Text Available Synaptic ribbons are structures made largely of the protein Ribeye that hold synaptic vesicles near release sites in non-spiking cells in some sensory systems. Here, we introduce frameshift mutations in the two zebrafish genes encoding for Ribeye and thus remove Ribeye protein from neuromast hair cells. Despite Ribeye depletion, vesicles collect around ribbon-like structures that lack electron density, which we term “ghost ribbons.” Ghost ribbons are smaller in size but possess a similar number of smaller vesicles and are poorly localized to synapses and calcium channels. These hair cells exhibit enhanced exocytosis, as measured by capacitance, and recordings from afferent neurons post-synaptic to hair cells show no significant difference in spike rates. Our results suggest that Ribeye makes up most of the synaptic ribbon density in neuromast hair cells and is necessary for proper localization of calcium channels and synaptic ribbons.

  19. The role of c-AMP-dependent protein kinase in spinal cord and post synaptic dorsal column neurons in a rat model of visceral pain.

    Science.gov (United States)

    Wu, Jing; Su, Guangxiao; Ma, Long; Zhang, Xuan; Lei, Yongzhong; Lin, Qing; Nauta, Haring J W; Li, Junfa; Fang, Li

    2007-04-01

    Visceral noxious stimulation induces central neuronal plasticity changes and suggests that the c-AMP-dependent protein kinase (PKA) signal transduction cascade contributes to long-term changes in nociceptive processing at the spinal cord level. Our previous studies reported the clinical neurosurgical interruption of post synaptic dorsal column neuron (PSDC) pathway by performing midline myelotomy effectively alleviating the intractable visceral pain in patients with severe pain. However, the intracellular cascade in PSDC neurons mediated by PKA nociceptive neurotransmission was not known. In this study, by using multiple experimental approaches, we investigated the role of PKA in nociceptive signaling in the spinal cord and PSDC neurons in a visceral pain model in rats with the intracolonic injection of mustard oil. We found that mustard oil injection elicited visceral pain that significantly changed exploratory behavior activity in rats in terms of decreased numbers of entries, traveled distance, active and rearing time, rearing activity and increased resting time when compared to that of rats receiving mineral oil injection. However, the intrathecal infusion of PKA inhibitor, H89 partially reversed the visceral pain-induced effects. Results from Western blot studies showed that mustard oil injection significantly induced the expression of PKA protein in the lumbosacral spinal cord. Immunofluorescent staining in pre-labeled PSDC neurons showed that mustard oil injection greatly induces the neuronal profile numbers. We also found that the intrathecal infusion of a PKA inhibitor, H89 significantly blocked the visceral pain-induced phosphorylation of c-AMP-responsive element binding (CREB) protein in spinal cord in rats. The results of our study suggest that the PKA signal transduction cascade may contribute to visceral nociceptive changes in spinal PSDC pathways.

  20. Sensitizing potential of enzymatically cross-linked peanut proteins in a mouse model of peanut allergy.

    NARCIS (Netherlands)

    Smit, Joost

    2014-01-01

    SCOPE: The cross-linking of proteins by enzymes to form high-molecular-weight protein, aggregates can be used to tailor the technological or physiological functionality of food products. Aggregation of dietary proteins by food processing may promote allergic sensitization, but the effects of

  1. Facilitating identification of minimal protein binding domains by cross-linking mass spectrometry

    NARCIS (Netherlands)

    Liu, Qingyang; Remmelzwaal, Sanne; Heck, Albert J R; Akhmanova, Anna; Liu, Fan

    2017-01-01

    Characterization of protein interaction domains is crucial for understanding protein functions. Here we combine cross-linking mass spectrometry (XL-MS) with deletion analysis to accurately locate minimal protein interaction domains. As a proof of concept, we investigated in detail the binding

  2. Endogenously Nitrated Proteins in Mouse Brain: Links To Neurodegenerative Disease

    Energy Technology Data Exchange (ETDEWEB)

    Sacksteder, Colette A.; Qian, Weijun; Knyushko, Tanya V.; Wang, Haixing H.; Chin, Mark H.; Lacan, Goran; Melega, William P.; Camp, David G.; Smith, Richard D.; Smith, Desmond J.; Squier, Thomas C.; Bigelow, Diana J.

    2006-07-04

    Increased nitrotyrosine modification of proteins has been documented in multiple pathologies in a variety of tissue types; emerging evidence suggests its additional role in redox regulation of normal metabolism. In order to identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic dataset identifying 7,792 proteins from whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in identification of 31 unique nitrotyrosine sites within 29 different proteins. Over half of the nitrated proteins identified have been reported to be involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces increased nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, characteristics consistent with peroxynitrite-induced tyrosine modification. More striking is the five-fold greater nitration of tyrosines having nearby basic sidechains, suggesting electrostatic attraction of basic groups with the negative charge of peroxynitrite. Together, these results suggest that elevated peroxynitrite generation plays a role in neurodegenerative changes in the brain and provides a predictive tool of functionally important sites of nitration.

  3. MALDI FTICR IMS of Intact Proteins: Using Mass Accuracy to Link Protein Images with Proteomics Data

    Science.gov (United States)

    Spraggins, Jeffrey M.; Rizzo, David G.; Moore, Jessica L.; Rose, Kristie L.; Hammer, Neal D.; Skaar, Eric P.; Caprioli, Richard M.

    2015-06-01

    MALDI imaging mass spectrometry is a highly sensitive and selective tool used to visualize biomolecules in tissue. However, identification of detected proteins remains a difficult task. Indirect identification strategies have been limited by insufficient mass accuracy to confidently link ion images to proteomics data. Here, we demonstrate the capabilities of MALDI FTICR MS for imaging intact proteins. MALDI FTICR IMS provides an unprecedented combination of mass resolving power (~75,000 at m/z 5000) and accuracy (<5ppm) for proteins up to ~12kDa, enabling identification based on correlation with LC-MS/MS proteomics data. Analysis of rat brain tissue was performed as a proof-of-concept highlighting the capabilities of this approach by imaging and identifying a number of proteins including N-terminally acetylated thymosin β4 ( m/z 4,963.502, 0.6ppm) and ATP synthase subunit ɛ ( m/z 5,636.074, -2.3ppm). MALDI FTICR IMS was also used to differentiate a series of oxidation products of S100A8 ( m/z 10,164.03, -2.1ppm), a subunit of the heterodimer calprotectin, in kidney tissue from mice infected with Staphylococcus aureus. S100A8 - M37O/C42O3 ( m/z 10228.00, -2.6ppm) was found to co-localize with bacterial microcolonies at the center of infectious foci. The ability of MALDI FTICR IMS to distinguish S100A8 modifications is critical to understanding calprotectin's roll in nutritional immunity.

  4. Genetically encoded releasable photo-cross-linking strategies for studying protein-protein interactions in living cells.

    Science.gov (United States)

    Yang, Yi; Song, Haiping; He, Dan; Zhang, Shuai; Dai, Shizhong; Xie, Xiao; Lin, Shixian; Hao, Ziyang; Zheng, Huangtao; Chen, Peng R

    2017-10-01

    Although protein-protein interactions (PPIs) have crucial roles in virtually all cellular processes, the identification of more transient interactions in their biological context remains challenging. Conventional photo-cross-linking strategies can be used to identify transient interactions, but these approaches often suffer from high background due to the cross-linked bait proteins. To solve the problem, we have developed membrane-permeable releasable photo-cross-linkers that allow for prey-bait separation after protein complex isolation and can be installed in proteins of interest (POIs) as unnatural amino acids. Here we describe the procedures for using two releasable photo-cross-linkers, DiZSeK and DiZHSeC, in both living Escherichia coli and mammalian cells. A cleavage after protein photo-cross-linking (CAPP ) strategy based on the photo-cross-linker DiZSeK is described, in which the prey protein pool is released from a POI after affinity purification. Prey proteins are analyzed using mass spectrometry or 2D gel electrophoresis for global comparison of interactomes from different experimental conditions. An in situ cleavage and mass spectrometry (MS)-label transfer after protein photo-cross-linking (IMAPP) strategy based on the photo-cross-linker DiZHSeC is also described. This strategy can be used for the identification of cross-linking sites to allow detailed characterization of PPI interfaces. The procedures for photo-cross-linker incorporation, photo-cross-linking of interaction partners and affinity purification of cross-linked complexes are similar for the two photo-cross-linkers. The final section of the protocol describes prey-bait separation (for CAPP) and MS-label transfer and identification (for IMAPP). After plasmid construction, the CAPP and IMAPP strategies can be completed within 6 and 7 d, respectively.

  5. Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Viviana I. Torres

    2017-01-01

    Full Text Available Synapses are complex structures that allow communication between neurons in the central nervous system. Studies conducted in vertebrate and invertebrate models have contributed to the knowledge of the function of synaptic proteins. The functional synapse requires numerous protein complexes with specialized functions that are regulated in space and time to allow synaptic plasticity. However, their interplay during neuronal development, learning, and memory is poorly understood. Accumulating evidence links synapse proteins to neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. In this review, we describe the way in which several proteins that participate in cell adhesion, scaffolding, exocytosis, and neurotransmitter reception from presynaptic and postsynaptic compartments, mainly from excitatory synapses, have been associated with several synaptopathies, and we relate their functions to the disease phenotype.

  6. Hydrogen tunneling links protein dynamics to enzyme catalysis.

    Science.gov (United States)

    Klinman, Judith P; Kohen, Amnon

    2013-01-01

    The relationship between protein dynamics and function is a subject of considerable contemporary interest. Although protein motions are frequently observed during ligand binding and release steps, the contribution of protein motions to the catalysis of bond making/breaking processes is more difficult to probe and verify. Here, we show how the quantum mechanical hydrogen tunneling associated with enzymatic C-H bond cleavage provides a unique window into the necessity of protein dynamics for achieving optimal catalysis. Experimental findings support a hierarchy of thermodynamically equilibrated motions that control the H-donor and -acceptor distance and active-site electrostatics, creating an ensemble of conformations suitable for H-tunneling. A possible extension of this view to methyl transfer and other catalyzed reactions is also presented. The impact of understanding these dynamics on the conceptual framework for enzyme activity, inhibitor/drug design, and biomimetic catalyst design is likely to be substantial.

  7. Combining modelling and mutagenesis studies of synaptic vesicle protein 2A to identify a series of residues involved in racetam binding.

    Science.gov (United States)

    Shi, Jiye; Anderson, Dina; Lynch, Berkley A; Castaigne, Jean-Gabriel; Foerch, Patrik; Lebon, Florence

    2011-10-01

    LEV (levetiracetam), an antiepileptic drug which possesses a unique profile in animal models of seizure and epilepsy, has as its unique binding site in brain, SV2A (synaptic vesicle protein 2A). Previous studies have used a chimaeric and site-specific mutagenesis approach to identify three residues in the putative tenth transmembrane helix of SV2A that, when mutated, alter binding of LEV and related racetam derivatives to SV2A. In the present paper, we report a combined modelling and mutagenesis study that successfully identifies another 11 residues in SV2A that appear to be involved in ligand binding. Sequence analysis and modelling of SV2A suggested residues equivalent to critical functional residues of other MFS (major facilitator superfamily) transporters. Alanine scanning of these and other SV2A residues resulted in the identification of residues affecting racetam binding, including Ile273 which differentiated between racetam analogues, when mutated to alanine. Integrating mutagenesis results with docking analysis led to the construction of a mutant in which six SV2A residues were replaced with corresponding SV2B residues. This mutant showed racetam ligand-binding affinity intermediate to the affinities observed for SV2A and SV2B.

  8. 5-HT(2C) serotonin receptor blockade prevents tau protein hyperphosphorylation and corrects the defect in hippocampal synaptic plasticity caused by a combination of environmental stressors in mice.

    Science.gov (United States)

    Busceti, Carla Letizia; Di Pietro, Paola; Riozzi, Barbara; Traficante, Anna; Biagioni, Francesca; Nisticò, Robert; Fornai, Francesco; Battaglia, Giuseppe; Nicoletti, Ferdinando; Bruno, Valeria

    2015-09-01

    Exposure to multimodal sensory stressors is an everyday occurrence and sometimes becomes very intense, such as during rave parties or other recreational events. A growing body of evidence suggests that strong environmental stressors might cause neuronal dysfunction on their own in addition to their synergistic action with illicit drugs. Mice were exposed to a combination of physical and sensory stressors that are reminiscent of those encountered in a rave party. However, this is not a model of rave because it lacks the rewarding properties of rave. A 14-h exposure to environmental stressors caused an impairment of hippocampal long-term potentiation (LTP) and spatial memory, and an enhanced phosphorylation of tau protein in the CA1 and CA3 regions. These effects were transient and critically depended on the activation of 5-HT2C serotonin receptors, which are highly expressed in the CA1 region. Acute systemic injection of the selective 5-HT2C antagonist, RS-102,221 (2 mg/kg, i.p., 2 min prior the onset of stress), prevented tau hyperphosphorylation and also corrected the defects in hippocampal LTP and spatial memory. These findings suggest that passive exposure to a combination of physical and sensory stressors causes a reversible hippocampal dysfunction, which might compromise mechanisms of synaptic plasticity and spatial memory for a few days. Drugs that block 5-HT2C receptors might protect the hippocampus against the detrimental effect of environmental stressors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity

    Science.gov (United States)

    Shin, Hyewon; van Riesen, Christoph; Whitcomb, Daniel; Warburton, Julia M.; Jo, Jihoon; Kim, Doyoun; Kim, Sun Gyun; Um, Seung Min; Kwon, Seok-kyu; Kim, Myoung-Hwan; Roh, Junyeop Daniel; Woo, Jooyeon; Jun, Heejung; Lee, Dongmin; Mah, Won; Kim, Hyun; Kaang, Bong-Kiun; Cho, Kwangwook; Rhee, Jeong-Seop; Choquet, Daniel; Kim, Eunjoon

    2016-01-01

    Summary Synaptic adhesion molecules regulate synapse development and plasticity through mechanisms including trans-synaptic adhesion and recruitment of diverse synaptic proteins. We report here that the immunoglobulin superfamily member 11 (IgSF11), a homophilic adhesion molecule preferentially expressed in the brain, is a novel and dual-binding partner of the postsynaptic scaffolding protein PSD-95 and AMPAR glutamate receptors (AMPARs). IgSF11 requires PSD-95 binding for its excitatory synaptic localization. In addition, IgSF11 stabilizes synaptic AMPARs, as shown by IgSF11 knockdown-induced suppression of AMPAR-mediated synaptic transmission and increased surface mobility of AMPARs, measured by high-throughput, single-molecule tracking. IgSF11 deletion in mice leads to suppression of AMPAR-mediated synaptic transmission in the dentate gyrus and long-term potentiation in the CA1 region of the hippocampus. IgSF11 does not regulate the functional characteristics of AMPARs, including desensitization, deactivation, or recovery. These results suggest that IgSF11 regulates excitatory synaptic transmission and plasticity through its tripartite interactions with PSD-95 and AMPARs. PMID:26595655

  10. Linking proteins to signaling pathways for experiment design and evaluation.

    Directory of Open Access Journals (Sweden)

    Illés J Farkas

    Full Text Available Biomedical experimental work often focuses on altering the functions of selected proteins. These changes can hit signaling pathways, and can therefore unexpectedly and non-specifically affect cellular processes. We propose PathwayLinker, an online tool that can provide a first estimate of the possible signaling effects of such changes, e.g., drug or microRNA treatments. PathwayLinker minimizes the users' efforts by integrating protein-protein interaction and signaling pathway data from several sources with statistical significance tests and clear visualization. We demonstrate through three case studies that the developed tool can point out unexpected signaling bias in normal laboratory experiments and identify likely novel signaling proteins among the interactors of known drug targets. In our first case study we show that knockdown of the Caenorhabditis elegans gene cdc-25.1 (meant to avoid progeny may globally affect the signaling system and unexpectedly bias experiments. In the second case study we evaluate the loss-of-function phenotypes of a less known C. elegans gene to predict its function. In the third case study we analyze GJA1, an anti-cancer drug target protein in human, and predict for this protein novel signaling pathway memberships, which may be sources of side effects. Compared to similar services, a major advantage of PathwayLinker is that it drastically reduces the necessary amount of manual literature searches and can be used without a computational background. PathwayLinker is available at http://PathwayLinker.org. Detailed documentation and source code are available at the website.

  11. Linking surfactant protein SP-D and IL-13

    DEFF Research Database (Denmark)

    Qaseem, Asif S; Sonar, Sanchaita; Mahajan, Lakshna

    2012-01-01

    Surfactant protein D (SP-D) is an innate immune molecule that plays a protective role against lung infection, allergy, asthma and inflammation. In vivo experiments with murine models have shown that SP-D can protect against allergic challenge via a range of mechanisms including inhibition...

  12. Synaptic Tagging, Evaluation of Memories, and the Distal Reward Problem

    Science.gov (United States)

    Papper, Marc; Kempter, Richard; Leibold, Christian

    2011-01-01

    Long-term synaptic plasticity exhibits distinct phases. The synaptic tagging hypothesis suggests an early phase in which synapses are prepared, or "tagged," for protein capture, and a late phase in which those proteins are integrated into the synapses to achieve memory consolidation. The synapse specificity of the tags is consistent with…

  13. Protein-bound glycogen is linked to tyrosine residues.

    OpenAIRE

    Aon, M A; Curtino, J A

    1985-01-01

    Tyrosine-glycogen obtained from retina proteoglycogen by exhaustive proteolytic digestion was radiolabelled with 125I. The 125I-labelled tyrosine-glycogen was degraded by amylolytic digestion to a very small radioactive product, which was identified as iodotyrosine by h.p.l.c. The amylolytic mixture used released glucose and maltose that were alpha-linked to the phenolic hydroxy group of p-nitrophenol. No free iodotyrosine was found before or after the intact [125I]iodotyrosine-glycogen was s...

  14. Mapping protein structural changes by quantitative cross-linking

    Czech Academy of Sciences Publication Activity Database

    Kukačka, Zdeněk; Strohalm, Martin; Kavan, Daniel; Novák, Petr

    2015-01-01

    Roč. 89, NOV 2015 (2015), s. 112-120 ISSN 1046-2023 R&D Projects: GA MŠk(CZ) EE2.3.20.0055; GA MŠk(CZ) EE2.3.30.0003; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24023 Institutional support: RVO:61388971 Keywords : Chemical cross-linking * Proteolysis * Mass spectrometry Subject RIV: CE - Biochemistry Impact factor: 3.503, year: 2015

  15. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels

    Directory of Open Access Journals (Sweden)

    Takashi eMaejima

    2013-05-01

    Full Text Available Serotonergic neurons project to virtually all regions of the CNS and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing and reproductive success. Therefore serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo.

  16. Age dependence of the rapid antidepressant and synaptic effects of acute NMDA receptor blockade

    Directory of Open Access Journals (Sweden)

    Elena eNosyreva

    2014-12-01

    Full Text Available Ketamine is a NMDA receptor antagonist that produces rapid antidepressant responses in individuals with major depressive disorder. The antidepressant action of ketamine has been linked to blocking NMDA receptor activation at rest, which inhibits eukaryotic elongation factor2 kinase leading to desuppression of protein synthesis and synaptic potentiation in the CA1 region of the hippocampus. Here, we investigated ketamine mediated antidepressant response and the resulting synaptic potentiation in juvenile animals. We found that ketamine did not produce an antidepressant response in juvenile animals in the novelty suppressed feeding or the forced swim test. In addition ketamine application failed to trigger synaptic potentiation in hippocampal slices obtained from juvenile animals, unlike its action in slices from older animals (6-9 weeks old. The inability of ketamine to trigger an antidepressant response or subsequent synaptic plasticity processes suggests a developmental component to ketamine mediated antidepressant efficacy. We also show that the NMDAR antagonist AP5 triggers synaptic potentiation in mature hippocampus similar to the action of ketamine, demonstrating that global competitive blockade of NMDA receptors is sufficient to trigger this effect. These findings suggest that global blockade of NMDA receptors in developmentally mature hippocampal synapses are required for the antidepressant efficacy of ketamine.

  17. The Role of Co-chaperones in Synaptic Proteostasis and Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Erica L. Gorenberg

    2017-05-01

    Full Text Available Synapses must be preserved throughout an organism's lifespan to allow for normal brain function and behavior. Synapse maintenance is challenging given the long distances between the termini and the cell body, reliance on axonal transport for delivery of newly synthesized presynaptic proteins, and high rates of synaptic vesicle exo- and endocytosis. Hence, synapses rely on efficient proteostasis mechanisms to preserve their structure and function. To this end, the synaptic compartment has specific chaperones to support its functions. Without proper synaptic chaperone activity, local proteostasis imbalances lead to neurotransmission deficits, dismantling of synapses, and neurodegeneration. In this review, we address the roles of four synaptic chaperones in the maintenance of the nerve terminal, as well as their genetic links to neurodegenerative disease. Three of these are Hsp40 co-chaperones (DNAJs: Cysteine String Protein alpha (CSPα; DNAJC5, auxilin (DNAJC6, and Receptor-Mediated Endocytosis 8 (RME-8; DNAJC13. These co-chaperones contain a conserved J domain through which they form a complex with heat shock cognate 70 (Hsc70, enhancing the chaperone's ATPase activity. CSPα is a synaptic vesicle protein known to chaperone the t-SNARE SNAP-25 and the endocytic GTPase dynamin-1, thereby regulating synaptic vesicle exocytosis and endocytosis. Auxilin binds assembled clathrin cages, and through its interactions with Hsc70 leads to the uncoating of clathrin-coated vesicles, a process necessary for the regeneration of synaptic vesicles. RME-8 is a co-chaperone on endosomes and may have a role in clathrin-coated vesicle endocytosis on this organelle. These three co-chaperones maintain client function by preserving folding and assembly to prevent client aggregation, but they do not break down aggregates that have already formed. The fourth synaptic chaperone we will discuss is Heat shock protein 110 (Hsp110, which interacts with Hsc70, DNAJAs, and

  18. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking

    NARCIS (Netherlands)

    Wu, Jiande; Shi, Mengxuan; Li, Wei; Zhao, Luhai; Wang, Ze; Yan, Xinzhong; Norde, Willem; Li, Yuan

    2015-01-01

    A Pickering (o/w) emulsion was formed and stabilized by whey protein isolate nanoparticles (WPI NPs). Those WPI NPs were prepared by thermal cross-linking of denatured WPI proteins within w/o emulsion droplets at 80. °C for 15. min. During heating of w/o emulsions containing 10% (w/v) WPI

  19. A presynaptic role for PKA in synaptic tagging and memory

    NARCIS (Netherlands)

    Park, Alan Jung; Havekes, Robbert; Choi, Jennifer H K; Luczak, Vincent; Nie, Ting; Huang, Ted; Abel, Ted

    2014-01-01

    Protein kinase A (PKA) and other signaling molecules are spatially restricted within neurons by A-kinase anchoring proteins (AKAPs). Although studies on compartmentalized PKA signaling have focused on postsynaptic mechanisms, presynaptically anchored PKA may contribute to synaptic plasticity and

  20. Mitochondrial protein interactome elucidated by chemical cross-linking mass spectrometry.

    Science.gov (United States)

    Schweppe, Devin K; Chavez, Juan D; Lee, Chi Fung; Caudal, Arianne; Kruse, Shane E; Stuppard, Rudy; Marcinek, David J; Shadel, Gerald S; Tian, Rong; Bruce, James E

    2017-02-14

    Mitochondrial protein interactions and complexes facilitate mitochondrial function. These complexes range from simple dimers to the respirasome supercomplex consisting of oxidative phosphorylation complexes I, III, and IV. To improve understanding of mitochondrial function, we used chemical cross-linking mass spectrometry to identify 2,427 cross-linked peptide pairs from 327 mitochondrial proteins in whole, respiring murine mitochondria. In situ interactions were observed in proteins throughout the electron transport chain membrane complexes, ATP synthase, and the mitochondrial contact site and cristae organizing system (MICOS) complex. Cross-linked sites showed excellent agreement with empirical protein structures and delivered complementary constraints for in silico protein docking. These data established direct physical evidence of the assembly of the complex I-III respirasome and enabled prediction of in situ interfacial regions of the complexes. Finally, we established a database and tools to harness the cross-linked interactions we observed as molecular probes, allowing quantification of conformation-dependent protein interfaces and dynamic protein complex assembly.

  1. APP and APLP2 interact with the synaptic release machinery and facilitate transmitter release at hippocampal synapses

    Science.gov (United States)

    Fanutza, Tomas; Del Prete, Dolores; Ford, Michael J; Castillo, Pablo E; D’Adamio, Luciano

    2015-01-01

    The amyloid precursor protein (APP), whose mutations cause familial Alzheimer’s disease, interacts with the synaptic release machinery, suggesting a role in neurotransmission. Here we mapped this interaction to the NH2-terminal region of the APP intracellular domain. A peptide encompassing this binding domain -named JCasp- is naturally produced by a γ-secretase/caspase double-cut of APP. JCasp interferes with the APP-presynaptic proteins interaction and, if linked to a cell-penetrating peptide, reduces glutamate release in acute hippocampal slices from wild-type but not APP deficient mice, indicating that JCasp inhibits APP function.The APP-like protein-2 (APLP2) also binds the synaptic release machinery. Deletion of APP and APLP2 produces synaptic deficits similar to those caused by JCasp. Our data support the notion that APP and APLP2 facilitate transmitter release, likely through the interaction with the neurotransmitter release machinery. Given the link of APP to Alzheimer’s disease, alterations of this synaptic role of APP could contribute to dementia. DOI: http://dx.doi.org/10.7554/eLife.09743.001 PMID:26551565

  2. Heterogeneous Association of Alzheimer's Disease-Linked Amyloid-β and Amyloid-β Protein Precursor with Synapses.

    Science.gov (United States)

    Willén, Katarina; Sroka, Agnieszka; Takahashi, Reisuke H; Gouras, Gunnar K

    2017-01-01

    Alzheimer's disease (AD) is increasingly viewed as a disease of synapses. Loss of synapses correlates better with cognitive decline than amyloid plaques and neurofibrillary tangles, the hallmark neuropathological lesions of AD. Soluble forms of amyloid-β (Aβ) have emerged as mediators of synapse dysfunction. Aβ binds to, accumulates, and aggregates in synapses. However, the anatomical and neurotransmitter specificity of Aβ and the amyloid-β protein precursor (AβPP) in AD remain poorly understood. In addition, the relative roles of Aβ and AβPP in the development of AD, at pre- versus post-synaptic compartments and axons versus dendrites, respectively, remain unclear. Here we use immunogold electron microscopy and confocal microscopy to provide evidence for heterogeneity in the localization of Aβ/AβPP. We demonstrate that Aβ binds to a subset of synapses in cultured neurons, with preferential binding to glutamatergic compared to GABAergic neurons. We also highlight the challenge of defining pre- versus post-synaptic localization of this binding by confocal microscopy. Further, endogenous Aβ42 accumulates in both glutamatergic and GABAergic AβPP/PS1 transgenic primary neurons, but at varying levels. Moreover, upon knock-out of presenilin 1 or inhibition of γ-secretase AβPP C-terminal fragments accumulate both pre- and post-synaptically; however earlier pre-synaptically, consistent with a higher rate of AβPP processing in axons. A better understanding of the synaptic and anatomical selectivity of Aβ/AβPP in AD can be important for the development of more effective new therapies for this major disease of aging.

  3. Heterogeneous Association of Alzheimer’s Disease-Linked Amyloid-β and Amyloid-β Protein Precursor with Synapses

    Science.gov (United States)

    Willén, Katarina; Sroka, Agnieszka; Takahashi, Reisuke H.; Gouras, Gunnar K.

    2017-01-01

    Alzheimer’s disease (AD) is increasingly viewed as a disease of synapses. Loss of synapses correlates better with cognitive decline than amyloid plaques and neurofibrillary tangles, the hallmark neuropathological lesions of AD. Soluble forms of amyloid-β (Aβ) have emerged as mediators of synapse dysfunction. Aβ binds to, accumulates, and aggregates in synapses. However, the anatomical and neurotransmitter specificity of Aβ and the amyloid-β protein precursor (AβPP) in AD remain poorly understood. In addition, the relative roles of Aβ and AβPP in the development of AD, at pre- versus post-synaptic compartments and axons versus dendrites, respectively, remain unclear. Here we use immunogold electron microscopy and confocal microscopy to provide evidence for heterogeneity in the localization of Aβ/AβPP. We demonstrate that Aβ binds to a subset of synapses in cultured neurons, with preferential binding to glutamatergic compared to GABAergic neurons. We also highlight the challenge of defining pre- versus post-synaptic localization of this binding by confocal microscopy. Further, endogenous Aβ42 accumulates in both glutamatergic and GABAergic AβPP/PS1 transgenic primary neurons, but at varying levels. Moreover, upon knock-out of presenilin 1 or inhibition of γ-secretase AβPP C-terminal fragments accumulate both pre- and post-synaptically; however earlier pre-synaptically, consistent with a higher rate of AβPP processing in axons. A better understanding of the synaptic and anatomical selectivity of Aβ/AβPP in AD can be important for the development of more effective new therapies for this major disease of aging. PMID:28869466

  4. INVOLVEMENT OF SYNAPTIC GENES IN THE PATHOGENESIS OF AUTISM SPECTRUM DISORDERS: THE CASE OF SYNAPSINS

    Directory of Open Access Journals (Sweden)

    Silvia eGiovedi

    2014-09-01

    Full Text Available Autism spectrum disorders (ASDs are heterogeneous neurodevelopmental disorders characterized by deficits in social interaction and social communication, restricted interests and repetitive behaviors. Many synaptic protein genes are linked to the pathogenesis of ASDs, making them prototypical synaptopathies. An array of mutations in the synapsin (Syn genes in humans have been recently associated with ASD and epilepsy, diseases that display a frequent comorbidity. Synapsins are presynaptic proteins regulating synaptic vesicle traffic, neurotransmitter release and short-term synaptic plasticity. In doing so, Syn isoforms control the tone of activity of neural circuits and the balance between excitation and inhibition. As ASD pathogenesis is believed to result from dysfunctions in the balance between excitatory and inhibitory transmissions in neocortical areas, Syns are novel ASD candidate genes. Accordingly, deletion of single Syn genes in mice, in addition to epilepsy, causes core symptoms of ASD by affecting social behavior, social communication and repetitive behaviors. Thus, Syn knockout mice represent a good experimental model to define synaptic alterations involved in the pathogenesis of ASD and epilepsy.

  5. SAD-B Phosphorylation of CAST Controls Active Zone Vesicle Recycling for Synaptic Depression

    Directory of Open Access Journals (Sweden)

    Sumiko Mochida

    2016-09-01

    Full Text Available Short-term synaptic depression (STD is a common form of activity-dependent plasticity observed widely in the nervous system. Few molecular pathways that control STD have been described, but the active zone (AZ release apparatus provides a possible link between neuronal activity and plasticity. Here, we show that an AZ cytomatrix protein CAST and an AZ-associated protein kinase SAD-B coordinately regulate STD by controlling reloading of the AZ with release-ready synaptic vesicles. SAD-B phosphorylates the N-terminal serine (S45 of CAST, and S45 phosphorylation increases with higher firing rate. A phosphomimetic CAST (S45D mimics CAST deletion, which enhances STD by delaying reloading of the readily releasable pool (RRP, resulting in a pool size decrease. A phosphonegative CAST (S45A inhibits STD and accelerates RRP reloading. Our results suggest that the CAST/SAD-B reaction serves as a brake on synaptic transmission by temporal calibration of activity and synaptic depression via RRP size regulation.

  6. Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications

    Directory of Open Access Journals (Sweden)

    Wagner Andreas

    2004-11-01

    Full Text Available Abstract Background The structure of molecular networks derives from dynamical processes on evolutionary time scales. For protein interaction networks, global statistical features of their structure can now be inferred consistently from several large-throughput datasets. Understanding the underlying evolutionary dynamics is crucial for discerning random parts of the network from biologically important properties shaped by natural selection. Results We present a detailed statistical analysis of the protein interactions in Saccharomyces cerevisiae based on several large-throughput datasets. Protein pairs resulting from gene duplications are used as tracers into the evolutionary past of the network. From this analysis, we infer rate estimates for two key evolutionary processes shaping the network: (i gene duplications and (ii gain and loss of interactions through mutations in existing proteins, which are referred to as link dynamics. Importantly, the link dynamics is asymmetric, i.e., the evolutionary steps are mutations in just one of the binding parters. The link turnover is shown to be much faster than gene duplications. Both processes are assembled into an empirically grounded, quantitative model for the evolution of protein interaction networks. Conclusions According to this model, the link dynamics is the dominant evolutionary force shaping the statistical structure of the network, while the slower gene duplication dynamics mainly affects its size. Specifically, the model predicts (i a broad distribution of the connectivities (i.e., the number of binding partners of a protein and (ii correlations between the connectivities of interacting proteins, a specific consequence of the asymmetry of the link dynamics. Both features have been observed in the protein interaction network of S. cerevisiae.

  7. Learning and Memory, Part II: Molecular Mechanisms of Synaptic Plasticity

    Science.gov (United States)

    Lombroso, Paul; Ogren, Marilee

    2009-01-01

    The molecular events that are responsible for strengthening synaptic connections and how these are linked to memory and learning are discussed. The laboratory preparations that allow the investigation of these events are also described.

  8. CLMSVault: A Software Suite for Protein Cross-Linking Mass-Spectrometry Data Analysis and Visualization.

    Science.gov (United States)

    Courcelles, Mathieu; Coulombe-Huntington, Jasmin; Cossette, Émilie; Gingras, Anne-Claude; Thibault, Pierre; Tyers, Mike

    2017-07-07

    Protein cross-linking mass spectrometry (CL-MS) enables the sensitive detection of protein interactions and the inference of protein complex topology. The detection of chemical cross-links between protein residues can identify intra- and interprotein contact sites or provide physical constraints for molecular modeling of protein structure. Recent innovations in cross-linker design, sample preparation, mass spectrometry, and software tools have significantly improved CL-MS approaches. Although a number of algorithms now exist for the identification of cross-linked peptides from mass spectral data, a dearth of user-friendly analysis tools represent a practical bottleneck to the broad adoption of the approach. To facilitate the analysis of CL-MS data, we developed CLMSVault, a software suite designed to leverage existing CL-MS algorithms and provide intuitive and flexible tools for cross-platform data interpretation. CLMSVault stores and combines complementary information obtained from different cross-linkers and search algorithms. CLMSVault provides filtering, comparison, and visualization tools to support CL-MS analyses and includes a workflow for label-free quantification of cross-linked peptides. An embedded 3D viewer enables the visualization of quantitative data and the mapping of cross-linked sites onto PDB structural models. We demonstrate the application of CLMSVault for the analysis of a noncovalent Cdc34-ubiquitin protein complex cross-linked under different conditions. CLMSVault is open-source software (available at https://gitlab.com/courcelm/clmsvault.git ), and a live demo is available at http://democlmsvault.tyerslab.com/ .

  9. Potentiation of electrical and chemical synaptic transmission mediated by endocannabinoids

    Science.gov (United States)

    Cachope, Roger; Mackie, Ken; Triller, Antoine; O’Brien, John; Pereda, Alberto E.

    2009-01-01

    SUMMARY Endocannabinoids are well established as inhibitors of chemical synaptic transmission via presynaptic activation of the cannabinoid type 1 receptor (CB1R). Contrasting this notion, we show that dendritic release of endocannabinoids mediates potentiation of synaptic transmission at mixed (electrical and chemical) synaptic contacts on the goldfish Mauthner cell. Remarkably, the observed enhancement was not restricted to the glutamatergic component of the synaptic response but also included a parallel increase in electrical transmission. This novel effect involved the activation of CB1 receptors and was indirectly mediated via the release of dopamine from nearby varicosities, which in turn led to potentiation of the synaptic response via a cAMP-dependent protein kinase-mediated postsynaptic mechanism. Thus, endocannabinoid release can potentiate synaptic transmission and its functional roles include the regulation of gap junction-mediated electrical synapses. Similar interactions between endocannabinoid and dopaminergic systems may be widespread and potentially relevant for the motor and rewarding effects of cannabis derivatives. PMID:18093525

  10. Characterization of Interstrand DNA-DNA Cross-Links Using the α-Hemolysin Protein Nanopore.

    Science.gov (United States)

    Zhang, Xinyue; Price, Nathan E; Fang, Xi; Yang, Zhiyu; Gu, Li-Qun; Gates, Kent S

    2015-12-22

    Nanopore-based sensors have been studied extensively as potential tools for DNA sequencing, characterization of epigenetic modifications such as 5-methylcytosine, and detection of microRNA biomarkers. In the studies described here, the α-hemolysin protein nanopore embedded in a lipid bilayer was used for the detection and characterization of interstrand cross-links in duplex DNA. Interstrand cross-links are important lesions in medicinal chemistry and toxicology because they prevent the strand separation that is required for read-out of genetic information from DNA in cells. In addition, interstrand cross-links are used for the stabilization of duplex DNA in structural biology and materials science. Cross-linked DNA fragments produced unmistakable current signatures in the nanopore experiment. Some cross-linked substrates gave irreversible current blocks of >10 min, while others produced long current blocks (10-100 s) before the double-stranded DNA cross-link translocated through the α-hemolysin channel in a voltage-driven manner. The duration of the current block for the different cross-linked substrates examined here may be dictated by the stability of the duplex region left in the vestibule of the nanopore following partial unzipping of the cross-linked DNA. Construction of calibration curves measuring the frequency of cross-link blocking events (1/τon) as a function of cross-link concentration enabled quantitative determination of the amounts of cross-linked DNA present in samples. The unique current signatures generated by cross-linked DNA in the α-HL nanopore may enable the detection and characterization of DNA cross-links that are important in toxicology, medicine, and materials science.

  11. A presynaptic role for PKA in synaptic tagging and memory.

    Science.gov (United States)

    Park, Alan Jung; Havekes, Robbert; Choi, Jennifer Hk; Luczak, Vince; Nie, Ting; Huang, Ted; Abel, Ted

    2014-10-01

    Protein kinase A (PKA) and other signaling molecules are spatially restricted within neurons by A-kinase anchoring proteins (AKAPs). Although studies on compartmentalized PKA signaling have focused on postsynaptic mechanisms, presynaptically anchored PKA may contribute to synaptic plasticity and memory because PKA also regulates presynaptic transmitter release. Here, we examine this issue using genetic and pharmacological application of Ht31, a PKA anchoring disrupting peptide. At the hippocampal Schaffer collateral CA3-CA1 synapse, Ht31 treatment elicits a rapid decay of synaptic responses to repetitive stimuli, indicating a fast depletion of the readily releasable pool of synaptic vesicles. The interaction between PKA and proteins involved in producing this pool of synaptic vesicles is supported by biochemical assays showing that synaptic vesicle protein 2 (SV2), Rim1, and SNAP25 are components of a complex that interacts with cAMP. Moreover, acute treatment with Ht31 reduces the levels of SV2. Finally, experiments with transgenic mouse lines, which express Ht31 in excitatory neurons at the Schaffer collateral CA3-CA1 synapse, highlight a requirement for presynaptically anchored PKA in pathway-specific synaptic tagging and long-term contextual fear memory. These results suggest that a presynaptically compartmentalized PKA is critical for synaptic plasticity and memory by regulating the readily releasable pool of synaptic vesicles. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The Ubiquitin-Proteasome Pathway and Synaptic Plasticity

    Science.gov (United States)

    Hegde, Ashok N.

    2010-01-01

    Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for…

  13. The Role of Proteases in Hippocampal Synaptic Plasticity: Putting Together Small Pieces of a Complex Puzzle.

    Science.gov (United States)

    Salazar, Ivan L; Caldeira, Margarida V; Curcio, Michele; Duarte, Carlos B

    2016-02-01

    Long-term synaptic plasticity in the hippocampus is thought to underlie the formation of certain forms of memory, including spatial memory. The early phase of long-term synaptic potentiation and synaptic depression depends on post-translational modifications of synaptic proteins, while protein synthesis is also required for the late-phase of both forms of synaptic plasticity (L-LTP and L-LTD). Numerous pieces of evidence show a role for different types of proteases in synaptic plasticity, further increasing the diversity of mechanisms involved in the regulation of the intracellular and extracellular protein content. The cleavage of extracellular proteins is coupled to changes in postsynaptic intracellular mechanisms, and additional alterations in this compartment result from the protease-mediated targeting of intracellular proteins. Both mechanisms contribute to initiate signaling cascades that drive downstream pathways coupled to synaptic plasticity. In this review we summarize the evidence pointing to a role for extracellular and intracellular proteases, with distinct specificities, in synaptic plasticity. Where in the cells the proteases are located, and how they are regulated is also discussed. The combined actions of proteases and translation mechanisms contribute to a tight control of the synaptic proteome relevant for long-term synaptic potentiation and synaptic depression in the hippocampus. Additional studies are required to elucidate the mechanisms whereby these changes in the synaptic proteome are related with plasticity phenomena.

  14. Production of RNA-protein cross links in γ irradiated E. Coli ribosomes

    International Nuclear Information System (INIS)

    Ekert, Bernard; Giocanti, Nicole

    1976-01-01

    γ irradiation in de-aerated conditions of E. coli MRE 600 ribosomes, labelled with 14 C uracil, leads to a decrease of extractibility of 14 C RNA by lithium chloride 4 M-urea 8 M. On the other hand, the radioactivity of the protein fraction increases with irradiation. These results strongly suggest that RNA-protein cross links are formed in irradiated ribosomes [fr

  15. Cross-linking and rheological changes of whey proteins treated with microbial transglutaminase.

    Science.gov (United States)

    Truong, Van-Den; Clare, Debra A; Catignani, George L; Swaisgood, Harold E

    2004-03-10

    Modification of the functionality of whey proteins using microbial transglutaminase (TGase) has been the subject of recent studies. However, changes in rheological properties of whey proteins as affected by extensive cross-linking with TGase are not well studied. The factors affecting cross-linking of whey protein isolate (WPI) using both soluble and immobilized TGase were examined, and the rheological properties of the modified proteins were characterized. The enzyme was immobilized on aminopropyl glass beads (CPG-3000) by selective adsorption of the biotinylated enzyme on avidin that had been previously immobilized. WPI (4 and 8% w/w) in deionized water, pH 7.5, containing 10 mM dithiothreitol was cross-linked using enzyme/substrate ratios of 0.12-10 units of activity/g WPI. The reaction was carried out in a jacketed bioreactor for 8 h at 40 degrees C with continuous circulation. The gel point temperature of WPI solutions treated with 0.12 unit of immobilized TGase/g was slightly decreased, but the gel strength was unaffected. However, increasing the enzyme/substrate ratio resulted in extensive cross-linking of WPI that was manifested by increases in apparent viscosity and changes in the gelation properties. For example, using 10 units of soluble TGase/g resulted in extensive cross-linking of alpha-lactalbumin and beta-lactoglobulin in WPI, as evidenced by SDS-PAGE and Western blotting results. Interestingly, the gelling point of WPI solutions increased from 68 to 94 degrees C after a 4-h reaction, and the gel strength was drastically decreased (lower storage modulus, G'). Thus, extensive intra- and interchain cross-linking probably caused formation of polymers that were too large for effective network development. These results suggest that a process could be developed to produce heat-stable whey proteins for various food applications.

  16. Wnt Signaling Translocates Lys48-Linked Polyubiquitinated Proteins to the Lysosomal Pathway

    Directory of Open Access Journals (Sweden)

    Hyunjoon Kim

    2015-05-01

    Full Text Available Cellular proteins are degraded in either proteasomes or lysosomes depending on the types of ubiquitin chains that covalently modify them. It is not known whether the choice between these two pathways is physiologically regulated. The Lys48-polyubiquitin chain is the major signal directing proteins for degradation in proteasomes. Here, we report the unexpected finding that canonical Wnt signaling translocates some K48-linked polyubiquitinated proteins to the endolysosomal pathway. Proteasomal target proteins, such as β-catenin, Smad1, and Smad4, were targeted into endolysosomes in a process dependent on GSK3 activity. Relocalization was also dependent on Axin1 and the multivesicular body (MVB proteins HRS/Vps27 and Vps4. The Wnt-induced accumulation of K48-linked polyubiquitinated proteins in endolysosomal organelles was accompanied by a transient decrease in cellular levels of free mono-ubiquitin, which may contribute to Wnt-regulated stabilization of proteins (Wnt/STOP. We conclude that Wnt redirects Lys48-polyubiquitinated proteins that are normally degraded in proteasomes to endolysosomes.

  17. Single proteins that serve linked functions in intracellular and extracellular microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    Radisky, Derek C.; Stallings-Mann, Melody; Hirai, Yohei; Bissell, Mina J.

    2009-06-03

    Maintenance of organ homeostasis and control of appropriate response to environmental alterations requires intimate coordination of cellular function and tissue organization. An important component of this coordination may be provided by proteins that can serve distinct, but linked, functions on both sides of the plasma membrane. Here we present a novel hypothesis in which non-classical secretion can provide a mechanism through which single proteins can integrate complex tissue functions. Single genes can exert a complex, dynamic influence through a number of different processes that act to multiply the function of the gene product(s). Alternative splicing can create many different transcripts that encode proteins of diverse, even antagonistic, function from a single gene. Posttranslational modifications can alter the stability, activity, localization, and even basic function of proteins. A protein can exist in different subcellular localizations. More recently, it has become clear that single proteins can function both inside and outside the cell. These proteins often lack defined secretory signal sequences, and transit the plasma membrane by mechanisms separate from the classical ER/Golgi secretory process. When examples of such proteins are examined individually, the multifunctionality and lack of a signal sequence are puzzling - why should a protein with a well known function in one context function in such a distinct fashion in another? We propose that one reason for a single protein to perform intracellular and extracellular roles is to coordinate organization and maintenance of a global tissue function. Here, we describe in detail three specific examples of proteins that act in this fashion, outlining their specific functions in the extracellular space and in the intracellular space, and we discuss how these functions may be linked. We present epimorphin/syntaxin-2, which may coordinate morphogenesis of secretory organs (as epimorphin) with control of

  18. Brain expressed and X-linked (Bex proteins are intrinsically disordered proteins (IDPs and form new signaling hubs.

    Directory of Open Access Journals (Sweden)

    Eva M Fernandez

    Full Text Available Intrinsically disordered proteins (IDPs are abundant in complex organisms. Due to their promiscuous nature and their ability to adopt several conformations IDPs constitute important points of network regulation. The family of Brain Expressed and X-linked (Bex proteins consists of 5 members in humans (Bex1-5. Recent reports have implicated Bex proteins in transcriptional regulation and signaling pathways involved in neurodegeneration, cancer, cell cycle and tumor growth. However, structural and biophysical data for this protein family is almost non-existent. We used bioinformatics analyses to show that Bex proteins contain long regions of intrinsic disorder which are conserved across all members. Moreover, we confirmed the intrinsic disorder by circular dichroism spectroscopy of Bex1 after expression and purification in E. coli. These observations strongly suggest that Bex proteins constitute a new group of IDPs. Based on these findings, together with the demonstrated promiscuity of Bex proteins and their involvement in different signaling pathways, we propose that Bex family members play important roles in the formation of protein network hubs.

  19. UV induced DNA-protein cross links in vitro and in vivo

    International Nuclear Information System (INIS)

    Kornhauser, A.

    1976-01-01

    The review was not intended to cover all the past year's literature in this field; only selective material published in 1974 and 1975 has been surveyed. Covalent linkage of DNA and RNA to proteins induced by UV is considered, but DNA-membrade attachment, amino acids covalently bound to DNA as functions of growth conditions and protein non-covalently bound to DNA involved in cell regulation are excluded. Studies of DNA-protein cross-links upon UV irradiation in chemical model systems, bacteria and tissue culture systems, and an in vivo mammalian system are all surveyed. (U.K.)

  20. Nerve injury-induced calcium channel alpha-2-delta-1 protein dysregulation leads to increased pre-synaptic excitatory input into deep dorsal horn neurons and neuropathic allodynia

    Science.gov (United States)

    Zhou, Chunyi; Luo, Z. David

    2015-01-01

    Background Upregulation of voltage-gated-calcium-channel α2δ1 subunit post spinal nerve ligation injury (SNL) or in α2δ1-overexpressing transgenic (Tg) mice correlates with tactile allodynia, a pain state mediated mainly by Aβ sensory fibers forming synaptic connections with deep dorsal horn neurons. It is not clear however whether dysregulated α2δ1 alters deep dorsal horn synaptic neurotransmission that underlies tactile allodynia development post nerve injury. Methods Tactile allodynia was tested in the SNL and α2δ1 Tg models. Miniature excitatory/inhibitory postsynaptic currents were recorded in deep dorsal horn (DDH) neurons from these animal models using whole cell patch clamp slice recording techniques.. Results There was a significant increase in the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSC) in DDH neurons that correlated with tactile allodynia in SNL and α2δ1 Tg mice. Gabapentin, an α2δ1 ligand that is known to block tactile allodynia in these models, also normalized mEPSC frequency dose-dependently in DDH neurons from SNL and α2δ1 Tg mice. In contrast, neither frequency nor amplitude of miniature inhibitory postsynaptic currents (mIPSC) was altered in DDH neurons from SNL and α2δ1 Tg mice. Conclusion Our data suggest that α2δ1 dysregulation is highly likely contributing to tactile allodynia through a pre-synaptic mechanism involving facilitation of excitatory synaptic neurotransmission in deep dorsal horn of spinal cord. PMID:25691360

  1. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, Gabby (Texas-MED)

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.

