WorldWideScience

Sample records for synaptic competition generates

  1. Binocular Rivalry in a Competitive Neural Network with Synaptic Depression

    KAUST Repository

    Kilpatrick, Zachary P.

    2010-01-01

    We study binocular rivalry in a competitive neural network with synaptic depression. In particular, we consider two coupled hypercolums within primary visual cortex (V1), representing orientation selective cells responding to either left or right eye inputs. Coupling between hypercolumns is dominated by inhibition, especially for neurons with dissimilar orientation preferences. Within hypercolumns, recurrent connectivity is excitatory for similar orientations and inhibitory for different orientations. All synaptic connections are modifiable by local synaptic depression. When the hypercolumns are driven by orthogonal oriented stimuli, it is possible to induce oscillations that are representative of binocular rivalry. We first analyze the occurrence of oscillations in a space-clamped version of the model using a fast-slow analys is, taking advantage of the fact that depression evolves much slower than population activity. We th en analyze the onset of oscillations in the full spatially extended system by carrying out a piecewise smooth stability analysis of single (winner-take-all) and double (fusion) bumps within the network. Although our stability analysis takes into account only instabilities associated with real eigenvalues, it identifies points of instability that are consistent with what is found numerically. In particular, we show that, in regions of parameter space where double bumps are unstable and no single bumps exist, binocular rivalry can arise as a slow alternation between either population supporting a bump. © 2010 Society for Industrial and Applied Mathematics.

  2. Spike Pattern Structure Influences Synaptic Efficacy Variability Under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs

    Directory of Open Access Journals (Sweden)

    Zedong eBi

    2016-02-01

    Full Text Available In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis. Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e. synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons. Neurons (including the post-synaptic neuron in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1 synchronous firing and burstiness tend to increase DiffV, (2 heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3 heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our

  3. Competition in generation: The economic foundations

    International Nuclear Information System (INIS)

    Green, R.

    2000-01-01

    This paper sets out the economic foundations that underlie competitive markets in electricity generation. It moves from a general formulation of a competitive market to discuss traditional models of optimal electricity pricing. It shows how an auction market can produce the same results and discusses the option of bilateral trading. Models of market power, which can lead to higher prices and reduced efficiency, are then discussed. The final part of the paper deals with network effects

  4. Generator scheduling under competitive environment using genetic ...

    African Journals Online (AJOL)

    In this paper, genetic algorithm (GA) is used to solve the GENCOs profit based unit commitment problem (PBUCP) in a dayahead competitive electricity markets considering power and reserve generations simultaneously, whereas enhanced lambda iteration (ELI) method is used to solve the economic dispatch (ED) ...

  5. Simulation of synaptic coupling of neuron-like generators via a memristive device

    Science.gov (United States)

    Gerasimova, S. A.; Mikhaylov, A. N.; Belov, A. I.; Korolev, D. S.; Gorshkov, O. N.; Kazantsev, V. B.

    2017-08-01

    A physical model of synaptically coupled neuron-like generators interacting via a memristive device has been presented. The model simulates the synaptic transmission of pulsed signals between brain neurons. The action on the receiving generator has been performed via a memristive device that demonstrates adaptive behavior. It has been established that the proposed coupling channel provides the forced synchronization with the parameters depending on the memristive device sensitivity. Synchronization modes 1: 1 and 2: 1 have been experimentally observed.

  6. Biological conditions for oscillations and chaos generated by multispecies competition

    NARCIS (Netherlands)

    Huisman, J; Weissing, FJ

    2001-01-01

    We investigate biological mechanisms that generate oscillations and chaos in multispecies competition models. For this purpose, we use a competition model concerned with competition for abiotic essential resources. Because phytoplankton and plants consume quite a number of abiotic essential

  7. Robust network oscillations during mammalian respiratory rhythm generation driven by synaptic dynamics

    Science.gov (United States)

    Guerrier, Claire; Hayes, John A.; Fortin, Gilles; Holcman, David

    2015-01-01

    How might synaptic dynamics generate synchronous oscillations in neuronal networks? We address this question in the preBötzinger complex (preBötC), a brainstem neural network that paces robust, yet labile, inspiration in mammals. The preBötC is composed of a few hundred neurons that alternate bursting activity with silent periods, but the mechanism underlying this vital rhythm remains elusive. Using a computational approach to model a randomly connected neuronal network that relies on short-term synaptic facilitation (SF) and depression (SD), we show that synaptic fluctuations can initiate population activities through recurrent excitation. We also show that a two-step SD process allows activity in the network to synchronize (bursts) and generate a population refractory period (silence). The model was validated against an array of experimental conditions, which recapitulate several processes the preBötC may experience. Consistent with the modeling assumptions, we reveal, by electrophysiological recordings, that SF/SD can occur at preBötC synapses on timescales that influence rhythmic population activity. We conclude that nondeterministic neuronal spiking and dynamic synaptic strengths in a randomly connected network are sufficient to give rise to regular respiratory-like rhythmic network activity and lability, which may play an important role in generating the rhythm for breathing and other coordinated motor activities in mammals. PMID:26195782

  8. Spike Pattern Structure Influences Synaptic Efficacy Variability under STDP and Synaptic Homeostasis. I: Spike Generating Models on Converging Motifs

    OpenAIRE

    Bi, Zedong; Zhou, Changsong

    2016-01-01

    In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to...

  9. Competition and natural monopoly: the case for generation

    International Nuclear Information System (INIS)

    Pelegry, E.A.

    1995-01-01

    Some examples and references are used to support the existence of economies of scale associated with the electricity industry; for this, and in accordance with economic theory, the existence of a natural monopoly for electricity generation can be argued. The paper discusses the theory that competition in generation, with the aim of lowering the cost of electricity, can be achieved by other means than the competition between generators over the bidding price. One alternative is the competition between generators with reference to standards fixed by a Regulator, along with the progressive introduction of new low-cost installed capacity. 5 refs., 4 figs

  10. Power generation planning: a survey from monopoly to competition

    International Nuclear Information System (INIS)

    Kagiannas, A.G.; Askounis, D.T.; Psarras, J.

    2004-01-01

    During the last two decades electric power generation industry in many countries and regions around the world has undergone a significant transformation from being a centrally coordinated monopoly to a deregulated liberalized market. In the majority of those countries, competition has been introduced through the adoption of a competitive wholesale electricity spot market. Short-term efficiency of power generators under competitive environment has attracted considerable effort from researchers, while long-term investment performance has received less attention. In this context, the paper aims to serve as a comprehensive review basis for generation planning methods applied in a competitive electric power generation market. The traditional modeling techniques developed for generation expansion planning under monopoly are initially presented in an effort to assess the evolution of generation planning according to the evolution of the structure of the electric power market. (author)

  11. Generating Relational Competitive Advantage from Strategic Technological Partnership

    DEFF Research Database (Denmark)

    Hu, Yimei; Zhang, Si; Li, Jizhen

    2012-01-01

    Collaborating with external partners on strategic technological partnerships (STPs) have been popular phenomena for long, which leads new development in existing theories on competitive advantage. Under the relational view, the competitive advantage is jointly generated by alliance firms. Though...... the relational view of competitive advantage has been proposed for more than a decade, few in-depth empirical researches are down within this field, especially case study on R&D strategic alliance from this perspective. Based on these considerations, we investigate an STP between a Danish transnational...... corporation and a Chinese private firm aiming to understand how to generate relational competitive from an STP? Based on the explorative case study, we find that there are three key processes related to relational competitive advantage: partner selection, relational rents generation and relational rents...

  12. Generator scheduling under competitive environment using genetic ...

    African Journals Online (AJOL)

    DR OKE

    In this strategy, GENCO receives the reserve price per unit of reserve for each hour that the reserve is allocated and not used. When the reserve is used, GENCO receives the spot (energy) price for the reserve that is generated. In this method, reserve price is much lower than the spot price (Attaviriyanupap et al., 2003).

  13. Competition and natural monopoly. The case for generation

    International Nuclear Information System (INIS)

    Pelegry, E.A.

    1996-01-01

    Traditionally, economic theory has considered the generation, transport and distribution of electricity to be a natural monopoly, primarily as a result of the economies of scale associated with the electricity industry. Recently, and partly as a consequence of the deregulation trends within Europe, this paradigm of a natural monopoly in electricity generation has come under question. Some examples and references are used to support the existence of economies of scale and scope of electricity generation, and for this, and in accordance with economic theory, can be argued the existence of natural monopoly. Competition in generation is discussed, with the aim of lowering the cost of electricity that can be achieved by other means than the competition between generators over the bidding price. The advantages and disadvantages of the new generation are considered, such as gas in combined cycle, cogeneration systems and renewables. (R.P.)

  14. Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina

    Science.gov (United States)

    Haq, Wadood; Arango-Gonzalez, Blanca; Zrenner, Eberhart; Euler, Thomas; Schubert, Timm

    2014-01-01

    During neuronal degenerative diseases, neuronal microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. The functional consequences of such remodeling are mostly unknown. For instance, in mutant rd1 mouse retina, a common model for Retinitis Pigmentosa, rod bipolar cells (RBCs) establish contacts with remnant cone photoreceptors (cones) as a consequence of rod photoreceptor cell death and the resulting lack of presynaptic input. To assess the functional connectivity in the remodeled, light-insensitive outer rd1 retina, we recorded spontaneous population activity in retinal wholemounts using Ca2+ imaging and identified the participating cell types. Focusing on cones, RBCs and horizontal cells (HCs), we found that these cell types display spontaneous oscillatory activity and form synchronously active clusters. Overall activity was modulated by GABAergic inhibition from interneurons such as HCs and/or possibly interplexiform cells. Many of the activity clusters comprised both cones and RBCs. Opposite to what is expected from the intact (wild-type) cone-ON bipolar cell pathway, cone and RBC activity was positively correlated and, at least partially, mediated by glutamate transporters expressed on RBCs. Deletion of gap junctional coupling between cones reduced the number of clusters, indicating that electrical cone coupling plays a crucial role for generating the observed synchronized oscillations. In conclusion, degeneration-induced synaptic remodeling of the rd1 retina results in a complex self-sustained outer retinal oscillatory network, that complements (and potentially modulates) the recently described inner retinal oscillatory network consisting of amacrine, bipolar and ganglion cells. PMID:25249942

  15. Rab3A is a new interacting partner of synaptotagmin I and may modulate synaptic membrane fusion through a competitive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Chunliang [Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081 (China); Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205 (China); Li, Jianglin; Guo, Tianyao; Yan, Yizhong; Tang, Cheng; Wang, Ying; Chen, Ping [Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081 (China); Wang, Xianchun, E-mail: wang_xianchun@263.net [Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081 (China); Liang, Songping, E-mail: liangsp@hunnu.edu.cn [Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081 (China)

    2014-02-21

    Highlights: • Rab3A has been found to be a novel interacting protein of synaptotagmin I. • Rab3A binds to synaptotagmin I in a Ca{sup 2+}-independent manner. • KKKK motif in C2B domain of synaptotagmin I is a key site for Rab3A binding. • Rab3A competitively inhibits the binding of C2B in synaptotagmin I to syntaxin 1B. • Rab3A may regulate synaptic membrane fusion and exocytosis in a competitive manner. - Abstract: Rab3 and synaptotagmin have been reported to be the key proteins that have opposite actions but cooperatively play critical regulatory roles in selecting and limiting the number of vesicles released at central synapses. However, the exact mechanism has not been fully understood. In this study, Rab3A and synaptotagmin I, the most abundant isoforms of Rab3 and synaptotagmin, respectively, in brain were for the first time demonstrated to directly interact with each other in a Ca{sup 2+}-independent manner, and the KKKK motif in the C2B domain of synaptotagmin I was a key site for the Rab3A binding, which was further confirmed by the competitive inhibition of inositol hexakisphosphate. Further studies demonstrated that Rab3A competitively affected the synaptotagmin I interaction with syntaxin 1B that was involved in membrane fusion during the synaptic vesicle exocytosis. These data indicate that Rab3A is a new synaptotagmin I interacting partner and may participate in the regulation of synaptic membrane fusion and thus the vesicle exocytosis by competitively modulating the interaction of synaptotagmin with syntaxin of the t-SNARE complex in presynaptic membranes.

  16. THE IMPACT OF THE EXTERNALITIES GENERATED BY COMPETITIVE INTELLIGENCE

    Directory of Open Access Journals (Sweden)

    Moraru Adrian

    2015-07-01

    Full Text Available The goal of the paper named “The impact of the externalities generated by Competitive Intelligence” is to describe and understand how this activity works and behaves in a competitive environment, and what are the real cost of obtaining durable competitive advantages through a process such as Competitive Intelligence. This activity creates high added value on the market and the proper use of it can have a strong influence on increasing the competitiveness on the global economic environment and, therefore, increasing the efficiency inside those environments. On the other hand, externalities play a significant part in the economic welfare and, currently, in a globalized world, must be taken into consideration in order to obtain sustainable growth of the economy. As any other economic activity, Competitive Intelligence is also causing both positive and negative externalities. A thorough analysis of those externalities effects has to be made in order to understand how this process really works, and this paper aims to be the starting point of that analysis. Of course, further studies have to deepen each impact and obtain relevant results that will add up and draw more specific conclusions. This study’s conclusions, however, will reveal if this activity can work properly in every type of economy, regardless of its state of development. Since it represents a way to improve global competitiveness and, therefore, the market’s performance, the impact Competitive Intelligence is making on the whole economic system is a main parameter for establishing its real use. All in one, by being one of the most innovative ways to obtain competitive advantages through qualitative methods of analysis, the implementation of this process into the organizational culture of firms might change the way competitors choose to respond to one another’s actions. This research has taken into consideration both the macroeconomic and the microeconomic environment, using

  17. Hebbian Wiring Plasticity Generates Efficient Network Structures for Robust Inference with Synaptic Weight Plasticity

    Science.gov (United States)

    Hiratani, Naoki; Fukai, Tomoki

    2016-01-01

    In the adult mammalian cortex, a small fraction of spines are created and eliminated every day, and the resultant synaptic connection structure is highly nonrandom, even in local circuits. However, it remains unknown whether a particular synaptic connection structure is functionally advantageous in local circuits, and why creation and elimination of synaptic connections is necessary in addition to rich synaptic weight plasticity. To answer these questions, we studied an inference task model through theoretical and numerical analyses. We demonstrate that a robustly beneficial network structure naturally emerges by combining Hebbian-type synaptic weight plasticity and wiring plasticity. Especially in a sparsely connected network, wiring plasticity achieves reliable computation by enabling efficient information transmission. Furthermore, the proposed rule reproduces experimental observed correlation between spine dynamics and task performance. PMID:27303271

  18. Hebbian Wiring Plasticity Generates Efficient Network Structures for Robust Inference with Synaptic Weight Plasticity.

    Science.gov (United States)

    Hiratani, Naoki; Fukai, Tomoki

    2016-01-01

    In the adult mammalian cortex, a small fraction of spines are created and eliminated every day, and the resultant synaptic connection structure is highly nonrandom, even in local circuits. However, it remains unknown whether a particular synaptic connection structure is functionally advantageous in local circuits, and why creation and elimination of synaptic connections is necessary in addition to rich synaptic weight plasticity. To answer these questions, we studied an inference task model through theoretical and numerical analyses. We demonstrate that a robustly beneficial network structure naturally emerges by combining Hebbian-type synaptic weight plasticity and wiring plasticity. Especially in a sparsely connected network, wiring plasticity achieves reliable computation by enabling efficient information transmission. Furthermore, the proposed rule reproduces experimental observed correlation between spine dynamics and task performance.

  19. Frequency dependent rectifier memristor bridge used as a programmable synaptic membrane voltage generator

    Directory of Open Access Journals (Sweden)

    Oliver Pabst

    2013-03-01

    Full Text Available Reasoned by its dynamical behavior, the memristor enables a lot of new applications in analog circuit design. Since some realizations have been shown (e.g. 2007 by Hewlett Packard, the development of applications with memristors becomes more and more interesting. Besides applications in neural networks and storage devices, analog memristive circuits also promise further applications. Therefore, this article proposes a frequency dependent rectifier memristor bridge for different purposes, for example, using as a programmable synaptic membrane voltage generator for Spike-Time-Dependent-Plasticity and describes the circuit theory. In this context it is shown that the Picard Iteration is one possibility to analytically solve the system of nonlinear state equations of memristor circuits. An intuitive picture of how a memristor works in a network in general is given as well and in this context some research on the dynamical behavior of a HP memristor should be done. After all it is suggested to use the memristor bridge as a neuron.

  20. Small-scale generator opportunities in the competitive supply market

    International Nuclear Information System (INIS)

    Scrivener, G.

    1998-01-01

    The last franchises for electricity supply held by Public Electricity Suppliers are due to expire early in 1998. As a consequence from then on, after a phased start-up, all electricity consumers will be free to choose their supplier, completing the process of introducing competition into the electricity market which started in 1990 with the privatisation of the Industry. Then the framework by which the industry operates will become very different. This paper will review the changes to the operation of the market and assess the opportunities for small scale embedded generators post 1998. (Author)

  1. Competitive electricity markets, prices and generator entry and exit

    Science.gov (United States)

    Ethier, Robert George

    The electric power industry in the United States is quickly being deregulated and restructured. In the past, new electric generation capacity was added by regulated utilities to meet forecasted demand levels and maintain reserve margins. With competitive wholesale generation, investment will be the responsibility of independent private investors. Electricity prices will assume the coordinating function which has until recently been the responsibility of regulatory agencies. Competitive prices will provide the entry and exit signals for generators in the future. Competitive electricity markets have a distinctive price formation process, and thus require a specialized price model. A mean-reverting price process with stochastic jumps is proposed as an appropriate long-run price process for annual electricity prices. This price process is used to develop an analytic real options model for private investment decisions. The required recursive infinite series solutions have not been widely used for real option models. Entry thresholds and asset values for competitive wholesale electricity markets, and exit decisions for plants with significant retirement costs (i.e. nuclear power plants), are examined. The proposed model results in significantly lower trigger prices for both entry and exit decisions, and higher asset values, when compared with other standard models. The model is used to show that the incentives for retiring a nuclear plant are very sensitive to the treatment of decommissioning costs (e.g. if plant owners do not face full decommissioning costs, retirement decisions may be economically premature.) An econometric model of short-run price behavior is estimated by the method of maximum likelihood using daily electricity prices from markets in the USA and Australia. The model specifies two mean reverting price processes with stochastic Markov switching between the regimes, which allows discontinuous jumps in electricity prices. Econometric tests show that a two

  2. The generation of sustainable competitive advantage through training

    Directory of Open Access Journals (Sweden)

    Ignacio Danvila Del Valle

    2007-09-01

    Full Text Available This article analyses the significance of training as a generating factor of human capital that allows the attainment of long term sustainable competitive advantage turned into greater economic rents. Initially, two are prescribed that try to demonstrate from a universalistic approach, such relationship, to subsequently include the possible impact of the moderator strategy with the purpose of verifying if this could mean an improvement in the explanatory power of our model of analysis. For this, we have carried out the verification of the hypothesis through an analysis of hierarchical regression.

  3. Competition between coal and gas for large scale power generation

    International Nuclear Information System (INIS)

    Howieson, B.

    1997-01-01

    The relative competitiveness of coal- and gas-fired generation will be affected by distinctive country and market factors as well as site specific considerations, regarding such factors as environment, market structure and economics (such as fuel and plant costs). National and international politics have an impact on all three factors and any decision on the development of generation plant must take into account both current and future political climates. An analysis suggests that, at the present time, upgrading existing coal stations is attractive compared with new combined cycle gas turbines (CCGTs). However, this conclusion is highly dependent on the site specific nature of existing plant and the anticipated future environmental regime. Increased environmental pressure, particularly in the area of CO 2 emissions, would result in CCGTs being the first choice plant option. (R.P.)

  4. Synaptic signal streams generated by ex vivo neuronal networks contain non-random, complex patterns.

    Science.gov (United States)

    Lee, Sangmook; Zemianek, Jill M; Shultz, Abraham; Vo, Anh; Maron, Ben Y; Therrien, Mikaela; Courtright, Christina; Guaraldi, Mary; Yanco, Holly A; Shea, Thomas B

    2014-11-01

    Cultured embryonic neurons develop functional networks that transmit synaptic signals over multiple sequentially connected neurons as revealed by multi-electrode arrays (MEAs) embedded within the culture dish. Signal streams of ex vivo networks contain spikes and bursts of varying amplitude and duration. Despite the random interactions inherent in dissociated cultures, neurons are capable of establishing functional ex vivo networks that transmit signals among synaptically connected neurons, undergo developmental maturation, and respond to exogenous stimulation by alterations in signal patterns. These characteristics indicate that a considerable degree of organization is an inherent property of neurons. We demonstrate herein that (1) certain signal types occur more frequently than others, (2) the predominant signal types change during and following maturation, (3) signal predominance is dependent upon inhibitory activity, and (4) certain signals preferentially follow others in a non-reciprocal manner. These findings indicate that the elaboration of complex signal streams comprised of a non-random distribution of signal patterns is an emergent property of ex vivo neuronal networks. Copyright © 2014. Published by Elsevier Ltd.

  5. Profiting from competition: Financial tools for electric generation companies

    Science.gov (United States)

    Richter, Charles William, Jr.

    Regulations governing the operation of electric power systems in North America and many other areas of the world are undergoing major changes designed to promote competition. This process of change is often referred to as deregulation. Participants in deregulated electricity systems may find that their profits will greatly benefit from the implementation of successful bidding strategies. While the goal of the regulators may be to create rules which balance reliable power system operation with maximization of the total benefit to society, the goal of generation companies is to maximize their profit, i.e., return to their shareholders. The majority of the research described here is conducted from the point of view of generation companies (GENCOs) wishing to maximize their expected utility function, which is generally comprised of expected profit and risk. Strategies that help a GENCO to maximize its objective function must consider the impact of (and aid in making) operating decisions that may occur within a few seconds to multiple years. The work described here assumes an environment in which energy service companies (ESCOs) buy and GENCOs sell power via double auctions in regional commodity exchanges. Power is transported on wires owned by transmission companies (TRANSCOs) and distribution companies (DISTCOs). The proposed market framework allows participants to trade electrical energy contracts via the spot, futures, options, planning, and swap markets. An important method of studying these proposed markets and the behavior of participating agents is the field of experimental/computational economics. For much of the research reported here, the market simulator developed by Kumar and Sheble and similar simulators has been adapted to allow computerized agents to trade energy. Creating computerized agents that can react as rationally or irrationally as a human trader is a difficult problem for which we have turned to the field of artificial intelligence. Some of our

  6. Electric vehicle charge patterns and the electricity generation mix and competitiveness of next generation vehicles

    International Nuclear Information System (INIS)

    Masuta, Taisuke; Murata, Akinobu; Endo, Eiichi

    2014-01-01

    Highlights: • The energy system of whole of Japan is analyzed in this study. • An advanced model based on MARKAL is used for the energy system analysis. • The impact of charge patterns of EVs on electricity generation mix is evaluated. • Technology competitiveness of the next generation vehicles is also evaluated. - Abstract: The nuclear accident of 2011 brought about a reconsideration of the future electricity generation mix of power systems in Japan. A debate on whether to phase out nuclear power plants and replace them with renewable energy sources is taking place. Demand-side management becomes increasingly important in future Japanese power systems with a large-scale integration of renewable energy sources. This paper considers the charge control of electric vehicles (EVs) through demand-side management. There have been many studies of the control or operation methods of EVs known as vehicle-to-grid (V2G), and it is important to evaluate both their short-term and long-term operation. In this study, we employ energy system to evaluate the impact of the charge patterns of EVs on both the electricity generation mix and the technology competitiveness of the next generation vehicles. An advanced energy system model based on Market Allocation (MARKAL) is used to consider power system control in detail

  7. Intensity and direction of competitive anxiety as a function of goal attainment expectation and competition goal generation.

    Science.gov (United States)

    O'Brien, M; Hanton, S; Mellalieu, S D

    2005-12-01

    Jones's control model was adopted to investigate differences in the labelling of symptoms associated with pre-competition anxiety and self-confidence as a function of goal attainment expectation and competition goal generation. Team sport performers (N = 96) were divided into outcome, performance and process goal groups. Anxiety intensity and direction, and self-confidence were then examined as a function of goal expectancy (positive or negative) and perceived input into goal production (input or no input). MANOVA and follow-up ANOVA supported the study predictions. Specifically, participants who reported positive expectations of goal achievement and indicated some input into the goal generation process experienced the most facilitative interpretations of cognitive symptoms and greater self-confidence. The results highlight the need to consider how goals are generated when attempting to foster a sense of control and help athletes cope with the psychological demands of competition.

  8. Unbundling generation and transmission services for competitive electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, E.; Kirby, B.

    1998-01-01

    Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those `necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.` The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC`s landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that

  9. Unbundling generation and transmission services for competitive electricity markets

    International Nuclear Information System (INIS)

    Hirst, E.; Kirby, B.

    1998-01-01

    Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those 'necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.' The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC's landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that

  10. Generation Capacity Investments in Electricity Markets : Perfect Competition

    NARCIS (Netherlands)

    Gürkan, G.; Ozdemir, O.; Smeers, Y.

    2013-01-01

    Abstract: In competitive electricity markets, markets designs based on power exchanges where supply bidding (barring demand-side bidding) is at the sole short run marginal cost may not guarantee resource adequacy. As alternative ways to remedy the resource adequacy problem, we focus on three

  11. Nuclear power generation in competition with other sources for base load electricity generation

    International Nuclear Information System (INIS)

    Notari, C.; Rey, F.C.

    1996-01-01

    The latest studies performed by OECD and IAEA on the subject were analyzed in order to clarify the international context. Nuclear, gas and coal are compared. The general conclusion is that nuclear power is competitive for electricity generation considering new plants to be commissioned around year 2000. If the discount rate is 5% per annum it is considered the best option in most of the countries included in the studies. If 10% is chosen the levelized costs favour the gas option. In the Argentine case, the analysis of possible plants for the near future shows a clear advantage for the gas projects. This is mainly due to the low capital costs and low local gas prices. The possible evolution of this situation is considered: gas prices will most probably increase because they should approach the price of fuel oil or diesel oil which are used as substitutes in winter for electricity generation and the export projects to Chile and Brasil will also push prices up. The environmental aspects of the question and its influence on regulations and costs is a matter of speculation. Some countries have already penalized greenhouse gases emissions but it is not clear how and when this trend will affect local prices. (author). 4 refs., 6 tabs

  12. Complementarity models of competitive oligopolistic electric power generation markets

    Science.gov (United States)

    Metzler, Carolyn Burr

    2000-10-01

    This dissertation examines a number of different models of a competitive power market. We first give an overview of the structure of a power market and how deregulation plays a role. After a brief survey of literature and introductory mathematical background, we introduce variational inequalities in the context of the Nash equilibrium problem and discuss an extension of this problem. As in the Nash. equilibrium problem, there is a given set of players; in the extension, we add a market clearing condition. This extension can also be modeled as a variational inequality (VI) and applies directly to the models that are presented in the later chapters. In Chapter 3, we discuss the special physical properties of electricity. These properties, which are unique to an electric power network, allow us to reduce the size and complexity of our models significantly. In Chapters 4 and 5, we introduce and discuss the power models. In Chapter 4, we consider a Cournot oligopolistic market, in which all firms play an equally competitive role in the market. We introduce arbitrage into the market and see how that affects the models. All of the models in Chapter 4 can be stated as linear or mixed linear complementarity problems. We prove existence and uniqueness results for each of the models. We also give a comparison of the models. In Chapter 5, we consider an oligopolistic market in which there are dominant firms. In these models, we examine more carefully the bid selection process supervised by the independent system operator (ISO). The case where there is one dominant firm can be modeled as a mathematical program with equilibrium constraints (MPEC). We describe an interior point algorithm to solve this problem. We also consider the case of two dominant firms, and present numerical results for both of these cases.

  13. The Employees of Baby Boomers Generation, Generation X, Generation Y and Generation Z in Selected Czech Corporations as Conceivers of Development and Competitiveness in their Corporation

    Directory of Open Access Journals (Sweden)

    Bejtkovský Jiří

    2016-12-01

    Full Text Available The corporations using the varied workforce can supply a greater variety of solutions to problems in service, sourcing, and allocation of their resources. The current labor market mentions four generations that are living and working today: the Baby boomers generation, the Generation X, the Generation Y and the Generation Z. The differences between generations can affect the way corporations recruit and develop teams, deal with change, motivate, stimulate and manage employees, and boost productivity, competitiveness and service effectiveness. A corporation’s success and competitiveness depend on its ability to embrace diversity and realize the competitive advantages and benefits. The aim of this paper is to present the current generation of employees (the employees of Baby Boomers Generation, Generation X, Generation Y and Generation Z in the labor market by secondary research and then to introduce the results of primary research that was implemented in selected corporations in the Czech Republic. The contribution presents a view of some of the results of quantitative and qualitative research conducted in selected corporations in the Czech Republic. These researches were conducted in 2015 on a sample of 3,364 respondents, and the results were analyzed. Two research hypotheses and one research question have been formulated. The verification or rejection of null research hypothesis was done through the statistical method of the Pearson’s Chi-square test. It was found that perception of the choice of superior from a particular generation does depend on the age of employees in selected corporations. It was also determined that there are statistically significant dependences between the preference for eterogeneous or homogeneous cooperation and the age of employees in selected corporations.

  14. Bidding price analysis for competitive generators and large consumers

    International Nuclear Information System (INIS)

    Ping Wei; Luonan Chen; Hsiao Dong Chiang

    2005-01-01

    We present a new method to analyze the bidding price of each participant (power suppliers and large consumers) in a pay-as-bid market. The bidding price will be decomposed into a variety of components corresponding to five factors, such as the incremental values of the subject bidder's generation on the system operational costs, on the income or payment of other bidders, and on the binding tradable constraints, and the first-order approximation of the subjective participant's bidding price. From an economic viewpoint, each component provides useful information for participants to design the strategic planning. The advantages of the method include that the decomposition is well defined without assumptions and that each decomposition term has its own economical and/or engineering meaning. The proposed method is numerically verified through computer simulations on a three-bus example system and a modified IEEE 30-bus power system with both generator and large consumer bidding. (author)

  15. Competition

    CERN Document Server

    Staff Association

    2016-01-01

      The Staff Association is organising a competition from 13 to 21 December 2016. There are several Go Sport vouchers to win with a value of 50 € each. Try your luck! To participate, you just have to be a member of the Staff Association and take the online quiz: https://ap-vote.web.cern.ch/content/jeu-concours-de-noel. The winners will be drawn among the correct answers.

  16. Competition

    CERN Document Server

    Staff Association

    2016-01-01

      The Staff Association is organising a competition from April 11 to 20. There are several Go Sport gift vouchers with a value of 50 € each to win. Try your luck! To participate, you just have to be a member of the Staff Association and take the online quiz: https://ap-vote.web.cern.ch/content/jeu-concours. The winners will be drawn among the correct answers.

  17. Competition

    CERN Multimedia

    Staff Association

    2017-01-01

    Get ready for the Easter Egg Hunt! The Staff Association is organising a competition from 10 to 21 April 2017. There are several Go Sport gift vouchers to win, with a value of 50 € each. Try your luck! Count the number of different eggs that we have hidden on our website. Then indicate your answer in the online form. To participate, you just need to be a member of the Staff Association. Winners will be randomly drawn among the correct answers.

  18. Wind power generation and dispatch in competitive power markets

    Science.gov (United States)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  19. Are preventive and generative causal reasoning symmetrical? Extinction and competition.

    Science.gov (United States)

    Baetu, Irina; Baker, A G

    2012-01-01

    We tested whether preventive and generative reasoning processes are symmetrical by keeping the training and testing of preventive (inhibitory) and generative (excitatory) causal cues as similar as possible. In Experiment 1, we extinguished excitors and inhibitors in a blocking design, in which each extinguished cause was presented in compound with a novel cause, with the same outcome occurring following the compound and following the novel cause alone. With this novel extinction procedure, the inhibitory cues seemed more likely to lose their properties than the excitatory cues. In Experiment 2, we investigated blocking of excitatory and inhibitory causes and found similar blocking effects. Taken together, these results suggest that acquisition of excitation and inhibition is similar, but that inhibition is more liable to extinguish with our extinction procedure. In addition, we used a variable outcome, and this enabled us to test the predictions of an inferential reasoning account about what happens when the outcome level is at its minimum or maximum (De Houwer, Beckers, & Glautier, 2002). We discuss the predictions of this inferential account, Rescorla and Wagner's (1972) model, and a connectionist model-the auto-associator.

  20. Game theory competition analysis of reservoir water supply and hydropower generation

    Science.gov (United States)

    Lee, T.

    2013-12-01

    The total installed capacity of the power generation systems in Taiwan is about 41,000 MW. Hydropower is one of the most important renewable energy sources, with hydropower generation capacity of about 4,540 MW. The aim of this research is to analyze competition between water supply and hydropower generation in water-energy systems. The major relationships between water and energy systems include hydropower generation by water, energy consumption for water system operation, and water consumption for energy system. In this research, a game-theoretic Cournot model is formulated to simulate oligopolistic competition between water supply, hydropower generation, and co-fired power generation in water-energy systems. A Nash equilibrium of the competitive market is derived and solved by GAMS with PATH solver. In addition, a case study analyzing the competition among water supply and hydropower generation of De-ji and Ku-Kuan reservoirs, Taipower, Star Energy, and Star-Yuan power companies in central Taiwan is conducted.

  1. The effects of realistic synaptic distribution and 3D geometry on signal integration and extracellular field generation of hippocampal pyramidal cells and inhibitory neurons

    Directory of Open Access Journals (Sweden)

    Attila I Gulyas

    2016-11-01

    Full Text Available In vivo and in vitro multichannel field and somatic intracellular recordings are frequently used to study mechanisms of network pattern generation. When interpreting these data, neurons are often implicitly considered as electrotonically compact cylinders with a homogeneous distribution of excitatory and inhibitory inputs. However, the actual distributions of dendritic length, diameter, and the densities of excitatory and inhibitory input are non-uniform and cell type-specific. We first review quantitative data on the dendritic structure and synaptic input and output distribution of pyramidal cells and interneurons in the hippocampal CA1 area. Second, using multicompartmental passive models of four different types of neurons, we quantitatively explore the effect of differences in dendritic structure and synaptic distribution on the errors and biases of voltage clamp measurements of inhibitory and excitatory postsynaptic currents. Finally, using the 3-dimensional distribution of dendrites and synaptic inputs we calculate how different inhibitory and excitatory inputs contribute to the generation of local field potential in the hippocampus. We analyze these effects at different realistic background activity levels as synaptic bombardment influences neuronal conductance and thus the propagation of signals in the dendritic tree.We conclude that, since dendrites are electrotonically long and entangled in 3D, somatic intracellular and field potential recordings miss the majority of dendritic events in some cell types, and thus overemphasize the importance of perisomatic inhibitory inputs and belittle the importance of complex dendritic processing. Modeling results also suggest that pyramidal cells and inhibitory neurons probably use different input integration strategies. In pyramidal cells, second- and higher-order thin dendrites are relatively well-isolated from each other, which may support branch-specific local processing as suggested by studies

  2. Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy (2010 JGI User Meeting)

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, Madhu

    2010-03-26

    Madhu Khanna from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy on March 25, 2010 at the 5th Annual DOE JGI User Meeting.

  3. Distributed energy generation techniques and the competitive fringe effect in electricity markets

    NARCIS (Netherlands)

    Mulder, Machiel; Petrikaite, Vaiva; Scholtens, Bert

    2015-01-01

    We analyse the impact of two different generation techniques used by fringe suppliers on the intensity of competition in the electricity wholesale market. For that purpose, we derive a Cournot model of this market taking into account long-term contracts, international trade and fringe suppliers

  4. ACQUISITION AS A GENERATOR STRATEGY FROM COMPETITIVE ADVANTAGES IN THE BRAZILIAN MARKET OF FUELS DISTRIBUITION

    Directory of Open Access Journals (Sweden)

    Maurício Fernandes Pereira

    2013-06-01

    Full Text Available The subject from this work is about acquisitions as organizational strategies and it is guided by the general objective on identifying if the acquisition of Texaco by Ultra Group, in Brazil, could generate competitive advantages. Thus, the main aim is to characterize, specifically, the fuel distribution sector in Brazil, presenting characteristics, strategies, classification of resources and the competitive advantage’s identification in the buying process of Texaco by Ultra Group. The methodology used for this research is a case study of qualitative nature. Data collection has been performed through literature review, documentary analysis and semi-structured interviews. In the analysis of collected data, specific objectives have been met. It was clear, therefore, the presence of features such as scale earnings, brand exposure, better management practices, synergies, tangible and intangible assets and market growth. So, those resources are classified according to the competitive implications. Then, it might be concluded that Texaco´s acquisition could bring competitive advantages for Ultra / Ipiranga Group. Respondents believe the sector is growing and businesses tend to grow despite the world crisis. They also confirmed that, in a highly competitive market, strategic alliances and market growing are factors that may ensure success to each company.

  5. Synaptic Cell Adhesion

    OpenAIRE

    Missler, Markus; Südhof, Thomas C.; Biederer, Thomas

    2012-01-01

    Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that inc...

  6. Outsourcing of generating assets as a competitive strategy for large electric customers

    International Nuclear Information System (INIS)

    Giacalone, F.T.; Hocker, C.

    1998-01-01

    The US electric power industry is at a transitional stage on the way to full competition at the retail level. A fundamental difference between wholesale and retail competition is that, with the latter, the end user will have a choice of suppliers. Large electric customers, such as industrial manufacturers, have traditionally had only two choices: to purchase from the local franchise utility or to self-generate. With retail competition, however, these same customers will have not only have many choices of suppliers to compare against the self-generation option, but also will have a new alternative to consider - that of outsourcing their generating assets as a means of retaining effective control, but not necessarily ownership, of their electric supply. Outsourcing of generation assets means turning over complete or partial ownership of these assets to a third party, who then sells the electricity back to the customer at retail. This approach can be advantageous to a customer who wants to achieve one or more of the following benefits that are generally not available in the traditional ''make or buy'' paradigm: monetize (receive cash for) assets to pay down debt or redeploy into its core business; reduce operating and overhead costs; meet increasing power demand without making a significant capital expenditure; retain a significant degree of control over the operation of the assets, rather than turning its source of supply to a utility, independent generator, or power marketer; and move the assets off-balance sheet and off-credit as a means of improving its corporate financial position. Outsourcing of industrial generation, including most or all of the above benefits has already occurred successfully in a handful of cases, such as the James River and Stone Container mills discussed in this paper

  7. EDITORIAL: Synaptic electronics Synaptic electronics

    Science.gov (United States)

    Demming, Anna; Gimzewski, James K.; Vuillaume, Dominique

    2013-09-01

    Conventional computers excel in logic and accurate scientific calculations but make hard work of open ended problems that human brains handle easily. Even von Neumann—the mathematician and polymath who first developed the programming architecture that forms the basis of today's computers—was already looking to the brain for future developments before his death in 1957 [1]. Neuromorphic computing uses approaches that better mimic the working of the human brain. Recent developments in nanotechnology are now providing structures with very accommodating properties for neuromorphic approaches. This special issue, with guest editors James K Gimzewski and Dominique Vuillaume, is devoted to research at the serendipitous interface between the two disciplines. 'Synaptic electronics', looks at artificial devices with connections that demonstrate behaviour similar to synapses in the nervous system allowing a new and more powerful approach to computing. Synapses and connecting neurons respond differently to incident signals depending on the history of signals previously experienced, ultimately leading to short term and long term memory behaviour. The basic characteristics of a synapse can be replicated with around ten simple transistors. However with the human brain having around 1011 neurons and 1015 synapses, artificial neurons and synapses from basic transistors are unlikely to accommodate the scalability required. The discovery of nanoscale elements that function as 'memristors' has provided a key tool for the implementation of synaptic connections [2]. Leon Chua first developed the concept of the 'The memristor—the missing circuit element' in 1971 [3]. In this special issue he presents a tutorial describing how memristor research has fed into our understanding of synaptic behaviour and how they can be applied in information processing [4]. He also describes, 'The new principle of local activity, which uncovers a minuscule life-enabling "Goldilocks zone", dubbed the

  8. Impact of competitive electricity market on renewable generation technology choice and policies in the United States

    International Nuclear Information System (INIS)

    Sarkar, Ashok

    1999-01-01

    Market objectives based on private value judgments will conflict with social policy objectives toward environmental quality in an emerging restructured electricity industry. This might affect the choice of renewables in the future generation mix. The US electricity industry's long-term capacity planning and operations is simulated for alternative market paradigms to study this impact. The analysis indicates that the share of renewable energy generation sources would decrease and emissions would increase considerably in a more competitive industry, with greater impact occurring in a monopoly market. Alternative environmental policy options can overcome market failures and help achieve appropriate levels of renewable generation. An evaluation of these policies indicate their varying cost-effectiveness, with higher levels of intervention necessary if market power exists. (Author)

  9. Imported mineral coal: competitiveness for electric power generation in northeast of Brazil

    International Nuclear Information System (INIS)

    Codeceira Neto, A.; Ribeiro Filho, A.P.R.; Silva, S.P.R. da

    1993-01-01

    With the hydroelectric potential exhaustion of northeast and with the increase of costs to the use of hydroelectric uses available in Brazil, the thermoelectric generation will be able to become a competitive solution to attend the market of electric power. This work has as purpose describe the options of imported coal use to Brazilian northeast its technological aspects, the environmental question, and the preliminary studies of localization and the costs associated on implantation of coal thermoelectric power plants. 7 refs, 3 figs, 6 tabs

  10. Applying the competitive market business equation to power generation operations and economics

    International Nuclear Information System (INIS)

    Corio, M.R.; Bellucci, J.W.; Boyd, G.A.

    1996-01-01

    This paper presents cost-effectiveness evaluation, benchmarking, planning, and decision-making tools being used with utilities to address critical production/cost-efficiency and market issues in the transition to a competitive market in electricity. It expands upon Applied Economic Research Co., Inc.'s (AER's) earlier work in the area of frontier analysis of plant spending vs. reliability. It discusses development of a method for quantifying the various elements involved and for structuring them into an integrated framework and set of models for analysis, evaluation of alternatives, and forward planning in the evolving transition to a deregulated, competitive market in electricity. The work presented addresses the overall production cost frontier, i.e., the marginal cost of production including operation, maintenance, capital, and fuel expenditures. (Fuel expenditures are a function of the price paid for fuel (per Btu) and the efficiency with which the fuel is transformed from Btu's to kWh, i.e., the heat rate.) Frontiers (best demonstrated performance curves) are developed for the total cost of production--analyzing both reliability and heat rate. The paper describes and gives examples of the framework for evaluating the competitive position of a utility's generating units compared to other units, as well as the framework for evaluating the potential for revenue obtained outside the existing service area

  11. Incentives to Build New Generation on Competitive Electricity Markets. Conference proceedings

    International Nuclear Information System (INIS)

    2007-06-01

    The need for new investments in power generation is paramount all over the world. It has been calculated that only in Europe, there is a need of investments in the electricity sector of around 1,000,000 billion EURs during the next decade. High prices on primary energy, security of supply issues regarding imported fuels and a steadily growing concern about climate changes put an extra restrain on supply options for the future. To meet these challenges politicians, at least in Europe, try out new support schemes and other policy measures as full scale experiments. These policy measures sometimes interact very badly with competitive electricity markets. Some will argue that most of the problems we are facing have very little to do with the design of electricity markets and that the solution to the issue is not necessarily to enforce a tight regulation on the industry. But this said, the issue is so important to society that even we who like competition and have been working hard this last decade to make competitive electricity markets perform well, must be prepared to rethink. This conference once again gathers people from many different parts of the world to exchange ideas and experiences from their respective area of operations. There are four main topics for the Conference: The impact from emission trading programs; Renewable portfolio standards; Nuclear plans and distributed generation incentives; and Capacity payment and/or reserve requirements. (Five papers presented at the conference have been indexed separately. Powerpoint presentations have not been indexed but are available from the Market Design homepage)

  12. Renewable generation technology choice and policies in a competitive electricity supply industry

    Science.gov (United States)

    Sarkar, Ashok

    Renewable energy generation technologies have lower externality costs but higher private costs than fossil fuel-based generation. As a result, the choice of renewables in the future generation mix could be affected by the industry's future market-oriented structure because market objectives based on private value judgments may conflict with social policy objectives toward better environmental quality. This research assesses how renewable energy generation choices would be affected in a restructured electricity generation market. A multi-period linear programming-based model (Resource Planning Model) is used to characterize today's electricity supply market in the United States. The model simulates long-range (2000-2020) generation capacity planning and operation decisions under alternative market paradigms. Price-sensitive demand is used to simulate customer preferences in the market. Dynamically changing costs for renewables and a two-step load duration curve are used. A Reference Case represents the benchmark for a socially-optimal diffusion of renewables and a basis for comparing outcomes under alternative market structures. It internalizes externality costs associated with emissions of sulfur dioxide (SOsb2), nitrous oxides (NOsbx), and carbon dioxide (COsb2). A Competitive Case represents a market with many generation suppliers and decision-making based on private costs. Finally, a Market Power Case models the extreme case of market power: monopoly. The results suggest that the share of renewables would decrease (and emissions would increase) considerably in both the Competitive and the Market Power Cases with respect to the Reference Case. The reduction is greater in the Market Power Case due to pricing decisions under existing supply capability. The research evaluates the following environmental policy options that could overcome market failures in achieving an appropriate level of renewable generation: COsb2 emissions tax, SOsb2 emissions cap, renewable

  13. COMPETITIVE FACTORS IN ERP SYSTEM IMPLEMENTATION: A CASE STUDY OF A COMPANY OF ELECTRIC GENERATORS

    Directory of Open Access Journals (Sweden)

    Emerson Luiz Prado

    2015-03-01

    Full Text Available The increasing globalization of markets and increased competitiveness has required the use of appropriate management information in decision-making of companies. The Enterprise Resource Planning (ERP is an integrated information system widely used by managers in their decision making processes. This exploratory case study, conducted in the company Stemac S/A, aims to analyze the advantages and disadvantages of the ERP system and compares them the real needs of the company. Specifics objectives include: identifying what benefits generated with the use of ERP in business, your relationship with costs, list the improvements that have occurred or not in the stages of production and the effects on quality and productivity. The study results show that the benefits achieved were the significant improvement in plant operations and decision making, presenting with increased production index assertiveness products without rework on the production line, reducing the cost of inventories and improve the quality of products in the industry.

  14. Children's Development through Sports Competition: Derivative, Adjustive, Generative, and Maladaptive Approaches

    Science.gov (United States)

    Choi, Hong Suk; Johnson, Britton; Kim, Young K.

    2014-01-01

    Sports competition can play an important role for children because it contributes to developmental outcomes for a healthy lifestyle. Through sports competition, children can learn about physical, social, and cognitive skills. Sports competition can be either positive or negative in terms of development, depending on how experiences are perceived…

  15. Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c

    Directory of Open Access Journals (Sweden)

    Alejandro K. Samhan-Arias

    2018-05-01

    Full Text Available In this work, we measured the effect of cytochrome c on the NADH-dependent superoxide anion production by synaptic plasma membrane vesicles from rat brain. In these membranes, the cytochrome c stimulated NADH-dependent superoxide anion production was inhibited by antibodies against cytochrome b5 reductase linking the production to this enzyme. Measurement of the superoxide anion radical generated by purified recombinant soluble and membrane cytochrome b5 reductase corroborates the production of the radical by different enzyme isoforms. In the presence of cytochrome c, a burst of superoxide anion as well as the reduction of cytochrome c by cytochrome b5 reductase was measured. Complex formation between both proteins suggests that cytochrome b5 reductase is one of the major partners of cytochrome c upon its release from mitochondria to the cytosol during apoptosis. Superoxide anion production and cytochrome c reduction are the consequences of the stimulated NADH consumption by cytochrome b5 reductase upon complex formation with cytochrome c and suggest a major role of this enzyme as an anti-apoptotic protein during cell death.

  16. Cytochrome b5 reductase is the component from neuronal synaptic plasma membrane vesicles that generates superoxide anion upon stimulation by cytochrome c.

    Science.gov (United States)

    Samhan-Arias, Alejandro K; Fortalezas, Sofia; Cordas, Cristina M; Moura, Isabel; Moura, José J G; Gutierrez-Merino, Carlos

    2018-05-01

    In this work, we measured the effect of cytochrome c on the NADH-dependent superoxide anion production by synaptic plasma membrane vesicles from rat brain. In these membranes, the cytochrome c stimulated NADH-dependent superoxide anion production was inhibited by antibodies against cytochrome b 5 reductase linking the production to this enzyme. Measurement of the superoxide anion radical generated by purified recombinant soluble and membrane cytochrome b 5 reductase corroborates the production of the radical by different enzyme isoforms. In the presence of cytochrome c, a burst of superoxide anion as well as the reduction of cytochrome c by cytochrome b 5 reductase was measured. Complex formation between both proteins suggests that cytochrome b 5 reductase is one of the major partners of cytochrome c upon its release from mitochondria to the cytosol during apoptosis. Superoxide anion production and cytochrome c reduction are the consequences of the stimulated NADH consumption by cytochrome b 5 reductase upon complex formation with cytochrome c and suggest a major role of this enzyme as an anti-apoptotic protein during cell death. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Supply Chain Management as a Driving Force for Generating Competitive Advantage for Dairy Companies

    Directory of Open Access Journals (Sweden)

    Irina Olegovna Poleshkina

    2016-11-01

    Full Text Available The study aims to uncover the reserves to generate competitive advantages for the participants of the market of perishables in the case of the dairy sector due to the formation of effective supply chains, as this category of goods is the most demanding in terms of periods and conditions of transportation and terms of preservation. The research technique is based on the concepts of value chains and supply chain management. In order to optimize the distribution of functions between the participants of the dairy chain a process-based approach has been applied. The research has revealed the main reasons for high aggregate costs and the places of their formation at each stage of the dairy supply chain. The article proposes the mechanisms to address three main problems arising from the process of building relations between the participants of the dairy supply chain in Russia. These problems are associated with a disproportionate margin distribution between the participants of the chain, with non-compliance of the quality of raw milk with the requirements for the production of specific types of dairy products, and with distrust of the supply chain participants, which increases transaction costs and forces to create reserve supplies which reduce the competitiveness of the whole dairy supply chain in general. In order to improve the competitiveness of all participants in the dairy chain, the article presents several mechanisms for solving these problems. The first is margin distribution based on the costs incurred by each participant of the dairy chain. The second is the use of a mathematical model to determine the assortment of goods of a dairy enterprise on the basis of the incoming volume and quality of raw milk according to the seasonal factor and the demand for dairy products. The third is the feasibility of refusal from the formation of reserve supplies by all participants of the dairy chain, which will not only minimize aggregate costs, but also

  18. Recipient-Biased Competition for an Intracellularly Generated Cross-Fed Nutrient Is Required for Coexistence of Microbial Mutualists.

    Science.gov (United States)

    McCully, Alexandra L; LaSarre, Breah; McKinlay, James B

    2017-11-28

    Many mutualistic microbial relationships are based on nutrient cross-feeding. Traditionally, cross-feeding is viewed as being unidirectional, from the producer to the recipient. This is likely true when a producer's waste, such as a fermentation product, has value only for a recipient. However, in some cases the cross-fed nutrient holds value for both the producer and the recipient. In such cases, there is potential for nutrient reacquisition by producer cells in a population, leading to competition against recipients. Here, we investigated the consequences of interpartner competition for cross-fed nutrients on mutualism dynamics by using an anaerobic coculture pairing fermentative Escherichia coli and phototrophic Rhodopseudomonas palustris In this coculture, E. coli excretes waste organic acids that provide a carbon source for R. palustris In return, R. palustris cross-feeds E. coli ammonium (NH 4 + ), a compound that both species value. To explore the potential for interpartner competition, we first used a kinetic model to simulate cocultures with varied affinities for NH 4 + in each species. The model predicted that interpartner competition for NH 4 + could profoundly impact population dynamics. We then experimentally tested the predictions by culturing mutants lacking NH 4 + transporters in both NH 4 + competition assays and mutualistic cocultures. Both theoretical and experimental results indicated that the recipient must have a competitive advantage in acquiring cross-fed NH 4 + to sustain the mutualism. This recipient-biased competitive advantage is predicted to be crucial, particularly when the communally valuable nutrient is generated intracellularly. Thus, the very metabolites that form the basis for mutualistic cross-feeding can also be subject to competition between mutualistic partners. IMPORTANCE Mutualistic relationships, particularly those based on nutrient cross-feeding, promote stability of diverse ecosystems and drive global biogeochemical

  19. The Employees of Baby Boomers Generation, Generation X, Generation Y and Generation Z in Selected Czech Corporations as Conceivers of Development and Competitiveness in their Corporation

    OpenAIRE

    Bejtkovský Jiří

    2016-01-01

    The corporations using the varied workforce can supply a greater variety of solutions to problems in service, sourcing, and allocation of their resources. The current labor market mentions four generations that are living and working today: the Baby boomers generation, the Generation X, the Generation Y and the Generation Z. The differences between generations can affect the way corporations recruit and develop teams, deal with change, motivate, stimulate and manage employees, and boost produ...

  20. Information technology as a key enabler in preparing for competition: ComEd's Kincaid Generating Station, a work in progress

    International Nuclear Information System (INIS)

    Borth, F.C. III; Thompson, J.W.; Mishaga, J.M.

    1996-01-01

    Through ComEd Fossil (Generating) Division's Competitive Action Plan (CAP) evaluation changes have been identified which are necessary to improve generating station performance. These changes are intended to improve both station reliability and financial margins, and are essential for stations to be successful in a competitive marketplace. Plant upgrades, advanced equipment stewardship, and personnel reductions have been identified as necessary steps in achieving industry leadership and competitive advantage. To deal effectively with plant systems and contend in the competitive marketplace Information Technology (IT) solutions to business problems are being developed. Data acquisition, storage, and retrieval are being automated through use of state-of-the-art Data Historians. Total plant, high resolution, long term process information will be accessed through Local/Wide Area Networks (LAN/WAN) connections from desktop PC's. Generating unit Thermal Performance Monitors accessing the Data Historian will analyze plant and system performance enabling reductions in operating costs, and improvements in process control. As inputs to proactive maintenance toolsets this data allows anticipation of equipment service needs, advanced service scheduling, and cost/benefit analysis. The ultimate goal is to optimize repair needs with revenue generation. Advanced applications building upon these foundations will bring knowledge of the costs associated with all the products a generating station offers its customer(s). An overall design philosophy along with preliminary results is presented; these results include shortfalls, lessons learned, and future options

  1. The future of competitions

    DEFF Research Database (Denmark)

    Bates, Gary; Jensen, Boris Brorman; Miessen, Markus

    2010-01-01

    We wanted to explore the potential of the competition. The question we asked ourselves was if the competition can generate new, relevant and critical ideas within architecture? We organized an idea competition about the architectural competition.......We wanted to explore the potential of the competition. The question we asked ourselves was if the competition can generate new, relevant and critical ideas within architecture? We organized an idea competition about the architectural competition....

  2. Theoretical analysis of the optimal configuration of co-generation systems and competitiveness of heating/cooling technologies

    Energy Technology Data Exchange (ETDEWEB)

    Akisawa, Atsushi; Miyazaki, Takahiko [Tokyo University of Agriculture and Technology, Institute of Symbiotic Science and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588 (Japan); Kashiwagi, Takao [Tokyo Institute of Technology, Integrated Research Institute, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2010-10-15

    This study aims at exploiting optimal configurations of technologies combined with co-generation theoretically based on a linear optimization model. With the objective function defining primary energy consumption to be minimized, optimal solutions are derived analytically. They describe the technological configurations as well as associated conditions depending on their final energy demand. An interesting finding is that the essential parameters to determine the configurations are heat, cooling and steam demands normalized by power demand. The optimal solutions are also applied to investigate the competitiveness of co-generation related technologies. The optimal solutions yield critical conditions theoretically, which is useful to understand the priority of the technologies. A sensitivity analysis numerically indicates that absorption chillers can be superior to compression chillers even though the former has lower COP than the latter. Actual data of various types of co-generation are also examined to show the practical competitiveness. (author)

  3. The 20th annual intelligent ground vehicle competition: building a generation of robotists

    Science.gov (United States)

    Theisen, Bernard L.; Kosinski, Andrew

    2013-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 20 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  4. Quantitative Proteomics of Synaptic and Nonsynaptic Mitochondria: Insights for Synaptic Mitochondrial Vulnerability

    Science.gov (United States)

    2015-01-01

    Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage. PMID:24708184

  5. Electricity prices in a competitive environment: Marginal cost pricing of generation services and financial status of electric utilities. A preliminary analysis through 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated {open_quotes}cost-of-service{close_quotes} pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? This study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices.