  2. A protein secretion system linked to bacteroidete gliding motility and pathogenesis

    Science.gov (United States)

    Sato, Keiko; Naito, Mariko; Yukitake, Hideharu; Hirakawa, Hideki; Shoji, Mikio; McBride, Mark J.; Rhodes, Ryan G.; Nakayama, Koji

    2009-01-01

    Porphyromonas gingivalis secretes strong proteases called gingipains that are implicated in periodontal pathogenesis. Protein secretion systems common to other Gram-negative bacteria are lacking in P. gingivalis, but several proteins, including PorT, have been linked to gingipain secretion. Comparative genome analysis and genetic experiments revealed 11 additional proteins involved in gingipain secretion. Six of these (PorK, PorL, PorM, PorN, PorW, and Sov) were similar in sequence to Flavobacterium johnsoniae gliding motility proteins, and two others (PorX and PorY) were putative two-component system regulatory proteins. Real-time RT-PCR analysis revealed that porK, porL, porM, porN, porP, porT, and sov were down-regulated in P. gingivalis porX and porY mutants. Disruption of the F. johnsoniae porT ortholog resulted in defects in motility, chitinase secretion, and translocation of a gliding motility protein, SprB adhesin, to the cell surface, providing a link between a unique protein translocation system and a motility apparatus in members of the Bacteroidetes phylum. PMID:19966289

  3. Protein residue linking in a single spectrum for magic-angle spinning NMR assignment

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Loren B.; Stanek, Jan; Marchand, Tanguy Le; Bertarello, Andrea; Paepe, Diane Cala-De; Lalli, Daniela; Krejčíková, Magdaléna; Doyen, Camille; Öster, Carl [Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1) (France); Knott, Benno; Wegner, Sebastian; Engelke, Frank [Bruker Biospin (Germany); Felli, Isabella C.; Pierattelli, Roberta [University of Florence, Department of Chemistry “Ugo Schiff“and Magnetic Resonance Center (CERM) (Italy); Dixon, Nicholas E. [University of Wollongong, School of Chemistry (Australia); Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido, E-mail: guido.pintacuda@ens-lyon.fr [Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1) (France)

    2015-07-15

    Here we introduce a new pulse sequence for resonance assignment that halves the number of data sets required for sequential linking by directly correlating sequential amide resonances in a single diagonal-free spectrum. The method is demonstrated with both microcrystalline and sedimented deuterated proteins spinning at 60 and 111 kHz, and a fully protonated microcrystalline protein spinning at 111 kHz, with as little as 0.5 mg protein sample. We find that amide signals have a low chance of ambiguous linkage, which is further improved by linking in both forward and backward directions. The spectra obtained are amenable to automated resonance assignment using general-purpose software such as UNIO-MATCH.

  4. ER/K linked GPCR-G protein fusions systematically modulate second messenger response in cells.

    Science.gov (United States)

    Malik, Rabia U; Dysthe, Matthew; Ritt, Michael; Sunahara, Roger K; Sivaramakrishnan, Sivaraj

    2017-08-10

    FRET and BRET approaches are well established for detecting ligand induced GPCR-G protein interactions in cells. Currently, FRET/BRET assays rely on co-expression of GPCR and G protein, and hence depend on the stoichiometry and expression levels of the donor and acceptor probes. On the other hand, GPCR-G protein fusions have been used extensively to understand the selectivity of GPCR signaling pathways. However, the signaling properties of fusion proteins are not consistent across GPCRs. In this study, we describe and characterize novel sensors based on the Systematic Protein Affinity Strength Modulation (SPASM) technique. Sensors consist of a GPCR and G protein tethered by an ER/K linker flanked by FRET probes. SPASM sensors are tested for the β2-, α1-, and α2- adrenergic receptors, and adenosine type 1 receptor (A 1 R), tethered to Gαs-XL, Gαi 2 , or Gαq subunits. Agonist stimulation of β2-AR and α2-AR increases FRET signal comparable to co-expressed FRET/BRET sensors. SPASM sensors also retain signaling through the endogenous G protein milieu. Importantly, ER/K linker length systematically tunes the GPCR-G protein interaction, with consequent modulation of second messenger signaling for cognate interactions. SPASM GPCR sensors serve the dual purpose of detecting agonist-induced changes in GPCR-G protein interactions, and linking these changes to downstream signaling.

  5. Synaptic Plasticity onto Dopamine Neurons Shapes Fear Learning.

    Science.gov (United States)

    Pignatelli, Marco; Umanah, George Kwabena Essien; Ribeiro, Sissi Palma; Chen, Rong; Karuppagounder, Senthilkumar Senthil; Yau, Hau-Jie; Eacker, Stephen; Dawson, Valina Lynn; Dawson, Ted Murray; Bonci, Antonello

    2017-01-18

    Fear learning is a fundamental behavioral process that requires dopamine (DA) release. Experience-dependent synaptic plasticity occurs on DA neurons while an organism is engaged in aversive experiences. However, whether synaptic plasticity onto DA neurons is causally involved in aversion learning is unknown. Here, we show that a stress priming procedure enhances fear learning by engaging VTA synaptic plasticity. Moreover, we took advantage of the ability of the ATPase Thorase to regulate the internalization of AMPA receptors (AMPARs) in order to selectively manipulate glutamatergic synaptic plasticity on DA neurons. Genetic ablation of Thorase in DAT + neurons produced increased AMPAR surface expression and function that lead to impaired induction of both long-term depression (LTD) and long-term potentiation (LTP). Strikingly, animals lacking Thorase in DAT + neurons expressed greater associative learning in a fear conditioning paradigm. In conclusion, our data provide a novel, causal link between synaptic plasticity onto DA neurons and fear learning. Published by Elsevier Inc.

  6. CaMKII Activity in the Ventral Tegmental Area Gates Cocaine-Induced Synaptic Plasticity in the Nucleus Accumbens

    Science.gov (United States)

    Liu, Xiaojie; Liu, Yong; Zhong, Peng; Wilkinson, Brianna; Qi, Jinshun; Olsen, Christopher M; Bayer, K Ulrich; Liu, Qing-song

    2014-01-01

    Addictive drugs such as cocaine induce synaptic plasticity in discrete regions of the reward circuit. The aim of the present study is to investigate whether cocaine-evoked synaptic plasticity in the ventral tegmental area (VTA) and nucleus accumbens (NAc) is causally linked. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a central regulator of long-term synaptic plasticity, learning, and drug addiction. We examined whether blocking CaMKII activity in the VTA affected cocaine conditioned place preference (CPP) and cocaine-evoked synaptic plasticity in its target brain region, the NAc. TatCN21 is a CaMKII inhibitory peptide that blocks both stimulated and autonomous CaMKII activity with high selectivity. We report that intra-VTA microinjections of tatCN21 before cocaine conditioning blocked the acquisition of cocaine CPP, whereas intra-VTA microinjections of tatCN21 before saline conditioning did not significantly affect cocaine CPP, suggesting that the CaMKII inhibitor blocks cocaine CPP through selective disruption of cocaine-cue-associated learning. Intra-VTA tatCN21 before cocaine conditioning blocked cocaine-evoked depression of excitatory synaptic transmission in the shell of the NAc slices ex vivo. In contrast, intra-VTA microinjection of tatCN21 just before the CPP test did not affect the expression of cocaine CPP and cocaine-induced synaptic plasticity in the NAc shell. These results suggest that CaMKII activity in the VTA governs cocaine-evoked synaptic plasticity in the NAc during the time window of cocaine conditioning. PMID:24154664

  7. Male homosexuality and maternal immune responsivity to the Y-linked protein NLGN4Y.

    Science.gov (United States)

    Bogaert, Anthony F; Skorska, Malvina N; Wang, Chao; Gabrie, José; MacNeil, Adam J; Hoffarth, Mark R; VanderLaan, Doug P; Zucker, Kenneth J; Blanchard, Ray

    2018-01-09

    We conducted a direct test of an immunological explanation of the finding that gay men have a greater number of older brothers than do heterosexual men. This explanation posits that some mothers develop antibodies against a Y-linked protein important in male brain development, and that this effect becomes increasingly likely with each male gestation, altering brain structures underlying sexual orientation in their later-born sons. Immune assays targeting two Y-linked proteins important in brain development-protocadherin 11 Y-linked (PCDH11Y) and neuroligin 4 Y-linked (NLGN4Y; isoforms 1 and 2)-were developed. Plasma from mothers of sons, about half of whom had a gay son, along with additional controls (women with no sons, men) was analyzed for male protein-specific antibodies. Results indicated women had significantly higher anti-NLGN4Y levels than men. In addition, after statistically controlling for number of pregnancies, mothers of gay sons, particularly those with older brothers, had significantly higher anti-NLGN4Y levels than did the control samples of women, including mothers of heterosexual sons. The results suggest an association between a maternal immune response to NLGN4Y and subsequent sexual orientation in male offspring. Copyright © 2018 the Author(s). Published by PNAS.

  8. Ubiquitination-dependent mechanisms regulate synaptic growth and function.

    Science.gov (United States)

    DiAntonio, A; Haghighi, A P; Portman, S L; Lee, J D; Amaranto, A M; Goodman, C S

    2001-07-26

    The covalent attachment of ubiquitin to cellular proteins is a powerful mechanism for controlling protein activity and localization. Ubiquitination is a reversible modification promoted by ubiquitin ligases and antagonized by deubiquitinating proteases. Ubiquitin-dependent mechanisms regulate many important processes including cell-cycle progression, apoptosis and transcriptional regulation. Here we show that ubiquitin-dependent mechanisms regulate synaptic development at the Drosophila neuromuscular junction (NMJ). Neuronal overexpression of the deubiquitinating protease fat facets leads to a profound disruption of synaptic growth control; there is a large increase in the number of synaptic boutons, an elaboration of the synaptic branching pattern, and a disruption of synaptic function. Antagonizing the ubiquitination pathway in neurons by expression of the yeast deubiquitinating protease UBP2 (ref. 5) also produces synaptic overgrowth and dysfunction. Genetic interactions between fat facets and highwire, a negative regulator of synaptic growth that has structural homology to a family of ubiquitin ligases, suggest that synaptic development may be controlled by the balance between positive and negative regulators of ubiquitination.

  9. Linking Memories across Time via Neuronal and Dendritic Overlaps in Model Neurons with Active Dendrites

    Directory of Open Access Journals (Sweden)

    George Kastellakis

    2016-11-01

    Full Text Available Memories are believed to be stored in distributed neuronal assemblies through activity-induced changes in synaptic and intrinsic properties. However, the specific mechanisms by which different memories become associated or linked remain a mystery. Here, we develop a simplified, biophysically inspired network model that incorporates multiple plasticity processes and explains linking of information at three different levels: (1 learning of a single associative memory, (2 rescuing of a weak memory when paired with a strong one, and (3 linking of multiple memories across time. By dissecting synaptic from intrinsic plasticity and neuron-wide from dendritically restricted protein capture, the model reveals a simple, unifying principle: linked memories share synaptic clusters within the dendrites of overlapping populations of neurons. The model generates numerous experimentally testable predictions regarding the cellular and sub-cellular properties of memory engrams as well as their spatiotemporal interactions.

  10. Distinct expression of synaptic NR2A and NR2B in the central nervous system and impaired morphine tolerance and physical dependence in mice deficient in postsynaptic density-93 protein

    Directory of Open Access Journals (Sweden)

    Johns Roger A

    2008-10-01

    Full Text Available Abstract Postsynaptic density (PSD-93, a neuronal scaffolding protein, binds to and clusters N-methyl-D-aspartate receptor (NMDAR subunits NR2A and NR2B at cellular membranes in vitro. However, the roles of PSD-93 in synaptic NR2A and NR2B targeting in the central nervous system and NMDAR-dependent physiologic and pathologic processes are still unclear. We report here that PSD-93 deficiency significantly decreased the amount of NR2A and NR2B in the synaptosomal membrane fractions derived from spinal cord dorsal horn and forebrain cortex but did not change their levels in the total soluble fraction from either region. However, PSD-93 deficiency did not markedly change the amounts of NR2A and NR2B in either synaptosomal or total soluble fractions from cerebellum. In mice deficient in PSD-93, morphine dose-dependent curve failed to shift significantly rightward as it did in wild type (WT mice after acute and chronic morphine challenge. Unlike WT mice, PSD-93 knockout mice also showed marked losses of NMDAR-dependent morphine analgesic tolerance and associated abnormal sensitivity in response to mechanical, noxious thermal, and formalin-induced inflammatory stimuli after repeated morphine injection. In addition, PSD-93 knockout mice displayed dramatic loss of jumping activity, a typical NMDAR-mediated morphine withdrawal abstinence behavior. These findings indicate that impaired NMDAR-dependent neuronal plasticity following repeated morphine injection in PSD-93 knockout mice is attributed to PSD-93 deletion-induced alterations of synaptic NR2A and NR2B expression in dorsal horn and forebrain cortex neurons. The selective effect of PSD-93 deletion on synaptic NMDAR expression in these two major pain-related regions might provide the better strategies for the prevention and treatment of opioid tolerance and physical dependence.

  11. Stress-altered synaptic plasticity and DAMP signaling in the hippocampus-PFC axis; elucidating the significance of IGF-1/IGF-1R/CaMKIIα expression in neural changes associated with a prolonged exposure therapy.

    Science.gov (United States)

    Ogundele, Olalekan M; Ebenezer, Philip J; Lee, Charles C; Francis, Joseph

    2017-06-14

    Traumatic stress patients showed significant improvement in behavior after a prolonged exposure to an unrelated stimulus. This treatment method attempts to promote extinction of the fear memory associated with the initial traumatic experience. However, the subsequent prolonged exposure to such stimulus creates an additional layer of neural stress. Although the mechanism remains unclear, prolonged exposure therapy (PET) likely involves changes in synaptic plasticity, neurotransmitter function and inflammation; especially in parts of the brain concerned with the formation and retrieval of fear memory (Hippocampus and Prefrontal Cortex: PFC). Since certain synaptic proteins are also involved in danger-associated molecular pattern signaling (DAMP), we identified the significance of IGF-1/IGF-1R/CaMKIIα expression as a potential link between the concurrent progression of synaptic and inflammatory changes in stress. Thus, a comparison between IGF-1/IGF-1R/CaMKIIα, synaptic and DAMP proteins in stress and PET may highlight the significance of PET on synaptic morphology and neuronal inflammatory response. In behaviorally characterized Sprague-Dawley rats, there was a significant decline in neural IGF-1 (pDAMP proteins, Microglia activation, and its implication on synaptic plasticity during stress and PET. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Human muscle LIM protein dimerizes along the actin cytoskeleton and cross-links actin filaments.

    Science.gov (United States)

    Hoffmann, Céline; Moreau, Flora; Moes, Michèle; Luthold, Carole; Dieterle, Monika; Goretti, Emeline; Neumann, Katrin; Steinmetz, André; Thomas, Clément

    2014-08-01

    The muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein playing important roles in the regulation of myocyte remodeling and adaptation to hypertrophic stimuli. Missense mutations in human MLP or its ablation in transgenic mice promotes cardiomyopathy and heart failure. The exact function(s) of MLP in the cytoplasmic compartment and the underlying molecular mechanisms remain largely unknown. Here, we provide evidence that MLP autonomously binds to, stabilizes, and bundles actin filaments (AFs) independently of calcium and pH. Using total internal reflection fluorescence microscopy, we have shown how MLP cross-links actin filaments into both unipolar and mixed-polarity bundles. Quantitative analysis of the actin cytoskeleton configuration confirmed that MLP substantially promotes actin bundling in live myoblasts. In addition, bimolecular fluorescence complementation (BiFC) assays revealed MLP self-association. Remarkably, BiFC complexes mostly localize along actin filament-rich structures, such as stress fibers and sarcomeres, supporting a functional link between MLP self-association and actin cross-linking. Finally, we have demonstrated that MLP self-associates through its N-terminal LIM domain, whereas it binds to AFs through its C-terminal LIM domain. Together our data support that MLP contributes to the maintenance of cardiomyocyte cytoarchitecture by a mechanism involving its self-association and actin filament cross-linking. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Peroxisomal. beta. -oxidation enzyme proteins in adrenoleukodystrophy: distinction between x-linked adrenoleukodystrophy and neonatal adrenoleukodystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.W.; Watkins, P.A.; Osumi, T.; Hashimoto, T.; Moser, H.W.

    1987-03-01

    Very long chain fatty acids, which accumulate in plasma and tissues in x-linked adrenoleukodystrophy (ALD), neonatal ALD, and the Zellweger cerebrohepatorenal syndrome, are degraded by the peroxisomal ..beta..-oxidation pathway, consisting of acyl-CoA oxidase, the bifunctional enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase, and ..beta..-ketothiolase. A marked deficiency of all three enzyme proteins was reported in livers from patients with the Zellweger syndrome, a disorder in which peroxisomes are decreased or absent. Peroxisomes are not as markedly decreased in neonatal ALD and appear normal in x-linked ALD. Immunoblot analysis of the peroxisomal ..beta..-oxidation enzymes revealed an almost complete lack of the bifunctional enzymes in neonatal ALD liver, similar to the finding in Zellweger tissues. In contrast, acyl-CoA oxidase and ..beta..-ketothiolase were present in neonatal ALD liver, although the thiolase appeared to be in precursor form (2-3 kDa larger than the mature enzyme) in neonatal ALD. Unlike either neonatal ALD or Zellweger syndrome, all three peroxisomal ..beta..-oxidation enzymes were present in x-linked ALD liver. Despite the absence in neonatal ALD liver of bifunctional enzyme protein, its mRNA was detected by RNA blot analysis in fibroblasts from these patients. These observations suggest that lack of bifunctional enzyme protein in neonatal ALD results from either abnormal translation of the mRNA or degradation of the enzyme prior to its entry into peroxisomes.

  14. Identification of new protein-protein and protein-DNA interactions linked with wood formation in Populus trichocarpa.

    Science.gov (United States)

    Petzold, H Earl; Rigoulot, Stephen B; Zhao, Chengsong; Chanda, Bidisha; Sheng, Xiaoyan; Zhao, Mingzhe; Jia, Xiaoyan; Dickerman, Allan W; Beers, Eric P; Brunner, Amy M

    2018-03-01

    Cellular processes, such as signal transduction and cell wall deposition, are organized by macromolecule interactions. Experimentally determined protein-protein interactions (PPIs) and protein-DNA interactions (PDIs) relevant to woody plant development are sparse. To begin to develop a Populus trichocarpa Torr. & A. Gray wood interactome, we applied the yeast-two-hybrid (Y2H) assay in different ways to enable the discovery of novel PPIs and connected networks. We first cloned open reading frames (ORFs) for 361 genes markedly upregulated in secondary xylem compared with secondary phloem and performed a binary Y2H screen with these proteins. By screening a xylem cDNA library for interactors of a subset of these proteins and then recapitulating the process by using a subset of the interactors as baits, we ultimately identified 165 PPIs involving 162 different ORFs. Thirty-eight transcription factors (TFs) included in our collection of P. trichocarpa wood ORFs were used in a Y1H screen for binding to promoter regions of three genes involved in lignin biosynthesis resulting in 40 PDIs involving 20 different TFs. The network incorporating both the PPIs and PDIs included 14 connected subnetworks, with the largest having 132 members. Protein-protein interactions and PDIs validated previous reports and also identified new candidate wood formation proteins and modules through their interactions with proteins and promoters known to be involved in secondary cell wall synthesis. Selected examples are discussed including a PPI between Mps one binder (MOB1) and a mitogen-activated protein kinase kinase kinase kinase (M4K) that was further characterized by assays confirming the PPI as well as its effect on subcellular localization. Mapping of published transcriptomic data showing developmentally detailed expression patterns across a secondary stem onto the network supported that the PPIs and PDIs are relevant to wood formation, and also illustrated that wood

  15. Infant avoidance training alters cellular activation patterns in prefronto-limbic circuits during adult avoidance learning: I. Cellular imaging of neurons expressing the synaptic plasticity early growth response protein 1 (Egr1).

    Science.gov (United States)

    Gröger, Nicole; Mannewitz, Anja; Bock, Jörg; de Schultz, Tony Fernando; Guttmann, Katja; Poeggel, Gerd; Braun, Katharina

    2017-11-01

    Both positive feedback learning and negative feedback learning are essential for adapting and optimizing behavioral performance. There is increasing evidence in humans and animals that the ability of negative feedback learning emerges postnatally. Our work in rats, using a two-way active avoidance task (TWA) as an experimental paradigm for negative feedback learning, revealed that medial and lateral prefrontal regions of infant rats undergo dramatic synaptic reorganization during avoidance training, resulting in improved avoidance learning in adulthood. The aim of this study was to identify changes of cellular activation patterns during the course of training and in relation to infant pretraining. We applied a quantitative cellular imaging technique using the immunocytochemical detection of the activity marker early growth response protein 1 (Egr1) as a candidate contributing to learning-induced synaptic plasticity. We found region-specific cellular activity patterns, which indicate that during the acquisition phase, Egr1 expression is specifically elevated in cellular ensembles of the orbitofrontal, dorsal anterior cingulate and hippocampal CA1 region. During memory retrieval Egr1 expression is elevated in cellular ensembles of the dentate gyrus. Moreover, we, for the first time, show here that TWA training during infancy alters adult learning- and memory-related patterns of Egr1 expression in these brain regions. It is tempting to speculate that during infant learning, specific Egr1-expressing cellular ensembles are "tagged" representing long-term memory formation, and that these cell ensembles may be reactivated during adult learning.

  16. Role of MicroRNA in Governing Synaptic Plasticity.

    Science.gov (United States)

    Ye, Yuqin; Xu, Hongyu; Su, Xinhong; He, Xiaosheng

    2016-01-01

    Although synaptic plasticity in neural circuits is orchestrated by an ocean of genes, molecules, and proteins, the underlying mechanisms remain poorly understood. Recently, it is well acknowledged that miRNA exerts widespread regulation over the translation and degradation of target gene in nervous system. Increasing evidence suggests that quite a few specific miRNAs play important roles in various respects of synaptic plasticity including synaptogenesis, synaptic morphology alteration, and synaptic function modification. More importantly, the miRNA-mediated regulation of synaptic plasticity is not only responsible for synapse development and function but also involved in the pathophysiology of plasticity-related diseases. A review is made here on the function of miRNAs in governing synaptic plasticity, emphasizing the emerging regulatory role of individual miRNAs in synaptic morphological and functional plasticity, as well as their implications in neurological disorders. Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel therapeutic strategy for plasticity-related diseases.

  17. A Protein Profile of Visceral Adipose Tissues Linked to Early Pathogenesis of Type 2 Diabetes Mellitus*

    Science.gov (United States)

    Kim, Su-Jin; Chae, Sehyun; Kim, Hokeun; Mun, Dong-Gi; Back, Seunghoon; Choi, Hye Yeon; Park, Kyong Soo; Hwang, Daehee; Choi, Sung Hee; Lee, Sang-Won

    2014-01-01

    Adipose tissue is increasingly recognized as an endocrine organ playing important pathophysiological roles in metabolic abnormalities, such as obesity, cardiovascular disease, and type 2 diabetes mellitus (T2DM). In particular, visceral adipose tissue (VAT), as opposed to subcutaneous adipose tissue, is closely linked to the pathogenesis of insulin resistance and T2DM. Despite the importance of VAT, its molecular signatures related to the pathogenesis of T2DM have not been systematically explored. Here, we present comprehensive proteomic analysis of VATs in drug-naïve early T2DM patients and subjects with normal glucose tolerance. A total of 4,707 proteins were identified in LC-MS/MS experiments. Among them, 444 increased in abundance in T2DM and 328 decreased. They are involved in T2DM-related processes including inflammatory responses, peroxisome proliferator-activated receptor signaling, oxidative phosphorylation, fatty acid oxidation, and glucose metabolism. Of these proteins, we selected 11 VAT proteins that can represent alteration in early T2DM patients. Among them, up-regulation of FABP4, C1QA, S100A8, and SORBS1 and down-regulation of ACADL and PLIN4 were confirmed in VAT samples of independent early T2DM patients using Western blot. In summary, our profiling provided a comprehensive basis for understanding the link of a protein profile of VAT to early pathogenesis of T2DM. PMID:24403596

  18. Recombinant Plasmodium falciparum glutamate rich protein; purification and use in enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Dziegiel, Morten Hanefeld; Borre, M B; Jepsen, S

    1991-01-01

    A method for purification of a recombinant Plasmodium falciparum protein produced in E. coli and its use in an enzyme-linked immunosorbent assay (ELISA) is described. The cloned gene fragment encodes GLURP,489-1271 the carboxy-terminal 783 amino acid residue portion of a 1271 amino acid residue P....... falciparum glutamate rich protein (GLURP), with a molecular weight of 220 kilodalton. The protein is associated with all parasite stages in the human host. Examination of sera from 105 adult Liberians living in a malaria endemic area revealed anti-GLURP IgG antibodies in 98% of the sera. The recombinant...... New Guinea (MAD20) and Honduras (HB3) completely absorbed specific antibodies, indicating the presence of conserved epitopes produced by all isolates of P. falciparum. Recombinant GLURP489-1271 ELISA is sensitive and rapid, and therefore well-suited for sero-epidemiological studies, and for control...

  19. Urokinase mediates endothelial cell survival via induction of the X-linked inhibitor of apoptosis protein

    DEFF Research Database (Denmark)

    Prager, Gerald W; Mihaly, Judit; Brunner, Patrick M

    2008-01-01

    Urokinase-type plasminogen activator (uPA) additionally elicits a whole array of pro-angiogenic responses, such as differentiation, proliferation, and migration. In this study, we demonstrate that in endothelial cells uPA also protects against apoptosis by transcriptional up-regulation and partia......Urokinase-type plasminogen activator (uPA) additionally elicits a whole array of pro-angiogenic responses, such as differentiation, proliferation, and migration. In this study, we demonstrate that in endothelial cells uPA also protects against apoptosis by transcriptional up......-regulation and partially by mRNA stabilization of inhibitor of apoptosis proteins, most prominently the X-linked inhibitor of apoptosis protein (XIAP). The antiapoptotic activity of uPA was dependent on its protease activity, the presence of uPA receptor (uPAR) and low-density lipoprotein receptor-related protein (LRP...

  20. Rare exonic deletions implicate the synaptic organizer Gephyrin (GPHN) in risk for autism, schizophrenia and seizures.

    Science.gov (United States)

    Lionel, Anath C; Vaags, Andrea K; Sato, Daisuke; Gazzellone, Matthew J; Mitchell, Elyse B; Chen, Hong Yang; Costain, Gregory; Walker, Susan; Egger, Gerald; Thiruvahindrapuram, Bhooma; Merico, Daniele; Prasad, Aparna; Anagnostou, Evdokia; Fombonne, Eric; Zwaigenbaum, Lonnie; Roberts, Wendy; Szatmari, Peter; Fernandez, Bridget A; Georgieva, Lyudmila; Brzustowicz, Linda M; Roetzer, Katharina; Kaschnitz, Wolfgang; Vincent, John B; Windpassinger, Christian; Marshall, Christian R; Trifiletti, Rosario R; Kirmani, Salman; Kirov, George; Petek, Erwin; Hodge, Jennelle C; Bassett, Anne S; Scherer, Stephen W

    2013-05-15

    The GPHN gene codes for gephyrin, a key scaffolding protein in the neuronal postsynaptic membrane, responsible for the clustering and localization of glycine and GABA receptors at inhibitory synapses. Gephyrin has well-established functional links with several synaptic proteins that have been implicated in genetic risk for neurodevelopmental disorders such as autism spectrum disorder (ASD), schizophrenia and epilepsy including the neuroligins (NLGN2, NLGN4), the neurexins (NRXN1, NRXN2, NRXN3) and collybistin (ARHGEF9). Moreover, temporal lobe epilepsy has been linked to abnormally spliced GPHN mRNA lacking exons encoding the G-domain of the gephyrin protein, potentially arising due to cellular stress associated with epileptogenesis such as temperature and alkalosis. Here, we present clinical and genomic characterization of six unrelated subjects, with a range of neurodevelopmental diagnoses including ASD, schizophrenia or seizures, who possess rare de novo or inherited hemizygous microdeletions overlapping exons of GPHN at chromosome 14q23.3. The region of common overlap across the deletions encompasses exons 3-5, corresponding to the G-domain of the gephyrin protein. These findings, together with previous reports of homozygous GPHN mutations in connection with autosomal recessive molybdenum cofactor deficiency, will aid in clinical genetic interpretation of the GPHN mutation spectrum. Our data also add to the accumulating evidence implicating neuronal synaptic gene products as key molecular factors underlying the etiologies of a diverse range of neurodevelopmental conditions.

  1. Scale-space measures for graph topology link protein network architecture to function.

    Science.gov (United States)

    Hulsman, Marc; Dimitrakopoulos, Christos; de Ridder, Jeroen

    2014-06-15

    The network architecture of physical protein interactions is an important determinant for the molecular functions that are carried out within each cell. To study this relation, the network architecture can be characterized by graph topological characteristics such as shortest paths and network hubs. These characteristics have an important shortcoming: they do not take into account that interactions occur across different scales. This is important because some cellular functions may involve a single direct protein interaction (small scale), whereas others require more and/or indirect interactions, such as protein complexes (medium scale) and interactions between large modules of proteins (large scale). In this work, we derive generalized scale-aware versions of known graph topological measures based on diffusion kernels. We apply these to characterize the topology of networks across all scales simultaneously, generating a so-called graph topological scale-space. The comprehensive physical interaction network in yeast is used to show that scale-space based measures consistently give superior performance when distinguishing protein functional categories and three major types of functional interactions-genetic interaction, co-expression and perturbation interactions. Moreover, we demonstrate that graph topological scale spaces capture biologically meaningful features that provide new insights into the link between function and protein network architecture. Matlab(TM) code to calculate the scale-aware topological measures (STMs) is available at http://bioinformatics.tudelft.nl/TSSA © The Author 2014. Published by Oxford University Press.

  2. Cytoplasmic delivery and selective, multicomponent labeling with oligoarginine-linked protein tags.

    Science.gov (United States)

    Zou, Xiaoyan; Rajendran, Megha; Magda, Darren; Miller, Lawrence W

    2015-03-18

    Strategies that leverage bio-orthogonal interactions between small molecule ligands and genetically encoded amino acid sequences can be used to attach high-performance fluorophores to proteins in living cells. However, a major limitation of chemical protein labeling is that cells' plasma membranes are impermeable to many useful probes and biolabels. Here, we show that conjugation to nonaarginine, a cell penetrating peptide (CPP), enables passive cytoplasmic delivery of otherwise membrane-impermeant, small molecule protein labels. Heterodimers consisting of a luminescent Tb(3+) complex, Lumi4, linked to benzyl guanine, benzyl cytosine, and trimethoprim were conjugated to the peptide CysArg9 with a reducible disulfide linker. When added to culture medium, the peptide conjugates rapidly (cells. The benzyl guanine, benzyl cytosine, and trimethoprim derivatives bind selectively to fusion proteins tagged with SNAP-Tag, CLIP-Tag, and Escherichia coli dihydrofolate reductase (eDHFR), respectively. Furthermore, eDHFR and SNAP-Tag fusions can be labeled with Lumi4 analogues in the same cell, and this labeling can be detected using two-color, time-gated Förster resonance energy transfer (FRET) microscopy. Finally, we present quantitative data showing that cytoplasmic uptake of nonaarginine-conjugated probes occurs in multiple cell types (MDCK, HeLa, NIH 3T3), most cells in a culture (>75%) are loaded with probe, and the cellular probe concentration can be controlled by varying incubation conditions. CPP-mediated delivery of Lumi4-linked protein labels will greatly increase the utility of lanthanide-based FRET microscopy. Moreover, our results strongly suggest that this approach can be adapted to deliver a wide variety of protein-targeted fluorophores or other functional probes that were previously unavailable for intracellular imaging studies.

  3. A Novel HumanCAMK2AMutation Disrupts Dendritic Morphology and Synaptic Transmission, and Causes ASD-Related Behaviors.

    Science.gov (United States)

    Stephenson, Jason R; Wang, Xiaohan; Perfitt, Tyler L; Parrish, Walker P; Shonesy, Brian C; Marks, Christian R; Mortlock, Douglas P; Nakagawa, Terunaga; Sutcliffe, James S; Colbran, Roger J

    2017-02-22

    Characterizing the functional impact of novel mutations linked to autism spectrum disorder (ASD) provides a deeper mechanistic understanding of the underlying pathophysiological mechanisms. Here we show that a de novo Glu183 to Val (E183V) mutation in the CaMKIIα catalytic domain, identified in a proband diagnosed with ASD, decreases both CaMKIIα substrate phosphorylation and regulatory autophosphorylation, and that the mutated kinase acts in a dominant-negative manner to reduce CaMKIIα-WT autophosphorylation. The E183V mutation also reduces CaMKIIα binding to established ASD-linked proteins, such as Shank3 and subunits of l-type calcium channels and NMDA receptors, and increases CaMKIIα turnover in intact cells. In cultured neurons, the E183V mutation reduces CaMKIIα targeting to dendritic spines. Moreover, neuronal expression of CaMKIIα-E183V increases dendritic arborization and decreases both dendritic spine density and excitatory synaptic transmission. Mice with a knock-in CaMKIIα-E183V mutation have lower total forebrain CaMKIIα levels, with reduced targeting to synaptic subcellular fractions. The CaMKIIα-E183V mice also display aberrant behavioral phenotypes, including hyperactivity, social interaction deficits, and increased repetitive behaviors. Together, these data suggest that CaMKIIα plays a previously unappreciated role in ASD-related synaptic and behavioral phenotypes. SIGNIFICANCE STATEMENT Many autism spectrum disorder (ASD)-linked mutations disrupt the function of synaptic proteins, but no single gene accounts for >1% of total ASD cases. The molecular networks and mechanisms that couple the primary deficits caused by these individual mutations to core behavioral symptoms of ASD remain poorly understood. Here, we provide the first characterization of a mutation in the gene encoding CaMKIIα linked to a specific neuropsychiatric disorder. Our findings demonstrate that this ASD-linked de novo CAMK2A mutation disrupts multiple Ca

  4. Production of unnaturally linked chimeric proteins using a combination of sortase-catalyzed transpeptidation and click chemistry

    NARCIS (Netherlands)

    Witte, Martin D.; Theile, Christopher S.; Wu, Tongfei; Guimaraes, Carla P.; Blom, Annet E. M.; Ploegh, Hidde L.

    Chimeric proteins, including bispecific antibodies, are biological tools with therapeutic applications. Genetic fusion and ligation methods allow the creation of N-to-C and C-to-N fused recombinant proteins, but not unnaturally linked N-to-N and C-to-C fusion proteins. This protocol describes a

  5. Pannexin 1 Regulates Bidirectional Hippocampal Synaptic Plasticity in Adult Mice

    Directory of Open Access Journals (Sweden)

    Alvaro O. Ardiles

    2014-10-01

    Full Text Available The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR composition of GluN2 subunits. Pannexin 1 (Panx1, a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP, it remains unknown whether these channels also modulate long-term depression (LTD or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory.

  6. Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice.

    Science.gov (United States)

    Ardiles, Alvaro O; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M; Palacios, Adrian G; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C; Martínez, Agustín D

    2014-01-01

    The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca(2+) concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory.

  7. Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome.

    Science.gov (United States)

    Sidhu, Vishaldeep K; Huang, Bill X; Desai, Abhishek; Kevala, Karl; Kim, Hee-Yong

    2016-05-01

    Aging has been related to diminished cognitive function, which could be a result of ineffective synaptic function. We have previously shown that synaptic plasma membrane proteins supporting synaptic integrity and neurotransmission were downregulated in docosahexaenoic acid (DHA)-deprived brains, suggesting an important role of DHA in synaptic function. In this study, we demonstrate aging-induced synaptic proteome changes and DHA-dependent mitigation of such changes using mass spectrometry-based protein quantitation combined with western blot or messenger RNA analysis. We found significant reduction of 15 synaptic plasma membrane proteins in aging brains including fodrin-α, synaptopodin, postsynaptic density protein 95, synaptic vesicle glycoprotein 2B, synaptosomal-associated protein 25, synaptosomal-associated protein-α, N-methyl-D-aspartate receptor subunit epsilon-2 precursor, AMPA2, AP2, VGluT1, munc18-1, dynamin-1, vesicle-associated membrane protein 2, rab3A, and EAAT1, most of which are involved in synaptic transmission. Notably, the first 9 proteins were further reduced when brain DHA was depleted by diet, indicating that DHA plays an important role in sustaining these synaptic proteins downregulated during aging. Reduction of 2 of these proteins was reversed by raising the brain DHA level by supplementing aged animals with an omega-3 fatty acid sufficient diet for 2 months. The recognition memory compromised in DHA-depleted animals was also improved. Our results suggest a potential role of DHA in alleviating aging-associated cognitive decline by offsetting the loss of neurotransmission-regulating synaptic proteins involved in synaptic function. Published by Elsevier Inc.

  8. Is X-linked methyl-CpG binding protein 2 a new target for the treatment of Parkinson's disease

    OpenAIRE

    Xie, Teng; Zhang, Jie; Yuan, Xianhou; Yang, Jing; Ding, Wei; Huang, Xin; Wu, Yong

    2013-01-01

    X-linked methyl-CpG binding protein 2 mutations can induce symptoms similar to those of Parkinson's disease and dopamine metabolism disorders, but the specific role of X-linked methyl-CpG binding protein 2 in the pathogenesis of Parkinson's disease remains unknown. In the present study, we used 6-hydroxydopamine-induced human neuroblastoma cell (SH-SY5Y cells) injury as a cell model of Parkinson's disease. The 6-hydroxydopamine (50 μmol/L) treatment decreased protein levels for both X-linked ...

  9. Laser cross-linking protein captures for living cells on a biochip

    Science.gov (United States)

    Lin, Chih-Lang; Pan, Ming-Jeng; Chen, Hai-Wen; Lin, Che-Kuan; Lin, Chuen-Fu; Baldeck, Patrice L.

    2014-03-01

    In this study, bio-sensing pads are proposed to capture living cells, which are fabricated on cover glasses by cross-linking proteins/antibodies using laser induced photochemistry. The biological functions of the cross-linked protein/antibody were verified by capturing Staphylococcus aureus (S. aureus), Leptospira, and red blood cells (RBCs), separately, with associated protein/antibody sensing pads. The experimental results show that S. aureus were bound on GFP-AcmA' pad after minutes of incubation and phosphate buffered saline (PBS) rinsing. No binding was observed with reference pad made of neutral bovine serum albumin (BSA). Second, A-type RBCs were chosen as the model cell to demonstrate the blood typing feasibility of the anti-A pad in microchannel. The A-type RBCs were captured only by the anti-A pad, but not the reference pad made of BSA. The same experimental model was carried out on the Leptospira, which stuck on the blood serum pad after PBS rinsing, but not BSA pad. This study provides a potential platform for simple and direct detection of living full cells without culture that could be used in point-of-care settings.

  10. MALDI analysis of proteins after extraction from dissolvable ethylene glycol diacrylate cross-linked polyacrylamide gels.

    Science.gov (United States)

    Papasotiriou, Dimitrios G; Markoutsa, Stavroula; Gorka, Jan; Schleiff, Enrico; Karas, Michael; Meyer, Bjoern

    2013-09-01

    Although the extraction of intact proteins from polyacrylamide gels followed by mass spectrometric molecular mass determination has been shown to be efficient, there is room for alternative approaches. Our study evaluates ethylene glycol diacrylate, a cleavable cross-linking agent used for a new type of dissolvable gels. It attains an ester linkage that can be hydrolyzed in alkali conditions. The separation performance of the new gel system was tested by 1D and 2D SDS-PAGE using the outer chloroplast envelope of Pisum sativum as well as a soluble protein fraction of human lymphocytes, respectively. Gel spot staining (CBB), dissolving, and extracting were conducted using a custom-developed workflow. It includes protein extraction with an ammonia-SDS buffer followed by methanol treatment to remove acrylamide filaments. Necessary purification for MALDI-TOF analysis was implemented using methanol-chloroform precipitation and perfusion HPLC. Both cleaning procedures were applied to several standard proteins of different molecular weight as well as 'real' biological samples (8-75 kDa). The protein amounts, which had to be loaded on the gel to detect a peak in MALDI-TOF MS, were in the range of 0.1 to 5 μg, and the required amount increased with increasing mass. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A sensitive enzyme-linked immunosorbent assay for the determination of fish protein in processed foods.

    Science.gov (United States)

    Shibahara, Yusuke; Uesaka, Yoshihiko; Wang, Jun; Yamada, Shoichi; Shiomi, Kazuo

    2013-01-15

    Fish is one of the most common causes of food allergy and its major allergen is parvalbumin, a 12 kDa muscular protein. In this study, a sandwich enzyme-linked immunosorbent assay (ELISA) for the determination of fish protein in processed foods was developed using a polyclonal antibody raised against Pacific mackerel parvalbumin. The developed sandwich ELISA showed 22.6-99.0% reactivity (based on the reactivity to Pacific mackerel parvalbumin) to parvalbumins from various species of fish. The limits of detection and quantitation were estimated to be 0.23 and 0.70 μg protein per g of food, respectively. When the sandwich ELISA was subjected to inter-laboratory validation, spiked fish protein was recovered from five model processed foods in the range of 69.4-84.8% and the repeatability and reproducibility relative standard deviations were satisfactorily low (≤ 10.5%). Thus, the sandwich ELISA was judged to be a useful tool to determine fish protein in processed foods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Synaptic Homeostasis and Restructuring across the Sleep-Wake Cycle.

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2015-05-01

    Full Text Available Sleep is critical for hippocampus-dependent memory consolidation. However, the underlying mechanisms of synaptic plasticity are poorly understood. The central controversy is on whether long-term potentiation (LTP takes a role during sleep and which would be its specific effect on memory. To address this question, we used immunohistochemistry to measure phosphorylation of Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα in the rat hippocampus immediately after specific sleep-wake states were interrupted. Control animals not exposed to novel objects during waking (WK showed stable pCaMKIIα levels across the sleep-wake cycle, but animals exposed to novel objects showed a decrease during subsequent slow-wave sleep (SWS followed by a rebound during rapid-eye-movement sleep (REM. The levels of pCaMKIIα during REM were proportional to cortical spindles near SWS/REM transitions. Based on these results, we modeled sleep-dependent LTP on a network of fully connected excitatory neurons fed with spikes recorded from the rat hippocampus across WK, SWS and REM. Sleep without LTP orderly rescaled synaptic weights to a narrow range of intermediate values. In contrast, LTP triggered near the SWS/REM transition led to marked swaps in synaptic weight ranking. To better understand the interaction between rescaling and restructuring during sleep, we implemented synaptic homeostasis and embossing in a detailed hippocampal-cortical model with both excitatory and inhibitory neurons. Synaptic homeostasis was implemented by weakening potentiation and strengthening depression, while synaptic embossing was simulated by evoking LTP on selected synapses. We observed that synaptic homeostasis facilitates controlled synaptic restructuring. The results imply a mechanism for a cognitive synergy between SWS and REM, and suggest that LTP at the SWS/REM transition critically influences the effect of sleep: Its lack determines synaptic homeostasis, its presence causes

  13. Diversity Within the O-linked Protein Glycosylation Systems of Acinetobacter Species

    DEFF Research Database (Denmark)

    Scott, N. E.; Kinsella, R. L.; Edwards, A. V. G.

    2014-01-01

    The opportunistic human pathogen Acinetobacter baumannii is a concern to health care systems worldwide because of its persistence in clinical settings and the growing frequency of multiple drug resistant infections. To combat this threat, it is necessary to understand factors associated...... with disease and environmental persistence of A. baumannii. Recently, it was shown that a single biosynthetic pathway was responsible for the generation of capsule polysaccharide and O-linked protein glycosylation. Because of the requirement of these carbohydrates for virulence and the non-template driven...... nature of glycan biogenesis we investigated the composition, diversity, and properties of the Acinetobacter glycoproteome. Utilizing global and targeted mass spectrometry methods, we examined 15 strains and found extensive glycan diversity in the O-linked glycoproteome of Acinetobacter. Comparison...

  14. Activation of the unfolded protein response in vitiligo: the missing link?

    Science.gov (United States)

    Passeron, Thierry; Ortonne, Jean-Paul

    2012-11-01

    Vitiligo is characterized by a substantial loss of functional melanocytes in the epidermis and sometimes in hair follicles. Genetic and pathophysiological studies have provided strong evidence that vitiligo is a polygenetic, multifactorial disorder. The key roles of oxidative stress within melanocytes and anti-melanocyte immune responses have been addressed in many studies, but the relationship between these mechanisms remains unclear. In this issue, Toosi et al. report the upregulation of IL-6 and IL-8 after the activation of the unfolded protein response (UPR) following exposure of melanocytes to phenols. Their results shed light on the missing link between oxidative stress and immune responses in vitiligo.

  15. Hepatic protein tyrosine phosphatase receptor gamma links obesity-induced inflammation to insulin resistance

    OpenAIRE

    Brenachot, Xavier; Ramadori, Giorgio; Ioris, Rafael M.; Veyrat-Durebex, Christelle; Altirriba, Jordi; Aras, Ebru; Ljubicic, Sanda; Kohno, Daisuke; Fabbiano, Salvatore; Clement, Sophie; Goossens, Nicolas; Trajkovski, Mirko; Harroch, Sheila; Negro, Francesco; Coppari, Roberto

    2017-01-01

    Obesity-induced inflammation engenders insulin resistance and type 2 diabetes mellitus (T2DM) but the inflammatory effectors linking obesity to insulin resistance are incompletely understood. Here, we show that hepatic expression of Protein Tyrosine Phosphatase Receptor Gamma (PTPR-γ) is stimulated by inflammation in obese/T2DM mice and positively correlates with indices of inflammation and insulin resistance in humans. NF-κB binds to the promoter of Ptprg and is required for inflammation-ind...

  16. The Application of an Emerging Technique for Protein–Protein Interaction Interface Mapping: The Combination of Photo-Initiated Cross-Linking Protein Nanoprobes with Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ptáčková Renata

    2014-05-01

    Full Text Available Protein–protein interaction was investigated using a protein nanoprobe capable of photo-initiated cross-linking in combination with high-resolution and tandem mass spectrometry. This emerging experimental approach introduces photo-analogs of amino acids within a protein sequence during its recombinant expression, preserves native protein structure and is suitable for mapping the contact between two proteins. The contact surface regions involved in the well-characterized interaction between two molecules of human 14-3-3ζ regulatory protein were used as a model. The employed photo-initiated cross-linking techniques extend the number of residues shown to be within interaction distance in the contact surface of the 14-3-3ζ dimer (Gln8–Met78. The results of this study are in agreement with our previously published data from molecular dynamic calculations based on high-resolution chemical cross-linking data and Hydrogen/Deuterium exchange mass spectrometry. The observed contact is also in accord with the 14-3-3ζ X-ray crystal structure (PDB 3dhr. The results of the present work are relevant to the structural biology of transient interaction in the 14-3-3ζ protein, and demonstrate the ability of the chosen methodology (the combination of photo-initiated cross-linking protein nanoprobes and mass spectrometry analysis to map the protein-protein interface or regions with a flexible structure.

  17. F42. CHONDROTIN-6 SULFATE CLUSTERS: ASSOCIATION OF SYNAPTIC DOMAINS AND REGULATION OF SYNAPTIC PLASTICITY DURING FEAR LEARNING

    Science.gov (United States)

    Chelini, Gabriele; Berciu, Cristina; Pilobello, Kanoelani; Peter, Durning; Rachel, Jenkins; Kahn, Moazzzam; Ramikie, Teniel; Subramanian, Siva; Ressler, Kerry; Pantazopoulos, Charalampos; Berretta, Sabina

    2018-01-01

    Abstract Background Emerging evidence from our group and others has brought the brain extracellular matrix (ECM) to the forefront of investigations on brain disorders. Our group has shown that organized perisynaptic ECM aggregates, i.e. perineuronal nets (PNNs) are decreased in several brain regions in people with schizophrenia (SZ) and bipolar disorder (BD). PNNs were detected by their expression of specific chondroitin sulfate proteoglycans (CSPGs), main components of the ECM, thought to play a key role in synaptic regulation during development and adulthood. Our studies have also shown that glial cells expressing CSPGs are altered in these disorders, suggesting a link between glial cell and PNN abnormalities. Finally, we have recently shown that novel CSPG structures, bearing a distinct CS-6 sulfation pattern and named CS-6 glial clusters, are decreased in the amygdala of people with SZ and BD. The morphology and function of CS-6 glial clusters is not currently known, but evidence from rodents and on the role of CSPGs in regulating synaptic functions strongly suggest that they may affect synaptic plasticity. We tested this hypothesis using a combination of human postmortem and rodent brain studies. Methods High Resolution electron microscopy was used to investigate the ultrastructural organization of CS-6 glia clusters. A transgenic mouse model expressing green fluorescent protein in a subset of excitatory pyramidal neurons was used to investigate dendritic spines association with CS-6 glia clusters. Mice were exposed to a single session of auditory fear conditioning for a total of 15 minutes. Animals were euthanized 4 hours after behavioral test. Multiplex immunocytochemistry was used to visualize CS-6 clusters. Results In human tissue, we show that CS-6 glia clusters are widespread in several brain regions, including the amygdala, entorhinal cortex, thalamus and hippocampus. Ultrastructural results show that CS-6 glia clusters are formed by CS-6 accumulations

  18. Loss of Function Studies in Mice and Genetic Association Link Receptor Protein Tyrosine Phosphatase a to Schizophrenia

    DEFF Research Database (Denmark)

    Takahashi, Nagahide; Nielsen, Karin Sandager; Aleksic, Branko

    2011-01-01

    Solid evidence links schizophrenia (SZ) susceptibility to neurodevelopmental processes involving tyrosine phosphorylation-mediated signaling. Mouse studies implicate the Ptpra gene, encoding protein tyrosine phosphatase RPTPa, in the control of radial neuronal migration, cortical cytoarchitecture...

  19. A calcium-dependent plasticity rule for HCN channels maintains activity homeostasis and stable synaptic learning.

    Science.gov (United States)

    Honnuraiah, Suraj; Narayanan, Rishikesh

    2013-01-01

    for experimentally observed plasticity in HCN channels accompanying synaptic plasticity in hippocampal neurons, and uncover potential links between HCN-channel plasticity and calcium influx, dynamic gain control and stable synaptic learning.

  20. A calcium-dependent plasticity rule for HCN channels maintains activity homeostasis and stable synaptic learning.

    Directory of Open Access Journals (Sweden)

    Suraj Honnuraiah

    physiological roles for experimentally observed plasticity in HCN channels accompanying synaptic plasticity in hippocampal neurons, and uncover potential links between HCN-channel plasticity and calcium influx, dynamic gain control and stable synaptic learning.

  1. A Calcium-Dependent Plasticity Rule for HCN Channels Maintains Activity Homeostasis and Stable Synaptic Learning

    Science.gov (United States)

    Honnuraiah, Suraj; Narayanan, Rishikesh

    2013-01-01

    for experimentally observed plasticity in HCN channels accompanying synaptic plasticity in hippocampal neurons, and uncover potential links between HCN-channel plasticity and calcium influx, dynamic gain control and stable synaptic learning. PMID:23390543

  2. Synaptic vesicle dynamic changes in a model of fragile X.

    Science.gov (United States)

    Broek, Jantine A C; Lin, Zhanmin; de Gruiter, H Martijn; van 't Spijker, Heleen; Haasdijk, Elize D; Cox, David; Ozcan, Sureyya; van Cappellen, Gert W A; Houtsmuller, Adriaan B; Willemsen, Rob; de Zeeuw, Chris I; Bahn, Sabine

    2016-01-01

    Fragile X syndrome (FXS) is a single-gene disorder that is the most common heritable cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorders (ASD). FXS is caused by an expansion of trinucleotide repeats in the promoter region of the fragile X mental retardation gene (Fmr1). This leads to a lack of fragile X mental retardation protein (FMRP), which regulates translation of a wide range of messenger RNAs (mRNAs). The extent of expression level alterations of synaptic proteins affected by FMRP loss and their consequences on synaptic dynamics in FXS has not been fully investigated. Here, we used an Fmr1 knockout (KO) mouse model to investigate the molecular mechanisms underlying FXS by monitoring protein expression changes using shotgun label-free liquid-chromatography mass spectrometry (LC-MS(E)) in brain tissue and synaptosome fractions. FXS-associated candidate proteins were validated using selected reaction monitoring (SRM) in synaptosome fractions for targeted protein quantification. Furthermore, functional alterations in synaptic release and dynamics were evaluated using live-cell imaging, and interpretation of synaptic dynamics differences was investigated using electron microscopy. Key findings relate to altered levels of proteins involved in GABA-signalling, especially in the cerebellum. Further exploration using microscopy studies found reduced synaptic vesicle unloading of hippocampal neurons and increased vesicle unloading in cerebellar neurons, which suggests a general decrease of synaptic transmission. Our findings suggest that FMRP is a regulator of synaptic vesicle dynamics, which supports the role of FMRP in presynaptic functions. Taken together, these studies provide novel insights into the molecular changes associated with FXS.

  3. Ligand-Modified Aminobisphosphonate for Linking Proteins to Hydroxyapatite and Bone Surface

    Science.gov (United States)

    Ehrick, Robin S.; Capaccio, Marcello; Puleo, David A.; Bachas, Leonidas G.

    2011-01-01

    An increase in bone resorption is one of the main symptoms of osteoporosis, a disease that affects more and more individuals every day. Bisphosphonates are known to inhibit bone resorption, and thus are being used as a treatment for osteoporosis. Aminobisphosphonates present a functionality that can be easily used for conjugation to other molecules, such as peptides, proteins, and ligands for protein recognition. In this study, an aminobisphosphonate conjugated with biotin was used as a model linker for protein attachment to bone. With this system, the interaction of biotinylated aminobisphosphonate with hydroxyapatite, a major mineral component of bone, was investigated. Quantification of the binding of aminobisphosphonate to hydroxyapatite was performed using a fluorescently labeled antibody for biotin. Additionally, the interaction of the biotinylated aminobisphosphonate with multiple treatments of cortical bone from the mid-shaft of a cow femur was studied. It was demonstrated that modified aminobisphosphonate reagents can bind hydroxyapatite and bone at high levels, while the biotin functionality is free to be recognized by the fluorescently labeled anti-biotin antibody, suggesting that modified aminobisphosphonates could be used to link other peptides or proteins to the bone surface. PMID:18001076

  4. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    Energy Technology Data Exchange (ETDEWEB)

    Papa, Antonio [Institute for Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), V.le Kennedy 54, Naples 80125 (Italy); IMAST SCaRL, Piazza Bovio 22, 80133 Naples (Italy); Guarino, Vincenzo, E-mail: vincenzo.guarino@cnr.it; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi [Institute for Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), V.le Kennedy 54, Naples 80125 (Italy)

    2015-12-17

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response.

  5. Skin cornification proteins provide global link between ROS detoxification and cell migration during wound healing.

    Science.gov (United States)

    Vermeij, Wilbert P; Backendorf, Claude

    2010-08-03

    Wound healing is a complex dynamic process characterised by a uniform flow of events in nearly all types of tissue damage, from a small skin scratch to myocardial infarction. Reactive oxygen species (ROS) are essential during the healing process at multiple stages, ranging from the initial signal that instigates the immune response, to the triggering of intracellular redox-dependent signalling pathways and the defence against invading bacteria. Excessive ROS in the wound milieu nevertheless impedes new tissue formation. Here we identify small proline-rich (SPRR) proteins as essential players in this latter process, as they directly link ROS detoxification with cell migration. A literature-based meta-analysis revealed their up-regulation in various forms of tissue injury, ranging from heart infarction and commensal-induced gut responses to nerve regeneration and burn injury. Apparently, SPRR proteins have a far more widespread role in wound healing and tissue remodelling than their established function in skin cornification. It is inferred that SPRR proteins provide injured tissue with an efficient, finely tuneable antioxidant barrier specifically adapted to the tissue involved and the damage inflicted. Their recognition as novel cell protective proteins combining ROS detoxification with cell migration will provide new venues to study and manage tissue repair and wound healing at a molecular level.

  6. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    International Nuclear Information System (INIS)

    Papa, Antonio; Guarino, Vincenzo; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi

    2015-01-01

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response

  7. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    Science.gov (United States)

    Papa, Antonio; Guarino, Vincenzo; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi

    2015-12-01

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response.

  8. The neuroprotection of cannabidiol against MPP⁺-induced toxicity in PC12 cells involves trkA receptors, upregulation of axonal and synaptic proteins, neuritogenesis, and might be relevant to Parkinson's disease.

    Science.gov (United States)

    Santos, Neife Aparecida Guinaim; Martins, Nádia Maria; Sisti, Flávia Malvestio; Fernandes, Laís Silva; Ferreira, Rafaela Scalco; Queiroz, Regina Helena Costa; Santos, Antônio Cardozo

    2015-12-25

    Cannabidiol (CBD) is a non-psychoactive constituent of Cannabis sativa with potential to treat neurodegenerative diseases. Its neuroprotection has been mainly associated with anti-inflammatory and antioxidant events; however, other mechanisms might be involved. We investigated the involvement of neuritogenesis, NGF receptors (trkA), NGF, and neuronal proteins in the mechanism of neuroprotection of CBD against MPP(+) toxicity in PC12 cells. CBD increased cell viability, differentiation, and the expression of axonal (GAP-43) and synaptic (synaptophysin and synapsin I) proteins. Its neuritogenic effect was not dependent or additive to NGF, but it was inhibited by K252a (trkA inhibitor). CBD did not increase the expression of NGF, but protected against its decrease induced by MPP(+), probably by an indirect mechanism. We also evaluated the neuritogenesis in SH-SY5Y cells, which do not express trkA receptors. CBD did not induce neuritogenesis in this cellular model, which supports the involvement of trkA receptors. This is the first study to report the involvement of neuronal proteins and trkA in the neuroprotection of CBD. Our findings suggest that CBD has a neurorestorative potential independent of NGF that might contribute to its neuroprotection against MPP(+), a neurotoxin relevant to Parkinson's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Identification and characterization of a pituitary corticotropin-releasing factor binding protein by chemical cross-linking

    DEFF Research Database (Denmark)

    Nishimura, E; Billestrup, Nils; Perrin, M

    1987-01-01

    A corticotropin-releasing factor (CRF) binding protein has been identified based on the chemical cross-linking of ovine [Nle21,m-125I-Tyr32]CRF (125I-oCRF) to bovine anterior pituitary membranes using disuccinimidyl suberate (DSS). The apparent molecular weight of the cross-linked complex...

  10. Angiotensin I-Converting Enzyme Inhibitor Derived from Cross-Linked Oyster Protein

    Directory of Open Access Journals (Sweden)

    Cheng-Liang Xie

    2014-01-01

    Full Text Available Following cross-linking by microbial transglutaminase, modified oyster proteins were hydrolyzed to improve inhibitory activity against angiotensin-converting enzyme (ACE inhibitory activity with the use of a single protease, or a combination of six proteases. The oyster hydrolysate with the lowest 50% ACE inhibitory concentration (IC50 of 0.40 mg/mL was obtained by two-step hydrolysis of the cross-linked oyster protein using Protamex and Neutrase. Five ACE inhibitory peptides were purified from the oyster hydrolysate using a multistep chromatographic procedure comprised of ion-exchange, size exclusion, and reversed-phase liquid chromatography. Their sequences were identified as TAY, VK, KY, FYN, and YA, using automated Edman degradation and mass spectrometry. These peptides were synthesized, and their IC50 values were measured to be 16.7, 29.0, 51.5, 68.2, and 93.9 μM, respectively. Toxicity of the peptides on the HepG2 cell line was not detected. The oyster hydrolysate also significantly decreased the systolic blood pressure of spontaneously hypertensive rats (SHR. The antihypertensive effect of the oyster hydrolysate on SHR was rapid and long-lasting, compared to commercially obtained sardine hydrolysate. These results suggest that the oyster hydrolysate could be a source of effective nutraceuticals against hypertension.

  11. Detection of cross-links between FtsH, YidC, HflK/C suggests a linked role for these proteins in quality control upon insertion of bacterial inner membrane proteins

    NARCIS (Netherlands)

    van Bloois, Edwin; Dekker, Henk L.; Fröderberg, Linda; Houben, Edith N. G.; Urbanus, Malene L.; de Koster, Chris G.; de Gier, Jan-Willem; Luirink, Joen

    2008-01-01

    Little is known about the quality control of proteins upon integration in the inner membrane of Escherichia coli. Here, we demonstrate that YidC and FtsH are adjacent to a nascent, truncated membrane protein using in vitro photo cross-linking. YidC plays a critical but poorly understood role in the

  12. Differentiated effect of ageing on the enzymes of Krebs' cycle, electron transfer complexes and glutamate metabolism of non-synaptic and intra-synaptic mitochondria from cerebral cortex.

    Science.gov (United States)

    Villa, R F; Gorini, A; Hoyer, S

    2006-11-01

    The effect of ageing on the activity of enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism was studied in three different types of mitochondria of cerebral cortex of 1-year old and 2-year old male Wistar rats. We assessed the maximum rate (V(max)) of the mitochondrial enzyme activities in non-synaptic perikaryal mitochondria, and in two populations of intra-synaptic mitochondria. The results indicated that: (i) in normal, steady-state cerebral cortex the values of the catalytic activities of the enzymes markedly differed in the various populations of mitochondria; (ii) in intra-synaptic mitochondria, ageing affected the catalytic properties of the enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism; (iii) these changes were more evident in intra-synaptic "heavy" than "light" mitochondria. These results indicate a different age-related vulnerability of subpopulations of mitochondria in vivo located into synapses than non-synaptic ones.

  13. Mixed-Isotope Labeling with LC-IMS-MS for Characterization of Protein-Protein Interactions by Chemical Cross-Linking

    Science.gov (United States)

    Merkley, Eric D.; Baker, Erin S.; Crowell, Kevin L.; Orton, Daniel J.; Taverner, Thomas; Ansong, Charles; Ibrahim, Yehia M.; Burnet, Meagan C.; Cort, John R.; Anderson, Gordon A.; Smith, Richard D.; Adkins, Joshua N.

    2013-03-01

    Chemical cross-linking of proteins followed by proteolysis and mass spectrometric analysis of the resulting cross-linked peptides provides powerful insight into the quaternary structure of protein complexes. Mixed-isotope cross-linking (a method for distinguishing intermolecular cross-links) was coupled with liquid chromatography, ion mobility spectrometry and mass spectrometry (LC-IMS-MS) to provide an additional separation dimension to the traditional cross-linking approach. This method produced multiplet m/z peaks that are aligned in the IMS drift time dimension and serve as signatures of intermolecular cross-linked peptides. We developed an informatics tool to use the amino acid sequence information inherent in the multiplet spacing for accurate identification of the cross-linked peptides. Because of the separation of cross-linked and non-cross-linked peptides in drift time, our LC-IMS-MS approach was able to confidently detect more intermolecular cross-linked peptides than LC-MS alone.

  14. 17β-Estradiol-Induced Synaptic Rearrangements Are Accompanied by Altered Ectonucleotidase Activities in Male Rat Hippocampal Synaptosomes.

    Science.gov (United States)

    Mitrović, Nataša; Zarić, Marina; Drakulić, Dunja; Martinović, Jelena; Sévigny, Jean; Stanojlović, Miloš; Nedeljković, Nadežda; Grković, Ivana

    2017-03-01

    17β-Estradiol (E2) rapidly, by binding to membrane estrogen receptors, activates cell signaling cascades which induce formation of new dendritic spines in the hippocampus of males as in females, but the interaction with other metabolic processes, such as extracellular adenine nucleotides metabolism, are currently unknown. Extracellular adenine nucleotides play significant roles, controlling excitatory glutamatergic synapses and development of neural circuits and synaptic plasticity. Their precise regulation in the synaptic cleft is tightly controlled by ecto-nucleoside triphosphate diphosphohydrolase (NTPDase)/ecto-5'-nucleotidase (eN) enzyme chain. Therefore, we sought to clarify whether a single systemic injection of E2 in male rats is accompanied by changes in the expression of the pre- and postsynaptic proteins and downstream kinases linked to E2-induced synaptic rearrangement as well as alterations in NTPDase/eN pathway in the hippocampal synaptosomes. Obtained data showed activation of mammalian target of rapamycin and upregulation of key synaptic proteins necessary for spine formation, 24 h after systemic E2 administration. In E2-mediated conditions, we found downregulation of NTPDase1 and NTPDase2 and attenuation of adenine nucleotide hydrolysis by NTPDase/eN enzyme chain, without changes in NTPDase3 properties and augmentation of synaptic tissue-nonspecific alkaline phosphatase (TNAP) activity. Despite reduced NTPDase activities, increased TNAP activity probably prevents toxic accumulation of ATP in the extracellular milieu and also hydrolyzes accumulated ADP due to unchanged NTPDase3 activity. Thus, our initial evaluation supports idea of specific roles of different ectonucleotidases and their coordinated actions in E2-mediated spine remodeling and maintenance.

  15. Development of an enzyme-linked immunosorbent assay method to detect mustard protein in mustard seed oil

    NARCIS (Netherlands)

    Koppelman, S.J.; Vlooswijk, R.; Bottger, G.; Duijn, G. van; Schaft, P. van der; Dekker, J.; Bemgen, H. van

    2007-01-01

    An enzyme-linked immunosorbent assay for the detection of mustard protein was developed. The assay is based on a polyclonal antiserum directed against a mixture of mustard proteins raised in rabbits. The assay has a detection limit of 1.5 ppm (milligrams per kilogram) and is suitable for the

  16. The Ancient Link between G-Protein-Coupled Receptors and C-Terminal Phospholipid Kinase Domains

    Science.gov (United States)

    2018-01-01

    ABSTRACT Sensing external signals and transducing these into intracellular responses requires a molecular signaling system that is crucial for every living organism. Two important eukaryotic signal transduction pathways that are often interlinked are G-protein signaling and phospholipid signaling. Heterotrimeric G-protein subunits activated by G-protein-coupled receptors (GPCRs) are typical stimulators of phospholipid signaling enzymes such as phosphatidylinositol phosphate kinases (PIPKs) or phospholipase C (PLC). However, a direct connection between the two pathways likely exists in oomycetes and slime molds, as they possess a unique class of GPCRs that have a PIPK as an accessory domain. In principle, these so-called GPCR-PIPKs have the capacity of perceiving an external signal (via the GPCR domain) that, via PIPK, directly activates downstream phospholipid signaling. Here we reveal the sporadic occurrence of GPCR-PIPKs in all eukaryotic supergroups, except for plants. Notably, all species having GPCR-PIPKs are unicellular microorganisms that favor aquatic environments. Phylogenetic analysis revealed that GPCR-PIPKs are likely ancestral to eukaryotes and significantly expanded in the last common ancestor of oomycetes. In addition to GPCR-PIPKs, we identified five hitherto-unknown classes of GPCRs with accessory domains, four of which are universal players in signal transduction. Similarly to GPCR-PIPKs, this enables a direct coupling between extracellular sensing and downstream signaling. Overall, our findings point to an ancestral signaling system in eukaryotes where GPCR-mediated sensing is directly linked to downstream responses. PMID:29362235

  17. Physical Cross-Linking Starch-Based Zwitterionic Hydrogel Exhibiting Excellent Biocompatibility, Protein Resistance, and Biodegradability.

    Science.gov (United States)

    Ye, Lei; Zhang, Yabin; Wang, Qiangsong; Zhou, Xin; Yang, Boguang; Ji, Feng; Dong, Dianyu; Gao, Lina; Cui, Yuanlu; Yao, Fanglian

    2016-06-22

    In this work, a novel starch-based zwitterionic copolymer, starch-graft-poly(sulfobetaine methacrylate) (ST-g-PSBMA), was synthesized via Atom Transfer Radical Polymerization. Starch, which formed the main chain, can be degraded completely in vivo, and the pendent segments of PSBMA endowed the copolymer with excellent protein resistance properties. This ST-g-PSBMA copolymer could self-assemble into a physical hydrogel in normal saline, and studies of the formation mechanism indicated that the generation of the physical hydrogel was driven by electrostatic interactions between PSBMA segments. The obtained hydrogels were subjected to detailed analysis by scanning electron microscopy, swelling ratio, protein resistance, and rheology tests. Toxicity and hemolysis analysis demonstrated that the ST-g-PSBMA hydrogels possess excellent biocompatibility and hemocompatibility. Moreover, the cytokine secretion assays (IL-6, TNF-α, and NO) confirmed that ST-g-PSBMA hydrogels had low potential to trigger the activation of macrophages and were suitable for in vivo biomedical applications. On the basis of these in vitro results, the ST-g-PSBMA hydrogels were implanted in SD rats. The tissue responses to hydrogel implantation and the hydrogel degradation in vivo were determined by histological analysis (Hematoxylin and eosin, Van Gieson, and Masson's Trichrome stains). The results presented in this study demonstrate that the physical cross-linking, starch-based zwitterionic hydrogels possess excellent protein resistance, low macrophage-activation properties, and good biocompatibility, and they are a promising candidate for an in vivo biomedical application platform.

  18. Highly anomalous energetics of protein cold denaturation linked to folding-unfolding kinetics.

    Directory of Open Access Journals (Sweden)

    M Luisa Romero-Romero

    Full Text Available Despite several careful experimental analyses, it is not yet clear whether protein cold-denaturation is just a "mirror image" of heat denaturation or whether it shows unique structural and energetic features. Here we report that, for a well-characterized small protein, heat denaturation and cold denaturation show dramatically different experimental energetic patterns. Specifically, while heat denaturation is endothermic, the cold transition (studied in the folding direction occurs with negligible heat effect, in a manner seemingly akin to a gradual, second-order-like transition. We show that this highly anomalous energetics is actually an apparent effect associated to a large folding/unfolding free energy barrier and that it ultimately reflects kinetic stability, a naturally-selected trait in many protein systems. Kinetics thus emerges as an important factor linked to differential features of cold denaturation. We speculate that kinetic stabilization against cold denaturation may play a role in cold adaptation of psychrophilic organisms. Furthermore, we suggest that folding-unfolding kinetics should be taken into account when analyzing in vitro cold-denaturation experiments, in particular those carried out in the absence of destabilizing conditions.

  19. Mechanistic Links Underlying the Impact of C-Reactive Protein on Muscle Mass in Elderly.

    Science.gov (United States)

    Wåhlin-Larsson, Britta; Wilkinson, Daniel J; Strandberg, Emelie; Hosford-Donovan, Adrian; Atherton, Philip J; Kadi, Fawzi

    2017-01-01

    Mechanisms underlying the relationship between systemic inflammation and age-related decline in muscle mass are poorly defined. The purpose of this work was to investigate the relationship between the systemic inflammatory marker CRP and muscle mass in elderly and to identify mechanisms by which CRP mediates its effects on skeletal muscle, in-vitro. Muscle mass and serum CRP level were determined in a cohort of 118 older women (67±1.7 years). Human muscle cells were differentiated into myotubes and were exposed to CRP. The size of myotubes was determined after immunofluorescent staining using troponin. Muscle protein synthesis was assessed using stable isotope tracers and key signalling pathways controlling protein synthesis were determined using western-blotting. We observed an inverse relationship between circulating CRP level and muscle mass (β= -0.646 (95% CI: -0.888, -0.405) pmuscle protein fractional synthetic rate of human myotubes exposed to CRP for 24 h. We also identified a CRP-mediated increased phosphorylation (pprotein synthesis. This work established for the first time mechanistic links by which chronic elevation of CRP can contribute to age-related decline in muscle function. © 2017 The Author(s). Published by S. Karger AG, Basel.

  20. Synaptic electronics: materials, devices and applications.

    Science.gov (United States)

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  1. Radix Puerariae modulates glutamatergic synaptic architecture and potentiates functional synaptic plasticity in primary hippocampal neurons.

    Science.gov (United States)

    Bhuiyan, Mohammad Maqueshudul Haque; Haque, Md Nazmul; Mohibbullah, Md; Kim, Yung Kyu; Moon, Il Soo

    2017-09-14

    Neurologic disorders are frequently characterized by synaptic pathology, including abnormal density and morphology of dendritic spines, synapse loss, and aberrant synaptic signaling and plasticity. Therefore, to promote and/or protect synapses by the use of natural molecules capable of modulating neurodevelopmental events, such as, spinogenesis and synaptic plasticity, could offer a preventive and curative strategy for nervous disorders associated with synaptic pathology. Radix Puerariae, the root of Pueraria monatana var. lobata (Willd.) Sanjappa&Pradeep, is a Chinese ethnomedicine, traditionally used for the treatment of memory-related nervous disorders including Alzheimer's disease. In the previous study, we showed that the ethanolic extracts of Radix Puerariae (RPE) and its prime constituent, puerarin induced neuritogenesis and synapse formation in cultured hippocampal neurons, and thus could improve memory functions. In the present study, we specifically investigated the abilities of RPE and puerarin to improve memory-related brain disorders through modulating synaptic maturation and functional potentiation. Rat embryonic (E19) brain neurons were cultured in the absence or presence of RPE or puerarin. At predetermined times, cells were live-stained with DiO or fixed and immunostained to visualize neuronal morphologies, or lysed for protein harvesting. Morphometric analyses of dendritic spines and synaptogenesis were performed using Image J software. Functional pre- and postsynaptic plasticity was measured by FM1-43 staining and whole-cell patch clamping, respectively. RPE or puerarin-mediated changes in actin-related protein 2 were assessed by Western blotting. Neuronal survivals were measured using propidium iodide exclusion assay. RPE and puerarin both: (1) promoted a significant increase in the numbers, and maturation, of dendritic spines; (2) modulated the formation of glutamatergic synapses; (3) potentiated synaptic transmission by increasing the sizes of

  2. Cdk5 is essential for synaptic vesicle endocytosis

    DEFF Research Database (Denmark)

    Tan, Timothy C; Valova, Valentina A; Malladi, Chandra S

    2003-01-01

    Synaptic vesicle endocytosis (SVE) is triggered by calcineurin-mediated dephosphorylation of the dephosphin proteins. SVE is maintained by the subsequent rephosphorylation of the dephosphins by unidentified protein kinases. Here, we show that cyclin-dependent kinase 5 (Cdk5) phosphorylates dynamin...

  3. Mechanistic Links Underlying the Impact of C-Reactive Protein on Muscle Mass in Elderly

    Directory of Open Access Journals (Sweden)

    Britta Wåhlin-Larsson

    2017-11-01

    Full Text Available Background/Aims: Mechanisms underlying the relationship between systemic inflammation and age-related decline in muscle mass are poorly defined. The purpose of this work was to investigate the relationship between the systemic inflammatory marker CRP and muscle mass in elderly and to identify mechanisms by which CRP mediates its effects on skeletal muscle, in-vitro. Methods: Muscle mass and serum CRP level were determined in a cohort of 118 older women (67±1.7 years. Human muscle cells were differentiated into myotubes and were exposed to CRP. The size of myotubes was determined after immunofluorescent staining using troponin. Muscle protein synthesis was assessed using stable isotope tracers and key signalling pathways controlling protein synthesis were determined using western-blotting. Results: We observed an inverse relationship between circulating CRP level and muscle mass (β= -0.646 (95% CI: -0.888, -0.405 p<0.05 and demonstrated a reduction (p < 0.05 in the size of human myotubes exposed to CRP for 72 h. We next showed that this morphological change was accompanied by a CRP-mediated reduction (p < 0.05 in muscle protein fractional synthetic rate of human myotubes exposed to CRP for 24 h. We also identified a CRP-mediated increased phosphorylation (p<0.05 of regulators of cellular energy stress including AMPK and downstream targets, raptor and ACC-β, together with decreased phosphorylation of Akt and rpS6, which are important factors controlling protein synthesis. Conclusion: This work established for the first time mechanistic links by which chronic elevation of CRP can contribute to age-related decline in muscle function.

  4. Calorimetric quantification of linked equilibria in cyclodextrin/lipid/detergent mixtures for membrane-protein reconstitution.

    Science.gov (United States)

    Textor, Martin; Vargas, Carolyn; Keller, Sandro

    2015-04-01

    Reconstitution from detergent micelles into lipid bilayer membranes is a prerequisite for many in vitro studies on purified membrane proteins. Complexation by cyclodextrins offers an efficient and tightly controllable way of removing detergents for membrane-protein reconstitution, since cyclodextrins sequester detergents at defined stoichiometries and with tuneable affinities. To fully exploit the potential advantages of cyclodextrin for membrane-protein reconstitution, we establish a quantitative model for predicting the supramolecular transition from mixed micelles to vesicles during cyclodextrin-mediated detergent extraction. The model is based on a set of linked equilibria among all pseudophases present in the course of the reconstitution process. Various isothermal titration-calorimetric protocols are used for quantifying a detergent's self-association as well as its colloidal and stoichiometric interactions with lipid and cyclodextrin, respectively. The detergent's critical micellar concentration, the phase boundaries in the lipid/detergent phase diagram, and the dissociation constant of the cyclodextrin/detergent complex thus obtained provide all thermodynamic parameters necessary for a quantitative prediction of the transition from micelles to bilayer membranes during cyclodextrin-driven reconstitution. This is exemplified and validated by stepwise complexation of the detergent lauryldimethylamine N-oxide in mixtures with the phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine upon titration with 2-hydroxypropyl-β-cyclodextrin, both in the presence and in the absence of the membrane protein Mistic. The calorimetric approach presented herein quantitatively predicts the onset and completion of the reconstitution process, thus obviating cumbersome trial-and-error efforts and facilitating the rational optimisation of reconstitution protocols, and can be adapted to different cyclodextrin/lipid/detergent combinations. Copyright © 2015 Elsevier Inc

  5. G Protein-Linked Signaling Pathways in Bipolar and Major Depressive Disorders

    Directory of Open Access Journals (Sweden)

    Hiroaki eTomita

    2013-12-01

    Full Text Available The G-protein linked signaling system (GPLS comprises a large number of G-proteins, G protein-coupled receptors (GPCRs, GPCR ligands, and downstream effector molecules. G-proteins interact with both GPCRs and downstream effectors such as cyclic adenosine monophosphate (cAMP, phosphatidylinositols, and ion channels. The GPLS is implicated in the pathophysiology and pharmacology of both major depressive disorder (MDD and bipolar disorder (BPD. This study evaluated whether GPLS is altered at the transcript level. The gene expression in the dorsolateral prefrontal (DLPFC and anterior cingulate (ACC were compared from MDD, BPD, and control subjects using Affymetrix Gene Chips and real time quantitative PCR. High quality brain tissue was used in the study to control for confounding effects of agonal events, tissue pH, RNA integrity, gender, and age. GPLS signaling transcripts were altered especially in the ACC of BPD and MDD subjects. Transcript levels of molecules which repress cAMP activity were increased in BPD and decreased in MDD. Two orphan GPCRs, GPRC5B and GPR37, showed significantly decreased expression levels in MDD, and significantly increased expression levels in BPD. Our results suggest opposite changes in BPD and MDD in the GPLS, ‘activated’ cAMP signaling activity in BPD and ‘blunted’ cAMP signaling activity in MDD. GPRC5B and GPR37 both appear to have behavioral effects, and are also candidate genes for neurodegenerative disorders. In the context of the opposite changes observed in BPD and MDD, these GPCRs warrant further study of their brain effects.

  6. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.

    Science.gov (United States)

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M

    2016-03-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends. © 2016 Müller-McNicoll et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Protein-Coated Microcrystals, Combi-Protein-Coated Microcrystals, and Cross-Linked Protein-Coated Microcrystals of Enzymes for Use in Low-Water Media.

    Science.gov (United States)

    Mukherjee, Joyeeta; Gupta, Munishwar N

    2017-01-01

    Protein-coated microcrystals (PCMC) are a high-activity preparation of enzymes for use in low-water media. The protocols for the preparation of PCMCs of Subtilisin Carlsberg and Candida antarctica lipase B (CAL B) are described. The combi-PCMC concept is useful both for cascade and non-cascade reactions. It can also be beneficial to combine two different specificities of a lipase when the substrate requires it. Combi-PCMC of CALB and Palatase used for the conversion of coffee oil present in spent coffee grounds to biodiesel is described. Cross-linked protein-coated microcrystals (CL-PCMC) in some cases can give better results than PCMC. Protocols for the CLPCMC of Subtilisin Carlsberg and Candida antarctica lipase B (CAL B) are described. A discussion of their applications is also provided.

  8. Cerebellar Synaptic Plasticity and the Credit Assignment Problem.

    Science.gov (United States)

    Jörntell, Henrik

    2016-04-01

    The mechanism by which a learnt synaptic weight change can contribute to learning or adaptation of brain function is a type of credit assignment problem, which is a key issue for many parts of the brain. In the cerebellum, detailed knowledge not only of the local circuitry connectivity but also of the topography of different sources of afferent/external information makes this problem particularly tractable. In addition, multiple forms of synaptic plasticity and their general rules of induction have been identified. In this review, we will discuss the possible roles of synaptic and cellular plasticity at specific locations in contributing to behavioral changes. Focus will be on the parts of the cerebellum that are devoted to limb control, which constitute a large proportion of the cortex and where the knowledge of the external connectivity is particularly well known. From this perspective, a number of sites of synaptic plasticity appear to primarily have the function of balancing the overall level of activity in the cerebellar circuitry, whereas the locations at which synaptic plasticity leads to functional changes in terms of limb control are more limited. Specifically, the postsynaptic forms of long-term potentiation (LTP) and long-term depression (LTD) at the parallel fiber synapses made on interneurons and Purkinje cells, respectively, are the types of plasticity that mediate the widest associative capacity and the tightest link between the synaptic change and the external functions that are to be controlled.

  9. PRRT2: from Paroxysmal Disorders to Regulation of Synaptic Function.

    Science.gov (United States)

    Valtorta, Flavia; Benfenati, Fabio; Zara, Federico; Meldolesi, Jacopo

    2016-10-01

    In the past few years, proline-rich transmembrane protein (PRRT)2 has been identified as the causative gene for several paroxysmal neurological disorders. Recently, an important role of PRRT2 in synapse development and function has emerged. Knock down of the protein strongly impairs the formation of synaptic contacts and neurotransmitter release. At the nerve terminal, PRRT2 endows synaptic vesicle exocytosis with Ca 2+ sensitivity by interacting with proteins of the fusion complex and with the Ca 2+ sensors synaptotagmins (Syts). In the postsynaptic compartment, PRRT2 interacts with glutamate receptors. The study of PRRT2 and of its mutations may help in refining our knowledge of the process of synaptic transmission and elucidating the pathogenetic mechanisms leading to derangement of network function in paroxysmal disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin β1

    Directory of Open Access Journals (Sweden)

    Cordula Klockenbusch

    2010-01-01

    Full Text Available Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin β1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin β1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin β1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin β1, α4 and α6 or β1, α6, α2, and α5, respectively.

  11. Comparative study on protein cross-linking and gel enhancing effect of microbial transglutaminase on surimi from different fish.

    Science.gov (United States)

    Chanarat, Sochaya; Benjakul, Soottawat; H-Kittikun, Aran

    2012-03-15

    Microbial transglutaminase (MTGase) has been used to increase the gel strength of surimi. Nevertheless, its effectiveness varies with fish species. The aim of this study was to elucidate the effect of MTGase at different levels on protein cross-linking and gel property of surimi from threadfin bream, Indian mackerel and sardine in the presence and absence of endogenous transglutaminase. Breaking force of all surimi gels increased as MTGase levels (0-0.6 U g⁻¹) increased except for threadfin bream surimi gel, where the breaking force decreased at 0.6 U g⁻¹ (P transglutaminase with MTGase. With the addition of MTGase, the gel with the highest increase in breaking force showed highest decrease in myosin heavy chain. When cross-linking activity of MTGase on natural actomyosin (NAM) was determined, the highest decreasing rate in ε-amino group content with the concomitant increased formation of cross-linked proteins was found in NAM from threadfin bream. The reactivity of muscle proteins toward MTGase-induced cross-linking was in agreement with surimi gel strengthening. The composition and properties of muscle proteins of varying fish species more likely determined protein cross-linking induced by MTGase, thereby affecting their gel properties.

  12. Fragile X Proteins FMRP and FXR2P Control Synaptic GluA1 Expression and Neuronal Maturation via Distinct Mechanisms

    Directory of Open Access Journals (Sweden)

    Weixiang Guo

    2015-06-01

    Full Text Available Fragile X mental retardation protein (FMRP and its autosomal paralog FXR2P are selective neuronal RNA-binding proteins, and mice that lack either protein exhibit cognitive deficits. Although double-mutant mice display more severe learning deficits than single mutants, the molecular mechanism behind this remains unknown. In the present study, we discovered that FXR2P (also known as FXR2 is important for neuronal dendritic development. FMRP and FXR2P additively promote the maturation of new neurons by regulating a common target, the AMPA receptor GluA1, but they do so via distinct mechanisms: FXR2P binds and stabilizes GluA1 mRNA and enhances subsequent protein expression, whereas FMRP promotes GluA1 membrane delivery. Our findings unveil important roles for FXR2P and GluA1 in neuronal development, uncover a regulatory mechanism of GluA1, and reveal a functional convergence between fragile X proteins in neuronal development.

  13. Synaptic pathology and therapeutic repair in adult retinoschisis mouse by AAV-RS1 transfer

    Science.gov (United States)

    Ou, Jingxing; Vijayasarathy, Camasamudram; Ziccardi, Lucia; Chen, Shan; Zeng, Yong; Marangoni, Dario; Pope, Jodie G.; Bush, Ronald A.; Wu, Zhijian; Li, Wei; Sieving, Paul A.

    2015-01-01

    Strategies aimed at invoking synaptic plasticity have therapeutic potential for several neurological conditions. The human retinal synaptic disease X-linked retinoschisis (XLRS) is characterized by impaired visual signal transmission through the retina and progressive visual acuity loss, and mice lacking retinoschisin (RS1) recapitulate human disease. Here, we demonstrate that restoration of RS1 via retina-specific delivery of adeno-associated virus type 8-RS1 (AAV8-RS1) vector rescues molecular pathology at the photoreceptor–depolarizing bipolar cell (photoreceptor-DBC) synapse and restores function in adult Rs1-KO animals. Initial development of the photoreceptor-DBC synapse was normal in the Rs1-KO retina; however, the metabotropic glutamate receptor 6/transient receptor potential melastatin subfamily M member 1–signaling (mGluR6/TRPM1-signaling) cascade was not properly maintained. Specifically, the TRPM1 channel and G proteins Gαo, Gβ5, and RGS11 were progressively lost from postsynaptic DBC dendritic tips, whereas the mGluR6 receptor and RGS7 maintained proper synaptic position. This postsynaptic disruption differed from other murine night-blindness models with an electronegative electroretinogram response, which is also characteristic of murine and human XLRS disease. Upon AAV8-RS1 gene transfer to the retina of adult XLRS mice, TRPM1 and the signaling molecules returned to their proper dendritic tip location, and the DBC resting membrane potential was restored. These findings provide insight into the molecular plasticity of a critical synapse in the visual system and demonstrate potential therapeutic avenues for some diseases involving synaptic pathology. PMID:26098217

  14. Synaptic pathology and therapeutic repair in adult retinoschisis mouse by AAV-RS1 transfer.

    Science.gov (United States)

    Ou, Jingxing; Vijayasarathy, Camasamudram; Ziccardi, Lucia; Chen, Shan; Zeng, Yong; Marangoni, Dario; Pope, Jodie G; Bush, Ronald A; Wu, Zhijian; Li, Wei; Sieving, Paul A

    2015-07-01

    Strategies aimed at invoking synaptic plasticity have therapeutic potential for several neurological conditions. The human retinal synaptic disease X-linked retinoschisis (XLRS) is characterized by impaired visual signal transmission through the retina and progressive visual acuity loss, and mice lacking retinoschisin (RS1) recapitulate human disease. Here, we demonstrate that restoration of RS1 via retina-specific delivery of adeno-associated virus type 8-RS1 (AAV8-RS1) vector rescues molecular pathology at the photoreceptor-depolarizing bipolar cell (photoreceptor-DBC) synapse and restores function in adult Rs1-KO animals. Initial development of the photoreceptor-DBC synapse was normal in the Rs1-KO retina; however, the metabotropic glutamate receptor 6/transient receptor potential melastatin subfamily M member 1-signaling (mGluR6/TRPM1-signaling) cascade was not properly maintained. Specifically, the TRPM1 channel and G proteins Gαo, Gβ5, and RGS11 were progressively lost from postsynaptic DBC dendritic tips, whereas the mGluR6 receptor and RGS7 maintained proper synaptic position. This postsynaptic disruption differed from other murine night-blindness models with an electronegative electroretinogram response, which is also characteristic of murine and human XLRS disease. Upon AAV8-RS1 gene transfer to the retina of adult XLRS mice, TRPM1 and the signaling molecules returned to their proper dendritic tip location, and the DBC resting membrane potential was restored. These findings provide insight into the molecular plasticity of a critical synapse in the visual system and demonstrate potential therapeutic avenues for some diseases involving synaptic pathology.

  15. Oxidation-induced unfolding facilitates Myosin cross-linking in myofibrillar protein by microbial transglutaminase.

    Science.gov (United States)

    Li, Chunqiang; Xiong, Youling L; Chen, Jie

    2012-08-15

    Myofibrillar protein from pork Longissimus muscle was oxidatively stressed for 2 and 24 h at 4 °C with mixed 10 μM FeCl(3)/100 μM ascorbic acid/1, 5, or 10 mM H(2)O(2) (which produces hydroxyl radicals) and then treated with microbial transglutaminase (MTG) (E:S = 1:20) for 2 h at 4 °C. Oxidation induced significant protein structural changes (P activity, elevated Ca-ATPase activity, increased carbonyl and disulfide contents, and reduced conformational stability, all in a H(2)O(2) dose-dependent manner. The structural alterations, notably with mild oxidation, led to stronger MTG catalysis. More substantial amine reductions (19.8-27.6%) at 1 mM H(2)O(2) occurred as compared to 11.6% in nonoxidized samples (P < 0.05) after MTG treatment. This coincided with more pronounced losses of myosin in oxidized samples (up to 33.2%) as compared to 21.1% in nonoxidized (P < 0.05), which was attributed to glutamine-lysine cross-linking as suggested by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

  16. ANKS1B Gene Product AIDA-1 Controls Hippocampal Synaptic Transmission by Regulating GluN2B Subunit Localization.

    Science.gov (United States)

    Tindi, Jaafar O; Chávez, Andrés E; Cvejic, Svetlana; Calvo-Ochoa, Erika; Castillo, Pablo E; Jordan, Bryen A

    2015-06-17

    NMDA receptors (NMDARs) are key mediators of glutamatergic transmission and synaptic plasticity, and their dysregulation has been linked to diverse neuropsychiatric and neurodegenerative disorders. While normal NMDAR function requires regulated expression and trafficking of its different subunits, the molecular mechanisms underlying these processes are not fully understood. Here we report that the amyloid precursor protein intracellular domain associated-1 protein (AIDA-1), which associates with NMDARs and is encoded by ANKS1B, a gene recently linked to schizophrenia, regulates synaptic NMDAR subunit composition. Forebrain-specific AIDA-1 conditional knock-out (cKO) mice exhibit reduced GluN2B-mediated and increased GluN2A-mediated synaptic transmission, and biochemical analyses show AIDA-1 cKO mice have low GluN2B and high GluN2A protein levels at isolated hippocampal synaptic junctions compared with controls. These results are corroborated by immunocytochemical and electrophysiological analyses in primary neuronal cultures following acute lentiviral shRNA-mediated knockdown of AIDA-1. Moreover, hippocampal NMDAR-dependent but not metabotropic glutamate receptor-dependent plasticity is impaired in AIDA-1 cKO mice, further supporting a role for AIDA-1 in synaptic NMDAR function. We also demonstrate that AIDA-1 preferentially associates with GluN2B and with the adaptor protein Ca(2+)/calmodulin-dependent serine protein kinase and kinesin KIF17, which regulate the transport of GluN2B-containing NMDARs from the endoplasmic reticulum (ER) to synapses. Consistent with this function, GluN2B accumulates in ER-enriched fractions in AIDA-1 cKO mice. These findings suggest that AIDA-1 regulates NMDAR subunit composition at synapses by facilitating transport of GluN2B from the ER to synapses, which is critical for NMDAR plasticity. Our work provides an explanation for how AIDA-1 dysfunction might contribute to neuropsychiatric conditions, such as schizophrenia. Copyright

  17. Circadian Regulation of Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Marcos G. Frank

    2016-07-01

    Full Text Available Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity.

  18. Co-Application of Corticosterone and Growth Hormone Upregulates NR2B Protein and Increases the NR2B:NR2A Ratio and Synaptic Transmission in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Ghada S. Mahmoud

    2014-10-01

    Full Text Available Objectives: This in vitro study aimed to investigate the possible mechanism underlying the protective effect of growth hormone (GH on hippocampal function during periods of heightened glucocorticoid exposure. Methods: This study was conducted between January and June 2005 at the Joan C. Edwards School of Medicine, Marshall University, in Huntington, West Virginia, USA. The effects of the co-application of GH and corticosterone (CORT were tested at different concentrations on the field excitatory postsynaptic potentials (fEPSPs of the hippocampal slices of rats in two different age groups. Changes in the protein expression of N-methyl-D-aspartate receptor (NMDAR subunits NR1, NR2B and NR2A were measured in hippocampal brain slices treated with either artificial cerebrospinal fluid (ACSF, low doses of CORT alone or both CORT and GH for three hours. Results: The co-application of CORT and GH was found to have an additive effect on hippocampal synaptic transmission compared to either drug alone. Furthermore, the combined use of low concentrations of GH and CORT was found to have significantly higher effects on the enhancement of fEPSPs in older rats compared to young ones. Both GH and CORT enhanced the protein expression of the NR2A subunit. Simultaneous exposure to low concentrations of GH and CORT significantly enhanced NR2B expression and increased the NR2B:NR2A ratio. In contrast, perfusion with CORT alone caused significant suppression in the NR1 and NR2B protein expression and a decrease in the NR2B:NR2A ratio. Conclusion: These results suggest that NMDARs provide a potential target for mediating the GH potential protective effect against stress and age-related memory and cognitive impairment.

  19. Transgenic Mice Expressing a Truncated Form of CREB-Binding Protein (CBP) Exhibit Deficits in Hippocampal Synaptic Plasticity and Memory Storage

    Science.gov (United States)

    Wood, Marcelo A.; Kaplan, Michael P.; Park, Alice; Blanchard, Edward J.; Oliveira, Ana M. M.; Lombardi, Thomas L.; Abel, Ted

    2005-01-01

    Deletions, translocations, or point mutations in the CREB-binding protein (CBP) gene have been associated with Rubinstein-Taybi Syndrome; a human developmental disorder characterized by retarded growth and reduced mental function. To examine the role of CBP in memory, transgenic mice were generated in which the CaMKII[alpha] promoter drives…

  20. PSD-95 and PSD-93 Play Critical but Distinct Roles in Synaptic Scaling Up and Down

    Science.gov (United States)

    Sun, Qian; Turrigiano, Gina G.

    2011-01-01

    Synaptic scaling stabilizes neuronal firing through the homeostatic regulation of postsynaptic strength, but the mechanisms by which chronic changes in activity lead to bidirectional adjustments in synaptic AMPAR abundance are incompletely understood. Further, it remains unclear to what extent scaling up and scaling down utilize distinct molecular machinery. PSD-95 is a scaffold protein proposed to serve as a binding “slot” that determines synaptic AMPAR content, and synaptic PSD-95 abundance is regulated by activity, raising the possibility that activity-dependent changes in the synaptic abundance of PSD-95 or other MAGUKs drives the bidirectional changes in AMPAR accumulation during synaptic scaling. We found that synaptic PSD-95 and SAP102 (but not PSD-93) abundance were bidirectionally regulated by activity, but these changes were not sufficient to drive homeostatic changes in synaptic strength. Although not sufficient, the PSD-95-MAGUKs were necessary for synaptic scaling, but scaling up and down were differentially dependent on PSD-95 and PSD-93. Scaling down was completely blocked by reduced or enhanced PSD-95, through a mechanism that depended on the PDZ1/2 domains. In contrast scaling up could be supported by either PSD-95 or PSD-93 in a manner that depended on neuronal age, and was unaffected by a superabundance of PSD-95. Taken together, our data suggest that scaling up and down of quantal amplitude is not driven by changes in synaptic abundance of PSD-95-MAGUKs, but rather that the PSD-95 MAGUKs serve as critical synaptic organizers that utilize distinct protein-protein interactions to mediate homeostatic accumulation and loss of synaptic AMPAR. PMID:21543610

  1. A novel mass spectrometric strategy "BEMAP" reveals Extensive O-linked protein glycosylation in Enterotoxigenic Escherichia coli

    DEFF Research Database (Denmark)

    Boysen, Anders; Palmisano, Giuseppe; Krogh, Thøger Jensen

    2016-01-01

    The attachment of sugars to proteins via side-chain oxygen atoms (O-linked glycosylation) is seen in all three domains of life. However, a lack of widely-applicable analytical tools has restricted the study of this process, particularly in bacteria. In E. coli, only four O-linked glycoproteins have......-spectrometric identification of proteins with O-linked glycan modifications in a complex biological sample. Using BEMAP we identified cell surface-associated and membrane vesicle glycoproteins from Enterotoxigenic E. coli (ETEC) and non-pathogenic E. coli K-12. We identified 618 glycosylated Serine and Threonine residues...... mapping to 140 proteins in ETEC, including several known virulence factors, and 34 in E. coli K-12. The two strains had 32 glycoproteins in common. Remarkably, the majority of the ETEC glycoproteins were conserved in both strains but nevertheless were only glycosylated in the pathogen. Therefore...