  6. Electricity prices in a competitive environment: Marginal cost pricing of generation services and financial status of electric utilities. A preliminary analysis through 2015

    International Nuclear Information System (INIS)

    1997-08-01

    The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated open-quotes cost-of-serviceclose quotes pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? This study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices

  7. Emergent spatial synaptic structure from diffusive plasticity.

    Science.gov (United States)

    Sweeney, Yann; Clopath, Claudia

    2017-04-01

    Some neurotransmitters can diffuse freely across cell membranes, influencing neighbouring neurons regardless of their synaptic coupling. This provides a means of neural communication, alternative to synaptic transmission, which can influence the way in which neural networks process information. Here, we ask whether diffusive neurotransmission can also influence the structure of synaptic connectivity in a network undergoing plasticity. We propose a form of Hebbian synaptic plasticity which is mediated by a diffusive neurotransmitter. Whenever a synapse is modified at an individual neuron through our proposed mechanism, similar but smaller modifications occur in synapses connecting to neighbouring neurons. The effects of this diffusive plasticity are explored in networks of rate-based neurons. This leads to the emergence of spatial structure in the synaptic connectivity of the network. We show that this spatial structure can coexist with other forms of structure in the synaptic connectivity, such as with groups of strongly interconnected neurons that form in response to correlated external drive. Finally, we explore diffusive plasticity in a simple feedforward network model of receptive field development. We show that, as widely observed across sensory cortex, the preferred stimulus identity of neurons in our network become spatially correlated due to diffusion. Our proposed mechanism of diffusive plasticity provides an efficient mechanism for generating these spatial correlations in stimulus preference which can flexibly interact with other forms of synaptic organisation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. ACADEMIC PARTNERSHIP AND GENERATION OF SCIENTIFIC KNOWLEDGE: THE CASE OF THE INTERNATIONAL NETWORK OF RESEARCHERS ON COMPETITIVENESS

    Directory of Open Access Journals (Sweden)

    José Guadalupe Vargas Hernández

    2011-03-01

    Full Text Available This paper has the objective to demonstrate the contributions achieved by the International Network of Researchers in Competitiveness (INRCO in academic collaboration and scientific knowledge generation. Part of the assumption sustaining that economic globalization processes, information and communication technologies revolution lead to the increasing environmental complexity and uncertainty of a knowledge society. One answer is the study and analysis of competitiveness considered as the strategy to achieve higher levels of economic growth and socio-cultural development in all micro, meso and macro levels. The method used is the analytic-deductive based on the evidence of related data with the activity and results in publications of the International Network of Researchers in Competitiveness. Consequently, it has been adapted certain speculative notions in a theoretical analysis exploring the social dynamics of the scientific activities. It is concluded that the management of the researchers’ dynamic network is capable to generate, apply and recycle the critical knowledge and the assets of academic and scientific talent through a dynamic combination of resources that have a position inside the formal e informal borders and between these borders of participant academics and institutions.

  9. Generation and reserve dispatch in a competitive market using constrained particle swarm optimization

    International Nuclear Information System (INIS)

    Azadani, E. Nasr; Hosseinian, S.H.; Moradzadeh, B.

    2010-01-01

    Competitive bidding for energy and ancillary services is increasingly recognized as an important part of electricity markets. In addition, the transmission capacity limits should be considered to optimize the total market cost. In this paper, a new approach based on constrained particle swarm optimization (CPSO) is developed to deal with the multi-product (energy and reserve) and multi-area electricity market dispatch problem. Constraint handling is based on particle ranking and uniform distribution. CPSO method offers a new solution for optimizing the total market cost in a multi-area competitive electricity market considering the system constraints. The proposed technique shows promising performance for smooth and non smooth cost function as well. Three different systems are examined to demonstrate the effectiveness and the accuracy of the proposed algorithm. (author)

  10. Alliance for a Healthier Generation's Competitive Beverage and Food Guidelines: Do Elementary School Administrators Know about Them and Do They Report Implementing Them?

    Science.gov (United States)

    Ohri-Vachaspati, Punam; Turner, Lindsey; Chaloupka, Frank J.

    2012-01-01

    Background: The availability of competitive foods in schools is a modifiable factor in efforts to prevent childhood obesity. The Alliance for a Healthier Generation launched the Healthy Schools Program in 2006 to encourage schools to create healthier food environments, including the adoption of nutritional guidelines for competitive beverages and…

  11. Competition and fragmentation: a simple model generating lognormal-like distributions

    International Nuclear Information System (INIS)

    Schwaemmle, V; Queiros, S M D; Brigatti, E; Tchumatchenko, T

    2009-01-01

    The current distribution of language size in terms of speaker population is generally described using a lognormal distribution. Analyzing the original real data we show how the double-Pareto lognormal distribution can give an alternative fit that indicates the existence of a power law tail. A simple Monte Carlo model is constructed based on the processes of competition and fragmentation. The results reproduce the power law tails of the real distribution well and give better results for a poorly connected topology of interactions.

  12. Next generation network: How to stimulate investment while maintaining a competitive market

    OpenAIRE

    Gallo, Elena; Solimene, Laura

    2010-01-01

    High-speed communication networks are the basic infrastructure for a whole range of next generation communication services. They can induce a wave of innovations and eventually lead to growth and new employment. However, large investments will be needed to generate Next Generation Networks (NGN) and the risks for the investor will be substantial. On the other hand, investors can create monopolistic bottlenecks which prevent competitors from gaining access to essential infrastructure. As a con...

  13. Day-Ahead Self-Scheduling of Thermal Generator in Competitive Electricity Market Using Hybrid PSO

    DEFF Research Database (Denmark)

    Pindoriya, N.M.; Singh, Sri Niwas; Østergaard, Jacob

    2009-01-01

    in day-ahead energy market subject to operational constraints and 2) at the same time, to minimize the risk due to uncertainty in price forecast. Therefore, it is a conflicting biobjective optimization problem which has both binary and continuous optimization variables considered as constrained mixed......This paper presents a hybrid particle swarm optimization algorithm (HPSO) to solve the day-ahead selfscheduling for thermal power producer in competitive electricity market. The objective functions considered to model the selfscheduling problem are: 1) to maximize the profit from selling energy...... integer nonlinear programming. To demonstrate the effectiveness of the proposed method for self-scheduling in a dayahead energy market, the locational margin price (LMP) forecast uncertainty in PJM electricity market is considered. An adaptive wavelet neural network (AWNN) is used to forecast the dayahead...

  14. Optimal generation and reserve dispatch in a multi-area competitive market using a hybrid direct search method

    International Nuclear Information System (INIS)

    Chun Lung Chen

    2005-01-01

    With restructuring of the power industry, competitive bidding for energy and ancillary services are increasingly recognized as an important part of electricity markets. It is desirable to optimize not only the generator's bid prices for energy and for providing minimized ancillary services but also the transmission congestion costs. In this paper, a hybrid approach of combining sequential dispatch with a direct search method is developed to deal with the multi-product and multi-area electricity market dispatch problem. The hybrid direct search method (HDSM) incorporates sequential dispatch into the direct search method to facilitate economic sharing of generation and reserve across areas and to minimize the total market cost in a multi-area competitive electricity market. The effects of tie line congestion and area spinning reserve requirement are also consistently reflected in the marginal price in each area. Numerical experiments are included to understand the various constraints in the market cost analysis and to provide valuable information for market participants in a pool oriented electricity market. (author)

  15. Optimal generation and reserve dispatch in a multi-area competitive market using a hybrid direct search method

    International Nuclear Information System (INIS)

    Chen, C.-L.

    2005-01-01

    With restructuring of the power industry, competitive bidding for energy and ancillary services are increasingly recognized as an important part of electricity markets. It is desirable to optimize not only the generator's bid prices for energy and for providing minimized ancillary services but also the transmission congestion costs. In this paper, a hybrid approach of combining sequential dispatch with a direct search method is developed to deal with the multi-product and multi-area electricity market dispatch problem. The hybrid direct search method (HDSM) incorporates sequential dispatch into the direct search method to facilitate economic sharing of generation and reserve across areas and to minimize the total market cost in a multi-area competitive electricity market. The effects of tie line congestion and area spinning reserve requirement are also consistently reflected in the marginal price in each area. Numerical experiments are included to understand the various constraints in the market cost analysis and to provide valuable information for market participants in a pool oriented electricity market

  16. Synaptic transmission and plasticity in an active cortical network.

    Directory of Open Access Journals (Sweden)

    Ramon Reig

    Full Text Available BACKGROUND: The cerebral cortex is permanently active during both awake and sleep states. This ongoing cortical activity has an impact on synaptic transmission and short-term plasticity. An activity pattern generated by the cortical network is a slow rhythmic activity that alternates up (active and down (silent states, a pattern occurring during slow wave sleep, anesthesia and even in vitro. Here we have studied 1 how network activity affects short term synaptic plasticity and, 2 how synaptic transmission varies in up versus down states. METHODOLOGY/PRINCIPAL FINDINGS: Intracellular recordings obtained from cortex in vitro and in vivo were used to record synaptic potentials, while presynaptic activation was achieved either with electrical or natural stimulation. Repetitive activation of layer 4 to layer 2/3 synaptic connections from ferret visual cortex slices displayed synaptic augmentation that was larger and longer lasting in active than in silent slices. Paired-pulse facilitation was also significantly larger in an active network and it persisted for longer intervals (up to 200 ms than in silent slices. Intracortical synaptic potentials occurring during up states in vitro increased their amplitude while paired-pulse facilitation disappeared. Both intracortical and thalamocortical synaptic potentials were also significantly larger in up than in down states in the cat visual cortex in vivo. These enhanced synaptic potentials did not further facilitate when pairs of stimuli were given, thus paired-pulse facilitation during up states in vivo was virtually absent. Visually induced synaptic responses displayed larger amplitudes when occurring during up versus down states. This was further tested in rat barrel cortex, where a sensory activated synaptic potential was also larger in up states. CONCLUSIONS/SIGNIFICANCE: These results imply that synaptic transmission in an active cortical network is more secure and efficient due to larger amplitude of

  17. The competitive economics of a middle aged multi unit nuclear generating station

    International Nuclear Information System (INIS)

    Talbot, K.H.

    1994-01-01

    In 1992 Ontario Hydro's 15 year old 4 x 850 MWe Candu, Bruce A Nuclear Generating Station was predicted to need considerable capital investment to replace pressure tubes, steam generators and other prematurely ageing equipment in order to restore the station to high performance. Over the subsequent two years the station has undergone 2 major economic assessment studies which have confirmed the economic viability of continued operation of the plant. Declining demand for electricity in Ontario combined with a excess of generating capacity and a need to stabilise electricity rates have however forced significant operational cost reductions and reduced capital availability for rehabilitation work, it's medium and long term future remains in question. This presentation offers a practical illustration of the need to maintain steady high performance from nuclear generating plant via the appropriate life management techniques. The avoidance of mid life infusion of capital is considered as essential if nuclear generation is to successfully survive major changes in economic conditions. 2 tabs., 7 figs

  18. Biomass power generation in competitive markets - The impact of instruments and regulations

    International Nuclear Information System (INIS)

    Ackermann, Thomas; Soeder, Lennart

    1999-01-01

    This paper presents and briefly evaluates the most important existing market instruments and market schemes which support the development of renewable energy generation as well as the impact of market regulations on the development of biomass power generation. The evaluation of the existing instruments focuses on the incentives provided by the various instruments to reduce production costs. The instruments and schemes are: Feed-in Tariffs, Net Metering, Bidding Process, Fixed Quotas, Green Certificate Trading, Green Power Exchange, Green Pricing. Feed-in tariffs and net metering are important instruments to get the different technologies 'off the ground', however, they can only be considered an interim solution as they do not necessarily lead to cost reduction. A bidding process is one way to achieve these cost reductions, but high transaction costs will support the development of large renewable energy projects, which is not always the desired effect. Fixed quotas combined with green certificate trading or a power exchange in combination with Green Pricing seem to lead to similar costs reduction, however, so far there is only limited experience with such instruments. The analysis of the impact of market regulations focuses on international electricity markets with a power exchange. Such markets exist, for example, in Scandinavia, England and Wales, Australia, New Zealand and California. The analysis showed that new distributed generation, for example based on biomass, faces significant market barriers. Furthermore, distributed generation is not treated equally within the market regulations compared to large-scale power generation

  19. Next generation internet protocol marks shattered in Internet2 land speed record competition

    CERN Multimedia

    2003-01-01

    "An international team set new Internet2 Land Speed Records using next generation Internet Protocols (IPv6) by achieving 983 megabits-per-second with a single IPv6 stream for more than an hour across a distance of 7,067 kilometers (more than 4,000 miles) from Geneva, Switzerland to Chicago, Ill." (1 page).

  20. Extracellular ATP hydrolysis inhibits synaptic transmission by increasing ph buffering in the synaptic cleft.

    Directory of Open Access Journals (Sweden)

    Rozan Vroman

    2014-05-01

    Full Text Available Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement. Despite its essential role in vision, the underlying synaptic mechanism has puzzled the neuroscience community for decades. Two competing hypotheses are currently considered: an ephaptic and a proton-mediated mechanism. Here we show that horizontal cells feed back to photoreceptors via an unexpected synthesis of the two. The first one is a very fast ephaptic mechanism that has no synaptic delay, making it one of the fastest inhibitory synapses known. The second one is a relatively slow (τ≈200 ms, highly intriguing mechanism. It depends on ATP release via Pannexin 1 channels located on horizontal cell dendrites invaginating the cone synaptic terminal. The ecto-ATPase NTPDase1 hydrolyses extracellular ATP to AMP, phosphate groups, and protons. The phosphate groups and protons form a pH buffer with a pKa of 7.2, which keeps the pH in the synaptic cleft relatively acidic. This inhibits the cone Ca²⁺ channels and consequently reduces the glutamate release by the cones. When horizontal cells hyperpolarize, the pannexin 1 channels decrease their conductance, the ATP release decreases, and the formation of the pH buffer reduces. The resulting alkalization in the synaptic cleft consequently increases cone glutamate release. Surprisingly, the hydrolysis of ATP instead of ATP itself mediates the synaptic modulation. Our results not only solve longstanding issues regarding horizontal cell to photoreceptor feedback, they also demonstrate a new form of synaptic modulation. Because pannexin 1 channels and ecto-ATPases are strongly expressed in the nervous system and pannexin 1 function is implicated in synaptic plasticity, we anticipate that this novel form

  1. Competitiveness and Carbon Dioxide Emissions of Potential Electricity Generating Options in Croatia

    International Nuclear Information System (INIS)

    Feretic, D.

    2008-01-01

    As part of analysis of options needed to generate additional 6-8 TWh of electrical energy for Croatian consumers by the end of next decade, a comparison between natural gas combined cycle plants jointly with wind electricity generator and nuclear power plants has been performed. The choice is a real challenge, but it is logical that the criteria for optimal option are maximal net cash flow and minimal carbon dioxide emission. Since the comparison has to include analysis of discounted net cash flow during plants operating period (including total life time period and period of most insensitive capital return) and since foreseen potential long term fuel cost variations (gas, uranium concentrate and uranium enrichment) contain substantial uncertainties, the best method is to calculate discounted net cash flow with probabilistic method. Prognosis for long term nuclear fuel cycle and gas costs is included in the analyses. Results, obtained in form of probabilistic distributions, showed that selection of option with nuclear plant would doubtlessly result in higher net cash flow for the investor, and of course, in lower CO 2 emissions. Effect of plant selection to net cash flow and CO 2 emissions is additionally analyzed by comparing systems containing wind and gas plants versus system with gas plants only. The difference is less pronounced in case when wind generators have low capacity factors (similar to experienced for wind plants already operating on Adriatic coast). (author)

  2. Valuing natural gas power generation assets in the new competitive marketplace

    Science.gov (United States)

    Hsu, Michael Chun-Wei

    1999-10-01

    The profitability of natural gas fired power plants depends critically on the spread between electricity and natural gas prices. The price levels of these two energy commodities are the key uncertain variables in determining the operating margin and therefore the value of a power plant. The owner of a generation unit has the decision of dispatching the plant only when profit margins are positive. This operating flexibility is a real option with real value. In this dissertation I introduce the spark spread call options and illustrate how such paper contracts replicate the uncertain payoff space facing power asset owners and, therefore, how the financial options framework can be applied in estimating the value of natural gas generation plants. The intrinsic value of gas power plants is approximated as the sum of a series of spark spread call options with succeeding maturity dates. The Black-Scholes spread option pricing model, with volatility and correlation term structure adjustments, is utilized to price the spark spread options. Sensitivity analysis is also performed on the BS spread option formulation to compare different asset types. In addition I explore the potential of using compound and compound-exchange option concepts to evaluate, respectively, the benefits of delaying investment in new generation and in repowering existing antiquated units. The compound option designates an option on top of another option. In this case the series of spark spread call options is the 'underlying' option while the option to delay new investments is the 'overlying.' The compound-exchange option characterizes the opportunity to 'exchange' the old power plant, with its series of spark spread call options, for a set of new spark spread call options that comes with the new generation unit. The strike price of the compound-exchange option is the repowering capital investment and typically includes the purchase of new steam generators and combustion turbines, as well as other

  3. How carbon pricing changes the relative competitiveness of low-carbon baseload generating technologies

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, M.; Biegler, T.; Brook, B.W. [University of Adelaide, Adelaide, SA (Australia). School of Earth & Environmental Science

    2011-01-15

    There is wide public debate about which electricity generating technologies will best be suited to reduce greenhouse gas emissions (GHG). Sometimes this debate ignores real-world practicalities and leads to over-optimistic conclusions. Here we define and apply a set of fit-for-service criteria to identify technologies capable of supplying baseload electricity and reducing GHGs by amounts and within the timescale set by the Intergovernmental Panel on Climate Change (IPCC). Only five current technologies meet these criteria: coal (both pulverised fuel and integrated gasification combined cycle) with carbon capture and storage (CCS); combined cycle gas turbine with CCS; Generation III nuclear fission; and solar thermal backed by heat storage and gas turbines. To compare costs and performance, we undertook a meta-review of authoritative peer-reviewed studies of levelised cost of electricity (LCOE) and life-cycle GHG emissions for these technologies. Future baseload electricity technology selection will be influenced by the total cost of technology substitution, including carbon pricing, which is synergistically related to both LCOE and emissions. Nuclear energy is the cheapest option and best able to meet the IPCC timetable for GHG abatement. Solar thermal is the most expensive, while CCS will require rapid major advances in technology to meet that timetable.

  4. Synaptic Scaling in Combination with Many Generic Plasticity Mechanisms Stabilizes Circuit Connectivity

    Science.gov (United States)

    Tetzlaff, Christian; Kolodziejski, Christoph; Timme, Marc; Wörgötter, Florentin

    2011-01-01

    Synaptic scaling is a slow process that modifies synapses, keeping the firing rate of neural circuits in specific regimes. Together with other processes, such as conventional synaptic plasticity in the form of long term depression and potentiation, synaptic scaling changes the synaptic patterns in a network, ensuring diverse, functionally relevant, stable, and input-dependent connectivity. How synaptic patterns are generated and stabilized, however, is largely unknown. Here we formally describe and analyze synaptic scaling based on results from experimental studies and demonstrate that the combination of different conventional plasticity mechanisms and synaptic scaling provides a powerful general framework for regulating network connectivity. In addition, we design several simple models that reproduce experimentally observed synaptic distributions as well as the observed synaptic modifications during sustained activity changes. These models predict that the combination of plasticity with scaling generates globally stable, input-controlled synaptic patterns, also in recurrent networks. Thus, in combination with other forms of plasticity, synaptic scaling can robustly yield neuronal circuits with high synaptic diversity, which potentially enables robust dynamic storage of complex activation patterns. This mechanism is even more pronounced when considering networks with a realistic degree of inhibition. Synaptic scaling combined with plasticity could thus be the basis for learning structured behavior even in initially random networks. PMID:22203799

  5. How does male-male competition generate negative frequency-dependent selection and disruptive selection during speciation?

    Science.gov (United States)

    Dijkstra, Peter D; Border, Shana E

    2018-02-01

    Natural selection has been shown to drive population differentiation and speciation. The role of sexual selection in this process is controversial; however, most of the work has centered on mate choice while the role of male-male competition in speciation is relatively understudied. Here, we outline how male-male competition can be a source of diversifying selection on male competitive phenotypes, and how this can contribute to the evolution of reproductive isolation. We highlight how negative frequency-dependent selection (advantage of rare phenotype arising from stronger male-male competition between similar male phenotypes compared with dissimilar male phenotypes) and disruptive selection (advantage of extreme phenotypes) drives the evolution of diversity in competitive traits such as weapon size, nuptial coloration, or aggressiveness. We underscore that male-male competition interacts with other life-history functions and that variable male competitive phenotypes may represent alternative adaptive options. In addition to competition for mates, aggressive interference competition for ecological resources can exert selection on competitor signals. We call for a better integration of male-male competition with ecological interference competition since both can influence the process of speciation via comparable but distinct mechanisms. Altogether, we present a more comprehensive framework for studying the role of male-male competition in speciation, and emphasize the need for better integration of insights gained from other fields studying the evolutionary, behavioral, and physiological consequences of agonistic interactions.

  6. How does male–male competition generate negative frequency-dependent selection and disruptive selection during speciation?

    Science.gov (United States)

    Border, Shana E

    2018-01-01

    Abstract Natural selection has been shown to drive population differentiation and speciation. The role of sexual selection in this process is controversial; however, most of the work has centered on mate choice while the role of male–male competition in speciation is relatively understudied. Here, we outline how male–male competition can be a source of diversifying selection on male competitive phenotypes, and how this can contribute to the evolution of reproductive isolation. We highlight how negative frequency-dependent selection (advantage of rare phenotype arising from stronger male–male competition between similar male phenotypes compared with dissimilar male phenotypes) and disruptive selection (advantage of extreme phenotypes) drives the evolution of diversity in competitive traits such as weapon size, nuptial coloration, or aggressiveness. We underscore that male–male competition interacts with other life-history functions and that variable male competitive phenotypes may represent alternative adaptive options. In addition to competition for mates, aggressive interference competition for ecological resources can exert selection on competitor signals. We call for a better integration of male–male competition with ecological interference competition since both can influence the process of speciation via comparable but distinct mechanisms. Altogether, we present a more comprehensive framework for studying the role of male–male competition in speciation, and emphasize the need for better integration of insights gained from other fields studying the evolutionary, behavioral, and physiological consequences of agonistic interactions. PMID:29492042

  7. Business opportunities and dynamic competition through distributed generation in primary electricity distribution networks

    International Nuclear Information System (INIS)

    Raineri, R.; Rios, S.; Vasquez, R.

    2005-01-01

    In this paper, for a real electricity distribution network, an assessment of business opportunities to invest in distributed generation (DG) is performed through a simulation based on a full representation of three medium voltage (12 kV) feeders. The three feeders representation includes 1062 sections of conductors with 13 different sizes. The economic assessment focuses on both, the incentives of the incumbent distribution company and those of a new entrant. The technical and economic impact on losses, reliability and voltage regulation in the network area are verified. The DG solution analyzed determines a business opportunity for new investors where end users are also benefited. This work calls in the debate on the need to reformulate the current regulation model on electricity distribution, by defining clear rules to incorporate DG to the existing network, and to enable any agent to develop the proposed business. DG success depends on the location of adequate sites to strategically establish few DG units being a substitute to network expansion

  8. Transmission avoided cost: a new parameter to evaluate the economic competitiveness of generations plants projects

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, D.S. [Companhia Energetica de Sao Paulo, SP (Brazil); Albuquerque, J.C.R.; Rosenblat, J. [ELETROBRAS, Rio de Janeiro, RJ (Brazil)

    1994-12-31

    The paper presents a new formulation that makes feasible a composition of long run production marginal costs with the long run transmission marginal costs, including the costs related to the interconnection EHV networks and that related to the voltage levels below. The goal top be attained is to have available a more adequate parameter in order to compare production cost related to a plant, that will be connected to a certain voltage level network, to the cost related supplying the sam,e amount of energy from the bulk power system which will be represented by the marginal costs up to the voltage level under consideration. This procedure brings to light the Transmission Avoided Costs concepts, that are stressed throughout the text. The proposed methodology is now being used, in the brazilian Power Sector, as a rule of thumb in order to guide planning decisions about the schedule of new plants that have installed capacity below 30 MW. For plants with higher capacity, the transmission avoided costs are evaluated for each specific case, simulating the system behavior without the quoted hydroelectric plant. This paper focuses, an an application example, the case of the Canoas Hydroelectric Project, recently included in the Generation Expansion Reference Plan after a detailed analysis supported by the methodology described here. (author) 7 refs., 3 tabs.

  9. Second Generation Reusable Launch Vehicle Development and Global Competitiveness of US Space Transportation Industry: Critical Success Factors Assessment

    Science.gov (United States)

    Enyinda, Chris I.

    2002-01-01

    In response to the unrelenting call in both public and private sectors fora to reduce the high cost associated with space transportation, many innovative partially or fully RLV (Reusable Launch Vehicles) designs (X-34-37) were initiated. This call is directed at all levels of space missions including scientific, military, and commercial and all aspects of the missions such as nonrecurring development, manufacture, launch, and operations. According to Wertz, tbr over thirty years, the cost of space access has remained exceedingly high. The consensus in the popular press is that to decrease the current astronomical cost of access to space, more safer, reliable, and economically viable second generation RLVs (SGRLV) must be developed. Countries such as Brazil, India, Japan, and Israel are now gearing up to enter the global launch market with their own commercial space launch vehicles. NASA and the US space launch industry cannot afford to lag behind. Developing SGRLVs will immeasurably improve the US's space transportation capabilities by helping the US to regain the global commercial space markets while supporting the transportation capabilities of NASA's space missions, Developing the SGRLVs will provide affordable commercial space transportation that will assure the competitiveness of the US commercial space transportation industry in the 21st century. Commercial space launch systems are having difficulty obtaining financing because of the high cost and risk involved. Access to key financial markets is necessary for commercial space ventures. However, public sector programs in the form of tax incentives and credits, as well as loan guarantees are not yet available. The purpose of this paper is to stimulate discussion and assess the critical success factors germane for RLVs development and US global competitiveness.

  10. Short term synaptic depression improves information transfer in perceptual multistability

    OpenAIRE

    Kilpatrick, Zachary P.

    2013-01-01

    Competitive neural networks are often used to model the dynamics of perceptual bistability. Switching between percepts can occur through fluctuations and/or a slow adaptive process. Here, we analyze switching statistics in competitive networks with short term synaptic depression and noise. We start by analyzing a ring model that yields spatially structured solutions and complement this with a study of a space-free network whose populations are coupled with mutual inhibition. Dominance times a...

  11. The Role of Subsidiaries in Emerging Markets in Generating Competitive Advantages for Foreign Multinationals: the case of the Brazilian subsidiary of Clarks International

    Directory of Open Access Journals (Sweden)

    Marcelo André Machado

    2014-07-01

    Full Text Available The relationship between a multinational and its subsidiaries abroad, according to many studies, is crucial for generating competitive advantages. Therefore, this study aimed to understand the relationship between a shoe company, Clarks International, and its Brazilian subsidiary with an emphasis on generating advantages to the multinational headquarters. Through a single case study, the subsidiary’s capacity for knowledge generation and diffusion was identified, as well as its level of autonomy in relation to the English headquarters. Data analysis indicated that the Brazilian subsidiary generated specific competitive advantages for the foreign multinational due to its close relationship with local suppliers in Brazil and due to its staff’s expertise in developing high quality shoes. It was perceived that the growth of subsidiary autonomy was related to the growth of specific advantages generated for the multinational.

  12. Oxide-based synaptic transistors gated by solution-processed gelatin electrolytes

    Science.gov (United States)

    He, Yinke; Sun, Jia; Qian, Chuan; Kong, Ling-An; Gou, Guangyang; Li, Hongjian

    2017-04-01

    In human brain, a large number of neurons are connected via synapses. Simulation of the synaptic behaviors using electronic devices is the most important step for neuromorphic systems. In this paper, proton conducting gelatin electrolyte-gated oxide field-effect transistors (FETs) were used for emulating synaptic functions, in which the gate electrode is regarded as pre-synaptic neuron and the channel layer as the post-synaptic neuron. In analogy to the biological synapse, a potential spike can be applied at the gate electrode and trigger ionic motion in the gelatin electrolyte, which in turn generates excitatory post-synaptic current (EPSC) in the channel layer. Basic synaptic behaviors including spike time-dependent EPSC, paired-pulse facilitation (PPF), self-adaptation, and frequency-dependent synaptic transmission were successfully mimicked. Such ionic/electronic hybrid devices are beneficial for synaptic electronics and brain-inspired neuromorphic systems.

  13. Productive and Unproductive Competition

    DEFF Research Database (Denmark)

    Guerra, Alice; Luppi, Barbara; Parisi, Francesco

    Conventional theories of competition classify contests as being either “productive,” when the competitive efforts generate a surplus for society, or “unproductive,” when competition generates no social surplus and merely distributes already existing resources. These two discrete categories of com...

  14. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, Gabby (Texas-MED)

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.

  15. Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy

    Science.gov (United States)

    Meredith, Rhiannon M.; van Ooyen, Arjen

    2012-01-01

    CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy. PMID:22719238

  16. Selective loss of bi-directional synaptic plasticity in the direct and indirect striatal output pathways accompanies generation of parkinsonism and l-DOPA induced dyskinesia in mouse models.

    Science.gov (United States)

    Thiele, Sherri L; Chen, Betty; Lo, Charlotte; Gertler, Tracey S; Warre, Ruth; Surmeier, James D; Brotchie, Jonathan M; Nash, Joanne E

    2014-11-01

    Parkinsonian symptoms arise due to over-activity of the indirect striatal output pathway, and under-activity of the direct striatal output pathway. l-DOPA-induced dyskinesia (LID) is caused when the opposite circuitry problems are established, with the indirect pathway becoming underactive, and the direct pathway becoming over-active. Here, we define synaptic plasticity abnormalities in these pathways associated with parkinsonism, symptomatic benefits of l-DOPA, and LID. We applied spike-timing dependent plasticity protocols to cortico-striatal synapses in slices from 6-OHDA-lesioned mouse models of parkinsonism and LID, generated in BAC transgenic mice with eGFP targeting the direct or indirect output pathways, with and without l-DOPA present. In naïve mice, bidirectional synaptic plasticity, i.e. LTP and LTD, was induced, resulting in an EPSP amplitude change of approximately 50% in each direction in both striatal output pathways, as shown previously. In parkinsonism and dyskinesia, both pathways exhibited unidirectional plasticity, irrespective of stimulation paradigm. In parkinsonian animals, the indirect pathway only exhibited LTP (LTP protocol: 143.5±14.6%; LTD protocol 177.7±22.3% of baseline), whereas the direct pathway only showed LTD (LTP protocol: 74.3±4.0% and LTD protocol: 63.3±8.7%). A symptomatic dose of l-DOPA restored bidirectional plasticity on both pathways to levels comparable to naïve animals (Indirect pathway: LTP protocol: 124.4±22.0% and LTD protocol: 52.1±18.5% of baseline. Direct pathway: LTP protocol: 140.7±7.3% and LTD protocol: 58.4±6.0% of baseline). In dyskinesia, in the presence of l-DOPA, the indirect pathway exhibited only LTD (LTP protocol: 68.9±21.3% and LTD protocol 52.0±14.2% of baseline), whereas in the direct pathway, only LTP could be induced (LTP protocol: 156.6±13.2% and LTD protocol 166.7±15.8% of baseline). We conclude that normal motor control requires bidirectional plasticity of both striatal outputs

  17. RyR2-Mediated Ca2+ Release and Mitochondrial ROS Generation Partake in the Synaptic Dysfunction Caused by Amyloid β Peptide Oligomers

    Science.gov (United States)

    SanMartín, Carol D.; Veloso, Pablo; Adasme, Tatiana; Lobos, Pedro; Bruna, Barbara; Galaz, Jose; García, Alejandra; Hartel, Steffen; Hidalgo, Cecilia; Paula-Lima, Andrea C.

    2017-01-01

    Amyloid β peptide oligomers (AβOs), toxic aggregates with pivotal roles in Alzheimer’s disease, trigger persistent and low magnitude Ca2+ signals in neurons. We reported previously that these Ca2+ signals, which arise from Ca2+ entry and subsequent amplification by Ca2+ release through ryanodine receptor (RyR) channels, promote mitochondrial network fragmentation and reduce RyR2 expression. Here, we examined if AβOs, by inducing redox sensitive RyR-mediated Ca2+ release, stimulate mitochondrial Ca2+-uptake, ROS generation and mitochondrial fragmentation, and also investigated the effects of the antioxidant N-acetyl cysteine (NAC) and the mitochondrial antioxidant EUK-134 on AβOs-induced mitochondrial dysfunction. In addition, we studied the contribution of the RyR2 isoform to AβOs-induced Ca2+ release, mitochondrial Ca2+ uptake and fragmentation. We show here that inhibition of NADPH oxidase type-2 prevented the emergence of RyR-mediated cytoplasmic Ca2+ signals induced by AβOs in primary hippocampal neurons. Treatment with AβOs promoted mitochondrial Ca2+ uptake and increased mitochondrial superoxide and hydrogen peroxide levels; ryanodine, at concentrations that suppress RyR activity, prevented these responses. The antioxidants NAC and EUK-134 impeded the mitochondrial ROS increase induced by AβOs. Additionally, EUK-134 prevented the mitochondrial fragmentation induced by AβOs, as previously reported for NAC and ryanodine. These findings show that both antioxidants, NAC and EUK-134, prevented the Ca2+-mediated noxious effects of AβOs on mitochondrial function. Our results also indicate that Ca2+ release mediated by the RyR2 isoform causes the deleterious effects of AβOs on mitochondrial function. Knockdown of RyR2 with antisense oligonucleotides reduced by about 50% RyR2 mRNA and protein levels in primary hippocampal neurons, decreased by 40% Ca2+ release induced by the RyR agonist 4-chloro-m-cresol, and significantly reduced the cytoplasmic and

  18. Synaptic Plasticity and Translation Initiation

    Science.gov (United States)

    Klann, Eric; Antion, Marcia D.; Banko, Jessica L.; Hou, Lingfei

    2004-01-01

    It is widely accepted that protein synthesis, including local protein synthesis at synapses, is required for several forms of synaptic plasticity. Local protein synthesis enables synapses to control synaptic strength independent of the cell body via rapid protein production from pre-existing mRNA. Therefore, regulation of translation initiation is…

  19. Synaptic electronics: materials, devices and applications.

    Science.gov (United States)

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  20. The Cattenom nuclear power plant, at the service of a safe, competitive and CO2-free power generation in the heart of the Lorraine region

    International Nuclear Information System (INIS)

    2010-01-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of Cattenom comprises 4 production units of 1300 MW each (5200 MW as a whole). The facility generated 34 billion kWh in 2009, i.e. 8% of the French national power generation. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  1. The Bugey nuclear power plant, at the service of a safe, competitive and CO2-free power generation in the heart of the Rhone-Alpes region

    International Nuclear Information System (INIS)

    2010-01-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of Bugey comprises 4 production units of 900 MW each (3600 MW as a whole). The facility generated 20.87 billion kWh in 2009, i.e. 5% of the French national power generation and 40% of the energy consumed in the Rhone-Alpes region. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  2. The Paluel nuclear power plant, at the service of a safe, competitive and CO2-free power generation in the heart of the Haute Normandie region

    International Nuclear Information System (INIS)

    2010-01-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of Paluel comprises 4 production units of 1300 MW each (5200 MW as a whole). The facility generated 29.5 billion kWh in 2009, i.e. about 7% of the French national power generation and 35% of the energy produced in the Normandie region. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  3. The Blayais nuclear power plant, at the service of a safe, competitive and CO2-free power generation in the heart of the Aquitaine region

    International Nuclear Information System (INIS)

    2010-01-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of Blayais comprises 4 production units of 900 MW each (3600 MW as a whole). The facility generated 21.3 billion kWh in 2009, i.e. 5.5% of the French national power generation and 1.2 times the energy consumed in the Aquitaine region. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  4. Exercise-Induced Fatigue Impairs Bidirectional Corticostriatal Synaptic Plasticity.

    Science.gov (United States)

    Ma, Jing; Chen, Huimin; Liu, Xiaoli; Zhang, Lingtao; Qiao, Decai

    2018-01-01

    Exercise-induced fatigue (EF) is a ubiquitous phenomenon in sports competition and training. It can impair athletes' motor skill execution and cognition. Corticostriatal synaptic plasticity is considered to be the cellular mechanism of movement control and motor learning. However, the effect of EF on corticostriatal synaptic plasticity remains elusive. In the present study, using field excitatory postsynaptic potential recording, we found that the corticostriatal long-term potentiation (LTP) and long-term depression (LTD) were both impaired in EF mice. To further investigate the cellular mechanisms underlying the impaired synaptic plasticity in corticostriatal pathway, whole-cell patch clamp recordings were carried out on striatal medium spiny neurons (MSNs). MSNs in EF mice exhibited increased spontaneous excitatory postsynaptic current (sEPSC) frequency and decreased paired-pulse ratio (PPR), while with normal basic electrophysiological properties and normal sEPSC amplitude. Furthermore, the N-methyl-D-aspartate (NMDA)/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) ratio of MSNs was reduced in EF mice. These results suggest that the enhanced presynaptic glutamate (Glu) release and downregulated postsynaptic NMDA receptor function lead to the impaired corticostriatal plasticity in EF mice. Taken together, our findings for the first time show that the bidirectional corticostriatal synaptic plasticity is impaired after EF, and suggest that the aberrant corticostriatal synaptic plasticity may be involved in the production and/or maintenance of EF.

  5. Hybrid Particle Swarm Optimization based Day-Ahead Self-Scheduling for Thermal Generator in Competitive Electricity Market

    DEFF Research Database (Denmark)

    Pindoriya, Naran M.; Singh, S.N.; Østergaard, Jacob

    2009-01-01

    This paper presents a hybrid particle swarm optimization algorithm (HPSO) to solve the day-ahead self-scheduling for thermal power producer in competitive electricity market. The objective functions considered to model the self-scheduling problem are 1) to maximize the profit from selling energy...

  6. Circadian Regulation of Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Marcos G. Frank

    2016-07-01

    Full Text Available Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity.

  7. The Fessenheim nuclear power plant, at the service of a safe, competitive and CO2-free power generation in the heart of the Alsace region

    International Nuclear Information System (INIS)

    2010-01-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of Fessenheim comprises two production units of 900 MW each (1800 MW as a whole). The facility generated 8.7 billion kWh in 2009, i.e. 70% of the energy consumed in the Alsace region. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  8. Isolation of Synaptosomes, Synaptic Plasma Membranes, and Synaptic Junctional Complexes.

    Science.gov (United States)

    Michaelis, Mary L; Jiang, Lei; Michaelis, Elias K

    2017-01-01

    Isolation of synaptic nerve terminals or synaptosomes provides an opportunity to study the process of neurotransmission at many levels and with a variety of approaches. For example, structural features of the synaptic terminals and the organelles within them, such as synaptic vesicles and mitochondria, have been elucidated with electron microscopy. The postsynaptic membranes are joined to the presynaptic "active zone" of transmitter release through cell adhesion molecules and remain attached throughout the isolation of synaptosomes. These "post synaptic densities" or "PSDs" contain the receptors for the transmitters released from the nerve terminals and can easily be seen with electron microscopy. Biochemical and cell biological studies with synaptosomes have revealed which proteins and lipids are most actively involved in synaptic release of neurotransmitters. The functional properties of the nerve terminals, such as responses to depolarization and the uptake or release of signaling molecules, have also been characterized through the use of fluorescent dyes, tagged transmitters, and transporter substrates. In addition, isolated synaptosomes can serve as the starting material for the isolation of relatively pure synaptic plasma membranes (SPMs) that are devoid of organelles from the internal environment of the nerve terminal, such as mitochondria and synaptic vesicles. The isolated SPMs can reseal and form vesicular structures in which transport of ions such as sodium and calcium, as well as solutes such as neurotransmitters can be studied. The PSDs also remain associated with the presynaptic membranes during isolation of SPM fractions, making it possible to isolate the synaptic junctional complexes (SJCs) devoid of the rest of the plasma membranes of the nerve terminals and postsynaptic membrane components. Isolated SJCs can be used to identify the proteins that constitute this highly specialized region of neurons. In this chapter, we describe the steps involved

  9. Endocannabinoid signaling and synaptic function

    Science.gov (United States)

    Castillo, Pablo E.; Younts, Thomas J.; Chávez, Andrés E.; Hashimotodani, Yuki

    2012-01-01

    Endocannabinoids are key modulators of synaptic function. By activating cannabinoid receptors expressed in the central nervous system, these lipid messengers can regulate several neural functions and behaviors. As experimental tools advance, the repertoire of known endocannabinoid-mediated effects at the synapse, and their underlying mechanism, continues to expand. Retrograde signaling is the principal mode by which endocannabinoids mediate short- and long-term forms of plasticity at both excitatory and inhibitory synapses. However, growing evidence suggests that endocannabinoids can also signal in a non-retrograde manner. In addition to mediating synaptic plasticity, the endocannabinoid system is itself subject to plastic changes. Multiple points of interaction with other neuromodulatory and signaling systems have now been identified. Synaptic endocannabinoid signaling is thus mechanistically more complex and diverse than originally thought. In this review, we focus on new advances in endocannabinoid signaling and highlight their role as potent regulators of synaptic function in the mammalian brain. PMID:23040807

  10. Effective Mechanism for Synthesis of Neurotransmitter Glutamate and its Loading into Synaptic Vesicles.

    Science.gov (United States)

    Takeda, Kouji; Ueda, Tetsufumi

    2017-01-01

    Glutamate accumulation into synaptic vesicles is a pivotal step in glutamate transmission. This process is achieved by a vesicular glutamate transporter (VGLUT) coupled to v-type proton ATPase. Normal synaptic transmission, in particular during intensive neuronal firing, would demand rapid transmitter re-filling of emptied synaptic vesicles. We have previously shown that isolated synaptic vesicles are capable of synthesizing glutamate from α-ketoglutarate (not from glutamine) by vesicle-bound aspartate aminotransferase for immediate uptake, in addition to ATP required for uptake by vesicle-bound glycolytic enzymes. This suggests that local synthesis of these substances, essential for glutamate transmission, could occur at the synaptic vesicle. Here we provide evidence that synaptosomes (pinched-off nerve terminals) also accumulate α-ketoglutarate-derived glutamate into synaptic vesicles within, at the expense of ATP generated through glycolysis. Glutamine-derived glutamate is also accumulated into synaptic vesicles in synaptosomes. The underlying mechanism is discussed. It is suggested that local synthesis of both glutamate and ATP at the presynaptic synaptic vesicle would represent an efficient mechanism for swift glutamate loading into synaptic vesicles, supporting maintenance of normal synaptic transmission.

  11. Technological competition, increasing efficiency and lock-in in power generation of photovoltaic origin; Competition technologique, rendements croissants et lock-in dans la production d'electricite d'origine solaire photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Taillant, P.

    2001-10-01

    In this study, the evolutionistic model of technological competition of B. Arthur is used to analyze the phenomena of increasing efficiency of adoption and the technological lock-in situation in the sector of photovoltaic cells for power generation. The processes of path dependence and random historical factors, like the public orders, can lead to a situation where the dominating technology is not necessary the most efficient. In the case of solar photovoltaic, the dominating 'crystalline silicon' technology is the one that has today the best energy efficiency. However, taking into account the evolution of its experience curve which shows a beginning of exhausting of the learning effects, the perspectives of cost reduction seem to be limited despite a sustained demand and intense R and D activities. On the other hand, the thin film technology, with lower efficiencies, would gain in competitiveness thanks to the automation of manufacturing processes. In these circumstances, the technological public policies have to maintain a diversity in the choice of possible technologies in order to allow the promising, but less attractive today, technologies to develop in the future. (J.S.)

  12. Effects of Generational Competition and Substitution on Late Labour Participation and Labour Market Exit from a Multilevel Perspective

    Directory of Open Access Journals (Sweden)

    Henriette Engelhardt

    2013-12-01

    Full Text Available In this paper, we investigate the effects of demographic, economic and labour market structures on labour market participation and on the transition to inactivity (exit for older males in eleven European countries. Theoretically, our analysis is guided by considerations of intragenerational competition and intergenerational substitution. Following Easterlin’s hypothesis that intragenerational competition rises with cohort size, we assume a negative effect of cohort size on labour market participation and a positive effect on early exit from the labour market. Taking into account that different cohorts are substitutes at least to a certain extent, we assume that the probability of an early exit will be reduced by a high intergenerational exchange ratio in favour of older workers. Thus, labour market participation is influenced by the populations’ age structure both when entering the labour force and during the career. Moreover, low shares of graduates in older cohorts are expected to reduce older workers’ chances of labour market participation. In addition to demographic structures, general economic conditions, such as per capita GDP and its development over time, act both to further and to hamper the employment of older workers. Additionally, labour market structures, such as unemployment rates, the extent of part-time work or the amount of service jobs influence individual participation and the transition to inactivity. To test these hypotheses, we use merged data from the first two waves of SHARE and macro-level indicators from Eurostat. We estimate a two-level random-intercept logit model which allows us to determine the share of variance in international late careers that can be attributed to country-specific factors and can quantify the relative impact of specific socio-demographic and socio-economic backgrounds. Our results imply that cross-national variance in labour market participation is mainly driven by the instance of long

  13. Strategies for 2nd generation biofuels in EU - Co-firing to stimulate feedstock supply development and process integration to improve energy efficiency and economic competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Berndes, Goeran; Hansson, Julia; Egeskog, Andrea [Department of Energy and Environment, Division of Physical Resource Theory, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Johnsson, Filip [Department of Energy and Environment, Division of Energy Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2010-02-15

    The present biofuel policies in the European Union primarily stimulate 1st generation biofuels that are produced based on conventional food crops. They may be a distraction from lignocellulose based 2nd generation biofuels - and also from biomass use for heat and electricity - by keeping farmers' attention and significant investments focusing on first generation biofuels and the cultivation of conventional food crops as feedstocks. This article presents two strategies that can contribute to the development of 2nd generation biofuels based on lignocellulosic feedstocks. The integration of gasification-based biofuel plants in district heating systems is one option for increasing the energy efficiency and improving the economic competitiveness of such biofuels. Another option, biomass co-firing with coal, generates high-efficiency biomass electricity and reduces CO{sub 2} emissions by replacing coal. It also offers a near-term market for lignocellulosic biomass, which can stimulate development of supply systems for biomass also suitable as feedstock for 2nd generation biofuels. Regardless of the long-term priorities of biomass use for energy, the stimulation of lignocellulosic biomass production by development of near term and cost-effective markets is judged to be a no-regrets strategy for Europe. Strategies that induce a relevant development and exploit existing energy infrastructures in order to reduce risk and reach lower costs, are proposed an attractive complement the present and prospective biofuel policies. (author)

  14. Strategies for 2nd generation biofuels in EU - Co-firing to stimulate feedstock supply development and process integration to improve energy efficiency and economic competitiveness

    International Nuclear Information System (INIS)

    Berndes, Goeran; Hansson, Julia; Egeskog, Andrea; Johnsson, Filip

    2010-01-01

    The present biofuel policies in the European Union primarily stimulate 1st generation biofuels that are produced based on conventional food crops. They may be a distraction from lignocellulose based 2nd generation biofuels - and also from biomass use for heat and electricity - by keeping farmers' attention and significant investments focusing on first generation biofuels and the cultivation of conventional food crops as feedstocks. This article presents two strategies that can contribute to the development of 2nd generation biofuels based on lignocellulosic feedstocks. The integration of gasification-based biofuel plants in district heating systems is one option for increasing the energy efficiency and improving the economic competitiveness of such biofuels. Another option, biomass co-firing with coal, generates high-efficiency biomass electricity and reduces CO 2 emissions by replacing coal. It also offers a near-term market for lignocellulosic biomass, which can stimulate development of supply systems for biomass also suitable as feedstock for 2nd generation biofuels. Regardless of the long-term priorities of biomass use for energy, the stimulation of lignocellulosic biomass production by development of near term and cost-effective markets is judged to be a no-regrets strategy for Europe. Strategies that induce a relevant development and exploit existing energy infrastructures in order to reduce risk and reach lower costs, are proposed an attractive complement the present and prospective biofuel policies. (author)

  15. Synaptic Determinants of Rett Syndrome

    Science.gov (United States)

    Boggio, Elena M.; Lonetti, Giuseppina; Pizzorusso, Tommaso; Giustetto, Maurizio

    2010-01-01

    There is mounting evidence showing that the structural and molecular organization of synaptic connections is affected both in human patients and in animal models of neurological and psychiatric diseases. As a consequence of these experimental observations, it has been introduced the concept of synapsopathies, a notion describing brain disorders of synaptic function and plasticity. A close correlation between neurological diseases and synaptic abnormalities is especially relevant for those syndromes including also mental retardation in their symptomatology, such as Rett syndrome (RS). RS (MIM312750) is an X-linked dominant neurological disorder that is caused in the majority of cases by mutations in methyl-CpG-binding protein 2 (MeCP2). This review will focus on the current knowledge of the synaptic alterations produced by mutations of the gene MeCP2 in mouse models of RS and will highlight prospects experimental therapies currently in use. Different experimental approaches have revealed that RS could be the consequence of an impairment in the homeostasis of synaptic transmission in specific brain regions. Indeed, several forms of experience-induced neuronal plasticity are impaired in the absence of MeCP2. Based on the results presented in this review, it is reasonable to propose that understanding how the brain is affected by diseases such as RS is at reach. This effort will bring us closer to identify the neurobiological bases of human cognition. PMID:21423514

  16. Synaptic determinants of Rett syndrome

    Directory of Open Access Journals (Sweden)

    Elena M B Boggio

    2010-08-01

    Full Text Available There is mounting evidence showing that the structural and molecular organization of synaptic connections are affected both in human patients and in animal models of neurological and psychiatric diseases. As a consequence of these experimental observations, it has been introduced the concept of synapsopathies, a notion describing brain disorders of synaptic function and plasticity. A close correlation between neurological diseases and synaptic abnormalities is especially relevant for those syndromes including also mental retardation in their symptomatology, such as Rett Syndrome (RS. RS (MIM312750 is an X-linked dominant neurological disorder that is caused, in the majority of cases by mutations in methyl-CpG-binding protein 2 (MeCP2. This review will focus on the current knowledge of the synaptic alterations produced by mutations of the gene MeCP2 in mouse models of RS and will highlight prospects experimental therapies currently in use. Different experimental approaches have revealed that RS could be the consequence of an impairment in the homeostasis of synaptic transmission in specific brain regions. Indeed, several forms of experience-induced neuronal plasticity are impaired in the absence of MeCP2. Based on the results presented in this review, it is reasonable to propose that understanding how the brain is affected by diseases such as RS is at reach. This effort will bring us closer to identify the neurobiological bases of human cognition.

  17. Regional decision-making and competitive funding : metropolitan planning organizations and the transportation investments generating economic recovery program.

    Science.gov (United States)

    2014-08-01

    Transportation benefits and economic stimulus were behind the creation of the Transportation Investment Generating Economic Recovery (TIGER) program in 2009. New transportation funding programs exist in a landscape of other programs, and in addition ...

  18. A PET Study of Word Generation in Huntington's Disease: Effects of Lexical Competition and Verb/Noun Category

    Science.gov (United States)

    Lepron, Evelyne; Peran, Patrice; Cardebat, Dominique; Demonet, Jean-Francois

    2009-01-01

    Huntington's disease (HD) patients show language production deficits that have been conceptualized as a consequence of executive disorders, e.g. selection deficit between candidate words or switching between word categories. More recently, a deficit of word generation specific to verbs has been reported, which might relate to impaired action…

  19. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity

    Science.gov (United States)

    Beckhauser, Thiago Fernando; Francis-Oliveira, José; De Pasquale, Roberto

    2016-01-01

    In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated. PMID:27625575

  20. Stochastic Learning in Oxide Binary Synaptic Device for Neuromorphic Computing

    Directory of Open Access Journals (Sweden)

    Shimeng eYu

    2013-10-01

    Full Text Available Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on transition of metal oxide resistance switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design.

  1. Stochastic learning in oxide binary synaptic device for neuromorphic computing.

    Science.gov (United States)

    Yu, Shimeng; Gao, Bin; Fang, Zheng; Yu, Hongyu; Kang, Jinfeng; Wong, H-S Philip

    2013-01-01

    Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design.

  2. Optogenetic analysis of synaptic function

    NARCIS (Netherlands)

    Liewald, Jana F.; Brauner, Martin; Stephens, Greg J.; Bouhours, Magali; Schultheis, Christian; Zhen, Mei; Gottschalk, Alexander

    2008-01-01

    We introduce optogenetic investigation of neurotransmission (OptIoN) for time-resolved and quantitative assessment of synaptic function via behavioral and electrophysiological analyses. We photo-triggered release of acetylcholine or γ-aminobutyric acid at Caenorhabditis elegans neuromuscular

  3. Synaptic AMPA receptor plasticity and behavior

    NARCIS (Netherlands)

    Kessels, Helmut W.; Malinow, Roberto

    2009-01-01

    The ability to change behavior likely depends on the selective strengthening and weakening of brain synapses. The cellular models of synaptic plasticity, long-term potentiation (LTP) and depression (LTD) of synaptic strength, can be expressed by the synaptic insertion or removal of AMPA receptors

  4. Electricity Market Liberalisation and Flexibility of Conventional Generation to Balance Intermittent Renewable Energy - Is It Possible to Stay Competitive?

    Science.gov (United States)

    Linkevics, O.; Ivanova, P.; Balodis, M.

    2016-12-01

    Intermittent generation (solar PV and wind energy) integration in power production portfolio as well as electricity price fluctuations have changed the running manner of conventional combined heat and power (CHP) plants: the shift from base load operation to running in cyclic modes. These cogeneration power plants are not adapted to new running conditions. The level of CHP plant flexibility should be improved to operate profitably and efficiently from both technical and fuel usage point of view. There are different ways to increase the flexibility of power plants. Before any improvements, the situation at power plants should be evaluated and the weakest points defined. In this publication, such measures are presented on Riga CHP-2 plant example: installation of heat storage tank; extension of operation rang; acceleration of start-ups.

  5. Dopamine-signalled reward predictions generated by competitive excitation and inhibition in a spiking neural network model

    Directory of Open Access Journals (Sweden)

    Paul eChorley

    2011-05-01

    Full Text Available Dopaminergic neurons in the mammalian substantia nigra displaycharacteristic phasic responses to stimuli which reliably predict thereceipt of primary rewards. These responses have been suggested toencode reward prediction-errors similar to those used in reinforcementlearning. Here, we propose a model of dopaminergic activity in whichprediction error signals are generated by the joint action ofshort-latency excitation and long-latency inhibition, in a networkundergoing dopaminergic neuromodulation of both spike-timing dependentsynaptic plasticity and neuronal excitability. In contrast toprevious models, sensitivity to recent events is maintained by theselective modification of specific striatal synapses, efferent tocortical neurons exhibiting stimulus-specific, temporally extendedactivity patterns. Our model shows, in the presence of significantbackground activity, (i a shift in dopaminergic response from rewardto reward predicting stimuli, (ii preservation of a response tounexpected rewards, and (iii a precisely-timed below-baseline dip inactivity observed when expected rewards are omitted.

  6. Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders.

    Science.gov (United States)

    Neniskyte, Urte; Gross, Cornelius T

    2017-11-01

    The final stage of brain development is associated with the generation and maturation of neuronal synapses. However, the same period is also associated with a peak in synapse elimination - a process known as synaptic pruning - that has been proposed to be crucial for the maturation of remaining synaptic connections. Recent studies have pointed to a key role for glial cells in synaptic pruning in various parts of the nervous system and have identified a set of critical signalling pathways between glia and neurons. At the same time, brain imaging and post-mortem anatomical studies suggest that insufficient or excessive synaptic pruning may underlie several neurodevelopmental disorders, including autism, schizophrenia and epilepsy. Here, we review current data on the cellular, physiological and molecular mechanisms of glial-cell-dependent synaptic pruning and outline their potential contribution to neurodevelopmental disorders.

  7. Molecular Recognition within Synaptic Scaffolds

    DEFF Research Database (Denmark)

    Erlendsson, Simon

    -length structural model of the PICK1 dimer in-solution. We found the PICK1 BAR dimer to resemble an elongated crescent-shaped structure, spanning ~160 Å, with the PICK1 PDZ domains loosely attached to the BAR domain. This finding is in contrast to previous findings for other BAR domain proteins, where adjacent......Scaffolding proteins are abundant participants and regulators of the extensive intracellular framework required for maintaining cellular functions such as cellular adhesion and signal transduction cascades. In excitatory neuronal synapses these scaffolding proteins often contain one or more PDZ...... domains, responsible for tethering their respective synaptic protein ligands. Therefore, understanding the specificity and binding mechanisms of PDZ domain proteins is essential to understand regulation of synaptic plasticity. PICK1 is a PDZ domain-containing scaffolding protein predominantly expressed...

  8. Retail competition

    International Nuclear Information System (INIS)

    1998-01-01

    Retail competition as the cornerstone of a competitive electricity marketplace was the subject of the seventh in the series of policy discussion papers developed at the Market Design Conference. Concern was expressed that because of the complexities involved in market design and technical implementation, the retail competition may lag behind other elements of the implementation of the new market design. A variety of key issues were debated, including the role of physical versus financial contracts, the form of retail competition and financial settlement systems in the short term, the requirement to separate 'competitive' (metering, billing, maintenance, consumer education) from non-competitive' (the transmission wires) services and the role of municipal electric utilities. It was agreed that the IMO should play an important role in defining and enforcing the separation of services, and that as a general rule, the development of policy in this area should be guided by the principle of maximizing the potential for competition

  9. The strategic importance of identifying knowledge-based and intangible assets for generating value, competitiveness and innovation in sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Nicoline Ondari-Okemwa

    2011-01-01

    Full Text Available This article discusses the strategic importance of identifying intangible assets for creating value and enhancing competitiveness and innovation in science and technology in a knowledge economy with particular reference to the sub- Saharan Africa region. It has always been difficult to gather the prerequisite information to manage such assets and create value from them. The paper discusses the nature of intangible assets, the characteristics of a knowledge economy and the role of knowledge workers in a knowledge economy. The paper also discusses the importance of identifying intangible assets in relation to capturing the value of such assets, the transfer of intangible assets to other owners and the challenges of managing organizational intangible assets. Objectives of the article include: underscoring the strategic importance of identifying intangible assets in sub-Saharan Africa; examining the performance of intangible assets in a knowledge economy; how intangible assets may generate competitiveness, economic growth and innovation; and assess how knowledge workers are becoming a dominant factor in the knowledge economy. An extensive literature review was employed to collect data for this article. It is concluded in the article that organizations and governments in sub-Saharan Africa should look at knowledge-based assets as strategic resources, even though the traditional accounting systems may still be having problems in determining the exact book value of such assets. It is recommended that organizations and government departments in sub-Saharan Africa should implement a system of the reporting of the value of intangible organizational assets just like the reporting of the value of tangible assets; and that organizations in sub-Saharan Africa should use knowledge to produce “smart products and services” which command premium prices.

  10. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnOx–Al2O3 thin film structure

    International Nuclear Information System (INIS)

    Li, H. K.; Chen, T. P.; Liu, P.; Zhang, Q.; Hu, S. G.; Liu, Y.; Lee, P. S.

    2016-01-01

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)–aluminum oxide (Al 2 O 3 ) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al 2 O 3 interface and/or in the Al 2 O 3 layer.

  11. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnOx-Al2O3 thin film structure

    Science.gov (United States)

    Li, H. K.; Chen, T. P.; Liu, P.; Hu, S. G.; Liu, Y.; Zhang, Q.; Lee, P. S.

    2016-06-01

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)-aluminum oxide (Al2O3) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al2O3 interface and/or in the Al2O3 layer.

  12. Political Competitiveness

    OpenAIRE

    Casey B. Mulligan; Kevin K. Tsui

    2006-01-01

    Political competitiveness - which many interpret as the degree of democracy - can be modeled as a monopolistic competition. All regimes are constrained by the threat of "entry," and thereby seek some combination of popular support and political entry barriers. This simple model predicts that many public policies are unrelated to political competitiveness, and that even unchallenged nondemocratic regimes should tax far short of their Laffer curve maximum. Economic sanctions, odious debt repudi...

  13. Intense synaptic activity enhances temporal resolution in spinal motoneurons.

    Directory of Open Access Journals (Sweden)

    Rune W Berg

    Full Text Available In neurons, spike timing is determined by integration of synaptic potentials in delicate concert with intrinsic properties. Although the integration time is functionally crucial, it remains elusive during network activity. While mechanisms of rapid processing are well documented in sensory systems, agility in motor systems has received little attention. Here we analyze how intense synaptic activity affects integration time in spinal motoneurons during functional motor activity and report a 10-fold decrease. As a result, action potentials can only be predicted from the membrane potential within 10 ms of their occurrence and detected for less than 10 ms after their occurrence. Being shorter than the average inter-spike interval, the AHP has little effect on integration time and spike timing, which instead is entirely determined by fluctuations in membrane potential caused by the barrage of inhibitory and excitatory synaptic activity. By shortening the effective integration time, this intense synaptic input may serve to facilitate the generation of rapid changes in movements.

  14. Gaining Relational Competitive Advantages

    DEFF Research Database (Denmark)

    Hu, Yimei; Zhang, Si; Li, Jizhen

    2015-01-01

    Establishing strategic technological partnerships (STPs) with foreign partners is an increasingly studied topic within the innovation management literature. Partnering firms can jointly create sources of relational competitive advantage. Chinese firms often lack research and development (R......&D) capabilities but are increasingly becoming preferred technological partners for transnational corporations. We investigate an STP between a Scandinavian and a Chinese firm and try to explore how to gain relational competitive advantage by focusing on its two essential stages: relational rent generation...... and appropriation. Based on an explorative case study, we develop a conceptual framework that consists of process, organizational alliance factors, and coordination modes that we propose lead to relational competitive advantage....

  15. Environmental structure and competitive scoring advantages in team competitions

    Science.gov (United States)

    Merritt, Sears; Clauset, Aaron

    2013-10-01

    In most professional sports, playing field structure is kept neutral so that scoring imbalances may be attributed to differences in team skill. It thus remains unknown what impact environmental heterogeneities can have on scoring dynamics or competitive advantages. Applying a novel generative model of scoring dynamics to roughly 10 million team competitions drawn from an online game, we quantify the relationship between the structure within a competition and its scoring dynamics, while controlling the impact of chance. Despite wide structural variations, we observe a common three-phase pattern in the tempo of events. Tempo and balance are highly predictable from a competition's structural features alone and teams exploit environmental heterogeneities for sustained competitive advantage. Surprisingly, the most balanced competitions are associated with specific environmental heterogeneities, not from equally skilled teams. These results shed new light on the design principles of balanced competition, and illustrate the potential of online game data for investigating social dynamics and competition.

  16. Synaptic state matching: a dynamical architecture for predictive internal representation and feature detection.

    Science.gov (United States)

    Tavazoie, Saeed

    2013-01-01

    Here we explore the possibility that a core function of sensory cortex is the generation of an internal simulation of sensory environment in real-time. A logical elaboration of this idea leads to a dynamical neural architecture that oscillates between two fundamental network states, one driven by external input, and the other by recurrent synaptic drive in the absence of sensory input. Synaptic strength is modified by a proposed synaptic state matching (SSM) process that ensures equivalence of spike statistics between the two network states. Remarkably, SSM, operating locally at individual synapses, generates accurate and stable network-level predictive internal representations, enabling pattern completion and unsupervised feature detection from noisy sensory input. SSM is a biologically plausible substrate for learning and memory because it brings together sequence learning, feature detection, synaptic homeostasis, and network oscillations under a single unifying computational framework.

  17. Network response synchronization enhanced by synaptic plasticity

    Science.gov (United States)

    Lobov, S.; Simonov, A.; Kastalskiy, I.; Kazantsev, V.

    2016-02-01

    Synchronization of neural network response on spatially localized periodic stimulation was studied. The network consisted of synaptically coupled spiking neurons with spike-timing-dependent synaptic plasticity (STDP). Network connectivity was defined by time evolving matrix of synaptic weights. We found that the steady-state spatial pattern of the weights could be rearranged due to locally applied external periodic stimulation. A method for visualization of synaptic weights as vector field was introduced to monitor the evolving connectivity matrix. We demonstrated that changes in the vector field and associated weight rearrangements underlay an enhancement of synchronization range.

  18. Synaptic Plasticity and Memory Formation

    Science.gov (United States)

    1993-06-30

    suspected of being the substrate of several forms of memory encoded by synapses in the forebrain of humans and other mammals. Work in the past year...of LTP will enhance the encoding of memory . Aniracetam , as noted, prolongs the open time of the AMPA receptor and in this way facilitates excitatory...121 t Iffw,,a" S. FUNO4NG mUMSERS Synaptic Plasticity and Memory Formation F 49620-92-0307 C (ci) b.q F Gary Lynch 7. Pf(RfO*INN ORGAMIZAMNIO NMMW(S

  19. A Heuristic T-S Fuzzy Model for the Pumped-Storage Generator-Motor Using Variable-Length Tree-Seed Algorithm-Based Competitive Agglomeration

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhou

    2018-04-01

    Full Text Available With the fast development of artificial intelligence techniques, data-driven modeling approaches are becoming hotspots in both academic research and engineering practice. This paper proposes a novel data-driven T-S fuzzy model to precisely describe the complicated dynamic behaviors of pumped storage generator motor (PSGM. In premise fuzzy partition of the proposed T-S fuzzy model, a novel variable-length tree-seed algorithm based competitive agglomeration (VTSA-CA algorithm is presented to determine the optimal number of clusters automatically and improve the fuzzy clustering performances. Besides, in order to promote modeling accuracy of PSGM, the input and output formats in the T-S fuzzy model are selected by an economical parameter controlled auto-regressive (CAR model derived from a high-order transfer function of PSGM considering the distributed components in the water diversion system of the power plant. The effectiveness and superiority of the T-S fuzzy model for PSGM under different working conditions are validated by performing comparative studies with both practical data and the conventional mechanistic model.

  20. Pop competitiveness

    OpenAIRE

    Roberto Cellino; Anna Soci

    2002-01-01

    Very few economic terms are used as much as competitiveness in economics. This article deals with the different meanings of competitiveness, at the level of a firm, at the level of the local area, and at the level of the country. It analyzes the problems of consistency among the available definitions and among the indicators used to measurecompetitiveness.

  1. Competitiveness factors

    OpenAIRE

    Popa Liliana-Viorica

    2012-01-01

    Porter's theory supports the idea that, despite the globalization of production and trade, the competitive advantage is created in a national framework, nations, through their institutional, natural, cultural, economic characteristics ultimately determining the development of certain economic activities. The factors considered by Porter as determinants for the competitive advantage are grouped in four categories, the linkages between them being important as well

  2. Synaptic dysfunction in amygdala in intellectual disorder models.

    Science.gov (United States)

    Aincy, Marianne; Meziane, Hamid; Herault, Yann; Humeau, Yann

    2018-06-08

    The amygdala is a part of the limbic circuit that has been extensively studied in terms of synaptic connectivity, plasticity and cellular organization since decades (Ehrlich et al., 2009; Ledoux, 2000; Maren, 2001). Amygdala sub-nuclei, including lateral, basolateral and central amygdala appear now as "hubs" providing in parallel and in series neuronal processing enabling the animal to elicit freezing or escaping behavior in response to external threats. In rodents, these behaviors are easily observed and quantified following associative fear conditioning. Thus, studies on amygdala circuit in association with threat/fear behavior became very popular in laboratories and are often used among other behavioral tests to evaluate learning abilities of mouse models for various neuropsychiatric conditions including genetically encoded intellectual disabilities (ID). Yet, more than 100 human X-linked genes - and several hundreds of autosomal genes - have been associated with ID in humans. These mutations introduced in mice can generate social deficits, anxiety dysregulations and fear learning impairments (McNaughton et al., 2008; Houbaert et al., 2013; Jayachandran et al., 2014; Zhang et al., 2015). Noteworthy, a significant proportion of the coded ID gene products are synaptic proteins. It is postulated that the loss of function of these proteins could destabilize neuronal circuits by global changes of the balance between inhibitory and excitatory drives onto neurons. However, whereas amygdala related behavioral deficits are commonly observed in ID models, the role of most of these ID-genes in synaptic function and plasticity in the amygdala are only sparsely studied. We will here discuss some of the concepts that emerged from amygdala-targeted studies examining the role of syndromic and non-syndromic ID genes in fear-related behaviors and/or synaptic function. Along describing these cases, we will discuss how synaptic deficits observed in amygdala circuits could impact

  3. Neural ECM molecules in axonal and synaptic homeostatic plasticity.

    Science.gov (United States)

    Frischknecht, Renato; Chang, Kae-Jiun; Rasband, Matthew N; Seidenbecher, Constanze I

    2014-01-01

    Neural circuits can express different forms of plasticity. So far, Hebbian synaptic plasticity was considered the most important plastic phenomenon, but over the last decade, homeostatic mechanisms gained more interest because they can explain how a neuronal network maintains stable baseline function despite multiple plastic challenges, like developmental plasticity, learning, or lesion. Such destabilizing influences can be counterbalanced by the mechanisms of homeostatic plasticity, which restore the stability of neuronal circuits. Synaptic scaling is a mechanism in which neurons can detect changes in their own firing rates through a set of molecular sensors that then regulate receptor trafficking to scale the accumulation of glutamate receptors at synaptic sites. Additional homeostatic mechanisms allow local changes in synaptic activation to generate local synaptic adaptations and network-wide changes in activity, which lead to adjustments in the balance between excitation and inhibition. The molecular pathways underlying these forms of homeostatic plasticity are currently under intense investigation, and it becomes clear that the extracellular matrix (ECM) of the brain, which surrounds individual neurons and integrates them into the tissue, is an important element in these processes. As a highly dynamic structure, which can be remodeled and degraded in an activity-dependent manner and in concerted action of neurons and glial cells, it can on one hand promote structural and functional plasticity and on the other hand stabilize neural microcircuits. This chapter highlights the composition of brain ECM with particular emphasis on perisynaptic and axonal matrix formations and its involvement in plastic and adaptive processes of the central nervous system.

  4. Klotho regulates CA1 hippocampal synaptic plasticity.

    Science.gov (United States)

    Li, Qin; Vo, Hai T; Wang, Jing; Fox-Quick, Stephanie; Dobrunz, Lynn E; King, Gwendalyn D

    2017-04-07

    Global klotho overexpression extends lifespan while global klotho-deficiency shortens it. As well, klotho protein manipulations inversely regulate cognitive function. Mice without klotho develop rapid onset cognitive impairment before they are 2months old. Meanwhile, adult mice overexpressing klotho show enhanced cognitive function, particularly in hippocampal-dependent tasks. The cognitive enhancing effects of klotho extend to humans with a klotho polymorphism that increases circulating klotho and executive function. To affect cognitive function, klotho could act in or on the synapse to modulate synaptic transmission or plasticity. However, it is not yet known if klotho is located at synapses, and little is known about its effects on synaptic function. To test this, we fractionated hippocampi and detected klotho expression in both pre and post-synaptic compartments. We find that loss of klotho enhances both pre and post-synaptic measures of CA1 hippocampal synaptic plasticity at 5weeks of age. However, a rapid loss of synaptic enhancement occurs such that by 7weeks, when mice are cognitively impaired, there is no difference from wild-type controls. Klotho overexpressing mice show no early life effects on synaptic plasticity, but decreased CA1 hippocampal long-term potentiation was measured at 6months of age. Together these data suggest that klotho affects cognition, at least in part, by regulating hippocampal synaptic plasticity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. The developmental stages of synaptic plasticity

    NARCIS (Netherlands)

    Lohmann, Christian; Kessels, Helmut W.

    2014-01-01

    The brain is programmed to drive behaviour by precisely wiring the appropriate neuronal circuits. Wiring and rewiring of neuronal circuits largely depends on the orchestrated changes in the strengths of synaptic contacts. Here, we review how the rules of synaptic plasticity change during development

  6. Competitive STDP Learning of Overlapping Spatial Patterns.

    Science.gov (United States)

    Krunglevicius, Dalius

    2015-08-01

    Spike-timing-dependent plasticity (STDP) is a set of Hebbian learning rules firmly based on biological evidence. It has been demonstrated that one of the STDP learning rules is suited for learning spatiotemporal patterns. When multiple neurons are organized in a simple competitive spiking neural network, this network is capable of learning multiple distinct patterns. If patterns overlap significantly (i.e., patterns are mutually inclusive), however, competition would not preclude trained neuron's responding to a new pattern and adjusting synaptic weights accordingly. This letter presents a simple neural network that combines vertical inhibition and Euclidean distance-dependent synaptic strength factor. This approach helps to solve the problem of pattern size-dependent parameter optimality and significantly reduces the probability of a neuron's forgetting an already learned pattern. For demonstration purposes, the network was trained for the first ten letters of the Braille alphabet.

  7. Pushing synaptic vesicles over the RIM.

    Science.gov (United States)

    Kaeser, Pascal S

    2011-05-01

    In a presynaptic nerve terminal, neurotransmitter release is largely restricted to specialized sites called active zones. Active zones consist of a complex protein network, and they organize fusion of synaptic vesicles with the presynaptic plasma membrane in response to action potentials. Rab3-interacting molecules (RIMs) are central components of active zones. In a recent series of experiments, we have systematically dissected the molecular mechanisms by which RIMs operate in synaptic vesicle release. We found that RIMs execute two critical functions of active zones by virtue of independent protein domains. They tether presyanptic Ca(2+) channels to the active zone, and they activate priming of synaptic vesicles by monomerizing homodimeric, constitutively inactive Munc13. These data indicate that RIMs orchestrate synaptic vesicle release into a coherent process. In conjunction with previous studies, they suggest that RIMs form a molecular platform on which plasticity of synaptic vesicle release can operate.

  8. Coal competitiveness?

    International Nuclear Information System (INIS)

    Rogeaux, B.

    2006-01-01

    Will coal electrical plants be more competitive in the coming years? Answering this one cannot be limited to merely comparing estimates based on reference electricity production costs. The competitiveness of coal will indeed depend on the final product marketed, as the MWhs are not equal: is the purpose to produce base, half-base MWh? Does the electrical equipment structure require flexible MWh (for instance in the event of significant intermittent renewable energy amounts), and therefore plants able to adjust their power rapidly? But the competitiveness of coal will also depend on many factors that will correct reference cost estimates: uncertainties, risks, externalities. These factors will need to be appreciated on a case by case basis. We introduce some of the reasoning used to better appreciate the future competitiveness of coal, and the main factors conditioning it in three contrasting regions of the world: Europe, USA, china. (author)

  9. STDP with adaptive synaptic delay for robot navigation control

    Science.gov (United States)

    Arena, Paolo; Patané, Luca; Distefano, Francesco; Bucolo, Sebastiano; Aiello, Orazio

    2007-05-01

    In this work a biologically inspired network of spiking neurons is used for robot navigation control. The two tasks taken into account are obstacle avoidance and landmark-based navigation. The system learns the correlation among unconditioned stimuli (pre-wired sensors) and conditioned stimuli (high level sensors) through Spike Timing Dependent Plasticity (STDP). In order to improve the robot behaviours not only the synaptic weight but also the synaptic delay is subject to learning. Modulating the synaptic delay the robot is able to store the landmark position, like in a short time memory, and to use this information to smooth the turning actions prolonging the landmark effects also when it is no more visible. Simulations are carried out in a dynamic simulation environment and the robotic system considered is a cockroach-inspired hexapod robot. The locomotion signals are generated by a Central Pattern Generator and the spiking network is devoted to control the heading of the robot acting on the amplitude of the leg steps. Several scenarios have been proposed, for instance a T-shaped labyrinth, used in laboratory experiments with mice to demonstrate classical and operant conditioning, has been considered. Finally the proposed adaptive navigation control structure can be extended in a modular way to include other features detected by new sensors included in the correlation-based learning process.

  10. Understanding competitiveness

    OpenAIRE

    CRESPO, Aranzazu; SEGURA-CAYUELA, Ruben

    2014-01-01

    Using firm level data, we analyze the factors that drive the evolution of the aggregate Unit Labor Costs – the main European competitiveness indicator – in France, Germany, Italy and Spain. The evolution of the aggregate Unit Labor Cost is not driven by the evolution of the firm level Unit Labor Costs, but rather by an important factor for the competitiveness of a country: the reallocation of resources among the firms of the economy. Using the methodology of Hsieh and Klenow (...

  11. REGIONAL COMPETITIVENESS

    OpenAIRE

    Krželj-Čolović, Zorica

    2015-01-01

    Individual city and regional authorities in many countries have themselves taken up the issue of “competitiveness” as part of their own economic development agendas: competitiveness has come to be regarded as critical for understanding and promoting local economic performance. Like their national counterparts, regional and city policy-makers have become preoccupied with knowing the relative competitive standing of their local economies compared with others, not just other regions and cities w...

  12. PUBLIC EDUCATION AND ECONOMIC COMPETITIVENESS

    Directory of Open Access Journals (Sweden)

    Gabriel-Andrei Donici

    2011-09-01

    Full Text Available There is a certain connection between education and economic competitiveness. The relation between these two concepts is easy to intuit. On the medium and long term investments in education generate astrong increase in a country’s level of economic competitiveness. Through education the human capital is formed, and it affects all economic fields. Therefore we can observe that human capital has a decisive influence on the economic competitiveness of a country.

  13. Age dependence of the rapid antidepressant and synaptic effects of acute NMDA receptor blockade

    Directory of Open Access Journals (Sweden)

    Elena eNosyreva

    2014-12-01

    Full Text Available Ketamine is a NMDA receptor antagonist that produces rapid antidepressant responses in individuals with major depressive disorder. The antidepressant action of ketamine has been linked to blocking NMDA receptor activation at rest, which inhibits eukaryotic elongation factor2 kinase leading to desuppression of protein synthesis and synaptic potentiation in the CA1 region of the hippocampus. Here, we investigated ketamine mediated antidepressant response and the resulting synaptic potentiation in juvenile animals. We found that ketamine did not produce an antidepressant response in juvenile animals in the novelty suppressed feeding or the forced swim test. In addition ketamine application failed to trigger synaptic potentiation in hippocampal slices obtained from juvenile animals, unlike its action in slices from older animals (6-9 weeks old. The inability of ketamine to trigger an antidepressant response or subsequent synaptic plasticity processes suggests a developmental component to ketamine mediated antidepressant efficacy. We also show that the NMDAR antagonist AP5 triggers synaptic potentiation in mature hippocampus similar to the action of ketamine, demonstrating that global competitive blockade of NMDA receptors is sufficient to trigger this effect. These findings suggest that global blockade of NMDA receptors in developmentally mature hippocampal synapses are required for the antidepressant efficacy of ketamine.

  14. Degeneracy in the regulation of short-term plasticity and synaptic filtering by presynaptic mechanisms.

    Science.gov (United States)

    Mukunda, Chinmayee L; Narayanan, Rishikesh

    2017-04-15

    also revealed that calcium- and release-control mechanisms were effective regulators of synaptic filters, but accomplished this without changes in terminal excitability or calcium influx. Next, to perform global sensitivity analysis, we generated 7000 randomized models spanning 15 presynaptic parameters, and computed eight different physiological measurements in each of these models. We validated these models by applying experimentally obtained bounds on their measurements, and found 104 (∼1.5%) models to match the validation criteria for all eight measurements. Analysing these valid models, we demonstrate that analogous synaptic filters emerge from disparate combinations of presynaptic parameters exhibiting weak pairwise correlations. Finally, using virtual knockout models, we establish the variable and differential impact of different presynaptic channels on synaptic filters, underlining the critical importance of interactions among different presynaptic components in defining synaptic physiology. Our results have significant implications for protein-localization strategies required for physiological robustness and for degeneracy in long-term synaptic plasticity profiles. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  15. CONCEPTUAL APPROACH OF COMPETITIVENESS AND INTERDEPENDENCE BETWEEN COMPETITION AND COMPETITIVENESS

    Directory of Open Access Journals (Sweden)

    Tatiana GUTIUM

    2017-11-01

    Full Text Available This article is devoted to analysis of interdependence and correlation between competition and competitiveness, and competition’s consequences. The author analysed some authors’ visions on competitiveness, and common features between theories of competition and competitiveness. Using the synthetic indicator elaborated by author has been evaluated the competitiveness of domestic goods on the internal and external market. At the end of this article, the author has developed proposals to increase competitiveness.

  16. Models of Short-Term Synaptic Plasticity.

    Science.gov (United States)

    Barroso-Flores, Janet; Herrera-Valdez, Marco A; Galarraga, Elvira; Bargas, José

    2017-01-01

    We focus on dynamical descriptions of short-term synaptic plasticity. Instead of focusing on the molecular machinery that has been reviewed recently by several authors, we concentrate on the dynamics and functional significance of synaptic plasticity, and review some mathematical models that reproduce different properties of the dynamics of short term synaptic plasticity that have been observed experimentally. The complexity and shortcomings of these models point to the need of simple, yet physiologically meaningful models. We propose a simplified model to be tested in synapses displaying different types of short-term plasticity.

  17. COMPETITION AS MARKET MECHANISM

    Directory of Open Access Journals (Sweden)

    N. Ya. Kazhuro

    2015-01-01

    Full Text Available The essence of a competition as an objective law for development of the commodities production based on private ownership of the means of production and commodity exchange has been revealed in the paper. The paper presents an economic basis of market economy (private ownership which generates a corresponding production objective. Such purpose is a maximization of profit and a minimization of market subject expenses. Therefore, a struggle for the most favourable conditions on commodity production and sales is inevitable in such situation. The struggle is considered in the community with developed market economy as a competition.The competition is regarded not as an exogenic factor exerting its influence on market economic system from the outside, but as an objective phenomenon which is inherent to management market system in itself. Such treatment is substantiated by economic disintegration of individual commodity producers. Being an important engine of market economy, the competition does not establish its laws, and its role is to be an executive of data which are internally inherent in commodity production laws and firstly it concerns a profit maximization law which defines a purpose and guiding motif of economic entities in the given economy.The competition plays a contradictory role under conditions of market economy. On the one hand, it makes manufacturers constantly to aspire to expense reduction for the sake of profit increase. This has resulted in labour productivity increase, production cost decrease and a company receives an opportunity to reduce retail price for its products. Consequently, the competition acts as a potential factor for lowering of prices while increasing production efficiency. On the other hand, sellers have more freedom in price fixing under conditions of imperfect competition as they sell their products under the conditions of a monopolistic competition or an oligopoly. This is the main weakest point of the market

  18. Competition for light and water increases tree carbon allocation to fine roots and leaves in a next-generation dynamic vegetation model

    Science.gov (United States)

    Lichstein, J. W.; Zhang, T.; Weng, E.; Farrior, C.; Dybzinski, R.; Birdsey, R.; Pacala, S. W.

    2015-12-01

    The response of the terrestrial carbon (C) cycle to climate change is a key uncertainty in land models. An important component of this uncertainty concerns plant functional diversity, which is typically represented in land models by ~10 functional types (PFTs) with fixed traits. However, few land models include the individual-level competitive mechanisms that largely determine how plant functional traits are distributed in time and space in real ecosystems. We have developed a new land model that represents height-structured competition for light with a simple canopy space-filling algorithm, the perfect plasticity approximation (PPA). The new land model, LM3-PPA, allows for an arbitrary number of PFTs (or 'species') whose spatial-temporal distributions are determined by the outcome of competition for light and water. We performed experiments with a modified version of LM3-PPA in 10 eastern U.S. grid cells and across simulated precipitation gradients to determine how competition for light and water affects tree C allocation to leaves, fine roots, and wood across climate gradients and in response to episodic drought. We studied the performance of 16 allocational types ('species') in monoculture and in competition with each other to determine the competitively-optimal, NPP-maximizing, and biomass-maximizing C allocation strategy under different environmental conditions. Under chronically moist conditions, competitively-optimal, NPP-maximizing, and biomass-maximizing trees all had similar C allocation. However, under chronically dry conditions, competitively-optimal trees allocated more C to both fine roots and leaves, and less C to wood, compared to NPP- or biomass-maximizing strategies. When subject to episodic drought, the most drought-tolerant allocational strategies had relatively low allocation to leaves (and thus low leaf area and low water demand). Thus, the "over-investment" in leaves that results from resource competition increases the vulnerability of

  19. All for One But Not One for All: Excitatory Synaptic Scaling and Intrinsic Excitability Are Coregulated by CaMKIV, Whereas Inhibitory Synaptic Scaling Is Under Independent Control.

    Science.gov (United States)

    Joseph, Annelise; Turrigiano, Gina G

    2017-07-12

    Neocortical circuits use a family of homeostatic plasticity mechanisms to stabilize firing, including excitatory and inhibitory synaptic scaling and homeostatic intrinsic plasticity (Turrigiano and Nelson, 2004). All three mechanisms can be induced in tandem in cultured rat neocortical pyramidal neurons by chronic manipulations of firing, but it is unknown whether they are coinduced by the same activity-sensors and signaling pathways, or whether they are under independent control. Calcium/calmodulin-dependent protein kinase type IV (CaMKIV) is a key sensory/effector in excitatory synaptic scaling that senses perturbations in firing through changes in calcium influx, and translates this into compensatory changes in excitatory quantal amplitude (Ibata et al., 2008; Goold and Nicoll, 2010). Whether CaMKIV also controls inhibitory synaptic scaling and intrinsic homeostatic plasticity was unknown. To test this we manipulated CaMKIV signaling in individual neurons using dominant-negative (dn) or constitutively-active (ca) forms of nuclear-localized CaMKIV and measured the induction of all three forms of homeostatic plasticity. We found that excitatory synaptic scaling and intrinsic plasticity were bidirectionally coinduced by these manipulations. In contrast, these cell-autonomous manipulations had no impact on inhibitory quantal amplitude. Finally, we found that spontaneous firing rates were shifted up or down by dnCaMKIV or caCaMKIV, respectively, suggesting that uncoupling CaMKIV activation from activity generates an error signal in the negative feedback mechanism that controls firing rates. Together, our data show that excitatory synaptic scaling and intrinsic excitability are tightly coordinated through bidirectional changes in the same signaling pathway, whereas inhibitory synaptic scaling is sensed and regulated through an independent control mechanism. SIGNIFICANCE STATEMENT Maintaining stable function in highly interconnected neural circuits is essential for

  20. Subcontract Competition.

    Science.gov (United States)

    1982-11-01

    DRCPM- ROL USA Missile Command, ATTN: DRCPM-VI Armor Training Devices, ATTN: DRCPM-AR 3 APRO 82-11 FINAL SUBCONTRACT COMPETITION by Wayne V. Zabel Charles...A. Correia "I S The pronouns "he," "his," and "him," when used in this publication, represent both the masculine and feminine genders unless... advertising or by negotiation, shall be made on a competitive basis to the maximum practicable extent." Armed Services Procurement Regul-tion Manual

  1. Characterization of emergent synaptic topologies in noisy neural networks

    Science.gov (United States)

    Miller, Aaron James

    Learned behaviors are one of the key contributors to an animal's ultimate survival. It is widely believed that the brain's microcircuitry undergoes structural changes when a new behavior is learned. In particular, motor learning, during which an animal learns a sequence of muscular movements, often requires precisely-timed coordination between muscles and becomes very natural once ingrained. Experiments show that neurons in the motor cortex exhibit precisely-timed spike activity when performing a learned motor behavior, and constituent stereotypical elements of the behavior can last several hundred milliseconds. The subject of this manuscript concerns how organized synaptic structures that produce stereotypical spike sequences emerge from random, dynamical networks. After a brief introduction in Chapter 1, we begin Chapter 2 by introducing a spike-timing-dependent plasticity (STDP) rule that defines how the activity of the network drives changes in network topology. The rule is then applied to idealized networks of leaky integrate-and-fire neurons (LIF). These neurons are not subjected to the variability that typically characterize neurons in vivo. In noiseless networks, synapses develop closed loops of strong connectivity that reproduce stereotypical, precisely-timed spike patterns from an initially random network. We demonstrate the characteristics of the asymptotic synaptic configuration are dependent on the statistics of the initial random network. The spike timings of the neurons simulated in Chapter 2 are generated exactly by a computationally economical, nonlinear mapping which is extended to LIF neurons injected with fluctuating current in Chapter 3. Development of an economical mapping that incorporates noise provides a practical solution to the long simulation times required to produce asymptotic synaptic topologies in networks with STDP in the presence of realistic neuronal variability. The mapping relies on generating numerical solutions to the dynamics

  2. The Chinon nuclear power plant, at the service of a safe, competitive and CO{sub 2}-free power generation in the heart of the Centre region; La centrale nucleaire de Chinon, au service d'une production d'electricite sure, competitive et sans CO{sub 2}, au coeur de la region Centre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of Chinon comprises 4 production units of 900 MW each (3600 MW as a whole). The facility generated 19.03 billion kWh in 2009, i.e. 4.8% of the French national power generation. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  3. The computational power of astrocyte mediated synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Rogier eMin

    2012-11-01

    Full Text Available Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte-mediated signaling processes described in the literature today, the current challenge is to identify which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways.

  4. Molecular mechanisms of synaptic remodeling in alcoholism.

    Science.gov (United States)

    Kyzar, Evan J; Pandey, Subhash C

    2015-08-05

    Alcohol use and alcohol addiction represent dysfunctional brain circuits resulting from neuroadaptive changes during protracted alcohol exposure and its withdrawal. Alcohol exerts a potent effect on synaptic plasticity and dendritic spine formation in specific brain regions, providing a neuroanatomical substrate for the pathophysiology of alcoholism. Epigenetics has recently emerged as a critical regulator of gene expression and synaptic plasticity-related events in the brain. Alcohol exposure and withdrawal induce changes in crucial epigenetic processes in the emotional brain circuitry (amygdala) that may be relevant to the negative affective state defined as the "dark side" of addiction. Here, we review the literature concerning synaptic plasticity and epigenetics, with a particular focus on molecular events related to dendritic remodeling during alcohol abuse and alcoholism. Targeting epigenetic processes that modulate synaptic plasticity may yield novel treatments for alcoholism. Published by Elsevier Ireland Ltd.

  5. Inter-Synaptic Lateral Diffusion of GABAA Receptors Shapes Inhibitory Synaptic Currents.

    Science.gov (United States)

    de Luca, Emanuela; Ravasenga, Tiziana; Petrini, Enrica Maria; Polenghi, Alice; Nieus, Thierry; Guazzi, Stefania; Barberis, Andrea

    2017-07-05

    The lateral mobility of neurotransmitter receptors has been shown to tune synaptic signals. Here we report that GABAA receptors (GABAARs) can diffuse between adjacent dendritic GABAergic synapses in long-living desensitized states, thus laterally spreading "activation memories" between inhibitory synapses. Glutamatergic activity limits this inter-synaptic diffusion by trapping GABAARs at excitatory synapses. This novel form of activity-dependent hetero-synaptic interplay is likely to modulate dendritic synaptic signaling. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Case competitions

    DEFF Research Database (Denmark)

    Schjoldager, Anne Gram

    2009-01-01

    The paper presents and discusses a teaching project with case competitions for MA students of specialised translation at the Aarhus School of Business, Aarhus University. Drawing on a series of online questionnaires, the paper ascertains how the project was evaluated by the participating students...

  7. EDITORIAL: Physics competitions Physics competitions

    Science.gov (United States)

    Jordens, H.; Mathelitsch, L.

    2009-11-01

    1. Physics competitions: aims and realizations One aim of physics competitions is to increase the interest of young students, primarily at upper secondary level, to physics and natural sciences in general. A competition has motivational aspects known usually from sports events or games—comparing one's own ability with others, of course with the desire to be better and to win. If competitions reach nationwide and even international levels, additional stimulation is created. Competitions provide greatest attraction to possible winners, to the group of gifted people in a particular field. This implies that science contests are excellent tools for the promotion of talented students. Traditional teaching has been shown to have problems in supporting this group of students. Very often teachers are overstretched with the demands of teaching both low- and high-level students. Extracurricular activities are therefore a good chance to relieve the teacher, and to give talented students the opportunity for appropriate training and challenge. The competitions, however, have a broader impact and address more young people than one might guess from the statements above. Training courses and selection at school level give a larger group of students extra and, to some extent, complimentary education in physics. The degree of complexity of the tasks corresponds very often to the standards of the next level of education in the school system. Interestingly, many physics competitions have their origin in countries beyond the former Iron Curtain. They started as regional and national tournaments, were joined by neighbouring countries and have grown, in some cases, to events with participants from more than 80 countries. Although the features mentioned above are common to the different competitions, there are distinct differences between them [1]. The International Physics Olympiad (IPhO) is the oldest international physics competition for students at upper secondary level [2]. It dates

  8. Operant conditioning of synaptic and spiking activity patterns in single hippocampal neurons.

    Science.gov (United States)

    Ishikawa, Daisuke; Matsumoto, Nobuyoshi; Sakaguchi, Tetsuya; Matsuki, Norio; Ikegaya, Yuji

    2014-04-02

    Learning is a process of plastic adaptation through which a neural circuit generates a more preferable outcome; however, at a microscopic level, little is known about how synaptic activity is patterned into a desired configuration. Here, we report that animals can generate a specific form of synaptic activity in a given neuron in the hippocampus. In awake, head-restricted mice, we applied electrical stimulation to the lateral hypothalamus, a reward-associated brain region, when whole-cell patch-clamped CA1 neurons exhibited spontaneous synaptic activity that met preset criteria. Within 15 min, the mice learned to generate frequently the excitatory synaptic input pattern that satisfied the criteria. This reinforcement learning of synaptic activity was not observed for inhibitory input patterns. When a burst unit activity pattern was conditioned in paired and nonpaired paradigms, the frequency of burst-spiking events increased and decreased, respectively. The burst reinforcement occurred in the conditioned neuron but not in other adjacent neurons; however, ripple field oscillations were concomitantly reinforced. Neural conditioning depended on activation of NMDA receptors and dopamine D1 receptors. Acutely stressed mice and depression model mice that were subjected to forced swimming failed to exhibit the neural conditioning. This learning deficit was rescued by repetitive treatment with fluoxetine, an antidepressant. Therefore, internally motivated animals are capable of routing an ongoing action potential series into a specific neural pathway of the hippocampal network.

  9. Lateral regulation of synaptic transmission by astrocytes.

    Science.gov (United States)

    Covelo, A; Araque, A

    2016-05-26

    Fifteen years ago the concept of the "tripartite synapse" was proposed to conceptualize the functional view that astrocytes are integral elements of synapses. The signaling exchange between astrocytes and neurons within the tripartite synapse results in the synaptic regulation of synaptic transmission and plasticity through an autocrine form of communication. However, recent evidence indicates that the astrocyte synaptic regulation is not restricted to the active tripartite synapse but can be manifested through astrocyte signaling at synapses relatively distant from active synapses, a process termed lateral astrocyte synaptic regulation. This phenomenon resembles the classical heterosynaptic modulation but is mechanistically different because it involves astrocytes and its properties critically depend on the morphological and functional features of astrocytes. Therefore, the functional concept of the tripartite synapse as a fundamental unit must be expanded to include the interaction between tripartite synapses. Through lateral synaptic regulation, astrocytes serve as an active processing bridge for synaptic interaction and crosstalk between synapses with no direct neuronal connectivity, supporting the idea that neural network function results from the coordinated activity of astrocytes and neurons. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Marketing mix and competitiveness

    Directory of Open Access Journals (Sweden)

    Anđelković Slobodan

    2007-01-01

    Full Text Available Competitiveness cannot simply be viewed as a country's ability to export or generate trade surpluses, since these can be brought about at least temporarily by means of artificially lowering the exchange rate and/or compressing domestic expenditures, as has been done in recent years by many DC that have tried to adjust to diminished resource availability. Authors standpoint is that international competitiveness requires creating comparative advantage where it does not exist, and requires action on several levels including an emerging consensus on the importance of macroeconomic policy, role and accountability of the government as well as the imperative of developing and internalizing technology body of knowledge for achieving competitiveness. Particular attention is given to the role and impact of marketing instruments marketing mix.

  11. Spike Pattern Structure Influences Synaptic Efficacy Variability under STDP and Synaptic Homeostasis. II: Spike Shuffling Methods on LIF Networks

    Science.gov (United States)

    Bi, Zedong; Zhou, Changsong

    2016-01-01

    Synapses may undergo variable changes during plasticity because of the variability of spike patterns such as temporal stochasticity and spatial randomness. Here, we call the variability of synaptic weight changes during plasticity to be efficacy variability. In this paper, we investigate how four aspects of spike pattern statistics (i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations) influence the efficacy variability under pair-wise additive spike-timing dependent plasticity (STDP) and synaptic homeostasis (the mean strength of plastic synapses into a neuron is bounded), by implementing spike shuffling methods onto spike patterns self-organized by a network of excitatory and inhibitory leaky integrate-and-fire (LIF) neurons. With the increase of the decay time scale of the inhibitory synaptic currents, the LIF network undergoes a transition from asynchronous state to weak synchronous state and then to synchronous bursting state. We first shuffle these spike patterns using a variety of methods, each designed to evidently change a specific pattern statistics; and then investigate the change of efficacy variability of the synapses under STDP and synaptic homeostasis, when the neurons in the network fire according to the spike patterns before and after being treated by a shuffling method. In this way, we can understand how the change of pattern statistics may cause the change of efficacy variability. Our results are consistent with those of our previous study which implements spike-generating models on converging motifs. We also find that burstiness/regularity is important to determine the efficacy variability under asynchronous states, while heterogeneity of cross-correlations is the main factor to cause efficacy variability when the network moves into synchronous bursting states (the states observed in epilepsy). PMID:27555816

  12. Spike Pattern Structure Influences Synaptic Efficacy Variability Under STDP and Synaptic Homeostasis. II: Spike Shuffling Methods on LIF Networks

    Directory of Open Access Journals (Sweden)

    Zedong Bi

    2016-08-01

    Full Text Available Synapses may undergo variable changes during plasticity because of the variability of spike patterns such as temporal stochasticity and spatial randomness. Here, we call the variability of synaptic weight changes during plasticity to be efficacy variability. In this paper, we investigate how four aspects of spike pattern statistics (i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations influence the efficacy variability under pair-wise additive spike-timing dependent plasticity (STDP and synaptic homeostasis (the mean strength of plastic synapses into a neuron is bounded, by implementing spike shuffling methods onto spike patterns self-organized by a network of excitatory and inhibitory leaky integrate-and-fire (LIF neurons. With the increase of the decay time scale of the inhibitory synaptic currents, the LIF network undergoes a transition from asynchronous state to weak synchronous state and then to synchronous bursting state. We first shuffle these spike patterns using a variety of methods, each designed to evidently change a specific pattern statistics; and then investigate the change of efficacy variability of the synapses under STDP and synaptic homeostasis, when the neurons in the network fire according to the spike patterns before and after being treated by a shuffling method. In this way, we can understand how the change of pattern statistics may cause the change of efficacy variability. Our results are consistent with those of our previous study which implements spike-generating models on converging motifs. We also find that burstiness/regularity is important to determine the efficacy variability under asynchronous states, while heterogeneity of cross-correlations is the main factor to cause efficacy variability when the network moves into synchronous bursting states (the states observed in epilepsy.

  13. EDITORIAL: Physics competitions Physics competitions

    Science.gov (United States)

    Jordens, H.; Mathelitsch, L.

    2010-07-01

    This editorial opens the second special section on physics competitions in European Journal of Physics. In the first section last year, we asked for feedback on the idea of such a section and on the content of the articles. We received no answer whatsoever, which can be interpreted in two ways: the section is not interesting enough to raise motivation for feedback, or the reader is satisfied. Having no indication which scenario is the correct one, we are optimistic and favour the second. The section at hand contains three articles. Again, as last year, the organizer of the annual Olympiad reports on tasks and outcomes of this competition. The Olympiad took place in Merida, Mexico, and was by far the largest event with 316 contestants from 68 countries. Again, the predominance of Asian/Chinese students was manifest, showing how serious the training is taken by both their authorities and students. Unfortunately, the winners of the last International Young Physicists' Tournament (IYPT), the team from Korea, did not accept the offer to report on their prize-winning contribution. We are thankful that two students from Austria, who achieved second place with their team, took over and reported on the task which they presented in the finals of the competition. It connects the fields of sport and physics and explains a special move in skateboarding. The third contribution introduces a different competition, 'International Conference of Young Scientists'. On one hand, as in the Olympiad, it addresses individuals, not teams. On the other, as in the IYPT, students have several months to prepare and also the quality of the presentation is an important element of the judgment. In fact, this competition comes closer to real scientific research compared to the other events. Finally and again, we hope that this section will serve several purposes: To show the competitions as a very important tool in the support of gifted students. To raise awareness amongst university teachers, and

  14. Logo competition

    CERN Multimedia

    Staff Association

    2013-01-01

    Award of the prizes The price ceremony for the Staff Association’s new logo competition which took place on Friday 1st March at 5 p.m. was a big success. The first prize, an Ezee Suisse electric bike, was won by Paulo Rios, from Portugal. In his absence, the bike was handed to his brother Vitor. The other five winners of the competition also received their prize: Go Sport vouchers. A peize draw was then organized to award 22 other participants with prizes offered by our commercial partners (Aquaparc, BCGE, L’Occitane, Passeport Gourmand, Sephora, Theater La Comédie de Genève), whom we would like to warmly thank. After all prices were distributed the evening continued with discussions around a friendly drink.

  15. Prevention of Synaptic Alterations and Neurotoxic Effects of PAMAM Dendrimers by Surface Functionalization

    Directory of Open Access Journals (Sweden)

    Felipe Vidal

    2017-12-01

    Full Text Available One of the most studied nanocarriers for drug delivery are polyamidoamine (PAMAM dendrimers. However, the alterations produced by PAMAM dendrimers in neuronal function have not been thoroughly investigated, and important aspects such as effects on synaptic transmission remain unexplored. We focused on the neuronal activity disruption induced by dendrimers and the possibility to prevent these effects by surface chemical modifications. Therefore, we studied the effects of fourth generation PAMAM with unmodified positively charged surface (G4 in hippocampal neurons, and compared the results with dendrimers functionalized in 25% of their surface groups with folate (PFO25 and polyethylene glycol (PPEG25. G4 dendrimers significantly reduced cell viability at 1 µM, which was attenuated by both chemical modifications, PPEG25 being the less cytotoxic. Patch clamp recordings demonstrated that G4 induced a 7.5-fold increment in capacitive currents as a measure of membrane permeability. Moreover, treatment with this dendrimer increased intracellular Ca2+ by 8-fold with a complete disruption of transients pattern, having as consequence that G4 treatment increased the synaptic vesicle release and frequency of synaptic events by 2.4- and 3-fold, respectively. PFO25 and PPEG25 treatments did not alter membrane permeability, total Ca2+ intake, synaptic vesicle release or synaptic activity frequency. These results demonstrate that cationic G4 dendrimers have neurotoxic effects and induce alterations in normal synaptic activity, which are generated by the augmentation of membrane permeability and a subsequent intracellular Ca2+ increase. Interestingly, these toxic effects and synaptic alterations are prevented by the modification of 25% of PAMAM surface with either folate or polyethylene glycol.

  16. Measuring competitiveness

    OpenAIRE

    J. Peter Neary

    2005-01-01

    An earlier version was presented at the Conference on Macroeconomic Perspectives in Honour of Brendan M. Walsh, held at University College Dublin on 7 October, 2005 This paper reviews alternative approaches to measuring an economy?s cost competitiveness and proposes some new measures inspired by the economic theory of index numbers. The indices provide a theoretical benchmark for estimated real effective exchange rates, but differ from standard measures in that they are based on marginal r...

  17. Optimal Competition : A Benchmark for Competition Policy

    NARCIS (Netherlands)

    Boone, J.

    2003-01-01

    This paper introduces optimal competition: the best form of competition in an industry that a competition authority can achieve under the information constraint that it cannot observe firms' effciency levels.We show that the optimal competition outcome in an industry becomes more competitive as more

  18. Synaptic adhesion molecule IgSF11 regulates synaptic transmission and plasticity

    Science.gov (United States)

    Shin, Hyewon; van Riesen, Christoph; Whitcomb, Daniel; Warburton, Julia M.; Jo, Jihoon; Kim, Doyoun; Kim, Sun Gyun; Um, Seung Min; Kwon, Seok-kyu; Kim, Myoung-Hwan; Roh, Junyeop Daniel; Woo, Jooyeon; Jun, Heejung; Lee, Dongmin; Mah, Won; Kim, Hyun; Kaang, Bong-Kiun; Cho, Kwangwook; Rhee, Jeong-Seop; Choquet, Daniel; Kim, Eunjoon

    2016-01-01

    Summary Synaptic adhesion molecules regulate synapse development and plasticity through mechanisms including trans-synaptic adhesion and recruitment of diverse synaptic proteins. We report here that the immunoglobulin superfamily member 11 (IgSF11), a homophilic adhesion molecule preferentially expressed in the brain, is a novel and dual-binding partner of the postsynaptic scaffolding protein PSD-95 and AMPAR glutamate receptors (AMPARs). IgSF11 requires PSD-95 binding for its excitatory synaptic localization. In addition, IgSF11 stabilizes synaptic AMPARs, as shown by IgSF11 knockdown-induced suppression of AMPAR-mediated synaptic transmission and increased surface mobility of AMPARs, measured by high-throughput, single-molecule tracking. IgSF11 deletion in mice leads to suppression of AMPAR-mediated synaptic transmission in the dentate gyrus and long-term potentiation in the CA1 region of the hippocampus. IgSF11 does not regulate the functional characteristics of AMPARs, including desensitization, deactivation, or recovery. These results suggest that IgSF11 regulates excitatory synaptic transmission and plasticity through its tripartite interactions with PSD-95 and AMPARs. PMID:26595655

  19. Synaptic Ribbons Require Ribeye for Electron Density, Proper Synaptic Localization, and Recruitment of Calcium Channels

    Directory of Open Access Journals (Sweden)

    Caixia Lv

    2016-06-01

    Full Text Available Synaptic ribbons are structures made largely of the protein Ribeye that hold synaptic vesicles near release sites in non-spiking cells in some sensory systems. Here, we introduce frameshift mutations in the two zebrafish genes encoding for Ribeye and thus remove Ribeye protein from neuromast hair cells. Despite Ribeye depletion, vesicles collect around ribbon-like structures that lack electron density, which we term “ghost ribbons.” Ghost ribbons are smaller in size but possess a similar number of smaller vesicles and are poorly localized to synapses and calcium channels. These hair cells exhibit enhanced exocytosis, as measured by capacitance, and recordings from afferent neurons post-synaptic to hair cells show no significant difference in spike rates. Our results suggest that Ribeye makes up most of the synaptic ribbon density in neuromast hair cells and is necessary for proper localization of calcium channels and synaptic ribbons.

  20. Ca2+-permeable AMPA receptors in homeostatic synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Hey-Kyoung eLee

    2012-02-01

    Full Text Available Neurons possess diverse mechanisms of homeostatic adaptation to overall changes in neural and synaptic activity, which are critical for proper brain functions. Homeostatic regulation of excitatory synapses has been studied in the context of synaptic scaling, which allows neurons to adjust their excitatory synaptic gain to maintain their activity within a dynamic range. Recent evidence suggests that one of the main mechanisms underlying synaptic scaling is by altering the function of postsynaptic AMPA receptors (AMPARs, including synaptic expression of Ca2+-permeable (CP- AMPARs. CP-AMPARs endow synapses with unique properties, which may benefit adaptation of neurons to periods of inactivity as would occur when a major input is lost. This review will summarize how synaptic expression of CP-AMPARs is regulated during homeostatic synaptic plasticity in the context of synaptic scaling, and will address the potential functional consequences of altering synaptic CP-AMPAR content.

  1. Diacylglycerol Kinases in the Coordination of Synaptic Plasticity.

    Science.gov (United States)

    Lee, Dongwon; Kim, Eunjoon; Tanaka-Yamamoto, Keiko

    2016-01-01

    Synaptic plasticity is activity-dependent modification of the efficacy of synaptic transmission. Although, detailed mechanisms underlying synaptic plasticity are diverse and vary at different types of synapses, diacylglycerol (DAG)-associated signaling has been considered as an important regulator of many forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Recent evidences indicate that DAG kinases (DGKs), which phosphorylate DAG to phosphatidic acid to terminate DAG signaling, are important regulators of LTP and LTD, as supported by the results from mice lacking specific DGK isoforms. This review will summarize these studies and discuss how specific DGK isoforms distinctly regulate different forms of synaptic plasticity at pre- and postsynaptic sites. In addition, we propose a general role of DGKs as coordinators of synaptic plasticity that make local synaptic environments more permissive for synaptic plasticity by regulating DAG concentration and interacting with other synaptic proteins.

  2. Metabolic Turnover of Synaptic Proteins: Kinetics, Interdependencies and Implications for Synaptic Maintenance

    Science.gov (United States)

    Cohen, Laurie D.; Zuchman, Rina; Sorokina, Oksana; Müller, Anke; Dieterich, Daniela C.; Armstrong, J. Douglas; Ziv, Tamar; Ziv, Noam E.

    2013-01-01

    Chemical synapses contain multitudes of proteins, which in common with all proteins, have finite lifetimes and therefore need to be continuously replaced. Given the huge numbers of synaptic connections typical neurons form, the demand to maintain the protein contents of these connections might be expected to place considerable metabolic demands on each neuron. Moreover, synaptic proteostasis might differ according to distance from global protein synthesis sites, the availability of distributed protein synthesis facilities, trafficking rates and synaptic protein dynamics. To date, the turnover kinetics of synaptic proteins have not been studied or analyzed systematically, and thus metabolic demands or the aforementioned relationships remain largely unknown. In the current study we used dynamic Stable Isotope Labeling with Amino acids in Cell culture (SILAC), mass spectrometry (MS), Fluorescent Non–Canonical Amino acid Tagging (FUNCAT), quantitative immunohistochemistry and bioinformatics to systematically measure the metabolic half-lives of hundreds of synaptic proteins, examine how these depend on their pre/postsynaptic affiliation or their association with particular molecular complexes, and assess the metabolic load of synaptic proteostasis. We found that nearly all synaptic proteins identified here exhibited half-lifetimes in the range of 2–5 days. Unexpectedly, metabolic turnover rates were not significantly different for presynaptic and postsynaptic proteins, or for proteins for which mRNAs are consistently found in dendrites. Some functionally or structurally related proteins exhibited very similar turnover rates, indicating that their biogenesis and degradation might be coupled, a possibility further supported by bioinformatics-based analyses. The relatively low turnover rates measured here (∼0.7% of synaptic protein content per hour) are in good agreement with imaging-based studies of synaptic protein trafficking, yet indicate that the metabolic load

  3. International Competitiveness

    OpenAIRE

    Jan Fagerberg

    1988-01-01

    This paper develops and tests a model of differing trends in international competitiveness and economic growth across countries. The model relates the development of market shares at home and abroad to three sets of factors: the ability to compete in technology, the ability to compete in delivery(capacity) and the ability to compete in price. The test, using data for 15 OECD countries for the period 1961-1983, shows that in the medium and long run, factors related to technology and capacity a...

  4. Feedforward inhibition and synaptic scaling--two sides of the same coin?

    Directory of Open Access Journals (Sweden)

    Christian Keck

    Full Text Available Feedforward inhibition and synaptic scaling are important adaptive processes that control the total input a neuron can receive from its afferents. While often studied in isolation, the two have been reported to co-occur in various brain regions. The functional implications of their interactions remain unclear, however. Based on a probabilistic modeling approach, we show here that fast feedforward inhibition and synaptic scaling interact synergistically during unsupervised learning. In technical terms, we model the input to a neural circuit using a normalized mixture model with Poisson noise. We demonstrate analytically and numerically that, in the presence of lateral inhibition introducing competition between different neurons, Hebbian plasticity and synaptic scaling approximate the optimal maximum likelihood solutions for this model. Our results suggest that, beyond its conventional use as a mechanism to remove undesired pattern variations, input normalization can make typical neural interaction and learning rules optimal on the stimulus subspace defined through feedforward inhibition. Furthermore, learning within this subspace is more efficient in practice, as it helps avoid locally optimal solutions. Our results suggest a close connection between feedforward inhibition and synaptic scaling which may have important functional implications for general cortical processing.

  5. EDITORIAL: Physics competitions Physics competitions

    Science.gov (United States)

    Jordens, H.; Mathelitsch, L.

    2011-07-01

    International tests on competences, such as TIMSS or PISA, and knowledge of young students have revealed low average scores in many countries, often unexpectedly. One effective measure to increase the average standard of a population is to bring the last third of the group to a higher level. Therefore, many nations put some effort into this activity. This brings the danger that not enough attention is paid to students at the other end, those who are talented. Indeed, it is a very difficult task for a teacher to support the less able and at the same time challenge the gifted students, to lead them to the limits of their abilities and provide for a smooth transition to university study. Physics competitions have been proven to fulfil these last demands to a large degree, and therefore are an important additional and, to some extent, complementary tool for the promotion of talented students. This third special section on physics competitions in European Journal of Physics contains three papers, each dealing with a different form of science contest. The first continues the series of presentations of tasks performed at the International Young Physicists' Tournament, which was held in Vienna in 2011. First place went to the team from Singapore, and they have put their investigation on vertical oscillations of coupled magnets into written form (not required by the tournament, where an oral presentation and a defence and discussion are the central aspects). Their paper shows how rich in physics this problem is, and what level of solutions high-school students can already achieve. Sadly, those responsible for the organization of last year's International Physics Olympiad did not provide us with a report on this competition. This is unfortunate, since the Olympiad in Zagreb was very successful and, in particular, the experimental tasks were creative and demanding. Very similar to the aims and the execution of the Physics Olympiad is the International Olympiad on Astronomy

  6. Competitiveness in the global economic crisis

    Directory of Open Access Journals (Sweden)

    Gheorghe Popescu

    2009-05-01

    Full Text Available The first challenge is to analyze the concept of "competitiveness" given the fact that in the centre of the great economic analystes' concerns lays from some time the phenomenon of competitiveness, along with the generation of competitive advantage at the organization level and, moreover, at country level. The economic science will have to be rethought, meaning that competitiveness will have to adapt to the new prospects launched today by the global economic crisis.