  2. Catalytic autoantibodies against myelin basic protein (MBP) isolated from serum of autistic children impair in vitro models of synaptic plasticity in rat hippocampus.

    Science.gov (United States)

    Gonzalez-Gronow, Mario; Cuchacovich, Miguel; Francos, Rina; Cuchacovich, Stephanie; Blanco, Angel; Sandoval, Rodrigo; Gomez, Cristian Farias; Valenzuela, Javier A; Ray, Rupa; Pizzo, Salvatore V

    2015-10-15

    Autoantibodies from autistic spectrum disorder (ASD) patients react with multiple proteins expressed in the brain. One such autoantibody targets myelin basic protein (MBP). ASD patients have autoantibodies to MBP of both the IgG and IgA classes in high titers, but no autoantibodies of the IgM class. IgA autoantibodies act as serine proteinases and degrade MBP in vitro. They also induce a decrease in long-term potentiation in the hippocampi of rats either perfused with or previously inoculated with this IgA. Because this class of autoantibody causes myelin sheath destruction in multiple sclerosis (MS), we hypothesized a similar pathological role for them in ASD. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Endocannabinoid signaling and synaptic function

    Science.gov (United States)

    Castillo, Pablo E.; Younts, Thomas J.; Chávez, Andrés E.; Hashimotodani, Yuki

    2012-01-01

    Endocannabinoids are key modulators of synaptic function. By activating cannabinoid receptors expressed in the central nervous system, these lipid messengers can regulate several neural functions and behaviors. As experimental tools advance, the repertoire of known endocannabinoid-mediated effects at the synapse, and their underlying mechanism, continues to expand. Retrograde signaling is the principal mode by which endocannabinoids mediate short- and long-term forms of plasticity at both excitatory and inhibitory synapses. However, growing evidence suggests that endocannabinoids can also signal in a non-retrograde manner. In addition to mediating synaptic plasticity, the endocannabinoid system is itself subject to plastic changes. Multiple points of interaction with other neuromodulatory and signaling systems have now been identified. Synaptic endocannabinoid signaling is thus mechanistically more complex and diverse than originally thought. In this review, we focus on new advances in endocannabinoid signaling and highlight their role as potent regulators of synaptic function in the mammalian brain. PMID:23040807

  4. Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-beta load in an Alzheimer's disease mouse model.

    Science.gov (United States)

    Puzzo, Daniela; Staniszewski, Agnieszka; Deng, Shi Xian; Privitera, Lucia; Leznik, Elena; Liu, Shumin; Zhang, Hong; Feng, Yan; Palmeri, Agostino; Landry, Donald W; Arancio, Ottavio

    2009-06-24

    Memory loss, synaptic dysfunction, and accumulation of amyloid beta-peptides (A beta) are major hallmarks of Alzheimer's disease (AD). Downregulation of the nitric oxide/cGMP/cGMP-dependent protein kinase/c-AMP responsive element-binding protein (CREB) cascade has been linked to the synaptic deficits after A beta elevation. Here, we report that the phosphodiesterase 5 inhibitor (PDE5) sildenafil (Viagra), a molecule that enhances phosphorylation of CREB, a molecule involved in memory, through elevation of cGMP levels, is beneficial against the AD phenotype in a mouse model of amyloid deposition. We demonstrate that the inhibitor produces an immediate and long-lasting amelioration of synaptic function, CREB phosphorylation, and memory. This effect is also associated with a long-lasting reduction of A beta levels. Given that side effects of PDE5 inhibitors are widely known and do not preclude their administration to a senile population, these drugs have potential for the treatment of AD and other diseases associated with elevated A beta levels.

  5. Intercellular protein-protein interactions at synapses.

    Science.gov (United States)

    Yang, Xiaofei; Hou, Dongmei; Jiang, Wei; Zhang, Chen

    2014-06-01

    Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.

  6. Distinct Subunit Domains Govern Synaptic Stability and Specificity of the Kainate Receptor

    Directory of Open Access Journals (Sweden)

    Christoph Straub

    2016-07-01

    Full Text Available Synaptic communication between neurons requires the precise localization of neurotransmitter receptors to the correct synapse type. Kainate-type glutamate receptors restrict synaptic localization that is determined by the afferent presynaptic connection. The mechanisms that govern this input-specific synaptic localization remain unclear. Here, we examine how subunit composition and specific subunit domains contribute to synaptic localization of kainate receptors. The cytoplasmic domain of the GluK2 low-affinity subunit stabilizes kainate receptors at synapses. In contrast, the extracellular domain of the GluK4/5 high-affinity subunit synergistically controls the synaptic specificity of kainate receptors through interaction with C1q-like proteins. Thus, the input-specific synaptic localization of the native kainate receptor complex involves two mechanisms that underlie specificity and stabilization of the receptor at synapses.

  7. Histone Deacetylase Inhibition Facilitates Massed Pattern-Induced Synaptic Plasticity and Memory

    Science.gov (United States)

    Pandey, Kiran; Sharma, Kaushik P.; Sharma, Shiv K.

    2015-01-01

    Massed training is less effective for long-term memory formation than the spaced training. The role of acetylation in synaptic plasticity and memory is now well established. However, the role of this important protein modification in synaptic plasticity induced by massed pattern of stimulation or memory induced by massed training is not well…

  8. Mutational and protein analysis of patients and heterozygous women with X-linked adrenoleukodystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Feigenbaum, V.; Guidoux, S.; Aubourg, P. [Hospital Saint-Vincent de Paul, Paris (France)] [and others

    1996-06-01

    X-linked adrenoleukodystrophy (ALD), a neurodegenerative disorder associated with impaired {beta}-oxidation of very-long-chain fatty acids (VLCFA), is due to mutations in a gene encoding a peroxisomal ATP-binding cassette (ABC) transporter (ALD protein [ALDP]). We analyzed the open reading frame of the ALD gene in 44 French ALD kindred by using SSCP or denaturing gradient-gel electrophoresis and studied the effect of mutations on ALDP by immunocytofluorescence and western blotting of fibroblasts and/or white blood cells. Mutations were detected in 37 of 44 kindreds and were distributed over the whole protein-coding region, with the exception of the C terminus encoded in exon 10. Except for two mutations (delAG1801 and P560L) observed four times each, nearly every ALD family has a different mutation. Twenty-four of 37 mutations were missense mutations leading to amino acid changes located in or close to putative transmembrane segments (TMS 2, 3, 4, and 5), in the EAA-like motif and in the nucleotide fold of the ATP-binding domain of ALDP. Of 38 ALD patients tested, 27 (71%) lacked ALDP immunoreactivity in their fibroblasts and/or white blood cells. More than half of missense mutations studied (11 of 21) resulted in a complete lack of ALDP immunoreactivity, and six missense mutations resulted in decreased ALDP expression. The fibroblasts and/or white blood cells of 15 of 15 heterozygous carrier from ALD kindred with no ALDP showed a mixture of positive- and negative-ALDP immunoreactivity due to X-inactivation. Since 5%-15% of heterozygous women have normal VLCFA levels, the immunodetection of ALDP in white blood cells can be applicable in a majority of ALD kindred, to identify heterozygous women, particularly when the ALD gene mutation has not yet been identified. 35 refs., 2 figs., 2 tabs.

  9. Recovery and upgrading bovine rumen protein by extrusion: effect of lipid content on protein disulphide cross-linking, solubility and molecular weight.

    Science.gov (United States)

    Vaz, L C M A; Arêas, J A G

    2010-01-01

    Bovine rumen protein with two levels of residual lipids (1.9% or 3.8%) was subjected to thermoplastic extrusion under different temperatures and moisture contents. Protein solubility in different buffers, disulphide cross-linking and molecular weight distribution were determined on the extrudates. After extrusion, samples with 1.9% residual lipids content had a higher concentration of protein insoluble by undetermined forces, irrespective of feed moisture and processing temperature used. Lipid content of 3.8% in the feed material resulted in more protein participating in the extrudate network through non-covalent interactions (hydrophobic and electrostatic) and disulphide bonds. A small dependency of the extrusion process on moisture and temperature and a marked dependency on lipid content, especially phospholipid, was observed, Electrophoresis under non-reducing conditions showed that protein extrusion with low feed moisture promoted high molecular breakdown inside the barrel, probably due to intense shear force, and further protein aggregation at the die end.

  10. Synaptic mRNAs are modulated by learning.

    Science.gov (United States)

    Ferrara, Eugenia; Cefaliello, Carolina; Eyman, Maria; De Stefano, Rosanna; Giuditta, Antonio; Crispino, Marianna

    2009-07-01

    We have recently demonstrated that brain plastic events significantly modify synaptic protein synthesis measured by the incorporation of [(35)S]methionine in brain synaptosomal proteins. Notably, in rats learning a two-way active avoidance task, the local synthesis of two synaptic proteins was selectively enhanced. Because this effect may be attributed to transcriptional modulation, we used reverse transcriptase-polymerase chain reaction methods to determine the content of discrete synaptosomal mRNAs in rats exposed to the same training protocol. Correlative analyses between behavioral responses and synaptosomal mRNA content showed that GAT-1 mRNA (a prevalent presynaptic component) correlates with avoidances and escapes in rat cerebellum, while glial fibrillary acid protein mRNA (an astrocytic component) correlates with freezings in cerebellum and cerebral cortex. These observations support the hypothesis that synaptic protein synthesis may be transcriptionally regulated. The cellular origin of synaptic transcripts is briefly discussed, with special regard to those present at large distances from neuron somas. (c) 2009 Wiley-Liss, Inc.

  11. ZATT (ZNF451)-mediated resolution of topoisomerase 2 DNA-protein cross-links.

    Science.gov (United States)

    Schellenberg, Matthew J; Lieberman, Jenna Ariel; Herrero-Ruiz, Andrés; Butler, Logan R; Williams, Jason G; Muñoz-Cabello, Ana M; Mueller, Geoffrey A; London, Robert E; Cortés-Ledesma, Felipe; Williams, R Scott

    2017-09-29

    Topoisomerase 2 (TOP2) DNA transactions proceed via formation of the TOP2 cleavage complex (TOP2cc), a covalent enzyme-DNA reaction intermediate that is vulnerable to trapping by potent anticancer TOP2 drugs. How genotoxic TOP2 DNA-protein cross-links are resolved is unclear. We found that the SUMO (small ubiquitin-related modifier) ligase ZATT (ZNF451) is a multifunctional DNA repair factor that controls cellular responses to TOP2 damage. ZATT binding to TOP2cc facilitates a proteasome-independent tyrosyl-DNA phosphodiesterase 2 (TDP2) hydrolase activity on stalled TOP2cc. The ZATT SUMO ligase activity further promotes TDP2 interactions with SUMOylated TOP2, regulating efficient TDP2 recruitment through a "split-SIM" SUMO2 engagement platform. These findings uncover a ZATT-TDP2-catalyzed and SUMO2-modulated pathway for direct resolution of TOP2cc. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production

    Science.gov (United States)

    Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; Buttini, Manuel; Linster, Carole L.; Medina, Eva; Balling, Rudi; Hiller, Karsten

    2013-01-01

    Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production. PMID:23610393

  13. Frequency of Synaptic Autoantibody Accompaniments and Neurological Manifestations of Thymoma.

    Science.gov (United States)

    Zekeridou, Anastasia; McKeon, Andrew; Lennon, Vanda A

    2016-07-01

    Thymoma is commonly recognized in association with paraneoplastic autoimmune myasthenia gravis (MG), an IgG-mediated impairment of synaptic transmission targeting the nicotinic acetylcholine receptor of muscle. Newly identified synaptic autoantibodies may expand the serological profile of thymoma. To investigate the frequency of potentially pathogenic neural synaptic autoantibodies in patients with thymoma. We retrospectively identified patients with histopathologically confirmed thymoma and serum available to test for synaptic autoantibodies (collected 1986-2014) at the Mayo Clinic Neuroimmunology Laboratory. We identified and classified 193 patients with thymoma into 4 groups: (1) lacking neurological autoimmunity (n = 43); (2) isolated MG (n = 98); (3) MG plus additional autoimmune neurological manifestations (n = 26); and (4) neurological autoimmunity other than MG (n = 26). Clinical presentation and serum profile of autoantibodies reactive with molecularly defined synaptic plasma membrane proteins of muscle, peripheral, and central nervous systems. Of the 193 patients with thymoma, mean patient age was 52 years and did not significantly differ by sex (106 women) or group. Myasthenia gravis was the most prevalent clinical manifestation (64%) followed by dysautonomia (16 patients [8%]) and encephalopathy (15 patients [8%]); 164 patients (85%) had at least 1 synaptic autoantibody, and 63 of these patients (38%) had at least 1 more. Muscle acetylcholine receptor was most frequent (78%), followed by ganglionic acetylcholine receptor (20%), voltage-gated Kv1 potassium channel-complex (13%), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (5%). Less frequent were aquaporin-4, voltage-gated Kv1 potassium channel-complex related proteins (leucine-rich glioma-inactivated 1 and contactin-associated protein-like 2), glycine receptor, and γ-aminobutyric acid-A receptor. Synaptic autoantibodies were significantly more frequent in patients

  14. Mass spectrometric analysis of a UV-cross-linked protein-DNA complex: tryptophans 54 and 88 of E. coli SSB cross-link to DNA

    DEFF Research Database (Denmark)

    Steen, Hanno; Petersen, Jørgen; Mann, Matthias

    2001-01-01

    acid and peptide entities present in such heteroconjugates. Sample preparation of the peptide-nucleic acid heteroconjugates is, therefore, a crucial step in any mass spectrometry-based analytical procedure. This study demonstrates the performance of four different MS-based strategies to characterize E....... coli single-stranded DNA binding protein (SSB) that was UV-cross-linked to a 5-iodouracil containing DNA oligomer. Two methods were optimized to circumvent the need for standard liquid chromatography and gel electrophoresis, thereby dramatically increasing the overall sensitivity of the analysis...

  15. Leucine-rich repeat-containing synaptic adhesion molecules as organizers of synaptic specificity and diversity.

    Science.gov (United States)

    Schroeder, Anna; de Wit, Joris

    2018-04-09

    The brain harbors billions of neurons that form distinct neural circuits with exquisite specificity. Specific patterns of connectivity between distinct neuronal cell types permit the transfer and computation of information. The molecular correlates that give rise to synaptic specificity are incompletely understood. Recent studies indicate that cell-surface molecules are important determinants of cell type identity and suggest that these are essential players in the specification of synaptic connectivity. Leucine-rich repeat (LRR)-containing adhesion molecules in particular have emerged as key organizers of excitatory and inhibitory synapses. Here, we discuss emerging evidence that LRR proteins regulate the assembly of specific connectivity patterns across neural circuits, and contribute to the diverse structural and functional properties of synapses, two key features that are critical for the proper formation and function of neural circuits.

  16. Expression of cAMP-responsive element binding proteins (CREBs) in fast- and slow-twitch muscles: a signaling pathway to account for the synaptic expression of collagen-tailed subunit (ColQ) of acetylcholinesterase at the rat neuromuscular junction.

    Science.gov (United States)

    Choi, Roy C Y; Chen, Vicky P; Luk, Wilson K W; Yung, Amanda W Y; Ng, Alice H M; Dong, Tina T X; Tsim, Karl W K

    2013-03-25

    The gene encoding the collagen-tailed subunit (ColQ) of acetylcholinesterase (AChE) contains two distinct promoters that drive the production of two ColQ mRNAs, ColQ-1 and ColQ-1a, in slow- and fast-twitch muscles, respectively. ColQ-1a is expressed at the neuromuscular junction (NMJ) in fast-twitch muscle, and this expression depends on trophic factors supplied by motor neurons signaling via a cAMP-dependent pathway in muscle. To further elucidate the molecular basis of ColQ-1a's synaptic expression, here we investigated the expression and localization of cAMP-responsive element binding protein (CREB) at the synaptic and extra-synaptic regions of fast- and slow-twitch muscles from adult rats. The total amount of active, phosphorylated CREB (P-CREB) present in slow-twitch soleus muscle was higher than that in fast-twitch tibialis muscle, but P-CREB was predominantly expressed in the fast-twitch muscle at NMJs. In contrast, P-CREB was detected in both synaptic and extra-synaptic regions of slow-twitch muscle. These results reveal, for the first time, the differential distribution of P-CREB in fast- and slow-twitch muscles, which might support the crucial role of cAMP-dependent signaling in controlling the synapse-specific expression of ColQ-1a in fast-twitch muscles. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Effect of Oxidation and Protein Unfolding on Cross-Linking of β-Lactoglobulin and α-Lactalbumin

    DEFF Research Database (Denmark)

    Krämer, Anna C; Torreggiani, Armida; Davies, Michael J

    2017-01-01

    investigated whether and how individual or combined treatment with heat, a commonly encountered factor in industrial processing, and H2O2 alters the structure and composition of two major milk whey proteins, α-lactalbumin and β-lactoglobulin, and mixtures of these. Thermal treatment induced reducible cross......-links in isolated β-lactoglobulin, but not isolated α-lactalbumin under the conditions employed. Cross-linking occurred at lower temperatures and to a greater extent in the presence of low concentrations of H2O2. H2O2 did not induce cross-linking in the absence of heat. Mixtures of α-lactalbumin and β...... in the presence of both heat and H2O2. The enhanced aggregation detected with H2O2 is consistent with additional pathways to aggregation above that induced by heat alone. These mechanistic insights provide potential strategies for modulating the extent and nature of protein modification induced by thermal...

  18. Interplay between human high mobility group protein 1 and replication protein A on psoralen-cross-linked DNA

    DEFF Research Database (Denmark)

    Reddy, Madhava C; Christensen, Jesper; Vasquez, Karen M

    2005-01-01

    Human high mobility group box (HMGB) 1 and -2 proteins are highly conserved and abundant chromosomal proteins that regulate chromatin structure and DNA metabolism. HMGB proteins bind preferentially to DNA that is bent or underwound and to DNA damaged by agents such as cisplatin, UVC radiation...

  19. Inhibition of hippocampal synaptic transmission by impairment of Ral function

    DEFF Research Database (Denmark)

    Owe-Larsson, Björn; Chaves-Olarte, Esteban; Chauhan, Ashok

    2005-01-01

    Large clostridial cytotoxins and protein overexpression were used to probe for involvement of Ras-related GTPases (guanosine triphosphate) in synaptic transmission in cultured rat hippocampal neurons. The toxins TcdA-10463 (inactivates Rho, Rac, Cdc42, Rap) and TcsL-1522 (inactivates Ral, Rac, Ra...

  20. Modulator of Apoptosis 1 (MOAP-1) Is a Tumor Suppressor Protein Linked to the RASSF1A Protein*

    OpenAIRE

    Law, Jennifer; Salla, Mohamed; Zare, Alaa; Wong, Yoke; Luong, Le; Volodko, Natalia; Svystun, Orysya; Flood, Kayla; Lim, Jonathan; Sung, Miranda; Dyck, Jason R. B.; Tan, Chong Teik; Su, Yu-Chin; Yu, Victor C.; Mackey, John

    2015-01-01

    Modulator of apoptosis 1 (MOAP-1) is a BH3-like protein that plays key roles in cell death or apoptosis. It is an integral partner to the tumor suppressor protein, Ras association domain family 1A (RASSF1A), and functions to activate the Bcl-2 family pro-apoptotic protein Bax. Although RASSF1A is now considered a bona fide tumor suppressor protein, the role of MOAP-1 as a tumor suppressor protein has yet to be determined. In this study, we present several lines of evidence from cancer databas...

  1. Enzyme-linked immunosorbent assays for insulin-like growth factor-I using six-histidine tag fused proteins

    International Nuclear Information System (INIS)

    Huang Yong; Shi Ruina; Zhong Xuefei; Wang Dan; Zhao Meiping; Li Yuanzong

    2007-01-01

    The fusion proteins of insulin-like growth factor-I (IGF-I) and six-histidine tag (IGF-I-6H, 6H-IGF-I-6H) were cloned, expressed, purified and renatured, with their immunoreaction properties and biological activities intact. The binding kinetics between these fusion proteins and anti-IGF-I antibody or anti-6H antibody were studied using surface plasmon resonance (SPR). Two enzyme-linked immunosorbent assay (ELISA) modes, which proved feasible in the measurement of human serum samples, were used to detect IGF-I with the help of the six-histidine tagged proteins. Furthermore, combining the production technique of the six-histidine tagged fusion protein with the competitive sandwich ELISA mode, using an enzyme labeled anti-6H antibody as a tracer, can be a universal immunochemical method to quantitate other polypeptides or proteins

  2. Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function.

    Science.gov (United States)

    Stauch, Kelly L; Purnell, Phillip R; Fox, Howard S

    2014-04-01

    Aging correlates with a progressive impairment of mitochondrial homeostasis and is an influential factor for several forms of neurodegeneration. However, the mechanisms underlying age-related alterations in synaptosomal mitochondria, a neuronal mitochondria population highly susceptible to insults and critical for brain function, remain incompletely understood. Therefore this study investigates the synaptic mitochondrial proteomic and bioenergetic alterations that occur with age. The utilization of a state of the art quantitative proteomics approach allowed for the comparison of protein expression levels in synaptic mitochondria isolated from 5 (mature), 12 (old), and 24 (aged) month old mice. During the process of aging we find that dynamic proteomic alterations occur in synaptic mitochondria. Despite direct (mitochondrial DNA deletions) and indirect (increased antioxidant protein levels) signs of mitochondrial damage in the aged mice, there was an overall maintenance of mitochondrial function. Therefore the synaptic mitochondrial proteomic changes that occur with aging correlate with preservation of synaptic mitochondrial function.

  3. Synaptic Democracy and Vesicular Transport in Axons

    Science.gov (United States)

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  4. A repeat protein links Rubisco to form the eukaryotic carbon-concentrating organelle.

    Science.gov (United States)

    Mackinder, Luke C M; Meyer, Moritz T; Mettler-Altmann, Tabea; Chen, Vivian K; Mitchell, Madeline C; Caspari, Oliver; Freeman Rosenzweig, Elizabeth S; Pallesen, Leif; Reeves, Gregory; Itakura, Alan; Roth, Robyn; Sommer, Frederik; Geimer, Stefan; Mühlhaus, Timo; Schroda, Michael; Goodenough, Ursula; Stitt, Mark; Griffiths, Howard; Jonikas, Martin C

    2016-05-24

    Biological carbon fixation is a key step in the global carbon cycle that regulates the atmosphere's composition while producing the food we eat and the fuels we burn. Approximately one-third of global carbon fixation occurs in an overlooked algal organelle called the pyrenoid. The pyrenoid contains the CO2-fixing enzyme Rubisco and enhances carbon fixation by supplying Rubisco with a high concentration of CO2 Since the discovery of the pyrenoid more that 130 y ago, the molecular structure and biogenesis of this ecologically fundamental organelle have remained enigmatic. Here we use the model green alga Chlamydomonas reinhardtii to discover that a low-complexity repeat protein, Essential Pyrenoid Component 1 (EPYC1), links Rubisco to form the pyrenoid. We find that EPYC1 is of comparable abundance to Rubisco and colocalizes with Rubisco throughout the pyrenoid. We show that EPYC1 is essential for normal pyrenoid size, number, morphology, Rubisco content, and efficient carbon fixation at low CO2 We explain the central role of EPYC1 in pyrenoid biogenesis by the finding that EPYC1 binds Rubisco to form the pyrenoid matrix. We propose two models in which EPYC1's four repeats could produce the observed lattice arrangement of Rubisco in the Chlamydomonas pyrenoid. Our results suggest a surprisingly simple molecular mechanism for how Rubisco can be packaged to form the pyrenoid matrix, potentially explaining how Rubisco packaging into a pyrenoid could have evolved across a broad range of photosynthetic eukaryotes through convergent evolution. In addition, our findings represent a key step toward engineering a pyrenoid into crops to enhance their carbon fixation efficiency.

  5. The yeast SR-like protein Npl3 links chromatin modification to mRNA processing.

    Directory of Open Access Journals (Sweden)

    Erica A Moehle

    Full Text Available Eukaryotic gene expression involves tight coordination between transcription and pre-mRNA splicing; however, factors responsible for this coordination remain incompletely defined. Here, we explored the genetic, functional, and biochemical interactions of a likely coordinator, Npl3, an SR-like protein in Saccharomyces cerevisiae that we recently showed is required for efficient co-transcriptional recruitment of the splicing machinery. We surveyed the NPL3 genetic interaction space and observed a significant enrichment for genes involved in histone modification and chromatin remodeling. Specifically, we found that Npl3 genetically interacts with both Bre1, which mono-ubiquitinates histone H2B as part of the RAD6 Complex, and Ubp8, the de-ubiquitinase of the SAGA Complex. In support of these genetic data, we show that Bre1 physically interacts with Npl3 in an RNA-independent manner. Furthermore, using a genome-wide splicing microarray, we found that the known splicing defect of a strain lacking Npl3 is exacerbated by deletion of BRE1 or UBP8, a phenomenon phenocopied by a point mutation in H2B that abrogates ubiquitination. Intriguingly, even in the presence of wild-type NPL3, deletion of BRE1 exhibits a mild splicing defect and elicits a growth defect in combination with deletions of early and late splicing factors. Taken together, our data reveal a connection between Npl3 and an extensive array of chromatin factors and describe an unanticipated functional link between histone H2B ubiquitination and pre-mRNA splicing.

  6. Protein Oxidation Levels After Different Corneal Collagen Cross-Linking Methods.

    Science.gov (United States)

    Turkcu, Ummuhani Ozel; Yuksel, Nilay; Novruzlu, Sahin; Yalinbas, Duygu; Bilgihan, Ayse; Bilgihan, Kamil

    2016-03-01

    To evaluate advanced oxidation protein products (AOPP) levels, superoxide dismutase (SOD) enzyme activity, and total sulfhydryl (TSH) levels in rabbit corneas after different corneal collagen cross-linking (CXL) methods. Eighteen eyes of 9 adult New Zealand rabbits were divided into 3 groups of 6 eyes. The standard CXL group was continuously exposed to UV-A at a power setting of 3 mW/cm for 30 minutes. The accelerated CXL (A-CXL) group was continuously exposed to UV-A at a power setting of 30 mW/cm for 3 minutes. The pulse light-accelerated CXL (PLA-CXL) group received UV-A at a power setting of 30 mW/cm for 6 minutes of pulsed exposure (1 second on, 1 second off). Corneas were obtained after 1 hour of UV-A exposure, and 360-degree keratotomy was performed. SOD enzyme activity, AOPP, and TSH levels were measured in the corneal tissues. Compared with the standard CXL and A-CXL groups (133.2 ± 8.5 and 140.2 ± 6.2 μmol/mg, respectively), AOPP levels were found to be significantly increased in the PLA-CXL group (230.7 ± 30.2 μmol/mg) (P = 0.005 and 0.009, respectively). SOD enzyme activities and TSH levels did not differ between the groups (P = 0.167 and 0.187, respectively). CXL creates covalent bonds between collagen fibers because of reactive oxygen species. This means that more oxygen concentration during the CXL method will produce more reactive oxygen species and, thereby, AOPP. This means that in which CXL method occurs in more oxygen concentration that will produce more reactive oxygen species and thereby AOPP. This study demonstrated that PLA-CXL results in more AOPP formation than did standard CXL and A-CXL.

  7. Differential regulation of wild-type and mutant alpha-synuclein binding to synaptic membranes by cytosolic factors

    Directory of Open Access Journals (Sweden)

    Figeys Daniel

    2008-09-01

    Full Text Available Abstract Background Alpha-Synuclein (α-syn, a 140 amino acid protein associated with presynaptic membranes in brain, is a major constituent of Lewy bodies in Parkinson's disease (PD. Three missense mutations (A30P, A53T and E46K in the α-syn gene are associated with rare autosomal dominant forms of familial PD. However, the regulation of α-syn's cellular localization in neurons and the effects of the PD-linked mutations are poorly understood. Results In the present study, we analysed the ability of cytosolic factors to regulate α-syn binding to synaptic membranes. We show that co-incubation with brain cytosol significantly increases the membrane binding of normal and PD-linked mutant α-syn. To characterize cytosolic factor(s that modulate α-syn binding properties, we investigated the ability of proteins, lipids, ATP and calcium to modulate α-syn membrane interactions. We report that lipids and ATP are two of the principal cytosolic components that modulate Wt and A53T α-syn binding to the synaptic membrane. We further show that 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (C16:0 PAF is one of the principal lipids found in complex with cytosolic proteins and is required to enhance α-syn interaction with synaptic membrane. In addition, the impaired membrane binding observed for A30P α-syn was significantly mitigated by the presence of protease-sensitive factors in brain cytosol. Conclusion These findings suggest that endogenous brain cytosolic factors regulate Wt and mutant α-syn membrane binding, and could represent potential targets to influence α-syn solubility in brain.

  8. Human Brain-Derived Aβ Oligomers Bind to Synapses and Disrupt Synaptic Activity in a Manner That Requires APP.

    Science.gov (United States)

    Wang, Zemin; Jackson, Rosemary J; Hong, Wei; Taylor, Walter M; Corbett, Grant T; Moreno, Arturo; Liu, Wen; Li, Shaomin; Frosch, Matthew P; Slutsky, Inna; Young-Pearse, Tracy L; Spires-Jones, Tara L; Walsh, Dominic M

    2017-12-06

    Compelling genetic evidence links the amyloid precursor protein (APP) to Alzheimer's disease (AD) and several theories have been advanced to explain the relationship. A leading hypothesis proposes that a small amphipathic fragment of APP, the amyloid β-protein (Aβ), self-associates to form soluble aggregates that impair synaptic and network activity. Here, we used the most disease-relevant form of Aβ, protein isolated from AD brain. Using this material, we show that the synaptotoxic effects of Aβ depend on expression of APP and that the Aβ-mediated impairment of synaptic plasticity is accompanied by presynaptic effects that disrupt the excitatory/inhibitory (E/I) balance. The net increase in the E/I ratio and inhibition of plasticity are associated with Aβ localizing to synapses and binding of soluble Aβ aggregates to synapses requires the expression of APP. Our findings indicate a role for APP in AD pathogenesis beyond the generation of Aβ and suggest modulation of APP expression as a therapy for AD. SIGNIFICANCE STATEMENT Here, we report on the plasticity-disrupting effects of amyloid β-protein (Aβ) isolated from Alzheimer's disease (AD) brain and the requirement of amyloid precursor protein (APP) for these effects. We show that Aβ-containing AD brain extracts block hippocampal LTP, augment glutamate release probability, and disrupt the excitatory/inhibitory balance. These effects are associated with Aβ localizing to synapses and genetic ablation of APP prevents both Aβ binding and Aβ-mediated synaptic dysfunctions. Our results emphasize the importance of APP in AD and should stimulate new studies to elucidate APP-related targets suitable for pharmacological manipulation. Copyright © 2017 the authors 0270-6474/17/3711947-20$15.00/0.

  9. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity

    Science.gov (United States)

    Beckhauser, Thiago Fernando; Francis-Oliveira, José; De Pasquale, Roberto

    2016-01-01

    In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated. PMID:27625575

  10. Human cellular protein patterns and their link to genome DNA mapping and sequencing data: towards an integrated approach to the study of gene expression

    DEFF Research Database (Denmark)

    Celis, J E; Rasmussen, H H; Leffers, H

    1993-01-01

    Analysis of cellular protein patterns by computer-aided two-dimensional gel electrophoresis together with recent advances in protein sequence analysis and expression systems have made possible the establishment of comprehensive two-dimensional gel protein databases that may link protein and DNA...

  11. Novel Xylene-Linked Maltoside Amphiphiles (XMAs) for Membrane Protein Stabilisation

    DEFF Research Database (Denmark)

    Cho, Kyung Ho; Du, Yang; Scull, Nicola J

    2015-01-01

    Membrane proteins are key functional players in biological systems. These biomacromolecules contain both hydrophilic and hydrophobic regions and thus amphipathic molecules are necessary to extract membrane proteins from their native lipid environments and stabilise them in aqueous solutions. Conv...

  12. Mixed-Isotope Labeling with LC-IMS-MS for Characterization of Protein–Protein Interactions by Chemical Cross-Linking

    Energy Technology Data Exchange (ETDEWEB)

    Merkley, Eric D.; Baker, Erin S.; Crowell, Kevin L.; Orton, Daniel J.; Taverner, Thomas; Ansong, Charles; Ibrahim, Yehia M.; Burnet, Meagan C.; Cort, John R.; Anderson, Gordon A.; Smith, Richard D.; Adkins, Joshua N.

    2013-02-20

    Chemical cross-linking of proteins followed by proteolysis and mass spectrometric analysis of the resulting cross-linked peptides can provide insights into protein structure and protein-protein interactions. However, cross-linked peptides are by necessity of low stoichometry and have different physicochemical properties than linear peptides, routine unambiguous identification of the cross-linked peptides has remained difficult. To address this challenge, we demonstrated the use of liquid chromatography and ion mobility separations coupled with mass spectrometry in combination with a heavy-isotope labeling method. The combination of mixed-isotope cross-linking and ion mobility provided unique and easily interpretable spectral multiplet features for the intermolecular cross-linked peptides. Application of the method to two different homodimeric proteins - SrfN, a virulence factor from Salmonella Typhimurium and SO_2176, a protein of unknown function from Shewanella oneidensis- revealed several cross-linked peptides from both proteins that were identified with a low false discovery rate (estimated using a decoy approach). A greater number of cross-linked peptides were identified using ion mobility drift time information in the analysis than when the data were summed across the drift time dimension before analysis. The identified cross-linked peptides migrated more quickly in the ion mobility drift tube than the unmodified peptides.

  13. Characterizing rapid, activity-linked conformational transitions in proteins via sub-second hydrogen deuterium exchange mass spectrometry.

    Science.gov (United States)

    Resetca, Diana; Wilson, Derek J

    2013-11-01

    This review outlines the application of time-resolved electrospray ionization mass spectrometry (TRESI-MS) and hydrogen-deuterium exchange (HDX) to study rapid, activity-linked conformational transitions in proteins. The method is implemented on a microfluidic chip which incorporates all sample-handling steps required for a 'bottom-up' HDX workflow: a capillary mixer for sub-second HDX labeling, a static mixer for HDX quenching, a microreactor for rapid protein digestion, and on-chip electrospray. By combining short HDX labeling pulses with rapid digestion, this approach provides a detailed characterization of the structural transitions that occur during protein folding, ligand binding, post-translational modification and catalytic turnover in enzymes. This broad spectrum of applications in areas largely inaccessible to conventional techniques means that microfluidics-enabled TRESI-MS/HDX is a unique and powerful approach for investigating the dynamic basis of protein function. © 2013 FEBS.

  14. Comment on 'Water footprint of marine protein consumption—aquaculture's link to agriculture'

    NARCIS (Netherlands)

    Troell, M.; Metian, M.; Beveridge, M.; Verdegem, M.C.J.; Deutsch, L.

    2014-01-01

    In their article ‘Freshwater savings from marine protein consumption’ (2014 Environ. Res. Lett. 9 014005), Gephart and her colleagues analyzed how consumption of marine animal protein rather than terrestrial animal protein leads to reduced freshwater allocation. They concluded that future water

  15. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders*

    Science.gov (United States)

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G.; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-01-01

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser858 of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease. PMID:26499801

  16. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders.

    Science.gov (United States)

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-12-11

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser(858) of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Influence of pigments and protein aging on protein identification in historically representative casein-based paints using enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Ren, Fang; Atlasevich, Natalya; Baade, Brian; Loike, John; Arslanoglu, Julie

    2016-01-01

    A systematic study on the influence of pigments and sample aging on casein identification was performed on 30 reconstructed paints. The protein in all the paints was extracted into solution for analysis. The amount of protein that can be retrieved for solution-based analysis in each of the reconstructed paints was studied with a well-developed NanoOrange method before and after artificial aging. The results showed that in the paints with calcium phosphate (in bone black) and copper carbonate, hydroxide, or acetate (in verdigris and azurite), the amount of protein that can be retrieved for liquid-phase analysis is much smaller than the other paints, indicating that the protein degradation was accelerated significantly in those paints. Carbon (in vine black), calcium carbonate (in natural chalk), and calcium sulfate (terra alba gypsum and ground alabaster) did not affect much the amount of protein that can be retrieved in the paints compared to non-pigmented binder, meaning that the protein degradation rate was not affected much by those pigments. Artificial aging was observed to decrease the amount of retrievable protein in all the reconstructed paints that were studied. The enzyme-linked immunosorbent assay (ELISA) method was applied to the 28 reconstructed paints (except two verdigris paints) to assess the protein identification. The ELISA responses from the different paints were compared at fixed protein concentrations. Natural chalk, bone black, raw sienna, stack lead white, and cochineal red-violet lake had the lowest ELISA signal in this study, which indicated that the binding sites (epitopes) on the target protein in these paints are likely to deteriorate more than those in the other paints. Artificial aging did not influence the ELISA response as much as the pigments when the protein concentration was kept the same for the paints that were studied.

  18. A gas phase cleavage reaction of cross-linked peptides for protein complex topology studies by peptide fragment fingerprinting from large sequence database

    NARCIS (Netherlands)

    Buncherd, H.; Roseboom, W.; de Koning, L.J.; de Koster, C.G.; de Jong, L.

    2014-01-01

    A high molecular weight fraction of a HeLa cell nuclear extract containing nearly 1100 identified proteins was cross-linked with bis(succinimidyl)-3-azidomethyl glutarate (BAMG). The azido group in cross-linked peptides can be reduced to an amine group. Reduction enables isolation of cross-linked

  19. Interaction of a Cyclic, Bivalent Smac Mimetic with the X-Linked Inhibitor of Apoptosis Protein

    Energy Technology Data Exchange (ETDEWEB)

    Nikolovska-Coleska, Zaneta; Meagher, Jennifer L.; Jiang, Sheng; Yang, Chao-Yie; Qiu, Su; Roller, Peter P.; Stuckey, Jeanne A.; Wang, Shaomeng (Michigan); (NIH)

    2009-02-25

    We have designed and synthesized a cyclic, bivalent Smac mimetic (compound 3) and characterized its interaction with the X-linked inhibitor of apoptosis protein (XIAP). Compound 3 binds to XIAP containing both BIR2 and BIR3 domains with a biphasic dose-response curve representing two binding sites with IC{sub 50} values of 0.5 and 406 nM, respectively. Compound 3 binds to XIAPs containing the BIR3-only and BIR2-only domain with K{sub i} values of 4 nM and 4.4 {mu}M, respectively. Gel filtration experiments using wild-type and mutated XIAPs showed that 3 forms a 1:2 stoichiometric complex with XIAP containing the BIR3-only domain. However, it forms a 1:1 stoichiometric complex with XIAP containing both BIR2 and BIR3 domains, and both BIR domains are involved in the binding. Compound 3 efficiently antagonizes inhibition of XIAP in a cell-free functional assay and is >200 times more potent than its corresponding monovalent compound 2. Determination of the crystal structure of 3 in complex with the XIAP BIR3 domain confirms that 3 induces homodimerization of the XIAP BIR3 domain and provides a structural basis for the cooperative binding of one molecule of compound 3 to two XIAP BIR3 molecules. On the basis of this crystal structure, a binding model of XIAP containing both BIR2 and BIR3 domains and 3 was constructed, which sheds light on the ability of 3 to relieve the inhibition of XIAP with not only caspase-9 but also caspase-3/-7. Compound 3 is cell-permeable, effectively activates caspases in whole cells, and potently inhibits cancer cell growth. Compound 3 is a useful biochemical and pharmacological tool for further elucidating the role of XIAP in regulation of apoptosis and represents a promising lead compound for the design of potent, cell-permeable Smac mimetics for cancer treatment.

  20. Molecular contacts for chlorosome envelope proteins revealed by cross-linking studies with chlorosomes from Chlorobium tepidum

    DEFF Research Database (Denmark)

    Li, Hui; Frigaard, Niels-Ulrik; Bryant, Donald A

    2006-01-01

    in appropriate mutants. Confirming the location of CsmA in the paracrystalline baseplate, cross-linking showed that CsmA forms dimers, trimers, and homomultimers as large as dodecamers and that CsmA directly interacts with the Fenna-Matthews-Olson protein. Cross-linking further suggests that the precursor form...... of CsmA is inserted near the edges of the baseplate, where CsmA and pre-CsmA interact with CsmB and CsmF. Several chlorosome proteins, including CsmA, CsmC, CsmD, CsmH, CsmI, CsmJ, and CsmX, were shown to exist as homomultimers in the chlorosome envelope. On the basis of the structural information...

  1. Evaluation of mutagenic effects of formocresol: detection of DNA-protein cross-links and micronucleus in mouse bone marrow.

    Science.gov (United States)

    Ramos, Maria Emília Santos Pereira; Cavalcanti, Bruno Coêlho; Lotufo, Letícia Veras Costa; de Moraes, Manoel Odorico; Cerqueira, Eneida de Moraes Marcílio; Pessoa, Cláudia

    2008-03-01

    The genotoxic potential of formocresol was assessed by comet assay on human peripheral blood lymphocytes and in vivo micronucleus in mice. Peripheral blood lymphocytes, obtained from healthy donors, were exposed directly with different dilutions of formocresol for 45 minutes at 37 degrees C. To verify the possibility of formocresol to induce DNA-protein cross-links, treated lymphocytes were incubated with proteinase K. Micronucleus test was performed on male Swiss mice treated with several dilutions of formocresol by single intraperitoneal injection. After treatment, bone marrow was sampled 24 and 48 hours after formocresol administration. Formocresol did not produce detectable DNA damage as evaluated by comet assay. However, after proteinase K exposure, a dose-dependent increase of DNA migration was observed. Formocresol induced a significant increase in micronucleus frequencies at the highest dilution only at 24 hours after administration. Formocresol induced DNA-protein cross-links and an increased frequency of micronucleus.

  2. Modulator of apoptosis 1 (MOAP-1) is a tumor suppressor protein linked to the RASSF1A protein.

    Science.gov (United States)

    Law, Jennifer; Salla, Mohamed; Zare, Alaa; Wong, Yoke; Luong, Le; Volodko, Natalia; Svystun, Orysya; Flood, Kayla; Lim, Jonathan; Sung, Miranda; Dyck, Jason R B; Tan, Chong Teik; Su, Yu-Chin; Yu, Victor C; Mackey, John; Baksh, Shairaz

    2015-10-02

    Modulator of apoptosis 1 (MOAP-1) is a BH3-like protein that plays key roles in cell death or apoptosis. It is an integral partner to the tumor suppressor protein, Ras association domain family 1A (RASSF1A), and functions to activate the Bcl-2 family pro-apoptotic protein Bax. Although RASSF1A is now considered a bona fide tumor suppressor protein, the role of MOAP-1 as a tumor suppressor protein has yet to be determined. In this study, we present several lines of evidence from cancer databases, immunoblotting of cancer cells, proliferation, and xenograft assays as well as DNA microarray analysis to demonstrate the role of MOAP-1 as a tumor suppressor protein. Frequent loss of MOAP-1 expression, in at least some cancers, appears to be attributed to mRNA down-regulation and the rapid proteasomal degradation of MOAP-1 that could be reversed utilizing the proteasome inhibitor MG132. Overexpression of MOAP-1 in several cancer cell lines resulted in reduced tumorigenesis and up-regulation of genes involved in cancer regulatory pathways that include apoptosis (p53, Fas, and MST1), DNA damage control (poly(ADP)-ribose polymerase and ataxia telangiectasia mutated), those within the cell metabolism (IR-α, IR-β, and AMP-activated protein kinase), and a stabilizing effect on microtubules. The loss of RASSF1A (an upstream regulator of MOAP-1) is one of the earliest detectable epigenetically silenced tumor suppressor proteins in cancer, and we speculate that the additional loss of function of MOAP-1 may be a second hit to functionally compromise the RASSF1A/MOAP-1 death receptor-dependent pathway and drive tumorigenesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Modulator of Apoptosis 1 (MOAP-1) Is a Tumor Suppressor Protein Linked to the RASSF1A Protein*

    Science.gov (United States)

    Law, Jennifer; Salla, Mohamed; Zare, Alaa; Wong, Yoke; Luong, Le; Volodko, Natalia; Svystun, Orysya; Flood, Kayla; Lim, Jonathan; Sung, Miranda; Dyck, Jason R. B.; Tan, Chong Teik; Su, Yu-Chin; Yu, Victor C.; Mackey, John; Baksh, Shairaz

    2015-01-01

    Modulator of apoptosis 1 (MOAP-1) is a BH3-like protein that plays key roles in cell death or apoptosis. It is an integral partner to the tumor suppressor protein, Ras association domain family 1A (RASSF1A), and functions to activate the Bcl-2 family pro-apoptotic protein Bax. Although RASSF1A is now considered a bona fide tumor suppressor protein, the role of MOAP-1 as a tumor suppressor protein has yet to be determined. In this study, we present several lines of evidence from cancer databases, immunoblotting of cancer cells, proliferation, and xenograft assays as well as DNA microarray analysis to demonstrate the role of MOAP-1 as a tumor suppressor protein. Frequent loss of MOAP-1 expression, in at least some cancers, appears to be attributed to mRNA down-regulation and the rapid proteasomal degradation of MOAP-1 that could be reversed utilizing the proteasome inhibitor MG132. Overexpression of MOAP-1 in several cancer cell lines resulted in reduced tumorigenesis and up-regulation of genes involved in cancer regulatory pathways that include apoptosis (p53, Fas, and MST1), DNA damage control (poly(ADP)-ribose polymerase and ataxia telangiectasia mutated), those within the cell metabolism (IR-α, IR-β, and AMP-activated protein kinase), and a stabilizing effect on microtubules. The loss of RASSF1A (an upstream regulator of MOAP-1) is one of the earliest detectable epigenetically silenced tumor suppressor proteins in cancer, and we speculate that the additional loss of function of MOAP-1 may be a second hit to functionally compromise the RASSF1A/MOAP-1 death receptor-dependent pathway and drive tumorigenesis. PMID:26269600

  4. Optogenetic analysis of synaptic function

    NARCIS (Netherlands)

    Liewald, Jana F.; Brauner, Martin; Stephens, Greg J.; Bouhours, Magali; Schultheis, Christian; Zhen, Mei; Gottschalk, Alexander

    2008-01-01

    We introduce optogenetic investigation of neurotransmission (OptIoN) for time-resolved and quantitative assessment of synaptic function via behavioral and electrophysiological analyses. We photo-triggered release of acetylcholine or γ-aminobutyric acid at Caenorhabditis elegans neuromuscular

  5. Theta-specific susceptibility in a model of adaptive synaptic plasticity.

    Science.gov (United States)

    Albers, Christian; Schmiedt, Joscha T; Pawelzik, Klaus R

    2013-01-01

    Learning and memory formation are processes which are still not fully understood. It is widely believed that synaptic plasticity is the most important neural substrate for both. However, it has been observed that large-scale theta band oscillations in the mammalian brain are beneficial for learning, and it is not clear if and how this is linked to synaptic plasticity. Also, the underlying dynamics of synaptic plasticity itself have not been completely uncovered yet, especially for non-linear interactions between multiple spikes. Here, we present a new and simple dynamical model of synaptic plasticity. It incorporates novel contributions to synaptic plasticity including adaptation processes. We test its ability to reproduce non-linear effects on four different data sets of complex spike patterns, and show that the model can be tuned to reproduce the observed synaptic changes in great detail. When subjected to periodically varying firing rates, already linear pair based spike timing dependent plasticity (STDP) predicts a specific susceptibility of synaptic plasticity to pre- and postsynaptic firing rate oscillations in the theta-band. Our model retains this band-pass property, while for high firing rates in the non-linear regime it modifies the specific phase relation required for depression and potentiation. For realistic parameters, maximal synaptic potentiation occurs when the postsynaptic is trailing the presynaptic activity slightly. Anti-phase oscillations tend to depress it. Our results are well in line with experimental findings, providing a straightforward and mechanistic explanation for the importance of theta oscillations for learning.

  6. Synaptic AMPA receptor plasticity and behavior

    NARCIS (Netherlands)

    Kessels, Helmut W.; Malinow, Roberto

    2009-01-01

    The ability to change behavior likely depends on the selective strengthening and weakening of brain synapses. The cellular models of synaptic plasticity, long-term potentiation (LTP) and depression (LTD) of synaptic strength, can be expressed by the synaptic insertion or removal of AMPA receptors

  7. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination.