  7. Synaptic Correlates of Working Memory Capacity.

    Science.gov (United States)

    Mi, Yuanyuan; Katkov, Mikhail; Tsodyks, Misha

    2017-01-18

    Psychological studies indicate that human ability to keep information in readily accessible working memory is limited to four items for most people. This extremely low capacity severely limits execution of many cognitive tasks, but its neuronal underpinnings remain unclear. Here we show that in the framework of synaptic theory of working memory, capacity can be analytically estimated to scale with characteristic time of short-term synaptic depression relative to synaptic current time constant. The number of items in working memory can be regulated by external excitation, enabling the system to be tuned to the desired load and to clear the working memory of currently held items to make room for new ones. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Astrocytes optimize the synaptic transmission of information.

    Directory of Open Access Journals (Sweden)

    Suhita Nadkarni

    2008-05-01

    Full Text Available Chemical synapses transmit information via the release of neurotransmitter-filled vesicles from the presynaptic terminal. Using computational modeling, we predict that the limited availability of neurotransmitter resources in combination with the spontaneous release of vesicles limits the maximum degree of enhancement of synaptic transmission. This gives rise to an optimal tuning that depends on the number of active zones. There is strong experimental evidence that astrocytes that enwrap synapses can modulate the probabilities of vesicle release through bidirectional signaling and hence regulate synaptic transmission. For low-fidelity hippocampal synapses, which typically have only one or two active zones, the predicted optimal values lie close to those determined by experimentally measured astrocytic feedback, suggesting that astrocytes optimize synaptic transmission of information.

  9. Synaptic maturation at cortical projections to the lateral amygdala in a mouse model of Rett syndrome.

    Directory of Open Access Journals (Sweden)

    Frédéric Gambino

    Full Text Available Rett syndrome (RTT is a neuro-developmental disorder caused by loss of function of Mecp2--methyl-CpG-binding protein 2--an epigenetic factor controlling DNA transcription. In mice, removal of Mecp2 in the forebrain recapitulates most of behavioral deficits found in global Mecp2 deficient mice, including amygdala-related hyper-anxiety and lack of social interaction, pointing a role of Mecp2 in emotional learning. Yet very little is known about the establishment and maintenance of synaptic function in the adult amygdala and the role of Mecp2 in these processes. Here, we performed a longitudinal examination of synaptic properties at excitatory projections to principal cells of the lateral nucleus of the amygdala (LA in Mecp2 mutant mice and their wild-type littermates. We first show that during animal life, Cortico-LA projections switch from a tonic to a phasic mode, whereas Thalamo-LA synapses are phasic at all ages. In parallel, we observed a specific elimination of Cortico-LA synapses and a decrease in their ability of generating presynaptic long term potentiation. In absence of Mecp2, both synaptic maturation and synaptic elimination were exaggerated albeit still specific to cortical projections. Surprisingly, associative LTP was unaffected at Mecp2 deficient synapses suggesting that synaptic maintenance rather than activity-dependent synaptic learning may be causal in RTT physiopathology. Finally, because the timing of synaptic evolution was preserved, we propose that some of the developmental effects of Mecp2 may be exerted within an endogenous program and restricted to synapses which maturate during animal life.

  10. Heterosynaptic Plasticity Prevents Runaway Synaptic Dynamics

    Science.gov (United States)

    Chen, Jen-Yung; Lonjers, Peter; Lee, Christopher; Chistiakova, Marina; Volgushev, Maxim

    2013-01-01

    Spike timing-dependent plasticity (STDP) and other conventional Hebbian-type plasticity rules are prone to produce runaway dynamics of synaptic weights. Once potentiated, a synapse would have higher probability to lead to spikes and thus to be further potentiated, but once depressed, a synapse would tend to be further depressed. The runaway synaptic dynamics can be prevented by precisely balancing STDP rules for potentiation and depression; however, experimental evidence shows a great variety of potentiation and depression windows and magnitudes. Here we show that modifications of synapses to layer 2/3 pyramidal neurons from rat visual and auditory cortices in slices can be induced by intracellular tetanization: bursts of postsynaptic spikes without presynaptic stimulation. Induction of these heterosynaptic changes depended on the rise of intracellular calcium, and their direction and magnitude correlated with initial state of release mechanisms. We suggest that this type of plasticity serves as a mechanism that stabilizes the distribution of synaptic weights and prevents their runaway dynamics. To test this hypothesis, we develop a cortical neuron model implementing both homosynaptic (STDP) and heterosynaptic plasticity with properties matching the experimental data. We find that heterosynaptic plasticity effectively prevented runaway dynamics for the tested range of STDP and input parameters. Synaptic weights, although shifted from the original, remained normally distributed and nonsaturated. Our study presents a biophysically constrained model of how the interaction of different forms of plasticity—Hebbian and heterosynaptic—may prevent runaway synaptic dynamics and keep synaptic weights unsaturated and thus capable of further plastic changes and formation of new memories. PMID:24089497

  11. Mediterranean Way of Competitiveness

    Directory of Open Access Journals (Sweden)

    Art Kovacic

    2010-12-01

    Full Text Available The Mediterranean area have a special concept of competitiveness topic. Normally is that region not so industrial and knowledge based oriented as a North Europe.That countries can't reach the same development level as the north one. Lisbon's and Goethenburg's strategies create the main framework of development programme. Mediterranean programme is such a case. European internal market has forced the EU countries to increase competitiveness. The economic prosperity of countries is associated with their ability to generate or attract economic activities which are able to increase income by performing well on themarket. Financial crisis in the EU has changed the look on the competitiveness research. Economy in the main countries has to find way of recovery. Former giants of the financial world have found themselves suddenly facing bankruptcy.Inevitably, the crisis is also having an effect on households and businesses - economic growth has slowed sharply and in some EU countries unemployment has begun to increase for the first time in several years. Form that perspective we have to find the right solution of European competitiveness.

  12. Flexible Proton-Gated Oxide Synaptic Transistors on Si Membrane.

    Science.gov (United States)

    Zhu, Li Qiang; Wan, Chang Jin; Gao, Ping Qi; Liu, Yang Hui; Xiao, Hui; Ye, Ji Chun; Wan, Qing

    2016-08-24

    Ion-conducting materials have received considerable attention for their applications in fuel cells, electrochemical devices, and sensors. Here, flexible indium zinc oxide (InZnO) synaptic transistors with multiple presynaptic inputs gated by proton-conducting phosphorosilicate glass-based electrolyte films are fabricated on ultrathin Si membranes. Transient characteristics of the proton gated InZnO synaptic transistors are investigated, indicating stable proton-gating behaviors. Short-term synaptic plasticities are mimicked on the proposed proton-gated synaptic transistors. Furthermore, synaptic integration regulations are mimicked on the proposed synaptic transistor networks. Spiking logic modulations are realized based on the transition between superlinear and sublinear synaptic integration. The multigates coupled flexible proton-gated oxide synaptic transistors may be interesting for neuroinspired platforms with sophisticated spatiotemporal information processing.

  13. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    Science.gov (United States)

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  14. Opposing Synaptic Regulation of Amyloid-β Metabolism by NMDA Receptors In Vivo

    Science.gov (United States)

    Verges, Deborah K.; Restivo, Jessica L.; Goebel, Whitney D.; Holtzman, David M.; Cirrito, John R.

    2012-01-01

    The concentration of amyloid-β (Aβ) within the brain extracellular space is one determinant of whether the peptide will aggregate into toxic species that are important in Alzheimer’s disease (AD) pathogenesis. Some types of synaptic activity can regulate Aβ levels. Here we demonstrate two distinct mechanisms that are simultaneously activated by NMDA receptors and regulate brain interstitial fluid (ISF) Aβ levels in opposite directions in the living mouse. Depending on the dose of NMDA administered locally to the brain, ISF Aβ levels either increase or decrease. Low doses of NMDA increase action potentials and synaptic transmission which leads to an elevation in synapticgeneration. In contrast, high doses of NMDA activate signaling pathways that lead to ERK (extracellular-regulated kinase) activation, which reduces processing of APP into Aβ. This depression in Aβ via APP processing occurs despite dramatically elevated synaptic activity. Both of these synaptic mechanisms are simultaneously active, with the balance between them determining whether ISF Aβ levels will increase or decrease. NMDA receptor antagonists increase ISF Aβ levels, suggesting that basal activity at these receptors normally suppresses Aβ levels in vivo. This has implications for understanding normal Aβ metabolism as well as AD pathogenesis. PMID:21813692

  15. Synaptic network activity induces neuronal differentiation of adult hippocampal precursor cells through BDNF signaling

    Directory of Open Access Journals (Sweden)

    Harish Babu

    2009-09-01

    Full Text Available Adult hippocampal neurogenesis is regulated by activity. But how do neural precursor cells in the hippocampus respond to surrounding network activity and translate increased neural activity into a developmental program? Here we show that long-term potential (LTP-like synaptic activity within a cellular network of mature hippocampal neurons promotes neuronal differentiation of newly generated cells. In co-cultures of precursor cells with primary hippocampal neurons, LTP-like synaptic plasticity induced by addition of glycine in Mg2+-free media for 5 min, produced synchronous network activity and subsequently increased synaptic strength between neurons. Furthermore, this synchronous network activity led to a significant increase in neuronal differentiation from the co-cultured neural precursor cells. When applied directly to precursor cells, glycine and Mg2+-free solution did not induce neuronal differentiation. Synaptic plasticity-induced neuronal differentiation of precursor cells was observed in the presence of GABAergic neurotransmission blockers but was dependent on NMDA-mediated Ca2+ influx. Most importantly, neuronal differentiation required the release of brain-derived neurotrophic factor (BDNF from the underlying substrate hippocampal neurons as well as TrkB receptor phosphorylation in precursor cells. This suggests that activity-dependent stem cell differentiation within the hippocampal network is mediated via synaptically evoked BDNF signaling.

  16. Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors.

    Science.gov (United States)

    Wu, Guodong; Feng, Ping; Wan, Xiang; Zhu, Liqiang; Shi, Yi; Wan, Qing

    2016-03-24

    Recent progress in using biomaterials to fabricate functional electronics has got growing attention for the new generation of environmentally friendly and biocompatible electronic devices. As a kind of biological material with rich source, proteins are essential natural component of all organisms. At the same time, artificial synaptic devices are of great significance for neuromorphic systems because they can emulate the signal process and memory behaviors of biological synapses. In this report, natural chicken albumen with high proton conductivity was used as the coupling electrolyte film for organic/inorganic hybrid synaptic devices fabrication. Some important synaptic functions including paired-pulse facilitation, dynamic filtering, short-term to long-term memory transition and spatial summation and shunting inhibition were successfully mimicked. Our results are very interesting for biological friendly artificial neuron networks and neuromorphic systems.

  17. Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain

    Directory of Open Access Journals (Sweden)

    Christian Bonansco

    2016-01-01

    Full Text Available Synaptic plasticity is the capacity generated by experience to modify the neural function and, thereby, adapt our behaviour. Long-term plasticity of glutamatergic and GABAergic transmission occurs in a concerted manner, finely adjusting the excitatory-inhibitory (E/I balance. Imbalances of E/I function are related to several neurological diseases including epilepsy. Several evidences have demonstrated that astrocytes are able to control the synaptic plasticity, with astrocytes being active partners in synaptic physiology and E/I balance. Here, we revise molecular evidences showing the epileptic stage as an abnormal form of long-term brain plasticity and propose the possible participation of astrocytes to the abnormal increase of glutamatergic and decrease of GABAergic neurotransmission in epileptic networks.

  18. Distributed Wind Competitiveness Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    2016-05-01

    The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. Manufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. This fact sheet describes the CIP and funding awarded as part of the project.

  19. A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnO{sub x}–Al{sub 2}O{sub 3} thin film structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. K.; Chen, T. P., E-mail: echentp@ntu.edu.sg; Liu, P.; Zhang, Q. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hu, S. G. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Liu, Y. [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Lee, P. S. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-06-28

    In this work, a synaptic transistor based on the indium gallium zinc oxide (IGZO)–aluminum oxide (Al{sub 2}O{sub 3}) thin film structure, which uses ultraviolet (UV) light pulses as the pre-synaptic stimulus, has been demonstrated. The synaptic transistor exhibits the behavior of synaptic plasticity like the paired-pulse facilitation. In addition, it also shows the brain's memory behaviors including the transition from short-term memory to long-term memory and the Ebbinghaus forgetting curve. The synapse-like behavior and memory behaviors of the transistor are due to the trapping and detrapping processes of the holes, which are generated by the UV pulses, at the IGZO/Al{sub 2}O{sub 3} interface and/or in the Al{sub 2}O{sub 3} layer.

  20. Synaptic control of motoneuronal excitability

    DEFF Research Database (Denmark)

    Rekling, J C; Funk, G D; Bayliss, D A

    2000-01-01

    Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefor...

  1. Input significance analysis: feature selection through synaptic ...

    African Journals Online (AJOL)

    This work is interested in ISA methods that can manipulate synaptic weights namely. Connection Weights (CW) and Garson's Algorithm (GA) and the classifier selected is. Evolving Fuzzy Neural Networks (EFuNNs). Firstly, it test FS method on a dataset selected from the UCI Machine Learning Repository and executed in an ...

  2. Synaptic plasticity and the warburg effect

    KAUST Repository

    Magistretti, Pierre J.

    2014-01-01

    Functional brain imaging studies show that in certain brain regions glucose utilization exceeds oxygen consumption, indicating the predominance of aerobic glycolysis. In this issue, Goyal et al. (2014) report that this metabolic profile is associated with an enrichment in the expression of genes involved in synaptic plasticity and remodeling processes. © 2014 Elsevier Inc.

  3. P2X Receptors and Synaptic Plasticity

    Czech Academy of Sciences Publication Activity Database

    Pankratov, Y.; Lalo, U.; Krishtal, A.; Verkhratsky, Alexei

    2009-01-01

    Roč. 158, č. 1 (2009), s. 137-148 ISSN 0306-4522 Institutional research plan: CEZ:AV0Z50390512 Keywords : ATP * P2X receptors * synaptic plasticity Subject RIV: FH - Neurology Impact factor: 3.292, year: 2009

  4. Neuronal cytoskeleton in synaptic plasticity and regeneration.

    Science.gov (United States)

    Gordon-Weeks, Phillip R; Fournier, Alyson E

    2014-04-01

    During development, dynamic changes in the axonal growth cone and dendrite are necessary for exploratory movements underlying initial axo-dendritic contact and ultimately the formation of a functional synapse. In the adult central nervous system, an impressive degree of plasticity is retained through morphological and molecular rearrangements in the pre- and post-synaptic compartments that underlie the strengthening or weakening of synaptic pathways. Plasticity is regulated by the interplay of permissive and inhibitory extracellular cues, which signal through receptors at the synapse to regulate the closure of critical periods of developmental plasticity as well as by acute changes in plasticity in response to experience and activity in the adult. The molecular underpinnings of synaptic plasticity are actively studied and it is clear that the cytoskeleton is a key substrate for many cues that affect plasticity. Many of the cues that restrict synaptic plasticity exhibit residual activity in the injured adult CNS and restrict regenerative growth by targeting the cytoskeleton. Here, we review some of the latest insights into how cytoskeletal remodeling affects neuronal plasticity and discuss how the cytoskeleton is being targeted in an effort to promote plasticity and repair following traumatic injury in the central nervous system. © 2013 International Society for Neurochemistry.

  5. Basic mechanisms for recognition and transport of synaptic cargos

    NARCIS (Netherlands)

    M.A. Schlager (Max); C.C. Hoogenraad (Casper)

    2009-01-01

    textabstractSynaptic cargo trafficking is essential for synapse formation, function and plasticity. In order to transport synaptic cargo, such as synaptic vesicle precursors, mitochondria, neurotransmitter receptors and signaling proteins to their site of action, neurons make use of molecular motor

  6. Power industry and competition

    International Nuclear Information System (INIS)

    Recknagel, H.

    1988-01-01

    A task group on antritrust law has been set in by the Federal Ministry of Economics in order to again investigate the position of the utilities within the framework of the law against restraints on competition, (GWB). The task group's report states that from the power industry's perspective, there is no reason to modify the existing system created by sections 103, 103a of the GWB. The EC internal market to come, and enhanced use of coal for power generation to be continued beyond the year 1995 are topics that will keep politicians, utilities, and lawmakers in this field busy enough. In such a situation, the legislator cannot afford a discovery trip into unexplored, theoretical impacts of enhanced competition on the power industry. (orig./DG) [de

  7. Electrical machines, in particular generators: superconductor technology in competition with improved conventional technology; Elektrische Maschinen, insbesondere Generatoren: Supraleiter-Technologie im Wettbewerb mit verbesserter konventioneller Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Joho, R.; Ginet, C.; Schleussinger, A.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) summarises work done within the framework of a second project on the use of superconductor technology and conventional technology in electrical machines. The two variants, a generator using second-generation high-temperature superconductors (HTSC) and one using improved conventional technology are described and compared. The use of various coolants for the windings of generators of various types and usage is described and the optimisation of winding-geometry is discussed. The refrigeration equipment used to provide low-temperature coolant is looked at and the energy balance for the combination of generator and cooling system is discussed. The conclusions drawn by the project are presented and the advantages offered by both variants are discussed.

  8. Bilinearity in spatiotemporal integration of synaptic inputs.

    Directory of Open Access Journals (Sweden)

    Songting Li

    2014-12-01

    Full Text Available Neurons process information via integration of synaptic inputs from dendrites. Many experimental results demonstrate dendritic integration could be highly nonlinear, yet few theoretical analyses have been performed to obtain a precise quantitative characterization analytically. Based on asymptotic analysis of a two-compartment passive cable model, given a pair of time-dependent synaptic conductance inputs, we derive a bilinear spatiotemporal dendritic integration rule. The summed somatic potential can be well approximated by the linear summation of the two postsynaptic potentials elicited separately, plus a third additional bilinear term proportional to their product with a proportionality coefficient [Formula: see text]. The rule is valid for a pair of synaptic inputs of all types, including excitation-inhibition, excitation-excitation, and inhibition-inhibition. In addition, the rule is valid during the whole dendritic integration process for a pair of synaptic inputs with arbitrary input time differences and input locations. The coefficient [Formula: see text] is demonstrated to be nearly independent of the input strengths but is dependent on input times and input locations. This rule is then verified through simulation of a realistic pyramidal neuron model and in electrophysiological experiments of rat hippocampal CA1 neurons. The rule is further generalized to describe the spatiotemporal dendritic integration of multiple excitatory and inhibitory synaptic inputs. The integration of multiple inputs can be decomposed into the sum of all possible pairwise integration, where each paired integration obeys the bilinear rule. This decomposition leads to a graph representation of dendritic integration, which can be viewed as functionally sparse.

  9. Differential Regulation of Synaptic Vesicle Tethering and Docking by UNC-18 and TOM-1.

    Science.gov (United States)

    Gracheva, Elena O; Maryon, Ed B; Berthelot-Grosjean, Martine; Richmond, Janet E

    2010-01-01

    The assembly of SNARE complexes between syntaxin, SNAP-25 and synaptobrevin is required to prime synaptic vesicles for fusion. Since Munc18 and tomosyn compete for syntaxin interactions, the interplay between these proteins is predicted to be important in regulating synaptic transmission. We explored this possibility, by examining genetic interactions between C. elegans unc-18(Munc18), unc-64(syntaxin) and tom-1(tomosyn). We have previously demonstrated that unc-18 mutants have reduced synaptic transmission, whereas tom-1 mutants exhibit enhanced release. Here we show that the unc-18 mutant release defect is associated with loss of two morphologically distinct vesicle pools; those tethered within 25 nm of the plasma membrane and those docked with the plasma membrane. In contrast, priming defective unc-13 mutants accumulate tethered vesicles, while docked vesicles are greatly reduced, indicating tethering is UNC-18-dependent and occurs in the absence of priming. C. elegans unc-64 mutants phenocopy unc-18 mutants, losing both tethered and docked vesicles, whereas overexpression of open syntaxin preferentially increases vesicle docking, suggesting UNC-18/closed syntaxin interactions are responsible for vesicle tethering. Given the competition between vertebrate tomosyn and Munc18, for syntaxin binding, we hypothesized that C. elegans TOM-1 may inhibit both UNC-18-dependent vesicle targeting steps. Consistent with this hypothesis, tom-1 mutants exhibit enhanced UNC-18 plasma membrane localization and a concomitant increase in both tethered and docked synaptic vesicles. Furthermore, in tom-1;unc-18 double mutants the docked, primed vesicle pool is preferentially rescued relative to unc-18 single mutants. Together these data provide evidence for the differential regulation of two vesicle targeting steps by UNC-18 and TOM-1 through competitive interactions with syntaxin.

  10. Differential regulation of synaptic vesicle tethering and docking by UNC-18 and TOM-1

    Directory of Open Access Journals (Sweden)

    Elena O Gracheva

    2010-10-01

    Full Text Available The assembly of SNARE complexes between syntaxin, SNAP-25 and synaptobrevin is required to prime synaptic vesicles for fusion. Since Munc18 and tomosyn compete for syntaxin interactions, the interplay between these proteins is predicted to be important in regulating synaptic transmission. We explored this possibility, by examining genetic interactions between C. elegans unc-18(Munc18, unc-64(syntaxin and tom-1(tomosyn. We have previously demonstrated that unc-18 mutants have reduced synaptic transmission, whereas tom-1 mutants exhibit enhanced release. Here we show that the unc-18 mutant release defect is associated with loss of two morphologically distinct vesicle pools; those tethered within 25nm of the plasma membrane and those docked with the plasma membrane. In contrast, priming defective unc-13 mutants accumulate tethered vesicles, while docked vesicles are greatly reduced, indicating tethering is UNC-18-dependent and occurs in the absence of priming. C. elegans unc-64 mutants phenocopy unc-18 mutants, losing both tethered and docked vesicles, whereas overexpression of open syntaxin preferentially increases vesicle docking, suggesting UNC-18/closed syntaxin interactions are responsible for vesicle tethering. Given the competition between vertebrate tomosyn and Munc18, for syntaxin binding, we hypothesized that C. elegans TOM-1 may inhibit both UNC-18-dependent vesicle targeting steps. Consistent with this hypothesis, tom-1 mutants exhibit enhanced UNC-18 plasma membrane localization and a concomitant increase in both tethered and docked synaptic vesicles. Furthermore, in tom-1;unc-18 double mutants the docked, primed vesicle pool is preferentially rescued relative to unc-18 single mutants. Together these data provide evidence for the differential regulation of two vesicle targeting steps by UNC-18 and TOM-1 through competitive interactions with syntaxin

  11. Differential regulation of synaptic AP-2/clathrin vesicle uncoating in synaptic plasticity.

    Science.gov (United States)

    Candiello, Ermes; Mishra, Ratnakar; Schmidt, Bernhard; Jahn, Olaf; Schu, Peter

    2017-11-17

    AP-1/σ1B-deficiency causes X-linked intellectual disability. AP-1/σ1B -/- mice have impaired synaptic vesicle recycling, fewer synaptic vesicles and enhanced endosome maturation mediated by AP-1/σ1A. Despite defects in synaptic vesicle recycling synapses contain two times more endocytic AP-2 clathrin-coated vesicles. We demonstrate increased formation of two classes of AP-2/clathrin coated vesicles. One which uncoats readily and a second with a stabilised clathrin coat. Coat stabilisation is mediated by three molecular mechanisms: reduced recruitment of Hsc70 and synaptojanin1 and enhanced μ2/AP-2 phosphorylation and activation. Stabilised AP-2 vesicles are enriched in the structural active zone proteins Git1 and stonin2 and synapses contain more Git1. Endocytosis of the synaptic vesicle exocytosis regulating Munc13 isoforms are differentially effected. Regulation of synaptic protein endocytosis by the differential stability of AP-2/clathrin coats is a novel molecular mechanism of synaptic plasticity.

  12. Robotics Competitions: An Overview of First© Events and VEX© Competitions

    Science.gov (United States)

    Habib, Maria A.

    2012-01-01

    Robotics competitions generate excitement and raise the profile of a robotics program. This article provides an overview of robotics competitions, concentrating on those sponsored by FIRST (For Inspiration and Recognition of Science and Technology) and RECF (Robotics Education and Competition Foundation). FIRST® LEGO® League and VEX® robotics…

  13. Emerging Links between Homeostatic Synaptic Plasticity and Neurological Disease

    Directory of Open Access Journals (Sweden)

    Dion eDickman

    2013-11-01

    Full Text Available Homeostatic signaling systems are ubiquitous forms of biological regulation, having been studied for hundreds of years in the context of diverse physiological processes including body temperature and osmotic balance. However, only recently has this concept been brought to the study of excitatory and inhibitory electrical activity that the nervous system uses to establish and maintain stable communication. Synapses are a primary target of neuronal regulation with a variety of studies over the past 15 years demonstrating that these cellular junctions are under bidirectional homeostatic control. Recent work from an array of diverse systems and approaches has revealed exciting new links between homeostatic synaptic plasticity and a variety of seemingly disparate neurological and psychiatric diseases. These include autism spectrum disorders, intellectual disabilities, schizophrenia, and Fragile X Syndrome. Although the molecular mechanisms through which defective homeostatic signaling may lead to disease pathogenesis remain unclear, rapid progress is likely to be made in the coming years using a powerful combination of genetic, imaging, electrophysiological, and next generation sequencing approaches. Importantly, understanding homeostatic synaptic plasticity at a cellular and molecular level may lead to developments in new therapeutic innovations to treat these diseases. In this review we will examine recent studies that demonstrate homeostatic control of postsynaptic protein translation, retrograde signaling, and presynaptic function that may contribute to the etiology of complex neurological and psychiatric diseases.

  14. Stochastic single-molecule dynamics of synaptic membrane protein domains

    Science.gov (United States)

    Kahraman, Osman; Li, Yiwei; Haselwandter, Christoph A.

    2016-09-01

    Motivated by single-molecule experiments on synaptic membrane protein domains, we use a stochastic lattice model to study protein reaction and diffusion processes in crowded membranes. We find that the stochastic reaction-diffusion dynamics of synaptic proteins provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the single-molecule trajectories observed for synaptic proteins, and spatially inhomogeneous protein lifetimes at the cell membrane. Our results suggest that central aspects of the single-molecule and collective dynamics observed for membrane protein domains can be understood in terms of stochastic reaction-diffusion processes at the cell membrane.

  15. Power market competition

    International Nuclear Information System (INIS)

    Kelly, J.

    1998-01-01

    In the Unites States the prospect of greater competition in wholesale power market was immediately eclipsed by talk of retail competition. Attempts to move to retail competition have been costly and complex. Prudent public policy and economic analyses suggest that retail competition not be implemented until it can first be demonstrated that effective competition exists in wholesale power markets [it

  16. Lunabotics Mining Competition

    Science.gov (United States)

    Mueller, Rob; Murphy, Gloria

    2010-01-01

    This slide presentation describes a competition to design a lunar robot (lunabot) that can be controlled either remotely or autonomously, isolated from the operator, and is designed to mine a lunar aggregate simulant. The competition is part of a systems engineering curriculum. The 2010 competition winners in five areas of the competition were acknowledged, and the 2011 competition was announced.

  17. Competitive spirit

    Science.gov (United States)

    2000-01-01

    Leicester University will host the 65 international teams of students who will assemble in July for this year's International Physics Olympiad . The last time the Olympiad came to the UK was in 1986 in London, and it was the notable enthusiasm of the Leicester Physics and Astronomy department which persuaded the Olympiad Committee to give them the chance of organizing the prestigious event. The students taking part from all over the world are studying physics at A-level or an equivalent standard and they will take part in an intellectual marathon of theoretical and practical examinations. Each national team comprises five students selected from three rounds of competition and the teams will receive an official welcome from the city, as well as opportunities to visit some of the important educational and cultural centres of the surrounding region. The finalists will also be able to test their skills and initiative at the Challenger Learning Centre, which forms part of Leicester's new National Space Science Centre. Specific information on the event can be found on the Olympiad-2000 website at www.star.le.ac.uk/IphO-2000 . The Rudolf Ortvay problem solving contest in physics, which takes place in November, is a tradition of Eötvös University in Budapest, Hungary. The competition was first opened to international participants in 1998, enabling students from universities around the world to show their knowledge, ingenuity, problem-solving skills and physical insight into problems that are far beyond routine level. The problems (30 - 35 each year) are chosen from different branches of theoretical as well as applied physics. They have varying levels of difficulty, and every contestant can send solutions for ten problems. The focus is not on school-level problem-solving routines but rather on the `physical' way of thinking, recognition of the heart of the problem and an appropriate choice of mathematics. The majority of the assigned problems are original, few having

  18. Influence of Synaptic Depression on Memory Storage Capacity

    Science.gov (United States)

    Otsubo, Yosuke; Nagata, Kenji; Oizumi, Masafumi; Okada, Masato

    2011-08-01

    Synaptic efficacy between neurons is known to change within a short time scale dynamically. Neurophysiological experiments show that high-frequency presynaptic inputs decrease synaptic efficacy between neurons. This phenomenon is called synaptic depression, a short term synaptic plasticity. Many researchers have investigated how the synaptic depression affects the memory storage capacity. However, the noise has not been taken into consideration in their analysis. By introducing ``temperature'', which controls the level of the noise, into an update rule of neurons, we investigate the effects of synaptic depression on the memory storage capacity in the presence of the noise. We analytically compute the storage capacity by using a statistical mechanics technique called Self Consistent Signal to Noise Analysis (SCSNA). We find that the synaptic depression decreases the storage capacity in the case of finite temperature in contrast to the case of the low temperature limit, where the storage capacity does not change.

  19. Carbon Nanotube Synaptic Transistor Network for Pattern Recognition.

    Science.gov (United States)

    Kim, Sungho; Yoon, Jinsu; Kim, Hee-Dong; Choi, Sung-Jin

    2015-11-18

    Inspired by the human brain, a neuromorphic system combining complementary metal-oxide semiconductor (CMOS) and adjustable synaptic devices may offer new computing paradigms by enabling massive neural-network parallelism. In particular, synaptic devices, which are capable of emulating the functions of biological synapses, are used as the essential building blocks for an information storage and processing system. However, previous synaptic devices based on two-terminal resistive devices remain challenging because of their variability and specific physical mechanisms of resistance change, which lead to a bottleneck in the implementation of a high-density synaptic device network. Here we report that a three-terminal synaptic transistor based on carbon nanotubes can provide reliable synaptic functions that encode relative timing and regulate weight change. In addition, using system-level simulations, the developed synaptic transistor network associated with CMOS circuits can perform unsupervised learning for pattern recognition using a simplified spike-timing-dependent plasticity scheme.

  20. Tripartite synapses: astrocytes process and control synaptic information.

    Science.gov (United States)

    Perea, Gertrudis; Navarrete, Marta; Araque, Alfonso

    2009-08-01

    The term 'tripartite synapse' refers to a concept in synaptic physiology based on the demonstration of the existence of bidirectional communication between astrocytes and neurons. Consistent with this concept, in addition to the classic 'bipartite' information flow between the pre- and postsynaptic neurons, astrocytes exchange information with the synaptic neuronal elements, responding to synaptic activity and, in turn, regulating synaptic transmission. Because recent evidence has demonstrated that astrocytes integrate and process synaptic information and control synaptic transmission and plasticity, astrocytes, being active partners in synaptic function, are cellular elements involved in the processing, transfer and storage of information by the nervous system. Consequently, in contrast to the classically accepted paradigm that brain function results exclusively from neuronal activity, there is an emerging view, which we review herein, in which brain function actually arises from the coordinated activity of a network comprising both neurons and glia.

  1. Distributed Wind Competitiveness Improvement Project

    Energy Technology Data Exchange (ETDEWEB)

    2018-02-27

    The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy Laboratory. Manufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. This fact sheet describes the CIP and funding awarded as part of the project.ufacturers of small and medium wind turbines are awarded cost-shared grants via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine designs certified to national testing standards. This fact sheet describes the CIP and funding awarded as part of the project.

  2. Effects of active conductance distribution over dendrites on the synaptic integration in an identified nonspiking interneuron.

    Directory of Open Access Journals (Sweden)

    Akira Takashima

    Full Text Available The synaptic integration in individual central neuron is critically affected by how active conductances are distributed over dendrites. It has been well known that the dendrites of central neurons are richly endowed with voltage- and ligand-regulated ion conductances. Nonspiking interneurons (NSIs, almost exclusively characteristic to arthropod central nervous systems, do not generate action potentials and hence lack voltage-regulated sodium channels, yet having a variety of voltage-regulated potassium conductances on their dendritic membrane including the one similar to the delayed-rectifier type potassium conductance. It remains unknown, however, how the active conductances are distributed over dendrites and how the synaptic integration is affected by those conductances in NSIs and other invertebrate neurons where the cell body is not included in the signal pathway from input synapses to output sites. In the present study, we quantitatively investigated the functional significance of active conductance distribution pattern in the spatio-temporal spread of synaptic potentials over dendrites of an identified NSI in the crayfish central nervous system by computer simulation. We systematically changed the distribution pattern of active conductances in the neuron's multicompartment model and examined how the synaptic potential waveform was affected by each distribution pattern. It was revealed that specific patterns of nonuniform distribution of potassium conductances were consistent, while other patterns were not, with the waveform of compound synaptic potentials recorded physiologically in the major input-output pathway of the cell, suggesting that the possibility of nonuniform distribution of potassium conductances over the dendrite cannot be excluded as well as the possibility of uniform distribution. Local synaptic circuits involving input and output synapses on the same branch or on the same side were found to be potentially affected under

  3. Inter-synaptic learning of combination rules in a cortical network model

    Directory of Open Access Journals (Sweden)

    Frédéric eLavigne

    2014-08-01

    Full Text Available Selecting responses in working memory while processing combinations of stimuli depends strongly on their relations stored in long-term memory. However, the learning of XOR-like combinations of stimuli and responses according to complex rules raises the issue of the non-linear separability of the responses within the space of stimuli. One proposed solution is to add neurons that perform a stage of non-linear processing between the stimuli and responses, at the cost of increasing the network size. Based on the non-linear integration of synaptic inputs within dendritic compartments, we propose here an inter-synaptic (IS learning algorithm that determines the probability of potentiating/depressing each synapse as a function of the co-activity of the other synapses within the same dendrite. The IS learning is effective with random connectivity and without either a priori wiring or additional neurons.Our results show that IS learning generates efficacy values that are sufficient for the processing of XOR-like combinations, on the basis of the sole correlational structure of the stimuli and responses. We analyze the types of dendrites involved in terms of the number of synapses from pre-synaptic neurons coding for the stimuli and responses. The synaptic efficacy values obtained show that different dendrites specialize in the detection of different combinations of stimuli. The resulting behavior of the cortical network model is analyzed as a function of inter-synaptic vs. Hebbian learning. Combinatorial priming effects show that the retrospective activity of neurons coding for the stimuli trigger XOR-like combination-selective prospective activity of neurons coding for the expected response. The synergistic effects of inter-synaptic learning and of mixed-coding neurons are simulated. The results show that, although each mechanism is sufficient by itself, their combined effects improve the performance of the network.

  4. Presynaptic inhibition of GABAergic synaptic transmission by adenosine in mouse hypothalamic hypocretin neurons.

    Science.gov (United States)

    Xia, J X; Xiong, J X; Wang, H K; Duan, S M; Ye, J N; Hu, Z A

    2012-01-10

    Hypocretin neurons in the lateral hypothalamus, a new wakefulness-promoting center, have been recently regarded as an important target involved in endogenous adenosine-regulating sleep homeostasis. The GABAergic synaptic transmissions are the main inhibitory afferents to hypocretin neurons, which play an important role in the regulation of excitability of these neurons. The inhibitory effect of adenosine, a homeostatic sleep-promoting factor, on the excitatory glutamatergic synaptic transmissions in hypocretin neurons has been well documented, whether adenosine also modulates these inhibitory GABAergic synaptic transmissions in these neurons has not been investigated. In this study, the effect of adenosine on inhibitory postsynaptic currents (IPSCs) in hypocretin neurons was examined by using perforated patch-clamp recordings in the acute hypothalamic slices. The findings demonstrated that adenosine suppressed the amplitude of evoked IPSCs in a dose-dependent manner, which was completely abolished by 8-cyclopentyltheophylline (CPT), a selective antagonist of adenosine A1 receptor but not adenosine A2 receptor antagonist 3,7-dimethyl-1-(2-propynyl) xanthine. A presynaptic origin was suggested as following: adenosine increased paired-pulse ratio as well as reduced GABAergic miniature IPSC frequency without affecting the miniature IPSC amplitude. Further findings demonstrated that when the frequency of electrical stimulation was raised to 10 Hz, but not 1 Hz, a time-dependent depression of evoked IPSC amplitude was detected in hypocretin neurons, which could be partially blocked by CPT. However, under a higher frequency at 100 Hz stimulation, CPT had no action on the depressed GABAergic synaptic transmission induced by such tetanic stimulation in these hypocretin neurons. These results suggest that endogenous adenosine generated under certain stronger activities of synaptic transmissions exerts an inhibitory effect on GABAergic synaptic transmission in hypocretin

  5. Generation of Monoclonal Antibodies against Ag85A Antigen of Mycobacterium tuberculosis and Application in a Competitive ELISA for Serodiagnosis of Bovine Tuberculosis

    Directory of Open Access Journals (Sweden)

    Zhengzhong Xu

    2017-06-01

    Full Text Available The Ag85 complex functions as the main secretory protein of Mycobacterium tuberculosis (M. tuberculosis and BCG. This complex is composed of the proteins, Ag85A, Ag85B, and Ag85C, with Ag85A thought to play the largest role within the complex. However, the lack of commercially available monoclonal antibodies (mAbs against Ag85A still hinders the biological and applicative research on this protein. In this study, we developed and identified anti-Ag85A mAbs, and five hybridoma cells were established. Using the indirect immunofluorescence test, we found that two anti-Ag85A mAbs did not cross-react with Ag85B and/or Ag85C. In addition, we showed that all of the mAbs tested in this study are able to react with endogenous Ag85A protein in BCG and rBCG:Ag85A using indirect ELISA and Western blot analyses. A competitive ELISA (cELISA based on mAb 3B8 was developed, the analyses of clinic serum samples from cattle with bovine tuberculosis (TB and healthy cattle demonstrated that the sensitivity of the cELISA was 54.2% (26/48 and the specificity was 83.5% (167/200. This study demonstrated that the mAbs against Ag85A will provide useful reagents for further investigation into the function of the Ag85 complex and can be used for serodiagnosis of bovine TB.

  6. Endogenous, Imperfectly Competitive Business Cycles

    DEFF Research Database (Denmark)

    Whitta-Jacobsen, Hans Jørgen

    We investigate how imperfect competition affects the occurrence and the properties of endogenous, rational expectations business cycles in an overlapping generations model with constant returns to scale in production. The model has explicit product and labor markets all characterized...... by monopolistic competition. An implicit assumption of barriers to entry justifies that the number of firms is fixed even when positive profits occur. It turns out that both market power of firms on the product markets and market power of unions on the labor markets make the occurrence of cycles more likely....... In particular, imperfect competition on the product markets and the positive profits associated with it may have the effect that there is a cycle even if the labor supply curve is increasing in the real-wage rate. For competitive cycles is required not only a decreasing labor supply curve, but a wage elasticity...

  7. Vulnerability of positron emission tomography radiotracers to endogenous competition

    International Nuclear Information System (INIS)

    Laruelle, M.; Huang, Y.

    2001-01-01

    PET and SPECT neuro receptor imaging techniques combined with pharmacological challenges have been introduce to measure acute fluctuations of synaptic dopamine (DA) concentrations in the living human brain. Changes in the in vivo binding of radioligands following manipulation of transmitter levels are generally believed to be driven by binding competition between the radioligand and neurotransmitter. This imaging modality has been very successful in the study of DA transmission at D2 receptors. Yet, the extension of this technique to the study of other neurotransmitter systems has proven difficult. This paper reviews recent evidence suggesting that simple binding competition might not be the only phenomenon regulating transmitter-radioligand interactions in vivo, and examines emerging data indicating that receptor trafficking might also be involved. A better understanding of the mechanisms underlying these interactions should facilitate the development of PET and SPECT radiotracers suitable for the reporting of synaptic transmitter levels

  8. Influence of the Climate Policy of the European Union on the Competitiveness of Pollution-generating Sectors of the Polish Economy in the Context of Sustainable Development

    OpenAIRE

    Burchard-Dziubińska, Małgorzata

    2012-01-01

    The businesses surveyed represent industries which are pollution generators by their nature and even ecologically-oriented technological progress is incapable of ensuring considerable emission reductions without general switching of the economy to renewable energy sources. W tekście przedmiotem analizy jest wpływ polityki klimatycznej UE na konkurencyjność polutogennych sektorów polskiej gospodarki. Analiza literatury i wyniki badań przeprowadzonych w 2008 r. w zlokalizowanych na terenie P...

  9. Ultrafast Synaptic Events in a Chalcogenide Memristor

    Science.gov (United States)

    Li, Yi; Zhong, Yingpeng; Xu, Lei; Zhang, Jinjian; Xu, Xiaohua; Sun, Huajun; Miao, Xiangshui

    2013-04-01

    Compact and power-efficient plastic electronic synapses are of fundamental importance to overcoming the bottlenecks of developing a neuromorphic chip. Memristor is a strong contender among the various electronic synapses in existence today. However, the speeds of synaptic events are relatively slow in most attempts at emulating synapses due to the material-related mechanism. Here we revealed the intrinsic memristance of stoichiometric crystalline Ge2Sb2Te5 that originates from the charge trapping and releasing by the defects. The device resistance states, representing synaptic weights, were precisely modulated by 30 ns potentiating/depressing electrical pulses. We demonstrated four spike-timing-dependent plasticity (STDP) forms by applying programmed pre- and postsynaptic spiking pulse pairs in different time windows ranging from 50 ms down to 500 ns, the latter of which is 105 times faster than the speed of STDP in human brain. This study provides new opportunities for building ultrafast neuromorphic computing systems and surpassing Von Neumann architecture.

  10. Molecular Signatures Underlying Synaptic Vesicle Cargo Retrieval

    Science.gov (United States)

    Mori, Yasunori; Takamori, Shigeo

    2018-01-01

    Efficient retrieval of the synaptic vesicle (SV) membrane from the presynaptic plasma membrane, a process called endocytosis, is crucial for the fidelity of neurotransmission, particularly during sustained neural activity. Although multiple modes of endocytosis have been identified, it is clear that the efficient retrieval of the major SV cargos into newly formed SVs during any of these modes is fundamental for synaptic transmission. It is currently believed that SVs are eventually reformed via a clathrin-dependent pathway. Various adaptor proteins recognize SV cargos and link them to clathrin, ensuring the efficient retrieval of the cargos into newly formed SVs. Here, we summarize our current knowledge of the molecular signatures within individual SV cargos that underlie efficient retrieval into SV membranes, as well as discuss possible contributions of the mechanisms under physiological conditions. PMID:29379416

  11. Synaptic devices based on purely electronic memristors

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ruobing [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Li, Jun; Zhuge, Fei, E-mail: zhugefei@nimte.ac.cn, E-mail: h-cao@nimte.ac.cn; Zhu, Liqiang; Liang, Lingyan; Zhang, Hongliang; Gao, Junhua; Cao, Hongtao, E-mail: zhugefei@nimte.ac.cn, E-mail: h-cao@nimte.ac.cn; Fu, Bing; Li, Kang [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2016-01-04

    Memristive devices have been widely employed to emulate biological synaptic behavior. In these cases, the memristive switching generally originates from electrical field induced ion migration or Joule heating induced phase change. In this letter, the Ti/ZnO/Pt structure was found to show memristive switching ascribed to a carrier trapping/detrapping of the trap sites (e.g., oxygen vacancies or zinc interstitials) in ZnO. The carrier trapping/detrapping level can be controllably adjusted by regulating the current compliance level or voltage amplitude. Multi-level conductance states can, therefore, be realized in such memristive device. The spike-timing-dependent plasticity, an important Hebbian learning rule, has been implemented in this type of synaptic device. Compared with filamentary-type memristive devices, purely electronic memristors have potential to reduce their energy consumption and work more stably and reliably, since no structural distortion occurs.

  12. Hippocampal synaptic plasticity, spatial memory and anxiety

    OpenAIRE

    Bannerman, David M.; Sprengel, Rolf; Sanderson, David J.; McHugh, Stephen B.; Rawlins, J. Nicholas P.; Monyer, Hannah; Seeburg, Peter H.

    2014-01-01

    Recent studies using transgenic mice lacking NMDA receptors in the hippocampus challenge the long-standing hypothesis that hippocampal long-term potentiation-like mechanisms underlie the encoding and storage of associative long-term spatial memories. However, it may not be the synaptic plasticity-dependent memory hypothesis that is wrong; instead, it may be the role of the hippocampus that needs to be re-examined. We present an account of hippocampal function that explains its role in both me...

  13. Synaptic theory of Replicator-like melioration

    Directory of Open Access Journals (Sweden)

    Yonatan Loewenstein

    2010-06-01

    Full Text Available According to the theory of Melioration, organisms in repeated choice settings shift their choice preference in favor of the alternative that provides the highest return. The goal of this paper is to explain how this learning behavior can emerge from microscopic changes in the efficacies of synapses, in the context of two-alternative repeated-choice experiment. I consider a large family of synaptic plasticity rules in which changes in synaptic efficacies are driven by the covariance between reward and neural activity. I construct a general framework that predicts the learning dynamics of any decision-making neural network that implements this synaptic plasticity rule and show that melioration naturally emerges in such networks. Moreover, the resultant learning dynamics follows the Replicator equation which is commonly used to phenomenologically describe changes in behavior in operant conditioning experiments. Several examples demonstrate how the learning rate of the network is affected by its properties and by the specifics of the plasticity rule. These results help bridge the gap between cellular physiology and learning behavior.

  14. Characterization and extraction of the synaptic apposition surface for synaptic geometry analysis

    Science.gov (United States)

    Morales, Juan; Rodríguez, Angel; Rodríguez, José-Rodrigo; DeFelipe, Javier; Merchán-Pérez, Angel

    2013-01-01

    Geometrical features of chemical synapses are relevant to their function. Two critical components of the synaptic junction are the active zone (AZ) and the postsynaptic density (PSD), as they are related to the probability of synaptic release and the number of postsynaptic receptors, respectively. Morphological studies of these structures are greatly facilitated by the use of recent electron microscopy techniques, such as combined focused ion beam milling and scanning electron microscopy (FIB/SEM), and software tools that permit reconstruction of large numbers of synapses in three dimensions. Since the AZ and the PSD are in close apposition and have a similar surface area, they can be represented by a single surface—the synaptic apposition surface (SAS). We have developed an efficient computational technique to automatically extract this surface from synaptic junctions that have previously been three-dimensionally reconstructed from actual tissue samples imaged by automated FIB/SEM. Given its relationship with the release probability and the number of postsynaptic receptors, the surface area of the SAS is a functionally relevant measure of the size of a synapse that can complement other geometrical features like the volume of the reconstructed synaptic junction, the equivalent ellipsoid size and the Feret's diameter. PMID:23847474

  15. Characterization and extraction of the synaptic apposition surface for synaptic geometry analysis.

    Directory of Open Access Journals (Sweden)

    Juan eMorales

    2013-07-01

    Full Text Available Geometrical features of chemical synapses are relevant to their function. Two critical components of the synaptic junction are the active zone and the postsynaptic density, as they are related to the probability of synaptic release and the number of postsynaptic receptors, respectively. Morphological studies of these structures are greatly facilitated by the use of recent electron microscopy techniques, such as combined focused ion beam milling and scanning electron microscopy (FIB/SEM, and software tools that permit reconstruction of large numbers of synapses in three dimensions. Since the active zone and the postsynaptic density are in close apposition and have a similar surface area, they can be represented by a single surface — the synaptic apposition surface (SAS. We have developed an efficient computational technique to automatically extract this surface from synaptic junctions that have previously been three-dimensionally reconstructed from actual tissue samples imaged by automated FIB/SEM. Given its relationship with the release probability and the number of postsynaptic receptors, the surface area of the SAS is a functionally relevant measure of the size of a synapse that can complement other geometrical features like the volume of the reconstructed synaptic junction, the equivalent ellipsoid size and the Feret’s diameter.

  16. Value of Flexible Resources, Virtual Bidding, and Self-Scheduling in Two-Settlement Electricity Markets With Wind Generation – Part I: Principles and Competitive Model

    DEFF Research Database (Denmark)

    Kazempour, Jalal; Hobbs, Benjamin F.

    2017-01-01

    Part one of this two-part paper presents new models for evaluating flexible resources in two-settlement electricity markets (day-ahead and real-time) with uncertain net loads (demand minus wind). Physical resources include wind together with fast- and slow-start demand response and thermal genera...... of certain equivalencies of the four models. We show how virtual bidding enhances market performance, since, together with self-scheduling by slow-start generators, it can help deterministic day-ahead market to choose the most efficient unit commitment....

  17. Synaptic Homeostasis and Its Immunological Disturbance in Neuromuscular Junction Disorders

    Directory of Open Access Journals (Sweden)

    Masaharu Takamori

    2017-04-01

    Full Text Available In the neuromuscular junction, postsynaptic nicotinic acetylcholine receptor (nAChR clustering, trans-synaptic communication and synaptic stabilization are modulated by the molecular mechanisms underlying synaptic plasticity. The synaptic functions are based presynaptically on the active zone architecture, synaptic vesicle proteins, Ca2+ channels and synaptic vesicle recycling. Postsynaptically, they are based on rapsyn-anchored nAChR clusters, localized sensitivity to ACh, and synaptic stabilization via linkage to the extracellular matrix so as to be precisely opposed to the nerve terminal. Focusing on neural agrin, Wnts, muscle-specific tyrosine kinase (a mediator of agrin and Wnts signalings and regulator of trans-synaptic communication, low-density lipoprotein receptor-related protein 4 (the receptor of agrin and Wnts and participant in retrograde signaling, laminin-network (including muscle-derived agrin, extracellular matrix proteins (participating in the synaptic stabilization and presynaptic receptors (including muscarinic and adenosine receptors, we review the functional structures of the synapse by making reference to immunological pathogenecities in postsynaptic disease, myasthenia gravis. The synapse-related proteins including cortactin, coronin-6, caveolin-3, doublecortin, R-spondin 2, amyloid precursor family proteins, glia cell-derived neurotrophic factor and neurexins are also discussed in terms of their possible contribution to efficient synaptic transmission at the neuromuscular junction.

  18. Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis.

    Science.gov (United States)

    Arendt, Kristin L; Zhang, Zhenjie; Ganesan, Subhashree; Hintze, Maik; Shin, Maggie M; Tang, Yitai; Cho, Ahryon; Graef, Isabella A; Chen, Lu

    2015-10-20

    Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca(2+) levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca(2+)-levels to RA synthesis remains unknown. Here we identify the Ca(2+)-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca(2+)-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity.

  19. Is nuclear power competitive

    International Nuclear Information System (INIS)

    Brandfon, W.W.

    1984-01-01

    The first phase of a two-phase study of the competitiveness of electricity from new coal and nuclear plants with oil and natural gas in common markets concludes that, with few exceptions throughout the country, overall levelized nuclear generating cost could be lower than coal generating costs by more than 40%. The study shows a wider margin of economic superiority for nuclear than has been seen in other recent studies. Capital and fuel costs are the major determinants of relative nuclear and coal economics. The only substantial difference in the input assumptions has related to a shorter lead time for both coal and nuclear units, which reduces capital costs. The study gives substance to the charge that delaying tactics by intervenors and an unstable licensing environment drove up lifetime costs of both coal and nuclear plants. This caused an increase in electric rates and affected the entire economy. The study shows that nuclear power is competitive when large baseload capacity is required. 14 figures

  20. Collision-induced dissociation processes of protonated benzoic acid and related compounds: competitive generation of protonated carbon dioxide or protonated benzene.

    Science.gov (United States)

    Xu, Sihang; Pavlov, Julius; Attygalle, Athula B

    2017-04-01

    Upon activation in the gas phase, protonated benzoic acid (m/z 123) undergoes fragmentation by several mechanisms. In addition to the predictable water loss followed by a CO loss, the m/z 123 ion more intriguingly eliminates a molecule of benzene to generate protonated carbon dioxide (H - O +  ═ C ≡ O, m/z 45), or a molecule of carbon dioxide to yield protonated benzene (m/z 79). Experimental evidence shows that the incipient proton ambulates during the fragmentation processes. For the CO 2 or benzene loss, protonated benzoic acid transfers the charge-imparting proton initially to the ortho position and then to the ipso position to generate a transient species which dissociates to form an ion-neutral complex between benzene and protonated CO 2 . The formation of the m/z 45 ion is not a phenomenon unique to benzoic acid: spectra from protonated isophthalic acid, terephthalic acid, trans-cinnamic acid and some aliphatic acids also displayed a peak for m/z 45. However, the m/z 45 peak is structurally diagnostic only for certain benzene polycarboxylic acids because the spectra of compounds with two carboxyl groups on adjacent ring carbons do not produce a peak at m/z 45. For the m/z 79 ion to be formed, an intramolecular reaction should take place in which protonated CO 2 within the ion-neutral complex acts as the attacking electrophile to transfer a proton to benzene. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Axon and dendrite geography predict the specificity of synaptic connections in a functioning spinal cord network

    Directory of Open Access Journals (Sweden)

    Borisyuk Roman

    2007-09-01

    Full Text Available Abstract Background How specific are the synaptic connections formed as neuronal networks develop and can simple rules account for the formation of functioning circuits? These questions are assessed in the spinal circuits controlling swimming in hatchling frog tadpoles. This is possible because detailed information is now available on the identity and synaptic connections of the main types of neuron. Results The probabilities of synapses between 7 types of identified spinal neuron were measured directly by making electrical recordings from 500 pairs of neurons. For the same neuron types, the dorso-ventral distributions of axons and dendrites were measured and then used to calculate the probabilities that axons would encounter particular dendrites and so potentially form synaptic connections. Surprisingly, synapses were found between all types of neuron but contact probabilities could be predicted simply by the anatomical overlap of their axons and dendrites. These results suggested that synapse formation may not require axons to recognise specific, correct dendrites. To test the plausibility of simpler hypotheses, we first made computational models that were able to generate longitudinal axon growth paths and reproduce the axon distribution patterns and synaptic contact probabilities found in the spinal cord. To test if probabilistic rules could produce functioning spinal networks, we then made realistic computational models of spinal cord neurons, giving them established cell-specific properties and connecting them into networks using the contact probabilities we had determined. A majority of these networks produced robust swimming activity. Conclusion Simple factors such as morphogen gradients controlling dorso-ventral soma, dendrite and axon positions may sufficiently constrain the synaptic connections made between different types of neuron as the spinal cord first develops and allow functional networks to form. Our analysis implies that

  2. Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters.

    Science.gov (United States)

    Harsing, Laszlo G; Matyus, Peter

    2013-04-01

    Glycine is an amino acid neurotransmitter that is involved in both inhibitory and excitatory neurochemical transmission in the central nervous system. The role of glycine in excitatory neurotransmission is related to its coagonist action at glutamatergic N-methyl-D-aspartate receptors. The glycine levels in the synaptic cleft rise many times higher during synaptic activation assuring that glycine spills over into the extrasynaptic space. Another possible origin of extrasynaptic glycine is the efflux of glycine occurring from astrocytes associated with glutamatergic synapses. The release of glycine from neuronal or glial origins exhibits several differences compared to that of biogenic amines or other amino acid neurotransmitters. These differences appear in an external Ca(2+)- and temperature-dependent manner, conferring unique characteristics on glycine as a neurotransmitter. Glycine transporter type-1 at synapses may exhibit neural and glial forms and plays a role in controlling synaptic glycine levels and the spill over rate of glycine from the synaptic cleft into the extrasynaptic biophase. Non-synaptic glycine transporter type-1 regulates extrasynaptic glycine concentrations, either increasing or decreasing them depending on the reverse or normal mode operation of the carrier molecule. While we can, at best, only estimate synaptic glycine levels at rest and during synaptic activation, glycine concentrations are readily measurable via brain microdialysis technique applied in the extrasynaptic space. The non-synaptic N-methyl-D-aspartate receptor may obtain glycine for activation following its spill over from highly active synapses or from its release mediated by the reverse operation of non-synaptic glycine transporter-1. The sensitivity of non-synaptic N-methyl-D-aspartate receptors to glutamate and glycine is many times higher than that of synaptic N-methyl-D-aspartate receptors making the former type of receptor the primary target for drug action. Synaptic

  3. Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide

    Science.gov (United States)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C.

    2016-02-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology.

  4. Dysregulated Expression of Neuregulin-1 by Cortical Pyramidal Neurons Disrupts Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Amit Agarwal

    2014-08-01

    Full Text Available Neuregulin-1 (NRG1 gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an “optimal” level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect.

  5. Synaptic conductances during interictal discharges in pyramidal neurons of rat entorhinal cortex

    Directory of Open Access Journals (Sweden)

    Dmitry V. Amakhin

    2016-10-01

    Full Text Available In epilepsy, the balance of excitation and inhibition underlying the basis of neural network activity shifts, resulting in neuronal network hyperexcitability and recurrent seizure-associated discharges. Mechanisms involved in ictal and interictal events are not fully understood, in particular, because of controversial data regarding the dynamics of excitatory and inhibitory synaptic conductances. In the present study, we estimated AMPAR-, NMDAR-, and GABAAR-mediated conductances during two distinct types of interictal discharge (IID in pyramidal neurons of rat entorhinal cortex in cortico-hippocampal slices. Repetitively emerging seizure-like events and IIDs were recorded in high extracellular potassium, 4-aminopyridine, and reduced magnesium-containing solution. An original procedure for estimating synaptic conductance during IIDs was based on the differences among the current-voltage characteristics of the synaptic components. The synaptic conductance dynamics obtained revealed that the first type of IID is determined by activity of GABAAR channels with depolarized reversal potential. The second type of IID is determined by the interplay between excitation and inhibition, with prominent early AMPAR and prolonged depolarized GABAAR and NMDAR-mediated components. The study then validated the contribution of these components to IIDs by intracellular pharmacological isolation. These data provide new insights into the mechanisms of seizures generation, development, and cessation.

  6. Role for a novel Usher protein complex in hair cell synaptic maturation.

    Directory of Open Access Journals (Sweden)

    Marisa Zallocchi

    Full Text Available The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23, protocadherin-15 (PCDH15 and the very large G-protein coupled receptor 1 (VLGR1 have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1-/- mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzer(av3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well.

  7. Pam heterozygous mice reveal essential role for Cu in amygdalar behavioral and synaptic function.

    Science.gov (United States)

    Gaier, Eric D; Eipper, Betty A; Mains, Richard E

    2014-05-01

    Copper (Cu) is an essential element with many biological roles, but its roles in the mammalian nervous system are poorly understood. Mice deficient in the cuproenzyme peptidylglycine α-amidating monooxygenase (Pam(+/-) mice) were initially generated to study neuropeptide amidation. Pam(+/-) mice exhibit profound deficits in a few behavioral tasks, including enhancements in innate fear along with deficits in acquired fear. Interestingly, several Pam(+/-) phenotypes were recapitulated in Cu-restricted wild-type mice and rescued in Cu-supplemented Pam(+/-) mice. These behaviors correspond to enhanced excitability and deficient synaptic plasticity in the amygdala of Pam(+/-) mice, which are also rescued by Cu supplementation. Cu and ATP7A are present at synapses, in key positions to respond to and influence synaptic activity. Further study demonstrated that extracellular Cu is necessary for wild-type synaptic plasticity and sufficient to induce long-term potentiation. These experiments support roles for PAM in Cu homeostasis and for synaptic Cu in amygdalar function. © 2014 New York Academy of Sciences.

  8. Synaptic Conversion of Chloride-Dependent Synapses in Spinal Nociceptive Circuits: Roles in Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Mark S. Cooper

    2011-01-01

    Full Text Available Electrophysiological conversion of chloride-dependent synapses from inhibitory to excitatory function, as a result of aberrant neuronal chloride homeostasis, is a known mechanism for the genesis of neuropathic pain. This paper examines theoretically how this type of synaptic conversion can disrupt circuit logic in spinal nociceptive circuits. First, a mathematical scaling factor is developed to represent local aberration in chloride electrochemical driving potential. Using this mathematical scaling factor, electrophysiological symbols are developed to represent the magnitude of synaptic conversion within nociceptive circuits. When inserted into a nociceptive circuit diagram, these symbols assist in understanding the generation of neuropathic pain associated with the collapse of transmembrane chloride gradients. A more generalized scaling factor is also derived to represent the interplay of chloride and bicarbonate driving potentials on the function of GABAergic and glycinergic synapses. These mathematical and symbolic representations of synaptic conversion help illustrate the critical role that anion driving potentials play in the transduction of pain. Using these representations, we discuss ramifications of glial-mediated synaptic conversion in the genesis, and treatment, of neuropathic pain.

  9. Synaptic effects of low molecular weight components from Chilean Black Widow spider venom.

    Science.gov (United States)

    Parodi, Jorge; Romero, Fernando

    2008-11-01

    alpha-Latrotoxin is the principal component of the venom from the euroasiatic Black Widow spider and has been studied for its pharmacological use as a synaptic modulator. Interestingly, smaller molecular weight fractions have been found to be associated with this toxin, but their cellular actions have not been studied in detail. The venom from the Chilean Black Widow spider (Latrodectus mactans) does not produce alpha-latrotoxin, however it does contain several small polypeptides. We have recently demonstrated cellular effects of these peptides at the synaptic level using whole-cell patch clamp techniques. Purified venom from the glands of L. mactans was studied in 12 DIV rat hippocampal neuronal cultures. Venom at a concentration of 10nM was able to decrease neuronal conductance thereby increasing membrane resistance. This effect on the passive properties of the neurons induced a change in action potential kinetics simulating the action of classic potassium channel blockers. These changes produced an increase in spontaneous synaptic activity in rat hippocampal cultures in the presence of the venom in a concentration- and time-dependent manner. These results indicate that venom from Chilean spider L. mactans is capable of increasing cell membrane resistance, prolonging the action potential and generating an increase in synaptic activity demonstrating an interesting pharmacological effect of these low molecular weight fragments.

  10. Dysregulated expression of neuregulin-1 by cortical pyramidal neurons disrupts synaptic plasticity.

    Science.gov (United States)

    Agarwal, Amit; Zhang, Mingyue; Trembak-Duff, Irina; Unterbarnscheidt, Tilmann; Radyushkin, Konstantin; Dibaj, Payam; Martins de Souza, Daniel; Boretius, Susann; Brzózka, Magdalena M; Steffens, Heinz; Berning, Sebastian; Teng, Zenghui; Gummert, Maike N; Tantra, Martesa; Guest, Peter C; Willig, Katrin I; Frahm, Jens; Hell, Stefan W; Bahn, Sabine; Rossner, Moritz J; Nave, Klaus-Armin; Ehrenreich, Hannelore; Zhang, Weiqi; Schwab, Markus H

    2014-08-21

    Neuregulin-1 (NRG1) gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD)-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an "optimal" level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. LTD-like molecular pathways in developmental synaptic pruning

    Science.gov (United States)

    Piochon, Claire; Kano, Masanobu; Hansel, Christian

    2016-01-01

    In long-term depression (LTD) at synapses in the adult brain, synaptic strength is reduced in an experience-dependent manner. LTD thus provides a cellular mechanism for information storage in some forms of learning. A similar activity-dependent reduction in synaptic strength also occurs in the developing brain and there provides an essential step in synaptic pruning and the postnatal development of neural circuits. Here we review evidence suggesting that LTD and synaptic pruning share components of their underlying molecular machinery and may thus represent two developmental stages of the same type of synaptic modulation that serve different, but related, functions in neural circuit plasticity. We also assess the relationship between LTD and synaptic pruning in the context of recent findings of LTD dysregulation in several mouse models of autism spectrum disorder (ASD) and discuss whether LTD deficits can indicate impaired pruning processes that are required for proper brain development. PMID:27669991

  12. Potentiation of electrical and chemical synaptic transmission mediated by endocannabinoids

    Science.gov (United States)

    Cachope, Roger; Mackie, Ken; Triller, Antoine; O’Brien, John; Pereda, Alberto E.

    2009-01-01

    SUMMARY Endocannabinoids are well established as inhibitors of chemical synaptic transmission via presynaptic activation of the cannabinoid type 1 receptor (CB1R). Contrasting this notion, we show that dendritic release of endocannabinoids mediates potentiation of synaptic transmission at mixed (electrical and chemical) synaptic contacts on the goldfish Mauthner cell. Remarkably, the observed enhancement was not restricted to the glutamatergic component of the synaptic response but also included a parallel increase in electrical transmission. This novel effect involved the activation of CB1 receptors and was indirectly mediated via the release of dopamine from nearby varicosities, which in turn led to potentiation of the synaptic response via a cAMP-dependent protein kinase-mediated postsynaptic mechanism. Thus, endocannabinoid release can potentiate synaptic transmission and its functional roles include the regulation of gap junction-mediated electrical synapses. Similar interactions between endocannabinoid and dopaminergic systems may be widespread and potentially relevant for the motor and rewarding effects of cannabis derivatives. PMID:18093525

  13. Electrophysiological Techniques for Studying Synaptic Activity In Vivo.

    Science.gov (United States)

    Jeggo, Ross; Zhao, Fei-Yue; Spanswick, David

    2014-03-03

    Understanding the physiology, pharmacology, and plasticity associated with synaptic function is a key goal of neuroscience research and is fundamental to identifying the processes involved in the development and manifestation of neurological disease. A diverse range of electrophysiological methodologies are used to study synaptic function. Described in this unit is a technique for recording electrical activity from a single component of the central nervous system that is used to investigate pre- and post-synaptic elements of synaptic function. A strength of this technique is that it can be used on live animals, although the effect of anesthesia must be taken into consideration when interpreting the results. This methodology can be employed not only in naïve animals for studying normal physiological synaptic function, but also in a variety of disease models, including transgenic animals, to examine dysfunctional synaptic plasticity associated with neurological pathologies. Copyright © 2013 John Wiley & Sons, Inc. All rights reserved.

  14. [Astrocytes and microglia: active players in synaptic plasticity].

    Science.gov (United States)

    Ronzano, Rémi

    2017-12-01

    Synaptic plasticity consists in a change in structure and composition of presynaptic and postsynaptic compartments. For a long time, synaptic plasticity had been thought as a neuronal mechanism only under the control of neural network activity. However, recently, with the growing knowledge about glial physiology, plasticity has been reviewed as a mechanism influenced by the synaptic environment. Thus, it appears that astrocytes and microglia modulate these mechanisms modifying neural environment by clearance of neurotransmitters, releasing essential factors and modulating inflammation. Moreover, glia can change its own activity and the expression pattern of many factors that modulate synaptic plasticity according to the environment. Hence, these populations of "non-neuronal" cells in the central nervous system seem to be active players in synaptic plasticity. This review discusses how glia modulates synaptic plasticity focusing on long-term potentiation and depression, and questions the role of the signaling processes between astrocytes and microglia in these mechanisms. © 2017 médecine/sciences – Inserm.

  15. Astrocytes and synaptic plasticity in health and disease.

    Science.gov (United States)

    Singh, A; Abraham, Wickliffe C

    2017-06-01

    Activity-dependent synaptic plasticity phenomena such as long-term potentiation and long-term depression are candidate mechanisms for storing information in the brain. Regulation of synaptic plasticity is critical for healthy cognition and learning and this is provided in part by metaplasticity, which can act to maintain synaptic transmission within a dynamic range and potentially prevent excitotoxicity. Metaplasticity mechanisms also allow neurons to integrate plasticity-associated signals over time. Interestingly, astrocytes appear to be critical for certain forms of synaptic plasticity and metaplasticity mechanisms. Synaptic dysfunction is increasingly viewed as an early feature of AD that is correlated with the severity of cognitive decline, and the development of these pathologies is correlated with a rise in reactive astrocytes. This review focuses on the contributions of astrocytes to synaptic plasticity and metaplasticity in normal tissue, and addresses whether astroglial pathology may lead to aberrant engagement of these mechanisms in neurological diseases such as Alzheimer's disease.

  16. The perceptions of professional soccer players on the risk of injury from competition and training on natural grass and 3rd generation artificial turf

    Science.gov (United States)

    2014-01-01

    Background The purpose of this study was to describe professional soccer players’ perceptions towards injuries, physical recovery and the effect of surface related factors on injury resulting from soccer participation on 3rd generation artificial turf (FT) compared to natural grass (NG). Methods Information was collected through a questionnaire that was completed by 99 professional soccer players from 6 teams competing in Major League Soccer (MLS) during the 2011 season. Results The majority (93% and 95%) of the players reported that playing surface type and quality influenced the risk of sustaining an injury. Players believed that playing and training on FT increased the risk of sustaining a non-contact injury as opposed to a contact injury. The players identified three surface related risk factors on FT, which they related to injuries and greater recovery times: 1) Greater surface stiffness 2) Greater surface friction 3) Larger metabolic cost to playing on artificial grounds. Overall, 94% of the players chose FT as the surface most likely to increase the risk of sustaining an injury. Conclusions Players believe that the risk of injury differs according to surface type, and that FT is associated with an increased risk of non-contact injury. Future studies should be designed prospectively to systematically track the perceptions of groups of professional players training and competing on FT and NG. PMID:24581229

  17. Chemical defense lowers plant competitiveness.

    Science.gov (United States)

    Ballhorn, Daniel J; Godschalx, Adrienne L; Smart, Savannah M; Kautz, Stefanie; Schädler, Martin

    2014-11-01

    Both plant competition and plant defense affect biodiversity and food web dynamics and are central themes in ecology research. The evolutionary pressures determining plant allocation toward defense or competition are not well understood. According to the growth-differentiation balance hypothesis (GDB), the relative importance of herbivory and competition have led to the evolution of plant allocation patterns, with herbivore pressure leading to increased differentiated tissues (defensive traits), and competition pressure leading to resource investment towards cellular division and elongation (growth-related traits). Here, we tested the GDB hypothesis by assessing the competitive response of lima bean (Phaseolus lunatus) plants with quantitatively different levels of cyanogenesis-a constitutive direct, nitrogen-based defense against herbivores. We used high (HC) and low cyanogenic (LC) genotypes in different competition treatments (intra-genotypic, inter-genotypic, interspecific), and in the presence or absence of insect herbivores (Mexican bean beetle, Epilachna varivestis) to quantify vegetative and generative plant parameters (above and belowground biomass as well as seed production). Highly defended HC-plants had significantly lower aboveground biomass and seed production than LC-plants when grown in the absence of herbivores implying significant intrinsic costs of plant cyanogenesis. However, the reduced performance of HC- compared to LC-plants was mitigated in the presence of herbivores. The two plant genotypes exhibited fundamentally different responses to various stresses (competition, herbivory). Our study supports the GDB hypothesis by demonstrating that competition and herbivory affect different plant genotypes differentially and contributes to understanding the causes of variation in defense within a single plant species.

  18. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    OpenAIRE

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2010-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic ...

  19. Agglomeration economies, competitiveness and entrepreneurial performance

    OpenAIRE

    Páger, Balázs; Komlósi, Éva

    2015-01-01

    This paper aims to elaborate the role of agglomeration effects on countries' competitiveness and entrepreneurial performance. Our research contributes to the understanding of the relationship that exists between a country's urban system characterized by spatial agglomeration (concentration) or deglomeration (deconcentration) processes, and its competitiveness and entrepreneurial performance, respectively. Urbanization economies refer to considerable cost savings generated through the locating...

  20. Anthropometry of young competitive sport rock climbers

    OpenAIRE

    Watts, P; Joubert, L; Lish, A; Mast, J; Wilkins, B

    2003-01-01

    Background: Adult elite competitive rock climbers are small in stature with low body mass and very low body fat percentage. These characteristics have generated concern that young climbers may attempt body mass reduction to extreme levels with adverse consequences for health and performance. No published anthropometry data for young competitive climbers exist.

  1. All competition is not alike: Neural mechanisms for resolving underdetermined and prepotent competition

    Science.gov (United States)

    Snyder, Hannah R.; Banich, Marie T.; Munakata, Yuko

    2014-01-01

    People must constantly select among potential thoughts and actions in the face of competition from (a) multiple task-relevant options (underdetermined competition) and (b) strongly dominant options that are not appropriate in the current context (prepotent competition). These types of competition are ubiquitous during language production. In this work, we investigate the neural mechanisms that allow individuals to effectively manage these cognitive control demands and to quickly choose words with few errors. Using fMRI, we directly contrast underdetermined and prepotent competition within the same task (verb generation) for the first time, allowing localization of the neural substrates supporting the resolution of these two types of competition. Using a neural network model, we investigate the possible mechanisms by which these brain regions support selection. Together, our findings demonstrate that all competition is not alike: resolving prepotent competition and resolving underdetermined competition rely on partly dissociable neural substrates and mechanisms. Specifically, activation of left ventrolateral prefrontal cortex is specific to resolving underdetermined competition between multiple appropriate responses, most likely via competitive lateral inhibition. In contrast, activation of left dorsolateral prefrontal cortex is sensitive to both underdetermined competition and prepotent competition from response options that are inappropriate in the current context. This region likely provides top-down support for task-relevant responses, which enables them to out-compete prepotent responses in the selection process that occurs in left ventrolateral prefrontal cortex. PMID:24742155

  2. A pivotal role of GSK-3 in synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Clarrisa A Bradley

    2012-02-01

    Full Text Available Glycogen synthase kinase-3 (GSK-3 has many cellular functions. Recent evidence suggests that it plays a key role in certain types of synaptic plasticity, in particular a form of long-term depression (LTD that is induced by the synaptic activation of N-methyl-D-aspartate (NMDA receptors. In the present article we summarise what is currently known concerning the roles of GSK-3 in synaptic plasticity at both glutamatergic and GABAergic synapses. We summarise its role in cognition and speculate on how alterations in the synaptic functioning of GSK-3 may be a major factor in certain neurodegenerative disorders.

  3. Mild hypoxia affects synaptic connectivity in cultured neuronal networks.

    Science.gov (United States)

    Hofmeijer, Jeannette; Mulder, Alex T B; Farinha, Ana C; van Putten, Michel J A M; le Feber, Joost

    2014-04-04

    Eighty percent of patients with chronic mild cerebral ischemia/hypoxia resulting from chronic heart failure or pulmonary disease have cognitive impairment. Overt structural neuronal damage is lacking and the precise cause of neuronal damage is unclear. As almost half of the cerebral energy consumption is used for synaptic transmission, and synaptic failure is the first abrupt consequence of acute complete anoxia, synaptic dysfunction is a candidate mechanism for the cognitive deterioration in chronic mild ischemia/hypoxia. Because measurement of synaptic functioning in patients is problematic, we use cultured networks of cortical neurons from new born rats, grown over a multi-electrode array, as a model system. These were exposed to partial hypoxia (partial oxygen pressure of 150Torr lowered to 40-50Torr) during 3 (n=14) or 6 (n=8) hours. Synaptic functioning was assessed before, during, and after hypoxia by assessment of spontaneous network activity, functional connectivity, and synaptically driven network responses to electrical stimulation. Action potential heights and shapes and non-synaptic stimulus responses were used as measures of individual neuronal integrity. During hypoxia of 3 and 6h, there was a statistically significant decrease of spontaneous network activity, functional connectivity, and synaptically driven network responses, whereas direct responses and action potentials remained unchanged. These changes were largely reversible. Our results indicate that in cultured neuronal networks, partial hypoxia during 3 or 6h causes isolated disturbances of synaptic connectivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Statistical mechanics of attractor neural network models with synaptic depression

    International Nuclear Information System (INIS)

    Igarashi, Yasuhiko; Oizumi, Masafumi; Otsubo, Yosuke; Nagata, Kenji; Okada, Masato

    2009-01-01

    Synaptic depression is known to control gain for presynaptic inputs. Since cortical neurons receive thousands of presynaptic inputs, and their outputs are fed into thousands of other neurons, the synaptic depression should influence macroscopic properties of neural networks. We employ simple neural network models to explore the macroscopic effects of synaptic depression. Systems with the synaptic depression cannot be analyzed due to asymmetry of connections with the conventional equilibrium statistical-mechanical approach. Thus, we first propose a microscopic dynamical mean field theory. Next, we derive macroscopic steady state equations and discuss the stabilities of steady states for various types of neural network models.

  5. A pivotal role of GSK-3 in synaptic plasticity

    Science.gov (United States)

    Bradley, Clarrisa A.; Peineau, Stéphane; Taghibiglou, Changiz; Nicolas, Celine S.; Whitcomb, Daniel J.; Bortolotto, Zuner A.; Kaang, Bong-Kiun; Cho, Kwangwook; Wang, Yu Tian; Collingridge, Graham L.

    2012-01-01

    Glycogen synthase kinase-3 (GSK-3) has many cellular functions. Recent evidence suggests that it plays a key role in certain types of synaptic plasticity, in particular a form of long-term depression (LTD) that is induced by the synaptic activation of N-methyl-D-aspartate receptors (NMDARs). In the present article we summarize what is currently known concerning the roles of GSK-3 in synaptic plasticity at both glutamatergic and GABAergic synapses. We summarize its role in cognition and speculate on how alterations in the synaptic functioning of GSK-3 may be a major factor in certain neurodegenerative disorders. PMID:22363262

  6. Autophagy mediates the degradation of synaptic vesicles: A potential mechanism of synaptic plasticity injury induced by microwave exposure in rats.

    Science.gov (United States)

    Hao, Yanhui; Li, Wenchao; Wang, Hui; Zhang, Jing; Yu, Chao; Tan, Shengzhi; Wang, Haoyu; Xu, Xinping; Dong, Ji; Yao, Binwei; Zhou, Hongmei; Zhao, Li; Peng, Ruiyun

    2018-02-03

    To explore how autophagy changes and whether autophagy is involved in the pathophysiological process of synaptic plasticity injury caused by microwave radiation, we established a 30 mW/cm 2 microwave-exposure in vivo model, which caused reversible injuries in rat neurons. Microwave radiation induced cognitive impairment in rats and synaptic plasticity injury in rat hippocampal neurons. Autophagy in rat hippocampal neurons was activated following microwave exposure. Additionally, we observed that synaptic vesicles were encapsulated by autophagosomes, a phenomenon more evident in the microwave-exposed group. Colocation of autophagosomes and synaptic vesicles in rat hippocampal neurons increased following microwave exposure. microwave exposure led to the activation of autophagy in rat hippocampal neurons, and excessive activation of autophagy might damage synaptic plasticity by mediating synaptic vesicle degradation. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Mixing, entropy and competition

    International Nuclear Information System (INIS)

    Klimenko, A Y

    2012-01-01

    Non-traditional thermodynamics, applied to random behaviour associated with turbulence, mixing and competition, is reviewed and analysed. Competitive mixing represents a general framework for the study of generic properties of competitive systems and can be used to model a wide class of non-equilibrium phenomena ranging from turbulent premixed flames and invasion waves to complex competitive systems. We demonstrate consistency of the general principles of competition with thermodynamic description, review and analyse the related entropy concepts and introduce the corresponding competitive H-theorem. A competitive system can be characterized by a thermodynamic quantity—competitive potential—which determines the likely direction of evolution of the system. Contested resources tend to move between systems from lower to higher values of the competitive potential. There is, however, an important difference between conventional thermodynamics and competitive thermodynamics. While conventional thermodynamics is constrained by its zeroth law and is fundamentally transitive, the transitivity of competitive thermodynamics depends on the transitivity of the competition rules. Intransitivities are common in the real world and are responsible for complex behaviour in competitive systems. This work follows ideas and methods that have originated from the analysis of turbulent combustion, but reviews a much broader scope of issues linked to mixing and competition, including thermodynamic characterization of complex competitive systems with self-organization. The approach presented here is interdisciplinary and is addressed to the general educated readers, whereas the mathematical details can be found in the appendices. (comment)

  8. COMPETITION ADVOCACY: CHALLENGE FOR COMPETITION POLICY

    Directory of Open Access Journals (Sweden)

    Anatolie CARAGANCIU

    2014-11-01

    Full Text Available A large variety of different countries conditions requires a modernization of criteria, norms and standards of competition regulation and methods of enforcement. Competition advocacy is a type of complementary activity exercised by antimonopoly authorities additional to enforcement measures, through active cooperation with market, government and civil society actors and increasing the understanding of the benefits of competition. Relevance of article is determined by summarizing the theoretical studies and the present practice of advocacy in the USA and the EU. Originality and practical applications of research are based on empirical studies completed by Moldovan Competition Board.

  9. Endogenous, Imperfectly Competitive Business Cycles

    DEFF Research Database (Denmark)

    Whitta-Jacobsen, Hans Jørgen

    by monopolistic competition. An implicit assumption of barriers to entry justifies that the number of firms is fixed even when positive profits occur. It turns out that both market power of firms on the product markets and market power of unions on the labor markets make the occurrence of cycles more likely......We investigate how imperfect competition affects the occurrence and the properties of endogenous, rational expectations business cycles in an overlapping generations model with constant returns to scale in production. The model has explicit product and labor markets all characterized...

  10. Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors

    OpenAIRE

    Wu, Guodong; Feng, Ping; Wan, Xiang; Zhu, Liqiang; Shi, Yi; Wan, Qing

    2016-01-01

    Recent progress in using biomaterials to fabricate functional electronics has got growing attention for the new generation of environmentally friendly and biocompatible electronic devices. As a kind of biological material with rich source, proteins are essential natural component of all organisms. At the same time, artificial synaptic devices are of great significance for neuromorphic systems because they can emulate the signal process and memory behaviors of biological synapses. In this repo...

  11. Attenuation of inhibitory synaptic transmission by glial dysfunction in rat thalamus

    OpenAIRE

    Yang, Sunggu; Cox, Charles L.

    2011-01-01

    The thalamus serves as the obligatory gateway to the neocortex for sensory processing, and also serves as a pathway for corticocortical communication. In addition, the reciprocal synaptic connectivity between the thalamic reticular nucleus (TRN) and adjacent thalamic relay nuclei generates rhythmic activities similar to that observed during different arousal states and certain neurological conditions such as absence epilepsy. Epileptiform activity can arise from a variety of neural mechanisms...

  12. Electric power in the competitive market - Investing capital for cleaner energy generation still a rewarding business? New perspectives for electrical energy efficiency improvement, the cogeneration technology, and renewable energy generation

    International Nuclear Information System (INIS)

    Schwanhold, E.

    2000-01-01

    The meeting gathered policymakers, members of the energy industry, the business consulting professions, and scientific institutes and relevant technology companies. New perspectives have been discussed in the context of required framework conditions and processes that have to/can be put in place, or further developed, in order to create a concrete basis or stronger incentives for realisation of climate protection and environmental policy goals in the energy sector. There have been two panel discussions on the issue of whether investing in clean generation technologies will be rewarding. Five papers each presented to these panels have been analysed and prepared for separate retrieval from the database, as well as five papers each of the discussion forum A, ''New perspectives for energy efficiency measures and contracting partnerships'', and the discussion forum B, ''New perspectives for distributed power generation with CHP systems''. From the discussion forum C, ''New perspectives for renewable energy sources'', one paper has been prepared for separate retrieval. (CB) [de

  13. Radix Puerariae modulates glutamatergic synaptic architecture and potentiates functional synaptic plasticity in primary hippocampal neurons.

    Science.gov (United States)

    Bhuiyan, Mohammad Maqueshudul Haque; Haque, Md Nazmul; Mohibbullah, Md; Kim, Yung Kyu; Moon, Il Soo

    2017-09-14

    Neurologic disorders are frequently characterized by synaptic pathology, including abnormal density and morphology of dendritic spines, synapse loss, and aberrant synaptic signaling and plasticity. Therefore, to promote and/or protect synapses by the use of natural molecules capable of modulating neurodevelopmental events, such as, spinogenesis and synaptic plasticity, could offer a preventive and curative strategy for nervous disorders associated with synaptic pathology. Radix Puerariae, the root of Pueraria monatana var. lobata (Willd.) Sanjappa&Pradeep, is a Chinese ethnomedicine, traditionally used for the treatment of memory-related nervous disorders including Alzheimer's disease. In the previous study, we showed that the ethanolic extracts of Radix Puerariae (RPE) and its prime constituent, puerarin induced neuritogenesis and synapse formation in cultured hippocampal neurons, and thus could improve memory functions. In the present study, we specifically investigated the abilities of RPE and puerarin to improve memory-related brain disorders through modulating synaptic maturation and functional potentiation. Rat embryonic (E19) brain neurons were cultured in the absence or presence of RPE or puerarin. At predetermined times, cells were live-stained with DiO or fixed and immunostained to visualize neuronal morphologies, or lysed for protein harvesting. Morphometric analyses of dendritic spines and synaptogenesis were performed using Image J software. Functional pre- and postsynaptic plasticity was measured by FM1-43 staining and whole-cell patch clamping, respectively. RPE or puerarin-mediated changes in actin-related protein 2 were assessed by Western blotting. Neuronal survivals were measured using propidium iodide exclusion assay. RPE and puerarin both: (1) promoted a significant increase in the numbers, and maturation, of dendritic spines; (2) modulated the formation of glutamatergic synapses; (3) potentiated synaptic transmission by increasing the sizes of

  14. Does competition influence safety?

    International Nuclear Information System (INIS)

    Pamme, H.

    2000-01-01

    Competition in the deregulated electricity market does not leave nuclear power plants unaffected. Operators seek to run their plants at maximum availability and with optimized cost structures so that specific generating costs are minimized. The 'costs of safety', with their fixed-cost character, are elements of this cost structure. Hence the question whether safety is going to suffer under the cost pressure on the market. The study shows that the process of economic optimization does not permit cost minimization for its own sake in the area of operating costs which can be influenced by management or are 'avoidable'. The basis of assessment rather must be potential risks which could entail losses of availability. Prophylactic investments made in order to avoid losses of availability to a large extent also imply unchanged or even higher levels of safety. Economic viability and safety thus are closely correlated. Competition in a deregulated marekt so far has not done any direct harm to plant safety. An even more efficient use of scarce funds and, hopefully, a tolerable political environment should allow the safety level of nuclear power plants to be upheld, and safety culture to be maintained, also in the future. (orig.) [de

  15. Synaptic Democracy and Vesicular Transport in Axons

    Science.gov (United States)

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  16. Inferring Trial-to-Trial Excitatory and Inhibitory Synaptic Inputs from Membrane Potential using Gaussian Mixture Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Milad eLankarany

    2013-09-01

    Full Text Available Time-varying excitatory and inhibitory synaptic inputs govern activity of neurons and process information in the brain. The importance of trial-to-trial fluctuations of synaptic inputs has recently been investigated in neuroscience. Such fluctuations are ignored in the most conventional techniques because they are removed when trials are averaged during linear regression techniques. Here, we propose a novel recursive algorithm based on Gaussian mixture Kalman filtering for estimating time-varying excitatory and inhibitory synaptic inputs from single trials of noisy membrane potential in current clamp recordings. The Kalman filtering is followed by an expectation maximization algorithm to infer the statistical parameters (time-varying mean and variance of the synaptic inputs in a non-parametric manner. As our proposed algorithm is repeated recursively, the inferred parameters of the mixtures are used to initiate the next iteration. Unlike other recent algorithms, our algorithm does not assume an a priori distribution from which the synaptic inputs are generated. Instead, the algorithm recursively estimates such a distribution by fitting a Gaussian mixture model. The performance of the proposed algorithms is compared to a previously proposed PF-based algorithm (Paninski et al., 2012 with several illustrative examples, assuming that the distribution of synaptic input is unknown. If noise is small, the performance of our algorithms is similar to that of the previous one. However, if noise is large, they can significantly outperform the previous proposal. These promising results suggest that our algorithm is a robust and efficient technique for estimating time varying excitatory and inhibitory synaptic conductances from single trials of membrane potential recordings.

  17. COMPETITIVENESS AND COMPETITIVE ORIENTATIONS: EVALUATION OF STUDENTS

    Directory of Open Access Journals (Sweden)

    G. Z. Efimova

    2017-01-01

    Full Text Available Introduction. Education of a competitive student is a strategically significant problem of the system of higher education in modern social and economic conditions. Personal competitiveness and competitive orientations – priority quality of future expert for successful future professional experience.The aim of the present research is to study factors of competitive orientations formation and criteria for evaluation of competitiveness of student’s youth in the Russian society.Methodology and research methods. Results of theoretical researches of Russian and foreign researchers are generalized; secondary analysis of data based on results of sociological researches and analysis of official statistical data are carried out. The results of the sociological survey undertaken in 2017 on the basis of statistical methods were processed and studied by the instrumentality of IBM SPSS Statistics 23 program; 1196 students of institutions of higher and secondary vocational education of the Tyumen region took part.Results and scientific novelty. It is stated that senior students feel themselves more competitive. It is revealed that a quarter of students who took part in the survey, generally men, count themselves competitive. A continuous distance of goal-setting is recorded among these respondents; in every third case they have plans of professional growth for five and more years that allows them to build attractive competitive strategy.The level of the competitiveness is directly connected with such indicators as “social stratum”, “overall life satisfaction”, “self-esteem of health”, “tendency to lead a healthy lifestyle” and “the level of trust in the surrounding people”. Mostly the students oriented on competition look into the future with confidence and optimism.Respondents focused on the competitiveness were more tend to demonstrate their abilities and cause admiration, have a creative approach towards work, be ready for surprises

  18. Ubiquitination-dependent mechanisms regulate synaptic growth and function.

    Science.gov (United States)

    DiAntonio, A; Haghighi, A P; Portman, S L; Lee, J D; Amaranto, A M; Goodman, C S

    2001-07-26

    The covalent attachment of ubiquitin to cellular proteins is a powerful mechanism for controlling protein activity and localization. Ubiquitination is a reversible modification promoted by ubiquitin ligases and antagonized by deubiquitinating proteases. Ubiquitin-dependent mechanisms regulate many important processes including cell-cycle progression, apoptosis and transcriptional regulation. Here we show that ubiquitin-dependent mechanisms regulate synaptic development at the Drosophila neuromuscular junction (NMJ). Neuronal overexpression of the deubiquitinating protease fat facets leads to a profound disruption of synaptic growth control; there is a large increase in the number of synaptic boutons, an elaboration of the synaptic branching pattern, and a disruption of synaptic function. Antagonizing the ubiquitination pathway in neurons by expression of the yeast deubiquitinating protease UBP2 (ref. 5) also produces synaptic overgrowth and dysfunction. Genetic interactions between fat facets and highwire, a negative regulator of synaptic growth that has structural homology to a family of ubiquitin ligases, suggest that synaptic development may be controlled by the balance between positive and negative regulators of ubiquitination.

  19. Synaptic Tagging, Evaluation of Memories, and the Distal Reward Problem

    Science.gov (United States)

    Papper, Marc; Kempter, Richard; Leibold, Christian

    2011-01-01

    Long-term synaptic plasticity exhibits distinct phases. The synaptic tagging hypothesis suggests an early phase in which synapses are prepared, or "tagged," for protein capture, and a late phase in which those proteins are integrated into the synapses to achieve memory consolidation. The synapse specificity of the tags is consistent with…

  20. A presynaptic role for PKA in synaptic tagging and memory.

    Science.gov (United States)

    Park, Alan Jung; Havekes, Robbert; Choi, Jennifer Hk; Luczak, Vince; Nie, Ting; Huang, Ted; Abel, Ted

    2014-10-01

    Protein kinase A (PKA) and other signaling molecules are spatially restricted within neurons by A-kinase anchoring proteins (AKAPs). Although studies on compartmentalized PKA signaling have focused on postsynaptic mechanisms, presynaptically anchored PKA may contribute to synaptic plasticity and memory because PKA also regulates presynaptic transmitter release. Here, we examine this issue using genetic and pharmacological application of Ht31, a PKA anchoring disrupting peptide. At the hippocampal Schaffer collateral CA3-CA1 synapse, Ht31 treatment elicits a rapid decay of synaptic responses to repetitive stimuli, indicating a fast depletion of the readily releasable pool of synaptic vesicles. The interaction between PKA and proteins involved in producing this pool of synaptic vesicles is supported by biochemical assays showing that synaptic vesicle protein 2 (SV2), Rim1, and SNAP25 are components of a complex that interacts with cAMP. Moreover, acute treatment with Ht31 reduces the levels of SV2. Finally, experiments with transgenic mouse lines, which express Ht31 in excitatory neurons at the Schaffer collateral CA3-CA1 synapse, highlight a requirement for presynaptically anchored PKA in pathway-specific synaptic tagging and long-term contextual fear memory. These results suggest that a presynaptically compartmentalized PKA is critical for synaptic plasticity and memory by regulating the readily releasable pool of synaptic vesicles. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Impaired synaptic plasticity in RASopathies: a mini-review.

    Science.gov (United States)

    Mainberger, Florian; Langer, Susanne; Mall, Volker; Jung, Nikolai H

    2016-10-01

    Synaptic plasticity in the form of long-term potentiation (LTP) and long-term depression (LTD) is considered to be the neurophysiological correlate of learning and memory. Impairments are discussed to be one of the underlying pathophysiological mechanisms of developmental disorders. In so-called RASopathies [e.g., neurofibromatosis 1 (NF1)], neurocognitive impairments are frequent and are affected by components of the RAS pathway which lead to impairments in synaptic plasticity. Transcranial magnetic stimulation (TMS) provides a non-invasive method to investigate synaptic plasticity in humans. Here, we review studies using TMS to evaluate synaptic plasticity in patients with RASopathies. Patients with NF1 and Noonan syndrome (NS) showed reduced cortical LTP-like synaptic plasticity. In contrast, increased LTP-like synaptic plasticity has been shown in Costello syndrome. Notably, lovastatin normalized impaired LTP-like plasticity and increased intracortical inhibition in patients with NF1. TMS has been shown to be a safe and efficient method to investigate synaptic plasticity and intracortical inhibition in patients with RASopathies. Deeper insights in impairments of synaptic plasticity in RASopathies could help to develop new options for the therapy of learning deficits in these patients.

  2. The discovery of GluA3-dependent synaptic plasticity

    NARCIS (Netherlands)

    Renner, M.C.

    2016-01-01

    AMPA receptors (AMPARs) are responsible for fast excitatory synaptic transmission. GluA1-containing AMPARs have been extensively studied and play a key role in several forms of synaptic plasticity and memory. In contrast, GluA3-containing AMPARs have historically been ignored because they have

  3. Role of MicroRNA in Governing Synaptic Plasticity.

    Science.gov (United States)

    Ye, Yuqin; Xu, Hongyu; Su, Xinhong; He, Xiaosheng

    2016-01-01

    Although synaptic plasticity in neural circuits is orchestrated by an ocean of genes, molecules, and proteins, the underlying mechanisms remain poorly understood. Recently, it is well acknowledged that miRNA exerts widespread regulation over the translation and degradation of target gene in nervous system. Increasing evidence suggests that quite a few specific miRNAs play important roles in various respects of synaptic plasticity including synaptogenesis, synaptic morphology alteration, and synaptic function modification. More importantly, the miRNA-mediated regulation of synaptic plasticity is not only responsible for synapse development and function but also involved in the pathophysiology of plasticity-related diseases. A review is made here on the function of miRNAs in governing synaptic plasticity, emphasizing the emerging regulatory role of individual miRNAs in synaptic morphological and functional plasticity, as well as their implications in neurological disorders. Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel therapeutic strategy for plasticity-related diseases.

  4. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction

    Science.gov (United States)

    van Huijstee, Aile N.; Mansvelder, Huibert D.

    2015-01-01

    Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine (DA) system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review highlights the synaptic modifications that are induced by in vivo exposure to addictive drugs and describes how these drug-induced synaptic changes may contribute to the different components of addictive behavior, such as compulsive drug use despite negative consequences and relapse. Initially, exposure to an addictive drug induces synaptic changes in the ventral tegmental area (VTA). This drug-induced synaptic potentiation in the VTA subsequently triggers synaptic changes in downstream areas of the mesocorticolimbic system, such as the nucleus accumbens (NAc) and the prefrontal cortex (PFC), with further drug exposure. These glutamatergic synaptic alterations are then thought to mediate many of the behavioral symptoms that characterize addiction. The later stages of glutamatergic synaptic plasticity in the NAc and in particular in the PFC play a role in maintaining addiction and drive relapse to drug-taking induced by drug-associated cues. Remodeling of PFC glutamatergic circuits can persist into adulthood, causing a lasting vulnerability to relapse. We will discuss how these neurobiological changes produced by drugs of abuse may provide novel targets for potential treatment strategies for addiction. PMID:25653591

  5. The Ubiquitin-Proteasome Pathway and Synaptic Plasticity

    Science.gov (United States)

    Hegde, Ashok N.

    2010-01-01

    Proteolysis by the ubiquitin-proteasome pathway (UPP) has emerged as a new molecular mechanism that controls wide-ranging functions in the nervous system, including fine-tuning of synaptic connections during development and synaptic plasticity in the adult organism. In the UPP, attachment of a small protein, ubiquitin, tags the substrates for…

  6. Modulation of synaptic plasticity by stress hormone associates with plastic alteration of synaptic NMDA receptor in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Yiu Chung Tse

    Full Text Available Stress exerts a profound impact on learning and memory, in part, through the actions of adrenal corticosterone (CORT on synaptic plasticity, a cellular model of learning and memory. Increasing findings suggest that CORT exerts its impact on synaptic plasticity by altering the functional properties of glutamate receptors, which include changes in the motility and function of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype of glutamate receptor (AMPAR that are responsible for the expression of synaptic plasticity. Here we provide evidence that CORT could also regulate synaptic plasticity by modulating the function of synaptic N-methyl-D-aspartate receptors (NMDARs, which mediate the induction of synaptic plasticity. We found that stress level CORT applied to adult rat hippocampal slices potentiated evoked NMDAR-mediated synaptic responses within 30 min. Surprisingly, following this fast-onset change, we observed a slow-onset (>1 hour after termination of CORT exposure increase in synaptic expression of GluN2A-containing NMDARs. To investigate the consequences of the distinct fast- and slow-onset modulation of NMDARs for synaptic plasticity, we examined the formation of long-term potentiation (LTP and long-term depression (LTD within relevant time windows. Paralleling the increased NMDAR function, both LTP and LTD were facilitated during CORT treatment. However, 1-2 hours after CORT treatment when synaptic expression of GluN2A-containing NMDARs is increased, bidirectional plasticity was no longer facilitated. Our findings reveal the remarkable plasticity of NMDARs in the adult hippocampus in response to CORT. CORT-mediated slow-onset increase in GluN2A in hippocampal synapses could be a homeostatic mechanism to normalize synaptic plasticity following fast-onset stress-induced facilitation.

  7. Synaptic plasticity can produce and enhance direction selectivity.

    Directory of Open Access Journals (Sweden)

    Sean Carver

    2008-02-01

    Full Text Available The discrimination of the direction of movement of sensory images is critical to the control of many animal behaviors. We propose a parsimonious model of motion processing that generates direction selective responses using short-term synaptic depression and can reproduce salient features of direction selectivity found in a population of neurons in the midbrain of the weakly electric fish Eigenmannia virescens. The model achieves direction selectivity with an elementary Reichardt motion detector: information from spatially separated receptive fields converges onto a neuron via dynamically different pathways. In the model, these differences arise from convergence of information through distinct synapses that either exhibit or do not exhibit short-term synaptic depression--short-term depression produces phase-advances relative to nondepressing synapses. Short-term depression is modeled using two state-variables, a fast process with a time constant on the order of tens to hundreds of milliseconds, and a slow process with a time constant on the order of seconds to tens of seconds. These processes correspond to naturally occurring time constants observed at synapses that exhibit short-term depression. Inclusion of the fast process is sufficient for the generation of temporal disparities that are necessary for direction selectivity in the elementary Reichardt circuit. The addition of the slow process can enhance direction selectivity over time for stimuli that are sustained for periods of seconds or more. Transient (i.e., short-duration stimuli do not evoke the slow process and therefore do not elicit enhanced direction selectivity. The addition of a sustained global, synchronous oscillation in the gamma frequency range can, however, drive the slow process and enhance direction selectivity to transient stimuli. This enhancement effect does not, however, occur for all combinations of model parameters. The ratio of depressing and nondepressing synapses

  8. MPTP-meditated hippocampal dopamine deprivation modulates synaptic transmission and activity-dependent synaptic plasticity

    International Nuclear Information System (INIS)

    Zhu Guoqi; Chen Ying; Huang Yuying; Li Qinglin; Behnisch, Thomas

    2011-01-01

    Parkinson's disease (PD)-like symptoms including learning deficits are inducible by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, it is possible that MPTP may disturb hippocampal memory processing by modulation of dopamine (DA)- and activity-dependent synaptic plasticity. We demonstrate here that intraperitoneal (i.p.) MPTP injection reduces the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) within 7 days. Subsequently, the TH expression level in SN and hippocampus and the amount of DA and its metabolite DOPAC in striatum and hippocampus decrease. DA depletion does not alter basal synaptic transmission and changes pair-pulse facilitation (PPF) of field excitatory postsynaptic potentials (fEPSPs) only at the 30 ms inter-pulse interval. In addition, the induction of long-term potentiation (LTP) is impaired whereas the duration of long-term depression (LTD) becomes prolonged. Since both LTP and LTD depend critically on activation of NMDA and DA receptors, we also tested the effect of DA depletion on NMDA receptor-mediated synaptic transmission. Seven days after MPTP injection, the NMDA receptor-mediated fEPSPs are decreased by about 23%. Blocking the NMDA receptor-mediated fEPSP does not mimic the MPTP-LTP. Only co-application of D1/D5 and NMDA receptor antagonists during tetanization resembled the time course of fEPSP potentiation as observed 7 days after i.p. MPTP injection. Together, our data demonstrate that MPTP-induced degeneration of DA neurons and the subsequent hippocampal DA depletion alter NMDA receptor-mediated synaptic transmission and activity-dependent synaptic plasticity. - Highlights: → I.p. MPTP-injection mediates death of dopaminergic neurons. → I.p. MPTP-injection depletes DA and DOPAC in striatum and hippocampus. → I.p. MPTP-injection does not alter basal synaptic transmission. → Reduction of LTP and enhancement of LTD after i.p. MPTP-injection. → Attenuation of NMDA-receptors mediated

  9. The Transcription Factor Sp3 Cooperates with HDAC2 to Regulate Synaptic Function and Plasticity in Neurons.

    Science.gov (United States)

    Yamakawa, Hidekuni; Cheng, Jemmie; Penney, Jay; Gao, Fan; Rueda, Richard; Wang, Jun; Yamakawa, Satoko; Kritskiy, Oleg; Gjoneska, Elizabeta; Tsai, Li-Huei

    2017-08-08

    The histone deacetylase HDAC2, which negatively regulates synaptic gene expression and neuronal plasticity, is upregulated in Alzheimer's disease (AD) patients and mouse models. Therapeutics targeting HDAC2 hold promise for ameliorating AD-related cognitive impairment; however, attempts to generate HDAC2-specific inhibitors have failed. Here, we take an integrative genomics approach to identify proteins that mediate HDAC2 recruitment to synaptic plasticity genes. Functional screening revealed that knockdown of the transcription factor Sp3 phenocopied HDAC2 knockdown and that Sp3 facilitated recruitment of HDAC2 to synaptic genes. Importantly, like HDAC2, Sp3 expression was elevated in AD patients and mouse models, where Sp3 knockdown ameliorated synaptic dysfunction. Furthermore, exogenous expression of an HDAC2 fragment containing the Sp3-binding domain restored synaptic plasticity and memory in a mouse model with severe neurodegeneration. Our findings indicate that targeting the HDAC2-Sp3 complex could enhance cognitive function without affecting HDAC2 function in other processes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Nicotinic mechanisms influencing synaptic plasticity in the hippocampus

    Science.gov (United States)

    Placzek, Andon Nicholas; Zhang, Tao A; Dani, John Anthony

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed throughout the hippocampus, and nicotinic signaling plays an important role in neuronal function. In the context of learning and memory related behaviors associated with hippocampal function, a potentially significant feature of nAChR activity is the impact it has on synaptic plasticity. Synaptic plasticity in hippocampal neurons has long been considered a contributing cellular mechanism of learning and memory. These same kinds of cellular mechanisms are a factor in the development of nicotine addiction. Nicotinic signaling has been demonstrated by in vitro studies to affect synaptic plasticity in hippocampal neurons via multiple steps, and the signaling has also been shown to evoke synaptic plasticity in vivo. This review focuses on the nAChRs subtypes that contribute to hippocampal synaptic plasticity at the cellular and circuit level. It also considers nicotinic influences over long-term changes in the hippocampus that may contribute to addiction. PMID:19434057

  11. Soft-bound synaptic plasticity increases storage capacity.

    Directory of Open Access Journals (Sweden)

    Mark C W van Rossum

    Full Text Available Accurate models of synaptic plasticity are essential to understand the adaptive properties of the nervous system and for realistic models of learning and memory. Experiments have shown that synaptic plasticity depends not only on pre- and post-synaptic activity patterns, but also on the strength of the connection itself. Namely, weaker synapses are more easily strengthened than already strong ones. This so called soft-bound plasticity automatically constrains the synaptic strengths. It is known that this has important consequences for the dynamics of plasticity and the synaptic weight distribution, but its impact on information storage is unknown. In this modeling study we introduce an information theoretic framework to analyse memory storage in an online learning setting. We show that soft-bound plasticity increases a variety of performance criteria by about 18% over hard-bound plasticity, and likely maximizes the storage capacity of synapses.

  12. [Involvement of aquaporin-4 in synaptic plasticity, learning and memory].

    Science.gov (United States)

    Wu, Xin; Gao, Jian-Feng

    2017-06-25

    Aquaporin-4 (AQP-4) is the predominant water channel in the central nervous system (CNS) and primarily expressed in astrocytes. Astrocytes have been generally believed to play important roles in regulating synaptic plasticity and information processing. However, the role of AQP-4 in regulating synaptic plasticity, learning and memory, cognitive function is only beginning to be investigated. It is well known that synaptic plasticity is the prime candidate for mediating of learning and memory. Long term potentiation (LTP) and long term depression (LTD) are two forms of synaptic plasticity, and they share some but not all the properties and mechanisms. Hippocampus is a part of limbic system that is particularly important in regulation of learning and memory. This article is to review some research progresses of the function of AQP-4 in synaptic plasticity, learning and memory, and propose the possible role of AQP-4 as a new target in the treatment of cognitive dysfunction.

  13. Synaptic Plasticity onto Dopamine Neurons Shapes Fear Learning.

    Science.gov (United States)

    Pignatelli, Marco; Umanah, George Kwabena Essien; Ribeiro, Sissi Palma; Chen, Rong; Karuppagounder, Senthilkumar Senthil; Yau, Hau-Jie; Eacker, Stephen; Dawson, Valina Lynn; Dawson, Ted Murray; Bonci, Antonello

    2017-01-18

    Fear learning is a fundamental behavioral process that requires dopamine (DA) release. Experience-dependent synaptic plasticity occurs on DA neurons while an organism is engaged in aversive experiences. However, whether synaptic plasticity onto DA neurons is causally involved in aversion learning is unknown. Here, we show that a stress priming procedure enhances fear learning by engaging VTA synaptic plasticity. Moreover, we took advantage of the ability of the ATPase Thorase to regulate the internalization of AMPA receptors (AMPARs) in order to selectively manipulate glutamatergic synaptic plasticity on DA neurons. Genetic ablation of Thorase in DAT + neurons produced increased AMPAR surface expression and function that lead to impaired induction of both long-term depression (LTD) and long-term potentiation (LTP). Strikingly, animals lacking Thorase in DAT + neurons expressed greater associative learning in a fear conditioning paradigm. In conclusion, our data provide a novel, causal link between synaptic plasticity onto DA neurons and fear learning. Published by Elsevier Inc.

  14. Diversifying evolution of competitiveness.

    Science.gov (United States)

    Baldauf, Sebastian A; Engqvist, Leif; Weissing, Franz J

    2014-10-29

    In many species, individuals express phenotypic characteristics that enhance their competitiveness, that is, the ability to acquire resources in competition with others. Moreover, the degree of competitiveness varies considerably across individuals and in time. By means of an evolutionary model, we provide an explanation for this finding. We make the assumption that investment into competitiveness enhances the probability to acquire a high-quality resource, but at the same time reduces the ability of exploiting acquired resources with maximal efficiency. The model reveals that under a broad range of conditions competitiveness either converges to a polymorphic state, where individuals differing in competitive ability stably coexist, or is subject to perpetual transitions between periods of high and low competitiveness. The dynamics becomes even more complex if females can evolve preferences for (or against) competitive males. In extreme cases, such preferences can even drive the population to extinction.

  15. Lunar Regolith Excavation Competition

    Science.gov (United States)

    Liles, Cassandra

    2009-01-01

    The Lunar Regolith Excavation Competition is a new competition that needs graphics, logos, rules, as well as an arena. Although this is the first year of the competition, the competition is modeled after an existing competition, the Centennial Lunar Excavator Challenge. This competition however is aimed at college students. This makes the challenge identifying key aspects of the original competition and modeling them to fit into an easier task, and creating exciting advertisement that helps encourage participation. By using a youth focus group, young insight, as well as guiding advice from experts in the field, hopefully an arena can be designed and built, rules can be molded and created to fit, and alluring graphics can be printed to bring about a successful first year of the Lunar Regolith Excavation Competition.

  16. Synaptic Homeostasis and Restructuring across the Sleep-Wake Cycle.

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco

    2015-05-01

    Full Text Available Sleep is critical for hippocampus-dependent memory consolidation. However, the underlying mechanisms of synaptic plasticity are poorly understood. The central controversy is on whether long-term potentiation (LTP takes a role during sleep and which would be its specific effect on memory. To address this question, we used immunohistochemistry to measure phosphorylation of Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα in the rat hippocampus immediately after specific sleep-wake states were interrupted. Control animals not exposed to novel objects during waking (WK showed stable pCaMKIIα levels across the sleep-wake cycle, but animals exposed to novel objects showed a decrease during subsequent slow-wave sleep (SWS followed by a rebound during rapid-eye-movement sleep (REM. The levels of pCaMKIIα during REM were proportional to cortical spindles near SWS/REM transitions. Based on these results, we modeled sleep-dependent LTP on a network of fully connected excitatory neurons fed with spikes recorded from the rat hippocampus across WK, SWS and REM. Sleep without LTP orderly rescaled synaptic weights to a narrow range of intermediate values. In contrast, LTP triggered near the SWS/REM transition led to marked swaps in synaptic weight ranking. To better understand the interaction between rescaling and restructuring during sleep, we implemented synaptic homeostasis and embossing in a detailed hippocampal-cortical model with both excitatory and inhibitory neurons. Synaptic homeostasis was implemented by weakening potentiation and strengthening depression, while synaptic embossing was simulated by evoking LTP on selected synapses. We observed that synaptic homeostasis facilitates controlled synaptic restructuring. The results imply a mechanism for a cognitive synergy between SWS and REM, and suggest that LTP at the SWS/REM transition critically influences the effect of sleep: Its lack determines synaptic homeostasis, its presence causes

  17. Stochastic lattice model of synaptic membrane protein domains

    Science.gov (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A.

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  18. Stochastic lattice model of synaptic membrane protein domains.

    Science.gov (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  19. Effect of prenatal auditory stimulation on numerical synaptic density and mean synaptic height in the posthatch Day 1 chick hippocampus.

    Science.gov (United States)

    Chaudhury, Sraboni; Nag, Tapas Chandra; Wadhwa, Shashi

    2009-02-01

    Previous studies on prenatal auditory stimulation by species-specific sound or sitar music showed enhanced morphological and biochemical changes in chick hippocampus, which plays an important role in learning and memory. Changes in the efficiency of synapses, synaptic morphology and de novo synapse formation affects learning and memory. Therefore, in the present study, we set out to investigate the mean synaptic density and mean synaptic height at posthatch Day 1 in dorsal and ventral part of chick hippocampus following prenatal auditory stimulation. Fertilized 0 day eggs of domestic chick incubated under normal conditions were exposed to patterned sounds of species-specific and sitar music at 65 dB levels for 15 min/h round the clock (frequency range: 100-6300 Hz) from embryonic Day 10 till hatching. The synapses identified under transmission electron microscope were estimated for their numerical density by physical disector method and also the mean synaptic height calculated. Our results demonstrate a significant increase in mean synaptic density with no alterations in the mean synaptic height following both types of auditory stimulation in the dorsal as well as ventral part of the hippocampus. The observed increase in mean synaptic density suggests enhanced synaptic substrate to strengthen hippocampal function. 2008 Wiley-Liss, Inc.

  20. COMPETITION IN ROMANIAN BANKING SECTOR

    Directory of Open Access Journals (Sweden)

    Capraru Bogdan

    2011-07-01

    -structural indicators and compare it with the structural indicators of competition. In particular, we measure competition using Lerner index and the H-statistic, indicators what are estimated using bank-level data and are compared with a standard market structure measure of concentration like HHI and CR5. There are no other studies that measure both structural and non-structural competition indicators for Romanian banking sector. Also, our assessment contains a period of seven years including the begging of the implications of the present international financial crises on Romanian banking sector. The structural indicators show continuous increase of competition in the Romanian banking system. Lerner index and H statistic demonstrate that Romanian banking system is characterized by monopolistic competition and relatively competitive practices. Personnel cost, operational cost and financial cost are statistically significant at conventional levels, which imply good fit of the revenue equations. The results also demonstrate that excess fixed assets do not generate abnormal revenue.

  1. Diversifying evolution of competitiveness

    NARCIS (Netherlands)

    Baldauf, Sebastian A.; Engqvist, Leif; Weissing, Franz J.