    Science.gov (United States)

    Zhang, Jing; Hu, Ming-Ming; Wang, Yan-Yi; Shu, Hong-Bing

    2012-08-17

    Viral infection activates several transcription factors including NF-κB and IRF3, which collaborate to induce type I interferons (IFNs) and innate antiviral response. MITA (also called STING) is a critical adaptor protein that links virus-sensing receptors to IRF3 activation upon infection by both RNA and DNA pathogens. Here we show that the E3 ubiquitin ligase tripartite motif protein 32 (TRIM32) ubiquitinated MITA and dramatically enhanced MITA-mediated induction of IFN-β. Overexpression of TRIM32 potentiated virus-triggered IFNB1 expression and cellular antiviral response. Consistently, knockdown of TRIM32 had opposite effects. TRIM32 interacted with MITA, and was located at the mitochondria and endoplasmic reticulum. TRIM32 targeted MITA for K63-linked ubiquitination at K20/150/224/236 through its E3 ubiquitin ligase activity, which promoted the interaction of MITA with TBK1. These findings suggest that TRIM32 is an important regulatory protein for innate immunity against both RNA and DNA viruses by targeting MITA for K63-linked ubiquitination and downstream activation.

  8. Photo-cross-linked small-molecule microarrays as chemical genomic tools for dissecting protein-ligand interactions.

    Science.gov (United States)

    Kanoh, Naoki; Asami, Aya; Kawatani, Makoto; Honda, Kaori; Kumashiro, Saori; Takayama, Hiroshi; Simizu, Siro; Amemiya, Tomoyuki; Kondoh, Yasumitsu; Hatakeyama, Satoru; Tsuganezawa, Keiko; Utata, Rei; Tanaka, Akiko; Yokoyama, Shigeyuki; Tashiro, Hideo; Osada, Hiroyuki

    2006-12-18

    We have developed a unique photo-cross-linking approach for immobilizing a variety of small molecules in a functional-group-independent manner. Our approach depends on the reactivity of the carbene species generated from trifluoromethylaryldiazirine upon UV irradiation. It was demonstrated in model experiments that the photogenerated carbenes were able to react with every small molecule tested, and they produced multiple conjugates in most cases. It was also found in on-array immobilization experiments that various small molecules were immobilized, and the immobilized small molecules retained their ability to interact with their binding proteins. With this approach, photo-cross-linked microarrays of about 2000 natural products and drugs were constructed. This photo-cross-linked microarray format was found to be useful not merely for ligand screening but also to study the structure-activity relationship, that is, the relationship between the structural motif (or pharmacophore) found in small molecules and its binding affinity toward a protein, by taking advantage of the nonselective nature of the photo-cross-linking process.

  9. Transglutaminase cross-linking effect on sensory characteristics and antioxidant activities of Maillard reaction products from soybean protein hydrolysates.

    Science.gov (United States)

    Song, Na; Tan, Chen; Huang, Meigui; Liu, Ping; Eric, Karangwa; Zhang, Xiaoming; Xia, Shuqin; Jia, Chengsheng

    2013-01-01

    To improve the yield of Maillard peptides, a microbial transglutaminase (MTGase) was used to increase the content of 1000-5000Da peptides in soybean protein hydrolysates by using a cross-linking reaction. The sensory characteristics and antioxidant activities of corresponding Maillard Reaction Products (MSPC) was then evaluated. After cross-linking treatment the content of 1000-5000Da peptides in protein hydrolysates and the yield of Maillard peptides increased by 21.19% and 8.71%, respectively, which contributed to the improved mouthfulness of MSPC. The bitter amino acids were significantly decreased and the umami acids were markedly increased in MSPC. Volatile compounds identified by GC-MS analysis showed that the content of the important meaty flavour compounds (such as 2-methyl-3-furanthiol, bis(2-methyl-3-furyl)disulfide) of MSPC were dramatically higher than that of MRPs from uncross-linking peptides. Combined with sensory evaluation, it was confirmed that MTGase cross-linking improved the flavour Characteristics and did not affect the antioxidant activity of MSPC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Structure of the Dispase Autolysis-inducing Protein from Streptomyces mobaraensis and Glutamine Cross-linking Sites for Transglutaminase.

    Science.gov (United States)

    Fiebig, David; Schmelz, Stefan; Zindel, Stephan; Ehret, Vera; Beck, Jan; Ebenig, Aileen; Ehret, Marina; Fröls, Sabrina; Pfeifer, Felicitas; Kolmar, Harald; Fuchsbauer, Hans-Lothar; Scrima, Andrea

    2016-09-23

    Transglutaminase from Streptomyces mobaraensis (MTG) is an important enzyme for cross-linking and modifying proteins. An intrinsic substrate of MTG is the dispase autolysis-inducing protein (DAIP). The amino acid sequence of DAIP contains 5 potential glutamines and 10 lysines for MTG-mediated cross-linking. The aim of the study was to determine the structure and glutamine cross-linking sites of the first physiological MTG substrate. A production procedure was established in Escherichia coli BL21 (DE3) to obtain high yields of recombinant DAIP. DAIP variants were prepared by replacing four of five glutamines for asparagines in various combinations via site-directed mutagenesis. Incorporation of biotin cadaverine revealed a preference of MTG for the DAIP glutamines in the order of Gln-39 ≫ Gln-298 > Gln-345 ∼ Gln-65 ≫ Gln-144. In the structure of DAIP the preferred glutamines do cluster at the top of the seven-bladed β-propeller. This suggests a targeted cross-linking of DAIP by MTG that may occur after self-assembly in the bacterial cell wall. Based on our biochemical and structural data of the first physiological MTG substrate, we further provide novel insight into determinants of MTG-mediated modification, specificity, and efficiency. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Human protein kinase C lota gene (PRKC1) is closely linked to the BTK gene in Xq21.3

    Energy Technology Data Exchange (ETDEWEB)

    Mazzarella, R.; Jones, C.; Schlessinger, D. [Washington Univ. School of Medicine, St. Louis, MO (United States)] [and others

    1995-04-10

    The human X chromosome contains many disease loci, but only a small number of X-linked genes have been cloned and characterized. One approach to finding genes in genomic DNA uses partial sequencing of random cDNAs to develop {open_quotes}expressed sequence tags{close_quotes} (ESTs). Many authors have recently reported chromosomal localization of such ESTs using hybrid panels. Twenty ESTs specific for the X chromosome have been localized to defined regions with somatic cell hybrids, and 12 of them have been physically linked to markers that detect polymorphisms. One of these ESTs, EST02087, was physically linked in a 650-kb contig to the GLA ({alpha}-galactosidase) gene involved in Fabry disease. A comparison of this contig with a 7.5-Mb YAC contig indicated that this gene is also within 250 kb of the src-like protein-tyrosine kinase BTK (X-linked agammaglobulinemia protein-tyrosine kinase) gene in Xq21.3. 14 refs., 1 fig.

  12. Nuclear matrix proteins are covalently linked to DNA after ionizing radiation

    International Nuclear Information System (INIS)

    Cress, A.E.

    1985-01-01

    The authors investigated the production of covalent DNA protein crosslinks (DPC) with ionizing radiation. A particular class of nonhistone chromosomal proteins becomes covalently bound to the DNA after 5,000 rads of X-ray. They partially purified these complexes by CsCl density gradient sedimentation. The incorporation of /sup 35/S-met and one dimensional SDS polyacrylimide gel electrophoresis reveals that the proteins involved in the DPC correspond in MW, solubility and predominance to a subset of the nuclear matrix proteins. The DPC are removed after the repair of double and single-stranded scissions is complete as judged by neutral and alkaline elutions. The removal process of the DPC is independent of RNA and protein synthesis inhibition. These data are interesting since these proteins have similar characteristics to the proposed nuclear attachment sites of DNA loops involved in the organization of the genome. The authors are presently using ''Western'' blotting and two dimensional electrophoresis to further identify the specific proteins involved in the DPC. Their current working hypothesis is that the protein involved in the DPC consists primarily of structural nuclear proteins which become covalently crosslinked after ionizing radiation

  13. Monitoring Protein Conformation Changes as an Activating Step for Protein Interactions with Cross-linking/MS Analysis. / Chen, Zhuo; Rasmussen, Morten; Tahir, Salman; Clark, C.A.C; Barlow, Paul; Rappsilber, Juri

    DEFF Research Database (Denmark)

    Rasmussen, Morten

    Monitoring protein conformation changes as an activating step for protein interactions with cross-linking/MS analysis. Chen, Zhou; Rasmussen, Morten; Tahir, Salman; Clark, C.A.C; Barlow, Paul; Rappsilber, Juri.   Introduction Protein interactions often require conformational changes in proteins...

  14. WW domain-binding protein 2: an adaptor protein closely linked to the development of breast cancer.

    Science.gov (United States)

    Chen, Shuai; Wang, Han; Huang, Yu-Fan; Li, Ming-Li; Cheng, Jiang-Hong; Hu, Peng; Lu, Chuan-Hui; Zhang, Ya; Liu, Na; Tzeng, Chi-Meng; Zhang, Zhi-Ming

    2017-07-19

    The WW domain is composed of 38 to 40 semi-conserved amino acids shared with structural, regulatory, and signaling proteins. WW domain-binding protein 2 (WBP2), as a binding partner of WW domain protein, interacts with several WW-domain-containing proteins, such as Yes kinase-associated protein (Yap), paired box gene 8 (Pax8), WW-domain-containing transcription regulator protein 1 (TAZ), and WW-domain-containing oxidoreductase (WWOX) through its PPxY motifs within C-terminal region, and further triggers the downstream signaling pathway in vitro and in vivo. Studies have confirmed that phosphorylated form of WBP2 can move into nuclei and activate the transcription of estrogen receptor (ER) and progesterone receptor (PR), whose expression were the indicators of breast cancer development, indicating that WBP2 may participate in the progression of breast cancer. Both overexpression of WBP2 and activation of tyrosine phosphorylation upregulate the signal cascades in the cross-regulation of the Wnt and ER signaling pathways in breast cancer. Following the binding of WBP2 to the WW domain region of TAZ which can accelerate migration, invasion and is required for the transformed phenotypes of breast cancer cells, the transformation of epithelial to mesenchymal of MCF10A is activated, suggesting that WBP2 is a key player in regulating cell migration. When WBP2 binds with WWOX, a tumor suppressor, ER transactivation and tumor growth can be suppressed. Thus, WBP2 may serve as a molecular on/off switch that controls the crosstalk between E2, WWOX, Wnt, TAZ, and other oncogenic signaling pathways. This review interprets the relationship between WBP2 and breast cancer, and provides comprehensive views about the function of WBP2 in the regulation of the pathogenesis of breast cancer and endocrine therapy in breast cancer treatment.

  15. Z-band Alternatively Spliced PDZ Motif Protein (ZASP) Is the Major O-Linked β-N-Acetylglucosamine-substituted Protein in Human Heart Myofibrils*

    Science.gov (United States)

    Leung, Man-Ching; Hitchen, Paul G.; Ward, Douglas G.; Messer, Andrew E.; Marston, Steven B.

    2013-01-01

    We studied O-linked β-N-acetylglucosamine (O-GlcNAc) modification of contractile proteins in human heart using SDS-PAGE and three detection methods: specific enzymatic conjugation of O-GlcNAc with UDP-N-azidoacetylgalactosamine (UDP-GalNAz) that is then linked to a tetramethylrhodamine fluorescent tag and CTD110.6 and RL2 monoclonal antibodies to O-GlcNAc. All three methods showed that O-GlcNAc modification was predominantly in a group of bands ∼90 kDa that did not correspond to any of the major myofibrillar proteins. MALDI-MS/MS identified the 90-kDa band as the protein ZASP (Z-band alternatively spliced PDZ motif protein), a minor component of the Z-disc (about 1 per 400 α-actinin) important for myofibrillar development and mechanotransduction. This was confirmed by the co-localization of O-GlcNAc and ZASP in Western blotting and by immunofluorescence microscopy. O-GlcNAcylation of ZASP increased in diseased heart, being 49 ± 5% of all O-GlcNAc in donor, 68 ± 9% in end-stage failing heart, and 76 ± 6% in myectomy muscle samples (donor versus myectomy p heart myofibrils. PMID:23271734

  16. Amidolysis of Oxirane: Effect of Protein Type, Oils, and ZnCl2 on the Rheological Properties of Cross-Linked Protein and Oxirane

    Directory of Open Access Journals (Sweden)

    A. A. Mohamed

    2018-01-01

    Full Text Available Amidolysis of oxirane group of epoxidized sesame, sunflower, and cottonseed oils was achieved by reaction with primary amide of millet and gluten proteins. Gluten is a coproduct of wheat starch industry and available commercially. Millet is a major part of the staple food of the semiarid region of the tropics. Gluten is a mixture of glutenins and gliadins rich in glutamine residues; however, millet is rich in glutamine and leucine. We have taken advantage of the available primary amide of glutamine for cross-linking with the oxirane of sunflower, sesame, and cottonseed oils under controlled conditions to give a resin of amidohydroxy of gluten and millet proteins. Cross-linking gave a resin with a wide range of textural properties. The texture of the resin was dependent on the source of the oxirane, the amide group, and the amount of the catalyst (ZnCl2. The thermal properties, textural, solubility, and rheological properties were determined as well as the reaction time. The data showed direct relationships between the ZnCl2, nature of oil, and protein type and the properties of the final resin. Consistently, the results pointed to similarity among the outcome of the reactions between sesame and sunflower oils. Depending on the amount of ZnCl2, the texture of the resin can range from viscose to rubbery. The reaction time was influenced by oxirane source, protein type, and catalyst and ranged from 30 min to 4 hr.

  17. Generation of a monoclonal antibody against the glycosylphosphatidylinositol-linked protein Rae-1 using genetically engineered tumor cells.

    Science.gov (United States)

    Hu, Jiemiao; Vien, Long T; Xia, Xueqing; Bover, Laura; Li, Shulin

    2014-02-04

    Although genetically engineered cells have been used to generate monoclonal antibodies (mAbs) against numerous proteins, no study has used them to generate mAbs against glycosylphosphatidylinositol (GPI)-anchored proteins. The GPI-linked protein Rae-1, an NKG2D ligand member, is responsible for interacting with immune surveillance cells. However, very few high-quality mAbs against Rae-1 are available for use in multiple analyses, including Western blotting, immunohistochemistry, and flow cytometry. The lack of high-quality mAbs limits the in-depth analysis of Rae-1 fate, such as shedding and internalization, in murine models. Moreover, currently available screening approaches for identifying high-quality mAbs are excessively time-consuming and costly. We used Rae-1-overexpressing CT26 tumor cells to generate 60 hybridomas that secreted mAbs against Rae-1. We also developed a streamlined screening strategy for selecting the best anti-Rae-1 mAb for use in flow cytometry assay, enzyme-linked immunosorbent assay, Western blotting, and immunostaining. Our cell line-based immunization approach can yield mAbs against GPI-anchored proteins, and our streamlined screening strategy can be used to select the ideal hybridoma for producing such mAbs.

  18. Protein Corona Analysis of Silver Nanoparticles Links to Their Cellular Effects.

    Science.gov (United States)

    Juling, Sabine; Niedzwiecka, Alicia; Böhmert, Linda; Lichtenstein, Dajana; Selve, Sören; Braeuning, Albert; Thünemann, Andreas F; Krause, Eberhard; Lampen, Alfonso

    2017-11-03

    The breadth of applications of nanoparticles and the access to food-associated consumer products containing nanosized materials lead to oral human exposure to such particles. In biological fluids nanoparticles dynamically interact with biomolecules and form a protein corona. Knowledge about the protein corona is of great interest for understanding the molecular effects of particles as well as their fate inside the human body. We used a mass spectrometry-based toxicoproteomics approach to elucidate mechanisms of toxicity of silver nanoparticles and to comprehensively characterize the protein corona formed around silver nanoparticles in Caco-2 human intestinal epithelial cells. Results were compared with respect to the cellular function of proteins either affected by exposure to nanoparticles or present in the protein corona. A transcriptomic data set was included in the analyses in order to obtain a combined multiomics view of nanoparticle-affected cellular processes. A relationship between corona proteins and the proteomic or transcriptomic responses was revealed, showing that differentially regulated proteins or transcripts were engaged in the same cellular signaling pathways. Protein corona analyses of nanoparticles in cells might therefore help in obtaining information about the molecular consequences of nanoparticle treatment.

  19. A link between damaging behaviour in pigs, sanitary conditions, and dietary protein and amino acid supply

    NARCIS (Netherlands)

    Meer, Van Der Yvonne; Gerrits, Walter J.J.; Jansman, Alfons J.M.; Kemp, Bas; Bolhuis, Liesbeth

    2017-01-01

    The tendency to reduce crude protein (CP) levels in pig diets to increase protein efficiency may increase the occurrence of damaging behaviours such as ear and tail biting, particularly for pigs kept under suboptimal health conditions. We studied, in a 2×2×2 factorial design, 576 tail-docked

  20. Correlation between centromere protein-F autoantibodies and cancer analyzed by enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Welner, Simon; Trier, Nicole Hartwig; Morten Frisch, Morten

    2013-01-01

    Centromere protein-F (CENP-F) is a large nuclear protein of 367 kDa, which is involved in multiple mitosis-related events such as proper assembly of the kinetochores, stabilization of heterochromatin, chromosome alignment and mitotic checkpoint signaling. Several studies have shown a correlation...

  1. Hierarchical Chunking of Sequential Memory on Neuromorphic Architecture with Reduced Synaptic Plasticity

    OpenAIRE

    Li, Guoqi; Deng, Lei; Wang, Dong; Wang, Wei; Zeng, Fei; Zhang, Ziyang; Li, Huanglong; Song, Sen; Pei, Jing; Shi, Luping

    2016-01-01

    Chunking refers to a phenomenon whereby individuals group items together when performing a memory task to improve the performance of sequential memory. In this work, we build a bio-plausible hierarchical chunking of sequential memory (HCSM) model to explain why such improvement happens. We address this issue by linking hierarchical chunking with synaptic plasticity and neuromorphic engineering. We uncover that a chunking mechanism reduces the requirements of synaptic plasticity since it allow...

  2. Tumor necrosis factor alpha maintains denervation-induced homeostatic synaptic plasticity of mouse dentate granule cells

    Directory of Open Access Journals (Sweden)

    Denise eBecker

    2013-12-01

    Full Text Available Neurons which lose part of their input respond with a compensatory increase in excitatory synaptic strength. This observation is of particular interest in the context of neurological diseases, which are accompanied by the loss of neurons and subsequent denervation of connected brain regions. However, while the cellular and molecular mechanisms of pharmacologically induced homeostatic synaptic plasticity have been identified to a certain degree, denervation-induced homeostatic synaptic plasticity remains not well understood. Here, we employed the entorhinal denervation in vitro model to study the role of tumor necrosis factor alpha (TNFα on changes in excitatory synaptic strength of mouse dentate granule cells following partial deafferentation. Our experiments disclose that TNFα is required for the maintenance of a compensatory increase in excitatory synaptic strength at 3/4 days postlesion (dpl, but not for the induction of synaptic scaling at 1 - 2 dpl. Furthermore, laser capture microdissection (LMD combined with quantitative PCR (qPCR demonstrates an increase in TNFα-mRNA levels in the denervated zone, which is consistent with our previous finding on a local, i.e., layer-specific increase in excitatory synaptic strength at 3 - 4 dpl. Immunostainings for the glial fibrillary acidic protein (GFAP and TNFα suggest that astrocytes are a source of TNFα in our experimental setting. We conclude that TNFα-signaling is a major regulatory system that aims at maintaining the homeostatic synaptic response of denervated neurons.

  3. The photosensor protein Ppr of Rhodocista centenaria is linked to the chemotaxis signalling pathway

    Directory of Open Access Journals (Sweden)

    Kiefer Dorothee

    2010-11-01

    Full Text Available Abstract Background Rhodocista centenaria is a phototrophic α-proteobacterium exhibiting a phototactic behaviour visible as colony movement on agar plates directed to red light. As many phototrophic purple bacteria R. centenaria possesses a soluble photoactive yellow protein (Pyp. It exists as a long fusion protein, designated Ppr, consisting of three domains, the Pyp domain, a putative bilin binding domain (Bbd and a histidine kinase domain (Pph. The Ppr protein is involved in the regulation of polyketide synthesis but it is still unclear, how this is connected to phototaxis and chemotaxis. Results To elucidate the possible role of Ppr and Pph in the chemotactic network we studied the interaction with chemotactic proteins in vitro as well as in vivo. Matrix-assisted coelution experiments were performed to study the possible communication of the different putative binding partners. The kinase domain of the Ppr protein was found to interact with the chemotactic linker protein CheW. The formation of this complex was clearly ATP-dependent. Further results indicated that the Pph histidine kinase domain and CheW may form a complex with the chemotactic kinase CheAY suggesting a role of Ppr in the chemotaxis signalling pathway. In addition, when Ppr or Pph were expressed in Escherichia coli, the chemotactic response of the cells was dramatically affected. Conclusions The Ppr protein of Rhodocista centenaria directly interacts with the chemotactic protein CheW. This suggests a role of the Ppr protein in the regulation of the chemotactic response in addition to its role in chalcone synthesis.

  4. Effect of soy protein on obesity-linked renal and pancreatic disorders in female rats

    International Nuclear Information System (INIS)

    Osman, H.F.; El-Sherbiny, E.M.

    2006-01-01

    The purpose of this study was to identify the effect of soy protein based diet on renal and pancreatic disorders in female obese rats. Animals assigned into group I in which 30 rats fed on a balanced diet. Group II contained 30 rats fed on a diet containing 30% fats for 4 weeks. At the end of the 4 th week, one-half of each group was treated as group III which contain 15 rats (half of group I) fed on diet containing 25% soy protein for 3 weeks and represents soy protein group, and the other half served as control. Group IV contained 15 rats (half of group II) fed on a diet containing 25% soy protein for 3 weeks and served as obese + soy protein group, and the other half fed on a normal balanced diet for 3 weeks and represents the obese group. Body weights of rats were recorded every week during the experimental period. Renal and pancreatic functions were measured as urea, creatinine, glomerular filtration rate (creatinine clearance), ammonia, sodium and potassium ions, total protein, albumin, globulin, glucose, insulin and alpha-amylase activity. Feeding with soy protein led to a very high significant increase in urea while creatinine was significantly decreased and creatinine clearance was significantly increased in the groups fed on soy protein. Ammonia concentration was increased in all groups and there was non-significant alteration in sodium and potassium ion concentrations. In soy protein groups (groups III and IV), total protein, albumin and globulin levels were increased. Glucose level was increased in obese rats and significantly decreased in groups III and IV. In group IV, insulin level was decreased which implicated to insulin excess in obesity. Soy protein decreased alpha-amylase activity in groups III and IV as compared to control rats. From these results, soy protein have a direct and protective effect on glomerular disorders and pancreatic secretions. This may be due to isoflavone contents in soy which can modulate the disturbance in metabolism

  5. Microwave-assisted cross-linking of milk proteins induced by microbial transglutaminase

    OpenAIRE

    Chun-Chi Chen; Jung-Feng Hsieh

    2016-01-01

    We investigated the combined effects of microbial transglutaminase (MTGase, 7.0 units/mL) and microwave irradiation (MI) on the polymerization of milk proteins at 30??C for 3?h. The addition of MTGase caused the milk proteins to become polymerized, which resulted in the formation of components with a higher molecular-weight (>130?kDa). SDS-PAGE analysis revealed reductions in the protein content of ?-lactoglobulin (?-LG), ?S-casein (?S-CN), ?-casein (?-CN) and ?-casein (?-CN) to 50.4???2.9, 3...

  6. Alzheimer's disease: synaptic dysfunction and Abeta

    LENUS (Irish Health Repository)

    Shankar, Ganesh M

    2009-11-23

    Abstract Synapse loss is an early and invariant feature of Alzheimer\\'s disease (AD) and there is a strong correlation between the extent of synapse loss and the severity of dementia. Accordingly, it has been proposed that synapse loss underlies the memory impairment evident in the early phase of AD and that since plasticity is important for neuronal viability, persistent disruption of plasticity may account for the frank cell loss typical of later phases of the disease. Extensive multi-disciplinary research has implicated the amyloid β-protein (Aβ) in the aetiology of AD and here we review the evidence that non-fibrillar soluble forms of Aβ are mediators of synaptic compromise. We also discuss the possible mechanisms of Aβ synaptotoxicity and potential targets for therapeutic intervention.

  7. ICBP90, a Novel Methyl K9 H3 Binding Protein Linking Protein Ubiquitination with Heterochromatin Formation▿

    Science.gov (United States)

    Karagianni, Panagiota; Amazit, Larbi; Qin, Jun; Wong, Jiemin

    2008-01-01

    Methylation of histone H3 on lysine 9 is critical for diverse biological processes including transcriptional repression, heterochromatin formation, and X inactivation. The biological effects of histone methylation are thought to be mediated by effector proteins that recognize and bind to specific patterns of methylation. Using an unbiased in vitro biochemical approach, we have identified ICBP90, a transcription and cell cycle regulator, as a novel methyl K9 H3-specific binding protein. ICBP90 and its murine homologue Np95 are enriched in pericentric heterochromatin of interphase nuclei, and this localization is dependent on H3K9 methylation. Specific binding of ICBP90 to methyl K9 H3 depends on two functional domains, a PHD (plant homeodomain) finger that defines the binding specificity and an SRA (SET- and RING-associated) domain that promotes binding activity. Furthermore, we present evidence that ICBP90 is required for proper heterochromatin formation in mammalian cells. PMID:17967883

  8. ICBP90, a novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation.

    Science.gov (United States)

    Karagianni, Panagiota; Amazit, Larbi; Qin, Jun; Wong, Jiemin

    2008-01-01

    Methylation of histone H3 on lysine 9 is critical for diverse biological processes including transcriptional repression, heterochromatin formation, and X inactivation. The biological effects of histone methylation are thought to be mediated by effector proteins that recognize and bind to specific patterns of methylation. Using an unbiased in vitro biochemical approach, we have identified ICBP90, a transcription and cell cycle regulator, as a novel methyl K9 H3-specific binding protein. ICBP90 and its murine homologue Np95 are enriched in pericentric heterochromatin of interphase nuclei, and this localization is dependent on H3K9 methylation. Specific binding of ICBP90 to methyl K9 H3 depends on two functional domains, a PHD (plant homeodomain) finger that defines the binding specificity and an SRA (SET- and RING-associated) domain that promotes binding activity. Furthermore, we present evidence that ICBP90 is required for proper heterochromatin formation in mammalian cells.

  9. Yeast Bax inhibitor, Bxi1p, is an ER-localized protein that links the unfolded protein response and programmed cell death in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    James Cebulski

    Full Text Available Bax inhibitor-1 (BI-1 is an anti-apoptotic gene whose expression is upregulated in a wide range of human cancers. Studies in both mammalian and plant cells suggest that the BI-1 protein resides in the endoplasmic reticulum and is involved in the unfolded protein response (UPR that is triggered by ER stress. It is thought to act via a mechanism involving altered calcium dynamics. In this paper, we provide evidence that the Saccharomyces cerevisiae protein encoded by the open reading frame, YNL305C, is a bona fide homolog for BI-1. First, we confirm that yeast cells from two different strain backgrounds lacking YNL305C, which we have renamed BXI1, are more sensitive to heat-shock induced cell death than wildtype controls even though they have indistinguishable growth rates at 30°C. They are also more susceptible both to ethanol-induced and to glucose-induced programmed cell death. Significantly, we show that Bxi1p-GFP colocalizes with the ER localized protein Sec63p-RFP. We have also discovered that Δbxi1 cells are not only more sensitive to drugs that induce ER stress, but also have a decreased unfolded protein response as measured with a UPRE-lacZ reporter. Finally, we have discovered that deleting BXI1 diminishes the calcium signaling response in response to the accumulation of unfolded proteins in the ER as measured by a calcineurin-dependent CDRE-lacZ reporter. In toto, our data suggests that the Bxi1p, like its metazoan homologs, is an ER-localized protein that links the unfolded protein response and programmed cell death.

  10. Heterotrimeric Go protein links Wnt-Frizzled signaling with ankyrins to regulate the neuronal microtubule cytoskeleton.

    NARCIS (Netherlands)

    Luchtenborg, A.M.; Solis, G.P.; Egger-Adam, D.; Koval, A.; Lin, C.; Blanchard, M.G.; Kellenberger, S.; Katanaev, V.L.

    2014-01-01

    Drosophila neuromuscular junctions (NMJs) represent a powerful model system with which to study glutamatergic synapse formation and remodeling. Several proteins have been implicated in these processes, including components of canonical Wingless (Drosophila Wnt1) signaling and the giant isoforms of

  11. Wet degradation of keratin proteins : Linking amino acid, elemental and isotopic composition

    NARCIS (Netherlands)

    Von Holstein, I. C C; Penkman, Kirsty E H; Peacock, E.E.; Collins, M. J.

    2014-01-01

    Rationale Archaeological keratin samples are increasingly the subject of palaeodietary, provenancing and dating studies. Keratin samples from wet archaeological contexts are microbiologically and chemically degraded, causing differential diagenesis of protein structures in hair fibres. The effects

  12. Syntenin-1 and ezrin proteins link activated leukocyte cell adhesion molecule to the actin cytoskeleton

    NARCIS (Netherlands)

    Tudor, Cicerone; te Riet, J.; Eich, C.; Harkes, R.; Smisdom, N.; Bouhuijzen Wenger, J.; Ameloot, M.; Holt, M.; Kanger, Johannes S.; Figdor, Carl; Cambi, A.; Subramaniam, Vinod

    2014-01-01

    Activated leukocyte cell adhesion molecule (ALCAM) is a type I transmembrane protein member of the immunoglobulin superfamily of cell adhesion molecules. Involved in important pathophysiological processes such as the immune response, cancer metastasis, and neuronal development, ALCAM undergoes both

  13. Mutations in the polyglutamine binding protein 1 gene cause X-linked mental retardation

    DEFF Research Database (Denmark)

    Kalscheuer, Vera M; Freude, Kristine; Musante, Luciana

    2003-01-01

    We found mutations in the gene PQBP1 in 5 of 29 families with nonsyndromic (MRX) and syndromic (MRXS) forms of X-linked mental retardation (XLMR). Clinical features in affected males include mental retardation, microcephaly, short stature, spastic paraplegia and midline defects. PQBP1 has previou...

  14. Oxidative protein folding in the endoplasmic reticulum: tight links to the mitochondria-associated membrane (MAM).

    Science.gov (United States)

    Simmen, Thomas; Lynes, Emily M; Gesson, Kevin; Thomas, Gary

    2010-08-01

    The production of secretory proteins at the ER (endoplasmic reticulum) depends on a ready supply of energy and metabolites as well as the close monitoring of the chemical conditions that favor oxidative protein folding. ER oxidoreductases and chaperones fold nascent proteins into their export-competent three-dimensional structure. Interference with these protein folding enzymes leads to the accumulation of unfolded proteins within the ER lumen, causing an acute organellar stress that triggers the UPR (unfolded protein response). The UPR increases the transcription of ER chaperones commensurate with the load of newly synthesized proteins and can protect the cell from ER stress. Persistant stress, however, can force the UPR to commit cells to undergo apoptotic cell death, which requires the emptying of ER calcium stores. Conversely, a continuous ebb and flow of calcium occurs between the ER and mitochondria during resting conditions on a domain of the ER that forms close contacts with mitochondria, the MAM (mitochondria-associated membrane). On the MAM, ER folding chaperones such as calnexin and calreticulin and oxidoreductases such as ERp44, ERp57 and Ero1alpha regulate calcium flux from the ER through reversible, calcium and redox-dependent interactions with IP3Rs (inositol 1,4,5-trisphophate receptors) and with SERCAs (sarcoplasmic/endoplasmic reticulum calcium ATPases). During apoptosis progression and depending on the identity of the ER chaperone and oxidoreductase, these interactions increase or decrease, suggesting that the extent of MAM targeting of ER chaperones and oxidoreductases could shift the readout of ER-mitochondria calcium exchange from housekeeping to apoptotic. However, little is known about the cytosolic factors that mediate the on/off interactions between ER chaperones and oxidoreductases with ER calcium channels and pumps. One candidate regulator is the multi-functional molecule PACS-2 (phosphofurin acidic cluster sorting protein-2). Recent

  15. Directional Trans-Synaptic Labeling of Specific Neuronal Connections in Live Animals.

    Science.gov (United States)

    Desbois, Muriel; Cook, Steven J; Emmons, Scott W; Bülow, Hannes E

    2015-07-01

    Understanding animal behavior and development requires visualization and analysis of their synaptic connectivity, but existing methods are laborious or may not depend on trans-synaptic interactions. Here we describe a transgenic approach for in vivo labeling of specific connections in Caenorhabditis elegans, which we term iBLINC. The method is based on BLINC (Biotin Labeling of INtercellular Contacts) and involves trans-synaptic enzymatic transfer of biotin by the Escherichia coli biotin ligase BirA onto an acceptor peptide. A BirA fusion with the presynaptic cell adhesion molecule NRX-1/neurexin is expressed presynaptically, whereas a fusion between the acceptor peptide and the postsynaptic protein NLG-1/neuroligin is expressed postsynaptically. The biotinylated acceptor peptide::NLG-1/neuroligin fusion is detected by a monomeric streptavidin::fluorescent protein fusion transgenically secreted into the extracellular space. Physical contact between neurons is insufficient to create a fluorescent signal, suggesting that synapse formation is required. The labeling approach appears to capture the directionality of synaptic connections, and quantitative analyses of synapse patterns display excellent concordance with electron micrograph reconstructions. Experiments using photoconvertible fluorescent proteins suggest that the method can be utilized for studies of protein dynamics at the synapse. Applying this technique, we find connectivity patterns of defined connections to vary across a population of wild-type animals. In aging animals, specific segments of synaptic connections are more susceptible to decline than others, consistent with dedicated mechanisms of synaptic maintenance. Collectively, we have developed an enzyme-based, trans-synaptic labeling method that allows high-resolution analyses of synaptic connectivity as well as protein dynamics at specific synapses of live animals. Copyright © 2015 by the Genetics Society of America.

  16. Whey protein isolate with improved film properties through cross-linking catalyzed by small laccase from Streptomyces coelicolor.

    Science.gov (United States)

    Quan, Wei; Zhang, Chong; Zheng, Meixia; Lu, Zhaoxin; Lu, Fengxia

    2018-01-24

    The effects of small laccase (SLAC) from Streptomyces coelicolor on the properties of whey protein isolate (WPI) films were studied. WPI was catalyze by SLAC without phenolic acid assistance. Particle size distribution results showed that some complexes with higher relative molecular weight formed in WPI samples treated with SLAC. The content of α-helixes decreased while those of β-sheets and random coils increased following SLAC treatment according to circular dichroism results. Fourier transform infrared spectral analysis suggested that some conformational changes occurred in WPI following SLAC treatment. Analysis of WPI films prepared by casting after SLAC treatment indicated that their film properties were all improved, including mechanical properties, solubility, water vapor, oxygen and carbon dioxide barrier properties, film color, light transmission, transparency and thermal properties. Compared with that of the control film, some obvious differences in the morphology of the WPI films were observed following SLAC treatment. This report demonstrates that laccase can directly catalyze protein cross-linking, which may be useful to improve the performance of protein films. In this study, SLAC was applied to WPI edible film during the film-making process. The results showed that SLAC can catalyze WPI cross-linking without phenolic acid assistance, and WPI film properties were improved after SLAC treatment. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  17. CNA web server: rigidity theory-based thermal unfolding simulations of proteins for linking structure, (thermo-)stability, and function.

    Science.gov (United States)

    Krüger, Dennis M; Rathi, Prakash Chandra; Pfleger, Christopher; Gohlke, Holger

    2013-07-01

    The Constraint Network Analysis (CNA) web server provides a user-friendly interface to the CNA approach developed in our laboratory for linking results from rigidity analyses to biologically relevant characteristics of a biomolecular structure. The CNA web server provides a refined modeling of thermal unfolding simulations that considers the temperature dependence of hydrophobic tethers and computes a set of global and local indices for quantifying biomacromolecular stability. From the global indices, phase transition points are identified where the structure switches from a rigid to a floppy state; these phase transition points can be related to a protein's (thermo-)stability. Structural weak spots (unfolding nuclei) are automatically identified, too; this knowledge can be exploited in data-driven protein engineering. The local indices are useful in linking flexibility and function and to understand the impact of ligand binding on protein flexibility. The CNA web server robustly handles small-molecule ligands in general. To overcome issues of sensitivity with respect to the input structure, the CNA web server allows performing two ensemble-based variants of thermal unfolding simulations. The web server output is provided as raw data, plots and/or Jmol representations. The CNA web server, accessible at http://cpclab.uni-duesseldorf.de/cna or http://www.cnanalysis.de, is free and open to all users with no login requirement.

  18. Respiratory Tract Infections in Diabetic and Non-Diabetic Individuals are Linked with Serum Surfactant Protein-D

    International Nuclear Information System (INIS)

    Jawed, S.; Parveen, N.

    2015-01-01

    Objective: To find out the rate of respiratory tract infections in diabetic and non-diabetic individuals and their relation with surfactant protein D. Methods: The cross-sectional study was conducted at Dow University of Health Sciences, Karachi, from September 2011 to April 2012, and comprised subjects of both genders between ages of 30 and 60 years. The subjects were divided into four groups: diabetic obese, non-diabetic obese, diabetic non-obese, and non-diabetic-non-obese. A structured questionnaire was used to collect information about respiratory tract infections. Serum surfactant protein D levels were analysed using human surfactant protein D enzyme-linked immunosorbent assay kit. Statistical analysis was performed using SPSS 16. Results: Of the 90 subjects, there were 20(22.2 percent) diabetic obese, 30(33.3 percent) non-diabetic obese, 10(11.1 percent) diabetic non-obese, and 30(33.3 percent) non-diabetic-non-obese. The overall mean age was 36.6±103 years. Among the diabetic obese, 15(75 percent) had respiratory tract infections which was higher than the other study groups, and patients having respiratory tract infections had lower surfactant protein D levels than those who did not have infections (p=0.01). Conclusion: Diabetic obese subjects had greater rate of recurrent respiratory tract infections and had lower concentration of serum surfactant protein D compared to subjects without respiratory tract infections. (author)

  19. EEA1 restores homeostatic synaptic plasticity in hippocampal neurons from Rett syndrome mice.

    Science.gov (United States)

    Xu, Xin; Pozzo-Miller, Lucas

    2017-08-15

    Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in MECP2, the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Mecp2 deletion in mice results in an imbalance of excitation and inhibition in hippocampal neurons, which affects 'Hebbian' synaptic plasticity. We show that Mecp2-deficient neurons also lack homeostatic synaptic plasticity, likely due to reduced levels of EEA1, a protein involved in AMPA receptor endocytosis. Expression of EEA1 restored homeostatic synaptic plasticity in Mecp2-deficient neurons, providing novel targets of intervention in Rett syndrome. Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in MECP2, the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Deletion of Mecp2 in mice results in an imbalance of synaptic excitation and inhibition in hippocampal pyramidal neurons, which affects 'Hebbian' long-term synaptic plasticity. Since the excitatory-inhibitory balance is maintained by homeostatic mechanisms, we examined the role of MeCP2 in homeostatic synaptic plasticity (HSP) at excitatory synapses. Negative feedback HSP, also known as synaptic scaling, maintains the global synaptic strength of individual neurons in response to sustained alterations in neuronal activity. Hippocampal neurons from Mecp2 knockout (KO) mice do not show the characteristic homeostatic scaling up of the amplitude of miniature excitatory postsynaptic currents (mEPSCs) and of synaptic levels of the GluA1 subunit of AMPA-type glutamate receptors after 48 h silencing with the Na + channel blocker tetrodotoxin. This deficit in HSP is bidirectional because Mecp2 KO neurons also failed to scale down mEPSC amplitudes and GluA1 synaptic levels after 48 h blockade of type A GABA receptor (GABA A R)-mediated inhibition with bicuculline. Consistent with the role of synaptic trafficking of AMPA-type of glutamate receptors in HSP, Mecp2 KO neurons

  20. A Protein Profile of Visceral Adipose Tissues Linked to Early Pathogenesis of Type 2 Diabetes Mellitus*

    OpenAIRE

    Kim, Su-Jin; Chae, Sehyun; Kim, Hokeun; Mun, Dong-Gi; Back, Seunghoon; Choi, Hye Yeon; Park, Kyong Soo; Hwang, Daehee; Choi, Sung Hee; Lee, Sang-Won

    2014-01-01

    Adipose tissue is increasingly recognized as an endocrine organ playing important pathophysiological roles in metabolic abnormalities, such as obesity, cardiovascular disease, and type 2 diabetes mellitus (T2DM). In particular, visceral adipose tissue (VAT), as opposed to subcutaneous adipose tissue, is closely linked to the pathogenesis of insulin resistance and T2DM. Despite the importance of VAT, its molecular signatures related to the pathogenesis of T2DM have not been systematically expl...

  1. Purines released from astrocytes inhibit excitatory synaptic transmission in the ventral horn of the spinal cord

    DEFF Research Database (Denmark)

    Carlsen, Eva Maria Meier; Perrier, Jean-Francois Marie

    2014-01-01

    . Neurons responded to electrical stimulation by monosynaptic EPSCs (excitatory monosynaptic postsynaptic currents). We used mice expressing the enhanced green fluorescent protein under the promoter of the glial fibrillary acidic protein to identify astrocytes. Chelating calcium with BAPTA in a single...... by different neuromodulators. These substances are usually thought of being released by dedicated neurons. However, in other networks from the central nervous system synaptic transmission is also modulated by transmitters released from astrocytes. The star-shaped glial cell responds to neurotransmitters...... by releasing gliotransmitters, which in turn modulate synaptic transmission. Here we investigated if astrocytes present in the ventral horn of the spinal cord modulate synaptic transmission. We evoked synaptic inputs in ventral horn neurons recorded in a slice preparation from the spinal cord of neonatal mice...

  2. Molecular Evidence of Adenosine Deaminase Linking Adenosine A2AReceptor and CD26 Proteins.

    Science.gov (United States)

    Moreno, Estefanía; Canet, Júlia; Gracia, Eduard; Lluís, Carme; Mallol, Josefa; Canela, Enric I; Cortés, Antoni; Casadó, Vicent

    2018-01-01

    Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR)-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA) is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26) and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A 2A R present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A 2A R and a modification of the bioluminescence resonance energy transfer (BRET) technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET), we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A 2A R involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A 2A R-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26) and dendritic cells (expressing A 2A R). This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector) without partitioning these functions in different subunits.

  3. Molecular Evidence of Adenosine Deaminase Linking Adenosine A2A Receptor and CD26 Proteins

    Directory of Open Access Journals (Sweden)

    Estefanía Moreno

    2018-02-01

    Full Text Available Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26 and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A2AR present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A2AR and a modification of the bioluminescence resonance energy transfer (BRET technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET, we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A2AR involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A2AR-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26 and dendritic cells (expressing A2AR. This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector without partitioning these functions in different subunits.

  4. Recombinant Plasmodium falciparum glutamate rich protein; purification and use in enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Dziegiel, Morten Hanefeld; Borre, M B; Jepsen, S

    1991-01-01

    New Guinea (MAD20) and Honduras (HB3) completely absorbed specific antibodies, indicating the presence of conserved epitopes produced by all isolates of P. falciparum. Recombinant GLURP489-1271 ELISA is sensitive and rapid, and therefore well-suited for sero-epidemiological studies, and for control...... GLURP489-1271 was expressed as a chimeric protein, fused with E. coli beta-galactosidase. However, antibodies in sera were directed only against the malaria part of the fusion protein and not against beta-galactosidase. Antigen from in vitro P. falciparum cultures of isolates from Tanzania (F32), Papua...

  5. Alteration of protein function by a silent polymorphism linked to tRNA abundance

    OpenAIRE

    Kirchner, Sebastian; Cai, Zhiwei; Rauscher, Robert; Kastelic, Nicolai; Anding, Melanie; Czech, Andreas; Kleizen, Bertrand; Ostedgaard, Lynda S.; Braakman, Ineke; Sheppard, David N.; Ignatova, Zoya

    2017-01-01

    Synonymous single nucleotide polymorphisms (sSNPs) are considered neutral for protein function, as by definition they exchange only codons, not amino acids. We identified an sSNP that modifies the local translation speed of the cystic fibrosis transmembrane conduc-tance regulator (CFTR), leading to detrimental changes to protein stability and function. This sSNP introduces a codon pairing to a low-abundance tRNA that is particularly rare in human bronchial epithelia, but not in other human ti...

  6. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Adam [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  7. Serodiagnosis of cutaneous leishmaniasis: assessment of an enzyme-linked immunosorbent assay using a peptide sequence from gene B protein

    DEFF Research Database (Denmark)

    Jensen, A T; Gaafar, A; Ismail, A

    1996-01-01

    An enzyme-linked immunosorbent assay (ELISA) using a 28 amino acid sequence of the repetitive element of gene B protein (GBP) from Leishmania major was developed for serodiagnosis of cutaneous leishmaniasis (CL). The assay was compared to ELISAs using crude amastigote and promastigote antigens from...... samples from healthy Sudanese individuals living in an area endemic for malaria but free of leish-maniasis were negative in all the assays. Significantly higher levels of antibodies were found in the patients who had suffered from the disease for more than eight weeks than in patients with a shorter...

  8. Aberrant expression of mucin core proteins and o-linked glycans associated with progression of pancreatic cancer

    DEFF Research Database (Denmark)

    Remmers, Neeley; Anderson, Judy M; Linde, Erin M

    2013-01-01

    Mucin expression is a common feature of most adenocarcinomas and features prominently in current attempts to improve diagnosis and therapy for pancreatic cancer and other adenocarcinomas. We investigated the expression of a number of mucin core proteins and associated O-linked glycans expressed i...... in pancreatic adenocarcinoma-sialyl Tn (STn), Tn, T antigen, sialyl Lewis A (CA19-9), sialyl Lewis C (SLeC), Lewis X (LeX), and sialyl LeX (SLeX)-during the progression of pancreatic cancer from early stages to metastatic disease....

  9. Thioredoxin and Its Reductase Are Present on Synaptic Vesicles, and Their Inhibition Prevents the Paralysis Induced by Botulinum Neurotoxins

    Directory of Open Access Journals (Sweden)

    Marco Pirazzini

    2014-09-01

    Full Text Available Botulinum neurotoxins consist of a metalloprotease linked via a conserved interchain disulfide bond to a heavy chain responsible for neurospecific binding and translocation of the enzymatic domain in the nerve terminal cytosol. The metalloprotease activity is enabled upon disulfide reduction and causes neuroparalysis by cleaving the SNARE proteins. Here, we show that the thioredoxin reductase-thioredoxin protein disulfide-reducing system is present on synaptic vesicles and that it is functional and responsible for the reduction of the interchain disulfide of botulinum neurotoxin serotypes A, C, and E. Specific inhibitors of thioredoxin reductase or thioredoxin prevent intoxication of cultured neurons in a dose-dependent manner and are also very effective inhibitors of the paralysis of the neuromuscular junction. We found that this group of inhibitors of botulinum neurotoxins is very effective in vivo. Most of them are nontoxic and are good candidates as preventive and therapeutic drugs for human botulism.

  10. Conditional reduction of adult neurogenesis impairs bidirectional hippocampal synaptic plasticity

    Science.gov (United States)

    Massa, Federico; Koehl, Muriel; Wiesner, Theresa; Grosjean, Noelle; Revest, Jean-Michel; Piazza, Pier-Vincenzo; Abrous, Djoher Nora; Oliet, Stéphane H. R.

    2011-01-01

    Adult neurogenesis is a process by which the brain produces new neurons once development has ceased. Adult hippocampal neurogenesis has been linked to the relational processing of spatial information, a role attributed to the contribution of newborn neurons to long-term potentiation (LTP). However, whether newborn neurons also influence long-term depression (LTD), and how synaptic transmission and plasticity are affected as they incorporate their network, remain to be determined. To address these issues, we took advantage of a genetic model in which a majority of adult-born neurons can be selectively ablated in the dentate gyrus (DG) and, most importantly, in which neurogenesis can be restored on demand. Using electrophysiological recordings, we show that selective reduction of adult-born neurons impairs synaptic transmission at medial perforant pathway synapses onto DG granule cells. Furthermore, LTP and LTD are largely compromised at these synapses, probably as a result of an increased induction threshold. Whereas the deficits in synaptic transmission and plasticity are completely rescued by restoring neurogenesis, these synapses regain their ability to express LTP much faster than their ability to express LTD. These results demonstrate that both LTP and LTD are influenced by adult neurogenesis. They also indicate that as newborn neurons integrate their network, the ability to express bidirectional synaptic plasticity is largely improved at these synapses. These findings establish that adult neurogenesis is an important process for synaptic transmission and bidirectional plasticity in the DG, accounting for its role in efficiently integrating novel incoming information and in forming new memories. PMID:21464314

  11. Addictive nicotine alters local circuit inhibition during the induction of in vivo hippocampal synaptic potentiation.

    Science.gov (United States)

    Zhang, Tao A; Tang, Jianrong; Pidoplichko, Volodymyr I; Dani, John A

    2010-05-05

    The drug addiction process shares many commonalities with normal learning and memory. Addictive drugs subvert normal synaptic plasticity mechanisms, and the consequent synaptic changes underlie long-lasting modifications in behavior that accrue during the progression from drug use to addiction. Supporting this hypothesis, it was recently shown that nicotine administered to freely moving mice induces long-term synaptic potentiation of the perforant path connection to granule cells of the dentate gyrus. The perforant path carries place and spatial information that links the environment to drug taking. An example of that association is the nicotine-induced synaptic potentiation of the perforant path that was found to underlie nicotine-conditioned place preference. The present study examines the influence of nicotine over local GABAergic inhibition within the dentate gyrus during the drug-induced synaptic potentiation. In vivo recordings from freely moving mice suggested that both feedforward and feedback inhibition onto granules cells were diminished by nicotine during the induction of synaptic potentiation. In vitro brain slice studies indicated that nicotine altered local circuit inhibition within the dentate gyrus leading to disinhibition of granule cells. These changes in local inhibition contributed to nicotine-induced in vivo synaptic potentiation, thus, likely contributed to drug-associated memories. Through this learning process, environmental features become cues that motivate conditioned drug-seeking and drug-taking behaviors.

  12. Presynaptic Active Zone Density during Development and Synaptic Plasticity.

    Science.gov (United States)

    Clarke, Gwenaëlle L; Chen, Jie; Nishimune, Hiroshi

    2012-01-01

    Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density) during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs), the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS), active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated.

  13. Presynaptic active zone density during development and synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Gwenaëlle L Clarke

    2012-02-01

    Full Text Available Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs, the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS, active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated.

  14. Torsin A Localization in the Mouse Cerebellar Synaptic Circuitry.

    Directory of Open Access Journals (Sweden)

    Francesca Puglisi

    Full Text Available Torsin A (TA is a ubiquitous protein belonging to the superfamily of proteins called "ATPases associated with a variety of cellular activities" (AAA(+ ATPase. To date, a great deal of attention has been focused on neuronal TA since its mutant form causes early-onset (DYT1 torsion dystonia, an inherited movement disorder characterized by sustained muscle contractions and abnormal postures. Interestingly, it has been proposed that TA, by interacting with the cytoskeletal network, may contribute to the control of neurite outgrowth and/or by acting as a chaperone at synapses could affect synaptic vesicle turnover and neurotransmitter release. Accordingly, both its peculiar developmental expression in striatum and cerebellum and evidence from DYT1 knock-in mice suggest that TA may influence dendritic arborization and synaptogenesis in the brain. Therefore, to better understand TA function a detailed description of its localization at synaptic level is required. Here, we characterized by means of rigorous quantitative confocal analysis TA distribution in the mouse cerebellum at postnatal day 14 (P14, when both cerebellar synaptogenesis and TA expression peak. We observed that the protein is broadly distributed both in cerebellar cortex and in the deep cerebellar nuclei (DCN. Of note, Purkinje cells (PC express high levels of TA also in the spines and axonal terminals. In addition, abundant expression of the protein was found in the main GABA-ergic and glutamatergic inputs of the cerebellar cortex. Finally, TA was observed also in glial cells, a cellular population little explored so far. These results extend our knowledge on TA synaptic localization providing a clue to its potential role in synaptic development.

  15. Identification and characterization of sex-linked proteins of Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    A. Maldonado Junior

    1991-03-01

    Full Text Available The proteins of adults worms (male and female of two isolates (BH and RJ of Shistosoma mansoni were extracted using Triton X-114 phase separation. The SDS-polyacrilamide gel electrophoresis profiles of the three phases (detergent, aqueous and insoluble proteins obtained were compared after Coomassie blue and silver staining, surface radioiodination and Western blotting. No major differences were detected between the 2 isolates. Of the 25 or more proteins which partitioned into the detergent phase, only about 8 proteins could be surface radiodinated on live adult worms. A comparison was also made between the profiles of mael and females worms, isolated from bisexually infected mice. Two major female-specific and one male-specific band were detected by silver and/or Coomassie staining. The female bands, 32 KDa and 18 KDa, partitioned into the detergent and aqueous phase, respectively. The male-specific band of 42 KDa remained in the insoluble phase. Antigenic differences between male and females protins were detected by Western vlotting using a sera from infected Nectomys squamipes.

  16. Scale-space measures for graph topology link protein network architecture to function

    NARCIS (Netherlands)

    Hulsman, M.; Dimitrakopoulos, C.; De Ridder, J.

    2014-01-01

    MOTIVATION: The network architecture of physical protein interactions is an important determinant for the molecular functions that are carried out within each cell. To study this relation, the network architecture can be characterized by graph topological characteristics such as shortest paths and

  17. Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins.

    Science.gov (United States)

    Du, Quansheng; Macara, Ian G

    2004-11-12

    During asymmetric cell divisions, mitotic spindles align along the axis of polarization. In invertebrates, spindle positioning requires Pins or related proteins and a G protein alpha subunit. A mammalian Pins, called LGN, binds Galphai and also interacts through an N-terminal domain with the microtubule binding protein NuMA. During mitosis, LGN recruits NuMA to the cell cortex, while cortical association of LGN itself requires the C-terminal Galpha binding domain. Using a FRET biosensor, we find that LGN behaves as a conformational switch: in its closed state, the N and C termini interact, but NuMA or Galphai can disrupt this association, allowing LGN to interact simultaneously with both proteins, resulting in their cortical localization. Overexpression of Galphai or YFP-LGN causes a pronounced oscillation of metaphase spindles, and NuMA binding to LGN is required for these spindle movements. We propose that a related switch mechanism might operate in asymmetric cell divisions in the fly and nematode.

  18. Superhelical architecture of the myosin filament-linking protein myomesin with unusual elastic properties.

    Directory of Open Access Journals (Sweden)

    Nikos Pinotsis

    2012-02-01

    Full Text Available Active muscles generate substantial mechanical forces by the contraction/relaxation cycle, and, to maintain an ordered state, they require molecular structures of extraordinary stability. These forces are sensed and buffered by unusually long and elastic filament proteins with highly repetitive domain arrays. Members of the myomesin protein family function as molecular bridges that connect major filament systems in the central M-band of muscle sarcomeres, which is a central locus of passive stress sensing. To unravel the mechanism of molecular elasticity in such filament-connecting proteins, we have determined the overall architecture of the complete C-terminal immunoglobulin domain array of myomesin by X-ray crystallography, electron microscopy, solution X-ray scattering, and atomic force microscopy. Our data reveal a dimeric tail-to-tail filament structure of about 360 Å in length, which is folded into an irregular superhelical coil arrangement of almost identical α-helix/domain modules. The myomesin filament can be stretched to about 2.5-fold its original length by reversible unfolding of these linkers, a mechanism that to our knowledge has not been observed previously. Our data explain how myomesin could act as a highly elastic ribbon to maintain the overall structural organization of the sarcomeric M-band. In general terms, our data demonstrate how repetitive domain modules such as those found in myomesin could generate highly elastic protein structures in highly organized cell systems such as muscle sarcomeres.

  19. Alteration of protein function by a silent polymorphism linked to tRNA abundance

    NARCIS (Netherlands)

    Kirchner, Sebastian; Cai, Zhiwei; Rauscher, Robert; Kastelic, Nicolai; Anding, Melanie; Czech, Andreas; Kleizen, Bertrand; Ostedgaard, Lynda S.; Braakman, Ineke; Sheppard, David N.; Ignatova, Zoya

    2017-01-01

    Synonymous single nucleotide polymorphisms (sSNPs) are considered neutral for protein function, as by definition they exchange only codons, not amino acids. We identified an sSNP that modifies the local translation speed of the cystic fibrosis transmembrane conduc-tance regulator (CFTR), leading to

  20. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    International Nuclear Information System (INIS)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui; Tu, Mei; Zeng, Rong; Rong, Jianhua; Zhao, Jianhao

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells

  1. Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunhong; Xu, Guoguang; Wang, Xinghui [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2015-01-01

    A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1–5 μm in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220 ± 15 kPa and the slowest BSA delivery (67% release at 14 d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. - Highlights: • New self-reinforcing HA hydrogels with a dually cross-linked network were developed. • Self-reinforcing HA hydrogels greatly enhanced the mechanical properties. • Self-reinforcing HA hydrogels prolonged the sustained delivery of BSA. • The self-reinforcing mechanism and BSA diffusion mechanism were discussed. • Self-reinforcing HA hydrogels had no cytotoxicity to 3T3 fibroblast cells.

  2. Missense mutation Lys18Asn in dystrophin that triggers X-linked dilated cardiomyopathy decreases protein stability, increases protein unfolding, and perturbs protein structure, but does not affect protein function.

    Science.gov (United States)

    Singh, Surinder M; Bandi, Swati; Shah, Dinen D; Armstrong, Geoffrey; Mallela, Krishna M G

    2014-01-01

    Genetic mutations in a vital muscle protein dystrophin trigger X-linked dilated cardiomyopathy (XLDCM). However, disease mechanisms at the fundamental protein level are not understood. Such molecular knowledge is essential for developing therapies for XLDCM. Our main objective is to understand the effect of disease-causing mutations on the structure and function of dystrophin. This study is on a missense mutation K18N. The K18N mutation occurs in the N-terminal actin binding domain (N-ABD). We created and expressed the wild-type (WT) N-ABD and its K18N mutant, and purified to homogeneity. Reversible folding experiments demonstrated that both mutant and WT did not aggregate upon refolding. Mutation did not affect the protein's overall secondary structure, as indicated by no changes in circular dichroism of the protein. However, the mutant is thermodynamically less stable than the WT (denaturant melts), and unfolds faster than the WT (stopped-flow kinetics). Despite having global secondary structure similar to that of the WT, mutant showed significant local structural changes at many amino acids when compared with the WT (heteronuclear NMR experiments). These structural changes indicate that the effect of mutation is propagated over long distances in the protein structure. Contrary to these structural and stability changes, the mutant had no significant effect on the actin-binding function as evident from co-sedimentation and depolymerization assays. These results summarize that the K18N mutation decreases thermodynamic stability, accelerates unfolding, perturbs protein structure, but does not affect the function. Therefore, K18N is a stability defect rather than a functional defect. Decrease in stability and increase in unfolding decrease the net population of dystrophin molecules available for function, which might trigger XLDCM. Consistently, XLDCM patients have decreased levels of dystrophin in cardiac muscle.

  3. Microwave-assisted cross-linking of milk proteins induced by microbial transglutaminase

    Science.gov (United States)

    Chen, Chun-Chi; Hsieh, Jung-Feng

    2016-12-01

    We investigated the combined effects of microbial transglutaminase (MTGase, 7.0 units/mL) and microwave irradiation (MI) on the polymerization of milk proteins at 30 °C for 3 h. The addition of MTGase caused the milk proteins to become polymerized, which resulted in the formation of components with a higher molecular-weight (>130 kDa). SDS-PAGE analysis revealed reductions in the protein content of β-lactoglobulin (β-LG), αS-casein (αS-CN), κ-casein (κ-CN) and β-casein (β-CN) to 50.4 ± 2.9, 33.5 ± 3.0, 4.2 ± 0.5 and 1.2 ± 0.1%, respectively. The use of MTGase in conjunction MI with led to a 3-fold increase in the rate of milk protein polymerization, compared to a sample that contained MTGase but did not undergo MI. Results of two-dimensional gel electrophoresis (2-DE) indicated that κ-CN, β-CN, a fraction of serum albumin (SA), β-LG, α-lactalbumin (α-LA), αs1-casein (αs1-CN), and αs2-casein (αs2-CN) were polymerized in the milk, following incubation with MTGase and MI at 30 °C for 1 h. Based on this result, the combined use of MTGase and MI appears to be a better way to polymerize milk proteins.

  4. Succination of Protein Disulfide Isomerase Links Mitochondrial Stress and Endoplasmic Reticulum Stress in the Adipocyte During Diabetes.

    Science.gov (United States)

    Manuel, Allison M; Walla, Michael D; Faccenda, Adam; Martin, Stephanie L; Tanis, Ross M; Piroli, Gerardo G; Adam, Julie; Kantor, Boris; Mutus, Bulent; Townsend, Danyelle M; Frizzell, Norma

    2017-12-01

    Protein succination by fumarate increases in the adipose tissue of diabetic mice and in adipocytes matured in high glucose as a result of glucotoxicity-driven mitochondrial stress. The endoplasmic reticulum (ER) oxidoreductase protein disulfide isomerase (PDI) is succinated in adipocytes that are matured in high glucose, and in this study we investigated whether succination would alter PDI oxidoreductase activity, directly linking mitochondrial stress and ER stress. Protein succination and the ER stress marker C/EBP homologous protein (CHOP) were diminished after pharmaceutical targeting of mitochondrial stress with the chemical uncoupler niclosamide in adipocytes matured in high-glucose concentrations. PDI was succinated by fumarate on both CXXC-containing active sites, contributing to reduced enzymatic activity. Succinated PDI decreased reductase activity in adipocytes matured in high glucose, and in db/db epididymal adipose tissue, in association with increased levels of CHOP. PDI succination was increased in fumarase knockdown adipocytes, leading to reduced PDI oxidoreductase activity, increased CHOP levels, and pro-inflammatory cytokine secretion, confirming the specific role of elevated fumarate levels in contributing to ER stress. In addition, PDI succination and ER stress were decreased, and PDI reductase activity was restored when exposure to chronic high glucose was limited, highlighting the importance of calorie restriction in the improvement of adipocyte metabolic function. These experiments identify PDI succination as a novel biochemical mechanism linking altered mitochondrial metabolism to ER stress in the adipocyte during diabetes. The current study demonstrates that early biochemical changes in mitochondrial metabolism have important implications for the development of adipocyte stress. Antioxid. Redox Signal. 27, 1281-1296.

  5. Synaptic Control of Secretory Trafficking in Dendrites

    Directory of Open Access Journals (Sweden)

    Cyril Hanus

    2014-06-01

    Full Text Available Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca2+/calmodulin-dependent protein kinases (CaMK. Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport.

  6. Myelin protein zero/P0 phosphorylation and function require an adaptor protein linking it to RACK1 and PKC alpha.

    Science.gov (United States)

    Gaboreanu, Ana-Maria; Hrstka, Ronald; Xu, Wenbo; Shy, Michael; Kamholz, John; Lilien, Jack; Balsamo, Janne

    2007-05-21

    Point mutations in the cytoplasmic domain of myelin protein zero (P0; the major myelin protein in the peripheral nervous system) that alter a protein kinase Calpha (PKCalpha) substrate motif (198HRSTK201) or alter serines 199 and/or 204 eliminate P0-mediated adhesion. Mutation in the PKCalpha substrate motif (R198S) also causes a form of inherited peripheral neuropathy (Charcot Marie Tooth disease [CMT] 1B), indicating that PKCalpha-mediated phosphorylation of P0 is important for myelination. We have now identified a 65-kD adaptor protein that links P0 with the receptor for activated C kinase 1 (RACK1). The interaction of p65 with P0 maps to residues 179-197 within the cytoplasmic tail of P0. Mutations or deletions that abolish p65 binding reduce P0 phosphorylation and adhesion, which can be rescued by the substitution of serines 199 and 204 with glutamic acid. A mutation in the p65-binding sequence G184R occurs in two families with CMT, and mutation of this residue results in the loss of both p65 binding and adhesion function.

  7. Use of hydrophilic extra-viral domain of canine distemper virus H protein for enzyme-linked immunosorbent assay development.

    Science.gov (United States)

    Cho, Ki-hyun; Kim, Jeongmi; Yoo, Hyun-ah; Kim, Dae-hee; Park, Seung-yong; Song, Chang-seon; Choi, In-soo; Lee, Joong-bok

    2014-12-01

    Simple methods for measuring the levels of serum antibody against canine distemper virus (CDV) would assist in the effective vaccination of dogs. To develop an enzyme-linked immunosorbent assay (ELISA) specific for CDV, we expressed hydrophilic extra-viral domain (HEVD) protein of the A75/17-CDV H gene in a pET 28a plasmid-based Escherichia (E.) coli vector system. Expression was confirmed by dot and Western blotting. We proposed that detection of E. coli-expressed H protein might be conformation- dependent because intensities of the reactions observed with these two methods varied. The H gene HEVD protein was further purified and used as an antigen for an ELISA. Samples from dogs with undetectable to high anti-CDV antibody titers were analyzed using this HEVD-specific ELISA and a commercial CDV antibody detection kit (ImmunoComb). Levels of HEVD antigenicity measured with the assays and immunochromatography correlated. These data indicated that the HEDV protein may be used as antigen to develop techniques for detecting antibodies against CDV.

  8. Influence of milk protein cross-linking by transglutaminase on the rennet coagulation time and the gel properties.

    Science.gov (United States)

    Domagała, Jacek; Najgebauer-Lejko, Dorota; Wieteska-Śliwa, Ilona; Sady, Marek; Wszołek, Monika; Bonczar, Genowefa; Filipczak-Fiutak, Magda

    2016-08-01

    Transglutaminase (TGase) modifies milk proteins by cross-linking of caseins, with increased cheese yield being the main technological benefit. In the present work the influence of TGase addition in different concentrations (0, 1, 2 and 3 U g(-1) protein in the system) and under different incubation conditions (0 h, 40 °C/2 h, 25 °C/4 h and 5 °C/16 h) on the rennet coagulation time (RCT) and the comprehensive rennet gel properties were investigated. Modification of milk proteins by TGase in a concentration-dependent manner caused longer RCT and lower gel firmness. The highest TGase concentration and incubation at 40 °C for 2 h resulted in the longest RCT and the lowest gel firmness. Rennet gels obtained from TGase modified milk were characterised by significantly lower values of texture parameters, lower syneresis and were composed of smaller casein micelles, thinner chains and smaller clusters than those obtained from the control milk. The content of whey proteins in the gel from modified milk was higher and the content of individual casein fractions in the milk samples and rennet gels decreased upon TGase modification. Rennet cheese with modified textural and nutritional properties and improved yield can be obtained upon TGase modification but simultaneous addition of rennet and TGase is recommended. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. Identification of a protein linked to nascent poliovirus RNA and to the polyuridylic acid of negative-strand RNA.

    Science.gov (United States)

    Pettersson, R F; Ambros, V; Baltimore, D

    1978-08-01

    A protein similar to that previously demonstrated on poliovirus RNA and replicative intermediate RNA (VPg) was found on all sizes of nascent viral RNA molecules and on the polyuridylic acid isolated from negative-strand RNA. 32P-labeled nascent chains were released from their template RNA and fractionated by exclusion chromatography on agarose. Fingerprint analysis using two-dimensional polyacrylamide gels of RNase T1 oligonucleotides derived from nascent chains of different lengths showed that a size fractionation of nascent chains was achieved. VPg was recovered from nascent chains varying in length from 7,500 nucleotides (full-sized RNA) to about 500 nucleotides. No other type of 5' terminus could be demonstrated on nascent RNA, and the yield of VPg was consistent with one molecule of the protein on each nascent chain. These results are consistent with the concept that the protein is added to the 5' end of the growing RNA chains at a very early stage, possibly as a primer of RNA synthesis. Analysis of the polyuridylic acid tract isolated from the replicative intermediate and double-stranded RNAs indicated that a protein of the same size as that found on the nascent chains and virion RNA is also linked to the negative-strand RNAs. It is likely that a similar mechanism is responsible for initiation of synthesis of both plus- and minus-strand RNAs.

  10. Analysis of temporal transcription expression profiles reveal links between protein function and developmental stages of Drosophila melanogaster.

    Science.gov (United States)

    Wan, Cen; Lees, Jonathan G; Minneci, Federico; Orengo, Christine A; Jones, David T

    2017-10-01

    Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.

  11. Analysis of temporal transcription expression profiles reveal links between protein function and developmental stages of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Cen Wan

    2017-10-01

    Full Text Available Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.

  12. Chemical Cross-Linking and H/D Exchange for Fast Refinement of Protein Crystal Structure

    Czech Academy of Sciences Publication Activity Database

    Rozbeský, Daniel; Man, Petr; Kavan, Daniel; Chmelík, Josef; Černý, Jiří; Bezouška, Karel; Novák, Petr

    2012-01-01

    Roč. 84, č. 2 (2012), s. 867-870 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GAP207/10/1040; GA ČR GA303/09/0477; GA ČR GD305/09/H008; GA MŠk LC545 Institutional research plan: CEZ:AV0Z50520701; CEZ:AV0Z50200510 Keywords : MASS-SPECTROMETRY * chemical cross-linking * NKR-P1A receptor Subject RIV: EE - Microbiology, Virology Impact factor: 5.695, year: 2012

  13. High mobility group protein number17 cross-links primarily to histone H2A in the reconstituted HMG 17 - nucleosome core particle complex

    International Nuclear Information System (INIS)

    Cook, G.R.; Yau, P.; Yasuda, H.; Traut, R.R.; Bradbury, E.M.

    1986-01-01

    The neighbor relationship of lamb thymus High Mobility Group (HMG) protein 17 to native HeLa nucleosome core particle histones in the reconstituted complex has been studied. 125 I-labeled HMG 17 was cross-linking to core histones using the protein-protein cross-linking reagent 2-iminothiolane. Specific cross-linked products were separated on a two-dimensional Triton-acid-urea/SDS gel system, located by autoradiography, excised and quantified. Disulfide bonds in the cross links were then cleaved and the protein constituents were identified by SDS gel electrophoresis. HMG 17 cross-linked primarily to histone H2A while lower levels of cross-linking occurred between HMG 17 and the other histones. In contrast, cross-linking between two HMG 17 molecules bound on the same nucleosome was relatively rare. It is concluded that the same nucleosome was relatively rare. It is concluded that H2A comprises part of the HMG 17 binding site but that HMG 17 is sufficiently elongated and mobile to permit cross-linking to the other histones and to a second HMG 17 molecule. These results are in agreement with the current model for the structure of the nucleosome and the proposed binding sites for HMG 17

  14. Synaptic proteome changes in the hypothalamus of mother rats.

    Science.gov (United States)

    Udvari, Edina Brigitta; Völgyi, Katalin; Gulyássy, Péter; Dimén, Diána; Kis, Viktor; Barna, János; Szabó, Éva Rebeka; Lubec, Gert; Juhász, Gábor; Kékesi, Katalin Adrienna; Dobolyi, Árpád

    2017-04-21

    To establish synaptic proteome changes associated with motherhood, we isolated synaptosome fractions from the hypothalamus of mother rats and non-maternal control females at the 11th postpartum day. Proteomic analysis by two-dimensional differential gel electrophoresis combined with mass spectrometric protein identification established 26 significant proteins, 7 increasing and 19 decreasing protein levels in the dams. The altered proteins are mainly involved in energy homeostasis, protein folding, and metabolic processes suggesting the involvement of these cellular processes in maternal adaptations. The decrease in a significantly altered protein, complement component 1q subcomponent-binding protein (C1qbp) was validated with Western blotting. Furthermore, immunohistochemistry showed its presence in hypothalamic fibers and terminals in agreement with its presence in synaptosomes. We also found the expression of C1qbp in different hypothalamic nuclei including the preoptic area and the paraventricular hypothalamic nucleus at the protein and at the mRNA level using immunohistochemistry and in situ hybridization histochemistry, respectively. Bioinformatical network analysis revealed that cytokines, growth factors, and protein kinases are common regulators, which indicates a complex regulation of the proteome change in mothers. The results suggest that maternal responsiveness is associated with synaptic proteins level changes in the hypothalamus, and that growth factors and cytokines may govern these alterations. The period of motherhood is accompanied with several behavioral, neuroendocrine, emotional and metabolic adaptations in the brain. Although it is established that various hypothalamic networks participate in the maternal adaptations of the rodent brain, our knowledge on the molecular background of these alterations remains seriously limited. In the present study, we first determined that the functional alterations of the maternal brain can be detected at the

  15. Surfactant Protein-D-Encoding Gene Variant Polymorphisms Are Linked to Respiratory Outcome in Premature Infants

    DEFF Research Database (Denmark)

    Sorensen, Grith Lykke; Dahl, Marianne; Tan, Qihua

    2014-01-01

    OBJECTIVE: Associations between the genetic variation within or downstream of the surfactant protein-D-encoding gene (SFTPD), which encodes the collectin surfactant protein-D (SP-D) and may lead to respiratory distress syndrome or bronchopulmonary dysplasia, recently were reported. Our aim...... were used to associate genetic variation to SP-D, respiratory distress (RD), oxygen requirement, and respiratory support. RESULTS: The 5'-upstream SFTPD SNP rs1923534 and the 3 structural SNPs rs721917, rs2243639, and rs3088308 were associated with the SP-D level. The same SNPs were associated with RD......, a requirement for supplemental oxygen, and a requirement for respiratory support. Haplotype analyses identified 3 haplotypes that included the minor alleles of rs1923534, rs721917, and rs3088308 that exhibited highly significant associations with decreased SP-D levels and decreased ORs for RD, oxygen...

  16. SUMO modulation of protein aggregation and degradation

    Directory of Open Access Journals (Sweden)

    Marco Feligioni

    2015-09-01

    Full Text Available Small ubiquitin-like modifier (SUMO conjugation and binding to target proteins regulate a wide variety of cellular pathways. The functional aspects of SUMOylation include changes in protein-protein interactions, intracellular trafficking as well as protein aggregation and degradation. SUMO has also been linked to specialized cellular pathways such as neuronal development and synaptic transmission. In addition, SUMOylation is associated with neurological diseases associated with abnormal protein accumulations. SUMOylation of the amyloid and tau proteins involved in Alzheimer's disease and other tauopathies may contribute to changes in protein solubility and proteolytic processing. Similar events have been reported for α-synuclein aggregates found in Parkinson's disease, polyglutamine disorders such as Huntington's disease as well as protein aggregates found in amyotrophic lateral sclerosis (ALS. This review provides a detailed overview of the impact SUMOylation has on the etiology and pathology of these related neurological diseases.

  17. Ataxias and cerebellar dysfunction: involvement of synaptic plasticity deficits?

    Science.gov (United States)

    Rinaldo, Lorenzo; Hansel, Christian

    2011-01-01

    Summary Adaptive processes within cerebellar circuits, such as long-term depression and long-term potentiation at parallel fiber-Purkinje cell synapses, have long been seen as important to cerebellar motor learning, and yet little attention has been given to any possible significance of these processes for cerebellar dysfunction and disease. Several forms of ataxia are caused by mutations in genes encoding for ion channels located at key junctures in pathways that lead to the induction of synaptic plasticity, suggesting that there might be an association between deficits in plasticity and the ataxic phenotype. Herein we explore this possibility and examine the available evidence linking the two together, highlighting specifically the role of P/Q-type calcium channels and their downstream effector small-conductance calcium-sensitive (SK2) potassium channels in the regulation of synaptic gain and intrinsic excitability, and reviewing their connections to ataxia. PMID:21232209

  18. Polycomb-like proteins link the PRC2 complex to CpG islands

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haojie; Liefke, Robert; Jiang, Junyi; Kurland, Jesse Vigoda; Tian, Wei; Deng, Pujuan; Zhang, Weidi; He, Qian; Patel, Dinshaw J.; Bulyk, Martha L.; Shi, Yang; Wang, Zhanxin

    2017-09-06

    The Polycomb repressive complex 2 (PRC2) mainly mediates transcriptional repression1,2 and has essential roles in various biological processes including the maintenance of cell identity and proper differentiation. Polycomb-like (PCL) proteins, such as PHF1, MTF2 and PHF19, are PRC2-associated factors that form sub-complexes with PRC2 core components3, and have been proposed to modulate the enzymatic activity of PRC2 or the recruitment of PRC2 to specific genomic loci4,5,6,7,8,9,10,11,12,13. Mammalian PRC2-binding sites are enriched in CG content, which correlates with CpG islands that display a low level of DNA methylation14. However, the mechanism of PRC2 recruitment to CpG islands is not fully understood. Here we solve the crystal structures of the N-terminal domains of PHF1 and MTF2 with bound CpG-containing DNAs in the presence of H3K36me3-containing histone peptides. We show that the extended homologous regions of both proteins fold into a winged-helix structure, which specifically binds to the unmethylated CpG motif but in a completely different manner from the canonical winged-helix DNA recognition motif. We also show that the PCL extended homologous domains are required for efficient recruitment of PRC2 to CpG island-containing promoters in mouse embryonic stem cells. Our research provides the first, to our knowledge, direct evidence to demonstrate that PCL proteins are crucial for PRC2 recruitment to CpG islands, and further clarifies the roles of these proteins in transcriptional regulation in vivo.

  19. Intra-molecular Cross-linking of Acidic Residues for Protein Structure Studies

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr; Kruppa, G. H.

    2008-01-01

    Roč. 14, č. 6 (2008), s. 355-365 ISSN 1469-0667 R&D Projects: GA MŠk LC545 Grant - others:US(US) DE-AC04-94AL85000 Institutional research plan: CEZ:AV0Z50200510 Keywords : proteins * top-down * ft-ms Subject RIV: EE - Microbiology, Virology Impact factor: 1.167, year: 2008

  20. Vinylsulfonamide and Acrylamide Modification of DNA for Cross-linking with Proteins

    Czech Academy of Sciences Publication Activity Database

    Daďová, Jitka; Orság, Petr; Pohl, Radek; Brázdová, Marie; Fojta, Miroslav; Hocek, Michal

    2013-01-01

    Roč. 52, č. 40 (2013), s. 10515-10518 ISSN 1433-7851 R&D Projects: GA ČR GA203/09/0317; GA ČR(CZ) GAP301/11/2076 Institutional support: RVO:61388963 ; RVO:68081707 Keywords : bioorthogonal chemistry * DNA * DNA polymerase * Michael additions * proteins Subject RIV: CC - Organic Chemistry Impact factor: 11.336, year: 2013

  1. Mutational analysis of PVX TGBp3 links subcellular accumulation and protein turnover

    International Nuclear Information System (INIS)

    Ju, H.-J.; Ye, C.-M.; Verchot-Lubicz, Jeanmarie

    2008-01-01

    Potato virus X (PVX) TGBp3 is required for virus cell-to-cell transport, has an N-terminal transmembrane domain, and a C-terminal cytosolic domain. In the absence of virus infection TGBp3:GFP is seen in the cortical and perinuclear ER. In PVX infected cells the TGBp3:GFP fusion is also seen in the nucleoplasm indicating that events during PVX infection trigger entry into the nucleus. Mutational analysis failed to identify a nuclear targeting domain. Mutations inhibiting TGBp3 association with the ER and inhibiting virus movement did not block TGBp3:GFP in the nucleoplasm. A mutation disrupting the N-terminal transmembrane domain of TGBp3 caused the fusion to accumulate in the nucleus indicating that nuclear import is regulated by ER interactions. Tunicamycin, an ER-stress inducing chemical, caused lower levels of GFP and TGBp3:GFP to accumulate in virus infected protoplasts. MG115 and MG132 were used to demonstrate that wild-type and mutant TGBp3:GFP fusions were degraded by the 26S proteasome. These observations are consistent with an ER-associated protein degradation (ERAD) pathway suggesting that PVX TGBp3, similar to aberrant ER proteins, is translocate to the cytoplasm for degradation. Nuclear accumulation of mutant and wild-type TGBp3:GFP is independent of other PVX proteins and may be another feature of an ERAD pathway

  2. Alteration of protein function by a silent polymorphism linked to tRNA abundance.

    Directory of Open Access Journals (Sweden)

    Sebastian Kirchner

    2017-05-01

    Full Text Available Synonymous single nucleotide polymorphisms (sSNPs are considered neutral for protein function, as by definition they exchange only codons, not amino acids. We identified an sSNP that modifies the local translation speed of the cystic fibrosis transmembrane conductance regulator (CFTR, leading to detrimental changes to protein stability and function. This sSNP introduces a codon pairing to a low-abundance tRNA that is particularly rare in human bronchial epithelia, but not in other human tissues, suggesting tissue-specific effects of this sSNP. Up-regulation of the tRNA cognate to the mutated codon counteracts the effects of the sSNP and rescues protein conformation and function. Our results highlight the wide-ranging impact of sSNPs, which invert the programmed local speed of mRNA translation and provide direct evidence for the central role of cellular tRNA levels in mediating the actions of sSNPs in a tissue-specific manner.

  3. Alteration of protein function by a silent polymorphism linked to tRNA abundance.

    Science.gov (United States)

    Kirchner, Sebastian; Cai, Zhiwei; Rauscher, Robert; Kastelic, Nicolai; Anding, Melanie; Czech, Andreas; Kleizen, Bertrand; Ostedgaard, Lynda S; Braakman, Ineke; Sheppard, David N; Ignatova, Zoya

    2017-05-01

    Synonymous single nucleotide polymorphisms (sSNPs) are considered neutral for protein function, as by definition they exchange only codons, not amino acids. We identified an sSNP that modifies the local translation speed of the cystic fibrosis transmembrane conductance regulator (CFTR), leading to detrimental changes to protein stability and function. This sSNP introduces a codon pairing to a low-abundance tRNA that is particularly rare in human bronchial epithelia, but not in other human tissues, suggesting tissue-specific effects of this sSNP. Up-regulation of the tRNA cognate to the mutated codon counteracts the effects of the sSNP and rescues protein conformation and function. Our results highlight the wide-ranging impact of sSNPs, which invert the programmed local speed of mRNA translation and provide direct evidence for the central role of cellular tRNA levels in mediating the actions of sSNPs in a tissue-specific manner.

  4. Synthesis of a new reagent, ethyl 4-azidobenzoylaminoacetimidate, and its use for RNA-protein cross-linking within Escherichia coli ribosomal 30-S subunits.

    Science.gov (United States)

    Millon, R; Olomucki, M; Le Gall, J Y; Golinska, B; Ebel, J P; Ehresmann, B

    1980-09-01

    A new reagent, ethyl 4-azidobenzoylaminoacetimidate, was prepared in a four-step synthesis starting from 4-aminobenzoic acid. This compound was used to cross-link RNA with proteins within the Escherichia coli 30-S ribosomal subunits. Following the reaction of the imidoester function with protein NH2 groups, photoactivation of the azide binds the other end of the reagent to RNA. The cross-linked proteins were labelled with 125I and identified by bidimensional gel electrophoresis. Proteins S3, S4, S5, S7, S9, S17, S18, and in a lower and more variable yield, S12, S13, S14 and S16 were bound to 16-S RNA. These results were confirmed by isolating cross-linked protein-oligonucleotide complexes from 30-S subunits containing 32P-labelled RNA.

  5. Network response synchronization enhanced by synaptic plasticity

    Science.gov (United States)

    Lobov, S.; Simonov, A.; Kastalskiy, I.; Kazantsev, V.

    2016-02-01

    Synchronization of neural network response on spatially localized periodic stimulation was studied. The network consisted of synaptically coupled spiking neurons with spike-timing-dependent synaptic plasticity (STDP). Network connectivity was defined by time evolving matrix of synaptic weights. We found that the steady-state spatial pattern of the weights could be rearranged due to locally applied external periodic stimulation. A method for visualization of synaptic weights as vector field was introduced to monitor the evolving connectivity matrix. We demonstrated that changes in the vector field and associated weight rearrangements underlay an enhancement of synchronization range.

  6. Synaptic Plasticity and Memory Formation

    Science.gov (United States)

    1993-06-30

    suspected of being the substrate of several forms of memory encoded by synapses in the forebrain of humans and other mammals. Work in the past year...of LTP will enhance the encoding of memory . Aniracetam , as noted, prolongs the open time of the AMPA receptor and in this way facilitates excitatory...121 t Iffw,,a" S. FUNO4NG mUMSERS Synaptic Plasticity and Memory Formation F 49620-92-0307 C (ci) b.q F Gary Lynch 7. Pf(RfO*INN ORGAMIZAMNIO NMMW(S

  7. Experience-Dependent Equilibration of AMPAR-Mediated Synaptic Transmission during the Critical Period

    Directory of Open Access Journals (Sweden)

    Kyung-Seok Han

    2017-01-01

    Full Text Available Experience-dependent synapse refinement is essential for functional optimization of neural circuits. However, how sensory experience sculpts excitatory synaptic transmission is poorly understood. Here, we show that despite substantial remodeling of synaptic connectivity, AMPAR-mediated synaptic transmission remains at equilibrium during the critical period in the mouse primary visual cortex. The maintenance of this equilibrium requires neurogranin (Ng, a postsynaptic calmodulin-binding protein important for synaptic plasticity. With normal visual experience, loss of Ng decreased AMPAR-positive synapse numbers, prevented AMPAR-silent synapse maturation, and increased spine elimination. Importantly, visual deprivation halted synapse loss caused by loss of Ng, revealing that Ng coordinates experience-dependent AMPAR-silent synapse conversion to AMPAR-active synapses and synapse elimination. Loss of Ng also led to sensitized long-term synaptic depression (LTD and impaired visually guided behavior. Our synaptic interrogation reveals that experience-dependent coordination of AMPAR-silent synapse conversion and synapse elimination hinges upon Ng-dependent mechanisms for constructive synaptic refinement during the critical period.

  8. Synaptic plasticity modulation by circulating peptides and metaplasticity: Involvement in Alzheimer's disease.

    Science.gov (United States)

    Peineau, Stéphane; Rabiant, Kevin; Pierrefiche, Olivier; Potier, Brigitte

    2018-02-06

    Synaptic plasticity is a cellular process involved in learning and memory whose alteration in its two main forms (Long Term Depression (LTD) and Long Term Potentiation (LTP)), is observed in most brain pathologies, including neurodegenerative disorders such as Alzheimer's disease (AD). In humans, AD is associated at the cellular level with neuropathological lesions composed of extracellular deposits of β-amyloid (Aβ) protein aggregates and intracellular neurofibrillary tangles, cellular loss, neuroinflammation and a general brain homeostasis dysregulation. Thus, a dramatic synaptic environment perturbation is observed in AD patients, involving changes in brain neuropeptides, cytokines, growth factors or chemokines concentration and diffusion. Studies performed in animal models demonstrate that these circulating peptides strongly affect synaptic functions and in particular synaptic plasticity. Besides this neuromodulatory action of circulating peptides, other synaptic plasticity regulation mechanisms such as metaplasticity are altered in AD animal models. Here, we will review new insights into the study of synaptic plasticity regulatory/modulatory mechanisms which could influence the process of synaptic plasticity in the context of AD with a particular attention to the role of metaplasticity and peptide dependent neuromodulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Crystal Structure of Human Senescence Marker Protein 30: Insights Linking Structural, Enzymatic, and Physiological Functions

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborti, Subhendu; Bahnson, Brian J. (Delaware)

    2010-05-25

    Human senescence marker protein 30 (SMP30), which functions enzymatically as a lactonase, hydrolyzes various carbohydrate lactones. The penultimate step in vitamin-C biosynthesis is catalyzed by this enzyme in nonprimate mammals. It has also been implicated as an organophosphate hydrolase, with the ability to hydrolyze diisopropyl phosphofluoridate and other nerve agents. SMP30 was originally identified as an aging marker protein, whose expression decreased androgen independently in aging cells. SMP30 is also referred to as regucalcin and has been suggested to have functions in calcium homeostasis. The crystal structure of the human enzyme has been solved from X-ray diffraction data collected to a resolution of 1.4 {angstrom}. The protein has a 6-bladed {beta}-propeller fold, and it contains a single metal ion. Crystal structures have been solved with the metal site bound with either a Ca{sup 2+} or a Zn{sup 2+} atom. The catalytic role of the metal ion has been confirmed by mutagenesis of the metal coordinating residues. Kinetic studies using the substrate gluconolactone showed a k{sub cat} preference of divalent cations in the order Zn{sup 2+} > Mn{sup 2+} > Ca{sup 2+} > Mg{sup 2+}. Notably, the Ca{sup 2+} had a significantly higher value of K{sub d} compared to those of the other metal ions tested (566, 82, 7, and 0.6 {micro}m for Ca{sup 2+}, Mg{sup 2+}, Zn{sup 2+}, and Mn{sup 2+}, respectively), suggesting that the Ca{sup 2+}-bound form may be physiologically relevant for stressed cells with an elevated free calcium level.

  10. Structural Rearrangement upon Fragmentation of the Stability Core of the ALS-Linked Protein TDP-43.

    Science.gov (United States)

    Morgan, Brittany R; Zitzewitz, Jill A; Massi, Francesca

    2017-08-08

    Amyotrophic lateral sclerosis (ALS) is the most common adult degenerative motor neuron disease. Experimental evidence indicates a direct role of transactive-response DNA-binding protein 43 (TDP-43) in the pathology of ALS and other neurodegenerative diseases. TDP-43 has been identified as a major component of cytoplasmic inclusions in patients with sporadic ALS; however, the molecular basis of the disease mechanism is not yet fully understood. Fragmentation within the second RNA recognition motif (RRM2) of TDP-43 has been observed in patient tissues and may play a role in the formation of aggregates in disease. To determine the structural and dynamical changes resulting from the truncation that could lead to aggregation and toxicity, we performed molecular dynamics simulations of the full-length RRM2 domain (the stability core of TDP-43) and of a truncated variant (where residues 189-207 are deleted to mimic a site of cleavage within RRM2 found in ALS patients). Our simulations show heterogeneous structural reorganization and decreased stability of the truncated RRM2 domain compared to the full-length domain, consistent with previous experimental results. The decreased stability and structural reorganization in the truncated RRM2 result in a higher probability of protein-protein interactions through altered electrostatic surface charges and increased accessibility of hydrophobic residues (including the nuclear export sequence), providing a rationale for the increased cytoplasmic aggregation of RRM2 fragments seen in sporadic ALS patients. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. A link between damaging behaviour in pigs, sanitary conditions, and dietary protein and amino acid supply.

    Science.gov (United States)

    Meer, Yvonne van der; Gerrits, Walter J J; Jansman, Alfons J M; Kemp, Bas; Bolhuis, J Elizabeth

    2017-01-01

    The tendency to reduce crude protein (CP) levels in pig diets to increase protein efficiency may increase the occurrence of damaging behaviours such as ear and tail biting, particularly for pigs kept under suboptimal health conditions. We studied, in a 2×2×2 factorial design, 576 tail-docked growing-finishing entire male pigs in 64 pens, subjected to low (LSC) vs. high sanitary conditions (HSC), and fed a normal CP (NP) vs. a low CP diet (LP, 80% of NP) ad libitum, with a basal amino acid (AA) profile or supplemented AA profile with extra threonine, tryptophan and methionine. The HSC pigs were vaccinated in the first nine weeks of life and received antibiotics at arrival at experimental farm at ten weeks, after which they were kept in a disinfected part of the farm with a strict hygiene protocol. The LSC pigs were kept on the same farm in non-disinfected pens to which manure from another pig farm was introduced fortnightly. At 15, 18, and 24 weeks of age, prevalence of tail and ear damage and of tail and ear wounds was scored. At 20 and 23 weeks of age, frequencies of biting behaviour and aggression were scored for 10×10 min per pen per week. The prevalence of ear damage during the finisher phase (47 vs. 32% of pigs, P effect on ear biting was diet dependent, however, the supplemented AA profile reduced ear biting only in LSC pigs by 18% (SC × AA profile, P aggression (+30%, P effect on ear or tail damage. In conclusion, both low sanitary conditions and a reduction of dietary protein increase the occurrence of damaging behaviours in pigs and therefore may negatively impact pig welfare. Attention should be paid to the impact of dietary nutrient composition on pig behaviour and welfare, particularly when pigs are kept under suboptimal (sanitary) conditions.

  12. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation.

    Science.gov (United States)

    Zhong, Bo; Yang, Yan; Li, Shu; Wang, Yan-Yi; Li, Ying; Diao, Feici; Lei, Caoqi; He, Xiao; Zhang, Lu; Tien, Po; Shu, Hong-Bing

    2008-10-17

    Viral infection triggers activation of transcription factors such as NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and elicit innate antiviral response. Here, we identified MITA as a critical mediator of virus-triggered type I IFN signaling by expression cloning. Overexpression of MITA activated IRF3, whereas knockdown of MITA inhibited virus-triggered activation of IRF3, expression of type I IFNs, and cellular antiviral response. MITA was found to localize to the outer membrane of mitochondria and to be associated with VISA, a mitochondrial protein that acts as an adaptor in virus-triggered signaling. MITA also interacted with IRF3 and recruited the kinase TBK1 to the VISA-associated complex. MITA was phosphorylated by TBK1, which is required for MITA-mediated activation of IRF3. Our results suggest that MITA is a critical mediator of virus-triggered IRF3 activation and IFN expression and further demonstrate the importance of certain mitochondrial proteins in innate antiviral immunity.

  13. Maize Elongin C interacts with the viral genome-linked protein, VPg, of Sugarcane mosaic virus and facilitates virus infection.

    Science.gov (United States)

    Zhu, Min; Chen, Yuting; Ding, Xin Shun; Webb, Stephen L; Zhou, Tao; Nelson, Richard S; Fan, Zaifeng

    2014-09-01

    The viral genome-linked protein, VPg, of potyviruses is involved in viral genome replication and translation. To determine host proteins that interact with Sugarcane mosaic virus (SCMV) VPg, a yeast two-hybrid screen was used and a maize (Zea mays) Elongin C (ZmElc) protein was identified. ZmELC transcript was observed in all maize organs, but most highly in leaves and pistil extracts, and ZmElc was present in the cytoplasm and nucleus of maize cells in the presence or absence of SCMV. ZmELC expression was increased in maize tissue at 4 and 6 d post SCMV inoculation. When ZmELC was transiently overexpressed in maize protoplasts the accumulation of SCMV RNA was approximately doubled compared with the amount of virus in control protoplasts. Silencing ZmELC expression using a Brome mosaic virus-based gene silencing vector (virus-induced gene silencing) did not influence maize plant growth and development, but did decrease RNA accumulation of two isolates of SCMV and host transcript encoding ZmeIF4E during SCMV infection. Interestingly, Maize chlorotic mottle virus, from outside the Potyviridae, was increased in accumulation after silencing ZmELC expression. Our results describe both the location of ZmElc expression in maize and a new activity associated with an Elc: support of potyvirus accumulation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  14. A link between damaging behaviour in pigs, sanitary conditions, and dietary protein and amino acid supply.

    Directory of Open Access Journals (Sweden)

    Yvonne van der Meer

    Full Text Available The tendency to reduce crude protein (CP levels in pig diets to increase protein efficiency may increase the occurrence of damaging behaviours such as ear and tail biting, particularly for pigs kept under suboptimal health conditions. We studied, in a 2×2×2 factorial design, 576 tail-docked growing-finishing entire male pigs in 64 pens, subjected to low (LSC vs. high sanitary conditions (HSC, and fed a normal CP (NP vs. a low CP diet (LP, 80% of NP ad libitum, with a basal amino acid (AA profile or supplemented AA profile with extra threonine, tryptophan and methionine. The HSC pigs were vaccinated in the first nine weeks of life and received antibiotics at arrival at experimental farm at ten weeks, after which they were kept in a disinfected part of the farm with a strict hygiene protocol. The LSC pigs were kept on the same farm in non-disinfected pens to which manure from another pig farm was introduced fortnightly. At 15, 18, and 24 weeks of age, prevalence of tail and ear damage and of tail and ear wounds was scored. At 20 and 23 weeks of age, frequencies of biting behaviour and aggression were scored for 10×10 min per pen per week. The prevalence of ear damage during the finisher phase (47 vs. 32% of pigs, P < 0.0001 and the frequency of ear biting (1.3 vs. 1.2 times per hour, P = 0.03 were increased in LSC compared with HSC pigs. This effect on ear biting was diet dependent, however, the supplemented AA profile reduced ear biting only in LSC pigs by 18% (SC × AA profile, P < 0.01. The prevalence of tail wounds was lower for pigs in LSC (13 ± 0.02 than for pigs in HSC (0.22 ± 0.03 in the grower phase (P < 0.007. Regardless of AA profile or sanitary status, LP pigs showed more ear biting (+20%, P < 0.05, tail biting (+25%, P < 0.10, belly nosing (+152%, P < 0.01, other oral manipulation directed at pen mates (+13%, P < 0.05, and aggression (+30%, P < 0.01 than NP pigs, with no effect on ear or tail damage. In conclusion, both low

  15. alpha isoforms of soluble and membrane-linked folate-binding protein in human blood

    DEFF Research Database (Denmark)

    Hoier-Madsen, M.; Holm, J.; Hansen, S.I.

    2008-01-01

    supported the hypothesis that serum FBP (29 kDa) mainly originates from neutrophils. The presence of FBP/FR alpha isoforms were established for the first time in human blood using antibodies specifically directed against human milk FBP alpha. The alpha isoforms identified on erythrocyte membranes......, and in granulocytes and serum, only constituted an almost undetectable fraction of the functional FBP The FBP alpha in neutrophil granulocytes was identified as a cytoplasmic component by indirect immunofluorescence. Gel filtration of serum revealed a peak of FBP alpha (>120 kDa), which could represent receptor...... fragments from decomposed erythrocytes and granulocytes. The soluble FBPs may exert bacteriostatic effects and protect folates in plasma from biological degradation, whereas FRs on the surface of blood cells could be involved in intracellular folate uptake or serve as signal proteins. The latter receptors...