    2014-01-01

    In many species, individuals express phenotypic characteristics that enhance their competitiveness, that is, the ability to acquire resources in competition with others. Moreover, the degree of competitiveness varies considerably across individuals and in time. By means of an evolutionary model, we

  2. Competition in EU banking

    NARCIS (Netherlands)

    De Jonghe, Olivier; Diepstraten, Maaike; Schepens, Glenn; Beck, Thorsten; Casu, Barbara

    2017-01-01

    This chapter discusses recent EU-wide movements in bank competition and concentration. We start with a concise overview of the most frequently used competition and concentration measures. Given that different measures may capture different aspects of bank competition, we focus on the differences and

  3. Competition and Innovation Policy

    OpenAIRE

    Philip Lowe

    2008-01-01

    Innovation and competition go hand in hand. Innovative markets are competitive markets and innovative companies succeed in them. In the European Commission, as in competition authorities across the world, our focus is on ensuring that this happens in the most efficient and fair manner.

  4. Competition for Assistance Agreements

    Science.gov (United States)

    It is EPA policy to promote competition in the award of assistance agreements to the maximum extent practicable.When assistance agreements are awarded competitively, it is EPA policy that the competitive process be fair and open & that no applicant receive

  5. The transformation of synaptic to system plasticity in motor output from the sacral cord of the adult mouse.

    Science.gov (United States)

    Jiang, Mingchen C; Elbasiouny, Sherif M; Collins, William F; Heckman, C J

    2015-09-01

    Synaptic plasticity is fundamental in shaping the output of neural networks. The transformation of synaptic plasticity at the cellular level into plasticity at the system level involves multiple factors, including behavior of local networks of interneurons. Here we investigate the synaptic to system transformation for plasticity in motor output in an in vitro preparation of the adult mouse spinal cord. System plasticity was assessed from compound action potentials (APs) in spinal ventral roots, which were generated simultaneously by the axons of many motoneurons (MNs). Synaptic plasticity was assessed from intracellular recordings of MNs. A computer model of the MN pool was used to identify the middle steps in the transformation from synaptic to system behavior. Two input systems that converge on the same MN pool were studied: one sensory and one descending. The two synaptic input systems generated very different motor outputs, with sensory stimulation consistently evoking short-term depression (STD) whereas descending stimulation had bimodal plasticity: STD at low frequencies but short-term facilitation (STF) at high frequencies. Intracellular and pharmacological studies revealed contributions from monosynaptic excitation and stimulus time-locked inhibition but also considerable asynchronous excitation sustained from local network activity. The computer simulations showed that STD in the monosynaptic excitatory input was the primary driver of the system STD in the sensory input whereas network excitation underlies the bimodal plasticity in the descending system. These results provide insight on the roles of plasticity in the monosynaptic and polysynaptic inputs converging on the same MN pool to overall motor plasticity. Copyright © 2015 the American Physiological Society.

  6. Leucine-rich repeat-containing synaptic adhesion molecules as organizers of synaptic specificity and diversity.

    Science.gov (United States)

    Schroeder, Anna; de Wit, Joris

    2018-04-09

    The brain harbors billions of neurons that form distinct neural circuits with exquisite specificity. Specific patterns of connectivity between distinct neuronal cell types permit the transfer and computation of information. The molecular correlates that give rise to synaptic specificity are incompletely understood. Recent studies indicate that cell-surface molecules are important determinants of cell type identity and suggest that these are essential players in the specification of synaptic connectivity. Leucine-rich repeat (LRR)-containing adhesion molecules in particular have emerged as key organizers of excitatory and inhibitory synapses. Here, we discuss emerging evidence that LRR proteins regulate the assembly of specific connectivity patterns across neural circuits, and contribute to the diverse structural and functional properties of synapses, two key features that are critical for the proper formation and function of neural circuits.

  7. Linking Cholinergic Interneurons, Synaptic Plasticity, and Behavior during the Extinction of a Cocaine-Context Association.

    Science.gov (United States)

    Lee, Junuk; Finkelstein, Joel; Choi, Jung Yoon; Witten, Ilana B

    2016-06-01

    Despite the fact that cholinergic interneurons are a key cell type within the nucleus accumbens, a relationship between synaptic plasticity and the in vivo activity of cholinergic interneurons remains to be established. Here, we identify a three-way link between the activity of cholinergic interneurons, synaptic plasticity, and learning in mice undergoing the extinction of a cocaine-context association. We found that activity of cholinergic interneurons regulates extinction learning for a cocaine-context association and generates a sustained reduction in glutamatergic presynaptic strength onto medium spiny neurons. Interestingly, activation of cholinergic interneurons does not support reinforcement learning or plasticity by itself, suggesting that these neurons have a modulatory rather than a reinforcing function. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Symmetric synaptic patterns between starburst amacrine cells and direction selective ganglion cells in the rabbit retina.

    Science.gov (United States)

    Chen, Yung-Cheng; Chiao, Chuan-Chin

    2008-05-01

    Inputs from starburst amacrine cells (SACs) to ON-OFF direction selective ganglion cells (DSGCs) in the rabbit retina are themselves directional. However, the synaptic asymmetry between SACs and DSGCs required for generating direction selectivity has been controversial. We investigated dendritic contacts and distribution of inhibitory synapses between SACs and their overlapped DSGCs. Double injection of SAC/DSGC pairs and quantitative analysis revealed no obvious asymmetry of dendritic contacts between SACs and DSGCs. Furthermore, examination of the inhibitory input pattern on the dendrites of DSGCs using antibodies against GABA(A) receptors also suggested an isotropic arrangement with the overlapping SACs in both the preferred and the null directions. Therefore, the presynaptic mechanism of direction selectivity upon DSGCs may not result from a simple asymmetric arrangement with overlapping SACs. Multiple layer interactions and sophisticated synaptic connections between SACs and DSGCs are necessary. (c) 2008 Wiley-Liss, Inc.

  9. Status of electricity markets and competition in ERRA member countries

    International Nuclear Information System (INIS)

    Szoerenyi, G.

    2002-01-01

    The following topics were dealt with: Conditions of effective competition; Regulated third party access in power; Number of plyers (market share) - generation; Number of players at present and/or in future competition - supply; Number of eligible customers; Market structure facilitates efficient competition; Supply market - Surplus installed capacity over demand; Supply market - Import. All available data are tabulated. (R.P.)

  10. Epigenetic mechanisms in memory and synaptic function

    Science.gov (United States)

    Sultan, Faraz A; Day, Jeremy J

    2011-01-01

    Although the term ‘epigenetics’ was coined nearly seventy years ago, its critical function in memory processing by the adult CNS has only recently been appreciated. The hypothesis that epigenetic mechanisms regulate memory and behavior was motivated by the need for stable molecular processes that evade turnover of the neuronal proteome. In this article, we discuss evidence that supports a role for neural epigenetic modifications in the formation, consolidation and storage of memory. In addition, we will review the evidence that epigenetic mechanisms regulate synaptic plasticity, a cellular correlate of memory. We will also examine how the concerted action of multiple epigenetic mechanisms with varying spatiotemporal profiles influence selective gene expression in response to behavioral experience. Finally, we will suggest key areas for future research that will help elucidate the complex, vital and still mysterious, role of epigenetic mechanisms in neural function and behavior. PMID:22122279

  11. Alzheimer's disease: synaptic dysfunction and Abeta

    LENUS (Irish Health Repository)

    Shankar, Ganesh M

    2009-11-23

    Abstract Synapse loss is an early and invariant feature of Alzheimer\\'s disease (AD) and there is a strong correlation between the extent of synapse loss and the severity of dementia. Accordingly, it has been proposed that synapse loss underlies the memory impairment evident in the early phase of AD and that since plasticity is important for neuronal viability, persistent disruption of plasticity may account for the frank cell loss typical of later phases of the disease. Extensive multi-disciplinary research has implicated the amyloid β-protein (Aβ) in the aetiology of AD and here we review the evidence that non-fibrillar soluble forms of Aβ are mediators of synaptic compromise. We also discuss the possible mechanisms of Aβ synaptotoxicity and potential targets for therapeutic intervention.

  12. Increasing the competitiveness of banks

    OpenAIRE

    Badaeva V.; Makukhina Y.

    2017-01-01

    The article examines about the essence of competitiveness of banks, the ways of improving it, competitive advantages and factors which influence the effectiveness and competitiveness of banking institutions.

  13. Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders.

    Science.gov (United States)

    Sala, Carlo; Vicidomini, Cinzia; Bigi, Ilaria; Mossa, Adele; Verpelli, Chiara

    2015-12-01

    Shank/ProSAP proteins are essential to synaptic formation, development, and function. Mutations in the family of SHANK genes are strongly associated with autism spectrum disorders (ASD) and other neurodevelopmental and neuropsychiatric disorders, such as intellectual disability (ID), and schizophrenia. Thus, the term 'Shankopathies' identifies a number of neuronal diseases caused by alteration of Shank protein expression leading to abnormal synaptic development. With this review we want to summarize the major genetic, molecular, behavior and electrophysiological studies that provide new clues into the function of Shanks and pave the way for the discovery of new therapeutic drugs targeted to treat patients with SHANK mutations and also patients affected by other neurodevelopmental and neuropsychiatric disorders. Shank/ProSAP proteins are essential to synaptic formation, development, and function. Mutations in the family of SHANK genes are strongly associated with autism spectrum disorders (ASD) and other neurodevelopmental and neuropsychiatric disorders, such as intellectual disability (ID), and schizophrenia (SCZ). With this review we want to summarize the major genetic, molecular, behavior and electrophysiological studies that provide new clues into the function of Shanks and pave the way for the discovery of new therapeutic drugs targeted to treat patients with SHANK mutations. © 2015 International Society for Neurochemistry.

  14. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

    Directory of Open Access Journals (Sweden)

    Christian Albers

    Full Text Available Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP. Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious and strong (teacher spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.

  15. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

    Science.gov (United States)

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.

  16. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity

    Science.gov (United States)

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns. PMID:26900845

  17. Competitiveness Improvement Project Informational Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Karin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Preus, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dana, Scott [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Dam, Jeroen J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jackson, Kyndall R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baring-Gould, Edward I [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jain, Anant [Intertek

    2018-02-27

    This presentation was given at the Competitiveness Improvement Project (CIP) Informational Workshop on December 6, 2017. Topics covered during the workshop include an overview of the CIP, past projects, scoring criteria, technical support opportunities, certification body requirements, standards applicable to distributed wind generators, information on the National Electric Code, certification testing requirements, test site requirements, National Environmental Policy Act, design review, levelized cost of energy, procurement/contracting, project management/deliverables, and outreach materials.

  18. A Competitive Partnership Formation Process

    OpenAIRE

    Andersson, Tommy; Gudmundsson, Jens; Talman, Adolphus; Yang, Zaifu

    2013-01-01

    A group of heterogeneous agents may form partnerships in pairs. All single agents as well as all partnerships generate values. If two agents choose to cooperate, they need to specify how to split their joint value among one another. In equilibrium, which may or may not exist, no agents have incentives to break up or form new partnerships. This paper proposes a dynamic competitive adjustment process that always either finds an equilibrium or exclusively disproves the existence of any equilibri...

  19. COMPETITIVE PRODUCT ADVANTAGES

    Directory of Open Access Journals (Sweden)

    Adrian MICU

    2006-01-01

    Full Text Available Cost advantages may be either internal or external. Internal economics of scope, scale, or experience, and external economies of focus or logistical integration, enable a company to produce some products at a lower cost than the competition. The coordination of pricing with suppliers, although not actually economizing resources, can improve the efficiency of pricing by avoiding the incrementalization of a supplier's nonincremental fixed costs and profit. Any of these strategies can generate cost advantages that are, at least in the short run, sustainable. Even cost advantages that are not sustainable, however, can generate temporary savings that are often the key to building more sustainable cost or product advantages later.. Even when a product's physical attributes are not readily differentiable, opportunities to develop product advantages remain. The augmented product that customers buy is more than the particular product or service exchanged. It includes all sorts of ancillary services and intangible relationships that make buying thesame product from one company less difficult, less risky, or more pleasant than buying from a competitor. Superior augmentation of the same basic product can add substantial value in the eyes of consumers, leading them to pay willingly what are often considerable price premiums.

  20. Competitiveness as an Indicator of Sustainable Development of Tourism: Applying Destination Competitiveness Indicators to Ethiopia

    NARCIS (Netherlands)

    Wondowossen, T.A.; Nakagoshi, N.; Yukio, Y.; Jongman, R.H.G.; Dawit, A.Z.

    2014-01-01

    Competitiveness can be applied to predict the economic sustainability of tourism in destinations which has been measured in terms of leakages and linkage related to employment and income generation opportunities to the destinations. This article examines destination competitiveness of Ethiopia based

  1. COMPETITIVENESS THROUGH INFORMATION

    Directory of Open Access Journals (Sweden)

    Raluca Daniela RIZEA

    2013-10-01

    Full Text Available Intelligence competitiveness has already started to build its road in the company’s long term strategies. Nonetheless, business executives continue to look for ways to apply information technology strategically to their businesses. Using information managers manage to communicate, to convey their knowledge about markets, competitors, products, services and operations. Even if data and information are all over there are few amounts of managers that realize the importance of them to the success of the business. This article will review competitive forces and competitive information systems strategies for gaining competitive advantages, explain concepts of value chain, value co-opetition (competition and cooperation, and discuss innovation strategy. Co-opetition is a strategy whereby companies cooperate and compete at the same time with their competitors, complementors (i.e. hardware and software businesses, customers, suppliers. The article discuss an important dimension of information system, identifies competitive advantages and enhancing competitive strategies thought information systems.

  2. Pannexin 1 Regulates Bidirectional Hippocampal Synaptic Plasticity in Adult Mice

    Directory of Open Access Journals (Sweden)

    Alvaro O. Ardiles

    2014-10-01

    Full Text Available The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR composition of GluN2 subunits. Pannexin 1 (Panx1, a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP, it remains unknown whether these channels also modulate long-term depression (LTD or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory.

  3. Synapse geometry and receptor dynamics modulate synaptic strength.

    Directory of Open Access Journals (Sweden)

    Dominik Freche

    Full Text Available Synaptic transmission relies on several processes, such as the location of a released vesicle, the number and type of receptors, trafficking between the postsynaptic density (PSD and extrasynaptic compartment, as well as the synapse organization. To study the impact of these parameters on excitatory synaptic transmission, we present a computational model for the fast AMPA-receptor mediated synaptic current. We show that in addition to the vesicular release probability, due to variations in their release locations and the AMPAR distribution, the postsynaptic current amplitude has a large variance, making a synapse an intrinsic unreliable device. We use our model to examine our experimental data recorded from CA1 mice hippocampal slices to study the differences between mEPSC and evoked EPSC variance. The synaptic current but not the coefficient of variation is maximal when the active zone where vesicles are released is apposed to the PSD. Moreover, we find that for certain type of synapses, receptor trafficking can affect the magnitude of synaptic depression. Finally, we demonstrate that perisynaptic microdomains located outside the PSD impacts synaptic transmission by regulating the number of desensitized receptors and their trafficking to the PSD. We conclude that geometrical modifications, reorganization of the PSD or perisynaptic microdomains modulate synaptic strength, as the mechanisms underlying long-term plasticity.

  4. Arc protein: a flexible hub for synaptic plasticity and cognition.

    Science.gov (United States)

    Nikolaienko, Oleksii; Patil, Sudarshan; Eriksen, Maria Steene; Bramham, Clive R

    2017-09-07

    Mammalian excitatory synapses express diverse types of synaptic plasticity. A major challenge in neuroscience is to understand how a neuron utilizes different types of plasticity to sculpt brain development, function, and behavior. Neuronal activity-induced expression of the immediate early protein, Arc, is critical for long-term potentiation and depression of synaptic transmission, homeostatic synaptic scaling, and adaptive functions such as long-term memory formation. However, the molecular basis of Arc protein function as a regulator of synaptic plasticity and cognition remains a puzzle. Recent work on the biophysical and structural properties of Arc, its protein-protein interactions and post-translational modifications have shed light on the issue. Here, we present Arc protein as a flexible, multifunctional and interactive hub. Arc interacts with specific effector proteins in neuronal compartments (dendritic spines, nuclear domains) to bidirectionally regulate synaptic strength by distinct molecular mechanisms. Arc stability, subcellular localization, and interactions are dictated by synaptic activity and post-translational modification of Arc. This functional versatility and context-dependent signaling supports a view of Arc as a highly specialized master organizer of long-term synaptic plasticity, critical for information storage and cognition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice.

    Science.gov (United States)

    Ardiles, Alvaro O; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M; Palacios, Adrian G; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C; Martínez, Agustín D

    2014-01-01

    The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca(2+) concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory.

  6. Synaptic Mechanisms of Memory Consolidation during Sleep Slow Oscillations.

    Science.gov (United States)

    Wei, Yina; Krishnan, Giri P; Bazhenov, Maxim

    2016-04-13

    Sleep is critical for regulation of synaptic efficacy, memories, and learning. However, the underlying mechanisms of how sleep rhythms contribute to consolidating memories acquired during wakefulness remain unclear. Here we studied the role of slow oscillations, 0.2-1 Hz rhythmic transitions between Up and Down states during stage 3/4 sleep, on dynamics of synaptic connectivity in the thalamocortical network model implementing spike-timing-dependent synaptic plasticity. We found that the spatiotemporal pattern of Up-state propagation determines the changes of synaptic strengths between neurons. Furthermore, an external input, mimicking hippocampal ripples, delivered to the cortical network results in input-specific changes of synaptic weights, which persisted after stimulation was removed. These synaptic changes promoted replay of specific firing sequences of the cortical neurons. Our study proposes a neuronal mechanism on how an interaction between hippocampal input, such as mediated by sharp wave-ripple events, cortical slow oscillations, and synaptic plasticity, may lead to consolidation of memories through preferential replay of cortical cell spike sequences during slow-wave sleep. Sleep is critical for memory and learning. Replay during sleep of temporally ordered spike sequences related to a recent experience was proposed to be a neuronal substrate of memory consolidation. However, specific mechanisms of replay or how spike sequence replay leads to synaptic changes that underlie memory consolidation are still poorly understood. Here we used a detailed computational model of the thalamocortical system to report that interaction between slow cortical oscillations and synaptic plasticity during deep sleep can underlie mapping hippocampal memory traces to persistent cortical representation. This study provided, for the first time, a mechanistic explanation of how slow-wave sleep may promote consolidation of recent memory events. Copyright © 2016 the authors 0270-6474/16/364231-17$15.00/0.

  7. A Voltage Mode Memristor Bridge Synaptic Circuit with Memristor Emulators

    Directory of Open Access Journals (Sweden)

    Leon Chua

    2012-03-01

    Full Text Available A memristor bridge neural circuit which is able to perform signed synaptic weighting was proposed in our previous study, where the synaptic operation was verified via software simulation of the mathematical model of the HP memristor. This study is an extension of the previous work advancing toward the circuit implementation where the architecture of the memristor bridge synapse is built with memristor emulator circuits. In addition, a simple neural network which performs both synaptic weighting and summation is built by combining memristor emulators-based synapses and differential amplifier circuits. The feasibility of the memristor bridge neural circuit is verified via SPICE simulations.

  8. Gender and Competition in Adolescence

    DEFF Research Database (Denmark)

    Dreber, Anna; Essen, Emma von; Ranehill, Eva

    2013-01-01

    We look at gender differences among adolescents in Sweden in preferences for competition, altruism and risk. For competitiveness, we explore two different tasks that differ in associated stereotypes. We find no gender difference in competitiveness when comparing performance under competition...

  9. EU environmental policy and competitiveness

    Directory of Open Access Journals (Sweden)

    Stojanović Boban

    2006-01-01

    Full Text Available Protection of the environment was not a specific importance to the Community although the Treaty of Rome expressly specified that "health, safety environmental protection" shall be based on "a high level of protection". In deciding upon a framework for a European environmental policy, the Community was also responding to increased public awareness of the problem and concerns about the state of the natural and man-made environment. During the past years, competitiveness concerns have dominated the EU policy debate, in the course of which a growing consensus is being developed on the importance of eco-innovations and resource efficiency for EU competitiveness and on the market opportunities they offer. There is an increasing evidence that environmental policy and eco-innovations can promote economic growth, as well as maintain and create jobs, contributing both to competitiveness and employment. Environmental constraints to rapid economic growth are increasingly recognized by countries, leading to a rising awareness of the need for sustainable development. Implementation of an environmental policy however, generates significant implications for competition among countries.

  10. Electric power's new competitive marketplace

    International Nuclear Information System (INIS)

    Hornick, R.; Zeppieri, J.; Rudden, K.

    1993-01-01

    Currently, competition is limited primarily to power generation, the sale of wholesale bulk power, and fuel substitution at the point of end use. However, within the next several years, the rivalry will focus on large, energy-intensive industrial and large commercial customers. Driven by the disparity in rates among neighboring and regional utilities, large users are expected to lobby aggressively for retail wheeling and access to new supplies. New competitors will provide customers with additional supply options, forcing traditional utilities to offer better prices and or service. Competition at the point of end use also will increase as the natural gas industry develops new end-use technologies, gas utilities compete more aggressively, and some state regulatory commissions promote fuel switching as part of integrated resource planning (IRP) and demand-side management (DSM). However, as long as electric utilities are subject to cost-based rate of return regulation within price-sensitive markets, they will be a competitive disadvantage. The paper discusses the following: competitive risks by market segment, wholesale markets, industrial markets, commercial markets, residential markets, and franchise markets

  11. Emergent spatial patterns of excitatory and inhibitory synaptic strengths drive somatotopic representational discontinuities and their plasticity in a computational model of primary sensory cortical area 3b

    Directory of Open Access Journals (Sweden)

    Kamil A. Grajski

    2016-07-01

    Full Text Available Mechanisms underlying the emergence and plasticity of representational discontinuities in the mammalian primary somatosensory cortical representation of the hand are investigated in a computational model. The model consists of an input lattice organized as a three-digit hand forward-connected to a lattice of cortical columns each of which contains a paired excitatory and inhibitory cell. Excitatory and inhibitory synaptic plasticity of feedforward and lateral connection weights is implemented as a simple covariance rule and competitive normalization. Receptive field properties are computed independently for excitatory and inhibitory cells and compared within and across columns. Within digit representational zones intracolumnar excitatory and inhibitory receptive field extents are concentric, single-digit, small, and unimodal. Exclusively in representational boundary-adjacent zones, intracolumnar excitatory and inhibitory receptive field properties diverge: excitatory cell receptive fields are single-digit, small, and unimodal; and the paired inhibitory cell receptive fields are bimodal, double-digit, and large. In simulated syndactyly (webbed fingers, boundary-adjacent intracolumnar receptive field properties reorganize to within-representation type; divergent properties are reacquired following syndactyly release. This study generates testable hypotheses for assessment of cortical laminar-dependent receptive field properties and plasticity within and between cortical representational zones. For computational studies, present results suggest that concurrent excitatory and inhibitory plasticity may underlie novel emergent properties.

  12. Attenuation of inhibitory synaptic transmission by glial dysfunction in rat thalamus.

    Science.gov (United States)

    Yang, Sunggu; Cox, Charles L

    2011-12-01

    The thalamus serves as the obligatory gateway to the neocortex for sensory processing, and also serves as a pathway for corticocortical communication. In addition, the reciprocal synaptic connectivity between the thalamic reticular nucleus (TRN) and adjacent thalamic relay nuclei generates rhythmic activities similar to that observed during different arousal states and certain neurological conditions such as absence epilepsy. Epileptiform activity can arise from a variety of neural mechanisms, but in addition glia are thought to have an important role in such activities as well. Glia serve a central role in glutamine synthesis, a precursor for glutamate or GABA in nerve terminals. While alterations in glutamine shuttling from glia to neurons can influence GABA and glutamate neurotransmission; the consequences of such action on synaptic transmission and subsequent network activities within thalamic circuits is less understood. We investigated the consequences of altering glutamine transport on inhibitory transmission and intrathalamic activities using the in vitro thalamic slice preparation. Disruption of the glutamine shuttling by the neuronal glutamine transporter (system A transporter) antagonist, α-(methylamino)isobutyric acid (MeAIB), or the selective gliotoxic drug, fluorocitric acid (Fc) dramatically decreased intrathalamic rhythmic activities. At the single cell level, MeAIB and Fc significantly attenuated electrically evoked inhibitory postsynaptic currents (eIPSCs) in thalamic relay neurons; however, miniature IPSCs were unaffected. These data indicate that glutamate-glutamine shuttle is critical for sustaining thalamic synaptic transmission, and thereby alterations in this shuttle can influence intrathalamic rhythmic activities associated with absence epilepsy. Copyright © 2011 Wiley-Liss, Inc.

  13. A Model of Bidirectional Synaptic Plasticity: From Signaling Network to Channel Conductance

    Science.gov (United States)

    Castellani, Gastone C.; Quinlan, Elizabeth M.; Bersani, Ferdinando; Cooper, Leon N.; Shouval, Harel Z.

    2005-01-01

    In many regions of the brain, including the mammalian cortex, the strength of synaptic transmission can be bidirectionally regulated by cortical activity (synaptic plasticity). One line of evidence indicates that long-term synaptic potentiation (LTP) and long-term synaptic depression (LTD), correlate with the phosphorylation/dephosphorylation of…

  14. PRICES IN COMPETITIVE SYSTEM

    Directory of Open Access Journals (Sweden)

    VADUVA MARIA

    2017-08-01

    Full Text Available Regularities of competitive market determine rules for determining prices and their dynamics. Orientation prices to competition (competitive pricing is the strategy most frequently used in countries with market economies and especially for exports. Moreover, in an economy dominated by market competition it cannot be ignored without certain risks the prices resulting from competition between products bidders. Companies that use this type of strategy seek to maintain a level of prices linked to that charged by other competitors (or exporting producers generally no longer covering production costs or demand, relying on the assumption that the average market price is a reasonable basis of costs. But the way how practical guidance and reporting to the competition in every price strategy, will be determined by the company's market position, by the available power and enjoyed prestige, objectives and prospects of its market share etc. according to these elements, there may be several versions of pricing strategies oriented to competitors.

  15. Architectural Competition and BIM

    DEFF Research Database (Denmark)

    Sørensen, Nils Lykke; Frandsen, Anne Kathrine; Øien, Turid Borgestrand

    2015-01-01

    on architecturalcompetitions, a series of interviews was conducted with building clients as well as architects, focusing on the impact of the above-mentioned changes within the building sector on architectural competitions as an institution. In the interviews, ICT and notleast BIM was a recurring theme that both parties saw...... as having a positive impact on competitions. But when looking closely into the answers, these revealed diverse understandings of how and why the impact of BIM on competitions could be said to be positive. The paper sheds light on the interaction between the actors (building clients, architects and client...... consultants) and the applied technologies (competition forms, ICT tools, directives) in architectural competitions in a theoretical actor-network perspective. The diverging understandings of the role of BIM are demonstrating one of many negotiations in progress in the network of architectural competitions...

  16. Competition in electricity markets

    International Nuclear Information System (INIS)

    Taylor, W.

    1996-01-01

    This article examines expanded wholesale and retail competition and the effect that they are likely to have on the electric power industry. The author believes that expanded wholesale competition is good and will bring immediate benefit to all electric consumers; however, based on the experience of the natural gas industry and the electric power industry in California and other parts of the world, the author counsels caution in moving toward expanded retail competition

  17. Quality and Competition

    OpenAIRE

    Rajiv D. Banker; Inder Khosla; Kingshuk K. Sinha

    1998-01-01

    In recent years, the practitioner literature in operations management has seen a dramatic surge in articles on quality management. It reflects the increased emphasis on quality by U.S. firms, which has been attributed largely to increased competition faced by them. The question of how quality is influenced by competitive intensity, however, has not received much attention, either in the practitioner or the academic research literatures. The notion of competitive intensity itself has not been ...

  18. Retail Electricity Competition

    OpenAIRE

    Joskow, Paul L.; Tirole, Jean

    2004-01-01

    We analyze a number of unstudied aspects of retail electricity competition. We first explore the implications of load profiling of consumers whose traditional meters do not allow for measurement of their real time consumption, when consumers are homogeneous up to a scaling factor. In general, the combination of retail competition and load profiling does not yield the second best prices given the non price responsiveness of consumers. Specifically, the competitive equilibrium does not support ...

  19. Gender differences in competitiveness

    OpenAIRE

    Lackner, Mario

    2016-01-01

    Differences in labor market outcomes for women and men are highly persistent. Apart from discrimination, one frequently mentioned explanation could be differences in the attitude towards competition for both genders. Abundant empirical evidence indicates that multiple influences shape attitudes towards competition during different periods of the life cycle. Gender differences in competitiveness will not only influence outcomes during working age, but also during early childhood education. In ...

  20. A presynaptic role for PKA in synaptic tagging and memory

    NARCIS (Netherlands)

    Park, Alan Jung; Havekes, Robbert; Choi, Jennifer H K; Luczak, Vincent; Nie, Ting; Huang, Ted; Abel, Ted

    2014-01-01

    Protein kinase A (PKA) and other signaling molecules are spatially restricted within neurons by A-kinase anchoring proteins (AKAPs). Although studies on compartmentalized PKA signaling have focused on postsynaptic mechanisms, presynaptically anchored PKA may contribute to synaptic plasticity and

  1. The roles of STP and LTP in synaptic encoding

    Directory of Open Access Journals (Sweden)

    Arturas Volianskis

    2013-02-01

    Full Text Available Long-term potentiation (LTP, a cellular model of learning and memory, is generally regarded as a unitary phenomenon that alters the strength of synaptic transmission by increasing the postsynaptic response to the release of a quantum of neurotransmitter. LTP, at CA3-CA1 synapses in the hippocampus, contains a stimulation-labile phase of short-term potentiation (STP, or transient LTP, t-LTP that decays into stable LTP. By studying the responses of populations of neurons to brief bursts of high-frequency afferent stimulation before and after the induction of LTP, we found that synaptic responses during bursts are potentiated equally during LTP but not during STP. We show that STP modulates the frequency response of synaptic transmission whereas LTP preserves the fidelity. Thus, STP and LTP have different functional consequences for the transfer of synaptic information.

  2. Neuro-inspired computing using resistive synaptic devices

    CERN Document Server

    2017-01-01

    This book summarizes the recent breakthroughs in hardware implementation of neuro-inspired computing using resistive synaptic devices. The authors describe how two-terminal solid-state resistive memories can emulate synaptic weights in a neural network. Readers will benefit from state-of-the-art summaries of resistive synaptic devices, from the individual cell characteristics to the large-scale array integration. This book also discusses peripheral neuron circuits design challenges and design strategies. Finally, the authors describe the impact of device non-ideal properties (e.g. noise, variation, yield) and their impact on the learning performance at the system-level, using a device-algorithm co-design methodology. • Provides single-source reference to recent breakthroughs in resistive synaptic devices, not only at individual cell-level, but also at integrated array-level; • Includes detailed discussion of the peripheral circuits and array architecture design of the neuro-crossbar system; • Focuses on...

  3. Learning and Memory, Part II: Molecular Mechanisms of Synaptic Plasticity

    Science.gov (United States)

    Lombroso, Paul; Ogren, Marilee

    2009-01-01

    The molecular events that are responsible for strengthening synaptic connections and how these are linked to memory and learning are discussed. The laboratory preparations that allow the investigation of these events are also described.

  4. Experience-dependent homeostatic synaptic plasticity in neocortex.

    Science.gov (United States)

    Whitt, Jessica L; Petrus, Emily; Lee, Hey-Kyoung

    2014-03-01

    The organism's ability to adapt to the changing sensory environment is due in part to the ability of the nervous system to change with experience. Input and synapse specific Hebbian plasticity, such as long-term potentiation (LTP) and long-term depression (LTD), are critical for sculpting the nervous system to wire its circuit in tune with the environment and for storing memories. However, these synaptic plasticity mechanisms are innately unstable and require another mode of plasticity that maintains homeostasis to allow neurons to function within a desired dynamic range. Several modes of homeostatic adaptation are known, some of which work at the synaptic level. This review will focus on the known mechanisms of experience-induced homeostatic synaptic plasticity in the neocortex and their potential function in sensory cortex plasticity. This article is part of the Special Issue entitled 'Homeostatic Synaptic Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Coal and the competition

    Energy Technology Data Exchange (ETDEWEB)

    Morey, M. [RDI Consulting, Arlington, VA (United States). FT Energy

    2000-07-01

    24 overheads/viewgraphs outline a presentation on competition in the US coal industry. It discussed four main subjects: key factors driving coal demand (environmental regulations, electric utility deregulation; competition with natural gas, inter-regional coal competition, supply availability and pricing; and the export market and competition from off-shore coal sources); coal's ability to boost market share; shifts in coal distribution and the risk of more branded coal; and attempts to keep more regional sources of coal in business. State tax incentives for coal use in Arizona, Ohio, Oklahoma, Virginia and Alabama were discussed.

  6. Synaptic Control of Secretory Trafficking in Dendrites

    Directory of Open Access Journals (Sweden)

    Cyril Hanus

    2014-06-01

    Full Text Available Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca2+/calmodulin-dependent protein kinases (CaMK. Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport.

  7. Rewiring of neuronal networks during synaptic silencing.

    Science.gov (United States)

    Wrosch, Jana Katharina; Einem, Vicky von; Breininger, Katharina; Dahlmanns, Marc; Maier, Andreas; Kornhuber, Johannes; Groemer, Teja Wolfgang

    2017-09-15

    Analyzing the connectivity of neuronal networks, based on functional brain imaging data, has yielded new insight into brain circuitry, bringing functional and effective networks into the focus of interest for understanding complex neurological and psychiatric disorders. However, the analysis of network changes, based on the activity of individual neurons, is hindered by the lack of suitable meaningful and reproducible methodologies. Here, we used calcium imaging, statistical spike time analysis and a powerful classification model to reconstruct effective networks of primary rat hippocampal neurons in vitro. This method enables the calculation of network parameters, such as propagation probability, path length, and clustering behavior through the measurement of synaptic activity at the single-cell level, thus providing a fuller understanding of how changes at single synapses translate to an entire population of neurons. We demonstrate that our methodology can detect the known effects of drug-induced neuronal inactivity and can be used to investigate the extensive rewiring processes affecting population-wide connectivity patterns after periods of induced neuronal inactivity.

  8. Design principles of electrical synaptic plasticity.

    Science.gov (United States)

    O'Brien, John

    2017-09-08

    Essentially all animals with nervous systems utilize electrical synapses as a core element of communication. Electrical synapses, formed by gap junctions between neurons, provide rapid, bidirectional communication that accomplishes tasks distinct from and complementary to chemical synapses. These include coordination of neuron activity, suppression of voltage noise, establishment of electrical pathways that define circuits, and modulation of high order network behavior. In keeping with the omnipresent demand to alter neural network function in order to respond to environmental cues and perform tasks, electrical synapses exhibit extensive plasticity. In some networks, this plasticity can have dramatic effects that completely remodel circuits or remove the influence of certain cell types from networks. Electrical synaptic plasticity occurs on three distinct time scales, ranging from milliseconds to days, with different mechanisms accounting for each. This essay highlights principles that dictate the properties of electrical coupling within networks and the plasticity of the electrical synapses, drawing examples extensively from retinal networks. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.

  9. Development of auditory cortical synaptic receptive fields.

    Science.gov (United States)

    Froemke, Robert C; Jones, Bianca J

    2011-11-01

    The central nervous system is plastic throughout life, but is most sensitive to the statistics of the sensory environment during critical periods of early postnatal development. In the auditory cortex, various forms of acoustic experience have been found to shape the formation of receptive fields and influence the overall rate of cortical organization. The synaptic mechanisms that control cortical receptive field plasticity are beginning to be described, particularly for frequency tuning in rodent primary auditory cortex. Inhibitory circuitry plays a major role in critical period regulation, and new evidence suggests that the formation of excitatory-inhibitory balance determines the duration of critical period plasticity for auditory cortical frequency tuning. Cortical inhibition is poorly tuned in the infant brain, but becomes co-tuned with excitation in an experience-dependent manner over the first postnatal month. We discuss evidence suggesting that this may be a general feature of the developing cortex, and describe the functional implications of such transient excitatory-inhibitory imbalance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Inhibitory Control of Synaptic and Behavioral Plasticity by Octopaminergic Signaling

    Science.gov (United States)

    Koon, Alex C.; Budnik, Vivian

    2012-01-01

    Adrenergic receptors and their ligands are important regulators of synaptic plasticity and metaplasticity, but the exact mechanisms underlying their action are still poorly understood. Octopamine, the invertebrate homolog of mammalian adrenaline or noradrenaline, plays important roles in modulating behavior and synaptic functions. We previously uncovered an octopaminergic positive feedback mechanism to regulate structural synaptic plasticity during development and in response to starvation. Under this mechanism, activation of Octß2R autoreceptors by octopamine at octopaminergic neurons initiated a cAMP-dependent cascade that stimulated the development of new synaptic boutons at the Drosophila larval neuromuscular junction (NMJ). However, the regulatory mechanisms that served to brake such positive feedback were not known. Here, we report the presence of an alternative octopamine autoreceptor, Octß1R, with antagonistic functions on synaptic growth. Mutations in octß1r result in the overgrowth of both glutamatergic and octopaminergic NMJs suggesting that Octß1R is a negative regulator of synaptic expansion. As Octß2R, Octß1R functioned in a cell autonomous manner at presynaptic motorneurons. However, unlike Octß2R, which activated a cAMP pathway, Octß1R likely inhibited cAMP production through inhibitory Goα. Despite its inhibitory role, Octß1R was required for acute changes in synaptic structure in response to octopamine and for starvation-induced increase in locomotor speed. These results demonstrate the dual action of octopamine on synaptic growth and behavioral plasticity, and highlight the important role of inhibitory influences for normal responses to physiological stimuli. PMID:22553037

  11. Common mechanisms of synaptic plasticity in vertebrates and invertebrates

    Science.gov (United States)

    Glanzman, David L.

    2016-01-01

    Until recently, the literature on learning-related synaptic plasticity in invertebrates has been dominated by models assuming plasticity is mediated by presynaptic changes, whereas the vertebrate literature has been dominated by models assuming it is mediated by postsynaptic changes. Here I will argue that this situation does not reflect a biological reality and that, in fact, invertebrate and vertebrate nervous systems share a common set of mechanisms of synaptic plasticity. PMID:20152143

  12. Synaptic plasticity model of therapeutic sleep deprivation in major depression.

    Science.gov (United States)

    Wolf, Elias; Kuhn, Marion; Normann, Claus; Mainberger, Florian; Maier, Jonathan G; Maywald, Sarah; Bredl, Aliza; Klöppel, Stefan; Biber, Knut; van Calker, Dietrich; Riemann, Dieter; Sterr, Annette; Nissen, Christoph

    2016-12-01

    Therapeutic sleep deprivation (SD) is a rapid acting treatment for major depressive disorder (MDD). Within hours, SD leads to a dramatic decrease in depressive symptoms in 50-60% of patients with MDD. Scientifically, therapeutic SD presents a unique paradigm to study the neurobiology of MDD. Yet, up to now, the neurobiological basis of the antidepressant effect, which is most likely different from today's first-line treatments, is not sufficiently understood. This article puts the idea forward that sleep/wake-dependent shifts in synaptic plasticity, i.e., the neural basis of adaptive network function and behavior, represent a critical mechanism of therapeutic SD in MDD. Particularly, this article centers on two major hypotheses of MDD and sleep, the synaptic plasticity hypothesis of MDD and the synaptic homeostasis hypothesis of sleep-wake regulation, and on how they can be integrated into a novel synaptic plasticity model of therapeutic SD in MDD. As a major component, the model proposes that therapeutic SD, by homeostatically enhancing cortical synaptic strength, shifts the initially deficient inducibility of associative synaptic long-term potentiation (LTP) in patients with MDD in a more favorable window of associative plasticity. Research on the molecular effects of SD in animals and humans, including observations in the neurotrophic, adenosinergic, monoaminergic, and glutamatergic system, provides some support for the hypothesis of associative synaptic plasticity facilitation after therapeutic SD in MDD. The model proposes a novel framework for a mechanism of action of therapeutic SD that can be further tested in humans based on non-invasive indices and in animals based on direct studies of synaptic plasticity. Further determining the mechanisms of action of SD might contribute to the development of novel fast acting treatments for MDD, one of the major health problems worldwide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. How competitive is nuclear energy?

    International Nuclear Information System (INIS)

    Keppler, J.H.

    2010-01-01

    The economic competitiveness of nuclear energy will be crucial for determining its future share in world electricity production. In addition, the widespread liberalization of power markets, in particular in OECD countries, reinforces the role of commercial criteria in technology selection . The recently published IEA/NEA study on Projected Costs of Generating Electricity: 2010 Edition (IEA/NEA, 2010) provides important indications regarding the relative competitiveness of nuclear energy in OECD member countries as well as in four non-OECD countries (Brazil, China, Russia and South Africa). The results highlight the paramount importance of discount rates and, to a lesser extent, carbon and fuel prices when comparing different technologies. Going beyond this general finding, the study also shows that the relative competitiveness of nuclear energy varies widely from one major region to another, and even from country to country. While the study provides a useful snapshot of the costs of generating electricity with different technologies, it does not provide an absolute picture of the competitiveness of nuclear energy. Like any study, Projected Costs of Generating Electricity makes a number of common assumptions about discount rates as well as carbon and fuel prices. In addition, its calculations are based on a methodology that is referred to as the levelised cost of electricity (LCOE), which assumes that all risks are included in the interest or discount rate, which determines the cost of capital. In other words, neither the electricity price risk for nuclear and renewables, nor the carbon and fuel price risk for fossil fuels such as coal and gas, receive specific consideration. The decisions of private investors, however, will depend to a large extent on their individual appreciations of these risks. The competitiveness of nuclear energy thus depends on three different factors which may vary greatly from market to market: interest rates, carbon and fuel prices, and

  14. Customer-driven competition

    International Nuclear Information System (INIS)

    Taylor, R.

    1996-01-01

    Ontario Hydro's customer-driven strategy, recently approved by Hydro's Executive Board, was described. The strategy is founded on the following components: (1) the dissolution of the Ontario power pool, i.e., the loss of Hydro's franchise monopoly on generation, leaving only power transmission in the hands of the Corporation, (2) divestment of Ontario Hydro's system operations and market operations functions to a new, independent Crown corporation called the Central Market Operator, (3) functional and organizational unbundling of Ontario Hydro into three signature businesses, Genco, Transco, and Retailco, and in the latter two, the functional unbundling of wires from sales and services, (4) a fully commercial Ontario Hydro with normal corporate powers, and (5) a corporate strategy for Ontario Hydro to grow in businesses in an open, symmetrical North American energy market. According to Ontario Hydro management this will allow competition and choice to all customers, have a disciplining effect on prices, and give rise to a retail market of new products and services, while at the same time preserve and enhance the value of public investment in the Corporation

  15. Foreign launch competition growing

    Science.gov (United States)

    Brodsky, R. F.; Wolfe, M. G.; Pryke, I. W.

    1986-07-01

    A survey is given of progress made by other nations in providing or preparing to provide satellite launch services. The European Space Agency has four generations of Ariane vehicles, with a fifth recently approved; a second launch facility in French Guiana that has become operational has raised the possible Ariane launch rate to 10 per year, although a May failure of an Ariane 2 put launches on hold. The French Hermes spaceplane and the British HOTOL are discussed. Under the auspices of the Italian National Space Plane, the Iris orbital transfer vehicle is developed and China's Long March vehicles and the Soviet Protons and SL-4 vehicles are discussed; the Soviets moreover are apparently developing not only a Saturn V-class heavy lift vehicle with a 150,000-kg capacity (about five times the largest U.S. capacity) but also a space shuttle and a spaceplane. Four Japanese launch vehicles and some vehicles in an Indian program are also ready to provide launch services. In this new, tough market for launch services, the customers barely outnumber the suppliers. The competition develops just as the Challenger and Titan disasters place the U.S. at a disadvantage and underline the hard work ahead to recoup its heretofore leading position in launch services.

  16. An Improved Test for Detecting Multiplicative Homeostatic Synaptic Scaling

    Science.gov (United States)

    Kim, Jimok; Tsien, Richard W.; Alger, Bradley E.

    2012-01-01

    Homeostatic scaling of synaptic strengths is essential for maintenance of network “gain”, but also poses a risk of losing the distinctions among relative synaptic weights, which are possibly cellular correlates of memory storage. Multiplicative scaling of all synapses has been proposed as a mechanism that would preserve the relative weights among them, because they would all be proportionately adjusted. It is crucial for this hypothesis that all synapses be affected identically, but whether or not this actually occurs is difficult to determine directly. Mathematical tests for multiplicative synaptic scaling are presently carried out on distributions of miniature synaptic current amplitudes, but the accuracy of the test procedure has not been fully validated. We now show that the existence of an amplitude threshold for empirical detection of miniature synaptic currents limits the use of the most common method for detecting multiplicative changes. Our new method circumvents the problem by discarding the potentially distorting subthreshold values after computational scaling. This new method should be useful in assessing the underlying neurophysiological nature of a homeostatic synaptic scaling transformation, and therefore in evaluating its functional significance. PMID:22615990

  17. BDNF-induced local protein synthesis and synaptic plasticity.

    Science.gov (United States)

    Leal, Graciano; Comprido, Diogo; Duarte, Carlos B

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is an important regulator of synaptic transmission and long-term potentiation (LTP) in the hippocampus and in other brain regions, playing a role in the formation of certain forms of memory. The effects of BDNF in LTP are mediated by TrkB (tropomyosin-related kinase B) receptors, which are known to be coupled to the activation of the Ras/ERK, phosphatidylinositol 3-kinase/Akt and phospholipase C-γ (PLC-γ) pathways. The role of BDNF in LTP is best studied in the hippocampus, where the neurotrophin acts at pre- and post-synaptic levels. Recent studies have shown that BDNF regulates the transport of mRNAs along dendrites and their translation at the synapse, by modulating the initiation and elongation phases of protein synthesis, and by acting on specific miRNAs. Furthermore, the effect of BDNF on transcription regulation may further contribute to long-term changes in the synaptic proteome. In this review we discuss the recent progress in understanding the mechanisms contributing to the short- and long-term regulation of the synaptic proteome by BDNF, and the role in synaptic plasticity, which is likely to influence learning and memory formation. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Self-organised criticality via retro-synaptic signals

    Science.gov (United States)

    Hernandez-Urbina, Victor; Herrmann, J. Michael

    2016-12-01

    The brain is a complex system par excellence. In the last decade the observation of neuronal avalanches in neocortical circuits suggested the presence of self-organised criticality in brain networks. The occurrence of this type of dynamics implies several benefits to neural computation. However, the mechanisms that give rise to critical behaviour in these systems, and how they interact with other neuronal processes such as synaptic plasticity are not fully understood. In this paper, we present a long-term plasticity rule based on retro-synaptic signals that allows the system to reach a critical state in which clusters of activity are distributed as a power-law, among other observables. Our synaptic plasticity rule coexists with other synaptic mechanisms such as spike-timing-dependent plasticity, which implies that the resulting synaptic modulation captures not only the temporal correlations between spiking times of pre- and post-synaptic units, which has been suggested as requirement for learning and memory in neural systems, but also drives the system to a state of optimal neural information processing.

  19. Cerebellar Synaptic Plasticity and the Credit Assignment Problem.

    Science.gov (United States)

    Jörntell, Henrik

    2016-04-01

    The mechanism by which a learnt synaptic weight change can contribute to learning or adaptation of brain function is a type of credit assignment problem, which is a key issue for many parts of the brain. In the cerebellum, detailed knowledge not only of the local circuitry connectivity but also of the topography of different sources of afferent/external information makes this problem particularly tractable. In addition, multiple forms of synaptic plasticity and their general rules of induction have been identified. In this review, we will discuss the possible roles of synaptic and cellular plasticity at specific locations in contributing to behavioral changes. Focus will be on the parts of the cerebellum that are devoted to limb control, which constitute a large proportion of the cortex and where the knowledge of the external connectivity is particularly well known. From this perspective, a number of sites of synaptic plasticity appear to primarily have the function of balancing the overall level of activity in the cerebellar circuitry, whereas the locations at which synaptic plasticity leads to functional changes in terms of limb control are more limited. Specifically, the postsynaptic forms of long-term potentiation (LTP) and long-term depression (LTD) at the parallel fiber synapses made on interneurons and Purkinje cells, respectively, are the types of plasticity that mediate the widest associative capacity and the tightest link between the synaptic change and the external functions that are to be controlled.

  20. African Competition Forum: Promoting Open and Competitive ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Markets in developing countries are often marked by anti-competitive behaviour, concentrated market power, and low access for newcomers. This limits local enterprise development and innovation. This project supports African countries in their bid to promote markets that work better for all producers and consumers.

  1. Competition research improves services

    International Development Research Centre (IDRC) Digital Library (Canada)

    5. Case study. THE POWER OF COMPETITIVE MARKETS. Competition and Development. One issue that all migrant workers face is how to send some of ... send some of their hard-earned wages home — quickly, safely, and at the lowest possible cost. Few have bank accounts. This might seem like a minor issue to people ...

  2. Competition: Was Kohn Right?

    Science.gov (United States)

    Shields, David Light; Bredemeier, Brenda Light

    2010-01-01

    Alfie Kohn made the case for competition being destructive to education. The truth may be that there are two separate ways to contest: true competition, which is a healthy desire to excel, and decompetition, which is the unhealthy desire merely to beat the opponent. Decompetition leads to the ills that Kohn enumerated. Educators should teach their…

  3. Competition, Ownership and Productivity

    DEFF Research Database (Denmark)

    Baghdasaryan, Delia; la Cour, Lisbeth

    2013-01-01

    Theoretical results support two concurrent views regarding the mediating role that ownership structure might play on the effect of competition on firm performance. According to one stream of literature, competition has a high, positive impact in companies that have an effective ownership structur...

  4. Multinationals and Institutional Competitiveness

    DEFF Research Database (Denmark)

    Hull Kristensen, Peer; Morgan, Glenn

    by forming firms capable of expanding internationally. At the level of subsidiaries as providing institutional back up for these firms' abilities to fight for survival and growth within the frame of rivalling subsidiaries of the MNC. The article discusses at these two levels the comparative institutional...... competitiveness of Liberal Market Economies and Coordinated Markets Economies under the current competitive regime....

  5. The competitive challenge

    International Nuclear Information System (INIS)

    Burr, M.T.

    1992-01-01

    This article examines the strategies necessary to succeed in the increasingly competitive independent power industry. The topics of the article include the factors encouraging mergers, acquisitions, and joint ventures, the availability of financing, changes in the market, regulatory climate changes, competition and power planning, Not In My Back Yard and project siting, and the road ahead

  6. The taurine transporter substrate guanidinoethyl sulfonate mimics the action of taurine on long-term synaptic potentiation.

    Science.gov (United States)

    Suárez, Luz M; Muñoz, María-Dolores; González, José C; Bustamante, Julián; Del Río, Rafael Martín; Solís, José M

    2016-11-01

    Taurine is especially abundant in rodent brain where it appears to be involved in osmoregulation and synaptic plasticity mechanisms. The demonstration of a physiological role for taurine has been hampered by the difficulty in modifying taurine levels in most tissues, including the brain. We used an experimental strategy to reduce taurine levels, involving treatment with guanidinoethyl sulfonate (GES), a structural analogue of taurine that, among other properties, acts as a competitive inhibitor of taurine transport. GES delivered in the drinking water of rats for 1 month effectively reduced taurine levels in brain structures (hippocampus, cerebellum and cortex) and outside the brain (heart, muscle, kidney, liver and plasma) by between 50 and 80 %, depending on the tissue. This partial taurine depletion did not affect either basal synaptic transmission or the late phase of long-term potentiation (late-LTP) in hippocampal slices. In vivo microdialysis studies in the hippocampus revealed that GES treatment reduced extracellular taurine levels and the magnitude of taurine released in response to the application of either N-methyl-D-aspartate (NMDA) or a hypoosmotic solution, without affecting release mechanisms. Finally, we demonstrated in hippocampal slices that a brief GES application can mimic taurine action on the conversion of a decremental LTP into a perdurable late-LTP, concluding that GES might replace taurine function in some mechanisms such as those implicated in synaptic plasticity.

  7. Crop–weed competition

    DEFF Research Database (Denmark)

    Gallandt, Eric R.; Weiner, Jacob

    2015-01-01

    importantly, weed density and time of emergence relative to the crop. Practices that (1) reduce the density of weeds, (2) maximise occupation of space or uptake of resources by the crop or (3) establish an early-season size advantage of the crop over the weeds will minimise the competitive effects of weeds...... an early-season competitive advantage to the crop and (3) maximising resource capture by the crop using competitive species, competitive cultivars, high sowing densities, optimal spatial arrangement, intercropping complimentary species or transplanting.......Competition from weeds is the most important of all biological factors that reduce agricultural crop yield. This occurs primarily because weeds use resources that would otherwise be available to the crop. The magnitude of yield loss is affected by numerous agronomic and environmental factors, most...

  8. Competition in investment banking

    Directory of Open Access Journals (Sweden)

    Katrina Ellis

    2011-01-01

    Full Text Available We construct a comprehensive measure of overall investment banking competitiveness for follow-on offerings that aggregates the various dimensions of competition such as fees, pricing accuracy, analyst recommendations, distributional abilities, market making prowess, debt offering capabilities, and overall reputation. The measure allows us to incorporate trade-offs that investment banks may use in competing for new or established clients. We find that firms who switch to similar-quality underwriters enjoy more intense competition among investment banks which manifests in lower fees and more optimistic recommendations. Investment banks do compete vigorously for some clients, with the level of competition related to the likelihood of gaining or losing clients. Finally, investment banks not performing up to market norms are more likely to be dropped in the follow-on offering. In contrast, firms who seek a higher reputation underwriter face relatively non-competitive markets.

  9. Competitiveness through strategic orientation

    Directory of Open Access Journals (Sweden)

    Diego Monferrer

    2012-12-01

    Full Text Available The aim of this paper is to further the study of the factors that influence the international competitive position of international new ventures and, consequently, their international performance. Specifically, we analyze the role of entrepreneurial and market orientations in the international competitive position of such firms. Data were collected at Spanish and Belgian international new ventures. The structural equations model approach was used to test our hypotheses. Both the Spanish and the Belgian sample revealed a positive and significant relationship between entrepreneurial orientation and market orientation. Furthermore, both orientations have a positive and significant effect on the international competitive position of such firms. Finally, any firm’s international competitive position is positively and significantly related to its international performance. The study therefore appears to indicate that, when it comes to international new ventures, the conjunction of these two orientations is a key factor to attaining a superior competitive position and a positive performance in international markets.

  10. Synaptic dimorphism in Onychophoran cephalic ganglia

    Directory of Open Access Journals (Sweden)

    Z Peña-Contreras

    2007-03-01

    Full Text Available The taxonomic location of the Onychophora has been controversial because of their phenotypic and genotypic characteristics, related to both annelids and arthropods. We analyzed the ultrastructure of the neurons and their synapses in the cephalic ganglion of a poorly known invertebrate, the velvet worm Peripatus sedgwicki, from the mountainous region of El Valle, Mérida, Venezuela. Cephalic ganglia were dissected, fixed and processed for transmission electron microscopy. The animal has a high degree of neurobiological development, as evidenced by the presence of asymmetric (excitatory and symmetric (inhibitory synapses, as well as the existence of glial cell processes in a wide neuropile zone. The postsynaptic terminals were seen to contain subsynaptic cisterns formed by membranes of smooth endoplasmic reticulum beneath the postsynaptic density, whereas the presynaptic terminal showed numerous electron transparent synaptic vesicles. From the neurophylogenetic perspectives, the ultrastructural characteristics of the central nervous tissue of the Onychophora show important evolutionary acquirements, such as the presence of both excitatory and inhibitory synapses, indicating functional synaptic transmission, and the appearance of mature glial cells. Rev. Biol . Trop. 55 (1: 261-267. Epub 2007 March. 31.Estudiamos la ultraestructura de las neuronas y sus sinapsis del ganglio cefálico de un invertebrado poco conocido del phylum Onychophora: Peripatus sedgwicki de los Andes Venezolanos, utilizando para ello la microscopía electrónica de transmisión. La localización taxonómica de los onicóforos ha sido controversial debido a sus características fenotípicas y genotípicas que los relacionan tanto con los anélidos como con los artrópodos. Para este trabajo se estudió el ganglio cefálico de P. sedgwicki de la zona montañosa de El Valle, Mérida, Venezuela. El ganglio cefálico se localiza en la región anterior del animal y fue diseccionado

  11. Bayesian inference of synaptic quantal parameters from correlated vesicle release

    Directory of Open Access Journals (Sweden)

    Alexander D Bird

    2016-11-01

    Full Text Available Synaptic transmission is both history-dependent and stochastic, resulting in varying responses to presentations of the same presynaptic stimulus. This complicates attempts to infer synaptic parameters and has led to the proposal of a number of different strategies for their quantification. Recently Bayesian approaches have been applied to make more efficient use of the data collected in paired intracellular recordings. Methods have been developed that either provide a complete model of the distribution of amplitudes for isolated responses or approximate the amplitude distributions of a train of post-synaptic potentials, with correct short-term synaptic dynamics but neglecting correlations. In both cases the methods provided significantly improved inference of model parameters as compared to existing mean-variance fitting approaches. However, for synapses with high release probability, low vesicle number or relatively low restock rate and for data in which only one or few repeats of the same pattern are available, correlations between serial events can allow for the extraction of significantly more information from experiment: a more complete Bayesian approach would take this into account also. This has not been possible previously because of the technical difficulty in calculating the likelihood of amplitudes seen in correlated post-synaptic potential trains; however, recent theoretical advances have now rendered the likelihood calculation tractable for a broad class of synaptic dynamics models. Here we present a compact mathematical form for the likelihood in terms of a matrix product and demonstrate how marginals of the posterior provide information on covariance of parameter distributions. The associated computer code for Bayesian parameter inference for a variety of models of synaptic dynamics is provided in the supplementary material allowing for quantal and dynamical parameters to be readily inferred from experimental data sets.

  12. Synaptic vesicle dynamic changes in a model of fragile X.

    Science.gov (United States)

    Broek, Jantine A C; Lin, Zhanmin; de Gruiter, H Martijn; van 't Spijker, Heleen; Haasdijk, Elize D; Cox, David; Ozcan, Sureyya; van Cappellen, Gert W A; Houtsmuller, Adriaan B; Willemsen, Rob; de Zeeuw, Chris I; Bahn, Sabine

    2016-01-01

    Fragile X syndrome (FXS) is a single-gene disorder that is the most common heritable cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorders (ASD). FXS is caused by an expansion of trinucleotide repeats in the promoter region of the fragile X mental retardation gene (Fmr1). This leads to a lack of fragile X mental retardation protein (FMRP), which regulates translation of a wide range of messenger RNAs (mRNAs). The extent of expression level alterations of synaptic proteins affected by FMRP loss and their consequences on synaptic dynamics in FXS has not been fully investigated. Here, we used an Fmr1 knockout (KO) mouse model to investigate the molecular mechanisms underlying FXS by monitoring protein expression changes using shotgun label-free liquid-chromatography mass spectrometry (LC-MS(E)) in brain tissue and synaptosome fractions. FXS-associated candidate proteins were validated using selected reaction monitoring (SRM) in synaptosome fractions for targeted protein quantification. Furthermore, functional alterations in synaptic release and dynamics were evaluated using live-cell imaging, and interpretation of synaptic dynamics differences was investigated using electron microscopy. Key findings relate to altered levels of proteins involved in GABA-signalling, especially in the cerebellum. Further exploration using microscopy studies found reduced synaptic vesicle unloading of hippocampal neurons and increased vesicle unloading in cerebellar neurons, which suggests a general decrease of synaptic transmission. Our findings suggest that FMRP is a regulator of synaptic vesicle dynamics, which supports the role of FMRP in presynaptic functions. Taken together, these studies provide novel insights into the molecular changes associated with FXS.

  13. Competition in the electric industry

    International Nuclear Information System (INIS)

    Jones, Mel

    1998-01-01

    Deregulation of the electric power industry is changing the 'personality' of utilities and the way they operate in order to survive in a more competitive marketplace. This paper will identify and discuss key issues NAC International believes will arise as the nuclear industry responds to deregulation. The regulatory treatment of such issues as retail wheeling, recovery of stranded costs, divestiture of assets and securitization will have a significant impact on how utilities, particularly those with nuclear assets, proceed into the new marketplace. While some will survive as a result of innovative thinking, cost control, and entrance into new niche markets, others will be forced to reassess their viability altogether. Increased mergers and acquisitions and early plant closures are potential consequences of these struggles. Meanwhile, innovative companies will develop and enter into new nuclear markets including most notably the acquisition of generating assets. Other key drivers that will significantly impact the competitiveness of nuclear versus other fuels will be the resolution of the nuclear waste issue, the reduction of O and M and decisions regarding whether to make expensive capital additions. Additionally, this paper will present an overview of key regulatory and legislative initiatives impacting electricity. Finally, this paper will examine the roles of regulating bodies such as the Nuclear Regulatory Commission, Federal Energy Regulatory Commission, and state utility commissions, and will provide an outlook for further legislative and regulatory actions in this competitive environment. (author)

  14. Heterogeneous logics of competition

    DEFF Research Database (Denmark)

    Mossin, Christiane

    2015-01-01

    The purpose of the article is to demonstrate that in order to understand competition as a socially organizing phenomenon, we should not examine competition in isolation, but as constellations of heterogeneous logics. More precisely, the article is based on two main theoretical points: (1) Logics...... of a presumed logic of competition within EU law, whereas the second part focuses on particular legal logics. In this respect, the so-called ‘real link criterion’ (determining the access to transnational social rights for certain groups of unemployed people) is given special attention. What is particularly...

  15. Competitiveness: new economic paradigm?

    Directory of Open Access Journals (Sweden)

    Marlene Peñaloza

    2005-10-01

    Full Text Available Nowadays competitiveness is made up of “the new” paradigm that allows to prevail in the global World. Thus, it is inevitable to ask, was it required to be competitive to be successful in the international trade arena? Recognizing the discussion about it and its theoretical-conceptual density, the present paper studies this old notion whose meaning, in essence, is always the same one. This applies even though new realities in the present world-wide atmosphere confer to it a distinguishing character and new and old players are forced to organize actions and bring efforts together to obtain the competitive supremacy.

  16. Competition in education

    DEFF Research Database (Denmark)

    Knudsen, Hanne; Christensen, Søren

    Competition in education has two functions: selection and motivation. How do these two functions correlate, contradict or co-exist? How has the educational system reflected on the relation between competition as motivational technology and as a technology for selection? The aim of this paper...... is to formulate the problem of competition in education as a relation between selection and motivation and provide an analytical strategy to grasp this problem. Our ambition is to theorize the problem and give empirical illustrations of how the connection between selection and motivation has been articulated...... in various educational institutions and programs....

  17. Competition and evolution in restricted space

    International Nuclear Information System (INIS)

    Forgerini, F L; Crokidakis, N

    2014-01-01

    We study the competition and the evolution of nodes embedded in Euclidean restricted spaces. The population evolves by a branching process in which new nodes are generated when up to two new nodes are attached to the previous ones at each time unit. The competition in the population is introduced by considering the effect of overcrowding of nodes in the embedding space. The branching process is suppressed if the newborn node is closer than a distance ξ to the previous nodes. This rule may be relevant to describe a competition for resources, limiting the density of individuals and therefore the total population. This results in an exponential growth in the initial period, and, after some crossover time, approaching some limiting value. Our results show that the competition among the nodes associated with geometric restrictions can even, for certain conditions, lead the entire population to extinction. (paper)

  18. Economic competitiveness of nuclear power in China

    International Nuclear Information System (INIS)

    Hu Chuanwen

    2005-01-01

    Development of nuclear power in China has made a good progress. Currently, economic competitiveness of nuclear power compared to fossil-fuelled power plants is one of the major problems which hamper its development. This article presents the economic competitiveness of nuclear power in China with two-level analyses. First, levelized lifetime cost method is adopted for electricity generation cost comparisons. Important factors influencing economic competitiveness of nuclear power are described. Furthermore, a broad economic evaluation of the full fuel chain of nuclear power and fossil-fuelled plants is discussed concerning macro social-economic issues, environmental and health impacts. The comprehensive comparative assessment would be carried out for decision making to implement nuclear power programme. In consideration of external costs and carbon value, the economic competitiveness of nuclear power would be further improved. Facing swift economic growth, huge energy demand and heavy environmental burden, nuclear power could play a significant role in sustainable development in China. (authors)

  19. Frequency of Synaptic Autoantibody Accompaniments and Neurological Manifestations of Thymoma.

    Science.gov (United States)

    Zekeridou, Anastasia; McKeon, Andrew; Lennon, Vanda A

    2016-07-01

    Thymoma is commonly recognized in association with paraneoplastic autoimmune myasthenia gravis (MG), an IgG-mediated impairment of synaptic transmission targeting the nicotinic acetylcholine receptor of muscle. Newly identified synaptic autoantibodies may expand the serological profile of thymoma. To investigate the frequency of potentially pathogenic neural synaptic autoantibodies in patients with thymoma. We retrospectively identified patients with histopathologically confirmed thymoma and serum available to test for synaptic autoantibodies (collected 1986-2014) at the Mayo Clinic Neuroimmunology Laboratory. We identified and classified 193 patients with thymoma into 4 groups: (1) lacking neurological autoimmunity (n = 43); (2) isolated MG (n = 98); (3) MG plus additional autoimmune neurological manifestations (n = 26); and (4) neurological autoimmunity other than MG (n = 26). Clinical presentation and serum profile of autoantibodies reactive with molecularly defined synaptic plasma membrane proteins of muscle, peripheral, and central nervous systems. Of the 193 patients with thymoma, mean patient age was 52 years and did not significantly differ by sex (106 women) or group. Myasthenia gravis was the most prevalent clinical manifestation (64%) followed by dysautonomia (16 patients [8%]) and encephalopathy (15 patients [8%]); 164 patients (85%) had at least 1 synaptic autoantibody, and 63 of these patients (38%) had at least 1 more. Muscle acetylcholine receptor was most frequent (78%), followed by ganglionic acetylcholine receptor (20%), voltage-gated Kv1 potassium channel-complex (13%), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (5%). Less frequent were aquaporin-4, voltage-gated Kv1 potassium channel-complex related proteins (leucine-rich glioma-inactivated 1 and contactin-associated protein-like 2), glycine receptor, and γ-aminobutyric acid-A receptor. Synaptic autoantibodies were significantly more frequent in patients

  20. Synaptic plasticity in the auditory system: a review.

    Science.gov (United States)

    Friauf, Eckhard; Fischer, Alexander U; Fuhr, Martin F

    2015-07-01

    Synaptic transmission via chemical synapses is dynamic, i.e., the strength of postsynaptic responses may change considerably in response to repeated synaptic activation. Synaptic strength is increased during facilitation, augmentation and potentiation, whereas a decrease in synaptic strength is characteristic for depression and attenuation. This review attempts to discuss the literature on short-term and long-term synaptic plasticity in the auditory brainstem of mammals and birds. One hallmark of the auditory system, particularly the inner ear and lower brainstem stations, is information transfer through neurons that fire action potentials at very high frequency, thereby activating synapses >500 times per second. Some auditory synapses display morphological specializations of the presynaptic terminals, e.g., calyceal extensions, whereas other auditory synapses do not. The review focuses on short-term depression and short-term facilitation, i.e., plastic changes with durations in the millisecond range. Other types of short-term synaptic plasticity, e.g., posttetanic potentiation and depolarization-induced suppression of excitation, will be discussed much more briefly. The same holds true for subtypes of long-term plasticity, like prolonged depolarizations and spike-time-dependent plasticity. We also address forms of plasticity in the auditory brainstem that do not comprise synaptic plasticity in a strict sense, namely short-term suppression, paired tone facilitation, short-term adaptation, synaptic adaptation and neural adaptation. Finally, we perform a meta-analysis of 61 studies in which short-term depression (STD) in the auditory system is opposed to short-term depression at non-auditory synapses in order to compare high-frequency neurons with those that fire action potentials at a lower rate. This meta-analysis reveals considerably less STD in most auditory synapses than in non-auditory ones, enabling reliable, failure-free synaptic transmission even at

  1. Neuronal Glud1 (glutamate dehydrogenase 1) over-expressing mice: increased glutamate formation and synaptic release, loss of synaptic activity, and adaptive changes in genomic expression.

    Science.gov (United States)

    Michaelis, E K; Wang, X; Pal, R; Bao, X; Hascup, K N; Wang, Y; Wang, W-T; Hui, D; Agbas, A; Choi, I-Y; Belousov, A; Gerhardt, G A

    2011-09-01

    Glutamate dehydrogenase 1 (GLUD1) is a mitochondrial enzyme expressed in all tissues, including brain. Although this enzyme is expressed in glutamatergic pathways, its function as a regulator of glutamate neurotransmitter levels is still not well defined. In order to gain an understanding of the role of GLUD1 in the control of glutamate levels and synaptic release in mammalian brain, we generated transgenic (Tg) mice that over-express this enzyme in neurons of the central nervous system. The Tg mice have increased activity of GLUD, as well as elevated levels and increased synaptic and depolarization-induced release of glutamate. These mice suffer age-associated losses of dendritic spines, nerve terminals, and neurons. The neuronal losses and dendrite structural changes occur in select regions of the brain. At the transcriptional level in the hippocampus, cells respond by increasing the expression of genes related to neurite growth and synapse formation, indications of adaptive or compensatory responses to the effects of increases in the release and action of glutamate at synapses. Because these Tg mice live to a relatively old age they are a good model of the effects of a "hyperglutamatergic" state on the aging process in the nervous system. The mice are also useful in defining the molecular pathways affected by the over-activation of GLUD in glutamatergic neurons of the brain and spinal cord. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Remodeling of inhibitory synaptic connections in developing ferret visual cortex

    Directory of Open Access Journals (Sweden)

    Dalva Matthew B

    2010-02-01

    Full Text Available Abstract Background In the visual cortex, as in many other regions of the developing brain, excitatory synaptic connections undergo substantial remodeling during development. While evidence suggests that local inhibitory synapses may behave similarly, the extent and mechanisms that mediate remodeling of inhibitory connections are not well understood. Results Using scanning laser photostimulation in slices of developing ferret visual cortex, we assessed the overall patterns of developing inhibitory and excitatory synaptic connections converging onto individual neurons. Inhibitory synaptic inputs onto pyramidal neurons in cortical layers 2 and 3 were already present as early as postnatal day 20, well before eye opening, and originated from regions close to the recorded neurons. During the ensuing 2 weeks, the numbers of synaptic inputs increased, with the numbers of inhibitory (and excitatory synaptic inputs peaking near the time of eye opening. The pattern of inhibitory inputs refined rapidly prior to the refinement of excitatory inputs. By uncaging the neurotransmtter GABA in brain slices from animals of different ages, we find that this rapid refinement correlated with a loss of excitatory activity by GABA. Conclusion Inhibitory synapses, like excitatory synapses, undergo significant postnatal remodeling. The time course of the remodeling of inhibitory connections correlates with the emergence of orientation tuning in the visual cortex, implicating these rearrangements in the genesis of adult cortical response properties.

  3. Cell-specific synaptic plasticity induced by network oscillations.

    Science.gov (United States)

    Zarnadze, Shota; Bäuerle, Peter; Santos-Torres, Julio; Böhm, Claudia; Schmitz, Dietmar; Geiger, Jörg Rp; Dugladze, Tamar; Gloveli, Tengis

    2016-05-24

    Gamma rhythms are known to contribute to the process of memory encoding. However, little is known about the underlying mechanisms at the molecular, cellular and network levels. Using local field potential recording in awake behaving mice and concomitant field potential and whole-cell recordings in slice preparations we found that gamma rhythms lead to activity-dependent modification of hippocampal networks, including alterations in sharp wave-ripple complexes. Network plasticity, expressed as long-lasting increases in sharp wave-associated synaptic currents, exhibits enhanced excitatory synaptic strength in pyramidal cells that is induced postsynaptically and depends on metabotropic glutamate receptor-5 activation. In sharp contrast, alteration of inhibitory synaptic strength is independent of postsynaptic activation and less pronounced. Further, we found a cell type-specific, directionally biased synaptic plasticity of two major types of GABAergic cells, parvalbumin- and cholecystokinin-expressing interneurons. Thus, we propose that gamma frequency oscillations represent a network state that introduces long-lasting synaptic plasticity in a cell-specific manner.

  4. DMEPOS Competitive Bidding

    Data.gov (United States)

    U.S. Department of Health & Human Services — The DMEPOS Competitive Bidding Program was mandated by Congress through the Medicare Prescription Drug, Improvement, and Modernization Act of 2003 (MMA). The statute...

  5. Competition Policy and Innovation

    DEFF Research Database (Denmark)

    Møllgaard, Peter; Lorentzen, Jo

    2005-01-01

    We briefly review the rationale behind technological alliances and provide a snapshot oftheir role in global competition, especially insofar as it is based around intellectual capital.They nicely illustrate the increased importance of horizontal agreements and thusestablish the relevance of the t......We briefly review the rationale behind technological alliances and provide a snapshot oftheir role in global competition, especially insofar as it is based around intellectual capital.They nicely illustrate the increased importance of horizontal agreements and thusestablish the relevance...... of the topic. We move on to discuss the organisation of industriesin a dynamic context and draw out consequences for competition policy. We concludewith an outlook on the underlying tensions between technology alliances, competitionpolicy, and industrial policy.JEL codes: L4, L5, O31Keywords: Competition...... policy, innovation, alliances, industrial policy...

  6. COMPETITIVENESS FOR SUSTAINABLE ECONOMIES

    Directory of Open Access Journals (Sweden)

    Nelu Eugen POPESCU

    2014-04-01

    Full Text Available The current economic environment puts pressure on all national economies which struggle to improve their competitiveness and innovativeness in a sustainable way. This article aims to present the current state of the competitiveness by reviewing the main literature and worldwide researches, in order to provide a brief overview of the determinants that drive productivity and economic success at global and national level, taking into consideration the entrepreneurial activity for a country’s competitiveness and economic growth. The paper identifies the ways in which efficiency driven countries can improve their policies and get a better return on their investments, underlining a set of competitiveness enhancing policies (measures that can be implemented by public and private institutions in order to strengthen the economic fundamentals of the economies.

  7. Innovation and strategic competitiveness

    Directory of Open Access Journals (Sweden)

    Jović Mile B.

    2003-01-01

    Full Text Available Paper discussed relationships of innovation to achieving strategic competitiveness in today globalized economic environment. Special attention is devoted to the nature of competitive advantages on global industries as well national level. Competitive advantage is a firm's ability to transform inputs into goods and services at a profit on a sustained basis, better than competitors. Comparative advantage resides in the factor endowments and created endowments of particular regions. Beside the traditional endowment approach (land, natural resources, labor and the size of the local population it is emphasized the importance of created one such as skilled labor, the technology and knowledge base, government support and culture. Creating corporate or country competitiveness roadmap there are no substantial difference - innovative as well strategic approach is essential.

  8. Intraspecific competition delays recovery of population structure.

    Science.gov (United States)

    Liess, Matthias; Foit, Kaarina

    2010-04-01

    Ecotoxicological field studies have shown that total abundance and biomass often recover shortly after pulsed toxicant stress. In contrast, population structure showed comparatively long-term alterations before reaching pre-treatment conditions. We investigated two mechanisms that may explain the prolonged recovery of population structure: latent toxicant effects on life-history traits on the individual level and competition on the population level. To test these hypotheses we exposed populations of Daphnia magna to a pulse of the pyrethroid Fenvalerate. For several generations the populations were kept at two different degrees of competition: strong competition at carrying capacity and reduced competition maintained by simulated predation. After disturbance due to Fenvalerate exposure, biomass recovered after 14-17 days. In contrast, size structure characterised by a lack of large and dominance of small organisms recovered after 43 days in populations with strong competition. Size structure recovered twice faster in populations with reduced competition. We explain this as follows: due to toxicant induced mortality, food availability and consequently birth rate increased and populations were dominated by small individuals. In populations without predation, these cohorts grew and eventually exerted high intraspecific competition that (i) stopped further growth of juveniles and (ii) increased mortality of adults. These demographic processes were mainly responsible for the prolonged recovery of size structure. In contrast, for populations with predation, the regular harvest of individuals reduced competition. Juveniles developed continuously, allowing a fast recovery of size structure in these dynamic populations. In risk assessment the duration for populations to recover from (toxicant) stress, is crucial for the determination of ecological acceptable effects. We conclude that competition needs to be considered in order to understand and predict recovery of size

  9. FameLab competition

    CERN Multimedia

    2011-01-01

    Are you 18 to 35 years old and studying or working in science in Switzerland? Are you passionate about your job and keen on exciting public imagination with a vision of the 21st century of science? Then this competition is for you!   For more information, check out http://www.famelab.ch/ or http://famelab.org/ or write to info@famelab.ch. Read more about the Famelab competition in this Bulletin article.  

  10. Technology and Competitiveness

    OpenAIRE

    Jan Fagerberg

    1995-01-01

    This paper reviews the literature on technology and competitiveness. First, the concept of the international competitiveness of a country, and various theoretical approaches on the relationship between trade and growth, are discussed. Then a number of empirical studies of the impact of technology (as evidenced by R&D, patents, etc.) on exports are examined. The final section summarizes the evidence and considers the lessons for policy.

  11. Managing Dynamic Competition

    OpenAIRE

    Tracy R. Lewis; Huseyin Yildirim

    2002-01-01

    In many important high-technology markets, including software development, data processing, communications, aeronautics, and defense, suppliers learn through experience how to provide better service at lower cost. This paper examines how a buyer designs dynamic competition among rival suppliers to exploit learning economies while minimizing the costs of becoming locked in to one producer. Strategies for controlling dynamic competition include the handicapping of more efficient suppliers in pr...

  12. Context Construction Through Competition

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    2015-01-01

    This article examines the relationship between the evolution of statehood and competition in the European context. To begin with, a particular take on the evolution of modern political power in the state form in Europe is developed. Against this background, the article reconstructs how the instit...... and to expand the use of competition as a tool for organizing social processes, and the implications of these attempts for the state of statehood....

  13. Context Construction through Competition

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    This paper examines the relation between the evolution of statehood and institutionalised competition in the European context. The first half of the paper develops a historical-sociological view on the evolution of modern political power in the state form in Europe while the second half the paper...... and expand the use of competition as a tool for organising social processes and the implications of the se attempts for the state of statehood....

  14. World competitiveness and agriculture

    Directory of Open Access Journals (Sweden)

    J. van Zyl

    1997-07-01

    Full Text Available Against the background of a changing environment in which market factors and greater world trade and competitiveness are increasingly becoming the only criteria for success, a framework for the analysis of world competitiveness is initially developed. This is followed by a discussion on the growth of productivity in agriculture, as well as an exposition of the role of agricultural research. Thirdly, price factors and the terms of trade are discussed, followed by a summary of policy implications.

  15. Global competitiveness research

    Directory of Open Access Journals (Sweden)

    Anđelić Slavica

    2016-01-01

    Full Text Available Wealth in all economies is being created at the microeconomic level through the activities of economic entities. Due to the disappearance of many barriers in international trade, i.e. reducing costs in transportation and communications, all countries and their economic subjects are now competing in the global market. In today's global economy, characterized by openness and integration, competitiveness plays a key role both in developed countries, as well as in developing ones. Competitiveness presents sustainable productivity growth driven by the quality of the strategy and operations of the company, affected by macroeconomic and microeconomic environment altogether. The level of competitiveness is determined by productivity - ability to produce goods and services using existing human, financial, natural and other resources. Productivity determines the standard of living of the country or a region, capital income, preservation of national wealth. Productivity also depends on the value of goods and services (e.g. of their uniqueness, quality and the efficiency of their production. In order to identify as many indicators (variables that are essential to the concept of competition, and get more reliable results when measuring the international competitiveness of countries, most commonly used and most accurate ones are three models: IMD model, the World Economic Forum model and the World Bank model. Those models have been successfully used by the CEER magazine, in order to conduct an analysis of competitiveness between Poland, the Czech Republic, Hungary, as well as of all developing countries (Serbia being among them.

  16. Competition in energy

    International Nuclear Information System (INIS)

    Haynes, Warren

    1995-01-01

    With changes occurring within both the gas and electricity industries and both sectors undergoing simultaneous reforms at the State and national levels it is timely to look at some major aspects of the energy-reform processes in Australia and to attempt to offer some perspectives from the viewpoint of an industry user of energy. From an industry user's viewpoint there is quantifiable evidence that competition in the energy sector will deliver major economic benefits to industry and the nation. The reform process currently in train will increase Australia's international competitiveness. Commonwealth-State collaboration is useful on economic issues which require a national consistent approach. Many significant and complex arrangement apply to the gas and electricity sectors which add to the complexity of the respective reform processes. More competitive arrangements are therefore required more quickly at several stages of the gas-sector reform process, such as in the commercialization of government utilities, resolving the issue of third-party transmission pricing, and the removal of State governments' impediments to competitive trading. The Hilmer Report on National Competition Policy will help deal with some difficult structural and transitional issues, e.g. third-party access, competitive structures, regulatory regimes, and a consistent national approach.(author). 1 fig., 1 photo

  17. Changes in hippocampal synaptic functions and protein expression in monosodium glutamate-treated obese mice during development of glucose intolerance.

    Science.gov (United States)

    Sasaki-Hamada, Sachie; Hojo, Yuki; Koyama, Hajime; Otsuka, Hayuma; Oka, Jun-Ichiro

    2015-05-01

    Glucose is the sole neural fuel for the brain and is essential for cognitive function. Abnormalities in glucose tolerance may be associated with impairments in cognitive function. Experimental obese model mice can be generated by an intraperitoneal injection of monosodium glutamate (MSG; 2 mg/g) once a day for 5 days from 1 day after birth. MSG-treated mice have been shown to develop glucose intolerance and exhibit chronic neuroendocrine dysfunction associated with marked cognitive malfunctions at 28-29  weeks old. Although hippocampal synaptic plasticity is impaired in MSG-treated mice, changes in synaptic transmission remain unknown. Here, we investigated whether glucose intolerance influenced cognitive function, synaptic properties and protein expression in the hippocampus. We demonstrated that MSG-treated mice developed glucose intolerance due to an impairment in the effectiveness of insulin actions, and showed cognitive impairments in the Y-maze test. Moreover, long-term potentiation (LTP) at Schaffer collateral-CA1 pyramidal synapses in hippocampal slices was impaired, and the relationship between the slope of extracellular field excitatory postsynaptic potential and stimulus intensity of synaptic transmission was weaker in MSG-treated mice. The protein levels of vesicular glutamate transporter 1 and GluA1 glutamate receptor subunits decreased in the CA1 region of MSG-treated mice. These results suggest that deficits in glutamatergic presynapses as well as postsynapses lead to impaired synaptic plasticity in MSG-treated mice during the development of glucose intolerance, though it remains unknown whether impaired LTP is due to altered inhibitory transmission. It may be important to examine changes in glucose tolerance in order to prevent cognitive malfunctions associated with diabetes. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. SynapticDB, effective web-based management and sharing of data from serial section electron microscopy.

    Science.gov (United States)

    Shi, Bitao; Bourne, Jennifer; Harris, Kristen M

    2011-03-01

    Serial section electron microscopy (ssEM) is rapidly expanding as a primary tool to investigate synaptic circuitry and plasticity. The ultrastructural images collected through ssEM are content rich and their comprehensive analysis is beyond the capacity of an individual laboratory. Hence, sharing ultrastructural data is becoming crucial to visualize, analyze, and discover the structural basis of synaptic circuitry and function in the brain. We devised a web-based management system called SynapticDB (http://synapses.clm.utexas.edu/synapticdb/) that catalogues, extracts, analyzes, and shares experimental data from ssEM. The management strategy involves a library with check-in, checkout and experimental tracking mechanisms. We developed a series of spreadsheet templates (MS Excel, Open Office spreadsheet, etc) that guide users in methods of data collection, structural identification, and quantitative analysis through ssEM. SynapticDB provides flexible access to complete templates, or to individual columns with instructional headers that can be selected to create user-defined templates. New templates can also be generated and uploaded. Research progress is tracked via experimental note management and dynamic PDF forms that allow new investigators to follow standard protocols and experienced researchers to expand the range of data collected and shared. The combined use of templates and tracking notes ensures that the supporting experimental information is populated into the database and associated with the appropriate ssEM images and analyses. We anticipate that SynapticDB will serve future meta-analyses towards new discoveries about the composition and circuitry of neurons and glia, and new understanding about structural plasticity during development, behavior, learning, memory, and neuropathology.

  19. PRRT2: from Paroxysmal Disorders to Regulation of Synaptic Function.

    Science.gov (United States)

    Valtorta, Flavia; Benfenati, Fabio; Zara, Federico; Meldolesi, Jacopo

    2016-10-01

    In the past few years, proline-rich transmembrane protein (PRRT)2 has been identified as the causative gene for several paroxysmal neurological disorders. Recently, an important role of PRRT2 in synapse development and function has emerged. Knock down of the protein strongly impairs the formation of synaptic contacts and neurotransmitter release. At the nerve terminal, PRRT2 endows synaptic vesicle exocytosis with Ca 2+ sensitivity by interacting with proteins of the fusion complex and with the Ca 2+ sensors synaptotagmins (Syts). In the postsynaptic compartment, PRRT2 interacts with glutamate receptors. The study of PRRT2 and of its mutations may help in refining our knowledge of the process of synaptic transmission and elucidating the pathogenetic mechanisms leading to derangement of network function in paroxysmal disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Synaptic clustering within dendrites: an emerging theory of memory formation.

    Science.gov (United States)

    Kastellakis, George; Cai, Denise J; Mednick, Sara C; Silva, Alcino J; Poirazi, Panayiota

    2015-03-01

    It is generally accepted that complex memories are stored in distributed representations throughout the brain, however the mechanisms underlying these representations are not understood. Here, we review recent findings regarding the subcellular mechanisms implicated in memory formation, which provide evidence for a dendrite-centered theory of memory. Plasticity-related phenomena which affect synaptic properties, such as synaptic tagging and capture, synaptic clustering, branch strength potentiation and spinogenesis provide the foundation for a model of memory storage that relies heavily on processes operating at the dendrite level. The emerging picture suggests that clusters of functionally related synapses may serve as key computational and memory storage units in the brain. We discuss both experimental evidence and theoretical models that support this hypothesis and explore its advantages for neuronal function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Integrated neuron circuit for implementing neuromorphic system with synaptic device

    Science.gov (United States)

    Lee, Jeong-Jun; Park, Jungjin; Kwon, Min-Woo; Hwang, Sungmin; Kim, Hyungjin; Park, Byung-Gook

    2018-02-01

    In this paper, we propose and fabricate Integrate & Fire neuron circuit for implementing neuromorphic system. Overall operation of the circuit is verified by measuring discrete devices and the output characteristics of the circuit. Since the neuron circuit shows asymmetric output characteristic that can drive synaptic device with Spike-Timing-Dependent-Plasticity (STDP) characteristic, the autonomous weight update process is also verified by connecting the synaptic device and the neuron circuit. The timing difference of the pre-neuron and the post-neuron induce autonomous weight change of the synaptic device. Unlike 2-terminal devices, which is frequently used to implement neuromorphic system, proposed scheme of the system enables autonomous weight update and simple configuration by using 4-terminal synapse device and appropriate neuron circuit. Weight update process in the multi-layer neuron-synapse connection ensures implementation of the hardware-based artificial intelligence, based on Spiking-Neural- Network (SNN).

  2. Synaptic proteins and receptors defects in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Jianling eChen

    2014-09-01

    Full Text Available Recent studies have found that hundreds of genetic variants, including common and rare variants, rare and de novo mutations, and common polymorphisms have contributed to the occurrence of autism spectrum disorders (ASDs. The mutations in a number of genes such as neurexin, neuroligin, postsynaptic density protein 95 (PSD-95, SH3 and multiple ankyrin repeat domains 3 (SHANK3, synapsin, gephyrin, cadherin (CDH and protocadherin (PCDH, thousand-and-one-amino acid 2 kinase (TAOK2, and contactin (CNTN, have been shown to play important roles in the development and function of synapses. In addition, synaptic receptors, such as gamma-aminobutyric acid (GABA receptors and glutamate receptors, have also been associated with ASDs. This review will primarily focus on the defects of synaptic proteins and receptors associated with ASDs and their roles in the pathogenesis of ASDs via synaptic pathways.

  3. Modulation of Synaptic Plasticity by Glutamatergic Gliotransmission: A Modeling Study

    Science.gov (United States)

    De Pittà, Maurizio; Brunel, Nicolas

    2016-01-01

    Glutamatergic gliotransmission, that is, the release of glutamate from perisynaptic astrocyte processes in an activity-dependent manner, has emerged as a potentially crucial signaling pathway for regulation of synaptic plasticity, yet its modes of expression and function in vivo remain unclear. Here, we focus on two experimentally well-identified gliotransmitter pathways, (i) modulations of synaptic release and (ii) postsynaptic slow inward currents mediated by glutamate released from astrocytes, and investigate their possible functional relevance on synaptic plasticity in a biophysical model of an astrocyte-regulated synapse. Our model predicts that both pathways could profoundly affect both short- and long-term plasticity. In particular, activity-dependent glutamate release from astrocytes could dramatically change spike-timing-dependent plasticity, turning potentiation into depression (and vice versa) for the same induction protocol. PMID:27195153

  4. Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity.

    Directory of Open Access Journals (Sweden)

    Sadra Sadeh

    2015-06-01

    Full Text Available In rodent visual cortex, synaptic connections between orientation-selective neurons are unspecific at the time of eye opening, and become to some degree functionally specific only later during development. An explanation for this two-stage process was proposed in terms of Hebbian plasticity based on visual experience that would eventually enhance connections between neurons with similar response features. For this to work, however, two conditions must be satisfied: First, orientation selective neuronal responses must exist before specific recurrent synaptic connections can be established. Second, Hebbian learning must be compatible with the recurrent network dynamics contributing to orientation selectivity, and the resulting specific connectivity must remain stable for unspecific background activity. Previous studies have mainly focused on very simple models, where the receptive fields of neurons were essentially determined by feedforward mechanisms, and where the recurrent network was small, lacking the complex recurrent dynamics of large-scale networks of excitatory and inhibitory neurons. Here we studied the emergence of functionally specific connectivity in large-scale recurrent networks with synaptic plasticity. Our results show that balanced random networks, which already exhibit highly selective responses at eye opening, can develop feature-specific connectivity if appropriate rules of synaptic plasticity are invoked within and between excitatory and inhibitory populations. If these conditions are met, the initial orientation selectivity guides the process of Hebbian learning and, as a result, functionally specific and a surplus of bidirectional connections emerge. Our results thus demonstrate the cooperation of synaptic plasticity and recurrent dynamics in large-scale functional networks with realistic receptive fields, highlight the role of inhibition as a critical element in this process, and paves the road for further computational

  5. Precise synaptic efficacy alignment suggests potentiation dominated learning

    Directory of Open Access Journals (Sweden)

    Christoph eHartmann

    2016-01-01

    Full Text Available Recent evidence suggests that parallel synapses from the same axonal branch onto the same dendritic branch have almost identical strength. It has been proposed that this alignment is only possible through learning rules that integrate activity over long time spans. However, learning mechanisms such as spike-timing-dependent plasticity (STDP are commonly assumed to be temporally local. Here, we propose that the combination of temporally local STDP and a multiplicative synaptic normalization mechanism is sufficient to explain the alignment of parallel synapses.To address this issue, we introduce three increasingly complex models: First, we model the idealized interaction of STDP and synaptic normalization in a single neuron as a simple stochastic process and derive analytically that the alignment effect can be described by a so-called Kesten process. From this we can derive that synaptic efficacy alignment requires potentiation-dominated learning regimes. We verify these conditions in a single-neuron model with independent spiking activities but more realistic synapses. As expected, we only observe synaptic efficacy alignment for long-term potentiation-biased STDP. Finally, we explore how well the findings transfer to recurrent neural networks where the learning mechanisms interact with the correlated activity of the network. We find that due to the self-reinforcing correlations in recurrent circuits under STDP, alignment occurs for both long-term potentiation- and depression-biased STDP, because the learning will be potentiation dominated in both cases due to the potentiating events induced by correlated activity. This is in line with recent results demonstrating a dominance of potentiation over depression during waking and normalization during sleep. This leads us to predict that individual spine pairs will be more similar in the morning than they are after sleep depriviation.In conclusion, we show that synaptic normalization in conjunction with

  6. Defective glycinergic synaptic transmission in zebrafish motility mutants

    Directory of Open Access Journals (Sweden)

    Hiromi Hirata

    2010-01-01

    Full Text Available Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs.

  7. Synaptic ultrastructure changes in trigeminocervical complex posttrigeminal nerve injury.

    Science.gov (United States)

    Park, John; Trinh, Van Nancy; Sears-Kraxberger, Ilse; Li, Kang-Wu; Steward, Oswald; Luo, Z David

    2016-02-01

    Trigeminal nerves collecting sensory information from the orofacial area synapse on second-order neurons in the dorsal horn of subnucleus caudalis and cervical C1/C2 spinal cord (Vc/C2, or trigeminocervical complex), which is critical for sensory information processing. Injury to the trigeminal nerves may cause maladaptive changes in synaptic connectivity that plays an important role in chronic pain development. Here we examined whether injury to the infraorbital nerve, a branch of the trigeminal nerves, led to synaptic ultrastructural changes when the injured animals have developed neuropathic pain states. Transmission electron microscopy was used to examine synaptic profiles in Vc/C2 at 3 weeks postinjury, corresponding to the time of peak behavioral hypersensitivity following chronic constriction injury to the infraorbital nerve (CCI-ION). Using established criteria, synaptic profiles were classified as associated with excitatory (R-), inhibitory (F-), and primary afferent (C-) terminals. Each type was counted within the superficial dorsal horn of the Vc/C2 and the means from each rat were compared between sham and injured animals; synaptic contact length was also measured. The overall analysis indicates that rats with orofacial pain states had increased numbers and decreased mean synaptic length of R-profiles within the Vc/C2 superficial dorsal horn (lamina I) 3 weeks post-CCI-ION. Increases in the number of excitatory synapses in the superficial dorsal horn of Vc/C2 could lead to enhanced activation of nociceptive pathways, contributing to the development of orofacial pain states. © 2015 Wiley Periodicals, Inc.

  8. Depression as a Glial-Based Synaptic Dysfunction

    Science.gov (United States)

    Rial, Daniel; Lemos, Cristina; Pinheiro, Helena; Duarte, Joana M.; Gonçalves, Francisco Q.; Real, Joana I.; Prediger, Rui D.; Gonçalves, Nélio; Gomes, Catarina A.; Canas, Paula M.; Agostinho, Paula; Cunha, Rodrigo A.

    2016-01-01

    Recent studies combining pharmacological, behavioral, electrophysiological and molecular approaches indicate that depression results from maladaptive neuroplastic processes occurring in defined frontolimbic circuits responsible for emotional processing such as the prefrontal cortex, hippocampus, amygdala and ventral striatum. However, the exact mechanisms controlling synaptic plasticity that are disrupted to trigger depressive conditions have not been elucidated. Since glial cells (astrocytes and microglia) tightly and dynamically interact with synapses, engaging a bi-directional communication critical for the processing of synaptic information, we now revisit the role of glial cells in the etiology of depression focusing on a dysfunction of the “quad-partite” synapse. This interest is supported by the observations that depressive-like conditions are associated with a decreased density and hypofunction of astrocytes and with an increased microglia “activation” in frontolimbic regions, which is expected to contribute for the synaptic dysfunction present in depression. Furthermore, the traditional culprits of depression (glucocorticoids, biogenic amines, brain-derived neurotrophic factor, BDNF) affect glia functioning, whereas antidepressant treatments (serotonin-selective reuptake inhibitors, SSRIs, electroshocks, deep brain stimulation) recover glia functioning. In this context of a quad-partite synapse, systems modulating glia-synapse bidirectional communication—such as the purinergic neuromodulation system operated by adenosine 5′-triphosphate (ATP) and adenosine—emerge as promising candidates to “re-normalize” synaptic function by combining direct synaptic effects with an ability to also control astrocyte and microglia function. This proposed triple action of purines to control aberrant synaptic function illustrates the rationale to consider the interference with glia dysfunction as a mechanism of action driving the design of future

  9. Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    Science.gov (United States)

    Hirata, Hiromi; Carta, Eloisa; Yamanaka, Iori; Harvey, Robert J.; Kuwada, John Y.

    2009-01-01

    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) β subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ‘accordion’ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ‘twitch-once’ phenotype. We review current knowledge regarding zebrafish ‘accordion’ and ‘twitch-once’ mutants, including beo and sho, and report the identification of a new α2 subunit that revises the phylogeny of zebrafish GlyRs. PMID:20161699

  10. Depression as a Glial-Based Synaptic Dysfunction

    Directory of Open Access Journals (Sweden)

    Daniel eRial

    2016-01-01

    Full Text Available Recent studies combining pharmacological, behavioral, electrophysiological and molecular approaches indicate that depression results from maladaptive neuroplastic processing occurring in defined frontolimbic circuits responsible for emotional processing such as the prefrontal cortex, hippocampus, amygdala and ventral striatum. However, the exact mechanisms controlling synaptic plasticity that are disrupted to trigger depressive conditions have not been elucidated. Since glial cells (astrocytes and microglia tightly and dynamically interact with synapses, engaging a bi-directional communication critical for the processing of synaptic information, we now revisit the role of glial cells in the etiology of depression focusing on a dysfunction of the ‘quad-partite’ synapse. This interest is supported by the observations that depressive-like conditions are associated with a decreased density and hypofunction of astrocytes and with an increase microglia ‘activation’ in frontolimbic regions, which is expected to contribute for the synaptic dysfunction present in depression. Furthermore, the traditional culprits of depression (glucocorticoids, biogenic amines, BDNF affect glia functioning, whereas antidepressant treatments (SSRIs, electroshock, deep brain stimulation recover glia functioning. In this context of a quad-partite synapse, systems modulating glia-synapse bidirectional communication - such as the purinergic neuromodulation system operated by ATP and adenosine - emerge as promising candidates to re-normalize synaptic function by combining direct synaptic effects with an ability to also control astrocyte and microglia function. This proposed triple action of purines to control aberrant synaptic function illustrates the rationale to consider the interference with glia dysfunction as a mechanism of action driving the design of future pharmacological tools to manage depression.

  11. Managing Multiple Sources of Competitive Advantage in a Complex Competitive Environment

    Directory of Open Access Journals (Sweden)

    Alexandre Howard Henry Lapersonne

    2013-12-01

    Full Text Available The aim of this article is to review the literature on the topic of sustained and temporary competitive advantage creation, specifically in dynamic markets, and to propose further research possibilities. After having analyzed the main trends and scholars’ works on the subject, it was concluded that a firm which has been experiencing erosion of its core sources of economic rent generation, should have diversified its strategy portfolio in a search for new sources of competitive advantage, ones that could compensate for the decline of profits provoked by intensive competitive environments. This review concludes with the hypothesis that firms, who have decided to enter and manage multiple competitive environments, should have developed a multiple strategies framework approach. The management of this source of competitive advantage portfolio should have allowed persistence of a firm’s superior economic performance through the management of diverse temporary advantages lifecycle and through a resilient effect, where a very successful source of competitive advantage compensates the ones that have been eroded. Additionally, the review indicates that economies of emerging countries, such as the ones from the BRIC block, should present a more complex competitive environment due to their historical nature of cultural diversity, social contrasts and frequent economic disruption, and also because of recent institutional normalization that has turned the market into hypercompetition. Consequently, the study of complex competition should be appropriate in such environments.

  12. Intrinsic Plasticity for Natural Competition in Koniocortex-Like Neural Networks.

    Science.gov (United States)

    Peláez, Francisco Javier Ropero; Aguiar-Furucho, Mariana Antonia; Andina, Diego

    2016-08-01

    In this paper, we use the neural property known as intrinsic plasticity to develop neural network models that resemble the koniocortex, the fourth layer of sensory cortices. These models evolved from a very basic two-layered neural network to a complex associative koniocortex network. In the initial network, intrinsic and synaptic plasticity govern the shifting of the activation function, and the modification of synaptic weights, respectively. In this first version, competition is forced, so that the most activated neuron is arbitrarily set to one and the others to zero, while in the second, competition occurs naturally due to inhibition between second layer neurons. In the third version of the network, whose architecture is similar to the koniocortex, competition also occurs naturally owing to the interplay between inhibitory interneurons and synaptic and intrinsic plasticity. A more complex associative neural network was developed based on this basic koniocortex-like neural network, capable of dealing with incomplete patterns and ideally suited to operating similarly to a learning vector quantization network. We also discuss the biological plausibility of the networks and their role in a more complex thalamocortical model.

  13. MACROECONOMIC ASPECTS OF COMPETITIVENESS

    Directory of Open Access Journals (Sweden)

    Oleg Hooke

    2017-09-01

    Full Text Available In the process of globalization of world economic processes, the role of individual national economies increases, comparative advantages of the development of a country are formed, and their competitiveness is ensured. That is why it is worth emphasizing the importance of increasing the competitiveness of each individual country, based on its internal capacity. In a broad aspect, the competitiveness of the national economy is perceived as the ability of the country to ensure the balance of its external proportions and to avoid those constraints imposed by the foreign economic sphere, to self-organizing the improvement of their world economic ties. The competitiveness of the economy at the macro level is associated with the duration of the cycle of reproduction of the main productive assets and, accordingly, the jobs, productive forces of society and determined by the overall economic efficiency of investment. The criteria of competitiveness of the national economy are the growth of social productivity of labor, increase of social and economic efficiency of production and standard of living of the population. The competitiveness of the national economy determines sustainable socio-economic development of the country, as well as sustainable development predetermines the competitiveness of not only the country, but also all its levels. Scientific results are obtained using special methods of research of economic objects and phenomena, that is, based on the correlation and regressive, comparative analysis (establishing the relationship between the indicator factor, as well as economic modeling. Findings. Generalizing analysis and the importance of the macroeconomic aspect of competitiveness were used in the research paper, which will allow to better respond to the economic situation, in accordance with the trends of the “green” transformation of the economy; which in turn will solve important problems of the development and implementation of its

  14. Competitiveness in tourism: A comparison between Brazil and Switzerland

    OpenAIRE

    Maria Gabriela Montanari; Janaina de Moura Engracia Giraldi

    2013-01-01

    Despite the unstable global situation and the crisis in the euro area, world tourism has remained strong and with a positive growth in the last years. Besides, this activity has a great economic and social importance which is reflected in its ability to generate jobs and income. Thus, this article aims to analyze the competitiveness of the tourism sector in Brazil and Switzerland, comparing the two countries through competitive factors identified by the World Competitiveness Index in Tourism ...

  15. GLOBALIZATION, TECHNOLOGY AND COMPETITIVENESS: FROM INDUSTRIAL REVOLUTION TO KNOWLEDGE ECONOMY

    OpenAIRE

    Silvia Marginean

    2009-01-01

    The world is experiencing a new revolution – the knowledge revolution – fuelled by the technological change. In the same time, globalization and competitiveness are two concepts used to explain modern trends in economic development. This paper analyzes the relationship between globalization, technology and competitiveness. Globalization and technology are linked and they have generated great shifts in the national competitiveness of countries. In a broad sense, industrial revolution can be se...

  16. Healthy Competition and Unsound Comparison: Reforming Educational Competition in Singapore

    Science.gov (United States)

    Christensen, Søren

    2015-01-01

    It is frequently claimed that the "competition state" responds to external competition by making competition increasingly central to its internal processes as well. This article discusses education reform in Singapore as departing from the opposite position. In Singapore "excessive" competition in education is now targeted by…

  17. SOCIAL ASPECTS OF COMPETITIVENESS

    Directory of Open Access Journals (Sweden)

    Klimova A. V.

    2014-06-01

    Full Text Available One of the most important conditions of the existence of every organization, every enterprise is to insure the long-term sustainable development, one of the conditions of which is the increase of an organizational competitiveness. In modern economic conditions, social aspects of competitiveness are now in the foreground of interest, because just the strategy of social responsibility (SSR of modern enterprises can assure some commercial benefits, in responding, at the same time, to the social demands and in creating its well-being. Such an approach is in the basis of the notion of competitiveness. Along with «rigid parameters», such as price characteristics, the capability to deal with competitors, effective financial and production policies, «flexible factors» of competitiveness are of a big importance: a personnel potential, individual and collective competencies, organizational and managerial capabilities. As a result, we have formulated a research hypothesis: the organizational competitiveness is defined by individual and collective competencies of an organization, is based on socially responsible actions, confirms the demand for the object and insures its sustainable long-term development. Any organization should base all its actions aimed to increase its competitiveness on its intellectual potential, or on the management of individual and collective competencies that assure the sustainable development and the goal achievement. For every organizational strategic action, an effective combination of these competencies exists. So, we suggest a new definition of competitiveness: it is a social and economic category of understanding of the social responsibility, having as a central element individual and collective competencies, based on socially responsible actions of an enterprise, insuring its long-term sustainable development.

  18. Requirements for success in competitive energy markets

    International Nuclear Information System (INIS)

    Wallis, E.

    1997-01-01

    A summary of a lecture delivered to the Institute of Energy on a power generator's experience of the UK competitive electricity market is given. It is concluded that privatization has met the public interest better than nationalisation and that the future lies in international growth and globalisation. (UK)

  19. Market Intelligence: An Essay on the Competitiveness

    Directory of Open Access Journals (Sweden)

    Claudio Alberto de Moraes

    2015-12-01

    Full Text Available This paper is a critical analysis of the concepts inherent to the competitive intelligence and its related companies regarding the strategy of being guided in the market. It is intended, above all, to join together a provocative contribution with the aim of generating the theoretical-critical and research spirit of future professionals.

  20. Competitiveness of chinese socialist market economy

    Directory of Open Access Journals (Sweden)

    Henry Ernesto Turner Barragán

    2015-08-01

    Full Text Available The article analyzes the dynamics held by the Chinese economy becomes, since it happened to be a communist to a capitalist economy and social market economy. Being in the latter, in which the country achieved high rates of economic growth, and improve their competitiveness pillars, generating higher growth prospects in the economy and the income of the society.

  1. COMPETITIVENESS OF DEFENSE INDUSTRY IN TURKEY

    Directory of Open Access Journals (Sweden)

    Hakki BILGEN

    2010-01-01

    Full Text Available Turkey has created some opportunities for the organisations in the defense industry to generate a suitable business and to ensure its sustainability. The domestic coverage ratio of defense system need in 2010 is aimed as 50%. To achieve this target depends on the defense industry competitiveness. In this study, the development plans, strategies and foreign trade are examined. Its contribution which has an important place in the research and development investment, is not at the level expected in Turkey’s economy. Turkey occupies 47th position in World Competitiveness Scoreboard, and 61st position in Global Competitiveness Index in 2009. The index factors are investigated to understand the competitiveness according to the Porter’s diamond model, applied in Turkey for the first time. As a result, the competitiveness analysis of Turkish defense industry is carried out and its global place and competitive advantage are exposed. Therefore, a framework is made to introduce a guide for decision-making by using a widely-accepted model, and to contribute to the plans and strategies

  2. Fragile X Syndrome: Keys to the Molecular Genetics of Synaptic Plasticity

    Science.gov (United States)

    Lombroso, Paul J.; Ogren, Marilee P.

    2008-01-01

    Fragile X syndrome, the most common form of inherited mental retardation is discussed. The relationship between specific impairments in synaptic plasticity and Fragile X syndrome is investigated as it strengthens synaptic contacts between neurons.

  3. Bridging the synaptic gap: neuroligins and neurexin I in Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Sunita Biswas

    Full Text Available Vertebrate studies show neuroligins and neurexins are binding partners in a trans-synaptic cell adhesion complex, implicated in human autism and mental retardation disorders. Here we report a genetic analysis of homologous proteins in the honey bee. As in humans, the honeybee has five large (31-246 kb, up to 12 exons each neuroligin genes, three of which are tightly clustered. RNA analysis of the neuroligin-3 gene reveals five alternatively spliced transcripts, generated through alternative use of exons encoding the cholinesterase-like domain. Whereas vertebrates have three neurexins the bee has just one gene named neurexin I (400 kb, 28 exons. However alternative isoforms of bee neurexin I are generated by differential use of 12 splice sites, mostly located in regions encoding LNS subdomains. Some of the splice variants of bee neurexin I resemble the vertebrate alpha- and beta-neurexins, albeit in vertebrates these forms are generated by alternative promoters. Novel splicing variations in the 3' region generate transcripts encoding alternative trans-membrane and PDZ domains. Another 3' splicing variation predicts soluble neurexin I isoforms. Neurexin I and neuroligin expression was found in brain tissue, with expression present throughout development, and in most cases significantly up-regulated in adults. Transcripts of neurexin I and one neuroligin tested were abundant in mushroom bodies, a higher order processing centre in the bee brain. We show neuroligins and neurexins comprise a highly conserved molecular system with likely similar functional roles in insects as vertebrates, and with scope in the honeybee to generate substantial functional diversity through alternative splicing. Our study provides important prerequisite data for using the bee as a model for vertebrate synaptic development.

  4. Political Failures and Intergovernmental Competition

    Directory of Open Access Journals (Sweden)

    Jean Hindriks

    2012-01-01

    Full Text Available In normative public economics, intergovernmental competition is usually viewed as harmful. Although empirical support for this position does not abound, market integration has intensified competition among developed countries. In this paper we argue that when assessing welfare effects of intergovernmental competition for various forms of political failures (the public choice critique, the outcome is ambiguous and competition can be welfare improving.

  5. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity.

    Science.gov (United States)

    Srinivasa, Narayan; Cho, Youngkwan

    2014-01-01

    A spiking neural network model is described for learning to discriminate among spatial patterns in an unsupervised manner. The network anatomy consists of source neurons that are activated by external inputs, a reservoir that resembles a generic cortical layer with an excitatory-inhibitory (EI) network and a sink layer of neurons for readout. Synaptic plasticity in the form of STDP is imposed on all the excitatory and inhibitory synapses at all times. While long-term excitatory STDP enables sparse and efficient learning of the salient features in inputs, inhibitory STDP enables this learning to be stable by establishing a balance between excitatory and inhibitory currents at each neuron in the network. The synaptic weights between source and reservoir neurons form a basis set for the input patterns. The neural trajectories generated in the reservoir due to input stimulation and lateral connections between reservoir neurons can be readout by the sink layer neurons. This activity is used for adaptation of synapses between reservoir and sink layer neurons. A new measure called the discriminability index (DI) is introduced to compute if the network can discriminate between old patterns already presented in an initial training session. The DI is also used to compute if the network adapts to new patterns without losing its ability to discriminate among old patterns. The final outcome is that the network is able to correctly discriminate between all patterns-both old and new. This result holds as long as inhibitory synapses employ STDP to continuously enable current balance in the network. The results suggest a possible direction for future investigation into how spiking neural networks could address the stability-plasticity question despite having continuous synaptic plasticity.

  6. Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress

    Science.gov (United States)

    Grønli, Janne; Soulé, Jonathan; Bramham, Clive R.

    2014-01-01

    Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function. PMID:24478645

  7. Price competition in procurement

    International Nuclear Information System (INIS)

    Keisler, J.M.; Buehring, W.A.

    1996-07-01

    When creating a private market to provide a public good, government agencies can influence the market's competitive characteristics. Markets have predictable, but often counterintuitive, behaviors. To succeed in applying available controls, and thereby reduce future costs, agencies must understand the behavior of the market. A model has been constructed to examine some issues in establishing competition for a structure in which there are economies of scale and government is obligated to purchase a fixed total quantity of a good. This model is used to demonstrate a way to estimate the cost savings from several alternative plans for a buyer exploring competitive procurement. The results are not and cannot be accurate for budgeting purposes; rather, they indicate the approximate magnitude of changes in cost that would be associated with changes in the market structure within which procurement occurs

  8. Context Construction through Competition

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    This paper examines the relation between the evolution of statehood and institutionalised competition in the European context. The first half of the paper develops a historical-sociological view on the evolution of modern political power in the state form in Europe while the second half the paper...... reconstructs how the institutionalisation of competition as a specific type of policy tool which has been used by emerging modern states to establish its authority vis-à-vis competing claims to authority. It furthermore engages in an examination of corporatist and governance based attempts to respectively curb...... and expand the use of competition as a tool for organising social processes and the implications of the se attempts for the state of statehood....

  9. Business plan competition

    CERN Multimedia

    2007-01-01

    "Venture – Companies for tomorrow" is a business plan competition, which supports students and other junior entrepreneurs in developing their business plans. The sixth edition of the competition is now taking place. Venture 2008 highlights: - prize money totalling CHF 150’000; - possibility to optimize business ideas and business plans with the help of experienced coaches: around 200 coaches are available, with a wide range of backgrounds, entrepreneurs as well as venture capitalists; -\tpossibility to present business ideas and business plans to potential investors ("Investor Days" - 17 January and 7 May); - active involvement in the start-up community; -\tcontribution to potential independence. The competition consists of two phases: Phase I, Business idea, Deadline for submission of business idea: 5 December 2007 (online at http://www.venture.ch). Award Ceremony: 17 January 2008 Phase II, Business plan Deadline for submission of business plan: 2 April 2008 (online at...

  10. Reactive Oxygen Species-Mediated Loss of Synaptic Akt1 Signaling Leads to Deficient Activity-Dependent Protein Translation Early in Alzheimer's Disease.