  16. Evolution of the aging brain transcriptome and synaptic regulation.

    Directory of Open Access Journals (Sweden)

    Patrick M Loerch

    Full Text Available Alzheimer's disease and other neurodegenerative disorders of aging are characterized by clinical and pathological features that are relatively specific to humans. To obtain greater insight into how brain aging has evolved, we compared age-related gene expression changes in the cortex of humans, rhesus macaques, and mice on a genome-wide scale. A small subset of gene expression changes are conserved in all three species, including robust age-dependent upregulation of the neuroprotective gene apolipoprotein D (APOD and downregulation of the synaptic cAMP signaling gene calcium/calmodulin-dependent protein kinase IV (CAMK4. However, analysis of gene ontology and cell type localization shows that humans and rhesus macaques have diverged from mice due to a dramatic increase in age-dependent repression of neuronal genes. Many of these age-regulated neuronal genes are associated with synaptic function. Notably, genes associated with GABA-ergic inhibitory function are robustly age-downregulated in humans but not in mice at the level of both mRNA and protein. Gene downregulation was not associated with overall neuronal or synaptic loss. Thus, repression of neuronal gene expression is a prominent and recently evolved feature of brain aging in humans and rhesus macaques that may alter neural networks and contribute to age-related cognitive changes.

  17. Epidemiological link between wheat allergy and exposure to hydrolyzed wheat protein in facial soap.

    Science.gov (United States)

    Fukutomi, Y; Taniguchi, M; Nakamura, H; Akiyama, K

    2014-10-01

    Recent studies have highlighted the importance of extra-intestinal routes of sensitization to food-related allergens as the cause of epidemics of food allergy. Instances of Japanese women developing food allergy to wheat after exposure to hydrolyzed wheat protein (HWP) present in facial soap have been reported. However, the epidemiologic impact of these ingredients as a cause of food allergy has not been well studied. To clarify the epidemiological relationship between food allergy to wheat and contact exposure to HWP, a case-control study of Japanese women aged 20-54 years with self-reported wheat allergy (WA) (cases, n = 157) and age-matched control subjects without WA (controls, n = 449) was performed using a large-scale Web-based research panel. Subjects answered a Web-based questionnaire regarding the use of skin and hair care products, as well as other possible risk factors. Current use of an HWP-containing facial soap (Cha no Shizuku; Yuka) was significantly associated with an increased risk of WA (adjusted odds ratio, 2.6; 95% confidence interval, 1.2-5.7; frequencies of current use in cases and controls; 11% and 6%, respectively). Use of Cha no Shizuku was more common in subjects with more recent-onset WA, implying that this soap may have contributed to the recent epidemic of WA. An epidemiological relationship between WA and contact exposure to HWP has been documented. This study implicates a possible role of contact exposure to food-derived protein hydrolysates as a risk factor for the development of food allergy manifesting itself as anaphylaxis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Immunogenicity of self-associated aggregates and chemically cross-linked conjugates of the 42 kDa Plasmodium falciparum merozoite surface protein-1.

    Science.gov (United States)

    Qian, Feng; Reiter, Karine; Zhang, Yanling; Shimp, Richard L; Nguyen, Vu; Aebig, Joan A; Rausch, Kelly M; Zhu, Daming; Lambert, Lynn; Mullen, Gregory E D; Martin, Laura B; Long, Carole A; Miller, Louis H; Narum, David L

    2012-01-01

    Self-associated protein aggregates or cross-linked protein conjugates are, in general, more immunogenic than oligomeric or monomeric forms. In particular, the immunogenicity in mice of a recombinant malaria transmission blocking vaccine candidate, the ookinete specific Plasmodium falciparum 25 kDa protein (Pfs25), was increased more than 1000-fold when evaluated as a chemical cross-linked protein-protein conjugate as compared to a formulated monomer. Whether alternative approaches using protein complexes improve the immunogenicity of other recombinant malaria vaccine candidates is worth assessing. In this work, the immunogenicity of the recombinant 42 kDa processed form of the P. falciparum merozoite surface protein 1 (MSP1(42)) was evaluated as a self-associated, non-covalent aggregate and as a chemical cross-linked protein-protein conjugate to ExoProtein A, which is a recombinant detoxified form of Pseudomonas aeruginosa exotoxin A. MSP1(42) conjugates were prepared and characterized biochemically and biophysically to determine their molar mass in solution and stoichiometry, when relevant. The immunogenicity of the MSP1(42) self-associated aggregates, cross-linked chemical conjugates and monomers were compared in BALB/c mice after adsorption to aluminum hydroxide adjuvant, and in one instance in association with the TLR9 agonist CPG7909 with an aluminum hydroxide formulation. Antibody titers were assessed by ELISA. Unlike observations made for Pfs25, no significant enhancement in MSP1(42) specific antibody titers was observed for any conjugate as compared to the formulated monomer or dimer, except for the addition of the TLR9 agonist CPG7909. Clearly, enhancing the immunogenicity of a recombinant protein vaccine candidate by the formation of protein complexes must be established on an empirical basis.

  19. Immunogenicity of self-associated aggregates and chemically cross-linked conjugates of the 42 kDa Plasmodium falciparum merozoite surface protein-1.

    Directory of Open Access Journals (Sweden)

    Feng Qian

    Full Text Available Self-associated protein aggregates or cross-linked protein conjugates are, in general, more immunogenic than oligomeric or monomeric forms. In particular, the immunogenicity in mice of a recombinant malaria transmission blocking vaccine candidate, the ookinete specific Plasmodium falciparum 25 kDa protein (Pfs25, was increased more than 1000-fold when evaluated as a chemical cross-linked protein-protein conjugate as compared to a formulated monomer. Whether alternative approaches using protein complexes improve the immunogenicity of other recombinant malaria vaccine candidates is worth assessing. In this work, the immunogenicity of the recombinant 42 kDa processed form of the P. falciparum merozoite surface protein 1 (MSP1(42 was evaluated as a self-associated, non-covalent aggregate and as a chemical cross-linked protein-protein conjugate to ExoProtein A, which is a recombinant detoxified form of Pseudomonas aeruginosa exotoxin A. MSP1(42 conjugates were prepared and characterized biochemically and biophysically to determine their molar mass in solution and stoichiometry, when relevant. The immunogenicity of the MSP1(42 self-associated aggregates, cross-linked chemical conjugates and monomers were compared in BALB/c mice after adsorption to aluminum hydroxide adjuvant, and in one instance in association with the TLR9 agonist CPG7909 with an aluminum hydroxide formulation. Antibody titers were assessed by ELISA. Unlike observations made for Pfs25, no significant enhancement in MSP1(42 specific antibody titers was observed for any conjugate as compared to the formulated monomer or dimer, except for the addition of the TLR9 agonist CPG7909. Clearly, enhancing the immunogenicity of a recombinant protein vaccine candidate by the formation of protein complexes must be established on an empirical basis.

  20. The developmental stages of synaptic plasticity

    NARCIS (Netherlands)

    Lohmann, Christian; Kessels, Helmut W.

    2014-01-01

    The brain is programmed to drive behaviour by precisely wiring the appropriate neuronal circuits. Wiring and rewiring of neuronal circuits largely depends on the orchestrated changes in the strengths of synaptic contacts. Here, we review how the rules of synaptic plasticity change during development

  1. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    Science.gov (United States)

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Size distribution and radial density profile of synaptic vesicles by SAXS and light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Castorph, Simon; Salditt, Tim [Institute for X-ray Physics, Goettingen (Germany); Holt, Matthew; Jahn, Reinhard [Max Plank Institute for Biophysical Chemistry, Goettingen (Germany); Sztucki, Michael [European Synchrotron Radiation Facility, Grenoble (France)

    2008-07-01

    Synaptic vesicles are small membraneous organelles within the nerve terminal, encapsulating neurotransmitters by a lipid bilayer. The transport of the neurotransmitter, the fusion at the plasma membrane, and the release of the stored neurotransmitters into the synaptic cleft are since long know as essential step in nerve conduction of the chemical synapse. A detailed structural view of these molecular mechanisms is still lacking, not withstanding the enormous progress in the field during recent years. From measurements and quantitative fitting of small angle X-ray scattering curves and dynamic light scattering the averaged structural properties of synaptic vesicles can be determined. We present SAXS measurements and fits revealing the width of the size distribution function and details of the radial scattering length profile of synaptic vesicles from rat brain. Representative values for the inner and outer radius and the size polydispersity as well as the density and width of the outer protein layer are obtained.

  3. Influence of synapsin I on synaptic vesicles: an analysis by force-volume mode of the atomic force microscope and dynamic light scattering.

    Science.gov (United States)

    Awizio, Ann-Katrin; Onofri, Franco; Benfenati, Fabio; Bonaccurso, Elmar

    2007-08-01

    Synaptic vesicles (SVs) are small neuronal organelles that store neurotransmitters and release them by exocytosis into the synaptic cleft for signal transmission between nerve cells. They consist of a highly curved membrane composed of different lipids containing several proteins with specific functions. A family of abundant extrinsic SV proteins, the synapsins, interact with SV proteins and phospholipids and play an important role in the regulation of SV trafficking and stability. We investigated the interactions of one these proteins with the SV membrane using atomic force microscope and dynamic light scattering. We examined SVs isolated from rat forebrain both under native conditions and after depletion of endogenous synapsin I. We used the atomic force microscope in two modes: imaging mode for characterizing the shape and size of SVs, and force-volume mode for characterizing their stiffness. Synapsin-depleted SVs were larger in size and showed a higher tendency to aggregate than native vesicles, although their stiffness was not significantly different. Because synapsins are believed to cross-link SV to each other and to the actin cytoskeleton, we also measured the SV aggregation kinetics induced by synapsin I by dynamic light scattering and atomic force microscopy and found that the addition of synapsin I promotes a rapid aggregation of SVs. The data indicate that synapsin directly affects SV stability and aggregation state and support the physiological role of synapsins in the assembly and regulation of SV pools within nerve terminals.

  4. Intrinsic cellular and molecular properties of in vivo hippocampal synaptic plasticity are altered in the absence of key synaptic matrix molecules.

    Science.gov (United States)

    Jansen, Stephan; Gottschling, Christine; Faissner, Andreas; Manahan-Vaughan, Denise

    2017-08-01

    Hippocampal synaptic plasticity comprises a key cellular mechanism for information storage. In the hippocampus, both long-term potentiation (LTP) and long-term depression (LTD) are triggered by synaptic Ca 2+ -elevations that are typically mediated by the opening of voltage-gated cation channels, such as N-methyl-d-aspartate receptors (NMDAR), in the postsynaptic density. The integrity of the post-synaptic density is ensured by the extracellular matrix (ECM). Here, we explored whether synaptic plasticity is affected in adult behaving mice that lack the ECM proteins brevican, neurocan, tenascin-C, and tenascin-R (KO). We observed that the profiles of synaptic potentiation and depression in the dentate gyrus (DG) were profoundly altered compared to plasticity profiles in wild-type littermates (WT). Specifically, synaptic depression was amplified in a frequency-dependent manner and although late-LTP (>24 hr) was expressed following strong afferent tetanization, the early component of LTP (4 hr) elicited by weaker tetanization was equivalent in WT and KO animals. Furthermore, this latter form of LTP was NMDAR-dependent in WT but not KO mice. Scrutiny of DG receptor expression revealed significantly lower levels of both the GluN2A and GluN2B subunits of the N-methyl-d-aspartate receptor, of the metabotropic glutamate receptor, mGlu5 and of the L-type calcium channel, Ca v 1.3 in KO compared to WT animals. Homer 1a and of the P/Q-type calcium channel, Ca v 1.2 were unchanged in KO mice. Taken together, findings suggest that in mice that lack multiple ECM proteins, synaptic plasticity is intact, but is fundamentally different. © 2017 Wiley Periodicals, Inc.

  5. Direct linking of metabolism and gene expression in the proline utilization A protein from Escherichia coli.

    Science.gov (United States)

    Zhou, Yuzhen; Zhu, Weidong; Bellur, Padmanetra S; Rewinkel, Dustin; Becker, Donald F

    2008-11-01

    The control of gene expression by enzymes provides a direct pathway for cells to respond to fluctuations in metabolites and nutrients. One example is the proline utilization A (PutA) protein from Escherichia coli. PutA is a membrane-associated enzyme that catalyzes the oxidation of L: -proline to glutamate using a flavin containing proline dehydrogenase domain and a NAD(+) dependent Delta(1)-pyrroline-5-carboxylate dehydrogenase domain. In some Gram-negative bacteria such as E. coli, PutA is also endowed with a ribbon-helix-helix DNA-binding domain and acts as a transcriptional repressor of the proline utilization genes. PutA switches between transcriptional repressor and enzymatic functions in response to proline availability. Molecular insights into the redox-based mechanism of PutA functional switching from recent studies are reviewed. In addition, new results from cell-based transcription assays are presented which correlate PutA membrane localization with put gene expression levels. General membrane localization of PutA, however, is not sufficient to activate the put genes.

  6. A systems biological analysis links ROS metabolism to mitochondrial protein quality control.

    Science.gov (United States)

    Kowald, Axel; Hamann, Andrea; Zintel, Sandra; Ullrich, Sebastian; Klipp, Edda; Osiewacz, Heinz D

    2012-05-01

    The analyses of previously generated Podospora anserina strains in which the mitochondrial superoxide dismutase, PaSOD3, is increased in abundance, revealed unexpected results, which, at first glance, are contradictory to the 'free radical theory of aging' (FRTA). To re-analyze these results, we performed additional experiments and developed a mathematical model consisting of a set of differential equations describing the time course of various ROS (reactive oxygen species), components of the cellular antioxidant system (PaSOD3 and mitochondrial peroxiredoxin, PaPRX1), and PaCLPP, a mitochondrial matrix protease involved in protein quality control. Incorporating these components we could identify a positive feed-back loop and demonstrate that the role of superoxide as the primary ROS responsible for age-related molecular damage is more complicated than originally stated by the FRTA. Our study is a first step towards the integration of the various pathways known to be involved in the control of biological aging. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. An enzyme-linked immunosorbent assay (ELISA) for quantification of mouse surfactant protein D (SP-D)

    DEFF Research Database (Denmark)

    Hansen, Søren; Schmidt, Vivi; Steffensen, Maria Abildgaard

    2008-01-01

    innate immune cells, such as macrophages and neutrophils. It also modulates the adaptive immune response by interacting with antigen-presenting cells and T cells. Monoclonal anti-mouse-SP-D antibodies were raised from SP-D deficient mice using recombinant SP-D as antigen. Ten monoclonal antibodies were......Surfactant protein D (SP-D) is a pattern recognition molecule of the collectin family of C-type lectins. It is found in the airways and at mucosal surfaces. SP-D is part of the innate immune system where it neutralizes and leads to elimination of microorganisms. It regulates the functions of other...... characterized and validated for use in sandwich enzyme-linked immunosorbent assay (ELISA). Based on two of these, we established an ELISA that allows for measurements of mouse SP-D in various body fluids. The final ELISA was optimized and calibrated with a standard of purified recombinant mouse SP-D, which...

  8. Water channel proteins in the inner ear and their link to hearing impairment and deafness.

    Science.gov (United States)

    Eckhard, Andreas; Gleiser, Corinna; Arnold, Heinz; Rask-Andersen, Helge; Kumagami, Hidetaka; Müller, Marcus; Hirt, Bernhard; Löwenheim, Hubert

    2012-01-01

    The inner ear is a fluid-filled sensory organ that transforms mechanical stimuli into the senses of hearing and balance. These neurosensory functions depend on the strict regulation of the volume of the two major extracellular fluid domains of the inner ear, the perilymph and the endolymph. Water channel proteins, or aquaporins (AQPs), are molecular candidates for the precise regulation of perilymph and endolymph volume. Eight AQP subtypes have been identified in the membranous labyrinth of the inner ear. Similar AQP subtypes are also expressed in the kidney, where they function in whole-body water regulation. In the inner ear, AQP subtypes are ubiquitously expressed in distinct cell types, suggesting that AQPs have an important physiological role in the volume regulation of perilymph and endolymph. Furthermore, disturbed AQP function may have pathophysiological relevance and may turn AQPs into therapeutic targets for the treatment of inner ear diseases. In this review, we present the currently available knowledge regarding the expression and function of AQPs in the inner ear. We give special consideration to AQP subtypes AQP2, AQP4 and AQP5, which have been studied most extensively. The potential functions of AQP2 and AQP5 in the resorption and secretion of endolymph and of AQP4 in the equilibration of cell volume are described. The pathophysiological implications of these AQP subtypes for inner ear diseases, that appear to involve impaired fluid regulation, such as Menière's disease and Sjögren's syndrome, are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Dependence of DNA-protein cross-linking via guanine oxidation upon local DNA sequence as studied by restriction endonuclease inhibition.

    Science.gov (United States)

    Madison, Amanda L; Perez, Zitadel A; To, Phuong; Maisonet, Tiffany; Rios, Eunice V; Trejo, Yuri; Ochoa-Paniagua, Carmen; Reno, Anita; Stemp, Eric D A

    2012-01-10

    Oxidative damage plays a causative role in many diseases, and DNA-protein cross-linking is one important consequence of such damage. It is known that GG and GGG sites are particularly prone to one-electron oxidation, and here we examined how the local DNA sequence influences the formation of DNA-protein cross-links induced by guanine oxidation. Oxidative DNA-protein cross-linking was induced between DNA and histone protein via the flash quench technique, a photochemical method that selectively oxidizes the guanine base in double-stranded DNA. An assay based on restriction enzyme cleavage was developed to detect the cross-linking in plasmid DNA. Following oxidation of pBR322 DNA by flash quench, several restriction enzymes (PpuMI, BamHI, EcoRI) were then used to probe the plasmid surface for the expected damage at guanine sites. These three endonucleases were strongly inhibited by DNA-protein cross-linking, whereas the AT-recognizing enzyme AseI was unaffected in its cleavage. These experiments also reveal the susceptibility of different guanine sites toward oxidative cross-linking. The percent inhibition observed for the endonucleases, and their pBR322 cleavage sites, decreased in the order: PpuMI (5'-GGGTCCT-3' and 5'-AGGACCC-3') > BamHI (5'-GGATCC-3') > EcoRI (5'-GAATTC-3'), a trend consistent with the observed and predicted tendencies for guanine to undergo one-electron oxidation: 5'-GGG-3' > 5'-GG-3' > 5'-GA-3'. Thus, it appears that in mixed DNA sequences the guanine sites most vulnerable to oxidative cross-linking are those that are easiest to oxidize. These results further indicate that equilibration of the electron hole in the plasmid DNA occurs on a time scale faster than that of cross-linking.

  10. Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement

    DEFF Research Database (Denmark)

    Knafo, Shira; Venero, César; Sánchez-Puelles, Cristina

    2012-01-01

    ) that enhances spatial learning and memory in rats. We have now investigated the cellular and molecular basis of this cognitive enhancement, using biochemical, morphological, electrophysiological, and behavioral analyses. We have found that FGL triggers a long-lasting enhancement of synaptic transmission......Cell adhesion molecules and downstream growth factor-dependent signaling are critical for brain development and synaptic plasticity, and they have been linked to cognitive function in adult animals. We have previously developed a mimetic peptide (FGL) from the neural cell adhesion molecule (NCAM......MKII activation. These results provide a mechanistic link between facilitation of AMPA receptor synaptic delivery and improved hippocampal-dependent learning, induced by a pharmacological cognitive enhancer....

  11. Late onset deficits in synaptic plasticity in the valproic acid rat model of autism

    Directory of Open Access Journals (Sweden)

    Henry Giles Stratten Martin

    2014-01-01

    Full Text Available Valproic acid (VPA is a frequently used drug in the treatment of epilepsy, bipolar disorders and migraines; however it is also a potent teratogen. Prenatal exposure increases the risk of childhood malformations and can result in cognitive deficits. In rodents in utero exposure to VPA also causes neurodevelopmental abnormalities and is an important model of autism. In early postnatal life VPA exposed rat pups show changes in medial prefrontal cortex (mPFC physiology and synaptic connectivity. Specifically, principal neurons show decreased excitability but increased local connectivity, coupled with an increase in long-term potentiation (LTP due to an up-regulation of NMDA receptor (NMDAR expression. However recent evidence suggests compensatory homeostatic mechanisms lead to normalization of synaptic NMDA receptors during later postnatal development. Here we have extended study of mPFC synaptic physiology into adulthood to better understand the longitudinal consequences of early developmental abnormalities in VPA exposed rats. Surprisingly in contrast to early postnatal life and adolescence, we find that adult VPA exposed rats show reduced synaptic function. Both NMDAR mediated currents and LTP are lower in adult VPA rats, although spontaneous activity and endocannabinoid dependent long-term depression are normal. We conclude that rather than correcting, synaptic abnormalities persist into adulthood in VPA exposed rats, although a quite different synaptic phenotype is present. This switch from hyper to hypo function in mPFC may be linked to some of the neurodevelopmental defects found in prenatal VPA exposure and autism spectrum disorders in general.

  12. Degeneracy in the regulation of short-term plasticity and synaptic filtering by presynaptic mechanisms.

    Science.gov (United States)

    Mukunda, Chinmayee L; Narayanan, Rishikesh

    2017-04-15

    also revealed that calcium- and release-control mechanisms were effective regulators of synaptic filters, but accomplished this without changes in terminal excitability or calcium influx. Next, to perform global sensitivity analysis, we generated 7000 randomized models spanning 15 presynaptic parameters, and computed eight different physiological measurements in each of these models. We validated these models by applying experimentally obtained bounds on their measurements, and found 104 (∼1.5%) models to match the validation criteria for all eight measurements. Analysing these valid models, we demonstrate that analogous synaptic filters emerge from disparate combinations of presynaptic parameters exhibiting weak pairwise correlations. Finally, using virtual knockout models, we establish the variable and differential impact of different presynaptic channels on synaptic filters, underlining the critical importance of interactions among different presynaptic components in defining synaptic physiology. Our results have significant implications for protein-localization strategies required for physiological robustness and for degeneracy in long-term synaptic plasticity profiles. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  13. Protein cross-linking, peroxidase and beta-1,3-endoglucanase involved in resistance of pea against Orobanche crenata.

    Science.gov (United States)

    Pérez-de-Luque, Alejandro; González-Verdejo, Clara I; Lozano, M Dolores; Dita, Miguel A; Cubero, José I; González-Melendi, Pablo; Risueño, María C; Rubiales, Diego

    2006-01-01

    Root holoparasitic angiosperms, like Orobanche spp, completely lack chlorophyll and totally depend on their host for their supply of nutrients. O. crenata is a severe constraint to the cultivation of legumes and breeding for resistance remains the most economical, feasible, and environmentally friendly method of control. Due to the lack of resistance in commercial pea cultivars, the use of wild relatives for breeding is necessary, and an understanding of the mechanisms underlying host resistance is needed in order to improve screening for resistance in breeding programmes. Compatible and incompatible interactions between O. crenata and pea have been studied using cytochemical procedures. The parasite was stopped in the host cortex before reaching the central cylinder, and accumulation of H2O2, peroxidases, and callose were detected in neighbouring cells. Protein cross-linking in the host cell walls appears as the mechanism of defence, halting penetration of the parasite. In situ hybridization studies have also shown that a peroxidase and a beta-glucanase are differently expressed in cells of the resistant host (Pf651) near the penetration point. The role of these proteins in the resistance to O. crenata is discussed.

  14. Evaluation of a competitive enzyme-linked immunosorbent assay for measurements of soluble HLA-G protein

    DEFF Research Database (Denmark)

    Rasmussen, Mette; Dahl, Mette; Buus, Søren

    2014-01-01

    The human leukocyte antigen (HLA) class Ib molecule, HLA-G, has gained increased attention because of its assumed important role in immune regulation. The HLA-G protein exists in several soluble isoforms. Most important are the actively secreted HLA-G5 full-length isoform generated by alternative...... splicing retaining intron 4 with a premature stop codon, and the cleavage of full-length membrane-bound HLA-G1 from the cell surface, so-called soluble HLA-G1 (sHLA-G1). A specific and sensitive immunoassay for measurements of soluble HLA-G is mandatory for conceivable routine testing and research projects....... We report a novel method, a competitive immunoassay, for measuring HLA-G5/sHLA-G1 in biological fluids. The sHLA-G immunoassay is based upon a competitive enzyme-linked immunosorbent assay (ELISA) principle. It includes a recombinant sHLA-G1 protein in complex with β2-microglobulin and a peptide...

  15. Structure-Function Studies Link Class II Viral Fusogens with the Ancestral Gamete Fusion Protein HAP2.

    Science.gov (United States)

    Pinello, Jennifer Fricke; Lai, Alex L; Millet, Jean K; Cassidy-Hanley, Donna; Freed, Jack H; Clark, Theodore G

    2017-03-06

    The conserved transmembrane protein, HAP2/GCS1, has been linked to fertility in a wide range of taxa and is hypothesized to be an ancient gamete fusogen. Using template-based structural homology modeling, we now show that the ectodomain of HAP2 orthologs from Tetrahymena thermophila and other species adopt a protein fold remarkably similar to the dengue virus E glycoprotein and related class II viral fusogens. To test the functional significance of this predicted structure, we developed a flow-cytometry-based assay that measures cytosolic exchange across the conjugation junction to rapidly probe the effects of HAP2 mutations in the Tetrahymena system. Using this assay, alterations to a region in and around a predicted "fusion loop" in T. thermophila HAP2 were found to abrogate membrane pore formation in mating cells. Consistent with this, a synthetic peptide corresponding to the HAP2 fusion loop was found to interact directly with model membranes in a variety of biophysical assays. These results raise interesting questions regarding the evolutionary relationships of class II membrane fusogens and harken back to a long-held argument that eukaryotic sex arose as the byproduct of selection for the horizontal transfer of a "selfish" genetic element from cell to cell via membrane fusion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Over-expression of X-linked inhibitor of apoptosis protein slows presbycusis in C57BL/6J mice.

    Science.gov (United States)

    Wang, Jian; Menchenton, Trevor; Yin, Shankai; Yu, Zhiping; Bance, Manohar; Morris, David P; Moore, Craig S; Korneluk, Robert G; Robertson, George S

    2010-07-01

    Apoptosis of cochlear cells plays a significant role in age-related hearing loss or presbycusis. In this study, we evaluated whether over-expression of the anti-apoptotic protein known as X-linked Inhibitor of Apoptosis Protein (XIAP) slows the development of presbycusis. We compared the age-related hearing loss between transgenic (TG) mice that over-express human XIAP tagged with 6-Myc (Myc-XIAP) on a pure C57BL/6J genetic background with wild-type (WT) littermates by measuring auditory brainstem responses. The result showed that TG mice developed hearing loss considerably more slowly than WT littermates, primarily within the high-frequency range. The average total hair cell loss was significantly less in TG mice than WT littermates. Although levels of Myc-XIAP in the ear remained constant at 2 and 14 months, there was a marked increase in the amount of endogenous XIAP from 2 to 14 months in the cochlea, but not in the brain, in both genotypes. These results suggest that XIAP over-expression reduces age-related hearing loss and hair cell death in the cochlea. Copyright 2008 Elsevier Inc. All rights reserved.

  17. γ-PGA and MTGase improve the formation of ε-(γ-glutamyl) lysine cross-links within hairtail (Trichiurus haumela) surimi protein.

    Science.gov (United States)

    Hu, Yaqin; Shao, Ying; Wu, Chunhua; Yuan, Chunhong; Ishimura, Gakushi; Liu, Wenjuan; Chen, Shiguo

    2018-03-01

    The present study investigated the mechanism of ε-(γ-glutamyl) lysine cross-links within hairtail (Trichiurus haumela) surimi protein via γ-polyglutamic acid (γ-PGA) and MTGase. The results indicated that the addition of MTGase and γ-PGA markedly improved the gelation properties of hairtail surimi protein, including its maximum breaking force and deformation, water holding capacity and gel strength. The maximum improvements were achieved by adding 0.5units MTGase/g meat paste in combination with 0.06% γ-PGA. SDS-PAGE showed that the band intensity of cross-linked proteins increased, whereas that of myosin heavy chain decreased after treatments. Further scanning electron microscopy (SEM) analysis showed the formation of a denser gel matrix, which was caused by much stronger and more inter- and intra-molecular cross-linking of proteins, via MTGase catalysing ε-(γ-glutamyl) lysine cross-links formed between lysine residues in the gel protein and glutamic residues in the hydrolytic γ-PGA. The results provide reliable guidance for the improvement of hairtail surimi protein gelation properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Induction of DNA–protein cross-links by ionizing radiation and their elimination from the genome

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Toshiaki; Mitsusada, Yusuke [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Salem, Amir M.H. [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Department of Pathology, Medical Research Division, National Research Centre, El-Bohouth St., Dokki, Giza 12311 (Egypt); Shoulkamy, Mahmoud I. [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Department of Zoology, Biological Science Building, Faculty of Science, Minia University, Minia 61519 (Egypt); Sugimoto, Tatsuya [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Hirayama, Ryoichi; Uzawa, Akiko [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Furusawa, Yoshiya [Development and Support Center, National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Ide, Hiroshi, E-mail: ideh@hiroshima-u.ac.jp [Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan)

    2015-01-15

    Highlights: • Normoxic and hypoxic mouse tumors were irradiated with X-rays and C-ion beams. • DNA–protein cross-links (DPCs) and DNA double-strand breaks (DSBs) were analyzed. • C-ion beams produced more DPCs than did X-rays in normoxic and hypoxic tumor cells. • DPCs were eliminated from the genome much more slowly than DSBs. • Persisting DPCs may have deleterious effects on cells in conjunction with DSBs. - Abstract: Ionizing radiation produces various types of DNA lesions, such as base damage, single-strand breaks, double-strand breaks (DSBs), and DNA–protein cross-links (DPCs). Of these, DSBs are the most critical lesions underlying the lethal effects of ionizing radiation. With DPCs, proteins covalently trapped in DNA constitute strong roadblocks to replication and transcription machineries, and hence can be lethal to cells. The formation of DPCs by ionizing radiation is promoted in the absence of oxygen, whereas that of DSBs is retarded. Accordingly, the contribution of DPCs to the lethal events in irradiated cells may not be negligible for hypoxic cells, such as those present in tumors. However, the role of DPCs in the lethal effects of ionizing radiation remains largely equivocal. In the present study, normoxic and hypoxic mouse tumors were irradiated with X-rays [low linear energy transfer (LET) radiation] and carbon (C)-ion beams (high LET radiation), and the resulting induction of DPCs and DSBs and their removal from the genome were analyzed. X-rays and C-ion beams produced more DPCs in hypoxic tumors than in normoxic tumors. Interestingly, the yield of DPCs was slightly but statistically significantly greater (1.3- to 1.5-fold) for C-ion beams than for X-rays. Both X-rays and C-ion beams generated two types of DPC that differed according to their rate of removal from the genome. This was also the case for DSBs. The half-lives of the rapidly removed components of DPCs and DSBs were similar (<1 h), but those of the slowly removed components

  19. The Missing Link in Leguminous Pterocarpan Biosynthesis is a Dirigent Domain-Containing Protein with Isoflavanol Dehydratase Activity.

    Science.gov (United States)

    Uchida, Kai; Akashi, Tomoyoshi; Aoki, Toshio

    2017-02-01

    Pterocarpan forms the basic structure of leguminous phytoalexins, and most of the isoflavonoid pathway genes encoding the enzymes responsible for its biosynthesis have been identified. However, the last step of pterocarpan biosynthesis is a ring closure reaction, and the enzyme that catalyzes this step, 2'-hydroxyisoflavanol 4,2'-dehydratase or pterocarpan synthase (PTS), remains as an unidentified 'missing link'. This last ring formation is assumed to be the key step in determining the stereochemistry of pterocarpans, which plays a role in their antimicrobial activity. In this study, a cDNA clone encoding PTS from Glycyrrhiza echinata (GePTS1) was identified through functional expression fractionation screening of a cDNA library, which requires no sequence information, and orthologs from soybean (GmPTS1) and Lotus japonicus (LjPTS1) were also identified. These proteins were heterologously expressed in Escherichia coli and biochemically characterized. Surprisingly, the proteins were found to include amino acid motifs characteristic of dirigent proteins, some of which control stereospecific phenoxy radical coupling in lignan biosynthesis. The stereospecificity of substrates and products was examined using four substrate stereoisomers with hydroxy and methoxy derivatives at C-4'. The results showed that the 4R configuration was essential for the PTS reaction, and (-)- and (+)-pterocarpans were produced depending on the stereochemistry at C-3. In suspension-cultured soybean cells, levels of the GmPTS1 transcript increased temporarily prior to the peak in phytoalexin accumulation, strongly supporting the possible involvement of PTS in pterocarpan biosynthesis. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved.

  20. Clozapine linked to nanocapsules minimizes tissue and oxidative damage to biomolecules lipids, proteins and DNA in brain of rats Wistar.

    Science.gov (United States)

    da Costa Güllich, Angélica Aparecida; Coelho, Ritiéle Pinto; Pilar, Bruna Cocco; Ströher, Deise Jaqueline; Galarça, Leandro Alex Sander Leal; Vieira, Simone Machado; da Costa Escobar Piccoli, Jacqueline; Haas, Sandra Elisa; Manfredini, Vanusa

    2015-06-01

    Clozapine, atypical antipsychotic, can change oxidative stress parameters. It is known that reactive species, in excess, can have a crucial role in the etiology of diseases, as well as, can potentiating adverse effects induce by drugs. The nanocapsules have attracted attention as carriers of several drugs, with consequent reduction of adverse effects. This study aimed to evaluate histopathology and oxidative damage of biomolecules lipids, proteins and DNA in the brain of Wistar rats after treatment with nanocapsules containing clozapine. The study consisted of eight groups of male Wistar rats (n = 6): saline (SAL), free clozapine (CZP) (25 mg/Kg i.p.), blank uncoated nanocapsules (BNC), clozapine-loaded uncoated nanocapsules (CNC) (25 mg/Kg i.p.), blank chitosan-coated nanocapsules (BCSN), clozapine-loaded chitosan-coated nanocapsules (CCSN) (25 mg/Kg i.p.), blank polyethyleneglycol-coated nanocapsules (BPEGN), clozapine-loaded polyethyleneglycol-coated nanocapsules (CPEGN) (25 mg/Kg i.p.). The animals received the formulation once a day for seven consecutive days and euthanized in the eighth day. After euthanasia, the brain was collected and homogenate was processed for further analysis. The histopathology showed less brain tissue damage in nanocapsules-treated groups. The lipid peroxidation and carbonylation of proteins showed a significant increase (p < 0.05) induced by CZP. CNC and CPEGN groups obtained a reduction membrane of lipids damage and nanocapsules-treated groups showed significant improvement protein damage. CZP was able to induce genetic oxidative damage, while the nanocapsules causing less damage to DNA. The findings show that different coatings can act protecting target tissues decreasing oxidative damage, suggesting that the drug when linked to different nanocapsules is able to mitigate the harmful effects of clozapine.

  1. Emergent spatial synaptic structure from diffusive plasticity.

    Science.gov (United States)

    Sweeney, Yann; Clopath, Claudia

    2017-04-01

    Some neurotransmitters can diffuse freely across cell membranes, influencing neighbouring neurons regardless of their synaptic coupling. This provides a means of neural communication, alternative to synaptic transmission, which can influence the way in which neural networks process information. Here, we ask whether diffusive neurotransmission can also influence the structure of synaptic connectivity in a network undergoing plasticity. We propose a form of Hebbian synaptic plasticity which is mediated by a diffusive neurotransmitter. Whenever a synapse is modified at an individual neuron through our proposed mechanism, similar but smaller modifications occur in synapses connecting to neighbouring neurons. The effects of this diffusive plasticity are explored in networks of rate-based neurons. This leads to the emergence of spatial structure in the synaptic connectivity of the network. We show that this spatial structure can coexist with other forms of structure in the synaptic connectivity, such as with groups of strongly interconnected neurons that form in response to correlated external drive. Finally, we explore diffusive plasticity in a simple feedforward network model of receptive field development. We show that, as widely observed across sensory cortex, the preferred stimulus identity of neurons in our network become spatially correlated due to diffusion. Our proposed mechanism of diffusive plasticity provides an efficient mechanism for generating these spatial correlations in stimulus preference which can flexibly interact with other forms of synaptic organisation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling.

    Science.gov (United States)

    Wittmann, Malte; Queisser, Gillian; Eder, Anja; Wiegert, J Simon; Bengtson, C Peter; Hellwig, Andrea; Wittum, Gabriel; Bading, Hilmar

    2009-11-25

    Synaptic activity initiates many adaptive responses in neurons. Here we report a novel form of structural plasticity in dissociated hippocampal cultures and slice preparations. Using a recently developed algorithm for three-dimensional image reconstruction and quantitative measurements of cell organelles, we found that many nuclei from hippocampal neurons are highly infolded and form unequally sized nuclear compartments. Nuclear infoldings are dynamic structures, which can radically transform the geometry of the nucleus in response to neuronal activity. Action potential bursting causing synaptic NMDA receptor activation dramatically increases the number of infolded nuclei via a process that requires the ERK-MAP kinase pathway and new protein synthesis. In contrast, death-signaling pathways triggered by extrasynaptic NMDA receptors cause a rapid loss of nuclear infoldings. Compared with near-spherical nuclei, infolded nuclei have a larger surface and increased nuclear pore complex immunoreactivity. Nuclear calcium signals evoked by cytosolic calcium transients are larger in small nuclear compartments than in the large compartments of the same nucleus; moreover, small compartments are more efficient in temporally resolving calcium signals induced by trains of action potentials in the theta frequency range (5 Hz). Synaptic activity-induced phosphorylation of histone H3 on serine 10 was more robust in neurons with infolded nuclei compared with neurons with near-spherical nuclei, suggesting a functional link between nuclear geometry and transcriptional regulation. The translation of synaptic activity-induced signaling events into changes in nuclear geometry facilitates the relay of calcium signals to the nucleus, may lead to the formation of nuclear signaling microdomains, and could enhance signal-regulated transcription.

  3. The E3 ubiquitin ligase IDOL regulates synaptic ApoER2 levels and is important for plasticity and learning.

    Science.gov (United States)

    Gao, Jie; Marosi, Mate; Choi, Jinkuk; Achiro, Jennifer M; Kim, Sangmok; Li, Sandy; Otis, Klara; Martin, Kelsey C; Portera-Cailliau, Carlos; Tontonoz, Peter

    2017-09-11

    Neuronal ApoE receptors are linked to learning and memory, but the pathways governing their abundance, and the mechanisms by which they affect the function of neural circuits are incompletely understood. Here we demonstrate that the E3 ubiquitin ligase IDOL determines synaptic ApoER2 protein levels in response to neuronal activation and regulates dendritic spine morphogenesis and plasticity. IDOL-dependent changes in ApoER2 abundance modulate dendritic filopodia initiation and synapse maturation. Loss of IDOL in neurons results in constitutive overexpression of ApoER2 and is associated with impaired activity-dependent structural remodeling of spines and defective LTP in primary neuron cultures and hippocampal slices. IDOL-deficient mice show profound impairment in experience-dependent reorganization of synaptic circuits in the barrel cortex, as well as diminished spatial and associative learning. These results identify control of lipoprotein receptor abundance by IDOL as a post-transcriptional mechanism underlying the structural and functional plasticity of synapses and neural circuits.

  4. The BDNF val-66-met Polymorphism Affects Neuronal Morphology and Synaptic Transmission in Cultured Hippocampal Neurons from Rett Syndrome Mice

    Directory of Open Access Journals (Sweden)

    Xin Xu

    2017-07-01

    Full Text Available Brain-derived neurotrophic factor (Bdnf has been implicated in several neurological disorders including Rett syndrome (RTT, an X-linked neurodevelopmental disorder caused by loss-of-function mutations in the transcriptional modulator methyl-CpG-binding protein 2 (MECP2. The human BDNF gene has a single nucleotide polymorphism (SNP—a methionine (met substitution for valine (val at codon 66—that affects BDNF’s trafficking and activity-dependent release and results in cognitive dysfunction. Humans that are carriers of the met-BDNF allele have subclinical memory deficits and reduced hippocampal volume and activation. It is still unclear whether this BDNF SNP affects the clinical outcome of RTT individuals. To evaluate whether this BDNF SNP contributes to RTT pathophysiology, we examined the consequences of expression of either val-BDNF or met-BDNF on dendrite and dendritic spine morphology, and synaptic function in cultured hippocampal neurons from wildtype (WT and Mecp2 knockout (KO mice. Our findings revealed that met-BDNF does not increase dendritic growth and branching, dendritic spine density and individual spine volume, and the number of excitatory synapses in WT neurons, as val-BDNF does. Furthermore, met-BDNF reduces dendritic complexity, dendritic spine volume and quantal excitatory synaptic transmission in Mecp2 KO neurons. These results suggest that the val-BDNF variant contributes to RTT pathophysiology, and that BDNF-based therapies should take into consideration the BDNF genotype of the RTT individuals.

  5. All for One But Not One for All: Excitatory Synaptic Scaling and Intrinsic Excitability Are Coregulated by CaMKIV, Whereas Inhibitory Synaptic Scaling Is Under Independent Control.

    Science.gov (United States)

    Joseph, Annelise; Turrigiano, Gina G

    2017-07-12

    Neocortical circuits use a family of homeostatic plasticity mechanisms to stabilize firing, including excitatory and inhibitory synaptic scaling and homeostatic intrinsic plasticity (Turrigiano and Nelson, 2004). All three mechanisms can be induced in tandem in cultured rat neocortical pyramidal neurons by chronic manipulations of firing, but it is unknown whether they are coinduced by the same activity-sensors and signaling pathways, or whether they are under independent control. Calcium/calmodulin-dependent protein kinase type IV (CaMKIV) is a key sensory/effector in excitatory synaptic scaling that senses perturbations in firing through changes in calcium influx, and translates this into compensatory changes in excitatory quantal amplitude (Ibata et al., 2008; Goold and Nicoll, 2010). Whether CaMKIV also controls inhibitory synaptic scaling and intrinsic homeostatic plasticity was unknown. To test this we manipulated CaMKIV signaling in individual neurons using dominant-negative (dn) or constitutively-active (ca) forms of nuclear-localized CaMKIV and measured the induction of all three forms of homeostatic plasticity. We found that excitatory synaptic scaling and intrinsic plasticity were bidirectionally coinduced by these manipulations. In contrast, these cell-autonomous manipulations had no impact on inhibitory quantal amplitude. Finally, we found that spontaneous firing rates were shifted up or down by dnCaMKIV or caCaMKIV, respectively, suggesting that uncoupling CaMKIV activation from activity generates an error signal in the negative feedback mechanism that controls firing rates. Together, our data show that excitatory synaptic scaling and intrinsic excitability are tightly coordinated through bidirectional changes in the same signaling pathway, whereas inhibitory synaptic scaling is sensed and regulated through an independent control mechanism. SIGNIFICANCE STATEMENT Maintaining stable function in highly interconnected neural circuits is essential for

  6. A versatile optical tool for studying synaptic GABAA receptor trafficking.

    Science.gov (United States)

    Lorenz-Guertin, Joshua M; Wilcox, Madeleine R; Zhang, Ming; Larsen, Mads B; Pilli, Jyotsna; Schmidt, Brigitte F; Bruchez, Marcel P; Johnson, Jon W; Waggoner, Alan S; Watkins, Simon C; Jacob, Tija C

    2017-11-15

    Live-cell imaging methods can provide critical real-time receptor trafficking measurements. Here, we describe an optical tool to study synaptic γ-aminobutyric acid (GABA) type A receptor (GABA A R) dynamics through adaptable fluorescent-tracking capabilities. A fluorogen-activating peptide (FAP) was genetically inserted into a GABA A R γ2 subunit tagged with pH-sensitive green fluorescent protein (γ2 pH FAP). The FAP selectively binds and activates Malachite Green (MG) dyes that are otherwise non-fluorescent in solution. γ2 pH FAP GABA A Rs are expressed at the cell surface in transfected cortical neurons, form synaptic clusters and do not perturb neuronal development. Electrophysiological studies show γ2 pH FAP GABA A Rs respond to GABA and exhibit positive modulation upon stimulation with the benzodiazepine diazepam. Imaging studies using γ2 pH FAP-transfected neurons and MG dyes show time-dependent receptor accumulation into intracellular vesicles, revealing constitutive endosomal and lysosomal trafficking. Simultaneous analysis of synaptic, surface and lysosomal receptors using the γ2 pH FAP-MG dye approach reveals enhanced GABA A R turnover following a bicucculine-induced seizure paradigm, a finding not detected by standard surface receptor measurements. To our knowledge, this is the first application of the FAP-MG dye system in neurons, demonstrating the versatility to study nearly all phases of GABA A R trafficking. © 2017. Published by The Company of Biologists Ltd.

  7. Models of Short-Term Synaptic Plasticity.

    Science.gov (United States)

    Barroso-Flores, Janet; Herrera-Valdez, Marco A; Galarraga, Elvira; Bargas, José

    2017-01-01

    We focus on dynamical descriptions of short-term synaptic plasticity. Instead of focusing on the molecular machinery that has been reviewed recently by several authors, we concentrate on the dynamics and functional significance of synaptic plasticity, and review some mathematical models that reproduce different properties of the dynamics of short term synaptic plasticity that have been observed experimentally. The complexity and shortcomings of these models point to the need of simple, yet physiologically meaningful models. We propose a simplified model to be tested in synapses displaying different types of short-term plasticity.

  8. Mapping synaptic pathology within cerebral cortical circuits in subjects with schizophrenia

    Directory of Open Access Journals (Sweden)

    Robert Sweet

    2010-06-01

    Full Text Available Converging lines of evidence indicate that schizophrenia is characterized by impairments of synaptic machinery within cerebral cortical circuits. Efforts to localize these alterations in brain tissue from subjects with schizophrenia have frequently been limited to the quantification of structures that are non-selectively identified (e.g. dendritic spines labeled in Golgi preparations, axon boutons labeled with synaptophysin, or to quantification of proteins using methods unable to resolve relevant cellular compartments. Multiple label fluorescence confocal microscopy represents a means to circumvent many of these limitations, by concurrently extracting information regarding the number, morphology, and relative protein content of synaptic structures. An important adaptation required for studies of human disease is coupling this approach to stereologic methods for systematic random sampling of relevant brain regions. In this review article we consider the application of multiple label fluorescence confocal microscopy to the mapping of synaptic alterations in subjects with schizophrenia and describe the application of a novel, readily automated, iterative intensity/morphological segmentation algorithm for the extraction of information regarding synaptic structure number, size, and relative protein level from tissue sections obtained using unbiased stereological principles of sampling. In this context, we provide examples of the examination of pre- and post-synaptic structures within excitatory and inhibitory circuits of the cerebral cortex.

  9. Activity-dependent modulation of neural circuit synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Charles R Tessier

    2009-07-01

    Full Text Available In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1 early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2 subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.

  10. Buyang Huanwu decoction facilitates neurorehabilitation through an improvement of synaptic plasticity in cerebral ischemic rats.

    Science.gov (United States)

    Pan, Ruihuan; Cai, Jun; Zhan, Lechang; Guo, Youhua; Huang, Run-Yue; Li, Xiong; Zhou, Mingchao; Xu, Dandan; Zhan, Jie; Chen, Hongxia

    2017-03-28

    Loss of neural function is a critical but unsolved issue after cerebral ischemia insult. Neuronal plasticity and remodeling are crucial for recovery of neural functions after brain injury. Buyang Huanwu decoction, which is a classic formula in traditional Chinese medicine, can positively alter synaptic plasticity. This study assessed the effects of Buyang Huanwu decoction in combination with physical exercise on neuronal plasticity in cerebral ischemic rats. Cerebral ischemic rats were administered Buyang Huanwu decoction and participated in physical exercise after the induction of a permanent middle cerebral artery occlusion. The neurobehavioral functions and infarct volumes were evaluated. The presynaptic (SYN), postsynaptic (GAP-43) and cytoskeletal (MAP-2) proteins in the coronal brain samples were evaluated by immunohistochemistry and western blot analyses. The ultrastructure of the neuronal synaptic junctions in the same region were analyzed using transmission electron microscopy. Combination treatment of Buyang Huanwu decoction and physical exercise ameliorated the neurobehavioral deficits (p synaptic ultrastructure. Buyang Huanwu decoction facilitated neurorehabilitation following a cerebral ischemia insult through an improvement in synaptic plasticity. Graphical abstract The Buyang Huanwu decoction (BYHWD) combined with physical exercise (PE) attenuates synaptic disruption and promotes synaptic plasticity following cerebral ischemia (stroke).