    Science.gov (United States)

    Ahmad, Faraz; Singh, Kunal; Das, Debajyoti; Gowaikar, Ruturaj; Shaw, Eisha; Ramachandran, Arathy; Rupanagudi, Khader Valli; Kommaddi, Reddy Peera; Bennett, David A; Ravindranath, Vijayalakshmi

    2017-12-01

    Synaptic deficits are known to underlie the cognitive dysfunction seen in Alzheimer's disease (AD). Generation of reactive oxygen species (ROS) by β-amyloid has also been implicated in AD pathogenesis. However, it is unclear whether ROS contributes to synaptic dysfunction seen in AD pathogenesis and, therefore, we examined whether altered redox signaling could contribute to synaptic deficits in AD. Activity dependent but not basal translation was impaired in synaptoneurosomes from 1-month old presymptomatic APP Swe /PS1ΔE9 (APP/PS1) mice, and this deficit was sustained till middle age (MA, 9-10 months). ROS generation leads to oxidative modification of Akt1 in the synapse and consequent reduction in Akt1-mechanistic target of rapamycin (mTOR) signaling, leading to deficiency in activity-dependent protein translation. Moreover, we found a similar loss of activity-dependent protein translation in synaptoneurosomes from postmortem AD brains. Loss of activity-dependent protein translation occurs presymptomatically early in the pathogenesis of AD. This is caused by ROS-mediated loss of pAkt1, leading to reduced synaptic Akt1-mTOR signaling and is rescued by overexpression of Akt1. ROS-mediated damage is restricted to the synaptosomes, indicating selectivity. We demonstrate that ROS-mediated oxidative modification of Akt1 contributes to synaptic dysfunction in AD, seen as loss of activity-dependent protein translation that is essential for synaptic plasticity and maintenance. Therapeutic strategies promoting Akt1-mTOR signaling at synapses may provide novel target(s) for disease-modifying therapy in AD. Antioxid. Redox Signal. 27, 1269-1280.

  11. Irregular persistent activity induced by synaptic excitatory feedback

    Directory of Open Access Journals (Sweden)

    Francesca Barbieri

    2007-11-01

    Full Text Available Neurophysiological experiments on monkeys have reported highly irregular persistent activity during the performance of an oculomotor delayed-response task. These experiments show that during the delay period the coefficient of variation (CV of interspike intervals (ISI of prefrontal neurons is above 1, on average, and larger than during the fixation period. In the present paper, we show that this feature can be reproduced in a network in which persistent activity is induced by excitatory feedback, provided that (i the post-spike reset is close enough to threshold , (ii synaptic efficacies are a non-linear function of the pre-synaptic firing rate. Non-linearity between presynaptic rate and effective synaptic strength is implemented by a standard short-term depression mechanism (STD. First, we consider the simplest possible network with excitatory feedback: a fully connected homogeneous network of excitatory leaky integrate-and-fire neurons, using both numerical simulations and analytical techniques. The results are then confirmed in a network with selective excitatory neurons and inhibition. In both the cases there is a large range of values of the synaptic efficacies for which the statistics of firing of single cells is similar to experimental data.

  12. How do astrocytes shape synaptic transmission? Insights from electrophysiology

    Directory of Open Access Journals (Sweden)

    Glenn eDallérac

    2013-10-01

    Full Text Available A major breakthrough in neuroscience has been the realization in the last decades that the dogmatic view of astroglial cells as being merely fostering and buffering elements of the nervous system is simplistic. A wealth of investigations now shows that astrocytes actually participate in the control of synaptic transmission in an active manner. This was first hinted by the intimate contacts glial processes make with neurons, particularly at the synaptic level, and evidenced using electrophysiological and calcium imaging techniques. Calcium imaging has provided critical evidence demonstrating that astrocytic regulation of synaptic efficacy is not a passive phenomenon. However, given that cellular activation is not only represented by calcium signaling, it is also crucial to assess concomitant mechanisms. We and others have used electrophysiological techniques to simultaneously record neuronal and astrocytic activity, thus enabling the study of multiple ionic currents and in depth investigation of neuro-glial dialogues. In the current review, we focus on the input such approach has provided in the understanding of astrocyte-neuron interactions underlying control of synaptic efficacy.

  13. Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction.

    NARCIS (Netherlands)

    van Huijstee, A.N.; Mansvelder, H.D.

    2015-01-01

    Addictive drugs remodel the brain’s reward circuitry, the mesocorticolimbic dopamine (DA) system, by inducing widespread adaptations of glutamatergic synapses. This drug-induced synaptic plasticity is thought to contribute to both the development and the persistence of addiction. This review

  14. Inhibition of hippocampal synaptic transmission by impairment of Ral function

    DEFF Research Database (Denmark)

    Owe-Larsson, Björn; Chaves-Olarte, Esteban; Chauhan, Ashok

    2005-01-01

    Large clostridial cytotoxins and protein overexpression were used to probe for involvement of Ras-related GTPases (guanosine triphosphate) in synaptic transmission in cultured rat hippocampal neurons. The toxins TcdA-10463 (inactivates Rho, Rac, Cdc42, Rap) and TcsL-1522 (inactivates Ral, Rac, Ra...

  15. Polymer-electrolyte-gated nanowire synaptic transistors for neuromorphic applications

    Science.gov (United States)

    Zou, Can; Sun, Jia; Gou, Guangyang; Kong, Ling-An; Qian, Chuan; Dai, Guozhang; Yang, Junliang; Guo, Guang-hua

    2017-09-01

    Polymer-electrolytes are formed by dissolving a salt in polymer instead of water, the conducting mechanism involves the segmental motion-assisted diffusion of ion in the polymer matrix. Here, we report on the fabrication of tin oxide (SnO2) nanowire synaptic transistors using polymer-electrolyte gating. A thin layer of poly(ethylene oxide) and lithium perchlorate (PEO/LiClO4) was deposited on top of the devices, which was used to boost device performances. A voltage spike applied on the in-plane gate attracts ions toward the polymer-electrolyte/SnO2 nanowire interface and the ions are gradually returned after the pulse is removed, which can induce a dynamic excitatory postsynaptic current in the nanowire channel. The SnO2 synaptic transistors exhibit the behavior of short-term plasticity like the paired-pulse facilitation and self-adaptation, which is related to the electric double-effect regulation. In addition, the synaptic logic functions and the logical function transformation are also discussed. Such single SnO2 nanowire-based synaptic transistors are of great importance for future neuromorphic devices.

  16. Amino Acid Neurotransmitters; Mechanisms of Their Uptake into Synaptic Vesicles

    Science.gov (United States)

    1991-08-01

    phenylhydrazone (CCCP), ouabain. L-glutamate (disodium gan and Whittaker, 1966: Rassin , 1972; Kontro et al., salt), D-aspartate, diaminobutyric acid (DABA... Rassin D. K. 1 972) Amino acids as putative transmitters: failure to endings Isynaptosomes) in different regions of brain: effect of bind synaptic

  17. Synaptic mRNAs are modulated by learning.

    Science.gov (United States)

    Ferrara, Eugenia; Cefaliello, Carolina; Eyman, Maria; De Stefano, Rosanna; Giuditta, Antonio; Crispino, Marianna

    2009-07-01

    We have recently demonstrated that brain plastic events significantly modify synaptic protein synthesis measured by the incorporation of [(35)S]methionine in brain synaptosomal proteins. Notably, in rats learning a two-way active avoidance task, the local synthesis of two synaptic proteins was selectively enhanced. Because this effect may be attributed to transcriptional modulation, we used reverse transcriptase-polymerase chain reaction methods to determine the content of discrete synaptosomal mRNAs in rats exposed to the same training protocol. Correlative analyses between behavioral responses and synaptosomal mRNA content showed that GAT-1 mRNA (a prevalent presynaptic component) correlates with avoidances and escapes in rat cerebellum, while glial fibrillary acid protein mRNA (an astrocytic component) correlates with freezings in cerebellum and cerebral cortex. These observations support the hypothesis that synaptic protein synthesis may be transcriptionally regulated. The cellular origin of synaptic transcripts is briefly discussed, with special regard to those present at large distances from neuron somas. (c) 2009 Wiley-Liss, Inc.

  18. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

    Directory of Open Access Journals (Sweden)

    Dougherty Patrick M

    2009-07-01

    Full Text Available Abstract Background Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. Results Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 – 1 Hz repetitive stimulation. Conclusion These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

  19. Control of synaptic plasticity in deep cortical networks

    NARCIS (Netherlands)

    Roelfsema, Pieter R; Holtmaat, Anthony

    2018-01-01

    Humans and many other animals have an enormous capacity to learn about sensory stimuli and to master new skills. However, many of the mechanisms that enable us to learn remain to be understood. One of the greatest challenges of systems neuroscience is to explain how synaptic connections change to

  20. Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Robert Nisticò

    Full Text Available Abnormal use-dependent synaptic plasticity is universally accepted as the main physiological correlate of memory deficits in neurodegenerative disorders. It is unclear whether synaptic plasticity deficits take place during neuroinflammatory diseases, such as multiple sclerosis (MS and its mouse model, experimental autoimmune encephalomyelitis (EAE. In EAE mice, we found significant alterations of synaptic plasticity rules in the hippocampus. When compared to control mice, in fact, hippocampal long-term potentiation (LTP induction was favored over long-term depression (LTD in EAE, as shown by a significant rightward shift in the frequency-synaptic response function. Notably, LTP induction was also enhanced in hippocampal slices from control mice following interleukin-1β (IL-1β perfusion, and both EAE and IL-1β inhibited GABAergic spontaneous inhibitory postsynaptic currents (sIPSC without affecting glutamatergic transmission and AMPA/NMDA ratio. EAE was also associated with selective loss of GABAergic interneurons and with reduced gamma-frequency oscillations in the CA1 region of the hippocampus. Finally, we provided evidence that microglial activation in the EAE hippocampus was associated with IL-1β expression, and hippocampal slices from control mice incubated with activated microglia displayed alterations of GABAergic transmission similar to those seen in EAE brains, through a mechanism dependent on enhanced IL-1β signaling. These data may yield novel insights into the basis of cognitive deficits in EAE and possibly of MS.

  1. Modulation of synaptic potentials and cell excitability by dendritic

    Indian Academy of Sciences (India)

    Its major cellular substrates, the medium spiny (MS) neurons, possess a wide variety of dendritic active conductances that may modulate the excitatory post synaptic potentials (EPSPs) and cell excitability. We examine this issue using a biophysically detailed 189-compartment stylized model of the NAc MS neuron, ...

  2. Learning may need only a few bits of synaptic precision

    Science.gov (United States)

    Baldassi, Carlo; Gerace, Federica; Lucibello, Carlo; Saglietti, Luca; Zecchina, Riccardo

    2016-05-01

    Learning in neural networks poses peculiar challenges when using discretized rather then continuous synaptic states. The choice of discrete synapses is motivated by biological reasoning and experiments, and possibly by hardware implementation considerations as well. In this paper we extend a previous large deviations analysis which unveiled the existence of peculiar dense regions in the space of synaptic states which accounts for the possibility of learning efficiently in networks with binary synapses. We extend the analysis to synapses with multiple states and generally more plausible biological features. The results clearly indicate that the overall qualitative picture is unchanged with respect to the binary case, and very robust to variation of the details of the model. We also provide quantitative results which suggest that the advantages of increasing the synaptic precision (i.e., the number of internal synaptic states) rapidly vanish after the first few bits, and therefore that, for practical applications, only few bits may be needed for near-optimal performance, consistent with recent biological findings. Finally, we demonstrate how the theoretical analysis can be exploited to design efficient algorithmic search strategies.

  3. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways

    Science.gov (United States)

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. DOI: http://dx.doi.org/10.7554/eLife.06878.001 PMID:25970033

  4. Cdk5 is essential for synaptic vesicle endocytosis

    DEFF Research Database (Denmark)

    Tan, Timothy C; Valova, Valentina A; Malladi, Chandra S

    2003-01-01

    Synaptic vesicle endocytosis (SVE) is triggered by calcineurin-mediated dephosphorylation of the dephosphin proteins. SVE is maintained by the subsequent rephosphorylation of the dephosphins by unidentified protein kinases. Here, we show that cyclin-dependent kinase 5 (Cdk5) phosphorylates dynamin...

  5. Modulation of synaptic potentials and cell excitability by dendritic ...

    Indian Academy of Sciences (India)

    Modulation of synaptic potentials and cell excitability by dendritic. KIR and KAs channels in nucleus accumbens medium spiny neurons: A computational study. JESSY JOHN* and ROHIT MANCHANDA. Biomedical Engineering group, Department of Biosciences and Bioengineering, Indian Institute of Technology. Bombay ...

  6. Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity

    Science.gov (United States)

    Jang, Sung-Soo; Chung, Hee Jung

    2016-01-01

    Alzheimer's disease (AD) is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β (Aβ) peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβ oligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβ levels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets. PMID:27019755

  7. Spontaneous Activity Drives Local Synaptic Plasticity In Vivo

    NARCIS (Netherlands)

    Winnubst, Johan; Cheyne, Juliette E; Niculescu, Dragos; Lohmann, C.

    2015-01-01

    Spontaneous activity fine-tunes neuronal connections in the developing brain. To explore the underlying synaptic plasticity mechanisms, we monitored naturally occurring changes in spontaneous activity at individual synapses with whole-cell patch-clamp recordings and simultaneous calcium imaging in

  8. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    Science.gov (United States)

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  9. Corticosterone alters AMPAR mobility and facilitates bidirectional synaptic plasticity

    NARCIS (Netherlands)

    Martin, S.; Henley, J.M.; Holman, D.; Zhou, M.; Wiegert, O.; van Spronsen, M.; Joëls, M.; Hoogenraad, C.C.; Krugers, H.J.

    2009-01-01

    Background: The stress hormone corticosterone has the ability both to enhance and suppress synaptic plasticity and learning and memory processes. However, until today there is very little known about the molecular mechanism that underlies the bidirectional effects of stress and corticosteroid

  10. The Role of Short Term Synaptic Plasticity in Temporal Coding of Neuronal Networks

    Science.gov (United States)

    Chandrasekaran, Lakshmi

    2008-01-01

    Short term synaptic plasticity is a phenomenon which is commonly found in the central nervous system. It could contribute to functions of signal processing namely, temporal integration and coincidence detection by modulating the input synaptic strength. This dissertation has two parts. First, we study the effects of short term synaptic plasticity…

  11. The Role of Proteases in Hippocampal Synaptic Plasticity: Putting Together Small Pieces of a Complex Puzzle.

    Science.gov (United States)

    Salazar, Ivan L; Caldeira, Margarida V; Curcio, Michele; Duarte, Carlos B

    2016-02-01

    Long-term synaptic plasticity in the hippocampus is thought to underlie the formation of certain forms of memory, including spatial memory. The early phase of long-term synaptic potentiation and synaptic depression depends on post-translational modifications of synaptic proteins, while protein synthesis is also required for the late-phase of both forms of synaptic plasticity (L-LTP and L-LTD). Numerous pieces of evidence show a role for different types of proteases in synaptic plasticity, further increasing the diversity of mechanisms involved in the regulation of the intracellular and extracellular protein content. The cleavage of extracellular proteins is coupled to changes in postsynaptic intracellular mechanisms, and additional alterations in this compartment result from the protease-mediated targeting of intracellular proteins. Both mechanisms contribute to initiate signaling cascades that drive downstream pathways coupled to synaptic plasticity. In this review we summarize the evidence pointing to a role for extracellular and intracellular proteases, with distinct specificities, in synaptic plasticity. Where in the cells the proteases are located, and how they are regulated is also discussed. The combined actions of proteases and translation mechanisms contribute to a tight control of the synaptic proteome relevant for long-term synaptic potentiation and synaptic depression in the hippocampus. Additional studies are required to elucidate the mechanisms whereby these changes in the synaptic proteome are related with plasticity phenomena.

  12. Competition and social cohesion

    Directory of Open Access Journals (Sweden)

    Mario Libertini

    2014-03-01

    Full Text Available "Competition" and "social cohesion" are both protected by E.U. and Italian laws. The author moves from the analysis of the meaning of these two concepts, in order to reflect on their compatibility and the way to conciliate them. The central problem - in the opinion of the Author - is to abandon the myth of spontaneous markets' order and to rebuild a political order able to maintain and support, as far as possible, the competitive market economy, but also to govern economic processes in critical moments and situations.

  13. Competition in Soccer Leagues

    DEFF Research Database (Denmark)

    Hansen, Bodil Olai; Tvede, Mich

    In the present paper a model of competition between sports clubs in a sports league is presented. Clubs are endowed with initial players but at a cost clubs are able to sell their initial players and buy new players. The results are that: if the quality of players is one-dimensional, then equilib......In the present paper a model of competition between sports clubs in a sports league is presented. Clubs are endowed with initial players but at a cost clubs are able to sell their initial players and buy new players. The results are that: if the quality of players is one...

  14. Competitiveness in Road Transport

    DEFF Research Database (Denmark)

    Borgström, Benedikte; Gammelgaard, Britta; Bruun, Poul

    Road transport is an important sector, connecting time and space of production and consumption. Its market conditions has changed. The EU single market implementation has increased price pressure due to supply of low cost road freight transport from counties with lower cost structures. Changes...... a competitive value proposition? We will illustrate the strategy-as-practice with two projects, and discuss implications in terms of capabilities needed to create an effective value proposition and hence competitiveness. The theoretical contribution is in theorizing haulier strategic development in which we...

  15. Symmetry of learning rate in synaptic plasticity modulates formation of flexible and stable memories.

    Science.gov (United States)

    Park, Youngjin; Choi, Woochul; Paik, Se-Bum

    2017-07-18

    Spike-timing-dependent plasticity (STDP) is considered critical to learning and memory functions in the human brain. Across various types of synapse, STDP is observed as different profiles of Hebbian and anti-Hebbian learning rules. However, the specific roles of diverse STDP profiles in memory formation still remain elusive. Here, we show that the symmetry of the learning rate profile in STDP is crucial to determining the character of stored memory. Using computer simulations, we found that an asymmetric learning rate generates flexible memory that is volatile and easily overwritten by newly appended information. Moreover, a symmetric learning rate generates stable memory that can coexist with newly appended information. In addition, by combining these two conditions, we could realize a hybrid memory type that operates in a way intermediate between stable and flexible memory. Our results demonstrate that various attributes of memory functions may originate from differences in the synaptic stability.

  16. Competitive intelligence as an enabler for firm competitiveness: An overview

    Directory of Open Access Journals (Sweden)

    Alexander Maune

    2014-06-01

    Full Text Available The purpose of this article is to provide an overview, from literature, about how competitive intelligence can be an enabler towards a firm’s competitiveness. This overview is done under the background of intense global competition that firms are currently experiencing. This paper used a qualitative content analysis as a data collection methodology on all identified journal articles on competitive intelligence and firm competitiveness. To identify relevant literature, academic databases and search engines were used. Moreover, a review of references in related studies led to more relevant sources, the references of which were further reviewed and analysed. To ensure reliability and trustworthiness, peer-reviewed journal articles and triangulation were used. The paper found that competitive intelligence is an important enabler of firm competitiveness. The findings from this paper will assist business managers to understand and improve their outlook of competitive intelligence as an enabler of firm competitiveness and will be of great academic value.

  17. Conditional reduction of adult neurogenesis impairs bidirectional hippocampal synaptic plasticity

    Science.gov (United States)

    Massa, Federico; Koehl, Muriel; Wiesner, Theresa; Grosjean, Noelle; Revest, Jean-Michel; Piazza, Pier-Vincenzo; Abrous, Djoher Nora; Oliet, Stéphane H. R.

    2011-01-01

    Adult neurogenesis is a process by which the brain produces new neurons once development has ceased. Adult hippocampal neurogenesis has been linked to the relational processing of spatial information, a role attributed to the contribution of newborn neurons to long-term potentiation (LTP). However, whether newborn neurons also influence long-term depression (LTD), and how synaptic transmission and plasticity are affected as they incorporate their network, remain to be determined. To address these issues, we took advantage of a genetic model in which a majority of adult-born neurons can be selectively ablated in the dentate gyrus (DG) and, most importantly, in which neurogenesis can be restored on demand. Using electrophysiological recordings, we show that selective reduction of adult-born neurons impairs synaptic transmission at medial perforant pathway synapses onto DG granule cells. Furthermore, LTP and LTD are largely compromised at these synapses, probably as a result of an increased induction threshold. Whereas the deficits in synaptic transmission and plasticity are completely rescued by restoring neurogenesis, these synapses regain their ability to express LTP much faster than their ability to express LTD. These results demonstrate that both LTP and LTD are influenced by adult neurogenesis. They also indicate that as newborn neurons integrate their network, the ability to express bidirectional synaptic plasticity is largely improved at these synapses. These findings establish that adult neurogenesis is an important process for synaptic transmission and bidirectional plasticity in the DG, accounting for its role in efficiently integrating novel incoming information and in forming new memories. PMID:21464314

  18. Optogenetic Examination of Prefrontal-Amygdala Synaptic Development.

    Science.gov (United States)

    Arruda-Carvalho, Maithe; Wu, Wan-Chen; Cummings, Kirstie A; Clem, Roger L

    2017-03-15

    A brain network comprising the medial prefrontal cortex (mPFC) and amygdala plays important roles in developmentally regulated cognitive and emotional processes. However, very little is known about the maturation of mPFC-amygdala circuitry. We conducted anatomical tracing of mPFC projections and optogenetic interrogation of their synaptic connections with neurons in the basolateral amygdala (BLA) at neonatal to adult developmental stages in mice. Results indicate that mPFC-BLA projections exhibit delayed emergence relative to other mPFC pathways and establish synaptic transmission with BLA excitatory and inhibitory neurons in late infancy, events that coincide with a massive increase in overall synaptic drive. During subsequent adolescence, mPFC-BLA circuits are further modified by excitatory synaptic strengthening as well as a transient surge in feedforward inhibition. The latter was correlated with increased spontaneous inhibitory currents in excitatory neurons, suggesting that mPFC-BLA circuit maturation culminates in a period of exuberant GABAergic transmission. These findings establish a time course for the onset and refinement of mPFC-BLA transmission and point to potential sensitive periods in the development of this critical network. SIGNIFICANCE STATEMENT Human mPFC-amygdala functional connectivity is developmentally regulated and figures prominently in numerous psychiatric disorders with a high incidence of adolescent onset. However, it remains unclear when synaptic connections between these structures emerge or how their properties change with age. Our work establishes developmental windows and cellular substrates for synapse maturation in this pathway involving both excitatory and inhibitory circuits. The engagement of these substrates by early life experience may support the ontogeny of fundamental behaviors but could also lead to inappropriate circuit refinement and psychopathology in adverse situations. Copyright © 2017 the authors 0270-6474/17/372976-10$15.00/0.

  19. Nursing: the hospital's competitive edge.

    Science.gov (United States)

    Shaffer, F A; Preziosi, P

    1988-09-01

    The health care marketplace is becoming increasingly competitive. The hospital has a built-in marketing force with the nursing department, because nurses are in constant, direct contact with the customer. Nursing must identify the case mix profile of the community and focus the hospital product lines to meet community needs. The nursing department should decentralize, change, measure, and innovate the staff mix needed to operationalize these product lines. The development of nursing practice standards for the case mix will help to identify the staff mix needed and create systems to efficiently manage the product lines. Nursing management must become aware of cross-subsidization and downward skill substitution of nursing personnel. Nursing information systems must generate quality reports that invoke cost consciousness on the part of nursing staff. Quality assurance programs must become unit based and complete with frequent audits to correlate length of stay with nursing quality. Correlations must be determined between nursing productivity and case mix to determine the hospital's niche in the marketplace. The transformation of health care into a competitive business industry has created many opportunities for nursing. The health care industry's incentives for efficiency along with the decreasing demand for inpatient hospital services will be the forces driving health care toward a competitive marketplace. The hospital's nursing department should be strategically positioned to become accountable for increasing market share and enhancing quality patient outcomes. The focus has shifted from the theoretical to the tactical, which is a step in the right direction, particularly for nursing. Nursing, if strategically positioned, will not only thrive but will also excel in this chaotic environment by capturing the opportunities and being innovative.

  20. Sex-Dependent Regulation of Aromatase-Mediated Synaptic Plasticity in the Basolateral Amygdala.

    Science.gov (United States)

    Bender, Roland A; Zhou, Lepu; Vierk, Ricardo; Brandt, Nicola; Keller, Alexander; Gee, Christine E; Schäfer, Michael K E; Rune, Gabriele M

    2017-02-08

    The basolateral amygdala (BLA) integrates sensory input from cortical and subcortical regions, a function that requires marked synaptic plasticity. Here we provide evidence that cytochrome P450 aromatase (AROM), the enzyme converting testosterone to 17β-estradiol (E2), contributes to the regulation of this plasticity in a sex-specific manner. We show that AROM is expressed in the BLA, particularly in the basolateral nucleus (BL), in male and female rodents. Systemic administration of the AROM inhibitor letrozole reduced spine synapse density in the BL of adult female mice but not in the BL of male mice. Similarly, in organotypic corticoamygdalar slice cultures from immature rats, treatment with letrozole significantly reduced spine synapses in the BL only in cultures derived from females. In addition, letrozole sex-specifically altered synaptic properties in the BL: in acute slices from juvenile (prepubertal) female rats, wash-in of letrozole virtually abolished long-term potentiation (LTP), whereas it did not prevent the generation of LTP in the slices from males. Together, these data indicate that neuron-derived E2 modulates synaptic plasticity in rodent BLA sex-dependently. As protein expression levels of AROM, estrogen and androgen receptors did not differ between males and females and were not sex-specifically altered by letrozole, the findings suggest sex-specific mechanisms of E2 signaling. SIGNIFICANCE STATEMENT The basolateral amygdala (BLA) is a key structure of the fear circuit. This research reveals a sexually dimorphic regulation of synaptic plasticity in the BLA involving neuronal aromatase, which produces the neurosteroid 17β-estradiol (E2). As male and female neurons in rodent BLA responded differently to aromatase inhibition both in vivo and in vitro , our findings suggest that E2 signaling in BLA neurons is regulated sex-dependently, presumably via mechanisms that have been established during sexual determination. These findings could be

  1. Odor-Specific Habituation Arises from Interaction of Afferent Synaptic Adaptation and Intrinsic Synaptic Potentiation in Olfactory Cortex

    Science.gov (United States)

    Linster, Christiane; Menon, Alka V.; Singh, Christopher Y.; Wilson, Donald A.

    2009-01-01

    Segmentation of target odorants from background odorants is a fundamental computational requirement for the olfactory system and is thought to be behaviorally mediated by olfactory habituation memory. Data from our laboratory have shown that odor-specific adaptation in piriform neurons, mediated at least partially by synaptic adaptation between…

  2. Competitiveness and Campaign '88.

    Science.gov (United States)

    Kernan-Schloss, Adam, Ed.; And Others

    This report profiles the positions of the six Democratic and six Republican 1988 presidential candidates on policy issues affecting U.S. competitiveness in the global economy. Candidate profiles are provided for: Bruce Babbitt, Michael Dukakis, Richard Gephardt, Albert Gore, Jr., Jesse Jackson, and Paul Simon (Democrats); and George Bush, Robert…

  3. Competition Fosters Trust

    DEFF Research Database (Denmark)

    Huck, Steffen; Ruchala, Gabriele K.; Tyran, Jean-Robert

    We study the effects of reputation and competition in a stylized market for experience goods. If interaction is anonymous, such markets perform poorly: sellers are not trustworthy, and buyers do not trust sellers. If sellers are identifiable and can, hence, build a reputation, efficiency quadruples...

  4. Business Ideas Competition

    CERN Multimedia

    2003-01-01

    Business Ideas Competition "The Rainbow Seed Fund is a UK fund, which provides finance to support the commercialization of good ideas founded on scientific research; it is for the benefit of the UK industry in particular. To encourage ideas from CERN the Rainbow Seed Fund is running a business ideas competition.The winner of this competition will receive an immediate cash prize of GBP £1,000. In addition the Rainbow Seed Fund may well provide finance for market research, for protection of Intellectual Property Rights (IPR) and for prototyping to take the idea forward. Further awards of GBP £750 will be made for ideas which gain investment from the Fund.Candidates will only be required to prepare a 2-4-page summary of their business idea, and not a full business plan. Full details and an entry form are available at www.rainbowseedfund.com ." ALL Members of the Personnel seeking participation in the business ideas competition are asked to submit their ideas via the CERN TT Unit (Jean-Marie.Le Goff@cern.ch) th...

  5. Conflict exposure and competitiveness

    NARCIS (Netherlands)

    Cecchi, Francesco; Leuveld, Koen; Voors, Maarten

    2016-01-01

    We use data from a street football tournament and a series of lab-in-field experiments in postconflict Sierra Leone to examine the impact of exposure to conflict violence on competitive behavior. We find that football players who experienced more intense exposure to violence are more likely to get a

  6. Industrial location and competitiveness

    NARCIS (Netherlands)

    S. Brakman (Steven); J.H. Garretsen (Harry); J.G.M. van Marrewijk (Charles)

    2006-01-01

    textabstractThe interaction between the extent of location advantages and the intensity of firm competition relative to the size of the market jointly determines the location of industrial activity. Technology, factor endowments, geography, and scale economies are influential for determining

  7. Explaining competitive reaction effects

    NARCIS (Netherlands)

    Leeflang, P.S.H.; Wittink, D.R.

    Changes in promotional expenditure decisions for a brand, as in other marketing decisions, should be based on the expected impact on purchase and consumption behavior as well as on the likely reactions by competitors. Purchase behavior may be predicted from estimated demand functions. Competitive

  8. Competition Fosters Trust

    DEFF Research Database (Denmark)

    Huck, Steffen; Lünser, Gabriele; Tyran, Jean-Robert Karl

    2012-01-01

    We study the effects of reputation and competition in a trust game. If trustees are anonymous, outcomes are poor: trustees are not trustworthy, and trustors do not trust. If trustees are identifiable and can, hence, build a reputation, efficiency quadruples but is still at only a third of the fir...

  9. City and suburban competition

    Czech Academy of Sciences Publication Activity Database

    Austin, D. Andrew

    -, č. 251 (2005), s. 1-38 ISSN 1211-3298 Institutional research plan: CEZ:AV0Z70850503 Keywords : government competition * duopoly * local public finance Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp251.pdf

  10. Heterogeneous logics of competition

    DEFF Research Database (Denmark)

    Mossin, Christiane

    2015-01-01

    still experience competition as an expression of spontaneous human activities. On the basis of these perspectives, a study of fundamental rights of EU law, springing from the principle of ‘free movement of people’, is conducted. The first part of the empirical analysis seeks to detect the presence...

  11. Catalogers and Competition.

    Science.gov (United States)

    Howden, Norman

    1987-01-01

    Reports the results of a literature review and a survey of catalogers which were conducted to study the problem of the decline in quantity and quality of applications for entry-level cataloging jobs. Factors studied included: competition between types of library professionals, automation, library education, the women's movement, and library…

  12. Competitive Moves over Time

    DEFF Research Database (Denmark)

    Antero, Michelle; Hedman, Jonas; Henningsson, Stefan

    2014-01-01

    This paper applies the Red Queen theory to explain how organizations utilize various sourcing arrangements in order to compete in an evolutionary arms race where only the strongest competitors will survive. This case study incorporates competition and views sourcing strategies as a means to impro...

  13. Growing Competition for Libraries.

    Science.gov (United States)

    Gibbons, Susan

    2001-01-01

    Describes the Questia subscription-based online academic digital books library. Highlights include weaknesses of the collection; what college students want from a library; importance of marketing; competition for traditional academic libraries that may help improve library services; and the ability of Questia to overcome barriers and…

  14. Competition and Development

    International Development Research Centre (IDRC) Digital Library (Canada)

    Investigation of specific firm behaviour is the bread and butter of competition law enforcement, but studies of the structure and dynamics of relevant markets are ..... point to the text of the European Union–Egypt and European Union–Estonia RTAs, which allow for the exemption of various state aids and state monopolies.

  15. A calcium-dependent plasticity rule for HCN channels maintains activity homeostasis and stable synaptic learning.

    Science.gov (United States)

    Honnuraiah, Suraj; Narayanan, Rishikesh

    2013-01-01

    Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and assess the synergy between synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established Bienenstock-Cooper-Munro (BCM)-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis. Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results establish specific physiological roles

  16. A calcium-dependent plasticity rule for HCN channels maintains activity homeostasis and stable synaptic learning.

    Directory of Open Access Journals (Sweden)

    Suraj Honnuraiah

    Full Text Available Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN channels, and assess the synergy between synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established Bienenstock-Cooper-Munro (BCM-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis. Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results establish specific

  17. A Calcium-Dependent Plasticity Rule for HCN Channels Maintains Activity Homeostasis and Stable Synaptic Learning

    Science.gov (United States)

    Honnuraiah, Suraj; Narayanan, Rishikesh

    2013-01-01

    Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and assess the synergy between synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established Bienenstock-Cooper-Munro (BCM)-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis. Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results establish specific physiological roles

  18. Synaptic Plasticity and Memory: New Insights from Hippocampal Left-Right Asymmetries.

    Science.gov (United States)

    El-Gaby, Mohamady; Shipton, Olivia A; Paulsen, Ole

    2015-10-01

    All synapses are not the same. They differ in their morphology, molecular constituents, and malleability. A striking left-right asymmetry in the distribution of different types of synapse was recently uncovered at the CA3-CA1 projection in the mouse hippocampus, whereby afferents from the CA3 in the left hemisphere innervate small, highly plastic synapses on the apical dendrites of CA1 pyramidal neurons, whereas those originating from the right CA3 target larger, more stable synapses. Activity-dependent modification of these synapses is thought to participate in circuit formation and remodeling during development, and further plastic changes may support memory encoding in adulthood. Therefore, exploiting the CA3-CA1 asymmetry provides a promising opportunity to investigate the roles that different types of synapse play in these fundamental properties of the CNS. Here we describe the discovery of these segregated synaptic populations in the mouse hippocampus, and discuss what we have already learnt about synaptic plasticity from this asymmetric arrangement. We then propose models for how the asymmetry could be generated during development, and how the adult hippocampus might use these distinct populations of synapses differentially during learning and memory. Finally, we outline the potential implications of this left-right asymmetry for human hippocampal function, as well as dysfunction in memory disorders such as Alzheimer's disease. © The Author(s) 2014.

  19. The human synaptic vesicle protein, SV2A, functions as a galactose transporter in Saccharomyces cerevisiae.

    Science.gov (United States)

    Madeo, Marianna; Kovács, Attila D; Pearce, David A

    2014-11-28

    SV2A is a synaptic vesicle membrane protein expressed in neurons and endocrine cells and involved in the regulation of neurotransmitter release. Although the exact function of SV2A still remains elusive, it was identified as the specific binding site for levetiracetam, a second generation antiepileptic drug. Our sequence analysis demonstrates that SV2A has significant homology with several yeast transport proteins belonging to the major facilitator superfamily (MFS). Many of these transporters are involved in sugar transport into yeast cells. Here we present evidence showing, for the first time, that SV2A is a galactose transporter. We expressed human SV2A in hexose transport-deficient EBY.VW4000 yeast cells and demonstrated that these cells are able to grow on galactose-containing medium but not on other fermentable carbon sources. Furthermore, the addition of the SV2A-binding antiepileptic drug levetiracetam to the medium inhibited the galactose-dependent growth of hexose transport-deficient EBY.VW4000 yeast cells expressing human SV2A. Most importantly, direct measurement of galactose uptake in the same strain verified that SV2A is able to transport extracellular galactose inside the cells. The newly identified galactose transport capability of SV2A may have an important role in regulating/modulating synaptic function. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Volterra representation enables modeling of complex synaptic nonlinear dynamics in large-scale simulations.

    Science.gov (United States)

    Hu, Eric Y; Bouteiller, Jean-Marie C; Song, Dong; Baudry, Michel; Berger, Theodore W

    2015-01-01

    Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.

  1. Cortical spreading depression modulates synaptic transmission of the rat lateral amygdala.

    Science.gov (United States)

    Dehbandi, Shahab; Speckmann, Erwin-Josef; Pape, Hans Christian; Gorji, Ali

    2008-04-01

    Clinical and pathophysiological evidence connects migraine and the amygdala. Cortical spreading depression (CSD) plays a causative role in the generation of aura symptoms. However, the role of CSD in the pathophysiology of other symptoms of migraine needs to be investigated. An in vitro brain slice technique was used to investigate CSD effects on tetanus-induced long-term potentiation (LTP) in the lateral amygdala (LA) of the combined rat amygdala-hippocampus-cortex slices. More than 75% of CSD induced in temporal cortex propagated to LA. Induction of CSD in combined amygdala-hippocampus-cortex slices in which CSD propagated from neocortex to LA significantly augmented LTP in LA. LTP was inhibited when CSD travelled only in the neocortical tissues. Separation of the amygdala from the remaining neocortical part of the slice, in which CSD propagation was limited to the neocortex, increased LTP close to the control levels. Pharmacological manipulations of the slices, in which CSD reached LA, revealed the involvement of NMDA and AMPA glutamate subreceptors as well as dopamine D2 receptors in the enhancement of LTP in LA. However, neither blocking of GABA receptors nor activation of dopamine D1 receptors affected LTP in these slices. The results indicate the disturbances of LA synaptic transmission triggered by propagation of CSD. This perturbation of LA synaptic transmission induced by CSD may relate to some symptoms occurring during migraine attacks.

  2. Propagation of Homeostatic Sleep Signals by Segregated Synaptic Microcircuits of the Drosophila Mushroom Body.

    Science.gov (United States)

    Sitaraman, Divya; Aso, Yoshinori; Jin, Xin; Chen, Nan; Felix, Mario; Rubin, Gerald M; Nitabach, Michael N

    2015-11-16

    The Drosophila mushroom body (MB) is a key associative memory center that has also been implicated in the control of sleep. However, the identity of MB neurons underlying homeostatic sleep regulation, as well as the types of sleep signals generated by specific classes of MB neurons, has remained poorly understood. We recently identified two MB output neuron (MBON) classes whose axons convey sleep control signals from the MB to converge in the same downstream target region: a cholinergic sleep-promoting MBON class and a glutamatergic wake-promoting MBON class. Here, we deploy a combination of neurogenetic, behavioral, and physiological approaches to identify and mechanistically dissect sleep-controlling circuits of the MB. Our studies reveal the existence of two segregated excitatory synaptic microcircuits that propagate homeostatic sleep information from different populations of intrinsic MB "Kenyon cells" (KCs) to specific sleep-regulating MBONs: sleep-promoting KCs increase sleep by preferentially activating the cholinergic MBONs, while wake-promoting KCs decrease sleep by preferentially activating the glutamatergic MBONs. Importantly, activity of the sleep-promoting MB microcircuit is increased by sleep deprivation and is necessary for homeostatic rebound sleep (i.e., the increased sleep that occurs after, and in compensation for, sleep lost during deprivation). These studies reveal for the first time specific functional connections between subsets of KCs and particular MBONs and establish the identity of synaptic microcircuits underlying transmission of homeostatic sleep signals in the MB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Electrophysiological analysis of synaptic distribution in CA1 of rat hippocampus after chronic ethanol exposure.

    Science.gov (United States)

    Abraham, W C; Manis, P B; Hunter, B E; Zornetzer, S F; Walker, D W

    1982-04-08

    This study investigated the long-lasting effects of chronic ethanol consumption on the distribution of Schaffer collateral-commissural (SCH/COM) afferents within stratum radiatum of rat hippocampal CA1. Experimental animals were fed an ethanol-containing liquid diet for 20 weeks but were withdrawn from the special diet for at least 8 weeks prior to acute electrophysiological recordings. Field potential laminar analyses were performed by stepping the recording electrode in 25 microns increments through CA1 and sampling evoked potentials at each point. One-dimensional current-source density (CSD) was calculated from the field potential laminar profiles to enhance spatial resolution of current sources and sinks. Stimulation of the SCH/COM afferents elicits short-latency, negative field potentials throughout the synaptic terminal zone (stratum radiatum). CSD analysis in normal animals revealed that the synaptic currents generated in stratum radiatum concentrate into bimodal yet overlapping components, peaking 71.3 microns and 228.3 microns from the pyramidal cell layer. Chronic ethanol treatment produced: (1) a 13.2% shrinkage of the overall extent of current sinks in stratum radiatum; (2) a 37.4% reduction in the spatial extent of the sink proximal to the cell layer; and (3) an increase in the amplitude of the more distal sink. We tentatively propose the proximal and distal sinks to reflect a separation of the COM and SCH afferents, respectively. Chronic ethanol thus appeared to have selectively produced persistent damage to the COM-CA1 pathway.

  4. The Formation of Multi-synaptic Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences

    Science.gov (United States)

    Fauth, Michael; Wörgötter, Florentin; Tetzlaff, Christian

    2015-01-01

    Cortical connectivity emerges from the permanent interaction between neuronal activity and synaptic as well as structural plasticity. An important experimentally observed feature of this connectivity is the distribution of the number of synapses from one neuron to another, which has been measured in several cortical layers. All of these distributions are bimodal with one peak at zero and a second one at a small number (3–8) of synapses. In this study, using a probabilistic model of structural plasticity, which depends on the synaptic weights, we explore how these distributions can emerge and which functional consequences they have. We find that bimodal distributions arise generically from the interaction of structural plasticity with synaptic plasticity rules that fulfill the following biological realistic constraints: First, the synaptic weights have to grow with the postsynaptic activity. Second, this growth curve and/or the input-output relation of the postsynaptic neuron have to change sub-linearly (negative curvature). As most neurons show such input-output-relations, these constraints can be fulfilled by many biological reasonable systems. Given such a system, we show that the different activities, which can explain the layer-specific distributions, correspond to experimentally observed activities. Considering these activities as working point of the system and varying the pre- or postsynaptic stimulation reveals a hysteresis in the number of synapses. As a consequence of this, the connectivity between two neurons can be controlled by activity but is also safeguarded against overly fast changes. These results indicate that the complex dynamics between activity and plasticity will, already between a pair of neurons, induce a variety of possible stable synaptic distributions, which could support memory mechanisms. PMID:25590330

  5. Achieving a competitive edge -- A comparison/contrast of two examples

    International Nuclear Information System (INIS)

    Scholl, P.L.; Ward, D.P.

    1996-01-01

    As the electric power industry moves from the regulated monopoly environment to one of open competition, the need to achieve and maintain a competitive advantage becomes critical. In the competitive market, having a competitive edge means having goods and services that the market prefers, i.e., buyers in the market prefer to purchase your goods and services rather than your competitors'. For electric power generating facilities, the market is the wholesale market, and because electric power is essentially a commodity, i.e., a megawatthour from one generating facility is the same as a megawatthour from another generating facility, the primary distinguishing factor in the market is price.d therefore, having a competitive edge in the market means having a lower price than the competition. This paper describes the basic elements of achieving a competitive edge and discusses how these elements are being used by two utilities with very different circumstances to improve their competitive positions

  6. The Relational View of Interorganizational Competitive Advantage

    DEFF Research Database (Denmark)

    Hu, Yimei; Zhang, Si; Li, Jizhen

    Collaborating with external partners on R&D and forming strategic partnership for R&D have been popular phenomena for long, which leads new development in existing theories. Though the relational view of competitive advantage has been proposed for more than a decade, few in-depth empirical...... they generate relational rents (interorganizational competitive advantage) from this alliance? Based on this case study, we will propose some implications for the R&D collaboration between Chinese and Scandinavian countries. Also, the case will help us to test and enrich the existing theories...... on interorganizational competitive advantage. At the end of the paper, based on existing theories and the case study result, we will propose our conceptual framework on researching R&D strategic alliance between Scandinavian and Chinese firms....

  7. The competitiveness of nuclear energy

    International Nuclear Information System (INIS)

    Lewiner, C.

    1993-01-01

    A detailed review of cost factors affecting the final production cost of nuclear KWh is made in comparison with coal, oil, and natural gas. Investment costs are higher for nuclear plants because they require higher quality (design and engineering). Additionaly thereis a 15% of provision cost for spare equipments (e.g. steam generators) with an impact of 5% in KWh cost. Fuel acquisition is a very fluctuant term. Reprocessing would be essential for cost saving. It is estimated for the french case a 30% of use of MOx type fuel. The studies performed taking into account investment, O+M and fuel show a clear competitiveness of nuclear energy. Fuel represents a relatively low part of the total cost, being the initial investment the most important percentage of cost

  8. Sustainability. In light of competitiveness

    International Nuclear Information System (INIS)

    Sonntag, V.

    2000-01-01

    There is cause for concern that many current practices in the strategic use of advanced manufacturing technologies are unsustainable since they lead to increased resource consumption in the aggregate. This article examines the ways the current generation of production technologies structure the formation and growth of product markets and explains why firms, driven to stay competitive, are adopting manufacturing strategies based on reducing the time it takes to develop and manufacture new products. As experience in the use of advanced manufacturing technologies has accumulated, distinctive patterns in market organization have emerged, which, in turn, cause more firms to adopt these technologies. In effect, the markets and productions systems have co-evolved. Faster product cycles presage new product variants and faster product obsolescence linked to intensified customers' needs. This interdependency of market needs and the strategic use of manufacturing technologies has significance for drafting sustainable consumption policy. 30 refs

  9. Integrated Approach to Competitive Advantage

    Directory of Open Access Journals (Sweden)

    Edita Ragelskaja

    2011-07-01

    Full Text Available Environmental changes and globalization of markets make an impact on intense competition in almost all business sectors. Evolutionary changes influence companies to learn, adequately react, adapt to environmental changes and to change themselves. Such a situation has revealed the problems of competitive advan­tage of industry companies. Therefore the focus to the factors impacting competitive advantage is seen as timely and relevant. The authors of the paper analyze approaches to competitive advantage and the factors impacting competitive advantage. The integrated model of competitive advantage is proposed in the paper.Article in Lithuanian

  10. Agrin and synaptic laminin are required to maintain adult neuromuscular junctions.

    Directory of Open Access Journals (Sweden)

    Melanie A Samuel

    Full Text Available As synapses form and mature the synaptic partners produce organizing molecules that regulate each other's differentiation and ensure precise apposition of pre- and post-synaptic specializations. At the skeletal neuromuscular junction (NMJ, these molecules include agrin, a nerve-derived organizer of postsynaptic differentiation, and synaptic laminins, muscle-derived organizers of presynaptic differentiation. Both become concentrated in the synaptic cleft as the NMJ develops and are retained in adulthood. Here, we used mutant mice to ask whether these organizers are also required for synaptic maintenance. Deletion of agrin from a subset of adult motor neurons resulted in the loss of acetylcholine receptors and other components of the postsynaptic apparatus and synaptic cleft. Nerve terminals also atrophied and eventually withdrew from muscle fibers. On the other hand, mice lacking the presynaptic organizer laminin-α4 retained most of the synaptic cleft components but exhibited synaptic alterations reminiscent of those observed in aged animals. Although we detected no marked decrease in laminin or agrin levels at aged NMJs, we observed alterations in the distribution and organization of these synaptic cleft components suggesting that such changes could contribute to age-related synaptic disassembly. Together, these results demonstrate that pre- and post-synaptic organizers actively function to maintain the structure and function of adult NMJs.

  11. Cell-Specific PKM Isoforms Contribute to the Maintenance of Different Forms of Persistent Long-Term Synaptic Plasticity.

    Science.gov (United States)

    Hu, Jiangyuan; Adler, Kerry; Farah, Carole Abi; Hastings, Margaret H; Sossin, Wayne S; Schacher, Samuel

    2017-03-08

    Multiple kinase activations contribute to long-term synaptic plasticity, a cellular mechanism mediating long-term memory. The sensorimotor synapse of Aplysia expresses different forms of long-term facilitation (LTF)-nonassociative and associative LTF-that require the timely activation of kinases, including protein kinase C (PKC). It is not known which PKC isoforms in the sensory neuron or motor neuron L7 are required to sustain each form of LTF. We show that different PKMs, the constitutively active isoforms of PKCs generated by calpain cleavage, in the sensory neuron and L7 are required to maintain each form of LTF. Different PKMs or calpain isoforms were blocked by overexpressing specific dominant-negative constructs in either presynaptic or postsynaptic neurons. Blocking either PKM Apl I in L7, or PKM Apl II or PKM Apl III in the sensory neuron 2 d after 5-hydroxytryptamine (5-HT) treatment reversed persistent nonassociative LTF. In contrast, blocking either PKM Apl II or PKM Apl III in L7, or PKM Apl II in the sensory neuron 2 d after paired stimuli reversed persistent associative LTF. Blocking either classical calpain or atypical small optic lobe (SOL) calpain 2 d after 5-HT treatment or paired stimuli did not disrupt the maintenance of persistent LTF. Soon after 5-HT treatment or paired stimuli, however, blocking classical calpain inhibited the expression of persistent associative LTF, while blocking SOL calpain inhibited the expression of persistent nonassociative LTF. Our data suggest that different stimuli activate different calpains that generate specific sets of PKMs in each neuron whose constitutive activities sustain long-term synaptic plasticity. SIGNIFICANCE STATEMENT Persistent synaptic plasticity contributes to the maintenance of long-term memory. Although various kinases such as protein kinase C (PKC) contribute to the expression of long-term plasticity, little is known about how constitutive activation of specific kinase isoforms sustains long

  12. Company competitiveness and competitive advantages in tourism and hospitality

    OpenAIRE

    Cetinski, Vinka; Milohnic, Ines

    2008-01-01

    Connection between competitive strategies and competitive advantages is described in details in this paper. Model of the research is located on the company level in tourism and hospitality. Applicative basis of the paper is founded on the Diamond of Competitiveness (Case Study) usage and is based on the qualitative research of small entrepreneurship in tourism and hospitality. The fact that every strategy is based on creating and sustaining competitive advantages implies that the principal...

  13. Astroglioma conditioned medium increases synaptic elimination and correlates with major histocompatibility complex of class I (MHC I) upregulation in PC12Cells.

    Science.gov (United States)

    Inácio, Rodrigo Fabrizzio; Zanon, Renata Gacielle; Castro, Mateus Vidigal de; Souza, Henrique Marques de; Bajgelman, Marcio Chaim; Verinaud, Liana; Oliveira, Alexandre Leite Rodrigues de

    2016-11-10

    Astrocytes are multifunctional glial cells that actively participate in synaptic plasticity in health and disease. Little is known about molecular interactions between neurons and glial cells that result in synaptic stability or elimination. In this sense, the main histocompatibility complex of class I (MHC I) has been shown to play a role in the synaptic plasticity process during development and after lesion of the CNS. MHC I levels in neurons appear to be influenced by astrocyte secreted molecules, which may generate endoplasmic reticulum stress. In vitro studies are of relevance since cell contact can be avoided by the use of astrocyte conditioned medium, allowing investigation of soluble factors isolated from cell direct interaction. Thus, we investigated synaptic preservation by synaptophysin and MHC I immunolabeling in PC12 neuron-like cells exposed to NG97 astroglioma conditioned medium (CM). For that, PC12 cells were cultured and differentiated into neuron-like profile with nerve growth factor. MHC I was induced with interferon beta treatment (IFN), and the effects were compared to PC12 exposure to NG97 CM. Overall, the results show that NG97 CM increases, more than IFN alone, the expression of MHC I, negatively influencing synaptic stability. This indicates that glial soluble factors influence synapse elimination, compatible to in vivo synaptic stripping process, in a cell contact independent fashion. In turn, our results indicate that deleterious effects of astroglioma are not only restricted to rapid growth ratio of the tumor, but also correlated with secretion of stress-related molecules that directly affect neuronal networks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. in_focus - Competition and Development: The Power of Competitive ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2008-01-01

    Jan 1, 2008 ... This book demonstrates the importance of true and fair competition to sustainable development and an effective marketplace, touching on issues of globalization, consumer welfare, cartels and monopolies, and trade liberalization. It provides an introduction to competition, and competition law and policy in ...

  15. Mathematical analysis and algorithms for efficiently and accurately implementing stochastic simulations of short-term synaptic depression and facilitation

    Directory of Open Access Journals (Sweden)

    Mark D McDonnell

    2013-05-01

    Full Text Available The release of neurotransmitter vesicles after arrival of a pre-synaptic action potential at cortical synapses is known to be a stochastic process, as is the availability of vesicles for release. These processes are known to also depend on the recent history of action-potential arrivals, and this can be described in terms of time-varying probabilities of vesicle release. Mathematical models of such synaptic dynamics frequently are based only on the mean number of vesicles released by each pre-synaptic action potential, since if it is assumed there are sufficiently many vesicle sites, then variance is small. However, it has been shown recently that variance across sites can be significant for neuron and network dynamics, and this suggests the potential importance of studying short-term plasticity using simulations that do generate trial-to-trial variability. Therefore, in this paper we study several well-known conceptual models for stochastic availability and release. We state explicitly the random variables that these models describe and propose efficient algorithms for accurately implementing stochastic simulations of these random variables in software or hardware. Our results are complemented by mathematical analysis and statement of pseudo-code algorithms.

  16. Synaptic Changes in AMPA Receptor Subunit Expression in Cortical Parvalbumin Interneurons in the Stargazer Model of Absence Epilepsy

    Directory of Open Access Journals (Sweden)

    Nadia K. Adotevi

    2017-12-01

    Full Text Available Feedforward inhibition is essential to prevent run away excitation within the brain. Recent evidence suggests that a loss of feed-forward inhibition in the corticothalamocortical circuitry may underlie some absence seizures. However, it is unclear if this aberration is specifically linked to loss of synaptic excitation onto local fast-spiking parvalbumin-containing (PV+ inhibitory interneurons, which are responsible for mediating feedforward inhibition within cortical networks. We recently reported a global tissue loss of AMPA receptors (AMPARs, and a specific mistrafficking of these AMPARs in PV+ interneurons in the stargazer somatosensory cortex. The current study was aimed at investigating if cellular changes in AMPAR expression were translated into deficits in receptors at specific synapses in the feedforward inhibitory microcircuit. Using western blot immunolabeling on biochemically isolated synaptic fractions, we demonstrate a loss of AMPAR GluA1–4 subunits in the somatosensory cortex of stargazers compared to non-epileptic control mice. Furthermore, using double post-embedding immunogold-cytochemistry, we show a loss of GluA1–4-AMPARs at excitatory synapses onto cortical PV+ interneurons. Altogether, these data indicate a loss of synaptic AMPAR-mediated excitation of cortical PV+ inhibitory neurons. As the cortex is considered the site of initiation of spike wave discharges (SWDs within the corticothalamocortical circuitry, loss of AMPARs at cortical PV+ interneurons likely impairs feed-forward inhibitory output, and contributes to the generation of SWDs and absence seizures in stargazers.

  17. Crop–weed competition

    DEFF Research Database (Denmark)

    Gallandt, Eric R.; Weiner, Jacob

    2015-01-01

    on crops. Longer term management of crop–weed competition can be achieved through crop rotations, specifically crop sequences that reduce the weed seed bank, and therefore seedling density, and prevent proliferation of perennial weeds. Key ConceptsKey Concepts * Plant growth requires sunlight, water......Competition from weeds is the most important of all biological factors that reduce agricultural crop yield. This occurs primarily because weeds use resources that would otherwise be available to the crop. The magnitude of yield loss is affected by numerous agronomic and environmental factors, most...... and nutrients, which in turn are converted into biomass that captures additional resources. * In crop or weed monocultures, increasing density increases total production to a maximum that is determined by the resource status of the site, generally with a corresponding decrease in per plant mass. * In crop...

  18. Political Competition and Polarization

    DEFF Research Database (Denmark)

    Schultz, Christian

    This paper considers political competition and the consequences of political polarization when parties are better informed about how the economy functions than voters are. Specifically, parties know the cost producing a public good, voters do not. An incumbent's choice of policy acts like a signa...... for costs before an upcoming election. It is shown that the more polarized the political parties the more distorted the incumbent's policy choice.......This paper considers political competition and the consequences of political polarization when parties are better informed about how the economy functions than voters are. Specifically, parties know the cost producing a public good, voters do not. An incumbent's choice of policy acts like a signal...

  19. Competitive Advantage through Innovation

    DEFF Research Database (Denmark)

    Brem, Alexander; Maier, Maximilian; Wimschneider, Christine

    2016-01-01

    to failure several times. Before the current situation of the company, it remains challenging in the future as well. Hence, the Nespresso story provides interesting space for discussion and learning about what innovation is, how innovation emerges, and under which circumstances innovation can serve...... as a source for competitive advantage. Research limitations/implications Especially given the current market situation, the case offers different starting points for discussion about innovation and long-term company success. Practical implications Especially before the current market situation, the case...... offers different starting points for discussion about innovation and the success of a company on the long term. The case is designed to give practitioners a better understanding on what an innovation as, and how competitive advantages can be linked to innovation. Originality/value This case of Nespresso...

  20. Canadian competitive advantage

    International Nuclear Information System (INIS)

    Wills, J.

    1997-01-01

    The evolution of the Canadian petrochemical industry was outlined, emphasizing the proximity to feedstocks as the principal advantage enjoyed by the industry over its international competitors. Annual sales statistics for 1995 were provided. Key players in the Canadian petrochemical industry (Nova, Dow, DuPont, Methanex, Esso, Union Carbide, Shell and Celanese), their share of the market and key products were noted. Manufacturing facilities are located primarily in Alberta, southern Ontario and Quebec. The feedstock supply infrastructure, historical and alternative ethane pricing in Canada and the US, the North American market for petrochemicals, the competitiveness of the industry, tax competitiveness among Canadian provinces and the US, the Canada - US unit labour cost ratio, ethylene facility construction costs in Canada relative to the US Gulf Coast, and projected 1997 financial requirements were reviewed. 19 figs