  11. Dynamic expression of long noncoding RNAs and repeat elements in synaptic plasticity.

    Science.gov (United States)

    Maag, Jesper L V; Panja, Debabrata; Sporild, Ida; Patil, Sudarshan; Kaczorowski, Dominik C; Bramham, Clive R; Dinger, Marcel E; Wibrand, Karin

    2015-01-01

    Long-term potentiation (LTP) of synaptic transmission is recognized as a cellular mechanism for learning and memory storage. Although de novo gene transcription is known to be required in the formation of stable LTP, the molecular mechanisms underlying synaptic plasticity remain elusive. Noncoding RNAs have emerged as major regulatory molecules that are abundantly and specifically expressed in the mammalian brain. By combining RNA-seq analysis with LTP induction in the dentate gyrus of live rats, we provide the first global transcriptomic analysis of synaptic plasticity in the adult brain. Expression profiles of mRNAs and long noncoding RNAs (lncRNAs) were obtained at 30 min, 2 and 5 h after high-frequency stimulation of the perforant pathway. The temporal analysis revealed dynamic expression profiles of lncRNAs with many positively, and highly, correlated to protein-coding genes with known roles in synaptic plasticity, suggesting their possible involvement in LTP. In light of observations suggesting a role for retrotransposons in brain function, we examined the expression of various classes of repeat elements. Our analysis identifies dynamic regulation of LINE1 and SINE retrotransposons, and extensive regulation of tRNA. These experiments reveal a hitherto unknown complexity of gene expression in long-term synaptic plasticity involving the dynamic regulation of lncRNAs and repeat elements. These findings provide a broader foundation for elucidating the transcriptional and epigenetic regulation of synaptic plasticity in both the healthy brain and in neurodegenerative and neuropsychiatric disorders.

  12. Binding Sites for Amyloid-β Oligomers and Synaptic Toxicity

    Science.gov (United States)

    Smith, Levi M.; Strittmatter, Stephen M.

    2017-01-01

    In Alzheimer’s disease (AD), insoluble and fibrillary amyloid-β (Aβ) peptide accumulates in plaques. However, soluble Aβ oligomers are most potent in creating synaptic dysfunction and loss. Therefore, receptors for Aβ oligomers are hypothesized to be the first step in a neuronal cascade leading to dementia. A number of cell-surface proteins have been described as Aβ binding proteins, and one or more are likely to mediate Aβ oligomer toxicity in AD. Cellular prion protein (PrPC) is a high-affinity Aβ oligomer binding site, and a range of data delineates a signaling pathway leading from Aβ complexation with PrPC to neuronal impairment. Further study of Aβ binding proteins will define the molecular basis of this crucial step in AD pathogenesis. PMID:27940601

  13. C1q/TNF-related protein 6 (CTRP6) links obesity to adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Lei, Xia; Seldin, Marcus M; Little, Hannah C; Choy, Nicholas; Klonisch, Thomas; Wong, G William

    2017-09-08

    Obesity is associated with chronic low-grade inflammation, and metabolic regulators linking obesity to inflammation have therefore received much attention. Secreted C1q/TNF-related proteins (CTRPs) are one such group of regulators that regulate glucose and fat metabolism in peripheral tissues and modulate inflammation in adipose tissue. We have previously shown that expression of CTRP6 is up-regulated in leptin-deficient mice and, conversely, down-regulated by the anti-diabetic drug rosiglitazone. Here, we provide evidence for a novel role of CTRP6 in modulating both inflammation and insulin sensitivity. We found that in obese and diabetic humans and mouse models, CTRP6 expression was markedly up-regulated in adipose tissue and that stromal vascular cells, such as macrophages, are a major CTRP6 source. Overexpressing mouse or human CTRP6 impaired glucose disposal in peripheral tissues in response to glucose and insulin challenge in wild-type mice. Conversely, Ctrp6 gene deletion improved insulin action and increased metabolic rate and energy expenditure in diet-induced obese mice. Mechanistically, CTRP6 regulates local inflammation and glucose metabolism by targeting macrophages and adipocytes, respectively. In cultured macrophages, recombinant CTRP6 dose-dependently up-regulated the expression and production of TNF-α. Conversely, CTRP6 deficiency reduced circulating inflammatory cytokines and pro-inflammatory macrophages in adipose tissue. CTRP6-overexpressing mice or CTRP6-treated adipocytes had reduced insulin-stimulated Akt phosphorylation and glucose uptake. In contrast, loss of CTRP6 enhanced insulin-stimulated Akt activation in adipose tissue. Together, these results establish CTRP6 as a novel metabolic/immune regulator linking obesity to adipose tissue inflammation and insulin resistance. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Molecular mechanisms of synaptic remodeling in alcoholism.

    Science.gov (United States)

    Kyzar, Evan J; Pandey, Subhash C

    2015-08-05

    Alcohol use and alcohol addiction represent dysfunctional brain circuits resulting from neuroadaptive changes during protracted alcohol exposure and its withdrawal. Alcohol exerts a potent effect on synaptic plasticity and dendritic spine formation in specific brain regions, providing a neuroanatomical substrate for the pathophysiology of alcoholism. Epigenetics has recently emerged as a critical regulator of gene expression and synaptic plasticity-related events in the brain. Alcohol exposure and withdrawal induce changes in crucial epigenetic processes in the emotional brain circuitry (amygdala) that may be relevant to the negative affective state defined as the "dark side" of addiction. Here, we review the literature concerning synaptic plasticity and epigenetics, with a particular focus on molecular events related to dendritic remodeling during alcohol abuse and alcoholism. Targeting epigenetic processes that modulate synaptic plasticity may yield novel treatments for alcoholism. Published by Elsevier Ireland Ltd.

  15. Addiction-like Synaptic Impairments in Diet-Induced Obesity.

    Science.gov (United States)

    Brown, Robyn Mary; Kupchik, Yonatan Michael; Spencer, Sade; Garcia-Keller, Constanza; Spanswick, David C; Lawrence, Andrew John; Simonds, Stephanie Elise; Schwartz, Danielle Joy; Jordan, Kelsey Ann; Jhou, Thomas Clayton; Kalivas, Peter William

    2017-05-01

    There is increasing evidence that the pathological overeating underlying some forms of obesity is compulsive in nature and therefore contains elements of an addictive disorder. However, direct physiological evidence linking obesity to synaptic plasticity akin to that occurring in addiction is lacking. We sought to establish whether the propensity to diet-induced obesity (DIO) is associated with addictive-like behavior, as well as synaptic impairments in the nucleus accumbens core considered hallmarks of addiction. Sprague Dawley rats were allowed free access to a palatable diet for 8 weeks then separated by weight gain into DIO-prone and DIO-resistant subgroups. Access to palatable food was then restricted to daily operant self-administration sessions using fixed ratio 1, 3, and 5 and progressive ratio schedules. Subsequently, nucleus accumbens brain slices were prepared, and we tested for changes in the ratio between α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate currents and the ability to exhibit long-term depression. We found that propensity to develop DIO is linked to deficits in the ability to induce long-term depression in the nucleus accumbens, as well as increased potentiation at these synapses as measured by AMPA/N-methyl-D-aspartate currents. Consistent with these impairments, we observed addictive-like behavior in DIO-prone rats, including 1) heightened motivation for palatable food; 2) excessive intake; and 3) increased food seeking when food was unavailable. Our results show overlap between the propensity for DIO and the synaptic changes associated with facets of addictive behavior, supporting partial coincident neurological underpinnings for compulsive overeating and drug addiction. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  16. Inter-Synaptic Lateral Diffusion of GABAA Receptors Shapes Inhibitory Synaptic Currents.

    Science.gov (United States)

    de Luca, Emanuela; Ravasenga, Tiziana; Petrini, Enrica Maria; Polenghi, Alice; Nieus, Thierry; Guazzi, Stefania; Barberis, Andrea

    2017-07-05

    The lateral mobility of neurotransmitter receptors has been shown to tune synaptic signals. Here we report that GABAA receptors (GABAARs) can diffuse between adjacent dendritic GABAergic synapses in long-living desensitized states, thus laterally spreading "activation memories" between inhibitory synapses. Glutamatergic activity limits this inter-synaptic diffusion by trapping GABAARs at excitatory synapses. This novel form of activity-dependent hetero-synaptic interplay is likely to modulate dendritic synaptic signaling. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Evaluation of an enzyme-linked immunosorbent assay based on crude leishmania histone proteins for serodiagnosis of human infantile visceral leishmaniasis.

    OpenAIRE

    Lakhal, Sami; Mekki, Salima; Ben-Abda, Imène; Mousli, Mohamed; Amri, Fethi; Aoun, Karim; Bouratbine, Aïda

    2012-01-01

    International audience; Human visceral leishmaniasis (VL) is routinely diagnosed by detecting IgG that specifically binds to Leishmania antigens. The enzyme-linked immunosorbent assay (ELISA) remains a widely used method. However, the biggest challenge remains the choice of antigen with the highest specificity and sensitivity. This study is aimed at assessing the diagnostic performances of crude Leishmania histone (CLH) protein-based ELISAs in Mediterranean VL patients. The CLH proteins were ...

  18. Identifying SARS-CoV membrane protein amino acid residues linked to virus-like particle assembly.

    Directory of Open Access Journals (Sweden)

    Ying-Tzu Tseng

    Full Text Available Severe acute respiratory syndrome coronavirus (SARS-CoV membrane (M proteins are capable of self-assembly and release in the form of membrane-enveloped vesicles, and of forming virus-like particles (VLPs when coexpressed with SARS-CoV nucleocapsid (N protein. According to previous deletion analyses, M self-assembly involves multiple M sequence regions. To identify important M amino acid residues for VLP assembly, we coexpressed N with multiple M mutants containing substitution mutations at the amino-terminal ectodomain, carboxyl-terminal endodomain, or transmembrane segments. Our results indicate that a dileucine motif in the endodomain tail (218LL219 is required for efficient N packaging into VLPs. Results from cross-linking VLP analyses suggest that the cysteine residues 63, 85 and 158 are not in close proximity to the M dimer interface. We noted a significant reduction in M secretion due to serine replacement for C158, but not for C63 or C85. Further analysis suggests that C158 is involved in M-N interaction. In addition to mutations of the highly conserved 107-SWWSFNPE-114 motif, substitutions at codons W19, W57, P58, W91, Y94 or F95 all resulted in significantly reduced VLP yields, largely due to defective M secretion. VLP production was not significantly affected by a tryptophan replacement of Y94 or F95 or a phenylalanine replacement of W19, W57 or W91. Combined, these results indicate the involvement of specific M amino acids during SARS-CoV virus assembly, and suggest that aromatic residue retention at specific positions is critical for M function in terms of directing virus assembly.

  19. A novel link between the proteasome pathway and the signal transduction pathway of the Bone Morphogenetic Proteins (BMPs

    Directory of Open Access Journals (Sweden)

    Kim Richard H

    2002-06-01

    Full Text Available Abstract Background The intracellular signaling events of the Bone Morphogenetic Proteins (BMPs involve the R-Smad family members Smad1, Smad5, Smad8 and the Co-Smad, Smad4. Smads are currently considered to be DNA-binding transcriptional modulators and shown to recruit the master transcriptional co-activator CBP/p300 for transcriptional activation. SNIP1 is a recently discovered novel repressor of CBP/p300. Currently, the detailed molecular mechanisms that allow R-Smads and Co-Smad to co-operatively modulate transcription events are not fully understood. Results Here we report a novel physical and functional link between Smad1 and the 26S proteasome that contributes to Smad1- and Smad4-mediated transcriptional regulation. Smad1 forms a complex with a proteasome β subunit HsN3 and the ornithine decarboxylase antizyme (Az. The interaction is enhanced upon BMP type I receptor activation and occur prior to the incorporation of HsN3 into the mature 20S proteasome. Furthermore, BMPs trigger the translocation of Smad1, HsN3 and Az into the nucleus, where the novel CBP/p300 repressor protein SNIP1 is further recruited to Smad1/HsN3/Az complex and degraded in a Smad1-, Smad4- and Az-dependent fashion. The degradation of the CBP/p300 repressor SNIP1 is likely an essential step for Smad1-, Smad4-mediated transcriptional activation, since increased SNIP1 expression inhibits BMP-induced gene responses. Conclusions Our studies thus add two additional important functional partners of Smad1 into the signaling web of BMPs and also suggest a novel mechanism for Smad1 and Smad4 to co-modulate transcription via regulating proteasomal degradation of CBP/p300 repressor SNIP1.

  20. Bacillus subtilis SbcC protein plays an important role in DNA inter-strand cross-link repair

    Directory of Open Access Journals (Sweden)

    Krisnamurthy Mahalakshmi

    2006-06-01

    Full Text Available Abstract Background Several distinct pathways for the repair of damaged DNA exist in all cells. DNA modifications are repaired by base excision or nucleotide excision repair, while DNA double strand breaks (DSBs can be repaired through direct joining of broken ends (non homologous end joining, NHEJ or through recombination with the non broken sister chromosome (homologous recombination, HR. Rad50 protein plays an important role in repair of DNA damage in eukaryotic cells, and forms a complex with the Mre11 nuclease. The prokaryotic ortholog of Rad50, SbcC, also forms a complex with a nuclease, SbcD, in Escherichia coli, and has been implicated in the removal of hairpin structures that can arise during DNA replication. Ku protein is a component of the NHEJ pathway in pro- and eukaryotic cells. Results A deletion of the sbcC gene rendered Bacillus subtilis cells sensitive to DNA damage caused by Mitomycin C (MMC or by gamma irradiation. The deletion of the sbcC gene in a recN mutant background increased the sensitivity of the single recN mutant strain. SbcC was also non-epistatic with AddAB (analog of Escherichia coli RecBCD, but epistatic with RecA. A deletion of the ykoV gene encoding the B. subtilis Ku protein in a sbcC mutant strain did not resulted in an increase in sensitivity towards MMC and gamma irradiation, but exacerbated the phenotype of a recN or a recA mutant strain. In exponentially growing cells, SbcC-GFP was present throughout the cells, or as a central focus in rare cases. Upon induction of DNA damage, SbcC formed 1, rarely 2, foci on the nucleoids. Different to RecN protein, which forms repair centers at any location on the nucleoids, SbcC foci mostly co-localized with the DNA polymerase complex. In contrast to this, AddA-GFP or AddB-GFP did not form detectable foci upon addition of MMC. Conclusion Our experiments show that SbcC plays an important role in the repair of DNA inter-strand cross-links (induced by MMC, most likely

  1. Rapid detection of DNA-interstrand and DNA-protein cross-links in mammalian cells by gravity-flow alkaline elution

    International Nuclear Information System (INIS)

    Hincks, J.R.; Coulombe, R.A. Jr.

    1989-01-01

    Alkaline elution is a sensitive and commonly used technique to detect cellular DNA damage in the form of DNA strand breaks and DNA cross-links. Conventional alkaline elution procedures have extensive equipment requirements and are tedious to perform. Our laboratory recently presented a rapid, simplified, and sensitive modification of the alkaline elution technique to detect carcinogen-induced DNA strand breaks. In the present study, we have further modified this technique to enable the rapid characterization of chemically induced DNA-interstrand and DNA-protein associated cross-links in cultured epithelial cells. Cells were exposed to three known DNA cross-linking agents, nitrogen mustard (HN 2 ), mitomycin C (MMC), or ultraviolet irradiation (UV). One hour exposures of HN 2 at 0.25, 1.0, and 4.0 microM or of MMC at 20, 40, and 60 microM produced a dose-dependent induction of total DNA cross-links by these agents. Digestion with proteinase K revealed that HN 2 and MMC induced both DNA-protein cross-links and DNA-interstrand cross-links. Ultraviolet irradiation induced both DNA cross-links and DNA strand breaks, the latter of which were either protein and nonprotein associated. The results demonstrate that gravity-flow alkaline elution is a sensitive and accurate method to characterize the molecular events of DNA cross-linking. Using this procedure, elution of DNA from treated cells is completed in 1 hr, and only three fractions per sample are analyzed. This method may be useful as a rapid screening assay for genotoxicity and/or as an adjunct to other predictive assays for potential mutagenic or carcinogenic agents

  2. Lateral regulation of synaptic transmission by astrocytes.

    Science.gov (United States)

    Covelo, A; Araque, A

    2016-05-26

    Fifteen years ago the concept of the "tripartite synapse" was proposed to conceptualize the functional view that astrocytes are integral elements of synapses. The signaling exchange between astrocytes and neurons within the tripartite synapse results in the synaptic regulation of synaptic transmission and plasticity through an autocrine form of communication. However, recent evidence indicates that the astrocyte synaptic regulation is not restricted to the active tripartite synapse but can be manifested through astrocyte signaling at synapses relatively distant from active synapses, a process termed lateral astrocyte synaptic regulation. This phenomenon resembles the classical heterosynaptic modulation but is mechanistically different because it involves astrocytes and its properties critically depend on the morphological and functional features of astrocytes. Therefore, the functional concept of the tripartite synapse as a fundamental unit must be expanded to include the interaction between tripartite synapses. Through lateral synaptic regulation, astrocytes serve as an active processing bridge for synaptic interaction and crosstalk between synapses with no direct neuronal connectivity, supporting the idea that neural network function results from the coordinated activity of astrocytes and neurons. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Changed Synaptic Plasticity in Neural Circuits of Depressive-Like and Escitalopram-Treated Rats

    Science.gov (United States)

    Li, Xiao-Li; Yuan, Yong-Gui; Xu, Hua; Wu, Di; Gong, Wei-Gang; Geng, Lei-Yu; Wu, Fang-Fang; Tang, Hao; Xu, Lin

    2015-01-01

    Background: Although progress has been made in the detection and characterization of neural plasticity in depression, it has not been fully understood in individual synaptic changes in the neural circuits under chronic stress and antidepressant treatment. Methods: Using electron microscopy and Western-blot analyses, the present study quantitatively examined the changes in the Gray’s Type I synaptic ultrastructures and the expression of synapse-associated proteins in the key brain regions of rats’ depressive-related neural circuit after chronic unpredicted mild stress and/or escitalopram administration. Meanwhile, their depressive behaviors were also determined by several tests. Results: The Type I synapses underwent considerable remodeling after chronic unpredicted mild stress, which resulted in the changed width of the synaptic cleft, length of the active zone, postsynaptic density thickness, and/or synaptic curvature in the subregions of medial prefrontal cortex and hippocampus, as well as the basolateral amygdaloid nucleus of the amygdala, accompanied by changed expression of several synapse-associated proteins. Chronic escitalopram administration significantly changed the above alternations in the chronic unpredicted mild stress rats but had little effect on normal controls. Also, there was a positive correlation between the locomotor activity and the maximal synaptic postsynaptic density thickness in the stratum radiatum of the Cornu Ammonis 1 region and a negative correlation between the sucrose preference and the length of the active zone in the basolateral amygdaloid nucleus region in chronic unpredicted mild stress rats. Conclusion: These findings strongly indicate that chronic stress and escitalopram can alter synaptic plasticity in the neural circuits, and the remodeled synaptic ultrastructure was correlated with the rats’ depressive behaviors, suggesting a therapeutic target for further exploration. PMID:25899067

  4. Changed Synaptic Plasticity in Neural Circuits of Depressive-Like and Escitalopram-Treated Rats.

    Science.gov (United States)

    Li, Xiao-Li; Yuan, Yong-Gui; Xu, Hua; Wu, Di; Gong, Wei-Gang; Geng, Lei-Yu; Wu, Fang-Fang; Tang, Hao; Xu, Lin; Zhang, Zhi-Jun

    2015-04-21

    Although progress has been made in the detection and characterization of neural plasticity in depression, it has not been fully understood in individual synaptic changes in the neural circuits under chronic stress and antidepressant treatment. Using electron microscopy and Western-blot analyses, the present study quantitatively examined the changes in the Gray's Type I synaptic ultrastructures and the expression of synapse-associated proteins in the key brain regions of rats' depressive-related neural circuit after chronic unpredicted mild stress and/or escitalopram administration. Meanwhile, their depressive behaviors were also determined by several tests. The Type I synapses underwent considerable remodeling after chronic unpredicted mild stress, which resulted in the changed width of the synaptic cleft, length of the active zone, postsynaptic density thickness, and/or synaptic curvature in the subregions of medial prefrontal cortex and hippocampus, as well as the basolateral amygdaloid nucleus of the amygdala, accompanied by changed expression of several synapse-associated proteins. Chronic escitalopram administration significantly changed the above alternations in the chronic unpredicted mild stress rats but had little effect on normal controls. Also, there was a positive correlation between the locomotor activity and the maximal synaptic postsynaptic density thickness in the stratum radiatum of the Cornu Ammonis 1 region and a negative correlation between the sucrose preference and the length of the active zone in the basolateral amygdaloid nucleus region in chronic unpredicted mild stress rats. These findings strongly indicate that chronic stress and escitalopram can alter synaptic plasticity in the neural circuits, and the remodeled synaptic ultrastructure was correlated with the rats' depressive behaviors, suggesting a therapeutic target for further exploration. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  5. Nanoscale Molecular Reorganization of the Inhibitory Postsynaptic Density Is a Determinant of GABAergic Synaptic Potentiation.

    Science.gov (United States)

    Pennacchietti, Francesca; Vascon, Sebastiano; Nieus, Thierry; Rosillo, Christian; Das, Sabyasachi; Tyagarajan, Shiva K; Diaspro, Alberto; Del Bue, Alessio; Petrini, Enrica Maria; Barberis, Andrea; Cella Zanacchi, Francesca

    2017-02-15

    Gephyrin is a key scaffold protein mediating the anchoring of GABAA receptors at inhibitory synapses. Here, we exploited superresolution techniques combined with proximity-based clustering analysis and model simulations to investigate the single-molecule gephyrin reorganization during plasticity of inhibitory synapses in mouse hippocampal cultured neurons. This approach revealed that, during the expression of inhibitory LTP, the increase of gephyrin density at postsynaptic sites is associated with the promoted formation of gephyrin nanodomains. We demonstrate that the gephyrin rearrangement in nanodomains stabilizes the amplitude of postsynaptic currents, indicating that, in addition to the number of synaptic GABAA receptors, the nanoscale distribution of GABAA receptors in the postsynaptic area is a crucial determinant for the expression of inhibitory synaptic plasticity. In addition, the methodology implemented here clears the way to the application of the graph-based theory to single-molecule data for the description and quantification of the spatial organization of the synapse at the single-molecule level. SIGNIFICANCE STATEMENT The mechanisms of inhibitory synaptic plasticity are poorly understood, mainly because the size of the synapse is below the diffraction limit, thus reducing the effectiveness of conventional optical and imaging techniques. Here, we exploited superresolution approaches combined with clustering analysis to study at unprecedented resolution the distribution of the inhibitory scaffold protein gephyrin in response to protocols inducing LTP of inhibitory synaptic responses (iLTP). We found that, during the expression of iLTP, the increase of synaptic gephyrin is associated with the fragmentation of gephyrin in subsynaptic nanodomains. We demonstrate that such synaptic gephyrin nanodomains stabilize the amplitude of inhibitory postsynaptic responses, thus identifying the nanoscale gephyrin rearrangement as a key determinant for inhibitory

  6. Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations.

    Science.gov (United States)

    Prada, Ilaria; Gabrielli, Martina; Turola, Elena; Iorio, Alessia; D'Arrigo, Giulia; Parolisi, Roberta; De Luca, Mariacristina; Pacifici, Marco; Bastoni, Mattia; Lombardi, Marta; Legname, Giuseppe; Cojoc, Dan; Buffo, Annalisa; Furlan, Roberto; Peruzzi, Francesca; Verderio, Claudia

    2018-01-04

    Recent evidence indicates synaptic dysfunction as an early mechanism affected in neuroinflammatory diseases, such as multiple sclerosis, which are characterized by chronic microglia activation. However, the mode(s) of action of reactive microglia in causing synaptic defects are not fully understood. In this study, we show that inflammatory microglia produce extracellular vesicles (EVs) which are enriched in a set of miRNAs that regulate the expression of key synaptic proteins. Among them, miR-146a-5p, a microglia-specific miRNA not present in hippocampal neurons, controls the expression of presynaptic synaptotagmin1 (Syt1) and postsynaptic neuroligin1 (Nlg1), an adhesion protein which play a crucial role in dendritic spine formation and synaptic stability. Using a Renilla-based sensor, we provide formal proof that inflammatory EVs transfer their miR-146a-5p cargo to neuron. By western blot and immunofluorescence analysis we show that vesicular miR-146a-5p suppresses Syt1 and Nlg1 expression in receiving neurons. Microglia-to-neuron miR-146a-5p transfer and Syt1 and Nlg1 downregulation do not occur when EV-neuron contact is inhibited by cloaking vesicular phosphatidylserine residues and when neurons are exposed to EVs either depleted of miR-146a-5p, produced by pro-regenerative microglia, or storing inactive miR-146a-5p, produced by cells transfected with an anti-miR-146a-5p. Morphological analysis reveals that prolonged exposure to inflammatory EVs leads to significant decrease in dendritic spine density in hippocampal neurons in vivo and in primary culture, which is rescued in vitro by transfection of a miR-insensitive Nlg1 form. Dendritic spine loss is accompanied by a decrease in the density and strength of excitatory synapses, as indicated by reduced mEPSC frequency and amplitude. These findings link inflammatory microglia and enhanced EV production to loss of excitatory synapses, uncovering a previously unrecognized role for microglia-enriched miRNAs, released

  7. Cartilage link protein 1 (Crtl1), an extracellular matrix component playing an important role in heart development.

    Science.gov (United States)

    Wirrig, Elaine E; Snarr, Brian S; Chintalapudi, Mastan R; O'neal, Jessica L; Phelps, Aimee L; Barth, Jeremy L; Fresco, Victor M; Kern, Christine B; Mjaatvedt, Corey H; Toole, Bryan P; Hoffman, Stanley; Trusk, Thomas C; Argraves, W Scott; Wessels, Andy

    2007-10-15

    To expand our insight into cardiac development, a comparative DNA microarray analysis was performed using tissues from the atrioventricular junction (AVJ) and ventricular chambers of mouse hearts at embryonic day (ED) 10.5-11.0. This comparison revealed differential expression of approximately 200 genes, including cartilage link protein 1 (Crtl1). Crtl1 stabilizes the interaction between hyaluronan (HA) and versican, two extracellular matrix components essential for cardiac development. Immunohistochemical studies showed that, initially, Crtl1, versican, and HA are co-expressed in the endocardial lining of the heart, and in the endocardially derived mesenchyme of the AVJ and outflow tract (OFT). At later stages, this co-expression becomes restricted to discrete populations of endocardially derived mesenchyme. Histological analysis of the Crtl1-deficient mouse revealed a spectrum of cardiac malformations, including AV septal and myocardial defects, while expression studies showed a significant reduction in versican levels. Subsequent analysis of the hdf mouse, which carries an insertional mutation in the versican gene (CSPG2), demonstrated that haploinsufficient versican mice display septal defects resembling those seen in Crtl1(-/-) embryos, suggesting that reduced versican expression may contribute to a subset of the cardiac abnormalities observed in the Crtl1(-/-) mouse. Combined, these findings establish an important role for Crtl1 in heart development.

  8. PHD1 links cell-cycle progression to oxygen sensing through hydroxylation of the centrosomal protein Cep192.

    Science.gov (United States)

    Moser, Sandra C; Bensaddek, Dalila; Ortmann, Brian; Maure, Jean-Francois; Mudie, Sharon; Blow, J Julian; Lamond, Angus I; Swedlow, Jason R; Rocha, Sonia

    2013-08-26

    PHD1 belongs to the family of prolyl-4-hydroxylases (PHDs) that is responsible for posttranslational modification of prolines on specific target proteins. Because PHD activity is sensitive to oxygen levels and certain byproducts of the tricarboxylic acid cycle, PHDs act as sensors of the cell's metabolic state. Here, we identify PHD1 as a critical molecular link between oxygen sensing and cell-cycle control. We show that PHD1 function is required for centrosome duplication and maturation through modification of the critical centrosome component Cep192. Importantly, PHD1 is also required for primary cilia formation. Cep192 is hydroxylated by PHD1 on proline residue 1717. This hydroxylation is required for binding of the E3 ubiquitin ligase SCF(Skp2), which ubiquitinates Cep192, targeting it for proteasomal degradation. By modulating Cep192 levels, PHD1 thereby affects the processes of centriole duplication and centrosome maturation and contributes to the regulation of cell-cycle progression. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Viral Genome-Linked Protein (VPg Is Essential for Translation Initiation of Rabbit Hemorrhagic Disease Virus (RHDV.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available Rabbit hemorrhagic disease virus (RHDV, the causative agent of rabbit hemorrhagic disease, is an important member of the caliciviridae family. Currently, no suitable tissue culture system is available for proliferating RHDV, limiting the study of the pathogenesis of RHDV. In addition, the mechanisms underlying RHDV translation and replication are largely unknown compared with other caliciviridae viruses. The RHDV replicon recently constructed in our laboratory provides an appropriate model to study the pathogenesis of RHDV without in vitro RHDV propagation and culture. Using this RHDV replicon, we demonstrated that the viral genome-linked protein (VPg is essential for RHDV translation in RK-13 cells for the first time. In addition, we showed that VPg interacts with eukaryotic initiation factor 4E (eIF4E in vivo and in vitro and that eIF4E silencing inhibits RHDV translation, suggesting the interaction between VPg and eIF4E is involved in RHDV translation. Our results support the hypothesis that VPg serves as a novel cap substitute during the initiation of RHDV translation.

  10. Nuclear Calcium Signaling Induces Expression of the Synaptic Organizers Lrrtm1 and Lrrtm2*

    Science.gov (United States)

    Hayer, Stefanie N.; Bading, Hilmar

    2015-01-01

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2–4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca2+/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2. PMID:25527504

  11. Nuclear calcium signaling induces expression of the synaptic organizers Lrrtm1 and Lrrtm2.

    Science.gov (United States)

    Hayer, Stefanie N; Bading, Hilmar

    2015-02-27

    Calcium transients in the cell nucleus evoked by synaptic activity in hippocampal neurons function as a signaling end point in synapse-to-nucleus communication. As an important regulator of neuronal gene expression, nuclear calcium is involved in the conversion of synaptic stimuli into functional and structural changes of neurons. Here we identify two synaptic organizers, Lrrtm1 and Lrrtm2, as targets of nuclear calcium signaling. Expression of both Lrrtm1 and Lrrtm2 increased in a synaptic NMDA receptor- and nuclear calcium-dependent manner in hippocampal neurons within 2-4 h after the induction of action potential bursting. Induction of Lrrtm1 and Lrrtm2 occurred independently of the need for new protein synthesis and required calcium/calmodulin-dependent protein kinases and the nuclear calcium signaling target CREB-binding protein. Analysis of reporter gene constructs revealed a functional cAMP response element in the proximal promoter of Lrrtm2, indicating that at least Lrrtm2 is regulated by the classical nuclear Ca(2+)/calmodulin-dependent protein kinase IV-CREB/CREB-binding protein pathway. These results suggest that one mechanism by which nuclear calcium signaling controls neuronal network function is by regulating the expression of Lrrtm1 and Lrrtm2. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Repetitive transcranial magnetic stimulation (rTMS) influences spatial cognition and modulates hippocampal structural synaptic plasticity in aging mice.

    Science.gov (United States)

    Ma, Jun; Zhang, Zhanchi; Kang, Lin; Geng, Dandan; Wang, Yanyong; Wang, Mingwei; Cui, Huixian

    2014-10-01

    Normal aging is characteristic with the gradual decline in cognitive function associated with the progressive reduction of structural and functional plasticity in the hippocampus. Repetitive transcranial magnetic stimulation (rTMS) has developed into a novel neurological and psychiatric tool that can be used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency rTMS (≤1Hz) affects synaptic plasticity in rats with vascular dementia (VaD), and it ameliorates the spatial cognitive ability in mice with Aβ1-42-mediated memory deficits, but there are little concerns about the effects of rTMS on normal aging related cognition and synaptic plasticity changes. Thus, the current study investigated the effects of rTMS on spatial memory behavior, neuron and synapse morphology in the hippocampus, and synaptic protein markers and brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) in normal aging mice, to illustrate the mechanisms of rTMS in regulating cognitive capacity. Relative to adult animals, aging caused hippocampal-dependent cognitive impairment, simultaneously inhibited the activation of the BDNF-TrkB signaling pathway, reduced the transcription and expression of synaptic protein markers: synaptophysin (SYN), growth associated protein 43 (GAP43) and post-synaptic density protein 95 (PSD95), as well as decreased synapse density and PSD (post-synaptic density) thickness. Interestingly, rTMS with low intensity (110% average resting motor threshold intensity, 1Hz, LIMS) triggered the activation of BDNF and TrkB, upregulated the level of synaptic protein markers, and increased synapse density and thickened PSD, and further reversed the spatial cognition dysfunction in aging mice. Conversely, high-intensity magnetic stimulation (150% average resting motor threshold intensity, 1Hz, HIMS) appeared to be detrimental, inducing thinning of PSDs, disordered synaptic structure, and a large number of

  13. Fragment-Based Drug Design Facilitated by Protein-Templated Click Chemistry : Fragment Linking and -Optimization of Inhibitors of the Aspartic Protease Endothiapepsin

    NARCIS (Netherlands)

    Mondal, Milon; Unver, M. Yagiz; Pal, Asish; Bakker, Matthijs; Berrier, Stephan R.; Hirsch, Anna K H

    2016-01-01

    There is an urgent need for the development of efficient methodologies that accelerate drug discovery. We demonstrate that the strategic combination of fragment linking/optimization and protein-templated click chemistry is an efficient and powerful method that accelerates the hit-identification

  14. Dysregulation of Elongation Factor 1A Expression is Correlated with Synaptic Plasticity Impairments in Alzheimer's Disease.

    Science.gov (United States)

    Beckelman, Brenna C; Day, Stephen; Zhou, Xueyan; Donohue, Maggie; Gouras, Gunnar K; Klann, Eric; Keene, C Dirk; Ma, Tao

    2016-09-06

    Synaptic dysfunction may represent an early and crucial pathophysiology in Alzheimer's disease (AD). Recent studies implicate a connection between synaptic plasticity deficits and compromised capacity of de novo protein synthesis in AD. The mRNA translational factor eukaryotic elongation factor 1A (eEF1A) is critically involved in several forms of long-lasting synaptic plasticity. By examining postmortem human brain samples, a transgenic mouse model, and application of synthetic human Aβ42 on mouse hippocampal slices, we demonstrated that eEF1A protein levels were significantly decreased in AD, particularly in the hippocampus. In contrast, brain levels of eukaryotic elongation factor 2 were unaltered in AD. Further, upregulation of eEF1A expression by the adenylyl cyclase activator forskolin, which induces long-lasting synaptic plasticity, was blunted in hippocampal slices derived from Tg2576 AD model mice. Finally, Aβ-induced hippocampal long-term potentiation defects were alleviated by upregulation of eEF1A signaling via brain-specific knockdown of the gene encoding tuberous sclerosis 2. In summary, our findings suggest a strong correlation between the dysregulation of eEF1A synthesis and AD-associated synaptic failure. These findings provide insights into the understanding of molecular mechanisms underlying AD etiology and may aid in identification of novel biomarkers and therapeutic targets.

  15. Nitric oxide signaling is recruited as a compensatory mechanism for sustaining synaptic plasticity in Alzheimer's disease mice.

    Science.gov (United States)

    Chakroborty, Shreaya; Kim, Joyce; Schneider, Corinne; West, Anthony R; Stutzmann, Grace E

    2015-04-29

    Synaptic plasticity deficits are increasingly recognized as causing the memory impairments which define Alzheimer's disease (AD). In AD mouse models, evidence of abnormal synaptic function is present before the onset of cognitive deficits, and presents as increased synaptic depression revealed only when synaptic homeostasis is challenged, such as with suppression of ryanodine receptor (RyR)-evoked calcium signaling. Otherwise, at early disease stages, the synaptic physiology phenotype appears normal. This suggests compensatory mechanisms are recruited to maintain a functionally normal net output of the hippocampal circuit. A candidate calcium-regulated synaptic modulator is nitric oxide (NO), which acts presynaptically to boost vesicle release and glutamatergic transmission. Here we tested whether there is a feedforward cycle between the increased RyR calcium release seen in presymptomatic AD mice and aberrant NO signaling which augments synaptic plasticity. Using a combination of electrophysiological approaches, two-photon calcium imaging, and protein biochemistry in hippocampal tissue from presymptomatic 3xTg-AD and NonTg mice, we show that blocking NO synthesis results in markedly augmented synaptic depression mediated through presynaptic mechanisms in 3xTg-AD mice. Additionally, blocking NO reduces the augmented synaptically evoked dendritic calcium release mediated by enhanced RyR calcium release. This is accompanied by increased nNOS levels in the AD mice and is reversed upon normalization of RyR-evoked calcium release with chronic dantrolene treatment. Thus, recruitment of NO is serving a compensatory role to boost synaptic transmission and plasticity during early AD stages. However, NO's dual role in neuroprotection and neurodegeneration may convert to maladaptive functions as the disease progresses. Copyright © 2015 the authors 0270-6474/15/356893-10$15.00/0.

  16. Subunit compensation and plasticity of synaptic GABAA receptors induced by ethanol in α4 subunit knockout mice

    Directory of Open Access Journals (Sweden)

    Asha eSuryanarayanan

    2011-09-01

    Full Text Available There is considerable evidence that ethanol (EtOH potentiates γ-aminobutyric acid type A receptor (GABAAR action, but only GABAARs containing δ subunits appear sensitive to low mM EtOH. The α4 and δ subunits co-assemble into GABAARs which are relatively highly expressed at extrasynaptic locations in the dentate gyrus where they mediate tonic inhibition. We previously demonstrated reversible- and time-dependent changes in GABAAR function and subunit composition in rats after single-dose EtOH intoxication. We concluded that early tolerance to EtOH occurs by over-activation and subsequent internalization of EtOH-sensitive extrasynaptic α4βδ-GABAARs. Based on this hypothesis, any highly EtOH-sensitive GABAARs should be subject to internalization following exposure to suitably high EtOH doses. To test this, we studied the GABAARs in mice with a global deletion of the α4 subunit (KO. The dentate granule cells (DGCs of these mice exhibited greatly reduced tonic currents and greatly reduced potentiation by acutely applied EtOH, whereas synaptic currents showed heightened sensitivity to low EtOH concentrations. The hippocampus of naive KO mice showed reduced δ subunit protein levels, but increased α2, and γ2 levels compared to wild-type (WT controls, suggesting at least partial compensation by these subunits in synaptic, highly EtOH-sensitive GABAARs of KO mice. In WT mice, cross-linking and Western blot analysis at 1 h after an EtOH challenge (3.5 g/kg, i.p. revealed increased intracellular fraction of the α1, α4 and δ, but not α2, α5 or γ2 subunits. By contrast, we observed significant internalization of α1, α2, δ, and γ2 subunits after a similar EtOH challenge in KO mice. Synaptic currents from naïve KO mice were more sensitive to potentiation by zolpidem (0.3 μM, requiring α1/α2, inactive at α4/5 GABAARs than those from naïve WT mice. At 1 h after EtOH, synaptic currents of WT mice were unchanged, whereas those of KO mice

  17. Quantitation of pulmonary surfactant protein SP-B in the absence or presence of phospholipids by enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Oviedo, J M; Valiño, F; Plasencia, I

    2001-01-01

    We have developed an enzyme-linked immunosorbent assay (ELISA) that uses polyclonal or monoclonal anti-surfactant protein SP-B antibodies to quantitate purified SP-B in chloroform/methanol and in chloroform/methanol extracts of whole pulmonary surfactant at nanogram levels. This method has been...... used to explore the effect of the presence of different phospholipids on the immunoreactivity of SP-B. Both polyclonal and monoclonal antibodies produced reproducible ELISA calibration curves for methanolic SP-B solutions with protein concentrations in the range of 20-1000 ng/mL. At these protein...... pronounced changes on the conformation of SP-B when the solvent was evaporated and dry lipid-protein films were formed, a necessary step to expose protein to antibodies in ELISA. Under these conditions, negatively charged lipids, but not zwitterionic ones, induced a marked decrease on the ellipticity of SP...

  18. Cord blood stem cell-mediated induction of apoptosis in glioma downregulates X-linked inhibitor of apoptosis protein (XIAP.

    Directory of Open Access Journals (Sweden)

    Venkata Ramesh Dasari

    2010-07-01

    Full Text Available XIAP (X-linked inhibitor of apoptosis protein is one of the most important members of the apoptosis inhibitor family. XIAP is upregulated in various malignancies, including human glioblastoma. It promotes invasion, metastasis, growth and survival of malignant cells. We hypothesized that downregulation of XIAP by human umbilical cord blood mesenchymal stem cells (hUCBSC in glioma cells would cause them to undergo apoptotic death.We observed the effect of hUCBSC on two malignant glioma cell lines (SNB19 and U251 and two glioma xenograft cell lines (4910 and 5310. In co-cultures of glioma cells with hUCBSC, proliferation of glioma cells was significantly inhibited. This is associated with increased cytotoxicity of glioma cells, which led to glioma cell death. Stem cells induced apoptosis in glioma cells, which was evaluated by TUNEL assay, FACS analyses and immunoblotting. The induction of apoptosis is associated with inhibition of XIAP in co-cultures of hUCBSC. Similar results were obtained by the treatment of glioma cells with shRNA to downregulate XIAP (siXIAP. Downregulation of XIAP resulted in activation of caspase-3 and caspase-9 to trigger apoptosis in glioma cells. Apoptosis is characterized by the loss of mitochondrial membrane potential and upregulation of mitochondrial apoptotic proteins Bax and Bad. Cell death of glioma cells was marked by downregulation of Akt and phospho-Akt molecules. We observed similar results under in vivo conditions in U251- and 5310-injected nude mice brains, which were treated with hUCBSC. Under in vivo conditions, Smac/DIABLO was found to be colocalized in the nucleus, showing that hUCBSC induced apoptosis is mediated by inhibition of XIAP and activation of Smac/DIABLO.Our results indicate that downregulation of XIAP by hUCBSC treatment induces apoptosis, which led to the death of the glioma cells and xenograft cells. This study demonstrates the therapeutic potential of XIAP and hUCBSC to treat malignant

  19. Enzyme-linked immunosorbent assay characterization of basal variation and heritability of systemic microfibrillar-associated protein 4.

    Directory of Open Access Journals (Sweden)

    Susanne Gjørup Sækmose

    Full Text Available BACKGROUND: Microfibrillar-associated protein 4 (MFAP4 is a systemic biomarker that is significantly elevated in samples from patients suffering from hepatic cirrhosis. The protein is generally localized to elastic fibers and other connective tissue fibers in the extracellular matrix (ECM, and variation in systemic MFAP4 (sMFAP4 has the potential to reflect diverse diseases with increased ECM turnover. Here, we aimed to validate an enzyme-linked immunosorbent assay (ELISA for the measurement of sMFAP4 with an emphasis on the robustness of the assay. Moreover, we aimed to determine confounders influencing the basal sMFAP4 variability and the genetic contribution to the basal variation. METHODS: The sandwich ELISA was based on two monoclonal anti-MFAP4 antibodies and was optimized and calibrated with a standard of recombinant MFAP4. The importance of pre-analytical sample handling was evaluated regarding sample tube type, time, and temperature conditions. The mean value structure and variance structure was determined in a twin cohort including 1,417 Danish twins (age 18-67 years by mixed-effect linear regression modeling. RESULTS: The practical working range of the sandwich ELISA was estimated to be 4-75 U/ml. The maximum intra- and inter-assay variation was estimated to be 8.7% and 6.6%, respectively. Sample handling and processing appeared to influence MFAP4 measurements only marginally. The average concentration of sMFAP4 in the serum was 18.9 ± 8.4 (SD U/ml in the twin cohort (95% CI: 18.5-19.4, median sMFAP4 17.3 U/ml. The mean structure model was demonstrated to include waist-hip ratio, age, and cigarette smoking status in interactions with gender. A relatively low heritability of h(2 = 0.24 was found after applying a model including additive genetic factors and shared and non-shared environmental factors. CONCLUSIONS: The described ELISA provides robust measures of the liver fibrosis marker sMFAP4. The low heritability and the relatively

  20. Ca2+-permeable AMPA receptors in homeostatic synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Hey-Kyoung eLee

    2012-02-01

    Full Text Available Neurons possess diverse mechanisms of homeostatic adaptation to overall changes in neural and synaptic activity, which are critical for proper brain functions. Homeostatic regulation of excitatory synapses has been studied in the context of synaptic scaling, which allows neurons to adjust their excitatory synaptic gain to maintain their activity within a dynamic range. Recent evidence suggests that one of the main mechanisms underlying synaptic scaling is by altering the function of postsynaptic AMPA receptors (AMPARs, including synaptic expression of Ca2+-permeable (CP- AMPARs. CP-AMPARs endow synapses with unique properties, which may benefit adaptation of neurons to periods of inactivity as would occur when a major input is lost. This review will summarize how synaptic expression of CP-AMPARs is regulated during homeostatic synaptic plasticity in the context of synaptic scaling, and will address the potential functional consequences of altering synaptic CP-AMPAR content.

  1. SRC Inhibition Reduces NR2B Surface Expression and Synaptic Plasticity in the Amygdala

    Science.gov (United States)

    Sinai, Laleh; Duffy, Steven; Roder, John C.

    2010-01-01

    The Src protein tyrosine kinase plays a central role in the regulation of N-methyl-d-aspartate receptor (NMDAR) activity by regulating NMDAR subunit 2B (NR2B) surface expression. In the amygdala, NMDA-dependent synaptic plasticity resulting from convergent somatosensory and auditory inputs contributes to emotional memory; however, the role of Src…

  2. Synaptic Plasticity: Cleaved Kinases and the Specificity of Erasing Traumatic Memories.

    Science.gov (United States)

    Abrams, Thomas W

    2017-09-25

    New possibilities for treating posttraumatic stress disorder and anxiety disorders involving abnormal memories are emerging from analysis of persistent protein kinase activation and mechanisms of synapse-specific modification, known as synaptic tagging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Hsp90 chaperone inhibitor 17-AAG attenuates Aβ-induced synaptic toxicity and memory impairment.

    Science.gov (United States)

    Chen, Yaomin; Wang, Bin; Liu, Dan; Li, Jing Jing; Xue, Yueqiang; Sakata, Kazuko; Zhu, Ling-qiang; Heldt, Scott A; Xu, Huaxi; Liao, Francesca-Fang

    2014-02-12

    The excessive accumulation of soluble amyloid peptides (Aβ) plays a crucial role in the pathogenesis of Alzheimer's disease (AD), particularly in synaptic dysfunction. The role of the two major chaperone proteins, Hsp70 and Hsp90, in clearing misfolded protein aggregates has been established. Despite their abundant presence in synapses, the role of these chaperones in synapses remains elusive. Here, we report that Hsp90 inhibition by 17-AAG elicited not only a heat shock-like response but also upregulated presynaptic and postsynaptic proteins, such as synapsin I, synaptophysin, and PSD95 in neurons. 17-AAG treatment enhanced high-frequency stimulation-evoked LTP and protected neurons from synaptic damage induced by soluble Aβ. In AD transgenic mice, the daily administration of 17-AAG over 7 d resulted in a marked increase in PSD95 expression in hippocampi. 17-AAG treatments in wild-type C57BL/6 mice challenged by soluble Aβ significantly improved contextual fear memory. Further, we demonstrate that 17-AAG activated synaptic protein expression via transcriptional mechanisms through the heat shock transcription factor HSF1. Together, our findings identify a novel function of Hsp90 inhibition in regulating synaptic plasticity, in addition to the known neuroprotective effects of the chaperones against Aβ and tau toxicity, thus further supporting the potential of Hsp90 inhibitors in treating neurodegenerative diseases.

  4. The N-ethylmaleimide-sensitive factor and dysbindin interact to modulate synaptic plasticity.

    Science.gov (United States)

    Gokhale, Avanti; Mullin, Ariana P; Zlatic, Stephanie A; Easley, Charles A; Merritt, Megan E; Raj, Nisha; Larimore, Jennifer; Gordon, David E; Peden, Andrew A; Sanyal, Subhabrata; Faundez, Victor

    2015-05-13

    Dysbindin is a schizophrenia susceptibility factor and subunit of the biogenesis of lysosome-related organelles complex 1 (BLOC-1) required for lysosome-related organelle biogenesis, and in neurons, synaptic vesicle assembly, neurotransmission, and plasticity. Protein networks, or interactomes, downstream of dysbindin/BLOC-1 remain partially explored despite their potential to illuminate neurodevelopmental disorder mechanisms. Here, we conducted a proteome-wide search for polypeptides whose cellular content is sensitive to dysbindin/BLOC-1 loss of function. We identified components of the vesicle fusion machinery as factors downregulated in dysbindin/BLOC-1 deficiency in neuroectodermal cells and iPSC-derived human neurons, among them the N-ethylmaleimide-sensitive factor (NSF). Human dysbindin/BLOC-1 coprecipitates with NSF and vice versa, and both proteins colocalized in a Drosophila model synapse. To test the hypothesis that NSF and dysbindin/BLOC-1 participate in a pathway-regulating synaptic function, we examined the role for NSF in dysbindin/BLOC-1-dependent synaptic homeostatic plasticity in Drosophila. As previously described, we found that mutations in dysbindin precluded homeostatic synaptic plasticity elicited by acute blockage of postsynaptic receptors. This dysbindin mutant phenotype is fully rescued by presynaptic expression of either dysbindin or Drosophila NSF. However, neither reduction of NSF alone or in combination with dysbindin haploinsufficiency impaired homeostatic synaptic plasticity. Our results demonstrate that dysbindin/BLOC-1 expression defects result in altered cellular content of proteins of the vesicle fusion apparatus and therefore influence synaptic plasticity. Copyright © 2015 the authors 0270-6474/15/357643-11$15.00/0.

  5. Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr