WorldWideScience

Sample records for syn-bis-quinoxaline molecular tweezers

  1. Research Advances: Nanoscale Molecular Tweezers; Cinnamon as Pesticide?; Recently Identified Dietary Sources of Antioxidants

    Science.gov (United States)

    King, Angela G.

    2004-12-01

    This Report from Other Journals surveys articles of interest to chemists that have been recently published in other science journals. Topics surveyed include reports that receptors have been designed to act as molecular tweezers; cinnamon has potential in the fight against mosquitoes; and high levels of antioxidants are found in some surprising foods. See Featured Molecules .

  2. Molecular Tweezers for Lysine and Arginine – Powerful Inhibitors of Pathologic Protein Aggregation

    Science.gov (United States)

    Schrader, Thomas; Bitan, Gal; Klärner, Frank-Gerrit

    2016-01-01

    Molecular tweezers represent the first class of artificial receptor molecules that made the way from a supramolecular host to a drug candidate with promising results in animal tests. Due to their unique structure, only lysine and arginine are well complexed with exquisite selectivity by a threading mechanism, which unites electrostatic, hydrophobic and dispersive attraction. However, tweezer design must avoid self-dimerization, self-inclusion and external guest binding. Moderate affinities of the molecular tweezers towards sterically well accessible basic amino acids with fast on and off rates protect normal proteins from a potential interference with their biological function. However, the early stages of abnormal Aβ, α-synuclein, and TTR assembly are redirected upon tweezer binding towards the generation of amorphous non-toxic material that can be degraded by the intracellular and extracellular clearance mechanisms. Thus, specific host–guest chemistry between aggregation-prone proteins and lysine/arginine binders rescues cell viability and restores animal health in models of AD, PD, and TTR amyloidosis. PMID:27546596

  3. Molecular tweezers for lysine and arginine - powerful inhibitors of pathologic protein aggregation.

    Science.gov (United States)

    Schrader, Thomas; Bitan, Gal; Klärner, Frank-Gerrit

    2016-10-15

    Molecular tweezers represent the first class of artificial receptor molecules that have made the way from a supramolecular host to a drug candidate with promising results in animal tests. Due to their unique structure, only lysine and arginine are well complexed with exquisite selectivity by a threading mechanism, which unites electrostatic, hydrophobic and dispersive attraction. However, tweezer design must avoid self-dimerization, self-inclusion and external guest binding. Moderate affinities of molecular tweezers towards sterically well accessible basic amino acids with fast on and off rates protect normal proteins from potential interference with their biological function. However, the early stages of abnormal Aβ, α-synuclein, and TTR assembly are redirected upon tweezer binding towards the generation of amorphous non-toxic materials that can be degraded by the intracellular and extracellular clearance mechanisms. Thus, specific host-guest chemistry between aggregation-prone proteins and lysine/arginine binders rescues cell viability and restores animal health in models of AD, PD, and TTR amyloidosis.

  4. Molecular tweezers modulate 14-3-3 protein-protein interactions

    Science.gov (United States)

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins—a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)—in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions.

  5. DNA condensation by TmHU studied by optical tweezers, AFM and molecular dynamics simulations

    Science.gov (United States)

    Olbrich, Carsten; Brutzer, Hergen; Salomo, Mathias; Kleinekathöfer, Ulrich; Keyser, Ulrich F.; Kremer, Friedrich

    2010-01-01

    The compaction of DNA by the HU protein from Thermotoga maritima (TmHU) is analysed on a single-molecule level by the usage of an optical tweezers-assisted force clamp. The condensation reaction is investigated at forces between 2 and 40 pN applied to the ends of the DNA as well as in dependence on the TmHU concentration. At 2 and 5 pN, the DNA compaction down to 30% of the initial end-to-end distance takes place in two regimes. Increasing the force changes the progression of the reaction until almost nothing is observed at 40 pN. Based on the results of steered molecular dynamics simulations, the first regime of the length reduction is assigned to a primary level of DNA compaction by TmHU. The second one is supposed to correspond to the formation of higher levels of structural organisation. These findings are supported by results obtained by atomic force microscopy. PMID:22210966

  6. Inhibition of Mutant αB Crystallin-Induced Protein Aggregation by a Molecular Tweezer.

    Science.gov (United States)

    Xu, Na; Bitan, Gal; Schrader, Thomas; Klärner, Frank-Gerrit; Osinska, Hanna; Robbins, Jeffrey

    2017-08-08

    Compromised protein quality control causes the accumulation of misfolded proteins and intracellular aggregates, contributing to cardiac disease and heart failure. The development of therapeutics directed at proteotoxicity-based pathology in heart disease is just beginning. The molecular tweezer CLR01 is a broad-spectrum inhibitor of abnormal self-assembly of amyloidogenic proteins, including amyloid β-protein, tau, and α-synuclein. This small molecule interferes with aggregation by binding selectively to lysine side chains, changing the charge distribution of aggregation-prone proteins and thereby disrupting aggregate formation. However, the effects of CLR01 in cardiomyocytes undergoing proteotoxic stress have not been explored. Here we assess whether CLR01 can decrease cardiac protein aggregation catalyzed by cardiomyocyte-specific expression of mutated αB-crystallin (CryAB R 120G ). A proteotoxic model of desmin-related cardiomyopathy caused by cardiomyocyte-specific expression of CryAB R 120G was used to test the efficacy of CLR01 therapy in the heart. Neonatal rat cardiomyocytes were infected with adenovirus expressing either wild-type CryAB or CryAB R 120G . Subsequently, the cells were treated with different doses of CLR01 or a closely related but inactive derivative, CLR03. CLR01 decreased aggregate accumulation and attenuated cytotoxicity caused by CryAB R 120G expression in a dose-dependent manner, whereas CLR03 had no effect. Ubiquitin-proteasome system function was analyzed using a ubiquitin-proteasome system reporter protein consisting of a short degron, CL1, fused to the COOH-terminus of green fluorescent protein. CLR01 improved proteasomal function in CryAB R 120G cardiomyocytes but did not alter autophagic flux. In vivo, CLR01 administration also resulted in reduced protein aggregates in CryAB R 120G transgenic mice. CLR01 can inhibit CryAB R 120G aggregate formation and decrease cytotoxicity in cardiomyocytes undergoing proteotoxic stress

  7. Molecular cleft or tweezer compounds derived from trioxabicyclo[3.3.1]nonadiene diisocyanate and diacid dichloride

    Directory of Open Access Journals (Sweden)

    Gert Kollenz

    2015-01-01

    Full Text Available The structures of two derivatives of the bisdioxine diisocyanate 1, the bisurea 4 and the biscarbamate 5, are established by X-ray crystallography and DFT calculations. These compounds possess endo,endo structures, in the case of the bisurea 4 with two nearly parallel pendant chains. The X-ray structures are reproduced very well by DFT calculations. Similar endo,endo conformations are calculated for the bisamide crown ether derivatives 7, where two proximate and nearly parallel crown ether units endow the molecules with a claw-like molecular cleft or tweezer structure as evidenced by an enhanced ability to extract some alkali, alkaline earth and rare earth metal ions.

  8. Disrupting self-assembly and toxicity of amyloidogenic protein oligomers by "molecular tweezers" - from the test tube to animal models.

    Science.gov (United States)

    Attar, Aida; Bitan, Gal

    2014-01-01

    Despite decades of research, therapy for diseases caused by abnormal protein folding and aggregation (amyloidoses) is limited to treatment of symptoms and provides only temporary and moderate relief to sufferers. The failure in developing successful disease-modifying drugs for amyloidoses stems from the nature of the targets for such drugs - primarily oligomers of amyloidogenic proteins, which are distinct from traditional targets, such as enzymes or receptors. The oligomers are metastable, do not have well-defined structures, and exist in dynamically changing mixtures. Therefore, inhibiting the formation and toxicity of these oligomers likely will require out-of-the-box thinking and novel strategies. We review here the development of a strategy based on targeting the combination of hydrophobic and electrostatic interactions that are key to the assembly and toxicity of amyloidogenic proteins using lysine (K)-specific "molecular tweezers" (MTs). Our discussion includes a survey of the literature demonstrating the important role of K residues in the assembly and toxicity of amyloidogenic proteins and the development of a lead MT derivative called CLR01, from an inhibitor of protein aggregation in vitro to a drug candidate showing effective amelioration of disease symptoms in animal models of Alzheimer's and Parkinson's diseases.

  9. Optical tweezers: wideband microrheology

    International Nuclear Information System (INIS)

    Preece, Daryl; Gibson, Graham M; Padgett, Miles J; Warren, Rebecca; Cooper, Jonathan M; Tassieri, Manlio; Evans, R M L

    2011-01-01

    Microrheology is a branch of rheology having the same principles as conventional bulk rheology, but working on micron length scales and microlitre volumes. Optical tweezers have been successfully used with Newtonian fluids for rheological purposes such as determining fluid viscosity. Conversely, when optical tweezers are used to measure the viscoelastic properties of complex fluids the results are either limited to the material's high-frequency response, discarding important information related to the low-frequency behaviour, or they are supplemented by low-frequency measurements performed with different techniques, often without presenting an overlapping region of clear agreement between the sets of results. We present a simple experimental procedure to perform microrheological measurements over the widest frequency range possible with optical tweezers. A generalized Langevin equation is used to relate the frequency-dependent moduli of the complex fluid to the time-dependent trajectory of a probe particle as it flips between two optical traps that alternately switch on and off

  10. Physics of optical tweezers.

    Science.gov (United States)

    Nieminen, Timo A; Knöner, Gregor; Heckenberg, Norman R; Rubinsztein-Dunlop, Halina

    2007-01-01

    We outline the basic principles of optical tweezers as well as the fundamental theory underlying optical tweezers. The optical forces responsible for trapping result from the transfer of momentum from the trapping beam to the particle and are explained in terms of the momenta of incoming and reflected or refracted rays. We also consider the angular momentum flux of the beam in order to understand and explain optical torques. In order to provide a qualitative picture of the trapping, we treat the particle as a weak positive lens and the forces on the lens are shown. However, this representation does not provide quantitative results for the force. We, therefore, present results of applying exact electromagnetic theory to optical trapping. First, we consider a tightly focused laser beam. We give results for trapping of spherical particles and examine the limits of trappability in terms of type and size of the particles. We also study the effect of a particle on the beam. This exact solution reproduces the same qualitative effect as when treating the particle as a lens where changes in the convergence or divergence and in the direction of the trapping beam result in restoring forces acting on the particle. Finally, we review the fundamental theory of optical tweezers.

  11. Theory of optical-tweezers forces near a plane interface

    DEFF Research Database (Denmark)

    Dutra, Rafael de Sousa; Neto, P. A. Maia; Nussenzveig, H. M.

    2016-01-01

    Optical-tweezers experiments in molecular and cell biology often take place near the surface of the microscope slide that defines the bottom of the sample chamber. There, as elsewhere, force measurements require forcecalibrated tweezers. In bulk, one can calculate the tweezers force from first...... principles, as recently demonstrated. Near the surface of the microscope slide, this absolute calibration method fails because it does not account for reverberations from the slide of the laser beam scattered by the trapped microsphere. Nor does it account for evanescent waves arising from total internal...... that describes the reverberations, including also evanescent waves. Numerical simulations for typical setup parameters evaluate these effects on the optical force and trap stiffness, with emphasis on axial trapping. Results are in good agreement with available experimental data. Thus, absolute calibration now...

  12. Optical tweezers principles and applications

    CERN Document Server

    Jones, Philip; Volpe, Giovanni

    2015-01-01

    Combining state-of-the-art research with a strong pedagogic approach, this text provides a detailed and complete guide to the theory, practice and applications of optical tweezers. In-depth derivation of the theory of optical trapping and numerical modelling of optical forces are supported by a complete step-by-step design and construction guide for building optical tweezers, with detailed tutorials on collecting and analysing data. Also included are comprehensive reviews of optical tweezers research in fields ranging from cell biology to quantum physics. Featuring numerous exercises and problems throughout, this is an ideal self-contained learning package for advanced lecture and laboratory courses, and an invaluable guide to practitioners wanting to enter the field of optical manipulation. The text is supplemented by www.opticaltweezers.org, a forum for discussion and a source of additional material including free-to-download, customisable research-grade software (OTS) for calculation of optical forces, dig...

  13. an optical tweezer based study

    Indian Academy of Sciences (India)

    Shankar Ghosh

    2006-11-12

    Nov 12, 2006 ... Liquid-Solid interface. Liquid-liquid interface. Shankar Ghosh. Motion of a sphere in an .... Bare mass of a colloidal sphere ∼ 10^15Kg. Note : The effective mass scales with viscosity and not with the density. Shankar Ghosh. Motion of a sphere in an oscillatory boundary layer: an optical tweezer based study ...

  14. Optical tweezers stretching of chromatin

    NARCIS (Netherlands)

    Pope, L.H.; Bennink, Martin L.; Greve, Jan

    2003-01-01

    Recently significant success has emerged from exciting research involving chromatin stretching using optical tweezers. These experiments, in which a single chromatin fibre is attached by one end to a micron-sized bead held in an optical trap and to a solid surface or second bead via the other end,

  15. Optoelectronic tweezers for medical diagnostics

    Science.gov (United States)

    Kremer, Clemens; Neale, Steven; Menachery, Anoop; Barrett, Mike; Cooper, Jonathan M.

    2012-01-01

    Optoelectronic tweezers (OET) allows the spatial patterning of electric fields through selected illumination of a photoconductive surface. This enables the manipulation of micro particles and cells by creating non-uniform electrical fields that then produce dielectrophoretic (DEP) forces. The DEP responses of cells differ and can produce negative or positive (repelled or attracted to areas of high electric field) forces. Therefore OET can be used to manipulate individual cells and separate different cell types from each other. Thus OET has many applications for medical diagnostics, demonstrated here with work towards diagnosing Human African Trypanosomiasis, also known as sleeping sickness.

  16. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    Science.gov (United States)

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  17. Holographic Raman Tweezers Controlled by Hand Gestures and Voice Commands

    Czech Academy of Sciences Publication Activity Database

    Tomori, Z.; Antalík, M.; Kesa, P.; Kaňka, Jan; Jákl, Petr; Šerý, Mojmír; Bernatová, Silvie; Zemánek, Pavel

    2013-01-01

    Roč. 3, 2B (2013), s. 331-336 ISSN 2160-8881 Institutional support: RVO:68081731 Keywords : Holographic Optical Tweezers * Raman Tweezers * Natural User Interface * Leap Motion * Gesture Camera Subject RIV: BH - Optics, Masers, Lasers

  18. Biaxial crystal-based optical tweezers

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Maksimyak, Andrew P.; Maksimyak, Peter P.

    2010-01-01

    We suggest an optical tweezer setup based on an optically biaxial crystal. To control movements of opaque particles, we use shifts. The results of experimental studies are reported which are concerned with this laser tweezer setup. We demonstrate a movement of microparticles of toner using a sing...... a singular-optical trap, rotation of particles due to orbital angular momentum of the field, and converging or diverging of two different traps when changing transmission plane of polariser at the input of our polarisation interferometer....

  19. Characterization of the Stiffness of Multiple Particles Trapped by Dielectrophoretic Tweezers in a Microfluidic Device.

    Science.gov (United States)

    Son, Myeonggu; Choi, Seungyeop; Ko, Kwan Hwi; Kim, Min Hyung; Lee, Sei-Young; Key, Jaehong; Yoon, Young-Ro; Park, In Soo; Lee, Sang Woo

    2016-01-26

    Characterization of the stiffness of multiple particles trapped by tweezers-based force spectroscopy is a key step in building simple, high-throughput, and robust systems that can investigate the molecular interactions in a biological process, but the technology to characterize it in a given environment simultaneously is still lacking. We first characterized the stiffness of multiple particles trapped by dielectrophoretic (DEP) tweezers inside a microfluidic device. In this characterization, we developed a method to measure the thermal fluctuations of the trapped multiple particles with DEP tweezers by varying the heights of the particles in the given environment at the same time. Using the data measured in this controlled environment, we extracted the stiffness of the trapped particles and calculated their force. This study not only provides a simple and high-throughput method to measure the trap stiffness of multiple particles inside a microfluidic device using DEP tweezers but also inspires the application of the trapped multiple particles to investigate the dynamics in molecular interactions.

  20. Twisting biological objects by optical tweezers

    NARCIS (Netherlands)

    Ormos, P.; Amerongen, van H.; Bottka, S.; Galaja, P.; Garab, G.; Kirei, H.; Oroszi, L.

    2005-01-01

    We describe a novel method by which it is possible to apply and measure torque directly on particles grabbed in optical tweezers. It can be used to orient particles of micron size or even on single molecules, biopolymers by the use of test particles.The procedure is based on the observation that

  1. Quantum computation architecture using optical tweezers

    DEFF Research Database (Denmark)

    Weitenberg, Christof; Kuhr, Stefan; Mølmer, Klaus

    2011-01-01

    We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based on local collisional interactions. The gates between arbitrary qubits...... quantum computing....

  2. Single Chromatin Fibre Assembly Using Optical Tweezers

    NARCIS (Netherlands)

    Bennink, Martin L.; Pope, L.H.; Leuba, S.H.; de Grooth, B.G.; Greve, Jan

    2001-01-01

    Here we observe the formation of a single chromatin fibre using optical tweezers. A single -DNA molecule was suspended between two micron-sized beads, one held by a micropipette and the other in an optical trap. The constrained DNA molecule was incubated with Xenopus laevis egg extract in order to

  3. Independent trapping and manipulation of microparticles using dexterous acoustic tweezers

    International Nuclear Information System (INIS)

    Courtney, Charles R. P.; Demore, Christine E. M.; Wu, Hongxiao; Cochran, Sandy; Grinenko, Alon; Wilcox, Paul D.; Drinkwater, Bruce W.

    2014-01-01

    An electronically controlled acoustic tweezer was used to demonstrate two acoustic manipulation phenomena: superposition of Bessel functions to allow independent manipulation of multiple particles and the use of higher-order Bessel functions to trap particles in larger regions than is possible with first-order traps. The acoustic tweezers consist of a circular 64-element ultrasonic array operating at 2.35 MHz which generates ultrasonic pressure fields in a millimeter-scale fluid-filled chamber. The manipulation capabilities were demonstrated experimentally with 45 and 90-μm-diameter polystyrene spheres. These capabilities bring the dexterity of acoustic tweezers substantially closer to that of optical tweezers

  4. 21 CFR 878.5360 - Tweezer-type epilator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tweezer-type epilator. 878.5360 Section 878.5360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED.... (a) Identification. The tweezer-type epilator is an electrical device intended to remove hair. The...

  5. Optical tweezers for the micromanipulation of plant cytoplasm and organelles

    NARCIS (Netherlands)

    Hawes, C.; Osterrieder, A.; Sparkes, I.A.; Ketelaar, T.

    2010-01-01

    Laser tweezers, often known as optical tweezers or optical traps, permit the capturing and micromanipulation of microscopic particles along X, Y and Z axes using the radiation pressure generated by a focused laser beam, normally in the infrared region of the spectrum. For trapping to be successful,

  6. Raman Tweezers as a Diagnostic Tool of Hemoglobin-Related Blood Disorders

    Directory of Open Access Journals (Sweden)

    Giulia Rusciano

    2008-12-01

    Full Text Available This review presents the development of a Raman Tweezers system for detecting hemoglobin-related blood disorders at a single cell level. The study demonstrates that the molecular fingerprint insight provided by Raman analysis holds great promise for distinguishing between healthy and diseased cells in the field of biomedicine. Herein a Raman Tweezers system has been applied to investigate the effects of thalassemia, a blood disease quite diffuse in the Mediterranean Sea region. By resonant excitation of hemoglobin Raman bands, we examined the oxygenation capability of normal, alpha- and beta-thalassemic erythrocytes. A reduction of this fundamental red blood cell function, particularly severe for beta-thalassemia, has been found. Raman spectroscopy was also used to draw hemoglobin distribution inside single erythrocytes; the results confirmed the characteristic anomaly (target shape, occurring in thalassemia and some other blood disorders. The success of resonance Raman spectroscopy for thalassemia detection reported in this review provide an interesting starting point to explore the application of a Raman Tweezers system in the analysis of several blood disorders.

  7. LMM Holographic Optical Tweezers (HOT) Module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to expand the capabilities of the LMM for colloidal and other research by developing a holographic optical tweezers (HOT) module, allowing solid-state...

  8. Optical tweezers for studying taxis in parasites

    International Nuclear Information System (INIS)

    De Thomaz, A A; Pozzo, L Y; Almeida, D B; Cesar, C L; Fontes, A; Farias, P M A; Stahl, C V; Santos-Mallet, J; Gomes, S A O; Ayres, D C; Giorgio, S; Santos, B S; Feder, D

    2011-01-01

    In this work we present a methodology to measure force strengths and directions of living parasites with an optical tweezers setup. These measurements were used to study the parasites chemotaxis in real time. We observed behavior and measured the force of: (i) Leishmania amazonensis in the presence of two glucose gradients; (ii) Trypanosoma cruzi in the vicinity of the digestive system walls, and (iii) Trypanosoma rangeli in the vicinity of salivary glands as a function of distance. Our results clearly show a chemotactic behavior in every case. This methodology can be used to study any type of taxis, such as chemotaxis, osmotaxis, thermotaxis, phototaxis, of any kind of living microorganisms. These studies can help us to understand the microorganism sensory systems and their response function to these gradients

  9. Power spectrum analysis for optical tweezers

    DEFF Research Database (Denmark)

    Berg-Sørensen, K.; Flyvbjerg, H.

    2004-01-01

    The force exerted by an optical trap on a dielectric bead in a fluid is often found by fitting a Lorentzian to the power spectrum of Brownian motion of the bead in the trap. We present explicit functions of the experimental power spectrum that give the values of the parameters fitted, including...... error bars and correlations, for the best such chi(2) fit in a given frequency range. We use these functions to determine the information content of various parts of the power spectrum, and find, at odds with lore, much information at relatively high frequencies. Applying the method to real data, we...... obtain perfect fits and calibrate tweezers with less than 1% error when the trapping force is not too strong. Relatively strong traps have power spectra that cannot be fitted properly with any Lorentzian, we find. This underscores the need for better understanding of the power spectrum than...

  10. Miniaturized Optical Tweezers Through Fiber-End Microfabrication

    KAUST Repository

    Liberale, Carlo

    2014-07-30

    Optical tweezers represent a powerful tool for a variety of applications both in biology and in physics, and their miniaturization and full integration is of great interest so as to reduce size (towards portable systems), and to minimize the required intervention from the operator. Optical fibers represent a natural solution to achieve this goal, and here we review the realization of single-fiber optical tweezers able to create a purely optical three-dimensional trap. © Springer International Publishing Switzerland 2015.

  11. Counter-propagating dual-trap optical tweezers based on linear momentum conservation

    International Nuclear Information System (INIS)

    Ribezzi-Crivellari, M.; Huguet, J. M.; Ritort, F.

    2013-01-01

    We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.

  12. Counter-propagating dual-trap optical tweezers based on linear momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Ribezzi-Crivellari, M.; Huguet, J. M. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ritort, F. [Small Biosystems Lab, Dept. de Fisica Fonamental, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN de Bioingenieria, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid (Spain)

    2013-04-15

    We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.

  13. How safe is gamete micromanipulation by laser tweezers?

    Science.gov (United States)

    Koenig, Karsten; Tromberg, Bruce J.; Tadir, Yona; Berns, Michael W.

    1998-04-01

    Laser tweezers, used as novel sterile micromanipulation tools of living cells, are employed in laser-assisted in vitro fertilization (IVF). For example, controlled spermatozoa transport with 1064 nm tweezers to human egg cells has been performed in European clinics in cases of male infertility. The interaction of approximately 100 mW near infrared (NIR) trapping beams at MW/cm2 intensity with human gametes results in low mean less than 2 K temperature increases and less than 100 pN trapping forces. Therefore, photothermal or photomechanical induced destructive effects appear unlikely. However, the high photon flux densities may induce simultaneous absorption of two NIR photons resulting in nonlinear interactions. These nonlinear interactions imply non-resonant two-photon excitation of endogenous cellular chromophores. In the case of less than 800 nm tweezers, UV- like damage effects may occur. The destructive effect is amplified when multimode cw lasers are used as tweezer sources due to longitudinal mode-beating effects and partial mode- locking. Spermatozoa damage within seconds using 760 nm traps due to formation of unstable ps pulses in a cw Ti:Sa ring laser is demonstrated. We recommend the use of greater than or equal to 800 nm traps for optical gamete micromanipulation. To our opinion, further basic studies on the influence of nonlinear effects of laser tweezers on human gamete are necessary.

  14. A Plasma Tweezer Concept to De-spin an Asteroid

    Science.gov (United States)

    Vereen, Keon; Datta, Iman; You, Setthivoine

    2014-10-01

    The Plasma Tweezer is a new concept for controlled de-spinning and deflection of space bodies without mechanical contact. The method shoots plasma jets or beams at the target from a pair of plasma thrusters located at the end of each lever arm of a ``tweezer'' structure. The main spacecraft body is at the fulcrum point of the tweezer and the target is located between the thrusters. This arrangement cancels out the impulse of two plasma jets on the spacecraft and applies forces on opposite sides of the target. Careful timing and orientation of the jets can then provide the necessary forces to despin and redirect the target. This concept is more efficient than the Ion Beam Shepherd method [C. Bombardelli and J. Pelaez, J. Guid. Control Dyn. (2011)] because it does not require a secondary thruster to cancel momentum and can benefit from angular momentum stored in the spacecraft's initial spin stabilization.

  15. Optical tweezers force measurements to study parasites chemotaxis

    Science.gov (United States)

    de Thomaz, A. A.; Pozzo, L. Y.; Fontes, A.; Almeida, D. B.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.; Ayres, D. C.; Giorgio, S.; Cesar, C. L.

    2009-07-01

    In this work, we propose a methodology to study microorganisms chemotaxis in real time using an Optical Tweezers system. Optical Tweezers allowed real time measurements of the force vectors, strength and direction, of living parasites under chemical or other kinds of gradients. This seems to be the ideal tool to perform observations of taxis response of cells and microorganisms with high sensitivity to capture instantaneous responses to a given stimulus. Forces involved in the movement of unicellular parasites are very small, in the femto-pico-Newton range, about the same order of magnitude of the forces generated in an Optical Tweezers. We applied this methodology to investigate the Leishmania amazonensis (L. amazonensis) and Trypanossoma cruzi (T. cruzi) under distinct situations.

  16. Optical tweezers reveal how proteins alter replication

    Science.gov (United States)

    Chaurasiya, Kathy

    Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic

  17. Magnetic tweezers for manipulation of magnetic particles in single cells

    Science.gov (United States)

    Ebrahimian, H.; Giesguth, M.; Dietz, K.-J.; Reiss, G.; Herth, S.

    2014-02-01

    Magnetic tweezers gain increasing interest for applications in biology. Here, a setup of magnetic tweezers is introduced using micropatterned conducting lines on transparent glass slides. Magnetic particles of 1 μm diameter were injected in barley cell vacuoles using a microinject system under microscopic control. Time dependent tracking of the particles after application of a magnetic field was used to determine the viscosity of vacuolar sap in vivo relative to water and isolated vacuolar fluid. The viscosity of vacuolar sap in cells was about 2-fold higher than that of extracted vacuolar fluid and 5 times higher than that of water.

  18. Magneto-optical tweezers built around an inverted microscope

    International Nuclear Information System (INIS)

    Claudet, Cyril; Bednar, Jan

    2005-01-01

    We present a simple experimental setup of magneto-optical tweezers built around an inverted microscope. Two pairs of coils placed around the focal point of the objective generate a planar-rotating magnetic field that is perpendicular to the stretching direction. This configuration allows us to control the rotary movement of a paramagnetic bead trapped in the optical tweezers. The mechanical design is universal and can be simply adapted to any inverted microscope and objective. The mechanical configuration permits the use of a rather large experimental cell and the simple assembly and disassembly of the magnetic attachment

  19. Control and manipulation of cold atoms in optical tweezers

    International Nuclear Information System (INIS)

    Muldoon, Cecilia; Brandt, Lukas; Dong Jian; Stuart, Dustin; Brainis, Edouard; Himsworth, Matthew; Kuhn, Axel

    2012-01-01

    Neutral atoms trapped by laser light are among the most promising candidates for storing and processing information in a quantum computer or simulator. The application certainly calls for a scalable and flexible scheme for addressing and manipulating the atoms. We have now made this a reality by implementing a fast and versatile method to dynamically control the position of neutral atoms trapped in optical tweezers. The tweezers result from a spatial light modulator (SLM) controlling and shaping a large number of optical dipole-force traps. Trapped atoms adapt to any change in the potential landscape, such that one can rearrange and randomly access individual sites within atom-trap arrays. (paper)

  20. Active-passive calibration of optical tweezers in viscoelastic media

    DEFF Research Database (Denmark)

    Fischer, Mario; Richardson, Andrew C; S Reihani, S Nader

    2010-01-01

    In order to use optical tweezers as a force measuring tool inside a viscoelastic medium such as the cytoplasm of a living cell, it is crucial to perform an exact force calibration within the complex medium. This is a nontrivial task, as many of the physical characteristics of the medium and probe......, e.g., viscosity, elasticity, shape, and density, are often unknown. Here, we suggest how to calibrate single beam optical tweezers in a complex viscoelastic environment. At the same time, we determine viscoelastic characteristics such as friction retardation spectrum and elastic moduli of the medium...

  1. Accurate measurement of microscopic forces and torques using optical tweezers

    CSIR Research Space (South Africa)

    McLaren, M

    2011-09-01

    Full Text Available It is now well known that matter may be trapped by optical fields with high intensity gradients. Once trapped, it is then possible to manipulate microscopic particles using such optical fields, in so-called optical tweezers. Such optical trapping...

  2. Construction of an optical tweezer for nanometer scale rheology

    Indian Academy of Sciences (India)

    Abstract. The optical tweezer is a versatile set-up that can be employed in a wide variety of studies investigating the microscopic properties of materials. In particular, this set-up has in recent times been gainfully employed in probing rheological properties of materials that exhibit viscoelasticity. These measurements can ...

  3. Calixarene-based metalloporphyrins: molecular tweezers for complexation of DABCO

    Czech Academy of Sciences Publication Activity Database

    Dudič, M.; Lhoták, P.; Petříčková, H.; Stibor, I.; Lang, Kamil; Sýkora, Jan

    2003-01-01

    Roč. 59, č. 14 (2003), s. 2409-2415 ISSN 0040-4020 R&D Projects: GA ČR GA203/03/0926; GA ČR GA203/01/0634 Institutional research plan: CEZ:AV0Z4072921; CEZ:AV0Z4032918 Keywords : porphyrins * calixarenes * DABCO Subject RIV: CA - Inorganic Chemistry Impact factor: 2.641, year: 2003

  4. Probing DNA with micro- and nanocapillaries and optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Steinbock, L J; Otto, O; Skarstam, D R; Jahn, S; Chimerel, C; Gornall, J L; Keyser, U F, E-mail: ufk20@cam.ac.u [Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2010-11-17

    We combine for the first time optical tweezer experiments with the resistive pulse technique based on capillaries. Quartz glass capillaries are pulled into a conical shape with tip diameters as small as 27 nm. Here, we discuss the translocation of {lambda}-phage DNA which is driven by an electrophoretic force through the nanocapillary. The resulting change in ionic current indicates the folding state of single {lambda}-phage DNA molecules. Our flow cell design allows for the straightforward incorporation of optical tweezers. We show that a DNA molecule attached to an optically trapped colloid is pulled into a capillary by electrophoretic forces. The detected electrophoretic force is in good agreement with measurements in solid-state nanopores.

  5. Dynamic array generation and pattern formation for optical tweezers

    DEFF Research Database (Denmark)

    Mogensen, P.C.; Glückstad, J.

    2000-01-01

    The generalised phase contrast approach is used for the generation of optical arrays of arbitrary beam shape, suitable for applications in optical tweezers for the manipulation of biological specimens. This approach offers numerous advantages over current techniques involving the use of computer-......-generated holograms or diffractive optical elements. We demonstrate a low-loss system for generating intensity patterns suitable for the trapping and manipulation of small particles or specimens....

  6. Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate

    Directory of Open Access Journals (Sweden)

    Angel García-Cabañes

    2018-01-01

    Full Text Available This review presents an up-dated summary of the fundamentals and applications of optoelectronic photovoltaic tweezers for trapping and manipulation of nano-objects on the surface of lithium niobate crystals. It extends the contents of previous reviews to cover new topics and developments which have emerged in recent years and are marking the trends for future research. Regarding the theoretical description of photovoltaic tweezers, detailed simulations of the electrophoretic and dielectrophoretic forces acting on different crystal configurations are discussed in relation to the structure of the obtained trapping patterns. As for the experimental work, we will pay attention to the manipulation and patterning of micro-and nanoparticles that has experimented an outstanding progress and relevant applications have been reported. An additional focus is now laid on recent work about micro-droplets, which is a central topic in microfluidics and optofluidics. New developments in biology and biomedicine also constitute a relevant part of the review. Finally, some topics partially related with photovoltaic tweezers and a discussion on future prospects and challenges are included.

  7. Optically-driven red blood cell rotor in linearly polarized laser tweezers

    Indian Academy of Sciences (India)

    produces less torque under the radiation pressure resulting in slower rotation at the same laser power. Keywords. Rotation of red blood cell; optical tweezers, dual optical trap. PACS Nos 87.80.Cc; 87.83.+a; 87.80.Fe; 89.20.-a. 1. Introduction. The application of optical tweezers in trapping and manipulating single cells [1].

  8. Exact theory of optical tweezers and its application to absolute calibration

    DEFF Research Database (Denmark)

    Dutra, Rafael de Sousa; Viana, Nathan B.; Maia Neto, Paulo A.

    2017-01-01

    Optical tweezers have become a powerful tool for basic and applied research in cell biology. Here, we describe an experimentally verified theory for the trapping forces generated by optical tweezers based on first principles that allows absolute calibration. For pedagogical reasons, the steps tha...

  9. Synthesis and photoisomerization study of new aza-crown macrocyclic tweezer tethered through an azobenzene linker: The first report on supramolecular interaction of azobenzene moiety with C60

    Science.gov (United States)

    Ghanbari, Bahram; Mahdavian, Mahsa; García-Deibe, A. M.

    2017-09-01

    In the present communication, three bimacrocyclic tweezers linked through azobenzene moiety, Ln (n = 1-3) were synthesized in a multistep route and characterized by x-ray crystallography, IR, 1H and 13C NMR, UV-vis spectroscopy as well as CHN microanalysis. UV-visible spectroscopy established that the irradiation of L1 and L3 with UV light promoted the trans to cis isomerization. Irradiating the reaction mixtures with Hg lamp, significant supramolecular interactions between L1 and L3 with C60 were also found in terms of the association constants calculated by UV-visible spectroscopy, denoting on more pronounced interaction with C60 that in the absence of UV light. The molecular structures of L1-L3 calculated by using DFT method suggested a novel unprecedented interaction between the HOMO's of azobenzene moiety on the tweezer instead of the aromatic groups with C60.

  10. Optical Fiber Tweezers Fabricated by Guided Wave Photo-Polymerization

    Directory of Open Access Journals (Sweden)

    Rita S. Rodrigues Ribeiro

    2015-06-01

    Full Text Available In this work the use of guided wave photo-polymerization for the fabrication of novel polymeric micro tips for optical trapping is demonstrated. It is shown that the selective excitation of linear polarized modes, during the fabrication process, has a direct impact on the shape of the resulting micro structures. Tips are fabricated with modes LP02 and LP21 and their shapes and output intensity distribution are compared. The application of the micro structures as optical tweezers is demonstrated with the manipulation of yeast cells.

  11. Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers.

    Science.gov (United States)

    Kriegel, Franziska; Ermann, Niklas; Lipfert, Jan

    2017-01-01

    Nucleic acids are central to the storage and transmission of genetic information. Mechanical properties, along with their sequence, both enable and fundamentally constrain the biological functions of DNA and RNA. For small deformations from the equilibrium conformations, nucleic acids are well described by an isotropic elastic rod model. However, external forces and torsional strains can induce conformational changes, giving rise to a complex force-torque phase diagram. This review focuses on magnetic tweezers as a powerful tool to precisely determine both the elastic parameters and conformational transitions of nucleic acids under external forces and torques at the single-molecule level. We review several variations of magnetic tweezers, in particular conventional magnetic tweezers, freely orbiting magnetic tweezers and magnetic torque tweezers, and discuss their characteristic capabilities. We then describe the elastic rod model for DNA and RNA and discuss conformational changes induced by mechanical stress. The focus lies on the responses to torque and twist, which are crucial in the mechanics and interactions of nucleic acids and can directly be measured using magnetic tweezers. We conclude by highlighting several recent studies of nucleic acid-protein and nucleic acid-small-molecule interactions as further applications of magnetic tweezers and give an outlook of some exciting developments to come. Copyright © 2016. Published by Elsevier Inc.

  12. Invited Article: A review of haptic optical tweezers for an interactive microworld exploration

    Science.gov (United States)

    Pacoret, Cécile; Régnier, Stéphane

    2013-08-01

    This paper is the first review of haptic optical tweezers, a new technique which associates force feedback teleoperation with optical tweezers. This technique allows users to explore the microworld by sensing and exerting picoNewton-scale forces with trapped microspheres. Haptic optical tweezers also allow improved dexterity of micromanipulation and micro-assembly. One of the challenges of this technique is to sense and magnify picoNewton-scale forces by a factor of 1012 to enable human operators to perceive interactions that they have never experienced before, such as adhesion phenomena, extremely low inertia, and high frequency dynamics of extremely small objects. The design of optical tweezers for high quality haptic feedback is challenging, given the requirements for very high sensitivity and dynamic stability. The concept, design process, and specification of optical tweezers reviewed here are focused on those intended for haptic teleoperation. In this paper, two new specific designs as well as the current state-of-the-art are presented. Moreover, the remaining important issues are identified for further developments. The initial results obtained are promising and demonstrate that optical tweezers have a significant potential for haptic exploration of the microworld. Haptic optical tweezers will become an invaluable tool for force feedback micromanipulation of biological samples and nano- and micro-assembly parts.

  13. Single molecule measurements of DNA helicase activity with magnetic tweezers and t-test based step-finding analysis

    Science.gov (United States)

    Seol, Yeonee; Strub, Marie-Paule; Neuman, Keir C.

    2016-01-01

    Magnetic tweezers is a versatile and easy to implement single-molecule technique that has become increasingly prevalent in the study of nucleic acid based molecular motors. Here, we provide a description of the magnetic tweezers instrument and guidelines for measuring and analyzing DNA helicase activity. Along with experimental methods, we describe a robust method of single-molecule trajectory analysis based on the Student’s t-test that accommodates continuous transitions in addition to the discrete transitions assumed in most widely employed analysis routines. To illustrate the single-molecule unwinding assay and the analysis routine, we provide DNA unwinding measurements of Escherichia coli RecQ helicase under a variety of conditions (Na+, ATP, temperature, and DNA substrate geometry). These examples reveal that DNA unwinding measurements under various conditions can aid in elucidating the unwinding mechanism of DNA helicase but also emphasize that environmental effects on DNA helicase activity must be considered in relation to in vivo activity and mechanism. PMID:27131595

  14. Inducing trauma into neuroblastoma cells and synthetic neural networks using optical tweezers

    Science.gov (United States)

    Schneider, Patrick William

    The laser tweezers have become a very useful tool in the fields of physics, chemistry, and biology. My intent is to use the laser tweezers to induce trauma into neuroblastoma cells, cells that resemble neural cells when treated with retinoic acid, to try to surmise what happens when neural cells and networks are disrupted or destroyed. The issues presented will deal with the obtaining, maintenance, and differentiation of the cells, as well as the inner operations of the laser tweezers themselves, and what kind of applications it has been applied to, as well as to my work in this project.

  15. Investigation of shape memory of red blood cells using optical tweezers and quantitative phase microscopy

    Science.gov (United States)

    Cardenas, Nelson; Mohanty, Samarendra K.

    2012-03-01

    RBC has been shown to possess shape memory subsequent to shear-induced shape transformation. However, this property of RBC may not be generalized to all kinds of stresses. Here, we report our observation on the action of radiation pressure forces on RBC's shape memory using optical manipulation and quantitative phase microscopy (OMQPM). QPM, based on Mach-Zehnder interferrometry, allowed measurement of dynamic changes of shape of RBC in optical tweezers at different trapping laser powers. In high power near-infrared optical tweezers (>200mW), the RBC was found to deform significantly due to optical forces. Upon removal of the tweezers, hysteresis in recovering its original resting shape was observed. In very high power tweezers or long-term stretching events, shape memory was almost erased. This irreversibility of the deformation may be due to temperature rise or stress-induced phase transformation of lipids in RBC membrane.

  16. An optical tweezer-based study of antimicrobial activity of silver ...

    Indian Academy of Sciences (India)

    traditional cell counting methods. Keywords. Antimicrobial activity; optical tweezer; bacterial suspensions; silver nanoparticles. 1. Introduction. The toxicity of silver ions and silver containing compounds on microbes is well known. Nanoparticles of silver are expected to exhibit enhanced antimicrobial properties when.

  17. Flocking multiple microparticles with automatically controlled optical tweezers: solutions and experiments.

    Science.gov (United States)

    Chen, Haoyao; Wang, Can; Lou, Yunjiang

    2013-06-01

    This paper presents an efficient approach to achieve microparticles flocking with robotics and optical tweezers technologies. All particles trapped by optical tweezers can be automatically moved toward a predefined region without collision. The main contribution of this paper lies in the proposal of several solutions to the flocking manipulation of microparticles in microenvironments. First, a simple flocking controller is proposed to generate the desired positions and velocities for particles' movement. Second, a velocity saturation method is implemented to prevent the desired velocities from exceeding a safe limit. Third, a two-layer control architecture is proposed for the motion control of optical tweezers. This architecture can help make many robotic manipulations achievable under microenvironments. The proposed approach with these solutions can be applied to many bioapplications especially in cell engineering and biomedicine. Experiments on yeast cells with a robot-tweezers system are finally performed to verify the effectiveness of the proposed approach.

  18. Laser Tweezer Controlled Solid Immersion Lens for High Resolution Imaging in Microfluidic and Biological Samples

    National Research Council Canada - National Science Library

    Birkbeck, Aaron L; Zlatanovic, Sanja; Ozkan, Mihrimah; Esener, Sadik C

    2005-01-01

    A novel technique is presented which integrates the capacity of a laser tweezer to optically trap and manipulate objects in three-dimensions with the resolution-enhanced imaging capabilities of a solid immersion lens (SIL...

  19. Combined holographic-mechanical optical tweezers: Construction, optimization, and calibration

    Science.gov (United States)

    Hanes, Richard D. L.; Jenkins, Matthew C.; Egelhaaf, Stefan U.

    2009-08-01

    A spatial light modulator (SLM) and a pair of galvanometer-mounted mirrors (GMM) were combined into an optical tweezers setup. This provides great flexibility as the SLM creates an array of traps, which can be moved smoothly and quickly with the GMM. To optimize performance, the effect of the incidence angle on the SLM with respect to phase and intensity response was investigated. Although it is common to use the SLM at an incidence angle of 45°, smaller angles give a full 2π phase shift and an output intensity which is less dependent on the magnitude of the phase shift. The traps were calibrated using an active oscillatory technique and a passive probability distribution method.

  20. Combined holographic-mechanical optical tweezers: Construction, optimization, and calibration

    International Nuclear Information System (INIS)

    Hanes, Richard D. L.; Jenkins, Matthew C.; Egelhaaf, Stefan U.

    2009-01-01

    A spatial light modulator (SLM) and a pair of galvanometer-mounted mirrors (GMM) were combined into an optical tweezers setup. This provides great flexibility as the SLM creates an array of traps, which can be moved smoothly and quickly with the GMM. To optimize performance, the effect of the incidence angle on the SLM with respect to phase and intensity response was investigated. Although it is common to use the SLM at an incidence angle of 45 deg., smaller angles give a full 2π phase shift and an output intensity which is less dependent on the magnitude of the phase shift. The traps were calibrated using an active oscillatory technique and a passive probability distribution method.

  1. Mechanical properties of a giant liposome studied using optical tweezers

    Science.gov (United States)

    Shitamichi, Yoko; Ichikawa, Masatoshi; Kimura, Yasuyuki

    2009-09-01

    The mechanical properties of a micrometer-sized giant liposome are studied by deforming it from the inside using dual-beam optical tweezers. As the liposome is extended, its shape changes from a sphere to a lemon shape, and finally, a tubular part is generated. The surface tension σ and the bending rigidity κ of the lipid membrane are obtained from the measured force-extension curve. In a one-phase liposome, it was found that σ increases as the charged component increases but κ remains approximately constant. In a two-phase liposome, the characteristic deformation and the force-extension curve differ from those observed for the one-phase liposome.

  2. Novedosa pinza lumínica New light tweezer

    Directory of Open Access Journals (Sweden)

    M. Bernstein

    2007-03-01

    Full Text Available Se presenta la primera pinza adaptada a la novedosa tecnología lumínica, mediante diodo ultrabrillante, sin cables ni fibra óptica, a fin de lograr la adecuada iluminación de cavidades oscuras de difícil acceso, y que gracias a su cobertura aislante y su punta libre, permite la cauterización bajo buena iluminación de vasos sangrantes distales, sin lesionar sitios de apoyo accidental de sus ramas.Introducing the first tweezer adjusted to the newest lighting technology though ultra-bright diode, without cables nor optical fiber to obtain the proper illumination of dark and hard acces caves, and thanks to its insulating cover, and its free point allows the cauterization under good illumination of bloody vasels without injurying sites of accidental supports of its branches.

  3. iTweezers: optical micromanipulation controlled by an Apple iPad

    International Nuclear Information System (INIS)

    Bowman, R W; Gibson, G; Padgett, M J; Carberry, D; Picco, L; Miles, M

    2011-01-01

    The 3D interactive manipulation of multiple particles with holographic optical tweezers is often hampered by the control system. We use a multi-touch interface implemented on an Apple iPad to overcome many of the limitations of mouse-based control, and demonstrate an elegant and intuitive interface to multi-particle manipulation. This interface connects to the tweezers system hardware over a wireless network, allowing it to function as a remote monitor and control device. (technical note)

  4. Development and Demonstration of a Multiplexed Magnetic Tweezers Assay

    Science.gov (United States)

    Johnson, Keith Charles

    This dissertation is concerned with the methods and applications of single molecule force spectroscopy. In the introduction, the traditional single molecule force spectroscopy instruments are introduced and the advantages and drawbacks of each are discussed. The first chapter is a review of methods to ensure that biomolecular bond lifetime parameter estimations are not contaminated by multiple bond data. This review culminates in an examination of the literature on the strength of the bond between biotin and streptavidin and finds that by filtering the numerous publications for those that clearly demonstrate specific single bond behavior, there is a consensus of the bond strength and kinetic parameters. The second chapter of the dissertation discusses the capabilities of a magnetic tweezer assay, which combines massive multiplexing, precision bead tracking, and bi-directional force control into a flexible and stabile platform for examining single molecule behavior. Using a novel method for increasing the precision of force estimations on heterogeneous paramagnetic beads, I demonstrate the instrument by examining the force dependence of uncoiling and recoiling velocity of type 1 fimbriae from Eschericia coli (E. coli) bacteria, and see similar results to previous studies. Chapter 3 is a study of the lifetime of the activated FimH-mannose bond under various force conditions using the previously described magnetic tweezer. The bond is found to be extremely long-lived at forces less than 30 pN, with an average lifetime > 1000 times longer than the biotin-streptavidin bond, making it one of the strongest non-covalent interactions known in nature. Furthermore, the average lifetime of the bond is similar between 9 and 30 pN of force, suggesting a force range at which the lifetime is force-independent, demonstrating ideal bond behavior for the first time in a natural system. It is hypothesized that the long lifetime and ideal behavior is due to a gateway that locks mannose

  5. Improved antireflection coated microspheres for biological applications of optical tweezers

    Science.gov (United States)

    Ferro, Valentina; Sonnberger, Aaron; Abdosamadi, Mohammad K.; McDonald, Craig; Schäffer, Erik; McGloin, David

    2016-09-01

    The success of optical tweezers in cellular biology1 is in part due to the wide range of forces that can be applied, from femto- to hundreds of pico-Newtons; nevertheless extending the range of applicable forces to the nanoNewton regime opens access to a new set of phenomena that currently lie beyond optical manipulation. A successful approach to overcome the conventional limits on trapping forces involves the optimization of the trapped probes. Jannasch et al.2 demonstrated that an anti-reflective shell of nanoporous titanium dioxide (aTiO2, nshell = 1.75) on a core particle made out of titanium dioxide in the anatase phase (cTiO2, ncore = 2.3) results in trappable microspheres capable to reach forces above 1 nN. Here we present how the technique can be further improved by coating the high refractive index microspheres with an additional anti-reflective shell made out of silica (SiO2). This external shell not only improves the trap stability for microspheres of different sizes, but also enables the use of functionalization techniques already established for commercial silica beads in biological experiments. We are also investigating the use of these new microspheres as probes to measure adhesion forces between intercellular adhesion molecule 1 (ICAM-1) and lymphocyte function-associated antigen 1 (LFA-1) in effector T-Cells and will present preliminary results comparing standard and high-index beads.

  6. Toward automated formation of microsphere arrangements using multiplexed optical tweezers

    Science.gov (United States)

    Rajasekaran, Keshav; Bollavaram, Manasa; Banerjee, Ashis G.

    2016-09-01

    Optical tweezers offer certain advantages such as multiplexing using a programmable spatial light modulator, flexibility in the choice of the manipulated object and the manipulation medium, precise control, easy object release, and minimal object damage. However, automated manipulation of multiple objects in parallel, which is essential for efficient and reliable formation of micro-scale assembly structures, poses a difficult challenge. There are two primary research issues in addressing this challenge. First, the presence of stochastic Langevin force giving rise to Brownian motion requires motion control for all the manipulated objects at fast rates of several Hz. Second, the object dynamics is non-linear and even difficult to represent analytically due to the interaction of multiple optical traps that are manipulating neighboring objects. As a result, automated controllers have not been realized for tens of objects, particularly with three dimensional motions with guaranteed collision avoidances. In this paper, we model the effect of interacting optical traps on microspheres with significant Brownian motions in stationary fluid media, and develop simplified state-space representations. These representations are used to design a model predictive controller to coordinate the motions of several spheres in real time. Preliminary experiments demonstrate the utility of the controller in automatically forming desired arrangements of varying configurations starting with randomly dispersed microspheres.

  7. Dispersive light-matter interaction in programmable optical tweezers

    Science.gov (United States)

    Sawyer, Bianca J.; Horvath, Milena S. J.; Deb, Amita B.; Kjørgaard, Niels

    2015-08-01

    We have developed a robust interrogation system using frequency modulation spectroscopy to measure the quantum state-dependent phase shift incurred on an off-resonant optical probe when transmitted by an atomic medium. Recently, our focus has been on extending this technique for the detection of Feshbach resonances in 87Rb atoms. Feshbach resonance is a mechanism which allows the atomic interaction strength to be precisely tuned via an external magnetic field. To access a Feshbach resonance atoms must be independently prepared in certain internal states, during which we utilize programmable optical tweezers to perform precise spatial micro-manipulation of the ensemble in laser "test-tubes." We use our dispersive probing system to identify the resonant magnetic field value in a sample with a dense "ball" geometry. An important design consideration for such a probing scheme is the three-dimensional mode-matching at the interface between light and the atomic sample when coupled by the dispersive interaction. We discuss challenges which dealing with this new geometry compared to the previously used prolate geometry, and consider the possibility of dipole-dipole interactions in our sample leading to cooperative light scattering processes.

  8. Slowing down DNA translocation using magnetic and optical tweezers

    Science.gov (United States)

    Peng, Hongbo; Wu, Shanshan; Ryul Park, Sang; Potter, Andrew; Ling, X. S.

    2006-03-01

    Electric-field driven DNA translocation through nanopores can be exploited for DNA sequencing and other applications. However, the DNA translocation under normal patch-clamp-type measurement is too fast to allow detailed measurements of individual or few nucleotides. We propose a concept to slow down the DNA translocation through the nanopore by using magnetic (or optical) tweezers. The 3' end of a single-strand DNA can be attached to a streptavidin-coated magnetic bead through a single biotin molecule. During DNA translocation, the 5' end of DNA will be electrophoretically drawn through the nanopore to the trans side while the 3' end of DNA stays in the cis side with the magnetic bead. A set of permanent magnets or electric coils can be used to generate a magnetic field gradient large enough to pull the bead, hence the DNA out of the nanopore. The net force on the magnetic bead will determine this back-translocation speed. By carefully tuning the magnetic field gradient and the voltage bias on the nanopore, one can make the back-translocation much slower than the conventional forward-translocation in which case the DNA is driven only by the electric force. We will report our experimental design as well as the preliminary results.

  9. Accurate measurement of microscopic forces and torques using optical tweezers

    Directory of Open Access Journals (Sweden)

    Andrew Forbes

    2011-09-01

    Full Text Available It is now well known that matter may be trapped by optical fields with high intensity gradients. Once trapped, it is then possible to manipulate microscopic particles using such optical fields, in so-called optical tweezers. Such optical trapping and tweezing systems have found widespread application across diverse fields in science, from applied biology to fundamental physics. In this article we outline the design and construction of an optical trapping and tweezing system, and show how the resulting interaction of the laser light with microscopic particles may be understood in terms of the transfer of linear and angular momentum of light. We demonstrate experimentally the use of our optical tweezing configuration for the measurement of microscopic forces and torques. In particular, we make use of digital holography to create so-called vortex laser beams, capable of transferring orbital angular momentum to particles. The use of such novel laser beams in an optical trapping and tweezing set-up allows for the control of biological species at the single-cell level.

  10. Numerical study of the properties of optical vortex array laser tweezers.

    Science.gov (United States)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-11-04

    Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications.

  11. tweezercalib 2.0: Faster version of MatLab package for precise calibration of optical tweezers

    DEFF Research Database (Denmark)

    Hansen, Poul Martin; Tolic-Nørrelykke, Iva Marija; Flyvbjerg, Henrik

    2006-01-01

    We present a vectorized version of the MatLab (MathWorks Inc) package tweezercalib for calibration of optical tweezers with precision. The calibration is based on the power spectrum of the Brownian motion of a dielectric bead trapped in the tweezers. Precision is achieved by accounting for a number...

  12. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment.

    Science.gov (United States)

    Ti, Chaoyang; Thomas, Gawain M; Ren, Yundong; Zhang, Rui; Wen, Qi; Liu, Yuxiang

    2015-07-01

    Optical tweezers play an important role in biological applications. However, it is difficult for traditional optical tweezers based on objective lenses to work in a three-dimensional (3D) solid far away from the substrate. In this work, we develop a fiber based optical trapping system, namely inclined dual fiber optical tweezers, that can simultaneously apply and measure forces both in water and in a 3D polyacrylamide gel matrix. In addition, we demonstrate in situ, non-invasive characterization of local mechanical properties of polyacrylamide gel by measurements on an embedded bead. The fiber optical tweezers measurements agree well with those of atomic force microscopy (AFM). The inclined dual fiber optical tweezers provide a promising and versatile tool for cell mechanics study in 3D environments.

  13. Manipulation of Nanoparticles Using Dark-Field-Illumination Optical Tweezers with Compensating Spherical Aberration

    International Nuclear Information System (INIS)

    Jin-Hua, Zhou; Run-Zhe, Tao; Zhi-Bin, Hu; Min-Cheng, Zhong; Zi-Qiang, Wang; Yin-Mei, Li; Jun, Cai

    2009-01-01

    Based on our previous investigation of optical tweezers with dark field illumination [Chin. Phys. Lett. 25(2008)329], nanoparticles at large trap depth are better viewed in wide field and real time for a long time, but with poor forces. Here we present the mismatched tube length to compensate for spherical aberration of an oil-immersion objective in a glass-water interface in an optical tweezers system for manipulating nanoparticles. In this way, the critical power of stable trapping particles is measured at different trap depths. It is found that trap depth is enlarged for trapping nanoparticles and trapping forces are enhanced at large trap depth. According to the measurement, 70-nm particles are manipulated in three dimensions and observed clearly at large appropriate depth. This will expand applications of optical tweezers in a nanometre-scale colloidal system. (cross-disciplinary physics and related areas of science and technology)

  14. Mechanical properties of stored red blood cells using optical tweezers

    Science.gov (United States)

    Fontes, Adriana; Alexandre de Thomaz, Andre; de Ysasa Pozzo, Liliana; de Lourdes Barjas-Castro, Maria; Brandao, Marcelo M.; Saad, Sara T. O.; Barbosa, Luiz Carlos; Cesar, Carlos Lenz

    2005-08-01

    We have developed a method for measuring the red blood cell (RBC) membrane overall elasticity μ by measuring the deformation of the cells when dragged at a constant velocity through a plasma fluid by an optical tweezers. The deformability of erythrocytes is a critical determinant of blood flow in the microcirculation. We tested our method and hydrodynamic models, which included the presence of two walls, by measuring the RBC deformation as a function of drag velocity and of the distance to the walls. The capability and sensitivity of this method can be evaluated by its application to a variety of studies, such as, the measurement of RBC elasticity of sickle cell anemia patients comparing homozygous (HbSS), including patients taking hydroxyrea (HU) and heterozygous (HbAS) with normal donors and the RBC elasticity measurement of gamma irradiated stored blood for transfusion to immunosupressed patients as a function of time and dose. These studies show that the technique has the sensitivity to discriminate heterozygous and homozygous sickle cell anemia patients from normal donors and even follow the course of HU treatment of Homozygous patients. The gamma irradiation studies show that there is no significant change in RBC elasticity over time for up to 14 days of storage, regardless of whether the unit was irradiated or not, but there was a huge change in the measured elasticity for the RBC units stored for more than 21 days after irradiation. These finds are important for the assessment of stored irradiated RBC viability for transfusion purposes because the present protocol consider 28 storage days after irradiation as the limit for the RBC usage.

  15. Mechanical and electrical properties of red blood cells using optical tweezers

    International Nuclear Information System (INIS)

    Fontes, A; Castro, M L Barjas; Brandão, M M; Fernandes, H P; Huruta, R R; Costa, F F; Saad, S T O; Thomaz, A A; Pozzo, L Y; Barbosa, L C; Cesar, C L

    2011-01-01

    Optical tweezers are a very sensitive tool, based on photon momentum transfer, for individual, cell by cell, manipulation and measurements, which can be applied to obtain important properties of erythrocytes for clinical and research purposes. Mechanical and electrical properties of erythrocytes are critical parameters for stored cells in transfusion centers, immunohematological tests performed in transfusional routines and in blood diseases. In this work, we showed methods, based on optical tweezers, to study red blood cells and applied them to measure apparent overall elasticity, apparent membrane viscosity, zeta potential, thickness of the double layer of electrical charges and adhesion in red blood cells

  16. Supramolecular Properties of Triazole-containing Two Armed Peptidomimetics: From Organogelators to Nucleotide-binding Tweezers

    Science.gov (United States)

    Chui, Tin Ki

    obtain a clearer picture on the mode of association of these two series of branched peptidomimetics, the length of the tripeptidomimetic arms was truncated to a dipeptide, and the amino acid, valine, was used for further studies. Both the two new candidates, 88-K-V2 and 89-B-V2, were shown to dimerize in chloroform as shown from vapor pressure osmometry (VPO) studies. 1H NMR titration experiments indicated a better dimerization strength for the latter candidate due to the intermolecular pi-pi interactions offered by its benzene ring in addition to the intermolecular hydrogen bonding by the amides and triazole units. H/D exchange and 2D NMR experiments, and molecular modeling revealed that 88-K-V2 dimerized through the formation of antiparallel beta-strands whereas formation of parallel beta-strands took place in 89-B-V2. Compound 88-K-V2 was found to form 1:1 complexes with chloride (Ka 640 M-1) and monobasic diethyl phosphate (DEP) ion (Ka 810 M-1) in chloroform. Interestingly, 89-B-V 2 was shown to form the usual 1:1 complex with the former ion (Ka 970 M-1) while forming an unexpected 2:1 complex with the latter with positive cooperativity. It was observed that both the amides and triazole protons were involved in anion-binding. In the 88-K-V2-DEP complex, the host formed a helix-like structure that wrapped around the anion located at the center of the complex as determined by 2D NMR and molecular modeling studies. Finally, further structural modification of 88-K-V2 gave a water-soluble nucleotide-binding tweezer 93-K-R2·4TFA . This tweezer consisted of four arginines (R), two triazole units, two pyrene probes and a small hydrophilic ethanolamine tail. Fluorescence study showed that this tweezer was able to form 1:1 complexes with different nucleotides in water with similar binding strength regardless of the number of phosphate groups present in the nucleotides. Moleular modeling suggested that such a charge-independent binding behavior was due to the similar number

  17. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers.

    Science.gov (United States)

    van Oene, Maarten M; Dickinson, Laura E; Cross, Bronwen; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H

    2017-03-07

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagellar motors in Escherichia coli. We manipulate the external load on the motor by adjusting the magnetic field experienced by a magnetic bead linked to the motor, and we probe the motor's response. A simple model describes the average motor speed over the entire range of applied fields. We extract the motor torque at stall and find it to be similar to the motor torque at drag-limited speed. In addition, use of the magnetic tweezers allows us to force motor rotation in both forward and backward directions. We monitor the motor's performance before and after periods of forced rotation and observe no destructive effects on the motor. Our experiments show how magnetic tweezers can provide active and fast control of the external load while also exposing remaining challenges in calibration. Through their non-invasive character and straightforward parallelization, magnetic tweezers provide an attractive platform to study nanoscale rotary motors at the single-motor level.

  18. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers

    NARCIS (Netherlands)

    van Oene, M.M.; Dickinson, L.E.; Cross, B.; Pedaci, F.; Lipfert, J.; Dekker, N.H.

    2017-01-01

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in

  19. Red blood cell micromanipulation with elliptical laser beam profile optical tweezers in different osmolarity conditions

    Science.gov (United States)

    Spyratou, E.; Makropoulou, M.; Serafetinides, A. A.

    2011-07-01

    In this work optical tweezers with elliptical beam profiles have been developed in order to examine the effect of optical force on fresh red blood cells (RBC) in isotonic, hypertonic and hypotonic buffer solutions. Considering that the optical force depends essentially on the cell surface and the cytoplasmic refractive index, it is obvious that biochemical modifications associated with different states of the cell will influence its behaviour in the optical trap. Line optical tweezers were used to manipulate simultaneously more than one red blood cell. After we have been manipulated a RBC with an elliptical laser beam profile in an isotonic or hypertonic buffer, we noticed that it rotates by itself when gets trapped by optical tweezers and undergoes folding. Further shape deformations can be observed attributed to the competition between alignment and rotational torque which are transferred by laser light to the cell. In hypotonic buffer RBCs become spherical and do not rotate or fold since the resultant force due to rays emerging from diametrically opposite points of the cell leads to zero torque. Manipulation of fresh red blood cells in isotonic solution by line optical tweezers leads to folding and elongation of trapped RBCs. Membrane elasticity properties such as bending modulus can be estimated by measuring RBC's folding time in function with laser power.

  20. Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers

    NARCIS (Netherlands)

    Farré, Arnau; van der Horst, Astrid; Blab, Gerhard A.; Downing, Benjamin P. B.; Forde, Nancy R.

    2010-01-01

    The well calibrated force-extension behaviour of single double-stranded DNA molecules was used as a standard to investigate the performance of phase-only holographic optical tweezers at high forces. Specifically, the characteristic overstretch transition at 65 pN was found to appear where expected,

  1. Holographic Raman tweezers controlled by multi-modal natural user interface

    Czech Academy of Sciences Publication Activity Database

    Tomori, Z.; Keša, P.; Nikorovič, M.; Kaňka, Jan; Jákl, Petr; Šerý, Mojmír; Bernatová, Silvie; Valušová, E.; Antalík, M.; Zemánek, Pavel

    2016-01-01

    Roč. 18, č. 1 (2016), 015602:1-9 ISSN 2040-8978 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk(CZ) LD14069 Institutional support: RVO:68081731 Keywords : holographic optical tweezers * Raman microspectroscopy * human-computer interface Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.741, year: 2016

  2. An optical tweezer-based study of antimicrobial activity of silver ...

    Indian Academy of Sciences (India)

    Understanding and characterizing microbial activity reduction in the presence of antimicrobial agents can help in the design and manufacture of antimicrobial drugs. We demonstrate the use of an optical tweezer setup in recording the changes in bacterial activity with time, induced by the presence of foreign bodies in a ...

  3. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers

    Science.gov (United States)

    van Oene, Maarten M.; Dickinson, Laura E.; Cross, Bronwen; Pedaci, Francesco; Lipfert, Jan; Dekker, Nynke H.

    2017-01-01

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagellar motors in Escherichia coli. We manipulate the external load on the motor by adjusting the magnetic field experienced by a magnetic bead linked to the motor, and we probe the motor’s response. A simple model describes the average motor speed over the entire range of applied fields. We extract the motor torque at stall and find it to be similar to the motor torque at drag-limited speed. In addition, use of the magnetic tweezers allows us to force motor rotation in both forward and backward directions. We monitor the motor’s performance before and after periods of forced rotation and observe no destructive effects on the motor. Our experiments show how magnetic tweezers can provide active and fast control of the external load while also exposing remaining challenges in calibration. Through their non-invasive character and straightforward parallelization, magnetic tweezers provide an attractive platform to study nanoscale rotary motors at the single-motor level. PMID:28266562

  4. Optical tweezers in concentrated colloidal dispersions : Manipulating and imaging individual particles

    NARCIS (Netherlands)

    Vossen, Dirk Leo Joep

    2004-01-01

    Using a laser beam that is focused down to a diffraction-limited spot, particles with a size ranging from several nanometers up to tens of micrometers can be trapped and manipulated. This technique, known as "optical tweezers" or "optical trapping", has been used in a wide variety of

  5. Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study

    Czech Academy of Sciences Publication Activity Database

    Trojek, Jan; Chvátal, Lukáš; Zemánek, Pavel

    2012-01-01

    Roč. 29, č. 7 (2012), s. 1224-1236 ISSN 1084-7529 R&D Projects: GA ČR GA202/09/0348; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : ellipsoidal nanorod * optical tweezers * Rayleigh approximation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.665, year: 2012

  6. Custom Made Versatile Device: A Modified Tweezer for Multiple Uses in Clinical Orthodontics

    Directory of Open Access Journals (Sweden)

    Shashi Kumar

    2014-01-01

    Full Text Available Most commonly it is difficult to overcome some clinical steps during orthodontics treatment, such as placing closed coil spring, engaging NiTi archwire into the bracket slot of severely crowded teeth, to address such messy procedure a new innovative versatile device is designed. This aritcle depicts the fabrication and clinical use of the device-modified tweezer.

  7. Optically-driven red blood cell rotor in linearly polarized laser tweezers

    Indian Academy of Sciences (India)

    We have constructed a dual trap optical tweezers set-up around an inverted microscope where both the traps can be independently controlled and manipulated in all the three dimensions. Here we report our observations on rotation of red blood cells (RBCs) in a linearly polarized optical trap. Red blood cells deform and ...

  8. Construction and actuation of a microscopic gear assembly formed using optical tweezers

    International Nuclear Information System (INIS)

    Kim, Jung-Dae; Lee, Yong-Gu

    2013-01-01

    The assembly of micrometer-sized parts is an important manufacturing process; any development in it could potentially change the current manufacturing practices for micrometer-scale devices. Due to the lack of reliable microassembly techniques, these devices are often manufactured using silicon, which includes etching and depositions with little use of assembly processes. The result is the requirement of specialized manufacturing conditions with hazardous byproducts and limited applications where only simple mechanisms are allowed. Optical tweezers are non-contact type manipulators that are very suitable for assembling microparts and solve one of the most difficult problems for microassembly, which is the sticking of the physical manipulator to the micropart. Although contact type manipulators can be surface modified to be non-sticky, this involves extra preprocessing—optical tweezers do not require such additional efforts. The weakness of using optical tweezers is that the permanent assembly of parts is not possible as only very small forces can be applied. We introduce an advanced microassembly environment with the combined use of optical tweezers and a motorized microtip, where the former is used to position two parts and the latter is used to introduce deformation in the parts so that they form a strongly fitted assembly. (paper)

  9. Accounting for polarization in the calibration of a donut beam axial optical tweezers.

    Science.gov (United States)

    Pollari, Russell; Milstein, Joshua N

    2018-01-01

    Advances in light shaping techniques are leading to new tools for optical trapping and micromanipulation. For example, optical tweezers made from Laguerre-Gaussian or donut beams display an increased axial trap strength and can impart angular momentum to rotate a specimen. However, the application of donut beam optical tweezers to precision, biophysical measurements remains limited due to a lack of methods for calibrating such devices sufficiently. For instance, one notable complication, not present when trapping with a Gaussian beam, is that the polarization of the trap light can significantly affect the tweezers' strength as well as the location of the trap. In this article, we show how to precisely calibrate the axial trap strength as a function of height above the coverslip surface while accounting for focal shifts in the trap position arising from radiation pressure, mismatches in the index of refraction, and polarization induced intensity variations. This provides a foundation for implementing a donut beam optical tweezers capable of applying precise axial forces.

  10. An optical tweezer-based study of antimicrobial activity of silver ...

    Indian Academy of Sciences (India)

    in bacterial activity levels as a function of time of contact with the antibacterial agent with greater efficacy than traditional cell counting methods. ... In this work, we demonstrate the use of an optical tweezer in monitoring the effect of .... can be used as an effective tool for characterizing real time changes in bacterial activity ...

  11. Construction and actuation of a microscopic gear assembly formed using optical tweezers

    Science.gov (United States)

    Kim, Jung-Dae; Lee, Yong-Gu

    2013-06-01

    The assembly of micrometer-sized parts is an important manufacturing process; any development in it could potentially change the current manufacturing practices for micrometer-scale devices. Due to the lack of reliable microassembly techniques, these devices are often manufactured using silicon, which includes etching and depositions with little use of assembly processes. The result is the requirement of specialized manufacturing conditions with hazardous byproducts and limited applications where only simple mechanisms are allowed. Optical tweezers are non-contact type manipulators that are very suitable for assembling microparts and solve one of the most difficult problems for microassembly, which is the sticking of the physical manipulator to the micropart. Although contact type manipulators can be surface modified to be non-sticky, this involves extra preprocessing—optical tweezers do not require such additional efforts. The weakness of using optical tweezers is that the permanent assembly of parts is not possible as only very small forces can be applied. We introduce an advanced microassembly environment with the combined use of optical tweezers and a motorized microtip, where the former is used to position two parts and the latter is used to introduce deformation in the parts so that they form a strongly fitted assembly.

  12. Optical tweezers studies of viral DNA packaging: Motor function and DNA confinement in Bacteriophages phi29, lambda, and T4

    Science.gov (United States)

    Smith, Douglas

    2007-03-01

    In the assembly of many viruses a powerful molecular motor translocates the genome into a pre-assembled capsid. We use optical tweezers to directly measure translocation of a single DNA molecule into the viral capsid. Improved techniques allow us to measure initiation and early stages of packaging. With phi29 the DNA terminal protein was found to cause large variations in the starting point of packaging. Removal of this protein results in terminal initiation, permitting more accurate assessment of motor function and DNA confinement forces. We investigated the role of electrostatic repulsion by varying ionic screening of the DNA. The observed trends are in accord with those theoretically expected considering counter-ion competition; however the forces are larger than expected in comparison with recent theories and DNA ejection measurements. We have recently succeeded in extending our methods to study two other phages: lambda and T4. These systems have unique structural and functional features, presenting an opportunity for comparative studies in this family of molecular motors. Initial measurements show that lambda and T4 translocate DNA several times faster than the phi29 motor, but are more sensitive to applied load.

  13. Developing a New Biophysical Tool to Combine Magneto-Optical Tweezers with Super-Resolution Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Zhaokun Zhou

    2015-06-01

    Full Text Available We present a novel experimental setup in which magnetic and optical tweezers are combined for torque and force transduction onto single filamentous molecules in a transverse configuration to allow simultaneous mechanical measurement and manipulation. Previously we have developed a super-resolution imaging module which, in conjunction with advanced imaging techniques such as Blinking assisted Localisation Microscopy (BaLM, achieves localisation precision of single fluorescent dye molecules bound to DNA of ~30 nm along the contour of the molecule; our work here describes developments in producing a system which combines tweezing and super-resolution fluorescence imaging. The instrument also features an acousto-optic deflector that temporally divides the laser beam to form multiple traps for high throughput statistics collection. Our motivation for developing the new tool is to enable direct observation of detailed molecular topological transformation and protein binding event localisation in a stretching/twisting mechanical assay that previously could hitherto only be deduced indirectly from the end-to-end length variation of DNA. Our approach is simple and robust enough for reproduction in the lab without the requirement of precise hardware engineering, yet is capable of unveiling the elastic and dynamic properties of filamentous molecules that have been hidden using traditional tools.

  14. Dual-trap Raman tweezers for probing dynamics and heterogeneity of interacting microbial cells

    Science.gov (United States)

    Li, Yan; Wang, Guiwen; Yao, Hui-Lu; Liu, Junxian; Li, Yong-Qing

    2010-11-01

    We report on development of dual-trap Raman tweezers for monitoring cellular dynamics and heterogeneity of interacting living cells suspended in a liquid medium. Dual-beam optical tweezers were combined with Raman spectroscopy, which allows capturing two cells that are in direct contact or closely separated by a few micrometers and simultaneously acquiring their Raman spectra with an imaging CCD spectrograph. As a demonstration, we recorded time-lapse Raman spectra of budding yeast cells held in dual traps for over 40 min to monitor the dynamic growth in a nutrient medium. We also monitored two germinating Bacillus spores after the initiation with L-alanine and observed their heterogeneity in the release of CaDPA under identical microenvironment.

  15. Low cost optical tweezers systems using double coil driving stepping motor to controlling sample stage

    Science.gov (United States)

    Laowattanatham, N.; Cheamanunkul, N.; Plaipichit, S.; Buranasiri, P.; Nuansri, R.

    2013-06-01

    In this research, the low cost optical tweezers systems using X-Y stage has been developed by using 5-phase stepping motor. By using sequential double coil driving, we can obtain the driving torque larger than using the single coil driving. The moving scale is fine resolution at 0.2 micrometer. The overall systems based on microcontroller PIC18F458 and joystick controller with LabView® graphical user interface (GUI). The mechanical damping has been included in the system for decreasing the vibrational noise. By using this method, our optical tweezers system is cheaper than the other commercial system that has been used the piezoelectric driving, and still has the same efficiency.

  16. Neural Network for Image-to-Image Control of Optical Tweezers

    Science.gov (United States)

    Decker, Arthur J.; Anderson, Robert C.; Weiland, Kenneth E.; Wrbanek, Susan Y.

    2004-01-01

    A method is discussed for using neural networks to control optical tweezers. Neural-net outputs are combined with scaling and tiling to generate 480 by 480-pixel control patterns for a spatial light modulator (SLM). The SLM can be combined in various ways with a microscope to create movable tweezers traps with controllable profiles. The neural nets are intended to respond to scattered light from carbon and silicon carbide nanotube sensors. The nanotube sensors are to be held by the traps for manipulation and calibration. Scaling and tiling allow the 100 by 100-pixel maximum resolution of the neural-net software to be applied in stages to exploit the full 480 by 480-pixel resolution of the SLM. One of these stages is intended to create sensitive null detectors for detecting variations in the scattered light from the nanotube sensors.

  17. A feasibility study of in vivo applications of single beam acoustic tweezers

    Science.gov (United States)

    Li, Ying; Lee, Changyang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk

    2014-10-01

    Tools that are capable of manipulating micro-sized objects have been widely used in such fields as physics, chemistry, biology, and medicine. Several devices, including optical tweezers, atomic force microscope, micro-pipette aspirator, and standing surface wave type acoustic tweezers have been studied to satisfy this need. However, none of them has been demonstrated to be suitable for in vivo and clinical studies. Single beam acoustic tweezers (SBAT) is a technology that uses highly focused acoustic beam to trap particles toward the beam focus. Its feasibility was first theoretically and experimentally demonstrated by Lee and Shung several years ago. Since then, much effort has been devoted to improving this technology. At present, the tool is capable of trapping a microparticle as small as 1 μm, as well as a single red blood cell. Although in comparing to other microparticles manipulating technologies, SBAT has advantages of providing stronger trapping force and deeper penetration depth in tissues, and producing less tissue damage, its potential for in vivo applications has yet been explored. It is worth noting that ultrasound has been used as a diagnostic tool for over 50 years and no known major adverse effects have been observed at the diagnostic energy level. This paper reports the results of an initial attempt to assess the feasibility of single beam acoustic tweezers to trap microparticles in vivo inside of a blood vessel. The acoustic intensity of SBAT under the trapping conditions that were utilized was measured. The mechanical index and thermal index at the focus of acoustic beam were found to be 0.48 and 0.044, respectively, which meet the standard of commercial diagnostic ultrasound system.

  18. Applying torque to the Escherichia coli flagellar motor using magnetic tweezers

    OpenAIRE

    van Oene, M.M.; Dickinson, L.E.; Cross, B.; Pedaci, F.; Lipfert, J.; Dekker, N.H.

    2017-01-01

    The bacterial flagellar motor of Escherichia coli is a nanoscale rotary engine essential for bacterial propulsion. Studies on the power output of single motors rely on the measurement of motor torque and rotation under external load. Here, we investigate the use of magnetic tweezers, which in principle allow the application and active control of a calibrated load torque, to study single flagellar motors in Escherichia coli. We manipulate the external load on the motor by adjusting the magneti...

  19. Identification of individual biofilm-forming bacterial cells using Raman tweezers

    Czech Academy of Sciences Publication Activity Database

    Samek, Ota; Bernatová, Silvie; Ježek, Jan; Šiler, Martin; Šerý, Mojmír; Krzyžánek, Vladislav; Hrubanová, Kamila; Zemánek, Pavel; Holá, V.; Růžička, F.

    2015-01-01

    Roč. 20, č. 5 (2015), 051038:1-6 ISSN 1083-3668 R&D Projects: GA ČR GAP205/11/1687; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Raman tweezers * Staphylococcus epidermidis * biofilm Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.556, year: 2015

  20. Optical tweezers and surface plasmon resonance combination system based on the high numerical aperture lens

    Science.gov (United States)

    Shan, Xuchen; Zhang, Bei; Lan, Guoqiang; Wang, Yiqiao; Liu, Shugang

    2015-11-01

    Biology and medicine sample measurement takes an important role in the microscopic optical technology. Optical tweezer has the advantage of accurate capture and non-pollution of the sample. The SPR(surface plasmon resonance) sensor has so many advantages include high sensitivity, fast measurement, less consumption of sample and label-free detection of biological sample that the SPR sensing technique has been used for surface topography, analysis of biochemical and immune, drug screening and environmental monitoring. If they combine, they will play an important role in the biological, chemical and other subjects. The system we propose use the multi-axis cage system, by using the methods of reflection and transmiss ion to improve the space utilization. The SPR system and optical tweezer were builtup and combined in one system. The cage of multi-axis system gives full play to its accuracy, simplicity and flexibility. The size of the system is 20 * 15 * 40 cm3 and thus the sample can be replaced to switch between the optical tweezers system and the SPR system in the small space. It means that we get the refractive index of the sample and control the particle in the same system. In order to control the revolving stage, get the picture and achieve the data stored automatically, we write a LabVIEW procedure. Then according to the data from the back focal plane calculate the refractive index of the sample. By changing the slide we can trap the particle as optical tweezer, which makes us measurement and trap the sample at the same time.

  1. Scanning a DNA molecule for bound proteins using hybrid magnetic and optical tweezers.

    Directory of Open Access Journals (Sweden)

    Marijn T J van Loenhout

    Full Text Available The functional state of the genome is determined by its interactions with proteins that bind, modify, and move along the DNA. To determine the positions and binding strength of proteins localized on DNA we have developed a combined magnetic and optical tweezers apparatus that allows for both sensitive and label-free detection. A DNA loop, that acts as a scanning probe, is created by looping an optically trapped DNA tether around a DNA molecule that is held with magnetic tweezers. Upon scanning the loop along the λ-DNA molecule, EcoRI proteins were detected with ~17 nm spatial resolution. An offset of 33 ± 5 nm for the detected protein positions was found between back and forwards scans, corresponding to the size of the DNA loop and in agreement with theoretical estimates. At higher applied stretching forces, the scanning loop was able to remove bound proteins from the DNA, showing that the method is in principle also capable of measuring the binding strength of proteins to DNA with a force resolution of 0.1 pN/[Formula: see text]. The use of magnetic tweezers in this assay allows the facile preparation of many single-molecule tethers, which can be scanned one after the other, while it also allows for direct control of the supercoiling state of the DNA molecule, making it uniquely suitable to address the effects of torque on protein-DNA interactions.

  2. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications

    Energy Technology Data Exchange (ETDEWEB)

    Zacchia, Nicholas A.; Valentine, Megan T. [Department of Mechanical Engineering and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States)

    2015-05-15

    We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.

  3. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications.

    Science.gov (United States)

    Zacchia, Nicholas A; Valentine, Megan T

    2015-05-01

    We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.

  4. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.

    Science.gov (United States)

    Saleh, Amr A E; Sheikhoelislami, Sassan; Gastelum, Steven; Dionne, Jennifer A

    2016-09-05

    Subwavelength plasmonic apertures have been foundational for direct optical manipulation of nanoscale specimens including sub-100 nm polymeric beads, metallic nanoparticles and proteins. While most plasmonic traps result in two-dimensional localization, three-dimensional manipulation has been demonstrated by integrating a plasmonic aperture on an optical fiber tip. However, such 3D traps are usually inefficient since the optical mode of the fiber and the subwavelength aperture only weakly couple. In this paper we design more efficient optical-fiber-based plasmonic tweezers combining a coaxial plasmonic aperture with a plasmonic grating coupler at the fiber tip facet. Using full-field finite difference time domain analysis, we optimize the grating design for both gold and silver fiber-based coaxial tweezers such that the optical transmission through the apertures is maximized. With the optimized grating, we show that the maximum transmission efficiency increases from 2.5% to 19.6% and from 1.48% to 16.7% for the gold and silver structures respectively. To evaluate their performance as optical tweezers, we calculate the optical forces and the corresponding trapping potential on dielectric particles interacting with the apertures. We demonstrate that the enahncement in the transmission translates into an equivalent increase in the optical forces. Consequently, the optical power required to achieve stable optical trapping is significantly reduced allowing for efficient localization and 3D manipulation of sub-30 nm dielectric particles.

  5. Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes

    Science.gov (United States)

    Eriksson, Emma; Scrimgeour, Jan; Enger, Jonas; Goksör, Mattias

    2007-05-01

    Optical manipulation techniques have become an important research tool for single cell experiments in microbiology. Using optical tweezers, single cells can be trapped and held during long experiments without risk of cross contamination or compromising viability. However, it is often desirable to not only control the position of a cell, but also to control its environment. We have developed a method that combines optical tweezers with a microfluidic device. The microfluidic system is fabricated by soft lithography in which a constant flow is established by a syringe pump. In the microfluidic system multiple laminar flows of different media are combined into a single channel, where the fluid streams couple viscously. Adjacent media will mix only by diffusion, and consequently two different environments will be separated by a mixing region a few tens of micrometers wide. Thus, by moving optically trapped cells from one medium to another we are able to change the local environment of the cells in a fraction of a second. The time needed to establish a change in environment depends on several factors such as the strength of the optical traps and the steepness of the concentration gradient in the mixing region. By introducing dynamic holographic optical tweezers several cells can be trapped and analyzed simultaneously, thus shortening data acquisition time. The power of this system is demonstrated on yeast (Saccharomyces cerevisiae) subjected to osmotic stress, where the volume of the yeast cell and the spatial localization of green fluorescent proteins (GFP) are monitored using fluorescence microscopy.

  6. Dislocation reactions, grain boundaries, and irreversibility in two-dimensional lattices using topological tweezers.

    Science.gov (United States)

    Irvine, William T M; Hollingsworth, Andrew D; Grier, David G; Chaikin, Paul M

    2013-09-24

    Dislocations, disclinations, and grain boundaries are topological excitations of crystals that play a key role in determining out-of-equilibrium material properties. In this article we study the kinetics, creation, and annihilation processes of these defects in a controllable way by applying "topological tweezers," an array of weak optical tweezers which strain the lattice by weakly pulling on a collection of particles without grabbing them individually. We use topological tweezers to deterministically control individual dislocations and grain boundaries, and reversibly create and destroy dislocation pairs in a 2D crystal of charged colloids. Starting from a perfect lattice, we exert a torque on a finite region and follow the complete step-by-step creation of a disoriented grain, from the creation of dislocation pairs through their reactions to form a grain boundary and their reduction of elastic energy. However, when the grain is rotated back to its original orientation the dislocation reactions do not retrace. Rather, the process is irreversible; the grain boundary expands instead of collapsing.

  7. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    Science.gov (United States)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  8. MAGNETIC TWEEZERS FOR THE STUDY OF DNA TRACKING MOTORS

    Science.gov (United States)

    Manosas, Maria; Meglio, Adrien; Spiering, Michelle M.; Ding, Fangyuan; Benkovic, Stephen J.; Barre, François-Xavier; Saleh, Omar A.; Allemand, Jean François; Bensimon, David; Croquette, Vincent

    2011-01-01

    Single-molecule manipulation methods have opened a new vista on the study of molecular motors. Here we describe the use of magnetic traps for the investigation of the mechanism of DNA based motors, in particular helicases and translocases. PMID:20627163

  9. Determining the structure-mechanics relationships of dense microtubule networks with confocal microscopy and magnetic tweezers-based microrheology.

    Science.gov (United States)

    Yang, Yali; Valentine, Megan T

    2013-01-01

    The microtubule (MT) cytoskeleton is essential in maintaining the shape, strength, and organization of cells. Its spatiotemporal organization is fundamental for numerous dynamic biological processes, and mechanical stress within the MT cytoskeleton provides an important signaling mechanism in mitosis and neural development. This raises important questions about the relationships between structure and mechanics in complex MT structures. In vitro, reconstituted cytoskeletal networks provide a minimal model of cell mechanics while also providing a testing ground for the fundamental polymer physics of stiff polymer gels. Here, we describe our development and implementation of a broad tool kit to study structure-mechanics relationships in reconstituted MT networks, including protocols for the assembly of entangled and cross-linked MT networks, fluorescence imaging, microstructure characterization, construction and calibration of magnetic tweezers devices, and mechanical data collection and analysis. In particular, we present the design and assembly of three neodymium iron boron (NdFeB)-based magnetic tweezers devices optimized for use with MT networks: (1) high-force magnetic tweezers devices that enable the application of nano-Newton forces and possible meso- to macroscale materials characterization; (2) ring-shaped NdFeB-based magnetic tweezers devices that enable oscillatory microrheology measurements; and (3) portable magnetic tweezers devices that enable direct visualization of microscale deformation in soft materials under applied force. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Novel tunable dynamic tweezers using dark-bright soliton collision control in an optical add/drop filter.

    Science.gov (United States)

    Teeka, Chat; Jalil, Muhammad Arif; Yupapin, Preecha P; Ali, Jalil

    2010-12-01

    We propose a novel system of the dynamic optical tweezers generated by a dark soliton in the fiber optic loop. A dark soliton known as an optical tweezer is amplified and tuned within the microring resonator system. The required tunable tweezers with different widths and powers can be controlled. The analysis of dark-bright soliton conversion using a dark soliton pulse propagating within a microring resonator system is analyzed. The dynamic behaviors of soliton conversion in add/drop filter is also analyzed. The control dark soliton is input into the system via the add port of the add/drop filter. The dynamic behavior of the dark-bright soliton conversion is observed. The required stable signal is obtained via a drop and throughput ports of the add/drop filter with some suitable parameters. In application, the trapped light/atom and transportation can be realized by using the proposed system.

  11. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads.

    Science.gov (United States)

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim

    2015-04-01

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm(2), a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle's position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  12. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads

    Energy Technology Data Exchange (ETDEWEB)

    Chen, La; Offenhäusser, Andreas; Krause, Hans-Joachim [Institute of Bioelectronics (ICS-8/PGI-8), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany)

    2015-04-15

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 × 0.1 mm{sup 2}, a force of up to 400 pN can be applied on a 2.8 μm superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particle’s position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  13. Optical macro-tweezers: trapping of highly motile micro-organisms

    International Nuclear Information System (INIS)

    Thalhammer, G; Steiger, R; Bernet, S; Ritsch-Marte, M

    2011-01-01

    Optical micromanipulation stands for contact-free handling of microscopic particles by light. Optical forces can manipulate non-absorbing objects in a large range of sizes, e.g., from biological cells down to cold atoms. Recently much progress has been made going from the micro- down to the nanoscale. Less attention has been paid to going the other way, trapping increasingly large particles. Optical tweezers typically employ a single laser beam tightly focused by a microscope objective of high numerical aperture to stably trap a particle in three dimensions (3D). As the particle size increases, stable 3D trapping in a single-beam trap requires scaling up the optical power, which eventually induces adverse biological effects. Moreover, the restricted field of view of standard optical tweezers, dictated by the use of high NA objectives, is particularly unfavorable for catching actively moving specimens. Both problems can be overcome by traps with counter-propagating beams. Our 'macro-tweezers' are especially designed to trap highly motile organisms, as they enable three-dimensional all-optical trapping and guiding in a volume of 2 × 1 × 2 mm 3 . Here we report for the first time the optical trapping of large actively swimming organisms, such as for instance Euglena protists and dinoflagellates of up to 70 µm length. Adverse bio-effects are kept low since trapping occurs outside high intensity regions, e.g., focal spots. We expect our approach to open various possibilities in the contact-free handling of 50–100 µm sized objects that could hitherto not be envisaged, for instance all-optical holding of individual micro-organisms for taxonomic identification, selective collecting or tagging

  14. Laser-induced fusion of human embryonic stem cells with optical tweezers

    Science.gov (United States)

    Chen, Shuxun; Cheng, Jinping; Kong, Chi-Wing; Wang, Xiaolin; Han Cheng, Shuk; Li, Ronald A.; Sun, Dong

    2013-07-01

    We report a study on the laser-induced fusion of human embryonic stem cells (hESCs) at the single-cell level. Cells were manipulated by optical tweezers and fused under irradiation with pulsed UV laser at 355 nm. Successful fusion was indicated by green fluorescence protein transfer. The influence of laser pulse energy on the fusion efficiency was investigated. The fused products were viable as gauged by live cell staining. Successful fusion of hESCs with somatic cells was also demonstrated. The reported fusion outcome may facilitate studies of cell differentiation, maturation, and reprogramming.

  15. Single-atom trapping and transport in DMD-controlled optical tweezers

    OpenAIRE

    Stuart, Dustin; Kuhn, Axel

    2017-01-01

    We demonstrate the trapping and manipulation of single neutral atoms in reconfigurable arrays of optical tweezers. Our approach offers unparalleled speed by using a Texas Instruments Digital Micro-mirror Device (DMD) as a holographic amplitude modulator with a frame rate of 20,000 per second. We show the trapping of static arrays of up to 20 atoms, as well as transport of individually selected atoms over a distance of 25{\\mu}m with laser cooling and 4{\\mu}m without. We discuss the limitations...

  16. The Cryptococcus neoformans capsule: lessons from the use of optical tweezers and other biophysical tools

    Science.gov (United States)

    Pontes, Bruno; Frases, Susana

    2015-01-01

    The fungal pathogen Cryptococcus neoformans causes life-threatening infections in immunocompromised individuals, representing one of the leading causes of morbidity and mortality in AIDS patients. The main virulence factor of C. neoformans is the polysaccharide capsule; however, many fundamental aspects of capsule structure and function remain poorly understood. Recently, important capsule properties were uncovered using optical tweezers and other biophysical techniques, including dynamic and static light scattering, zeta potential and viscosity analysis. This review provides an overview of the latest findings in this emerging field, explaining the impact of these findings on our understanding of C. neoformans biology and resistance to host immune defenses. PMID:26157436

  17. In vivo vascular flow profiling combined with optical tweezers based blood routing

    Science.gov (United States)

    Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia

    2017-07-01

    In vivo wall shear rate is quantified during zebrafish development using particle image velocimetry for biomedical diagnosis and modeling of artificial vessels. By using brightfield microscopy based high speed video tracking we can resolve single heart-beat cycles of blood flow in both space and time. Maximum blood flow velocities and wall shear rates are presented for zebrafish at two and three days post fertilization. By applying biocompatible optical tweezers as an Optical rail we present rerouting of red blood cells in vivo. With purely light-driven means we are able to compensate the lack of proper red blood cell blood flow in so far unperfused capillaries.

  18. Laser-induced fusion of human embryonic stem cells with optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shuxun; Wang Xiaolin; Sun Dong [Department of Mechanical and Biomedical Engineering, City University of Hong Kong (Hong Kong); Cheng Jinping; Han Cheng, Shuk [Department of Biology and Chemistry, City University of Hong Kong (Hong Kong); Kong, Chi-Wing [Stem Cell and Regenerative Medicine Consortium, and Departments of Medicine and Physiology, LKS Faculty of Medicine, University of Hong Kong (Hong Kong); Li, Ronald A. [Stem Cell and Regenerative Medicine Consortium, and Departments of Medicine and Physiology, LKS Faculty of Medicine, University of Hong Kong (Hong Kong); Center of Cardiovascular Research, Mount Sinai School of Medicine, New York, New York 10029 (United States)

    2013-07-15

    We report a study on the laser-induced fusion of human embryonic stem cells (hESCs) at the single-cell level. Cells were manipulated by optical tweezers and fused under irradiation with pulsed UV laser at 355 nm. Successful fusion was indicated by green fluorescence protein transfer. The influence of laser pulse energy on the fusion efficiency was investigated. The fused products were viable as gauged by live cell staining. Successful fusion of hESCs with somatic cells was also demonstrated. The reported fusion outcome may facilitate studies of cell differentiation, maturation, and reprogramming.

  19. Single-atom trapping and transport in DMD-controlled optical tweezers

    Science.gov (United States)

    Stuart, Dustin; Kuhn, Axel

    2018-02-01

    We demonstrate the trapping and manipulation of single neutral atoms in reconfigurable arrays of optical tweezers. Our approach offers unparalleled speed by using a Texas instruments digital micro-mirror device as a holographic amplitude modulator with a frame rate of 20 000 per second. We show the trapping of static arrays of up to 20 atoms, as well as transport of individually selected atoms over a distance of 25 μm with laser cooling and 4 μm without. We discuss the limitations of the technique and the scope for technical improvements.

  20. Nano-bio-optomechanics: nanoaperture tweezers probe single nanoparticles, proteins, and their interactions

    Science.gov (United States)

    Gordon, Reuven

    2015-09-01

    Nanoparticles in the single digit nanometer range can be easily isolated and studied with low optical powers using nanoaperture tweezers. We have studied individual proteins and their interactions with small molecules, DNA and antibodies. Recently, using the fluctuations of the trapped object, we have pioneered a new way to "listen" to the vibrations of nanoparticles in the 100 GHz - 1 THz range; the approach is called extraordinary acoustic Raman (EAR). EAR gives unprecedented low frequency spectra of individual proteins in solution, allowing for identification and analysis, as well as probing their role in biological functions. We have also used EAR to study the elastic properties, shape and size of various individual nanoparticles.

  1. [6]Helicene as a novel molecular tweezer for the univalent silver cation: Experimental and theoretical study

    Czech Academy of Sciences Publication Activity Database

    Klepetářová, B.; Makrlík, E.; Jaklová Dytrtová, Jana; Böhm, S.; Vaňura, P.; Storch, Jan

    2015-01-01

    Roč. 1097, Oct 5 (2015), s. 124-128 ISSN 0022-2860 R&D Projects: GA ČR GP13-21409P; GA ČR GAP207/10/1124; GA TA ČR TA01010646; GA MPO FR-TI3/628 Institutional support: RVO:61388963 ; RVO:67985858 Keywords : univalent silver cation * [6]helicene * cation-pi interaction * structures Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.780, year: 2015

  2. New approaches in the design of magnetic tweezers–current magnetic tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Bessalova, Valentina [Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow (Russian Federation); Perov, Nikolai [Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow (Russian Federation); Immanuel Kant Baltic Federal University, Nevskogo 14, 236004 Kaliningrad (Russian Federation); Rodionova, Valeria [Immanuel Kant Baltic Federal University, Nevskogo 14, 236004 Kaliningrad (Russian Federation); National University of Science and Technology ' MISiS' , Leninsky Prospect 4, 119049 Moscow (Russian Federation)

    2016-10-01

    The main advantages of the magnetic tweezers are the low price and simplicity of use. However the range of their application is reduced due to shortcomings like, for example, the remanent induction of the core and interaction between ferromagnetic cores. We present the new design of magnetic tweezers–Current Magnetic Tweezers (CMT) that allow particle manipulation by means of the magnetic field generated by the electric currents flowing through the non-magnetic wires. Arranging wires in different geometric shapes allows the particle movement either in two or three dimensions. Forces acting on the magnetic particles with the magnetic moment of 2·10{sup −11} A m{sup 2} at distances up to 1 mm had been experimentally measured. It is established that a current of about 1 A at a 1 mm distance generates force of (approximately) 3 pN which is consistent with theoretical estimates. - Highlights: • We suggest the idea and the results of the test the prototype based on 3 wire's system that allows manipulation of nanoparticles on XY plane.

  3. Application of laser tweezers Raman spectroscopy techniques to the monitoring of single cell response to stimuli

    Science.gov (United States)

    Chan, James W.; Liu, Rui; Matthews, Dennis L.

    2012-06-01

    Laser tweezers Raman spectroscopy (LTRS) combines optical trapping with micro-Raman spectroscopy to enable label-free biochemical analysis of individual cells and small biological particles in suspension. The integration of the two technologies greatly simplifies the sample preparation and handling of suspension cells for spectroscopic analysis in physiologically meaningful conditions. In our group, LTRS has been used to study the effects of external perturbations, both chemical and mechanical, on the biochemistry of the cell. Single cell dynamics can be studied by performing longitudinal studies to continuously monitor the response of the cell as it interacts with its environment. The ability to carry out these measurements in-vitro makes LTRS an attractive tool for many biomedical applications. Here, we discuss the use of LTRS to study the response of cancer cells to chemotherapeutics and bacteria cells to antibiotics and show that the life cycle and apoptosis of the cells can be detected. These results show the promise of LTRS for drug discovery/screening, antibiotic susceptibility testing, and chemotherapy response monitoring applications. In separate experiments, we study the response of red blood cells to the mechanical forces imposed on the cell by the optical tweezers. A laser power dependent deoxygenation of the red blood cell in the single beam trap is reported. Normal, sickle cell, and fetal red blood cells have a different behavior that enables the discrimination of the cell types based on this mechanochemical response. These results show the potential utility of LTRS for diagnosing and studying red blood cell diseases.

  4. A modular assembling platform for manufacturing of microsystems by optical tweezers

    Science.gov (United States)

    Ksouri, Sarah Isabelle; Aumann, Andreas; Ghadiri, Reza; Prüfer, Michael; Baer, Sebastian; Ostendorf, Andreas

    2013-09-01

    Due to the increased complexity in terms of materials and geometries for microsystems new assembling techniques are required. Assembling techniques from the semiconductor industry are often very specific and cannot fulfill all specifications in more complex microsystems. Therefore, holographic optical tweezers are applied to manipulate structures in micrometer range with highest flexibility and precision. As is well known non-spherical assemblies can be trapped and controlled by laser light and assembled with an additional light modulator application, where the incident laser beam is rearranged into flexible light patterns in order to generate multiple spots. The complementary building blocks are generated by a two-photon-polymerization process. The possibilities of manufacturing arbitrary microstructures and the potential of optical tweezers lead to the idea of combining manufacturing techniques with manipulation processes to "microrobotic" processes. This work presents the manipulation of generated complex microstructures with optical tools as well as a storage solution for 2PP assemblies. A sample holder has been developed for the manual feeding of 2PP building blocks. Furthermore, a modular assembling platform has been constructed for an `all-in-one' 2PP manufacturing process as a dedicated storage system. The long-term objective is the automation process of feeding and storage of several different 2PP micro-assemblies to realize an automated assembly process.

  5. Probing mechanical properties of Jurkat cells under the effect of ART using oscillating optical tweezers.

    Directory of Open Access Journals (Sweden)

    Samaneh Khakshour

    Full Text Available Acute lymphoid leukemia is a common type of blood cancer and chemotherapy is the initial treatment of choice. Quantifying the effect of a chemotherapeutic drug at the cellular level plays an important role in the process of the treatment. In this study, an oscillating optical tweezer was employed to characterize the frequency-dependent mechanical properties of Jurkat cells exposed to the chemotherapeutic agent, artesunate (ART. A motion equation for a bead bound to a cell was applied to describe the mechanical characteristics of the cell cytoskeleton. By comparing between the modeling results and experimental results from the optical tweezer, the stiffness and viscosity of the Jurkat cells before and after the ART treatment were obtained. The results demonstrate a weak power-law dependency of cell stiffness with frequency. Furthermore, the stiffness and viscosity were increased after the treatment. Therefore, the cytoskeleton cell stiffness as the well as power-law coefficient can provide a useful insight into the chemo-mechanical relationship of drug treated cancer cells and may serve as another tool for evaluating therapeutic performance quantitatively.

  6. Laser scanning confocal microscopy and laser tweezers based experiments to understand dentine-bacteria interactions

    Science.gov (United States)

    Peng, Sum Chee; Mohanty, Samarendra; Gupta, P. K.; Kishen, Anil

    2007-02-01

    Failure of endodontic treatment is commonly due to Enterococcal infection. In this study influence of chemical treatments of type-I collagen membrane by chemical agents commonly used in endodontic treatment on Enterococcus faecalis cell adherence was evaluated. In order to determine the change in number of adhering bacteria after chemical treatment, confocal laser scanning microscopy was used. For this, overnight culture of E faecalis in All Culture broth was applied to chemically treated type-I collagen membrane. It was found that Ca(OH) II treated groups had statistically significant (p value=0.05) increase in population of bacteria adherence. The change in adhesion force between bacteria and collagen was determined by using optical tweezers (1064 nm). For this experiment, Type-I collagen membrane was soaked for 5 mins in a media that contained 50% all culture media and 50% saturated Ca(OH) II . The membrane was spread on the coverslip, on which diluted bacterial suspension was added. The force of laser tweezers on the bacteria was estimated at different trap power levels using viscous drag method and trapping stiffness was calculated using Equipartition theorem method. Presence of Ca(OH) II was found to increase the cell-substrate adherence force from 0.38pN to >2.1pN. Together, these experiments show that it was highly probable that the increase in adherence to collagen was due to a stronger adhesion in the presence of Ca (OH) II.

  7. Application of optical tweezers and excimer laser to study protoplast fusion

    Science.gov (United States)

    Kantawang, Titirat; Samipak, Sompid; Limtrakul, Jumras; Chattham, Nattaporn

    2015-07-01

    Protoplast fusion is a physical phenomenon that two protoplasts come in contact and fuse together. Doing so, it is possible to combine specific genes from one protoplast to another during fusion such as drought resistance and disease resistance. There are a few possible methods to induce protoplast fusion, for example, electrofusion and chemical fusion. In this study, chemical fusion was performed with laser applied as an external force to enhance rate of fusion and observed under a microscope. Optical tweezers (1064 nm with 100X objective N.A. 1.3) and excimer laser (308 nm LMU-40X-UVB objective) were set with a Nikon Ti-U inverted microscope. Samples were prepared by soaking in hypertonic solution in order to induce cell plasmolysis. Elodea Canadensis and Allium cepa plasmolysed leaves were cut and observed under microscope. Concentration of solution was varied to induce difference turgor pressures on protoplasts pushing at cell wall. Free protoplasts in solution were trapped by optical tweezers to study the effect of Polyethylene glycol (PEG) solution. PEG was diluted by Ca+ solution during the process to induced protoplast cell contact and fusion. Possibility of protoplast fusion by excimer laser was investigated and found possible. Here we report a novel tool for plant cell fusion using excimer laser. Plant growth after cell fusion is currently conducted.

  8. A novel single fiber optical tweezers based on light-induced thermal effect

    Science.gov (United States)

    Zhang, Yu; Liu, Zhihai; Liang, Peibo; Zhang, Yaxun; Zhao, Enming; Yang, Jun; Yuan, Libo

    2015-07-01

    We present and demonstrate a novel single fiber optical tweezers which can trap and launch (clean) a target polystyrene (PS) microsphere (diameter~10μm) with independent control by using two wavelengths beams: 980nm and 1480nm. We employ 980nm laser beam to trap the target PS microsphere by molding the fiber tip into a special tapered-shape; and we employ 1480nm laser beam to launch the trapped PS microsphere with a certain velocity by using the thermophoresis force generated from the thermal effect due to the high absorption of the 1480nm laser beams in water. When the launching force is smaller than the trapping force, the PS microsphere will be trapped near the fiber tip, and the launching force will blow away other PS microspheres in the workspace realizing the cleaning function; When the launching force is larger than the trapping force, the trapped PS microsphere will be launched away from the fiber tip with a certain velocity and towards a certain direction, realizing the launching function. This PS microsphere launching and cleaning functions expanded new features of single fiber optical tweezers, providing for the possibility of more practical applications in the micro manipulation research fields.

  9. New approaches in the design of magnetic tweezers–current magnetic tweezers

    International Nuclear Information System (INIS)

    Bessalova, Valentina; Perov, Nikolai; Rodionova, Valeria

    2016-01-01

    The main advantages of the magnetic tweezers are the low price and simplicity of use. However the range of their application is reduced due to shortcomings like, for example, the remanent induction of the core and interaction between ferromagnetic cores. We present the new design of magnetic tweezers–Current Magnetic Tweezers (CMT) that allow particle manipulation by means of the magnetic field generated by the electric currents flowing through the non-magnetic wires. Arranging wires in different geometric shapes allows the particle movement either in two or three dimensions. Forces acting on the magnetic particles with the magnetic moment of 2·10 −11 A m 2 at distances up to 1 mm had been experimentally measured. It is established that a current of about 1 A at a 1 mm distance generates force of (approximately) 3 pN which is consistent with theoretical estimates. - Highlights: • We suggest the idea and the results of the test the prototype based on 3 wire's system that allows manipulation of nanoparticles on XY plane.

  10. Binding mechanism of PicoGreen to DNA characterized by magnetic tweezers and fluorescence spectroscopy.

    Science.gov (United States)

    Wang, Ying; Schellenberg, Helene; Walhorn, Volker; Toensing, Katja; Anselmetti, Dario

    2017-09-01

    Fluorescent dyes are broadly used in many biotechnological applications to detect and visualize DNA molecules. However, their binding to DNA alters the structural and nanomechanical properties of DNA and, thus, interferes with associated biological processes. In this work we employed magnetic tweezers and fluorescence spectroscopy to investigate the binding of PicoGreen to DNA at room temperature in a concentration-dependent manner. PicoGreen is an ultrasensitive quinolinium nucleic acid stain exhibiting hardly any background signal from unbound dye molecules. By means of stretching and overwinding single, torsionally constrained, nick-free double-stranded DNA molecules, we acquired force-extension and supercoiling curves which allow quantifying DNA contour length, persistence length and other thermodynamical binding parameters, respectively. The results of our magnetic tweezers single-molecule binding study were well supported through analyzing the fluorescent spectra of stained DNA. On the basis of our work, we could identify a concentration-dependent bimodal binding behavior, where, apparently, PicoGreen associates to DNA as an intercalator and minor-groove binder simultaneously.

  11. A study of red blood cell deformability in diabetic retinopathy using optical tweezers

    Science.gov (United States)

    Smart, Thomas J.; Richards, Christopher J.; Bhatnagar, Rhythm; Pavesio, Carlos; Agrawal, Rupesh; Jones, Philip H.

    2015-08-01

    Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus (DM) in which high blood sugar levels cause swelling, leaking and occlusions in the blood vessels of the retina, often resulting in a loss of sight. The microvascular system requires red blood cells (RBCs) to undergo significant cellular deformation in order to pass through vessels whose diameters are significantly smaller than their own. There is evidence to suggest that DM impairs the deformability of RBCs, and this loss of deformability has been associated with diabetic kidney disease (or nephropathy) - another microvascular complication of DM. However, it remains unclear whether reduced deformability of RBCs correlates with the presence of DR. Here we present an investigation into the deformability of RBCs in patients with diabetic retinopathy using optical tweezers. To extract a value for the deformability of RBCs we use a dual-trap optical tweezers set-up to stretch individual RBCs. RBCs are trapped directly (i.e. without micro-bead handles), so rotate to assume a `side-on' orientation. Video microscopy is used to record the deformation events, and shape analysis software is used to determine parameters such as initial and maximum RBC length, allowing us to calculate the deformability for each RBC. A small decrease in deformability of diabetes cells subject to this stretching protocol is observed when compared to control cells. We also report on initial results on three dimensional imaging of individual RBCs using defocussing microscopy.

  12. Optical tweezers and non-ratiometric fluorescent-dye-based studies of respiration in sperm mitochondria

    Science.gov (United States)

    Chen, Timothy; Shi, Linda Z.; Zhu, Qingyuan; Chandsawangbhuwana, Charlie; Berns, Michael W.

    2011-04-01

    The purpose of this study is to investigate how the mitochondrial membrane potential affects sperm motility using laser tweezers and a non-ratiometric fluorescent probe, DiOC6(3). A 1064 nm Nd:YVO4 continuous wave laser was used to trap motile sperm at a power of 450 mW in the trap spot. Using customized tracking software, the curvilinear velocity (VCL) and the escape force from the laser tweezers were measured. Human (Homo sapiens), dog (Canis lupis familiaris) and drill (Mandrillus leucophaeus) sperm were treated with DiOC6(3) to measure the membrane potential in the mitochondria-rich sperm midpieces. Sperm from all three species exhibited an increase in fluorescence when treated with the DiOC6(3). When a cyanide inhibitor (CCCP) of aerobic respiration was applied, sperm of all three species exhibited a reduction in fluorescence to pre-dye levels. With respect to VCL and escape force, the CCCP had no effect on dog or human sperm, suggesting a major reliance upon anaerobic respiration (glycolysis) for ATP in these two species. Based on the preliminary study on drill sperm, CCCP caused a drop in the VCL, suggesting potential reliance on both glycolysis and aerobic respiration for motility. The results demonstrate that optical trapping in combination with DiOC6(3) is an effective way to study sperm motility and energetics.

  13. Auto- and cross-power spectral analysis of dual trap optical tweezer experiments using Bayesian inference.

    Science.gov (United States)

    von Hansen, Yann; Mehlich, Alexander; Pelz, Benjamin; Rief, Matthias; Netz, Roland R

    2012-09-01

    The thermal fluctuations of micron-sized beads in dual trap optical tweezer experiments contain complete dynamic information about the viscoelastic properties of the embedding medium and-if present-macromolecular constructs connecting the two beads. To quantitatively interpret the spectral properties of the measured signals, a detailed understanding of the instrumental characteristics is required. To this end, we present a theoretical description of the signal processing in a typical dual trap optical tweezer experiment accounting for polarization crosstalk and instrumental noise and discuss the effect of finite statistics. To infer the unknown parameters from experimental data, a maximum likelihood method based on the statistical properties of the stochastic signals is derived. In a first step, the method can be used for calibration purposes: We propose a scheme involving three consecutive measurements (both traps empty, first one occupied and second empty, and vice versa), by which all instrumental and physical parameters of the setup are determined. We test our approach for a simple model system, namely a pair of unconnected, but hydrodynamically interacting spheres. The comparison to theoretical predictions based on instantaneous as well as retarded hydrodynamics emphasizes the importance of hydrodynamic retardation effects due to vorticity diffusion in the fluid. For more complex experimental scenarios, where macromolecular constructs are tethered between the two beads, the same maximum likelihood method in conjunction with dynamic deconvolution theory will in a second step allow one to determine the viscoelastic properties of the tethered element connecting the two beads.

  14. Kinetics of DNA translocase SpoIIIE studied by dual optical tweezers

    Science.gov (United States)

    Ling, Lin; Qu, E.; Guo, Honglian; Xu, Chunhua; Li, Zhaolin; Huang, Lu; Zhang, Daozhong; Li, Zhiyuan

    2009-11-01

    DNA translocase SpoIIIE protein is a kind of motor proteins, which transports DNA from one side of the membrane to the other side, so it plays an important role in cell division. In experiment, λDNA is labeled on one end with biotin and the other with digoxigenin. In this work we study kinetics of DNA translocase SpoIIIE by means of dual optical tweezers. In our experiment, λDNA is tethered between streptavidin-coated polystyrene bead and antidigoxigenin-coated polystyrene bead held by dual optical tweezers. One trap is immovable, and the other is movable. When SpoIIIE protein transports DNA, the length of DNA changes. The length change can be calculated according to the displacement of the trapped bead, which is detected by quadrant photodiode. When SpoIIIE transports DNA, DNA is shortened by up to about 500nm, then as the translocation stops, the DNA returns to its normal length, and this process repeats time and time again. The most probable speed that SpoIIIE transports DNA is 710nm/s.

  15. Optical tweezers and non-ratiometric fluorescent-dye-based studies of respiration in sperm mitochondria

    International Nuclear Information System (INIS)

    Chen, Timothy; Shi, Linda Z; Zhu, Qingyuan; Chandsawangbhuwana, Charlie; Berns, Michael W

    2011-01-01

    The purpose of this study is to investigate how the mitochondrial membrane potential affects sperm motility using laser tweezers and a non-ratiometric fluorescent probe, DiOC 6 (3). A 1064 nm Nd:YVO4 continuous wave laser was used to trap motile sperm at a power of 450 mW in the trap spot. Using customized tracking software, the curvilinear velocity (VCL) and the escape force from the laser tweezers were measured. Human (Homo sapiens), dog (Canis lupis familiaris) and drill (Mandrillus leucophaeus) sperm were treated with DiOC 6 (3) to measure the membrane potential in the mitochondria-rich sperm midpieces. Sperm from all three species exhibited an increase in fluorescence when treated with the DiOC 6 (3). When a cyanide inhibitor (CCCP) of aerobic respiration was applied, sperm of all three species exhibited a reduction in fluorescence to pre-dye levels. With respect to VCL and escape force, the CCCP had no effect on dog or human sperm, suggesting a major reliance upon anaerobic respiration (glycolysis) for ATP in these two species. Based on the preliminary study on drill sperm, CCCP caused a drop in the VCL, suggesting potential reliance on both glycolysis and aerobic respiration for motility. The results demonstrate that optical trapping in combination with DiOC 6 (3) is an effective way to study sperm motility and energetics

  16. Real-time identification of the singleness of a trapped bead in optical tweezers.

    Science.gov (United States)

    Hu, Chunguang; Su, Chenguang; Yun, Zelin; Wang, Sirong; He, Chengzhi; Gao, Xiaoqing; Li, Shuai; Li, Hongbin; Hu, Xiaodong; Hu, Xiaotang

    2018-02-10

    Beads trapped in optical tweezers are aligned along the optical propagation direction, which makes it difficult to determine the number of beads with bright-field microscopy. This problem also dramatically influences the measurement of the optical trapping based single-molecule force spectroscopy. Here, we propose a video processing approach to count the number of trapped micro-objects in real time. The approach uses a normalized cross-correlation algorithm and image enhancement techniques to amplify a slight change of the image induced by the entry of an exotic object. As tested, this method introduces a ∼10% change per bead to the image similarity, and up to four beads, one-by-one falling into the trap, are identified. Moreover, the feasibility of the above analysis in a moving trap is investigated. A movement of the trap leads to a fluctuation of less than 2% for the similarity signal and can be ignored in most cases. The experimental results prove that image similarity measurement is a sensitive way to monitor the interruption, which is very useful, especially during experiments. In addition, the approach is easy to apply to an existing optical tweezers system.

  17. Interrogating the activities of conformational deformed enzyme by single-molecule fluorescence-magnetic tweezers microscopy

    Science.gov (United States)

    Guo, Qing; He, Yufan; Lu, H. Peter

    2015-01-01

    Characterizing the impact of fluctuating enzyme conformation on enzymatic activity is critical in understanding the structure–function relationship and enzymatic reaction dynamics. Different from studying enzyme conformations under a denaturing condition, it is highly informative to manipulate the conformation of an enzyme under an enzymatic reaction condition while monitoring the real-time enzymatic activity changes simultaneously. By perturbing conformation of horseradish peroxidase (HRP) molecules using our home-developed single-molecule total internal reflection magnetic tweezers, we successfully manipulated the enzymatic conformation and probed the enzymatic activity changes of HRP in a catalyzed H2O2–amplex red reaction. We also observed a significant tolerance of the enzyme activity to the enzyme conformational perturbation. Our results provide a further understanding of the relation between enzyme behavior and enzymatic conformational fluctuation, enzyme–substrate interactions, enzyme–substrate active complex formation, and protein folding–binding interactions. PMID:26512103

  18. High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments.

    Science.gov (United States)

    Lin, Jun; Valentine, Megan T

    2012-05-01

    We present the design, calibration, and testing of a magnetic tweezers device that employs two pairs of permanent neodymium iron boron magnets surrounded by low-carbon steel focusing tips to apply large forces to soft materials for microrheology experiments. Our design enables the application of forces in the range of 1-1800 pN to ∼4.5 μm paramagnetic beads using magnet-bead separations in the range of 0.3-20 mm. This allows the use of standard coverslips and sample geometries. A high speed camera, custom LED-based illumination scheme, and mechanically stabilized measurement platform are employed to enable the measurement of materials with viscoelastic moduli as high as ∼1 kPa.

  19. High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lin Jun [Department of Mechanical Engineering, University of California, Santa Barbara, California 93106 (United States); Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106 (United States); Valentine, Megan T. [Department of Mechanical Engineering, University of California, Santa Barbara, California 93106 (United States)

    2012-05-15

    We present the design, calibration, and testing of a magnetic tweezers device that employs two pairs of permanent neodymium iron boron magnets surrounded by low-carbon steel focusing tips to apply large forces to soft materials for microrheology experiments. Our design enables the application of forces in the range of 1-1800 pN to {approx}4.5 {mu}m paramagnetic beads using magnet-bead separations in the range of 0.3-20 mm. This allows the use of standard coverslips and sample geometries. A high speed camera, custom LED-based illumination scheme, and mechanically stabilized measurement platform are employed to enable the measurement of materials with viscoelastic moduli as high as {approx}1 kPa.

  20. Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers.

    Science.gov (United States)

    Farré, Arnau; van der Horst, Astrid; Blab, Gerhard A; Downing, Benjamin P B; Forde, Nancy R

    2010-04-01

    The well calibrated force-extension behaviour of single double-stranded DNA molecules was used as a standard to investigate the performance of phase-only holographic optical tweezers at high forces. Specifically, the characteristic overstretch transition at 65 pN was found to appear where expected, demonstrating (1) that holographic optical trap calibration using thermal fluctuation methods is valid to high forces; (2) that the holographic optical traps are harmonic out to >250 nm of 2.1 mum particle displacement; and (3) that temporal modulations in traps induced by the spatial light modulator (SLM) do not affect the ability of optical traps to hold and steer particles against high forces. These studies demonstrate a new high-force capability for holographic optical traps achievable by SLM technologies. ((c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  1. Micro-particle manipulation by single beam acoustic tweezers based on hydrothermal PZT thick film

    International Nuclear Information System (INIS)

    Zhu, Benpeng; Xu, Jiong; Yang, Xiaofei; Li, Ying; Lee, Changyang; Zhou, Qifa; Shung, K. Kirk; Wang, Tian; Xiong, Ke; Shiiba, Michihisa; Takeuchi, Shinichi

    2016-01-01

    Single-beam acoustic tweezers (SBAT), used in laboratory-on-a-chip (LOC) device has promising implications for an individual micro-particle contactless manipulation. In this study, a freestanding hydrothermal PZT thick film with excellent piezoelectric property (d 33 = 270 pC/N and k t = 0.51) was employed for SBAT applications and a press-focusing technology was introduced. The obtained SBAT, acting at an operational frequency of 50 MHz, a low f-number (∼0.9), demonstrated the capability to trap and manipulate a micro-particle sized 10μm in the distilled water. These results suggest that such a device has great potential as a manipulator for a wide range of biomedical and chemical science applications.

  2. 3D Manipulation of Protein Microcrystals with Optical Tweezers for X-ray Crystallography

    International Nuclear Information System (INIS)

    Hikima, T; Hashimoto, K; Murakami, H; Ueno, G; Kawano, Y; Hirata, K; Hasegawa, K; Kumasaka, T; Yamamoto, M

    2013-01-01

    In some synchrotron facilities such as SPring-8, X-ray microbeams have been utilized for protein crystallography, allowing users to collect diffraction data from a protein microcrystal. Usually, a protein crystal is picked up manually from a crystallization droplet. However it is very difficult to manipulate the protein microcrystals which are very small and fragile against a shock and changes of temperature and solvent condition. We have been developing an automatic system applying the optical tweezers with two lensed fiber probes to manipulate the fragile protein microcrystal. The system succeeded in trapping a crystal and levitating it onto the cryoloop in the solvent. X-ray diffraction measurement for the manipulated protein microcrystals indicated that laser irradiation and trap with 1064nm wavelength hardly affected the result of X-ray structural analysis.

  3. Rapid feedback control and stabilization of an optical tweezers with a budget microcontroller

    International Nuclear Information System (INIS)

    Nino, Daniel; Wang, Haowei; N Milstein, Joshua

    2014-01-01

    Laboratories ranging the scientific disciplines employ feedback control to regulate variables within their experiments, from the flow of liquids within a microfluidic device to the temperature within a cell incubator. We have built an inexpensive, yet fast and rapidly deployed, feedback control system that is straightforward and flexible to implement from a commercially available Arduino Due microcontroller. This is in comparison with the complex, time-consuming and often expensive electronics that are commonly implemented. As an example of its utility, we apply our feedback controller to the task of stabilizing the main trapping laser of an optical tweezers. The feedback controller, which is inexpensive yet fast and rapidly deployed, was implemented from hacking an open source Arduino Due microcontroller. Our microcontroller based feedback system can stabilize the laser intensity to a few tenths of a per cent at 200 kHz, which is an order of magnitude better than the laser's base specifications, illustrating the utility of these devices. (paper)

  4. In Situ Raman Spectroscopy of COOH-Functionalized SWCNTs Trapped with Optoelectronic Tweezers

    Directory of Open Access Journals (Sweden)

    Peter J. Pauzauskie

    2012-01-01

    Full Text Available Optoelectronic tweezers (OETs were used to trap and deposit aqueous dispersions of carboxylic-acid-functionalized single-walled carbon nanotube bundles. Dark-field video microscopy was used to visualize the dynamics of the bundles both with and without virtual electrodes, showing rapid accumulation of carbon nanotubes when optical virtual electrodes are actuated. Raman microscopy was used to probe SWCNT materials following deposition onto metallic fiducial markers as well as during trapping. The local carbon nanotube concentration was observed to increase rapidly during trapping by more than an order of magnitude in less than one second due to localized optical dielectrophoresis forces. This combination of enrichment and spectroscopy with a single laser spot suggests a broad range of applications in physical, chemical, and biological sciences.

  5. Rapid feedback control and stabilization of an optical tweezers with a budget microcontroller

    Science.gov (United States)

    Nino, Daniel; Wang, Haowei; Milstein, Joshua N.

    2014-09-01

    Laboratories ranging the scientific disciplines employ feedback control to regulate variables within their experiments, from the flow of liquids within a microfluidic device to the temperature within a cell incubator. We have built an inexpensive, yet fast and rapidly deployed, feedback control system that is straightforward and flexible to implement from a commercially available Arduino Due microcontroller. This is in comparison with the complex, time-consuming and often expensive electronics that are commonly implemented. As an example of its utility, we apply our feedback controller to the task of stabilizing the main trapping laser of an optical tweezers. The feedback controller, which is inexpensive yet fast and rapidly deployed, was implemented from hacking an open source Arduino Due microcontroller. Our microcontroller based feedback system can stabilize the laser intensity to a few tenths of a per cent at 200 kHz, which is an order of magnitude better than the laser's base specifications, illustrating the utility of these devices.

  6. Studies of viral DNA packaging motors with optical tweezers: a comparison of motor function in bacteriophages φ29, λ, and T4

    Science.gov (United States)

    Smith, Douglas E.; Fuller, Derek N.; Raymer, Dorian M.; Rickgauer, Peter; Grimes, Shelley; Jardine, Paul J.; Anderson, Dwight L.; Catalano, Carlos E.; Kottadiel, Vishal; Rao, Venigalla B.

    2007-09-01

    A key step in the assembly of many viruses is the packaging of double-stranded DNA into a viral procapsid (an empty protein shell) by the action of an ATP-powered portal motor complex. We have developed methods to measure the packaging of single DNA molecules into single viral proheads in real time using optical tweezers. We can measure DNA binding and initiation of translocation, the DNA translocation dynamics, and the filling of the capsid against resisting forces. In addition to studying bacteriophage φ29, we have recently extended these methods to study the E. coli bacteriophages λ and T4, two important model systems in molecular biology. The three systems have different capsid sizes/shapes, genome lengths, and biochemical and structural differences in their packaging motors. Here, we compare and contrast these three systems. We find that all three motors translocate DNA processively and generate very large forces, each exceeding 50 piconewtons, ~20x higher force than generated by the skeletal muscle myosin 2 motor. This high force generation is required to overcome the forces resisting the confinement of the stiff, highly charged DNA at high density within the viral capsids. However, there are also striking differences between the three motors: they exhibit different DNA translocation rates, degrees of static and dynamic disorder, responses to load, and pausing and slipping dynamics.

  7. Portable magnetic tweezers device enables visualization of the three-dimensional microscale deformation of soft biological materials.

    Science.gov (United States)

    Yang, Yali; Lin, Jun; Meschewski, Ryan; Watson, Erin; Valentine, Megan T

    2011-07-01

    We have designed and built a magnetic tweezers device that enables the application of calibrated stresses to soft materials while simultaneously measuring their microscale deformation using confocal microscopy. Unlike previous magnetic tweezers designs, our device is entirely portable, allowing easy use on microscopes in core imaging facilities or in collaborators' laboratories. The imaging capabilities of the microscope are unimpaired, enabling the 3-D structures of fluorescently labeled materials to be precisely determined under applied load. With this device, we can apply a large range of forces (~1-1200 pN) over micron-scale contact areas to beads that are either embedded within 3-D matrices or attached to the surface of thin slab gels. To demonstrate the usefulness of this instrument, we have studied two important and biologically relevant materials: polyacrylamide-based hydrogel films typical of those used in cell traction force microscopy, and reconstituted networks of microtubules, essential cytoskeletal filaments.

  8. Holographic Raman tweezers controlled by multi-modal natural user interface

    International Nuclear Information System (INIS)

    Tomori, Zoltán; Keša, Peter; Nikorovič, Matej; Valušová, Eva; Antalík, Marián; Kaňka, Jan; Jákl, Petr; Šerý, Mojmír; Bernatová, Silvie; Zemánek, Pavel

    2016-01-01

    Holographic optical tweezers provide a contactless way to trap and manipulate several microobjects independently in space using focused laser beams. Although the methods of fast and efficient generation of optical traps are well developed, their user friendly control still lags behind. Even though several attempts have appeared recently to exploit touch tablets, 2D cameras, or Kinect game consoles, they have not yet reached the level of natural human interface. Here we demonstrate a multi-modal ‘natural user interface’ approach that combines finger and gaze tracking with gesture and speech recognition. This allows us to select objects with an operator’s gaze and voice, to trap the objects and control their positions via tracking of finger movement in space and to run semi-automatic procedures such as acquisition of Raman spectra from preselected objects. This approach takes advantage of the power of human processing of images together with smooth control of human fingertips and downscales these skills to control remotely the motion of microobjects at microscale in a natural way for the human operator. (paper)

  9. Force measuring optical tweezers system for long time measurements of P pili stability

    Science.gov (United States)

    Andersson, Magnus; Fällman, Erik; Uhlin, Bernt Eric; Axner, Ove

    2006-02-01

    A force-measuring optical tweezers instrumentation and long time measurements of the elongation and retraction of bacterial fimbriae from Uropathogenic E. coli (UPEC) under strain are presented. The instrumentation is presented in some detail. Special emphasis is given to measures taken to reduce the influence of noise and drifts in the system and from the surrounding, which makes long term force measurements possible. Individual P pili from UPEC bacteria were used as a biological model system for repetitive unfolding and refolding cycles of bacterial fimbriae under equilibrium conditions. P pili have evolved into a three-dimensional helix-like structure, the PapA rod, that can be successively and significantly elongated and/or unfolded when exposed to external forces. The instrumentation is used for characterization of the force-vs.-elongation response of the PapA rod of individual P pili, with emphasis on the long time stability of the forced unfolding and refolding of the helical structure of the PapA rod. The results show that the PapA rod is capable of withstanding extensive strain, leading to a complete unfolding of the helical structure, repetitive times during the life cycle of a bacterium without any noticeable alteration of the mechanical properties of the P pili. This function is believed to be importance for UPEC bacteria in vivo since it provides a close contact to a host cell (which is an initial step of invasion) despite urine cleaning attempts.

  10. Dynamic translocation of ligand-complexed DNA through solid-state nanopores with optical tweezers

    International Nuclear Information System (INIS)

    Sischka, Andy; Spiering, Andre; Anselmetti, Dario; Khaksar, Maryam; Laxa, Miriam; Koenig, Janine; Dietz, Karl-Josef

    2010-01-01

    We investigated the threading and controlled translocation of individual lambda-DNA (λ-DNA) molecules through solid-state nanopores with piconewton force sensitivity, millisecond time resolution and picoampere ionic current sensitivity with a set-up combining quantitative 3D optical tweezers (OT) with electrophysiology. With our virtually interference-free OT set-up the binding of RecA and single peroxiredoxin protein molecules to λ-DNA was quantitatively investigated during dynamic translocation experiments where effective forces and respective ionic currents of the threaded DNA molecule through the nanopore were measured during inward and outward sliding. Membrane voltage-dependent experiments of reversible single protein/DNA translocation scans yield hysteresis-free, asymmetric single-molecule fingerprints in the measured force and conductance signals that can be attributed to the interplay of optical trap and electrostatic nanopore potentials. These experiments allow an exact localization of the bound protein along the DNA strand and open fascinating applications for label-free detection of DNA-binding ligands, where structural and positional binding phenomena can be investigated at a single-molecule level.

  11. Trapping, manipulation and rapid rotation of NBD-C8 fluorescent single microcrystals in optical tweezers

    International Nuclear Information System (INIS)

    GALAUP, Jean-Pierre; RODRIGUEZ-OTAZO, Mariela; AUGIER-CALDERIN, Angel; LAMERE; Jean-Francois; FERY-FORGUES, Suzanne

    2009-01-01

    We have built an optical tweezers experiment based on an inverted microscope to trap and manipulate single crystals of micro or sub-micrometer size made from fluorescent molecules of 4-octylamino-7-nitrobenzoxadiazole (NBD-C8). These single crystals have parallelepiped shapes and exhibit birefringence properties evidenced through optical experiments between crossed polarizers in a polarizing microscope. The crystals are uniaxial with their optical axis oriented along their largest dimension. Trapped in the optical trap, the organic micro-crystals are oriented in such a way that their long axis is along the direction of the beam propagation, and their short axis follows the direction of the linear polarization. Therefore, with linearly polarized light, simply rotating the light polarization can orient the crystal. When using circularly or only elliptically polarized light, the crystal can spontaneously rotate and reach rotation speed of several hundreds of turns per second. A surprising result has been observed: when the incident power is growing up, the rotation speed increases to reach a maximum value and then decreases even when the power is still growing up. Moreover, this evolution is irreversible. Different possible explanations can be considered. The development of a 3D control of the crystals by dynamical holography using liquid crystal spatial modulators will be presented and discussed on the basis of the most recent results obtained. (Author)

  12. Determination of femto Newton forces and fluid viscosity using optical tweezers: application to Leishmania amazonensis

    Science.gov (United States)

    Fontes, Adriana; Giorgio, Selma; de Castro, Archimedes B., Jr.; Neto, Vivaldo M.; Pozzo, Liliana d. Y.; Marques, Gustavo P.; Barbosa, Luiz C.; Cesar, Carlos L.

    2005-03-01

    The objective of this research is to use the displacements of a polystyrene microsphere trapped by an optical tweezers (OT) as a force transducer in mechanical measurements in life sciences. To do this we compared the theoretical optical and hydrodynamic models with experimental data under a broad variation of parameters such as fluid viscosity, refractive index, drag velocity and wall proximities. The laser power was measured after the objective with an integration sphere because normal power meters do not provide an accurate measurement for beam with high numerical apertures. With this careful laser power determination the plot of the optical force (calculated by the particle displacement) versus hydrodynamic force (calculated by the drag velocity) under very different conditions shows an almost 45 degrees straight line. This means that hydrodynamic models can be used to calibrate optical forces and vice-versa. With this calibration we observed the forces of polystyrene bead attached to the protozoa Leishmania amazonensis, responsible for a serious tropical disease. The force range is from 200 femto Newtons to 4 pico Newtons and these experiments shows that OT can be used for infection mechanism and chemotaxis studies in parasites. The other application was to use the optical force to measure viscosities of few microliters sample. Our result shows 5% accuracy measurements.

  13. Uncoiling mechanism of Klebsiella pneumoniae type 3 pili measured by using optical tweezers

    Science.gov (United States)

    Chen, Feng-Jung; Chan, Chia-Han; Liu, Kuo-Liang; Huang, Ying-Jung; Peng, Hwei-Ling; Chang, Hwan-You; Yew, Tri-Rung; Hsu, Ken Y.; Hsu, Long

    2007-09-01

    Pili are bacterial appendages that play many important roles in bacterial behaviors, physiology and interaction with hosts. Via pili, bacteria are able to adhere to, migrate onto, and colonize on host cells, mechanically. Different from the most studied type 1 and P type pili, which are rigid and thick with an average of 6~7 nm in diameter, type 3 pili are relatively tiny (3-5 nm in diameter) and flexible, and their biophysical properties remains unclear. By using optical tweezers, we found that the elongation processes of type 3 pili are divided into three phases: (1) elastic elongation, (2) uncoiling elongation, and (3) intrinsic elongation, separately. Besides, the uncoiling force of the recombinant pili displayed on the surface of E. coli [pmrkABCD V1F] is measured 20 pN in average stronger than that of E. coli [pmrkABCD V1]. This suggests that pilin MrkF is involved in determining the mechanical properties of the type 3 pili.

  14. Thermodynamic DNA Looping by a Two-Site Restriction Endonuclease Studied using Optical Tweezers

    Science.gov (United States)

    Gemmen, Gregory J.

    2005-03-01

    Many enzyme-DNA interactions involve multimeric protein complexes that bind at two distant sites such that the DNA is looped. An example is the type IIe restriction enzyme Sau3AI, which requires two recognition sites to cleave the DNA. Here we study this process at the single DNA level using force measuring optical tweezers. We characterize cleavage rates of single DNA molecules in the presence of Sau3AI as a function of enzyme concentration, incubation time, and the fractional extension of the DNA molecule. Activity is completely inhibited by tensions of a few picoNewtons. By replacing Mg^2+ with Ca^2+, the Sau3AI dimers form but do not cleave the DNA, thus trapping DNA loops. We are able to pull apart these loops, measuring the force needed and the length of DNA released for each. We also characterize the number and length distributions of these loops as a function of incubation time and DNA fractional extension. The results of these studies are discussed in the context of a Brownian dynamics model of DNA looping.

  15. Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers.

    Science.gov (United States)

    Elvira, Iris; Muñoz-Martínez, Juan F; Barroso, Álvaro; Denz, Cornelia; Ramiro, José B; García-Cabañes, Angel; Agulló-López, Fernando; Carrascosa, Mercedes

    2018-01-01

    Optical tools for manipulation and trapping of micro- and nano-objects are a fundamental issue for many applications in nano- and biotechnology. This work reports on the use of one such method, known as photovoltaic optoelectronics tweezers, to orientate and organize cylindrical microcrystals, specifically elongated zeolite L, on the surface of Fe-doped LiNbO 3 crystal plates. Patterns of aligned zeolites have been achieved through the forces and torques generated by the bulk photovoltaic effect. The alignment patterns with zeolites parallel or perpendicular to the substrate surface are highly dependent on the features of light distribution and crystal configuration. Moreover, dielectrophoretic chains of zeolites with lengths up to 100 μm have often been observed. The experimental results of zeolite trapping and alignment have been discussed and compared together with theoretical simulations of the evanescent photovoltaic electric field and the dielectrophoretic potential. They demonstrate the remarkable capabilities of the optoelectronic photovoltaic method to orientate and pattern anisotropic microcrystals. The combined action of patterning and alignment offers a unique tool to prepare functional nanostructures with potential applications in a variety of fields such as nonlinear optics or plasmonics.

  16. Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition

    International Nuclear Information System (INIS)

    Wang, Xiaolin; Gou, Xue; Chen, Shuxun; Yan, Xiao; Sun, Dong

    2013-01-01

    Isolation from rare cells and deposition of sorted cells with high accuracy for further study are critical to a wide range of biomedical applications. In the current paper, we report an automated cell manipulation tool with combined optical tweezers and a uniquely designed microwell array, which functions for recognition, isolation, assembly, transportation and deposition of the interesting cells. The microwell array allows the passive hydrodynamic docking of cells, while offering the opportunity to inspect the interesting cell phenotypes with high spatio-temporal resolution based on the flexible image processing technique. In addition, dynamic and parallel cell manipulation in three dimensions can realize the target cell levitation from microwell and pattern assembly with multiple optical traps. Integrated with the programmed motorized stage, the optically levitated and assembled cells can be transported and deposited to the predefined microenvironment, so the tool can facilitate the integration of other on-chip functionalities for further study without removing these isolated cells from the chip. Experiments on human embryonic stem cells and yeast cells are performed to demonstrate the effectiveness of the proposed cell manipulation tool. Besides the application to cell isolation and deposition, three other biological applications with this tool are also presented. (paper)

  17. Dynamic measurements and simulations of airborne picolitre-droplet coalescence in holographic optical tweezers

    International Nuclear Information System (INIS)

    Bzdek, Bryan R.; Reid, Jonathan P.; Collard, Liam; Sprittles, James E.; Hudson, Andrew J.

    2016-01-01

    We report studies of the coalescence of pairs of picolitre aerosol droplets manipulated with holographic optical tweezers, probing the shape relaxation dynamics following coalescence by simultaneously monitoring the intensity of elastic backscattered light (EBL) from the trapping laser beam (time resolution on the order of 100 ns) while recording high frame rate camera images (time resolution <10 μs). The goals of this work are to: resolve the dynamics of droplet coalescence in holographic optical traps; assign the origin of key features in the time-dependent EBL intensity; and validate the use of the EBL alone to precisely determine droplet surface tension and viscosity. For low viscosity droplets, two sequential processes are evident: binary coalescence first results from the overlap of the optical traps on the time scale of microseconds followed by the recapture of the composite droplet in an optical trap on the time scale of milliseconds. As droplet viscosity increases, the relaxation in droplet shape eventually occurs on the same time scale as recapture, resulting in a convoluted evolution of the EBL intensity that inhibits quantitative determination of the relaxation time scale. Droplet coalescence was simulated using a computational framework to validate both experimental approaches. The results indicate that time-dependent monitoring of droplet shape from the EBL intensity allows for robust determination of properties such as surface tension and viscosity. Finally, the potential of high frame rate imaging to examine the coalescence of dissimilar viscosity droplets is discussed.

  18. Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers

    DEFF Research Database (Denmark)

    Nørlykke, Simon F.; Flyvbjerg, Henrik

    2010-01-01

    Optical tweezers and atomic force microscope (AFM) cantilevers are often calibrated by fitting their experimental power spectra of Brownian motion. We demonstrate here that if this is done with typical weighted least-squares methods, the result is a bias of relative size between -2/n and + 1/n....... The fitted value for the characteristic frequency is not affected by this bias. For the AFM then, force measurements are not affected provided an independent length-scale calibration is available. For optical tweezers there is no such luck, since the spring constant is found as the ratio...... of the characteristic frequency and the diffusion coefficient. We give analytical results for the weight-dependent bias for the wide class of systems whose dynamics is described by a linear (integro)differential equation with additive noise, white or colored. Examples are optical tweezers with hydrodynamic self...

  19. AFM picking-up manipulation of the metaphase chromosome fragment by using the tweezers-type probe

    International Nuclear Information System (INIS)

    Yamanaka, Keiichiro; Saito, Masato; Shichiri, Motoharu; Sugiyama, Sigeru; Takamura, Yuzuru; Hashiguchi, Gen; Tamiya, Eiichi

    2008-01-01

    We have studied the development of a new procedure based on atomic force microscopy (AFM) for the analysis of metaphase chromosome. The aim of this study was to obtain detailed information about the specific locations of genes on the metaphase chromosome. In this research, we performed the manipulation of the metaphase chromosome by using novel AFM probes to obtain chromosome fragments of a smaller size than the ones obtained using the conventional methods, such as glass microneedles. We could pick up the fragment of the metaphase chromosome dissected by the knife-edged probe by using our tweezers-type probe

  20. Simultaneous three-dimensional tracking of individual signals from multi-trap optical tweezers using fast and accurate photodiode detection.

    Science.gov (United States)

    Ott, Dino; Nader, S; Reihani, S; Oddershede, Lene B

    2014-09-22

    Multiple-beam optical traps facilitate advanced trapping geometries and exciting discoveries. However, the increased manipulation capabilities come at the price of more challenging position and force detection. Due to unrivaled bandwidth and resolution, photodiode based detection is preferred over camera based detection in most single/dual-beam optical traps assays. However, it has not been trivial to implement photodiode based detection for multiple-beam optical traps. Here, we present a simple and efficient method based on spatial filtering for parallel photodiode detection of multiple traps. The technique enables fast and accurate 3D force and distance detection of multiple objects simultaneously manipulated by multiple-beam optical tweezers.

  1. Determination of fluid viscosity and femto Newton forces of Leishmania amazonensis using optical tweezers

    Science.gov (United States)

    Fontes, Adriana; Giorgio, Selma; de Castro, Archimedes, Jr.; Neto, Vivaldo M.; de Y. Pozzo, Liliana; de Thomaz, Andre A.; Barbosa, Luiz C.; Cesar, Carlos L.

    2005-08-01

    The displacements of a polystyrene microsphere trapped by an optical tweezers (OT) can be used as a force transducer for mechanical measurements in life sciences such as the measurement of forces of living microorganisms or the viscosity of local fluids. The technique we used allowed us to measure forces on the 200 femto Newtons to 4 pico Newtons range of the protozoa Leishmania amazonensis, responsible for a serious tropical disease. These observations can be used to understand the infection mechanism and chemotaxis of these parasites. The same technique was used to measure viscosities of few microliters sample with agreement with known samples better than 5%. To calibrate the force as a function of the microsphere displacement we first dragged the microsphere in a fluid at known velocity for a broad range of different optical and hydrodynamical parameters. The hydrodynamical model took into account the presence of two walls and the force depends on drag velocity, fluid viscosity and walls proximities, while the optical model in the geometric optics regime depends on the particle and fluid refractive indexes and laser power. To measure the high numerical (NA) aperture laser beam power after the objective we used an integration sphere to avoid the systematic errors of usual power meters for high NA beams. After this careful laser power measurement we obtained an almost 45 degrees straight line for the plot of the optical force (calculated by the particle horizontal displacement) versus hydrodynamic force (calculated by the drag velocity) under variation of all the parameters described below. This means that hydrodynamic models can be used to calibrate optical forces, as we have done for the parasite force measurement, or vice-versa, as we did for the viscosity measurements.

  2. Label-free detection of HIV-1 infected cells via integration of optical tweezers and photoluminescence spectroscopy

    Science.gov (United States)

    Lugongolo, Masixole Yvonne; Ombinda-Lemboumba, Saturnin; Noto, Luyanda Lunga; Maaza, Malik; Mthunzi-Kufa, Patience

    2018-02-01

    The human immunodeficiency virus-1 (HIV-1) is currently detected using conventional qualitative and quantitative tests to determine the presence or absence of HIV in blood samples. However, the approach of these tests detects the presence of either viral antibodies or viral RNA that require labelling which may be costly, sophisticated and time consuming. A label-free approach of detecting the presence of HIV is therefore desirable. Of note optical tweezers can be coupled with other technologies including spectroscopy, which also investigates light-matter interactions. For example, coupling of optical tweezers with luminescence spectroscopy techniques has emerged as a powerful tool in biology for micro-manipulation, detection and analysis of individual cells. Integration of optical techniques has enabled studying biological particles in a label-free manner, whilst detecting functional groups and other essential molecules within mixed populations of cells. In the current study, an optical trapping system coupled to luminescence spectroscopy was utilised to detect the presence of HIV infection in TZM-bl cells in vitro. This was performed by infecting TZM-bl cells with the ZM53 HIV-1 pseudovirus, and incubating them for 48 hours prior analysis. The differences between infected and uninfected cells were thereafter displayed as shown by the spectrographs obtained. Combination of these two techniques has a potential in the field of infectious disease diagnostics.

  3. Single-Molecule Manipulation of Double-Stranded DNA Using Optical Tweezers: Interaction Studies of DNA with RecA and YOYO-1

    NARCIS (Netherlands)

    Bennink, Martin L.; Scharer, Orlando D.; Kanaar, Ronald; Sakata-Sogawa, Kumiko; Schins, J.M.; Kanger, Johannes S.; de Grooth, B.G.; Greve, Jan

    1999-01-01

    By using optical tweezers and a specially designed flow cell with an integrated glass micropipette, we constructed a setup similar to that of Smith et al. (Science 271:795-799, 1996) in which an individual double-stranded DNA (dsDNA) molecule can be captured between two polystyrene beads. The first

  4. CELLULAR AND SUBCELLULAR LEVEL INVESTIGATION OF BIOLOGICAL OBJECTS BY MEANS OF FEMTOSECOND LASER OPTICAL TWEEZERS-SCALPEL

    Directory of Open Access Journals (Sweden)

    M. M. Rakityansky

    2009-01-01

    Full Text Available The aim of this work was developing of elements of the precise three-dimensional positioning technology of one or several micron and submicron size biological objects. Thereto a laboratory unit of hardware-software complex of optical femtosecond laser tweezers-scalpel was developed and constructed in the Joint institute for high temperatures RAS using material resources of Russia. Experimental data concerning a maximal manipulation speed of CHO and cells, produced from mammalian spinal ganglia (using protocols for producing pure culture of Schwann cells was received. Besides facts of interaction of laser radiation with intracellular structures that lead to unexpected behavior of cell in the zone of optical trap and change of maximal speed of cell manipulation were determined. 

  5. Using optical tweezers for measuring the interaction forces between human bone cells and implant surfaces: System design and force calibration

    International Nuclear Information System (INIS)

    Andersson, Martin; Madgavkar, Ashwin; Stjerndahl, Maria; Wu, Yanrong; Tan, Weihong; Duran, Randy; Niehren, Stefan; Mustafa, Kamal; Arvidson, Kristina; Wennerberg, Ann

    2007-01-01

    Optical tweezers were used to study the interaction and attachment of human bone cells to various types of medical implant materials. Ideally, the implant should facilitate cell attachment and promote migration of the progenitor cells in order to decrease the healing time. It is therefore of interest, in a controlled manner, to be able to monitor the cell adhesion process. Results from such studies would help foresee the clinical outcome of integrating medical implants. The interactions between two primary cell culture models, human gingival fibroblasts and bone forming human osteoblast cells, and three different implant materials, glass, titanium, and hydroxyapatite, were studied. A novel type of optical tweezers, which has a newly designed quadrant detector and a powerful 3 W laser was constructed and force calibrated using two different methods: one method in which the stiffness of the optical trap was obtained by monitoring the phase lag between the trap and the moved object when imposing a forced oscillation on the trapped object and another method in which the maximum trapping force was derived from the critical velocity at which the object escapes the trap. Polystyrene beads as well as cells were utilized for the calibrations. This is the first time that cells have been used directly for these types of force calibrations and, hence, direct measurements of forces exerted on cells can be performed, thus avoiding the difficulties often encountered when translating the results obtained from cell measurements to the calibrations obtained with reference materials. This more straightforward approach represents an advantage in comparison to established methods

  6. Using optical tweezers to examine the chemotactic force to a single inflammatory cell--eosinophil stimulated by chemoattractants prepared from Toxocara Canis larvae

    Science.gov (United States)

    Shih, Po-Chen; Su, Yi-Jr; Chen, Ke-Min; Jen, Lin-Ni; Liu, Cheng-tzu; Hsu, Long

    2005-08-01

    Granulocytes are a group of white blood cells belonging to the innate immune system in human and in murine in which eosinophils play an important role in worm infection-induced inflammation. The migration of these cells is well characterized and has been separated into four steps: rolling, adhesion, transendothelial migration, and chemotaxis, however, the physical characteristics of the chemotactic force to eosinophils from worm component remain largely unknown. Note that optical tweezers are featured in the manipulation of a single cell and the measurement of biological forces. Therefore, we propose to use optical tweezers to examine the chemotactic force to a eosinophil from a T. canis lavae preparation in terms of distance during the migration of eosinophil.

  7. tweezercalib 2.1: Faster version of MatLab package for precise calibration of optical tweezers

    Science.gov (United States)

    Hansen, Poul Martin; Tolic-Nørrelykke, Iva Marija; Flyvbjerg, Henrik; Berg-Sørensen, Kirstine

    2006-10-01

    New version program summaryTitle of program: tweezercalib Catalogue identifier:ADTV_v2_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTV_v2_1 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:no No. of lines in distributed program, including test data, etc.: 134 188 No. of bytes in distributed program, including test data, etc.: 1 050 368 Distribution format: tar.gz Programming language: MatLab (Mathworks Inc.), standard license Computer:General computer running MatLab (Mathworks Inc.) Operating system:Windows2000, Windows-XP, Linux RAM:Of order four times the size of the data file Classification:3, 4.14, 18, 23 Catalogue identifier of previous version: ADTV_v2_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 518 Does the new version supersede the previous version?: yes Nature of problem:Calibrate optical tweezers with precision by fitting theory to experimental power spectrum of position of bead doing Brownian motion in incompressible fluid, possibly near microscope cover slip, while trapped in optical tweezers. Thereby determine spring constant of optical trap and conversion factor for arbitrary-units-to-nanometers for detection system. The theoretical underpinnings of the procedure may be found in Ref. [3]. Solution method:Elimination of cross-talk between quadrant photo-diodes, output channels for positions (optional). Check that distribution of recorded positions agrees with Boltzmann distribution of bead in harmonic trap. Data compression and noise reduction by blocking method applied to power spectrum. Full accounting for hydrodynamic effects; Frequency-dependent drag force and interaction with nearby cover slip (optional). Full accounting for electronic filters (optional), for "virtual filtering" caused by detection system (optional). Full accounting for aliasing caused by finite sampling rate (optional). Standard non-linear least-squares fitting with custom written

  8. Probing cytoplasmic organization and the actin cytoskeleton of plant cells with optical tweezers

    NARCIS (Netherlands)

    Ketelaar, T.; Honing, van der H.S.; Emons, A.M.C.

    2010-01-01

    In interphase plant cells, the actin cytoskeleton is essential for intracellular transport and organization. To fully understand how the actin cytoskeleton functions as the structural basis for cytoplasmic organization, both molecular and physical aspects of the actin organization have to be

  9. Interactions between the breast cancer-associated MUC1 mucins and C-type lectin characterized by optical tweezers.

    Directory of Open Access Journals (Sweden)

    Soosan Hadjialirezaei

    Full Text Available Carbohydrate-protein interactions govern many crucial processes in biological systems including cell recognition events. We have used the sensitive force probe optical tweezers to quantify the interactions occurring between MGL lectins and MUC1 carrying the cancer-associated glycan antigens mucins Tn and STn. Unbinding forces of 7.6 pN and 7.1 pN were determined for the MUC1(Tn-MGL and MUC1(STn-MGL interactions, at a force loading rate of ~40 pN/s. The interaction strength increased with increasing force loading rate, to 27 and 37 pN at a force loading rate of ~ 310 pN/s. No interactions were detected between MGL and MUC1(ST, a glycoform of MUC1 also expressed by breast carcinoma cells. Interestingly, this glycan (ST can be found on proteins expressed by normal cells, although in this case not on MUC1. Additionally, GalNAc decorated polyethylene glycol displayed similar rupture forces as observed for MUC1(Tn and MUC1(STn when forced to unbind from MGL, indicating that GalNAc is an essential group in these interactions. Since the STn glycan decoration is more frequently found on the surface of carcinomas than the Tn glycan, the binding of MUC1 carrying STn to MGL may be more physiologically relevant and may be in part responsible for some of the characteristics of STn expressing tumours.

  10. Signatures of Nucleotide Analog Incorporation by an RNA-Dependent RNA Polymerase Revealed Using High-Throughput Magnetic Tweezers

    Directory of Open Access Journals (Sweden)

    David Dulin

    2017-10-01

    Full Text Available RNA viruses pose a threat to public health that is exacerbated by the dearth of antiviral therapeutics. The RNA-dependent RNA polymerase (RdRp holds promise as a broad-spectrum, therapeutic target because of the conserved nature of the nucleotide-substrate-binding and catalytic sites. Conventional, quantitative, kinetic analysis of antiviral ribonucleotides monitors one or a few incorporation events. Here, we use a high-throughput magnetic tweezers platform to monitor the elongation dynamics of a prototypical RdRp over thousands of nucleotide-addition cycles in the absence and presence of a suite of nucleotide analog inhibitors. We observe multiple RdRp-RNA elongation complexes; only a subset of which are competent for analog utilization. Incorporation of a pyrazine-carboxamide nucleotide analog, T-1106, leads to RdRp backtracking. This analysis reveals a mechanism of action for this antiviral ribonucleotide that is corroborated by cellular studies. We propose that induced backtracking represents a distinct mechanistic class of antiviral ribonucleotides.

  11. Dual-mode optical fiber-based tweezers for robust trapping and manipulation of absorbing particles in air

    Science.gov (United States)

    Sil, Souvik; Kanti Saha, Tushar; Kumar, Avinash; Bera, Sudipta K.; Banerjee, Ayan

    2017-12-01

    We develop an optical tweezers system using a single dual-mode optical fiber where mesoscopic absorbing particles can be trapped in three dimensions and manipulated employing photophoretic forces. We generate a superposition of fundamental and first order Hermite-Gaussian beam modes by the simple innovation of coupling a laser into a commercial optical fiber designed to be single mode for a wavelength higher than that of the laser. We achieve robust trapping of the absorbing particles for hours using both the pure fundamental and superposition mode beams and attain large manipulation velocities of ˜5 mm s-1 in the axial direction and ˜0.75 mm s-1 in the radial direction. We then demonstrate that the superposition mode is more effective in trapping and manipulation compared to the fundamental mode by around 80%, which may be increased several times by the use of a pure first order Hermite-Gaussian mode. The work has promising implications for trapping and spectroscopy of aerosols in air using simple optical fiber-based traps.

  12. Observing dynamics of chromatin fibers in Xenopus egg extracts by single DNA manipulation using a transverse magnetic tweezer setup

    Science.gov (United States)

    Yan, Jie; Skoko, Dunja; Marko, John; Maresca, Tom; Heald, Rebecca

    2005-03-01

    We have studied assembly of chromatin on single DNAs using Xenopus egg extracts and a specially designed magnetic tweezer setup which generates controlled force in the focal plane of the objective, allowing us to visualize and measure DNA extension under a wide range of constant tensions. We found, in the absence of ATP, interphase extracts assembled nucleosomes against DNA tensions of up to 3.5 piconewtons (pN). We observed force-induced disassembly and opening-closing fluctuations indicating our experiments were in mechano-chemical equilibrium. We found that the ATP-depleted reaction can do mechanical work of 27 kcal/mol per nucleosome, providing a measurement of the free energy difference between core histone octamers on and off DNA. Addition of ATP leads to highly dynamic behavior: time courses show processive runs of assembly and disassembly of not observed in the -ATP case, with forces of 2 pN leading to nearly complete fiber disassembly. Our study shows that ATP hydrolysis plays a major role in nucleosome rearrangement and removal, and suggests that chromatin in vivo may be subject to continual assembly and disassembly.

  13. Two-point active microrheology in a viscous medium exploiting a motional resonance excited in dual-trap optical tweezers

    Science.gov (United States)

    Paul, Shuvojit; Kumar, Randhir; Banerjee, Ayan

    2018-04-01

    Two-point microrheology measurements from widely separated colloidal particles approach the bulk viscosity of the host medium more reliably than corresponding single-point measurements. In addition, active microrheology offers the advantage of enhanced signal to noise over passive techniques. Recently, we reported the observation of a motional resonance induced in a probe particle in dual-trap optical tweezers when the control particle was driven externally [Paul et al., Phys. Rev. E 96, 050102(R) (2017), 10.1103/PhysRevE.96.050102]. We now demonstrate that the amplitude and phase characteristics of the motional resonance can be used as a sensitive tool for active two-point microrheology to measure the viscosity of a viscous fluid. Thus, we measure the viscosity of viscous liquids from both the amplitude and phase response of the resonance, and demonstrate that the zero crossing of the phase response of the probe particle with respect to the external drive is superior compared to the amplitude response in measuring viscosity at large particle separations. We compare our viscosity measurements with those using a commercial rheometer and obtain an agreement ˜1 % . The method can be extended to viscoelastic material where the frequency dependence of the resonance may provide further accuracy for active microrheological measurements.

  14. A polypeptide-DNA hybrid with selective linking capability applied to single molecule nano-mechanical measurements using optical tweezers.

    Directory of Open Access Journals (Sweden)

    Fatemeh Moayed

    Full Text Available Many applications in biosensing, biomaterial engineering and single molecule biophysics require multiple non-covalent linkages between DNA, protein molecules, and surfaces that are specific yet strong. Here, we present a novel method to join proteins and dsDNA molecule at their ends, in an efficient, rapid and specific manner, based on the recently developed linkage between the protein StrepTactin (STN and the peptide StrepTag II (ST. We introduce a two-step approach, in which we first construct a hybrid between DNA and a tandem of two STs peptides (tST. In a second step, this hybrid is linked to polystyrene bead surfaces and Maltose Binding Protein (MBP using STN. Furthermore, we show the STN-tST linkage is more stable against forces applied by optical tweezers than the commonly used biotin-Streptavidin (STV linkage. It can be used in conjunction with Neutravidin (NTV-biotin linkages to form DNA tethers that can sustain applied forces above 65 pN for tens of minutes in a quarter of the cases. The method is general and can be applied to construct other surface-DNA and protein-DNA hybrids. The reversibility, high mechanical stability and specificity provided by this linking procedure make it highly suitable for single molecule mechanical studies, as well as biosensing and lab on chip applications.

  15. Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy

    Directory of Open Access Journals (Sweden)

    Irène Tatischeff

    2012-11-01

    Full Text Available The joint use of 3 complementary techniques, namely, nanoparticle tracking analysis (NTA, cryo-electron microscopy (Cryo-EM and Raman tweezers microspectroscopy (RTM, is proposed for a rapid characterisation of extracellular vesicles (EVs of various origins. NTA is valuable for studying the size distribution and concentration, Cryo-EM is outstanding for the morphological characterisation, including observation of vesicle heterogeneity, while RTM provides the global chemical composition without using any exogenous label. The capabilities of this approach are evaluated on the example of cell-derived vesicles of Dictyostelium discoideum, a convenient general model for eukaryotic EVs. At least 2 separate species differing in chemical composition (relative amounts of DNA, lipids and proteins, presence of carotenoids were found for each of the 2 physiological states of this non-pathogenic microorganism, that is, cell growth and starvation-induced aggregation. These findings demonstrate the specific potency of RTM. In addition, the first Raman spectra of human urinary exosomes are reported, presumably constituting the primary step towards Raman characterisation of EVs for the purpose of human diseases diagnoses.

  16. Acoustic radiation force on a sphere in standing and quasi-standing zero-order Bessel beam tweezers

    International Nuclear Information System (INIS)

    Mitri, F.G.

    2008-01-01

    Starting from the exact acoustic scattering from a sphere immersed in an ideal fluid and centered along the propagation axis of a standing or quasi-standing zero-order Bessel beam, explicit partial-wave representations for the radiation force are derived. A standing or a quasi-standing acoustic field is the result of propagating two equal or unequal amplitude zero-order Bessel beams, respectively, along the same axis but in opposite sense. The Bessel beam is characterized by the half-cone angle β of its plane wave components, such that β = 0 represents a plane wave. It is assumed here that the half-cone angle β for each of the counter-propagating acoustic Bessel beams is equal. Fluid, elastic and viscoelastic spheres immersed in water are treated as examples. Results indicate the capability of manipulating spherical targets based on their mechanical and acoustical properties. This condition provides an impetus for further designing acoustic tweezers operating with standing or quasi-standing Bessel acoustic waves. Potential applications include particle manipulation in micro-fluidic lab-on-chips as well as in reduced gravity environments

  17. The study of adhesive forces between the type-3 fimbriae of Klebsiella pneumoniae and collagen-coated surfaces by using optical tweezers

    Science.gov (United States)

    Chan, Chiahan; Fan, Chia-chieh; Huang, Ying-Jung; Peng, Hwei-Ling; Long, Hsu

    2004-10-01

    Adherence to host cells by a bacterial pathogen is a critical step for establishment of infection. It will contribute greatly to the understanding of bacterial pathogenesis by studying the biological force between a single pair of pathogen and host cell. In our experiment, we use a calibrated optical tweezers system to detach a single Klebsiella pneumoniae, the pathogen, from collagen, the host. By gradually increasing the laser power of the optical tweezers until the Klebsiella pneumoniae is detached from the collagen, we obtain the magnitude of the adhesive force between them. This happens when the adhesive force is barely equal to the trapping force provided by the optical tweezers at that specific laser power. This study is important because Klebsiella pneumoniae is an opportunistic pathogen which causes suppurative lesions, urinary and respiratory tract infections. It has been proved that type 3 fimbrial adhesin (mrkD) is strongly associated with the adherence of Klebsiella pneumoniae. Besides, four polymorphic mrkD alleles: namely, mrkDv1, v2, v3, and v4, are typed by using RFLP. In order to investigate the relationship between the structure and the function for each of these variants, DNA fragments encoding the major fimbrial proteins mrkA, mrkB, mrkC are expressed together with any of the four mrkD adhesins in E. coli JM109. Our study shows that the E. coli strain carrying the mrkDv3 fimbriae has the strongest binding activity. This suggests that mrkDv3 is a key factor that enhances the adherence of Klebsiella Pneumoniae to human body.

  18. Power spectrum analysis with least-squares fitting: amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers.

    Science.gov (United States)

    Nørrelykke, Simon F; Flyvbjerg, Henrik

    2010-07-01

    Optical tweezers and atomic force microscope (AFM) cantilevers are often calibrated by fitting their experimental power spectra of Brownian motion. We demonstrate here that if this is done with typical weighted least-squares methods, the result is a bias of relative size between -2/n and +1/n on the value of the fitted diffusion coefficient. Here, n is the number of power spectra averaged over, so typical calibrations contain 10%-20% bias. Both the sign and the size of the bias depend on the weighting scheme applied. Hence, so do length-scale calibrations based on the diffusion coefficient. The fitted value for the characteristic frequency is not affected by this bias. For the AFM then, force measurements are not affected provided an independent length-scale calibration is available. For optical tweezers there is no such luck, since the spring constant is found as the ratio of the characteristic frequency and the diffusion coefficient. We give analytical results for the weight-dependent bias for the wide class of systems whose dynamics is described by a linear (integro)differential equation with additive noise, white or colored. Examples are optical tweezers with hydrodynamic self-interaction and aliasing, calibration of Ornstein-Uhlenbeck models in finance, models for cell migration in biology, etc. Because the bias takes the form of a simple multiplicative factor on the fitted amplitude (e.g. the diffusion coefficient), it is straightforward to remove and the user will need minimal modifications to his or her favorite least-squares fitting programs. Results are demonstrated and illustrated using synthetic data, so we can compare fits with known true values. We also fit some commonly occurring power spectra once-and-for-all in the sense that we give their parameter values and associated error bars as explicit functions of experimental power-spectral values.

  19. Determining the binding mode and binding affinity constant of tyrosine kinase inhibitor PD153035 to DNA using optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chih-Ming [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30043, Taiwan (China); Lee, Yuarn-Jang [Section of Infectious Diseases, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Wang, Wei-Ting [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China); Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Hsu, Chien-Ting [Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Tsai, Jing-Shin [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China); Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Wu, Chien-Ming [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30043, Taiwan (China); Ou, Keng-Liang [Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); and others

    2011-01-07

    Research highlights: {yields} PD153035 is a DNA intercalator and intercalation occurs only under very low salt concentration. {yields} The minimum distance between adjacent bound PD153035 {approx} 11 bp. {yields} Binding affinity constant for PD153035 is 1.18({+-}0.09) x 10{sup 4} (1/M). {yields} The change of binding free energy of PD153035-DNA interaction is -5.49 kcal mol{sup -1} at 23 {+-} 0.5 {sup o}C. -- Abstract: Accurately predicting binding affinity constant (K{sub A}) is highly required to determine the binding energetics of the driving forces in drug-DNA interactions. Recently, PD153035, brominated anilinoquinazoline, has been reported to be not only a highly selective inhibitor of epidermal growth factor receptor but also a DNA intercalator. Here, we use a dual-trap optical tweezers to determining K{sub A} for PD153035, where K{sub A} is determined from the changes in B-form contour length (L) of PD153035-DNA complex. Here, L is fitted using a modified wormlike chain model. We found that a noticeable increment in L in 1 mM sodium cacodylate was exhibited. Furthermore, our results showed that K{sub A} = 1.18({+-}0.09) x 10{sup 4} (1/M) at 23 {+-} 0.5 {sup o}C and the minimum distance between adjacent bound PD153035 {approx} 11 bp. We anticipate that by using this approach we can determine the complete thermodynamic profiles due to the presence of DNA intercalators.

  20. Leishmania amazonensis chemotaxis under glucose gradient studied by the strength and directionality of forces measured with optical tweezers

    Science.gov (United States)

    de Ysasa Pozzo, Liliana; Fontes, Adriana; de Thomaz, André A.; Barbosa, Luiz Carlos; Ayres, Diana Copi; Giorgio, Selma; Cesar, Carlos Lenz

    2007-02-01

    Chemotaxis is the mechanism microorganisms use to sense the environment surrounding them and to direct their movement towards attractive, or away from the repellent, chemicals. The biochemical sensing is almost the only way for communication between unicellular organisms. Prokaryote and Eukaryote chemotaxis has been mechanically studied mainly by observing the directionality and timing of the microorganisms movements subjected to a chemical gradient, but not through the directionality and strength of the forces it generates. To observe the vector force of microorganisms under a chemical gradient we developed a system composed of two large chambers connected by a tiny duct capable to keep the chemical gradient constant for more than ten hours. We also used the displacements of a microsphere trapped in an Optical Tweezers as the force transducer to measure the direction and the strength of the propulsion forces of flagellum of the microorganism under several gradient conditions. A 9μm diameter microsphere particle was trapped with a Nd:YAG laser and its movement was measured through the light scattered focused on a quadrant detector. We observed the behavior of the protozoa Leishmania amazonensis (eukaryote) under several glucose gradients. This protozoa senses the gradient around it by swimming in circles for three to five times following by tumbling, and not by the typical straight swimming/tumbling of bacteria. Our results also suggest that force direction and strength are also used to control its movement, not only the timing of swimming/tumbling, because we observed a higher force strength clearly directed towards the glucose gradient.

  1. Construction of Discrete Pentanuclear Platinum(II) Stacks with Extended Metal-Metal Interactions by Using Phosphorescent Platinum(II) Tweezers.

    Science.gov (United States)

    Kong, Fred Ka-Wai; Chan, Alan Kwun-Wa; Ng, Maggie; Low, Kam-Hung; Yam, Vivian Wing-Wah

    2017-11-20

    Discrete pentanuclear Pt II stacks were prepared by the host-guest adduct formation between multinuclear tweezer-type Pt II complexes. The formation of the Pt II stacks in solution was accompanied by color changes and the turning on of near-infrared emission resulting from Pt⋅⋅⋅Pt and π-π interactions. The X-ray crystal structure revealed the formation of a discrete 1:1 adduct, in which a linear stack of five Pt II centers with extended Pt⋅⋅⋅Pt interactions was observed. Additional binding affinity and stability have been achieved through a multinuclear host-guest system. The binding behaviors can be fine-tuned by varying the spacer between the two Pt II moieties in the guests. This work provides important insights for the construction of discrete higher-order supramolecular metal-ligand aggregates using a tweezer-directed approach. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Deinococcus radiodurans RecA nucleoprotein filaments characterized at the single-molecule level with optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Pobegalov, Georgii, E-mail: george.pobegalov@nanobio.spbstu.ru [Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg 195251 (Russian Federation); Cherevatenko, Galina; Alekseev, Aleksandr; Sabantsev, Anton; Kovaleva, Oksana; Vedyaykin, Alexey; Morozova, Natalia [Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg 195251 (Russian Federation); Baitin, Dmitrii [Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg 195251 (Russian Federation); Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina 188300 (Russian Federation); Khodorkovskii, Mikhail [Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg 195251 (Russian Federation)

    2015-10-23

    Deinococcus radiodurans can survive extreme doses of ionizing radiation due to the very efficient DNA repair mechanisms that are able to cope even with hundreds of double-strand breaks. RecA, the critical protein of homologous recombination in bacteria, is one of the key components of the DNA-repair system. Repair of double-strand breaks requires RecA binding to DNA and assembly of the RecA nucleoprotein helical filaments. The Escherichia coli RecA protein (EcRecA) and its interactions with DNA have been extensively studied using various approaches including single-molecule techniques, while the D. radiodurans RecA (DrRecA) remains much less characterized. However, DrRecA shows some remarkable differences from E. coli homolog. Here we combine microfluidics and single-molecule DNA manipulation with optical tweezers to follow the binding of DrRecA to long double-stranded DNA molecules and probe the mechanical properties of DrRecA nucleoprotein filaments at physiological pH. Our data provide a direct comparison of DrRecA and EcRecA binding to double-stranded DNA under identical conditions. We report a significantly faster filaments assembly as well as lower values of persistence length and contour length for DrRecA nucleoprotein filaments compared to EcRecA. Our results support the existing model of DrRecA forming more frequent and less continuous filaments relative to those of EcRecA. - Highlights: • We investigate Deinococcus radiodurans RecA interactions with long double-stranded DNA at the single-molecule level. • At physiological pH D. radiodurans RecA forms nucleoprotein filaments significantly faster relative to Escherichia coli RecA. • D. radiodurans RecA-dsDNA nucleoprotein filaments are more flexible and slightly shorter compared to those of E. coli RecA.

  3. Proposal for Alzheimer’s diagnosis using molecular buffer and bus network

    Science.gov (United States)

    Mitatha, S; Moongfangklang, N; Jalil, MA; Suwanpayak, N; Saktioto, T; Ali, J; Yupapin, PP

    2011-01-01

    A novel design of an optical trapping tool for tangle protein (tau tangles, β-amyloid plaques) and molecular motor storage and delivery using a PANDA ring resonator is proposed. The optical vortices can be generated and controlled to form the trapping tools in the same way as the optical tweezers. In theory, the trapping force is formed by the combination between the gradient field and scattering photons, and is reviewed. By using the intense optical vortices generated within the PANDA ring resonator, the required molecular volumes can be trapped and moved dynamically within the molecular buffer and bus network. The tangle protein and molecular motor can transport and connect to the required destinations, enabling availability for Alzheimer’s diagnosis. PMID:21822383

  4. A Quick-responsive DNA Nanotechnology Device for Bio-molecular Homeostasis Regulation.

    Science.gov (United States)

    Wu, Songlin; Wang, Pei; Xiao, Chen; Li, Zheng; Yang, Bing; Fu, Jieyang; Chen, Jing; Wan, Neng; Ma, Cong; Li, Maoteng; Yang, Xiangliang; Zhan, Yi

    2016-08-10

    Physiological processes such as metabolism, cell apoptosis and immune responses, must be strictly regulated to maintain their homeostasis and achieve their normal physiological functions. The speed with which bio-molecular homeostatic regulation occurs directly determines the ability of an organism to adapt to conditional changes. To produce a quick-responsive regulatory system that can be easily utilized for various types of homeostasis, a device called nano-fingers that facilitates the regulation of physiological processes was constructed using DNA origami nanotechnology. This nano-fingers device functioned in linked open and closed phases using two types of DNA tweezers, which were covalently coupled with aptamers that captured specific molecules when the tweezer arms were sufficiently close. Via this specific interaction mechanism, certain physiological processes could be simultaneously regulated from two directions by capturing one biofactor and releasing the other to enhance the regulatory capacity of the device. To validate the universal application of this device, regulation of the homeostasis of the blood coagulant thrombin was attempted using the nano-fingers device. It was successfully demonstrated that this nano-fingers device achieved coagulation buffering upon the input of fuel DNA. This nano-device could also be utilized to regulate the homeostasis of other types of bio-molecules.

  5. Molecular buffer using a PANDA ring resonator for drug delivery use

    Science.gov (United States)

    Suwanpayak, N; Jalil, MA; Aziz, MS; Ali, J; Yupapin, PP

    2011-01-01

    A novel design of molecular buffer for molecule storage and delivery using a PANDA ring resonator is proposed. The optical vortices can be generated and controlled to form the trapping tools in the same way as the optical tweezers. In theory, the trapping force is formed by the combination between the gradient field and scattering photons, which is reviewed. By using the intense optical vortices generated within the PANDA ring resonator, the required molecules can be trapped and moved (transported) dynamically within the wavelength router or network, ie, a molecular buffer. This can be performed within the wavelength router before reaching the required destination. The advantage of the proposed system is that a transmitter and receiver can be formed within the same system, which is available for molecule storage and transportation. PMID:21674014

  6. Laser microtreatment for genetic manipulations and DNA diagnostics by a combination of microbeam and photonic tweezers (laser microbeam trap)

    Science.gov (United States)

    Greulich, Karl-Otto; Monajembashi, Shamci; Celeda, D.; Endlich, N.; Eickhoff, Holger; Hoyer, Carsten; Leitz, G.; Weber, Gerd; Scheef, J.; Rueterjans, H.

    1994-12-01

    Genomes of higher organisms are larger than one typically expects. For example, the DNA of a single human cell is almost two meters long, the DNA in the human body covers the distance Earth-Sun approximately 140 times. This is often not considered in typical molecular biological approaches for DNA diagnostics, where usually only DNA of the length of a gene is investigated. Also, one basic aspect of sequencing the human genome is not really solved: the problem how to prepare the huge amounts of DNA required. Approaches from biomedical optics combined with new developments in single molecule biotechnology may at least contribute some parts of the puzzle. A large genome can be partitioned into portions comprising approximately 1% of the whole DNA using a laser microbeam. The single DNA fragment can be amplified by the polymerase chain reaction in order to obtain a sufficient amount of molecules for conventional DNA diagnostics or for analysis by octanucleotide hybridization. When not amplified by biotechnological processes, the individual DNA molecule can be visualized in the light microscope and can be manipulated and dissected with the laser microbeam trap. The DNA probes obtained by single molecule biotechnology can be employed for fluorescence in situ introduced into plant cells and subcellular structures even when other techniques fail. Since the laser microbeam trap allows to work in the interior of a cell without opening it, subcellular structures can be manipulated. For example, in algae, such structures can be moved out of their original position and used to study intracellular viscosities.

  7. Rational design of a cytotoxic dinuclear Cu2 complex that binds by molecular recognition at two neighboring phosphates of the DNA backbone.

    Science.gov (United States)

    Jany, Thomas; Moreth, Alexander; Gruschka, Claudia; Sischka, Andy; Spiering, Andre; Dieding, Mareike; Wang, Ying; Samo, Susan Haji; Stammler, Anja; Bögge, Hartmut; Fischer von Mollard, Gabriele; Anselmetti, Dario; Glaser, Thorsten

    2015-03-16

    The mechanism of the cytotoxic function of cisplatin and related anticancer drugs is based on their binding to the nucleobases of DNA. The development of new classes of anticancer drugs requires establishing other binding modes. Therefore, we performed a rational design for complexes that target two neighboring phosphates of the DNA backbone by molecular recognition resulting in a family of dinuclear complexes based on 2,7-disubstituted 1,8-naphthalenediol. This rigid backbone preorganizes the two metal ions for molecular recognition at the distance of two neighboring phosphates in DNA of 6-7 Å. Additionally, bulky chelating pendant arms in the 2,7-position impede nucleobase complexation by steric hindrance. We successfully synthesized the Cu(II)2 complex of the designed family of dinuclear complexes and studied its binding to dsDNA by independent ensemble and single-molecule methods like gel electrophoresis, precipitation, and titration experiments followed by UV-vis spectroscopy, atomic force microscopy (AFM), as well as optical tweezers (OT) and magnetic tweezers (MT) DNA stretching. The observed irreversible binding of our dinuclear Cu(II)2 complex to dsDNA leads to a blocking of DNA synthesis as studied by polymerase chain reactions and cytotoxicity for human cancer cells.

  8. Magnetismo Molecular (Molecular Magentism)

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Mario S [Universidade Federal Fluminense, Brasil; Moreira Dos Santos, Antonio F [ORNL

    2010-07-01

    The new synthesis processes in chemistry open a new world of research, new and surprising materials never before found in nature can now be synthesized and, as a wonderful result, observed a series of physical phenomena never before imagined. Among these are many new materials the molecular magnets, the subject of this book and magnetic properties that are often reflections of the quantum behavior of these materials. Aside from the wonderful experience of exploring something new, the theoretical models that describe the behavior these magnetic materials are, in most cases, soluble analytically, which allows us to know in detail the physical mechanisms governing these materials. Still, the academic interest in parallel this subject, these materials have a number of properties that are promising to be used in technological devices, such as in computers quantum magnetic recording, magnetocaloric effect, spintronics and many other devices. This volume will journey through the world of molecular magnets, from the structural description of these materials to state of the art research.

  9. Proposal for Alzheimer’s diagnosis using molecular buffer and bus network

    Directory of Open Access Journals (Sweden)

    Mitatha S

    2011-06-01

    Full Text Available S Mitatha1, N Moongfangklang1, MA Jalil2, N Suwanpayak3, T Saktioto4, J Ali4, PP Yupapin31Hybrid Computing Research Laboratory, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand; 2Ibnu Sina Institute of Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, Malaysia; 3Nanoscale Science and Engineering Research Alliance (N'SERA, Advanced Research Center for Photonics, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand; 4Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, MalaysiaAbstract: A novel design of an optical trapping tool for tangle protein (tau tangles, ß-amyloid plaques and molecular motor storage and delivery using a PANDA ring resonator is proposed. The optical vortices can be generated and controlled to form the trapping tools in the same way as the optical tweezers. In theory, the trapping force is formed by the combination between the gradient field and scattering photons, and is reviewed. By using the intense optical vortices generated within the PANDA ring resonator, the required molecular volumes can be trapped and moved dynamically within the molecular buffer and bus network. The tangle protein and molecular motor can transport and connect to the required destinations, enabling availability for Alzheimer’s diagnosis.Keywords: Alzheimer’s disease, molecular diagnosis, optical trapping tool, molecular networks

  10. Molecular buffer using a PANDA ring resonator for drug delivery use

    Directory of Open Access Journals (Sweden)

    N Suwanpayak

    2011-03-01

    Full Text Available N Suwanpayak1, MA Jalil2, MS Aziz3, J Ali3, PP Yupapin11Nanoscale Science and Engineering Research Alliance (N’SERA, Advanced Research Center for Photonics, Faculty of Science, King Mongkut’s Institute of Technology, Ladkrabang, Bangkok, Thailand; 2Ibnu Sina Institute of Fundamental Science Studies (IIS, 3Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universitiy Teknologi Malaysia, Johor Bahru, MalaysiaAbstract: A novel design of molecular buffer for molecule storage and delivery using a PANDA ring resonator is proposed. The optical vortices can be generated and controlled to form the trapping tools in the same way as the optical tweezers. In theory, the trapping force is formed by the combination between the gradient field and scattering photons, which is reviewed. By using the intense optical vortices generated within the PANDA ring resonator, the required molecules can be trapped and moved (transported dynamically within the wavelength router or network, ie, a molecular buffer. This can be performed within the wavelength router before reaching the required destination. The advantage of the proposed system is that a transmitter and receiver can be formed within the same system, which is available for molecule storage and transportation.Keywords: molecular buffer, molecular memory, molecular transceiver, molecular repeater, PANDA ring resonator 

  11. Molecular hematology

    National Research Council Canada - National Science Library

    Provan, Drew; Gribben, John

    2010-01-01

    ... The molecular basis of hemophilia, 219 Paul LF Giangrande 4 The genetics of acute myeloid leukemias, 42 Carolyn J Owen & Jude Fitzgibbon 19 The molecular basis of von Willebrand disease, 233 Luciano Baronc...

  12. Comparison of glycolysis and oxidative phosphorylation as energy sources for mammalian sperm motility, using the combination of fluorescence imaging, laser tweezers, and real-time automated tracking and trapping.

    Science.gov (United States)

    Nascimento, Jaclyn M; Shi, Linda Z; Tam, James; Chandsawangbhuwana, Charlie; Durrant, Barbara; Botvinick, Elliot L; Berns, Michael W

    2008-12-01

    The combination of laser tweezers, fluorescent imaging, and real-time automated tracking and trapping (RATTS) can measure sperm swimming speed and swimming force simultaneously with mitochondrial membrane potential (MMP). This approach is used to study the roles of two sources of ATP in sperm motility: oxidative phosphorylation, which occurs in the mitochondria located in the sperm midpiece and glycolysis, which occurs along the length of the sperm tail (flagellum). The relationships between (a) swimming speed and MMP and (b) swimming force and MMP are studied in dog and human sperm. The effects of glucose, oxidative phosphorylation inhibitors and glycolytic inhibitors on human sperm motility are examined. The results indicate that oxidative phosphorylation does contribute some ATP for human sperm motility, but not enough to sustain high motility. The glycolytic pathway is shown to be a primary source of energy for human sperm motility.

  13. Magnetic tweezers for DNA micromanipulation

    Science.gov (United States)

    Haber, Charbel; Wirtz, Denis

    2000-12-01

    We detail the design of an electromagnetic assembly capable of generating a constant magnetic field superimposed to a large magnetic field gradient (between 40 and 100 T/m), which was uniform over a large gap (between 1.5 and 2 cm). Large gaps allowed the use of wide high numerical-aperture lenses to track microspheres attached to DNA molecules with an inverted light microscope. Given the geometric constraints of the microscope, computer-aided design was used to optimize the magnetic field gradient linearity, homogeneity, and amplitude, as well as the arrangement of the magnetic coils, the currents, and the mechanical stability of the assembly. The assembly was used to apply forces of controlled amplitude, direction, and time dependence on superparamagnetic microspheres by using magnetic coils instead of permanent magnets. A streptavidin-coated microsphere was attached to the 3' end of a λ-phage DNA molecule through a single biotin molecule. The 5' end of the λ-phage DNA molecule was tethered to a glass coverslip by conjugating the DNA's overhang to a complementary 12 base-pair primer, which was itself cross-linked to a heterobifunctional group placed on the glass coverslip. By tracking the centroid of this microsphere, the mechanical response of a single λ-phage DNA molecule was measured as a function of the applied magnetic force. The resulting force-extension curve was fitted with the worm-like-chain model to obtain λ-phage DNA's persistence length and contour length, which were in agreement with previous reports.

  14. Molecular beams

    International Nuclear Information System (INIS)

    Ramsey, N.F.

    1985-01-01

    This book is a timeless and rather complete theoretical and experimental treatment of electric and magnetic resonance molecular-beam experiments for studying the radio frequency spectra of atoms and molecules. The theory of interactions of the nucleus with atomic and molecular fields is extensively presented. Measurements of atomic and nuclear magnetic moments, electric multipole moments, and atomic fine and hyperfine structure are detailed. Useful but somewhat outdated chapters on gas kinetics, molecular beam design, and experimental techniques are also included

  15. Molecular pharmacognosy.

    Science.gov (United States)

    Huang, LuQi; Xiao, PeiGen; Guo, LanPing; Gao, WenYuan

    2010-06-01

    This article analyzes the background and significance of molecular pharmacognosy, including the molecular identification of medicinal raw materials, phylogenetic evolution of medicinal plants and animals, evaluation and preservation of germplasm resources for medicinal plants and animals, etiology of endangerment and protection of endangered medicinal plants and animals, biosynthesis and bioregulation of active components in medicinal plants, and characteristics and the molecular bases of top-geoherbs.

  16. Computational exploration of single-protein mechanics by steered molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sotomayor, Marcos [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio (United States)

    2015-12-31

    Hair cell mechanotransduction happens in tens of microseconds, involves forces of a few picoNewtons, and is mediated by nanometer-scale molecular conformational changes. As proteins involved in this process become identified and their high resolution structures become available, multiple tools are being used to explore their “single-molecule responses” to force. Optical tweezers and atomic force microscopy offer exquisite force and extension resolution, but cannot reach the high loading rates expected for high frequency auditory stimuli. Molecular dynamics (MD) simulations can reach these fast time scales, and also provide a unique view of the molecular events underlying protein mechanics, but its predictions must be experimentally verified. Thus a combination of simulations and experiments might be appropriate to study the molecular mechanics of hearing. Here I review the basics of MD simulations and the different methods used to apply force and study protein mechanics in silico. Simulations of tip link proteins are used to illustrate the advantages and limitations of this method.

  17. Molecular dynamics

    NARCIS (Netherlands)

    Bergstra, J.A.; Bethke, I.

    2002-01-01

    Molecular dynamics is a model for the structure and meaning of object based programming systems. In molecular dynamics the memory state of a system is modeled as a fluid consisting of a collection of molecules. Each molecule is a collection of atoms with bindings between them. A computation is

  18. Molecular Modeling

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 5. Molecular Modeling: A Powerful Tool for Drug Design and Molecular Docking. Rama Rao Nadendla. General Article Volume 9 Issue 5 May 2004 pp 51-60. Fulltext. Click here to view fulltext PDF. Permanent link:

  19. Molecular motors

    National Research Council Canada - National Science Library

    Schliwa, M

    2003-01-01

    ... and entitled Primitive Motile Systems in Cell Biology, the field has moved from the phenomenological to the mechanistic and from the largely structural to the primarily molecular. We have come to appreciate that at every level of complexity the cell operates through molecular machines. Some of these machines are single molecules that car...

  20. Molecular Descriptors

    Science.gov (United States)

    Consonni, Viviana; Todeschini, Roberto

    In the last decades, several scientific researches have been focused on studying how to encompass and convert - by a theoretical pathway - the information encoded in the molecular structure into one or more numbers used to establish quantitative relationships between structures and properties, biological activities, or other experimental properties. Molecular descriptors are formally mathematical representations of a molecule obtained by a well-specified algorithm applied to a defined molecular representation or a well-specified experimental procedure. They play a fundamental role in chemistry, pharmaceutical sciences, environmental protection policy, toxicology, ecotoxicology, health research, and quality control. Evidence of the interest of the scientific community in the molecular descriptors is provided by the huge number of descriptors proposed up today: more than 5000 descriptors derived from different theories and approaches are defined in the literature and most of them can be calculated by means of dedicated software applications. Molecular descriptors are of outstanding importance in the research fields of quantitative structure-activity relationships (QSARs) and quantitative structure-property relationships (QSPRs), where they are the independent chemical information used to predict the properties of interest. Along with the definition of appropriate molecular descriptors, the molecular structure representation and the mathematical tools for deriving and assessing models are other fundamental components of the QSAR/QSPR approach. The remarkable progress during the last few years in chemometrics and chemoinformatics has led to new strategies for finding mathematical meaningful relationships between the molecular structure and biological activities, physico-chemical, toxicological, and environmental properties of chemicals. Different approaches for deriving molecular descriptors here reviewed and some of the most relevant descriptors are presented in

  1. Molecular geometry

    CERN Document Server

    Rodger, Alison

    1995-01-01

    Molecular Geometry discusses topics relevant to the arrangement of atoms. The book is comprised of seven chapters that tackle several areas of molecular geometry. Chapter 1 reviews the definition and determination of molecular geometry, while Chapter 2 discusses the unified view of stereochemistry and stereochemical changes. Chapter 3 covers the geometry of molecules of second row atoms, and Chapter 4 deals with the main group elements beyond the second row. The book also talks about the complexes of transition metals and f-block elements, and then covers the organometallic compounds and trans

  2. Molecular Electronics

    DEFF Research Database (Denmark)

    Jennum, Karsten Stein

    This thesis includes the synthesis and characterisation of organic compounds designed for molecular electronics. The synthesised organic molecules are mainly based on two motifs, the obigo(phenyleneethynylenes) (OPE)s and tetrathiafulvalene (TTF) as shown below. These two scaffolds (OPE and TTF......) are chemically merged together to form cruciform-like structures that are an essential part of the thesis. The cruciform molecules were subjected to molecular conductance measurements to explore their capability towards single-crystal field-effect transistors (Part 1), molecular wires, and single electron...... transistors (Part 2). The synthetic protocols rely on stepwise Sonogashira coupling reactions. Conductivity studies on various OPE-based molecular wires reveal that mere OPE compounds have a higher electrical resistance compared to the cruciform based wires (up to 9 times higher). The most spectacular result...

  3. Molecular sciences

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The research in molecular sciences summarized includes photochemistry, radiation chemistry, geophysics, electromechanics, heavy-element oxidizers , heavy element chemistry collisions, atoms, organic solids. A list of publications is included

  4. Molecular fountain.

    Energy Technology Data Exchange (ETDEWEB)

    Strecker, Kevin E.; Chandler, David W.

    2009-09-01

    A molecular fountain directs slowly moving molecules against gravity to further slow them to translational energies that they can be trapped and studied. If the molecules are initially slow enough they will return some time later to the position from which they were launched. Because this round trip time can be on the order of a second a single molecule can be observed for times sufficient to perform Hz level spectroscopy. The goal of this LDRD proposal was to construct a novel Molecular Fountain apparatus capable of producing dilute samples of molecules at near zero temperatures in well-defined user-selectable, quantum states. The slowly moving molecules used in this research are produced by the previously developed Kinematic Cooling technique, which uses a crossed atomic and molecular beam apparatus to generate single rotational level molecular samples moving slowly in the laboratory reference frame. The Kinematic Cooling technique produces cold molecules from a supersonic molecular beam via single collisions with a supersonic atomic beam. A single collision of an atom with a molecule occurring at the correct energy and relative velocity can cause a small fraction of the molecules to move very slowly vertically against gravity in the laboratory. These slowly moving molecules are captured by an electrostatic hexapole guiding field that both orients and focuses the molecules. The molecules are focused into the ionization region of a time-of-flight mass spectrometer and are ionized by laser radiation. The new molecular fountain apparatus was built utilizing a new design for molecular beam apparatus that has allowed us to miniaturize the apparatus. This new design minimizes the volumes and surface area of the machine allowing smaller pumps to maintain the necessary background pressures needed for these experiments.

  5. Synthesis, structure, and properties of a series of chiral tweezer-diamine complexes consisting of an achiral zinc(II) bisporphyrin host and chiral diamine guest: induction and rationalization of supramolecular chirality.

    Science.gov (United States)

    Brahma, Sanfaori; Ikbal, Sk Asif; Rath, Sankar Prasad

    2014-01-06

    We report here the synthesis, structure, and spectroscopic properties of a series of supramolecular chiral 1:1 tweezer-diamine complexes consisting of an achiral Zn(II) bisporphyrin (Zn2DPO) host and five different chiral diamine guests, namely, (R)-diaminopropane (DAP), (1S,2S)-diaminocyclohexane (CHDA), (S)-phenylpropane diamine (PPDA), (S)-phenyl ethylenediamine (PEDA), and (1R,2R)-diphenylethylene diamine (DPEA). The solid-state structures are preserved in solution, as reflected in their (1)H NMR spectra, which also revealed the remarkably large upfield shifts of the NH2 guest protons with the order Zn2DPO·DAP > Zn2DPO·CHDA > Zn2DPO·PPDA> Zn2DPO·PEDA ≫ Zn2DPO·DPEA, which happens to be the order of binding constants of the respective diamines with Zn2DPO. As the bulk of the substituent at the chiral center of the guest ligand increases, the Zn-Nax distance of the tweezer-diamine complex also increases, which eventually lowers the binding of the guest ligand toward the host. Also, the angle between the two porphyrin rings gradually increases with increasing bulk of the guest in order to accommodate the guest within the bisporphyrin cavity with minimal steric clash. The notably high amplitude bisignate CD signal response by Zn2DPO·DAP, Zn2DPO·CHDA, and Zn2DPO·PPDA can be ascribed to the complex's high stability and the formation of a unidirectional screw as observed in the X-ray structures of the complexes. A relatively lower value of CD amplitude shown by Zn2DPO·PEDA is due to the lower stability of the complex. The projection of the diamine binding sites of the chiral guest would make the two porphyrin macrocycles oriented in either a clockwise or anticlockwise direction in order to minimize host-guest steric clash. In sharp contrast, Zn2DPO·DPEA shows a very low amplitude bisignate CD signal due to the presence of both left- (dictated by the pre-existing chirality of (1R,2R)-DPEA) and right-handed screws (dictated by the steric differentiation at

  6. Molecular modeling

    Directory of Open Access Journals (Sweden)

    Aarti Sharma

    2009-01-01

    Full Text Available The use of computational chemistry in the development of novel pharmaceuticals is becoming an increasingly important tool. In the past, drugs were simply screened for effectiveness. The recent advances in computing power and the exponential growth of the knowledge of protein structures have made it possible for organic compounds to be tailored to decrease the harmful side effects and increase the potency. This article provides a detailed description of the techniques employed in molecular modeling. Molecular modeling is a rapidly developing discipline, and has been supported by the dramatic improvements in computer hardware and software in recent years.

  7. Molecular physics

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    The richly illustrated book comprehensively explains the important principles of diatomic and polyatomic molecules and their spectra in two separate, distinct parts. The first part concentrates on the theoretical aspects of molecular physics, such as the vibration, rotation, electronic states, potential curves, and spectra of molecules. The different methods of approximation for the calculation of electronic wave functions and their energy are also covered. The introduction of basics terms used in group theory and their meaning in molecular physics enables an elegant description of polyatomic

  8. Molecular pathways

    DEFF Research Database (Denmark)

    Cox, Thomas R; Erler, Janine Terra

    2014-01-01

    that 45% of deaths in the developed world are linked to fibrotic disease. Fibrosis and cancer are known to be inextricably linked; however, we are only just beginning to understand the common and overlapping molecular pathways between the two. Here, we discuss what is known about the intersection...... of fibrosis and cancer, with a focus on cancer metastasis, and highlight some of the exciting new potential clinical targets that are emerging from analysis of the molecular pathways associated with these two devastating diseases. Clin Cancer Res; 20(14); 3637-43. ©2014 AACR....

  9. Molecular ferromagnetism

    International Nuclear Information System (INIS)

    Epstein, A.J.

    1990-01-01

    This past year has been one of substantial advancement in both the physics and chemistry of molecular and polymeric ferromagnets. The specific heat studies of (DMeFc)(TCNE) have revealed a cusp at the three-dimensional ferromagnetic transition temperature with a crossover to primarily 1-D behavior at higher temperatures. This paper discusses these studies

  10. Molecular Origami

    Indian Academy of Sciences (India)

    Molecular Origami. Modular Construction of Platonic Solids as Models for Reversible ... by Nature using a modular protocol wherein each of the mod- ules holds latent ... The Design Principle. All the designs can be made from thick square sheets of the size. 20 cm x 20 cm (readily available A4 size photocopy paper, from.

  11. Molecular gastronomy

    Science.gov (United States)

    This, Hervé

    2005-01-01

    For centuries, cooks have been applying recipes without looking for the mechanisms of the culinary transformations. A scientific discipline that explores these changes from raw ingredients to eating the final dish, is developing into its own field, termed molecular gastronomy. Here, one of the founders of the discipline discusses its aims and importance.

  12. Molecular farming

    NARCIS (Netherlands)

    Merck, K.B.; Vereijken, J.M.

    2006-01-01

    Molecular Farming is a new and emerging technology that promises relatively cheap and flexible production of large quantities of pharmaceuticals in genetically modified plants. Many stakeholders are involved in the production of pharmaceuticals in plants, which complicates the discussion on the

  13. Molecular Star

    Indian Academy of Sciences (India)

    This report describes the making of a self-assembled coordination architecture that is named as a 'molecular star' since it resembles the shape of a star; more specifically a five-pointed star. This work has been already published in Chemistry- A European Jour- nal in the September 2017 issue and was featured in the cover.

  14. Molecular Modelling

    Directory of Open Access Journals (Sweden)

    Aarti Sharma

    2009-12-01

    Full Text Available

    The use of computational chemistry in the development of novel pharmaceuticals is becoming an increasingly important
    tool. In the past, drugs were simply screened for effectiveness. The recent advances in computing power and
    the exponential growth of the knowledge of protein structures have made it possible for organic compounds to tailored to
    decrease harmful side effects and increase the potency. This article provides a detailed description of the techniques
    employed in molecular modeling. Molecular modelling is a rapidly developing discipline, and has been supported from
    the dramatic improvements in computer hardware and software in recent years.

  15. Molecular plasmonics

    CERN Document Server

    Fritzsche, Wolfgang

    2014-01-01

    Adopting a novel approach, this book provides a unique ""molecular perspective"" on plasmonics, concisely presenting the fundamentals and applications in a way suitable for beginners entering this hot field as well as for experienced researchers and practitioners. It begins by introducing readers to the optical effects that occur at the nanoscale and particularly their modification in the presence of biomolecules, followed by a concise yet thorough overview of the different methods for the actual fabrication of nanooptical materials. Further chapters address the relevant nanooptics, as well as

  16. Molecular spintronics.

    Science.gov (United States)

    Sanvito, Stefano

    2011-06-01

    The electron spin made its debut in the device world only two decades ago but today our ability of detecting the spin state of a moving electron underpins the entire magnetic data storage industry. This technological revolution has been driven by a constant improvement in our understanding on how spins can be injected, manipulated and detected in the solid state, a field which is collectively named Spintronics. Recently a number of pioneering experiments and theoretical works suggest that organic materials can offer similar and perhaps superior performances in making spin-devices than the more conventional inorganic metals and semiconductors. Furthermore they can pave the way for radically new device concepts. This is Molecular Spintronics, a blossoming research area aimed at exploring how the unique properties of the organic world can marry the requirements of spin-devices. Importantly, after a first phase, where most of the research was focussed on exporting the concepts of inorganic spintronics to organic materials, the field has moved to a more mature age, where the exploitation of the unique properties of molecules has begun to emerge. Molecular spintronics now collects a diverse and interdisciplinary community ranging from device physicists to synthetic chemists to surface scientists. In this critical review, I will survey this fascinating, rapidly evolving, field with a particular eye on new directions and opportunities. The main differences and challenges with respect to standard spintronics will be discussed and so will be the potential cross-fertilization with other fields (177 references).

  17. A molecular brake, not a clutch, stops the Rhodobacter sphaeroides flagellar motor

    Science.gov (United States)

    Pilizota, Teuta; Brown, Mostyn T.; Leake, Mark C.; Branch, Richard W.; Berry, Richard M.; Armitage, Judith P.

    2009-01-01

    Many bacterial species swim by employing ion-driven molecular motors that power the rotation of helical filaments. Signals are transmitted to the motor from the external environment via the chemotaxis pathway. In bidirectional motors, the binding of phosphorylated CheY (CheY-P) to the motor is presumed to instigate conformational changes that result in a different rotor-stator interface, resulting in rotation in the alternative direction. Controlling when this switch occurs enables bacteria to accumulate in areas favorable for their survival. Unlike most species that swim with bidirectional motors, Rhodobacter sphaeroides employs a single stop-start flagellar motor. Here, we asked, how does the binding of CheY-P stop the motor in R. sphaeroides—using a clutch or a brake? By applying external force with viscous flow or optical tweezers, we show that the R. sphaeroides motor is stopped using a brake. The motor stops at 27–28 discrete angles, locked in place by a relatively high torque, approximately 2–3 times its stall torque. PMID:19571004

  18. Molecular Tension Probes for Imaging Forces at the Cell Surface.

    Science.gov (United States)

    Liu, Yang; Galior, Kornelia; Ma, Victor Pui-Yan; Salaita, Khalid

    2017-12-19

    Mechanical forces are essential for a variety of biological processes ranging from transcription and translation to cell adhesion, migration, and differentiation. Through the activation of mechanosensitive signaling pathways, cells sense and respond to physical stimuli from the surrounding environment, a process widely known as mechanotransduction. At the cell membrane, many signaling receptors, such as integrins, cadherins and T- or B-cell receptors, bind to their ligands on the surface of adjacent cells or the extracellular matrix (ECM) to mediate mechanotransduction. Upon ligation, these receptor-ligand bonds transmit piconewton (pN) mechanical forces that are generated, in part, by the cytoskeleton. Importantly, these forces expose cryptic sites within mechanosensitive proteins and modulate the binding kinetics (on/off rate) of receptor-ligand complexes to further fine-tune mechanotransduction and the corresponding cell behavior. Over the past three decades, two categories of methods have been developed to measure cell receptor forces. The first class is traction force microscopy (TFM) and micropost array detectors (mPADs). In these methods, cells are cultured on elastic polymers or microstructures that deform under mechanical forces. The second category of techniques is single molecule force spectroscopy (SMFS) including atomic force microscopy (AFM), optical or magnetic tweezers, and biomembrane force probe (BFP). In SMFS, the experimenter applies external forces to probe the mechanics of individual cells or single receptor-ligand complexes, serially, one bond at a time. Although these techniques are powerful, the limited throughput of SMFS and the nN force sensitivity of TFM have hindered further elucidation of the molecular mechanisms of mechanotransduction. In this Account, we introduce the recent advent of molecular tension fluorescence microscopy (MTFM) as an emerging tool for molecular imaging of receptor mechanics in living cells. MTFM probes are

  19. Understanding molecular structure from molecular mechanics.

    Science.gov (United States)

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  20. 'Lissajous-like' trajectories in optical tweezers

    Czech Academy of Sciences Publication Activity Database

    Hay, R. F.; Gibson, G. M.; Simpson, Stephen Hugh; Padgett, M. J.; Phillips, D. B.

    2015-01-01

    Roč. 23, č. 25 (2015), s. 31716-31727 ISSN 1094-4087 Institutional support: RVO:68081731 Keywords : low Reynolds number * particles * force Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.148, year: 2015

  1. Nanohole optical tweezers in heterogeneous mixture analysis

    Science.gov (United States)

    Hacohen, Noa; Ip, Candice J. X.; Laxminarayana, Gurunatha K.; DeWolf, Timothy S.; Gordon, Reuven

    2017-08-01

    Nanohole optical trapping is a tool that has been shown to analyze proteins at the single molecule level using pure samples. The next step is to detect and study single molecules with dirty samples. We demonstrate that using our double nanohole optical tweezing configuration, single particles in an egg white solution can be classified when trapped. Different sized molecules provide different signal variations in their trapped state, allowing the proteins to be statistically characterized. Root mean squared variation and trap stiffness are methods used on trapped signals to distinguish between the different proteins. This method to isolate and determine single molecules in heterogeneous samples provides huge potential to become a reliable tool for use within biomedical and scientific communities.

  2. Microrheology with optical tweezers: data analysis

    International Nuclear Information System (INIS)

    Tassieri, Manlio; Warren, Rebecca L; Cooper, Jonathan M; Evans, R M L; Bailey, Nicholas J

    2012-01-01

    We present a data analysis procedure that provides the solution to a long-standing issue in microrheology studies, i.e. the evaluation of the fluids' linear viscoelastic properties from the analysis of a finite set of experimental data, describing (for instance) the time-dependent mean-square displacement of suspended probe particles experiencing Brownian fluctuations. We report, for the first time in the literature, the linear viscoelastic response of an optically trapped bead suspended in a Newtonian fluid, over the entire range of experimentally accessible frequencies. The general validity of the proposed method makes it transferable to the majority of microrheology and rheology techniques. (paper)

  3. Molecular sensors and molecular logic gates

    International Nuclear Information System (INIS)

    Georgiev, N.; Bojinov, V.

    2013-01-01

    Full text: The rapid grow of nanotechnology field extended the concept of a macroscopic device to the molecular level. Because of this reason the design and synthesis of (supra)-molecular species capable of mimicking the functions of macroscopic devices are currently of great interest. Molecular devices operate via electronic and/or nuclear rearrangements and, like macroscopic devices, need energy to operate and communicate between their elements. The energy needed to make a device work can be supplied as chemical energy, electrical energy, or light. Luminescence is one of the most useful techniques to monitor the operation of molecular-level devices. This fact determinates the synthesis of novel fluorescence compounds as a considerable and inseparable part of nanoscience development. Further miniaturization of semiconductors in electronic field reaches their limit. Therefore the design and construction of molecular systems capable of performing complex logic functions is of great scientific interest now. In semiconductor devices the logic gates work using binary logic, where the signals are encoded as 0 and 1 (low and high current). This process is executable on molecular level by several ways, but the most common are based on the optical properties of the molecule switches encoding the low and high concentrations of the input guest molecules and the output fluorescent intensities with binary 0 and 1 respectively. The first proposal to execute logic operations at the molecular level was made in 1988, but the field developed only five years later when the analogy between molecular switches and logic gates was experimentally demonstrated by de Silva. There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR and XNOR and all of them were achieved by molecules, the fluorescence switching as well. key words: fluorescence, molecular sensors, molecular logic gates

  4. Nonequilibrium molecular dynamics

    OpenAIRE

    Wm.G.Hoover; C.G.Hoover

    2005-01-01

    Nonequilibrium Molecular Dynamics is a powerful simulation tool. Like its equilibrium cousin, nonequilibrium molecular dynamics is based on time-reversible equations of motion. But unlike conventional mechanics, nonequilibrium molecular dynamics provides a consistent microscopic basis for the irreversible macroscopic Second Law of Thermodynamics. We recall here how fast computers led to the development of nonequilibrium molecular dynamics from the statistical mechanics of the 1950s. Computer-...

  5. Basic molecular spectroscopy

    CERN Document Server

    Gorry, PA

    1985-01-01

    BASIC Molecular Spectroscopy discusses the utilization of the Beginner's All-purpose Symbolic Instruction Code (BASIC) programming language in molecular spectroscopy. The book is comprised of five chapters that provide an introduction to molecular spectroscopy through programs written in BASIC. The coverage of the text includes rotational spectra, vibrational spectra, and Raman and electronic spectra. The book will be of great use to students who are currently taking a course in molecular spectroscopy.

  6. Cardiovascular molecular MR imaging

    OpenAIRE

    Lamb, H. J.; van der Meer, R. W.; de Roos, A.; Bax, J. J.

    2007-01-01

    Introduction Cardiovascular molecular imaging is a rapidly evolving field of research, aiming to image and quantify molecular and cellular targets in vivo. MR imaging has some inherent properties that make it very suitable for cardiovascular molecular imaging. Until now, only a limited number of studies have been published on cardiovascular molecular imaging using MR imaging. Review In the current review, MR techniques that have already shown potential are discussed. Metabolic MR imaging can ...

  7. Digitotalar dysmorphism: Molecular elucidation

    African Journals Online (AJOL)

    obtained for molecular studies. Since the distal arthrogryposes (DAs) are genetically heterogeneous, an unbiased approach to mutation ... Diseases and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa, with an interest in molecular genetics of connective ...

  8. Molecular computing origins and promises

    CERN Document Server

    Rambidi, Nicholas G

    2014-01-01

    Molecular Computing explores whether molecular primitives can prove to be real alternatives to contemporary semiconductor means. The text discusses molecular primitives and circuitry for information processing devices.

  9. Molecular confocal laser endomicroscopy

    DEFF Research Database (Denmark)

    Karstensen, John Gásdal; Klausen, Pia Helene; Saftoiu, Adrian

    2014-01-01

    endoscope or via a needle guided by endoscopic ultrasound. The second system has a confocal microscope integrated into the distal part of an endoscope. By adding molecular probes like fluorescein conjugated antibodies or fluorescent peptides to this procedure (either topically or systemically administered...... during on-going endoscopy), a novel world of molecular evaluation opens up. The method of molecular CLE could potentially be used for estimating the expression of important receptors in carcinomas, subsequently resulting in immediate individualization of treatment regimens, but also for improving...... as future challenges of molecular CLE in gastrointestinal diseases....

  10. Polymer friction Molecular Dynamics

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....

  11. Making molecular machines work

    NARCIS (Netherlands)

    Browne, Wesley R.; Feringa, Ben L.

    2006-01-01

    In this review we chart recent advances in what is at once an old and very new field of endeavour the achievement of control of motion at the molecular level including solid-state and surface-mounted rotors, and its natural progression to the development of synthetic molecular machines. Besides a

  12. Principles of molecular oncology

    National Research Council Canada - National Science Library

    Bronchud, Miguel H; Thomas, E. Donnall; Weatherall, D. J; Crowther, D. G

    2004-01-01

    ...-threatening diseases. Many new molecularly targeted diagnostics and therapeutics described in this text, developed based on the rapid growth in our understanding of the molecular basis of cancer, already substantially improve survival of patients with previously lethal malignancies, and also improve quality of life because of fewer toxicities. Clearly re...

  13. Ionic and Molecular Liquids

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Prezhdo, Oleg

    2013-01-01

    applications of RTILs in combination with molecular liquids, concentrating on three significant areas: (1) the use of molecular liquids to decrease the viscosity of RTILs; (2) the role of RTIL micelle formation in water and organic solvents; and (3) the ability of RTILs to adsorb pollutant gases. Current...

  14. Molecular Typing and Differentiation

    Science.gov (United States)

    In this chapter, general background and bench protocols are provided for a number of molecular typing techniques in common use today. Methods for the molecular typing and differentiation of microorganisms began to be widely adopted following the development of the polymerase chai...

  15. Molecular subgroups of medulloblastoma

    OpenAIRE

    Northcott, Paul A; Dubuc, Adrian M; Pfister, Stefan; Taylor, Michael D

    2012-01-01

    Recent efforts at stratifying medulloblastomas based on their molecular features have revolutionized our understanding of this morbidity. Collective efforts by multiple independent groups have subdivided medulloblastoma from a single disease into four distinct molecular subgroups characterized by disparate transcriptional signatures, mutational spectra, copy number profiles and, most importantly, clinical features. We present a summary of recent studies that have contributed to our understand...

  16. Principles of molecular oncology

    National Research Council Canada - National Science Library

    Bronchud, Miguel H

    2008-01-01

    ...-threatening diseases. Many new molecularly targeted diagnostics and therapeutics described in this text, developed based on the rapid growth in our understanding of the molecular basis of cancer, already substantially improve survival of patients with previously lethal malignancies, and also improve quality of life because of fewer toxicities. Clearly re...

  17. Theoretical molecular biophysics

    CERN Document Server

    Scherer, Philipp O J

    2017-01-01

    This book gives an introduction to molecular biophysics. It starts from material properties at equilibrium related to polymers, dielectrics and membranes. Electronic spectra are developed for the understanding of elementary dynamic processes in photosynthesis including proton transfer and dynamics of molecular motors. Since the molecular structures of functional groups of bio-systems were resolved, it has become feasible to develop a theory based on the quantum theory and statistical physics with emphasis on the specifics of the high complexity of bio-systems. This introduction to molecular aspects of the field focuses on solvable models. Elementary biological processes provide as special challenge the presence of partial disorder in the structure which does not destroy the basic reproducibility of the processes. Apparently the elementary molecular processes are organized in a way to optimize the efficiency. Learning from nature by means exploring the relation between structure and function may even help to b...

  18. Multifunctionality in molecular magnetism.

    Science.gov (United States)

    Pinkowicz, Dawid; Czarnecki, Bernard; Reczyński, Mateusz; Arczyński, Mirosław

    2015-01-01

    Molecular magnetism draws from the fundamental ideas of structural chemistry and combines them with experimental physics resulting in one of the highest profile current topics, namely molecular materials that exhibit multifunctionality. Recent advances in the design of new generations of multifunctional molecular magnets that retain the functions of the building blocks and exhibit non-trivial magnetic properties at higher temperatures provide promising evidence that they may be useful for the future construction of nanoscale devices. This article is not a complete review but is rather an introduction into thefascinating world of multifunctional solids with magnetism as the leitmotif. We provide a subjective selection and discussion of the most inspiring examples of multifunctional molecular magnets: magnetic sponges, guest-responsive magnets, molecular magnets with ionic conductivity, photomagnets and non-centrosymmetric and chiral magnets.

  19. Molecular Population Genetics.

    Science.gov (United States)

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.

  20. Molecular Population Genetics

    Science.gov (United States)

    Casillas, Sònia; Barbadilla, Antonio

    2017-01-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. PMID:28270526

  1. Molecularly Imprinted Membranes

    Science.gov (United States)

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  2. Photoionization and molecular structure

    International Nuclear Information System (INIS)

    Palma, A.

    1983-01-01

    A presentation is here given of the theoretical work on photoionization and molecular structure carried out by the author and coworkers. The implications of the photoionization process on the molecular geometry are emphasized. In particular, the ionization effect on deep orbitals is considered and it is shown that, contrary to traditional thinking, these orbitals have relevant effects on the molecular geometry. The problem of calculating photoionization relative intensities for the full spectrum is also considered, and the results of the present model are compared with experimental and other theoretical results. (author)

  3. The Molecular Model Game

    Science.gov (United States)

    Myers, Stephanie A.

    2003-04-01

    The Molecular Model Game is used to review Lewis structures and VSEPR theory. In this game, teams of students compete to complete problems quickly. Variations with other types of problems involving stoichiometry or equilibria are also possible.

  4. Nonequilibrium molecular dynamics

    Directory of Open Access Journals (Sweden)

    Wm.G.Hoover

    2005-01-01

    Full Text Available Nonequilibrium Molecular Dynamics is a powerful simulation tool. Like its equilibrium cousin, nonequilibrium molecular dynamics is based on time-reversible equations of motion. But unlike conventional mechanics, nonequilibrium molecular dynamics provides a consistent microscopic basis for the irreversible macroscopic Second Law of Thermodynamics. We recall here how fast computers led to the development of nonequilibrium molecular dynamics from the statistical mechanics of the 1950s. Computer-based theories facilitated revolutionary breakthroughs in understanding during the 1970s and 1980s. The new idea key to the nonequilibrium development was the replacement of the external thermodynamic environment by internal control variables. The new variables can control temperature, or pressure, or energy, or stress, or heat flux. These thermostat, barostat, ergostat, ... variables can control and maintain nonequilibrium states. We illustrate the methods with a simple example well-suited to student exploration, a thermostatted harmonic oscillator exposed to a temperature gradient.

  5. The Molecular Foundry (TMF)

    Data.gov (United States)

    Federal Laboratory Consortium — Founded in 2006 by the Department of Energy (DOE), the Molecular Foundry is a critical part of the DOE's National Nanotechnology Initiative, a multi-agency framework...

  6. Molecular Mechanisms of Preeclampsia

    OpenAIRE

    N. Vitoratos; D. Hassiakos; C. Iavazzo

    2012-01-01

    Preeclampsia is one of the leading causes of maternal morbidity/mortality. The pathogenesis of preeclampsia is still under investigation. The aim of this paper is to present the molecular mechanisms implicating in the pathway leading to preeclampsia.

  7. Natural Product Molecular Fossils.

    Science.gov (United States)

    Falk, Heinz; Wolkenstein, Klaus

    The natural products synthesized by organisms that were living a long time ago gave rise to their molecular fossils. These can consist of either the original unchanged compounds or they may undergo peripheral transformations in which their skeletons remain intact. In cases when molecular fossils can be traced to their organismic source, they are termed "geological biomarkers".This contribution describes apolar and polar molecular fossils and, in particular biomarkers, along the lines usually followed in organic chemistry textbooks, and points to their bioprecursors when available. Thus, the apolar compounds are divided in linear and branched alkanes followed by alicyclic compounds and aromatic and heterocyclic molecules, and, in particular, the geoporphyrins. The polar molecular fossils contain as functional groups or constituent units ethers, alcohols, phenols, carbonyl groups, flavonoids, quinones, and acids, or are polymers like kerogen, amber, melanin, proteins, or nucleic acids. The final sections discuss the methodology used and the fundamental processes encountered by the biomolecules described, including diagenesis, catagenesis, and metagenesis.

  8. Mesoporous molecular sieve catalysts

    DEFF Research Database (Denmark)

    Højholt, Karen Thrane

    This thesis deals with a very specific class of molecular sieves known as zeolites. Zeolites are a class of crystalline aluminosilicates characterised by pores or cavities of molecular dimensions as part of their crystal structure. In this work zeolites were modified for the use and understanding...... of different catalytic applications. Primarily the zeolites were modified regarding the porosity and the introduction of metals to the framework. The obtained materials were used as solid acid catalysts, as an inert matrix for stabilising metal nanoparticles and as an anchoring material for molecular metal....... Furthermore, preliminary work was done using mesoporous ZSM-5 zeolites as support material for anchoring molecular CoMo6 species for the application as potential bi-functional catalyst in simultaneous hydrodesulfurisation (HDS) and hydrocracking. HDS activity tests revealed that the anchoring improved...

  9. Molecular ion photofragment spectroscopy

    International Nuclear Information System (INIS)

    Bustamente, S.W.

    1983-11-01

    A new molecular ion photofragment spectrometer is described which features a supersonic molecular beam ion source and a radio frequency octapole ion trap interaction region. This unique combination allows several techniques to be applied to the problem of detecting a photon absorption event of a molecular ion. In particular, it may be possible to obtain low resolution survey spectra of exotic molecular ions by using a direct vibrational predissociation process, or by using other more indirect detection methods. The use of the spectrometer is demonstrated by measuring the lifetime of the O 2 + ( 4 π/sub u/) metastable state which is found to consist of two main components: the 4 π/sub 5/2/ and 4 π/sub -1/2/ spin components having a long lifetime (approx. 129 ms) and the 4 π/sub 3/2/ and 4 π/sub 1/2/ spin components having a short lifetime (approx. 6 ms)

  10. Molecular aspects of toxicology

    National Research Council Canada - National Science Library

    Hathway, D. E

    1984-01-01

    The subject matter of this book is organized into chapters that deal wwith separate subjects and, whilst this treatment reveals the structure of molecular aspects of toxicology, it inevitably incurs...

  11. Atomic and Molecular Interactions

    International Nuclear Information System (INIS)

    2002-01-01

    The Gordon Research Conference (GRC) on Atomic and Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field

  12. Polypeptides Based Molecular Electronics

    National Research Council Canada - National Science Library

    Lam, Yeng M; Mhaisalkar, Subodh; Li, Lain-Jong; Dravid, Vinayak P; Shekhawat, Gajendra S; Suri, Raman

    2008-01-01

    ... the formation of molecular devices such as transistors, diodes, and sensors. We have designed the peptides, arranged them on substrates using self-assembly, Dip-PEN nanolithography, and also e-beam assisted lithography...

  13. Nonequilibrium molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, W.G. (California Univ., Davis, CA (USA). Dept. of Applied Science Lawrence Livermore National Lab., CA (USA))

    1990-11-01

    The development of nonequilibrium molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.

  14. Molecular imaging in oncology

    Energy Technology Data Exchange (ETDEWEB)

    Schober, Otmar; Riemann, Burkhard (eds.) [Universitaetsklinikum Muenster (Germany). Klinik fuer Nuklearmedizin

    2013-02-01

    Considers in detail all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. Examines technological issues and probe design. Discusses preclinical studies in detail, with particular attention to multimodality imaging. Presents current clinical use of PET/CT, SPECT/CT, and optical imagingWritten by acknowledged experts. The impact of molecular imaging on diagnostics, therapy, and follow-up in oncology is increasing significantly. The process of molecular imaging includes key biotarget identification, design of specific molecular imaging probes, and their preclinical evaluation, e.g., in vivo using small animal studies. A multitude of such innovative molecular imaging probes have already entered clinical diagnostics in oncology. There is no doubt that in future the emphasis will be on multimodality imaging in which morphological, functional, and molecular imaging techniques are combined in a single clinical investigation that will optimize diagnostic processes. This handbook addresses all aspects of molecular imaging in oncology, ranging from basic research to clinical applications in the era of evidence-based medicine. The first section is devoted to technology and probe design, and examines a variety of PET and SPECT tracers as well as multimodality probes. Preclinical studies are then discussed in detail, with particular attention to multimodality imaging. In the third section, diverse clinical applications are presented, and the book closes by looking at future challenges. This handbook will be of value to all who are interested in the revolution in diagnostic oncology that is being brought about by molecular imaging.

  15. Human papillomavirus molecular biology.

    Science.gov (United States)

    Harden, Mallory E; Munger, Karl

    Human papillomaviruses are small DNA viruses with a tropism for squamous epithelia. A unique aspect of human papillomavirus molecular biology involves dependence on the differentiation status of the host epithelial cell to complete the viral lifecycle. A small group of these viruses are the etiologic agents of several types of human cancers, including oral and anogenital tract carcinomas. This review focuses on the basic molecular biology of human papillomaviruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Molecular electronic junction transport

    DEFF Research Database (Denmark)

    Solomon, Gemma C.; Herrmann, Carmen; Ratner, Mark

    2012-01-01

    Whenasinglemolecule,oracollectionofmolecules,isplacedbetween two electrodes and voltage is applied, one has a molecular transport junction. We discuss such junctions, their properties, their description, and some of their applications. The discussion is qualitative rather than quantitative......, and focuses on mechanism, structure/function relations, regimes and mechanisms of transport, some molecular regularities, and some substantial challenges facing the field. Because there are many regimes and mechanisms in transport junctions, we will discuss time scales, geometries, and inelastic scattering...

  17. Molecular mechanisms in gliomagenesis

    DEFF Research Database (Denmark)

    Hulleman, Esther; Helin, Kristian

    2005-01-01

    , in order to design novel therapies and treatments for GBM, research has recently intensified to identify the cellular and molecular mechanisms leading to GBM formation. Modeling of astrocytomas by genetic manipulation of mice suggests that deregulation of the pathways that control gliogenesis during normal......-scale genomics and proteomics in combination with relevant mouse models will most likely provide novel insights into the molecular mechanisms underlying glioma formation and will hopefully lead to development of treatment modalities for GBM....

  18. Molecular Biology Database List.

    Science.gov (United States)

    Burks, C

    1999-01-01

    Molecular Biology Database List (MBDL) includes brief descriptions and pointers to Web sites for the various databases described in this issue as well as other Web sites presenting data sets relevant to molecular biology. This information is compiled into a list (http://www.oup.co.uk/nar/Volume_27/Issue_01/summary/ gkc105_gml.html) which includes links both to source Web sites and to on-line versions of articles describing the databases. PMID:9847130

  19. Cardiovascular Molecular Imaging

    International Nuclear Information System (INIS)

    Lee, Kyung Han

    2009-01-01

    Molecular imaging strives to visualize processes in living subjects at the molecular level. Monitoring biochemical processes at this level will allow us to directly track biological processes and signaling events that lead to pathophysiological abnormalities, and help make personalized medicine a reality by allowing evaluation of therapeutic efficacies on an individual basis. Although most molecular imaging techniques emerged from the field of oncology, they have now gradually gained acceptance by the cardiovascular community. Hence, the availability of dedicated high-resolution small animal imaging systems and specific targeting imaging probes is now enhancing our understanding of cardiovascular diseases and expediting the development of newer therapies. Examples include imaging approaches to evaluate and track the progress of recent genetic and cellular therapies for treatment of myocardial ischemia. Other areas include in vivo monitoring of such key molecular processes as angiogenesis and apoptosis. Cardiovascular molecular imaging is already an important research tool in preclinical experiments. The challenge that lies ahead is to implement these techniques into the clinics so that they may help fulfill the promise of molecular therapies and personalized medicine, as well as to resolve disappointments and controversies surrounding the field

  20. Molecular toxicity of nanomaterials.

    Science.gov (United States)

    Chang, Xue-Ling; Yang, Sheng-Tao; Xing, Gengmei

    2014-10-01

    With the rapid developments in the fields of nanoscience and nanotechnlogy, more and more nanomaterials and their based consumer products have been used into our daily life. The safety concerns of nanomaterials have been well recognized by the scientific community and the public. Molecular mechanism of interactions between nanomaterials and biosystems is the most essential topic and final core of the biosafety. In the last two decades, nanotoxicology developed very fast and toxicity phenomena of nanomaterials have been reported. To achieve better understanding and detoxication of nanomaterials, thorough studies of nanotoxicity at molecular level are important. The interactions between nanomaterials and biomolecules have been widely investigated as the first step toward the molecular nanotoxicology. The consequences of such interactions have been discussed in the literature. Besides this, the chemical mechanism of nanotoxicology is gaining more attention, which would lead to a better design of nontoxic nanomaterials. In this review, we focus on the molecular nanotoxicology and explore the toxicity of nanomaterials at molecular level. The molecular level studies of nanotoxicology are summarized and the published nanotoxicological data are revisited.

  1. Nanoplatform-based molecular imaging

    National Research Council Canada - National Science Library

    Chen, Xiaoyuan

    2011-01-01

    "Nanoplathform-Based Molecular Imaging provides rationale for using nanoparticle-based probes for molecular imaging, then discusses general strategies for this underutilized, yet promising, technology...

  2. Molecular genetics in aquaculture

    Directory of Open Access Journals (Sweden)

    Liliana Di Stasio

    2010-01-01

    Full Text Available Great advances in molecular genetics have deeply changed the way of doing research in aquaculture, as it has already done in other fields. The molecular revolution started in the 1980’s, thanks to the widespread use of restriction enzymes and Polymerase Chain Reaction technology, which makes it possible to easily detect the genetic variability directly at the DNA level. In aquaculture, the molecular data are used for several purposes, which can be clustered into two main groups. The first one, focused on individuals, includes the sex identification and parentage assignment, while the second one, focused on populations, includes the wide area of the genetic characterization, aimed at solving taxonomic uncertainties, preserving genetic biodiversity and detecting genetic tags. For the future, the increase in the number of molecular markers and the construction of high density genetic maps, as well as the implementation of genomic resources (including genome sequencing, are expected to provide tools for the genetic improvement of aquaculture species through Marked Assisted Selection. In this review the characteristics of different types of molecular markers, along with their applications to a variety of aquaculture issues are presented.

  3. Phylogenetic molecular function annotation

    International Nuclear Information System (INIS)

    Engelhardt, Barbara E; Jordan, Michael I; Repo, Susanna T; Brenner, Steven E

    2009-01-01

    It is now easier to discover thousands of protein sequences in a new microbial genome than it is to biochemically characterize the specific activity of a single protein of unknown function. The molecular functions of protein sequences have typically been predicted using homology-based computational methods, which rely on the principle that homologous proteins share a similar function. However, some protein families include groups of proteins with different molecular functions. A phylogenetic approach for predicting molecular function (sometimes called 'phylogenomics') is an effective means to predict protein molecular function. These methods incorporate functional evidence from all members of a family that have functional characterizations using the evolutionary history of the protein family to make robust predictions for the uncharacterized proteins. However, they are often difficult to apply on a genome-wide scale because of the time-consuming step of reconstructing the phylogenies of each protein to be annotated. Our automated approach for function annotation using phylogeny, the SIFTER (Statistical Inference of Function Through Evolutionary Relationships) methodology, uses a statistical graphical model to compute the probabilities of molecular functions for unannotated proteins. Our benchmark tests showed that SIFTER provides accurate functional predictions on various protein families, outperforming other available methods.

  4. [Molecular techniques in mycology].

    Science.gov (United States)

    Rodríguez-Tudela, Juan Luis; Cuesta, Isabel; Gómez-López, Alicia; Alastruey-Izquierdo, Ana; Bernal-Martínez, Leticia; Cuenca-Estrella, Manuel

    2008-11-01

    An increasing number of molecular techniques for the diagnosis of fungal infections have been developed in the last few years, due to the growing prevalence of mycoses and the length of time required for diagnosis when classical microbiological methods are used. These methods are designed to resolve the following aspects of mycological diagnosis: a) Identification of fungi to species level by means of sequencing relevant taxonomic targets; b) early clinical diagnosis of invasive fungal infections; c) detection of molecular mechanisms of resistance to antifungal agents; and d) molecular typing of fungi. Currently, these methods are restricted to highly developed laboratories. However, some of these techniques will probably be available in daily clinical practice in the near future.

  5. Theoretical Molecular Biophysics

    CERN Document Server

    Scherer, Philipp

    2010-01-01

    "Theoretical Molecular Biophysics" is an advanced study book for students, shortly before or after completing undergraduate studies, in physics, chemistry or biology. It provides the tools for an understanding of elementary processes in biology, such as photosynthesis on a molecular level. A basic knowledge in mechanics, electrostatics, quantum theory and statistical physics is desirable. The reader will be exposed to basic concepts in modern biophysics such as entropic forces, phase separation, potentials of mean force, proton and electron transfer, heterogeneous reactions coherent and incoherent energy transfer as well as molecular motors. Basic concepts such as phase transitions of biopolymers, electrostatics, protonation equilibria, ion transport, radiationless transitions as well as energy- and electron transfer are discussed within the frame of simple models.

  6. Molecular Rotors as Switches

    Directory of Open Access Journals (Sweden)

    Kang L. Wang

    2012-08-01

    Full Text Available The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V revealed a temperature-dependent negative differential resistance (NDR associated with the device. The analysis of the device

  7. Targeted molecular imaging

    International Nuclear Information System (INIS)

    Kim, E. Edmund

    2003-01-01

    Molecular imaging aims to visualize the cellular and molecular processes occurring in living tissues, and for the imaging of specific molecules in vivo, the development of reporter probes and dedicated imaging equipment is most important. Reporter genes can be used to monitor the delivery and magnitude of therapeutic gene transfer, and the time variation involved. Imaging technologies such as micro-PET, SPECT, MRI and CT, as well as optical imaging systems, are able to non-invasively detect, measure, and report the simultaneous expression of multiple meaningful genes. It is believed that recent advances in reporter probes, imaging technologies and gene transfer strategies will enhance the effectiveness of gene therapy trials

  8. Substructured multibody molecular dynamics.

    Energy Technology Data Exchange (ETDEWEB)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  9. Synergetics of molecular systems

    CERN Document Server

    Lupichev, Lev N; Kadantsev, Vasiliy N

    2014-01-01

    Synergetics is the quantitative study of multicomponent systems that exhibit nonlinear dynamics and cooperativity. This book specifically considers basic models of the nonlinear dynamics of molecular systems and discusses relevant applications in biological physics and the polymer sciences.Emphasis is placed on specific solutions to the dynamical equations that correspond to the coherent formation of spatial-temporal structures, such as solitons, kinks and breathers, in particular. The emergence of these patterns in molecular structures provides a variety of information on their structural pro

  10. Open source molecular modeling.

    Science.gov (United States)

    Pirhadi, Somayeh; Sunseri, Jocelyn; Koes, David Ryan

    2016-09-01

    The success of molecular modeling and computational chemistry efforts are, by definition, dependent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. An updated online version of this catalog can be found at https://opensourcemolecularmodeling.github.io. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Molecular logic gate arrays.

    Science.gov (United States)

    de Silva, A Prasanna

    2011-03-01

    Chemists are now able to emulate the ideas and instruments of mathematics and computer science with molecules. The integration of molecular logic gates into small arrays has been a growth area during the last few years. The design principles underlying a collection of these cases are examined. Some of these computing molecules are applicable in medical- and biotechnologies. Cases of blood diagnostics, 'lab-on-a-molecule' systems, and molecular computational identification of small objects are included. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Visualizing molecular unidirectional rotation

    Science.gov (United States)

    Lin, Kang; Song, Qiying; Gong, Xiaochun; Ji, Qinying; Pan, Haifeng; Ding, Jingxin; Zeng, Heping; Wu, Jian

    2015-07-01

    We directly visualize the spatiotemporal evolution of a unidirectional rotating molecular rotational wave packet. Excited by two time-delayed polarization-skewed ultrashort laser pulses, the cigar- or disk-shaped rotational wave packet is impulsively kicked to unidirectionally rotate as a quantum rotor which afterwards disperses and exhibits field-free revivals. The rich dynamics can be coherently controlled by varying the timing or polarization of the excitation laser pulses. The numerical simulations very well reproduce the experimental observations and intuitively revivify the thoroughgoing evolution of the molecular rotational wave packet of unidirectional spin.

  13. Molecular beam epitaxy

    CERN Document Server

    Pamplin, Brian R

    1980-01-01

    Molecular Beam Epitaxy introduces the reader to the use of molecular beam epitaxy (MBE) in the generation of III-V and IV-VI compounds and alloys and describes the semiconductor and integrated optics reasons for using the technique. Topics covered include semiconductor superlattices by MBE; design considerations for MBE systems; periodic doping structure in gallium arsenide (GaAs); nonstoichiometry and carrier concentration control in MBE of compound semiconductors; and MBE techniques for IV-VI optoelectronic devices. The use of MBE to fabricate integrated optical devices and to study semicond

  14. Molecular epidemiology of Blastocystis

    Directory of Open Access Journals (Sweden)

    Fadime Eroğlu

    2015-12-01

    Full Text Available Blastocystis pathogenicity and classification was newly illuminated with molecular genetic studies and recently the parasite was found in the focus of many researchers. Several molecular methods such as; polymerase chain reaction (PCR, PCR-restriction fragment length polymorphism, random amplified polymorphic DNA, real-time polymerase chain reaction and DNA sequencing analyses can be used in genotyping of Blastocystis. Blastocystis parasites may cause diarrhea, abdominal pain, bloating, gas, irritability, anorexia, cramps, vomiting, dehydration, insomnia, nausea, loss of appetite, weight loss, fatigue symptoms and also could be asymptomatic cases. In this review, it was aimed to summarize the associations between Blastocystis subtypes and pathogenicity.

  15. Valency and molecular structure

    CERN Document Server

    Cartmell, E

    1977-01-01

    Valency and Molecular Structure, Fourth Edition provides a comprehensive historical background and experimental foundations of theories and methods relating to valency and molecular structures. In this edition, the chapter on Bohr theory has been removed while some sections, such as structures of crystalline solids, have been expanded. Details of structures have also been revised and extended using the best available values for bond lengths and bond angles. Recent developments are mostly noted in the chapter on complex compounds, while a new chapter has been added to serve as an introduction t

  16. [Biology molecular of glioblastomas].

    Science.gov (United States)

    Franco-Hernández, C; Martínez-Glez, V; Rey, J A

    2007-10-01

    Glioblastomas, the most frequent and malignant human brain tumors, may develop de novo (primary glioblastoma) or by progression from low-grade or anapalsic astrocytoma (secondary glioblastoma). The molecular alteration most frequent in these tumor-like types is the loss of heterozygosity on chromosome 10, in which several genes have been identified as tumors suppressor. The TP53/MDM2/P14arf and CDK4/RB1/ P16ink4 genetic pathways involved in cycle control are deregulated in the majority of gliomas as well as genes that promote the cellular division, EGFR. Finally the increase of growth and angiogenics factors is also involved in the development of glioblastomas. One of the objectives of molecular biology in tumors of glial ancestry is to try to find the genetic alterations that allow to approach better the classification of glioblastomas, its evolution prediction and treatment. The new pathmolecular classification of gliomas should improve the old one, especially being concerned about the oncogenesis and heterogeneity of these tumors. It is desirable that this classification had clinical applicability and integrates new molecular findings with some known histological features with pronostic value. In this paper we review the most frequent molecular mechanisms involved in the patogenesis of glioblastomas.

  17. Biophysics of molecular gastronomy.

    Science.gov (United States)

    Brenner, Michael P; Sörensen, Pia M

    2015-03-26

    Chefs and scientists exploring biophysical processes have given rise to molecular gastronomy. In this Commentary, we describe how a scientific understanding of recipes and techniques facilitates the development of new textures and expands the flavor palette. The new dishes that result engage our senses in unexpected ways. PAPERCLIP. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Molecular studies of achondroplasia

    Directory of Open Access Journals (Sweden)

    Nahar Risha

    2009-01-01

    Full Text Available Background: Achondroplasia (ACH is the most frequent form of short-limbed dwarfi sm, caused by mutations in the FGFR3 gene. It follows an autosomal dominant inheritance, though most cases are sporadic. The molecular techniques are the only available methods to confi rm the diagnosis of a skeletal dysplasia. Clinical and radiological features are only suggestive and not confi rmatory. The present study was conducted to fi nd out how often the clinical diagnosis of achondroplasia is verifi ed on molecular studies. Materials and Methods: From 1998 through 2007, we carried out molecular analysis for the two common mutations in the FGFR3 gene in 130 cases clinically suspected to have ACH. Results: A diagnostic mutation was identifi ed in 53 (40.8% cases. The common mutation (1138G>A was present in 50 (94.7% of the positive cases, while the rare 1138 G>C substitution was found in three (5.3%. Conclusion: This study shows that confi rmation of clinical diagnosis of ACH by molecular genetic testing is essential to distinguish it from other skeletal dysplasias, to plan therapeutic options, and to offer genetic counseling. Management (medical and surgical in patients confi rmed to have ACH, is briefl y discussed.

  19. Multiphotochromic molecular systems

    NARCIS (Netherlands)

    Fihey, Arnaud; Perrier, Aurélie; Browne, Wesley R; Jacquemin, Denis

    2015-01-01

    Molecular systems encompassing more than one photochromic entity can be used to build highly functional materials, thanks to their potential multi-addressability and/or multi-response properties. Over the last decade, the synthesis and spectroscopic and kinetic characterisation as well as the

  20. Molecular radio-oncology

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Krause, Mechthild; Cordes, Nils (eds.) [Technische Univ. Dresden (Germany). Faculty of Medicine and University Hospital

    2016-07-01

    This book concisely reviews our current understanding of hypoxia, molecular targeting, DNA repair, cancer stem cells, and tumor pathophysiology, while also discussing novel strategies for putting these findings into practice in daily clinical routine. Radiotherapy is an important part of modern multimodal cancer treatment, and the past several years have witnessed not only substantial improvements in radiation techniques and the use of new beam qualities, but also major strides in our understanding of molecular tumor biology and tumor radiation response. Against this backdrop, the book highlights recent efforts to identify reasonable and clinically applicable biomarkers using broad-spectrum tissue microarrays and high-throughput systems biology approaches like genomics and epigenomics. In particular, it describes in detail how such molecular information is now being exploited for diagnostic imaging and imaging throughout treatment using the example of positron emission tomography. By discussing all these issues in the context of modern radiation oncology, the book provides a broad, up-to-date overview of the molecular aspects of radiation oncology that will hopefully foster its further optimization.

  1. Molecular Pathogenesis of Spondyloarthritis

    DEFF Research Database (Denmark)

    Carlsen, Thomas Gelsing

    This dissertation includes a presentation of knowledge on the molecular pathogenesis of spondyloarthritis achieved through a PhD programme at Aalborg University from 1.12.2011 - 1.12.2014. Work was carried out in the Laboratory of Medical Mass Spectrometry, headed by: Professor Svend Birkelund...

  2. Molecular epidemiology of ascariasis

    DEFF Research Database (Denmark)

    Betson, Martha; Halstead, Fennella; Nejsum, Peter

      We are using molecular epidemiology techniques to study the population structure of Ascaris obtained from humans and pigs. Worms were obtained from human hosts on Zanzibar and in Uganda, Bangladesh, Guatemala and Nepal and Ascaris from pigs were collected from in Uganda, Tanzania, Denmark...

  3. Molecular Urban Revolutions?

    DEFF Research Database (Denmark)

    Samson, Kristine

    created by means of affective and assembled spaces. Finally, the paper will discuss notions of (spatial) singularization by elaborating on Suely Rolnik and Félix Guattari’s travel book, Molecular Revolutions in Brazil (2007). How, for instance, does spatial interventions relate to and transform global...

  4. Molecular Genetics of Analbuminaemia

    DEFF Research Database (Denmark)

    Minchiotti, Lorenzo; Caridi, Gianluca; Campagnoli, Monica

    2014-01-01

    the perinatal and childhood period. Twenty-one different molecular lesions in the ALB are now known as cause of the trait. These include one mutation in the start codon, one frameshift/insertion, five frameshift/deletions, seven nonsense mutations and seven mutations affecting splicing. Thus, nonsense mutations...

  5. Molecular gastronomy in Spain

    DEFF Research Database (Denmark)

    García-Segovia, P.; Garrido, M. D.; Vercet, A.

    2014-01-01

    Beyond the overwhelming international success of Ferrán Adria, Spain has been one of the countries with a more active implication in molecular gastronomy as a scientific discipline but also in the use of ingredients, technologies, and equipment from the scientific and technological universe...

  6. Molecular phosphates and siloxanes

    Indian Academy of Sciences (India)

    Administrator

    which represent the building units in zeolites and molecular sieves. The similarities and the variations in these molecules which could lead to the formation of the materials and the presence of plausible reactive groups which make the compounds susceptible to various reaction conditions are discussed. References. 1.

  7. Molecular Adsorber Coating

    Science.gov (United States)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  8. Molecular theory of capillarity

    CERN Document Server

    Rowlinson, J S

    2002-01-01

    History of thought on molecular origins of surface phenomena offers a critical and detailed examination and assessment of modern theories, focusing on statistical mechanics and application of results in mean-field approximation to model systems. Emphasis on liquid-gas surface, with a focus on liquid-liquid surfaces in the final chapters. 1989 edition.

  9. Multimodality cardiovascular molecular imaging technology.

    Science.gov (United States)

    O'Donnell, Matthew; McVeigh, Elliot R; Strauss, H William; Tanaka, Atsushi; Bouma, Brett E; Tearney, Guillermo J; Guttman, Michael A; Garcia, Ernest V

    2010-05-01

    Cardiovascular molecular imaging is a new discipline that integrates scientific advances in both functional imaging and molecular probes to improve our understanding of the molecular basis of the cardiovascular system. These advances are driven by in vivo imaging of molecular processes in animals, usually small animals, and are rapidly moving toward clinical applications. Molecular imaging has the potential to revolutionize the diagnosis and treatment of cardiovascular disease. The 2 key components of all molecular imaging systems are the molecular contrast agents and the imaging system providing spatial and temporal localization of these agents within the body. They must deliver images with the appropriate sensitivity and specificity to drive clinical applications. As work in molecular contrast agents matures and highly sensitive and specific probes are developed, these systems will provide the imaging technologies required for translation into clinical tools. This is the promise of molecular medicine.

  10. Conformation analysis of trehalose. Molecular dynamics simulation and molecular mechanics

    International Nuclear Information System (INIS)

    Donnamaira, M.C.; Howard, E.I.; Grigera, J.R.

    1992-09-01

    Conformational analysis of the disaccharide trehalose is done by molecular dynamics and molecular mechanics. In spite of the different force fields used in each case, comparison between the molecular dynamics trajectories of the torsional angles of glycosidic linkage and energy conformational map shows a good agreement between both methods. By molecular dynamics it is observed a moderate mobility of the glycosidic linkage. The demands of computer time is comparable in both cases. (author). 6 refs, 4 figs

  11. Fine tuning of molecular rotor function in photochemical molecular switches

    NARCIS (Netherlands)

    ter Wiel, Matthijs K. J.; Feringa, Ben L.

    2009-01-01

    Molecular switches are used as scaffolds for the construction of controlled molecular rotors. The internal position of the switching entity in the molecule controls the dynamic behaviour of the rotor moiety in the molecule. Six new molecular motors with o-xylyl rotor moieties were prepared on the

  12. Molecular Imaging Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Kovac, S.

    2009-05-01

    Full Text Available Molecular imaging mass spectrometry (IMS is a recently developed method for direct determination of spatial distribution of biopolymers, preferably proteins on cell surface and tissues. Imaging mass spectrometry data are mainly based on Matrix-Assisted Laser Desorption/Ionization- Time of Flight (MALDI TOF. The MALDI TOF based imaging mass spectrometry was applied for determination of changes in kidney tissue of sensitive mice after poisoning with aristolochic acid I. The second application presented here were changes in the gastric tissue in mice after infection with Helicobacter pylori, as a model of gastric cancer in humans caused by this pathogen microorganism. Molecular imaging mass spectrometry can be applied in medicine, mostly for identification of candidate biomarkers for malignant and non-malignant diseases. Furthermore, imaging MS has almost unlimited capacity in agriculture, food technology and biotechnology, e. g. for monitoring, process development and quality control of manufactured tissue of animal, plant and microbial origin.

  13. Interactive molecular dynamics

    Science.gov (United States)

    Schroeder, Daniel V.

    2015-03-01

    Physics students now have access to interactive molecular dynamics simulations that can model and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other weakly at short distances but repel strongly when pressed together. Using these simulations, students can develop an understanding of forces and motions at the molecular scale, nonideal fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the arrow of time, and much more. This article summarizes the basic features and capabilities of such a simulation, presents a variety of student exercises using it at the introductory and intermediate levels, and describes some enhancements that can further extend its uses. A working simulation code, in html5 and javascript for running within any modern Web browser, is provided as an online supplement.

  14. Managing molecular diversity.

    Science.gov (United States)

    Perez, Juan J

    2005-02-01

    The present work provides an overview of the different methods used in molecular diversity analysis. Issues like identifying voids in proprietary databases, reducing the number of redundancies present in databases, or designing focused libraries by grouping compounds similar to a template with the aim to fine tune its properties, are potent diversity analysis tools that may be used to optimize molecules based on their properties and specifically, to speed up the process of lead discovery and optimization. The present work describes first methods that are used to describe molecular systems. This is followed by a section devoted to describe different measures of similarity between molecules, to finish with a description of different methods used to select subsets molecules according to the constraints imposed. The final section deals with the validation of these methods, based on different studies available in the literature.

  15. Topology in Molecular Biology

    CERN Document Server

    Monastyrsky, Michail Ilych

    2007-01-01

    The book presents a class of new results in molecular biology for which topological methods and ideas are important. These include: the large-scale conformation properties of DNA; computational methods (Monte Carlo) allowing the simulation of large-scale properties of DNA; the tangle model of DNA recombination and other applications of Knot theory; dynamics of supercoiled DNA and biocatalitic properties of DNA; the structure of proteins; and other very recent problems in molecular biology. The text also provides a short course of modern topology intended for the broad audience of biologists and physicists. The authors are renowned specialists in their fields and some of the new results presented here are documented for the first time in monographic form.

  16. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  17. Molecular biomethods handbook

    National Research Council Canada - National Science Library

    Walker, John M; Rapley, Ralph

    2008-01-01

    ... the reader to a selection of analytical and preparative techniques that we considered to be frequently used by research workers in the field of molecular biology. Clearly, within the constraints of a single volume we had to be selective in the techniques we described. Since the first edition was published, science has continued to move on apace. For example, the use of microarray technology is now commonplace, nanotechnology has entered the scientific literature, microfluidic technology has be...

  18. Atomic and molecular theory

    International Nuclear Information System (INIS)

    Inokuti, Mitio.

    1990-01-01

    The multifaceted role of theoretical physics in understanding the earliest stages of radiation action is discussed. Scientific topics chosen for the present discourse include photoabsorption, electron collisions, and ionic collisions, and electron transport theory, Connections of atomic and molecular physics with condensed-matter physics are also discussed. The present article includes some historical perspective and an outlook for the future. 114 refs., 3 figs

  19. Graphs in molecular biology

    Directory of Open Access Journals (Sweden)

    Falcon Seth

    2007-09-01

    Full Text Available Abstract Graph theoretical concepts are useful for the description and analysis of interactions and relationships in biological systems. We give a brief introduction into some of the concepts and their areas of application in molecular biology. We discuss software that is available through the Bioconductor project and present a simple example application to the integration of a protein-protein interaction and a co-expression network.

  20. Molecular Gastronomy in Spain

    OpenAIRE

    García-Segovia, Purificación; Garrido, María Dolores; Vercet Tormo, Antonio; Arboleya, Juan Carlos; FISZMAN DAL SANTO, SUSANA; Martínez Monzó, Javier; Laguarda, Sergio; Palacios, Victor; Ruiz Carrascal, Jorge

    2014-01-01

    [EN] Beyond the overwhelming international success of Ferrán Adria, Spain has been one of the countries with a more active implication in molecular gastronomy as a scientific discipline but also in the use of ingredients, technologies, and equipment from the scientificand technological universe in the culinary area. Nowadays, this is a well-established discipline in Spain, with a number of research groups covering related topics, several companies commercializing appliances and additives worl...

  1. Molecular-beam scattering

    International Nuclear Information System (INIS)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N 2 from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl → NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2 2 P/sub 3/2/) and Na(3 2 P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included

  2. Primer on molecular genetics

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  3. Molecular symmetry and spectroscopy

    CERN Document Server

    Bunker, Philip; Jensen, Per

    2006-01-01

    The first edition, by P.R. Bunker, published in 1979, remains the sole textbook that explains the use of the molecular symmetry group in understanding high resolution molecular spectra. Since 1979 there has been considerable progress in the field and a second edition is required; the original author has been joined in its writing by Per Jensen. The Material of the first edition has been reorganized and much has been added. The molecular symmetry group is now introduced early on, and the explanation of how to determine nuclear spin statistical weights has been consolidated in one chapter, after groups, symmetry groups, character tables and the Hamiltonian have been introduced. A description of the symmetry in the three-dimensional rotation group K(spatial), irreducible spherical tensor operators, and vector coupling coefficients is now included. The chapters on energy levels and selection rules contain a great deal of material that was not in the first edition (much of it was undiscovered in 1979), concerning ...

  4. Molecular dynamics simulations.

    Science.gov (United States)

    Lindahl, Erik

    2015-01-01

    Molecular dynamics has evolved from a niche method mainly applicable to model systems into a cornerstone in molecular biology. It provides us with a powerful toolbox that enables us to follow and understand structure and dynamics with extreme detail-literally on scales where individual atoms can be tracked. However, with great power comes great responsibility: Simulations will not magically provide valid results, but it requires a skilled researcher. This chapter introduces you to this, and makes you aware of some potential pitfalls. We focus on the two basic and most used methods; optimizing a structure with energy minimization and simulating motion with molecular dynamics. The statistical mechanics theory is covered briefly as well as limitations, for instance the lack of quantum effects and short timescales. As a practical example, we show each step of a simulation of a small protein, including examples of hardware and software, how to obtain a starting structure, immersing it in water, and choosing good simulation parameters. You will learn how to analyze simulations in terms of structure, fluctuations, geometrical features, and how to create ray-traced movies for presentations. With modern GPU acceleration, a desktop can perform μs-scale simulations of small proteins in a day-only 15 years ago this took months on the largest supercomputer in the world. As a final exercise, we show you how to set up, perform, and interpret such a folding simulation.

  5. Molecular Neuropathology of Gliomas

    Directory of Open Access Journals (Sweden)

    Guido Reifenberger

    2009-01-01

    Full Text Available Gliomas are the most common primary human brain tumors. They comprise a heterogeneous group of benign and malignant neoplasms that are histologically classified according to the World Health Organization (WHO classification of tumors of the nervous system. Over the past 20 years the cytogenetic and molecular genetic alterations associated with glioma formation and progression have been intensely studied and genetic profiles as additional aids to the definition of brain tumors have been incorporated in the WHO classification. In fact, first steps have been undertaken in supplementing classical histopathological diagnosis by the use of molecular tests, such as MGMT promoter hypermethylation in glioblastomas or detection of losses of chromosome arms 1p and 19q in oligodendroglial tumors. The tremendous progress that has been made in the use of array-based profiling techniques will likely contribute to a further molecular refinement of glioma classification and lead to the identification of glioma core pathways that can be specifically targeted by more individualized glioma therapies.

  6. Molecular basis of alcoholism.

    Science.gov (United States)

    Most, Dana; Ferguson, Laura; Harris, R Adron

    2014-01-01

    Acute alcohol intoxication causes cellular changes in the brain that last for hours, while chronic alcohol use induces widespread neuroadaptations in the nervous system that can last a lifetime. Chronic alcohol use and the progression into dependence involve the remodeling of synapses caused by changes in gene expression produced by alcohol. The progression of alcohol use, abuse, and dependence can be divided into stages, which include intoxication, withdrawal, and craving. Each stage is associated with specific changes in gene expression, cellular function, brain circuits, and ultimately behavior. What are the molecular mechanisms underlying the transition from recreational use (acute) to dependence (chronic)? What cellular adaptations result in drug memory retention, leading to the persistence of addictive behaviors, even after prolonged drug abstinence? Research into the neurobiology of alcoholism aims to answer these questions. This chapter will describe the molecular adaptations caused by alcohol use and dependence, and will outline key neurochemical participants in alcoholism at the molecular level, which are also potential targets for therapy. © 2014 Elsevier B.V. All rights reserved.

  7. Molecular Imaging of Gliomas

    Directory of Open Access Journals (Sweden)

    A. H. Jacobs

    2002-10-01

    Full Text Available Gliomas are the most common types of brain tumors. Although sophisticated regimens of conventional therapies are being carried out to treat patients with gliomas, the disease invariably leads to death over months or years. Before new and potentially more effective treatment strategies, such as gene- and cell-based therapies, can be effectively implemented in the clinical application, certain prerequisites have to be established. First of all, the exact localization, extent, and metabolic activity of the glioma must be determined to identify the biologically active target tissue for a biological treatment regimen; this is usually performed by imaging the expression of up-regulated endogenous genes coding for glucose or amino acid transporters and cellular hexokinase and thymidine kinase genes, respectively. Second, neuronal function and functional changes within the surrounding brain tissue have to be assessed in order to save this tissue from therapy-induced damage. Third, pathognomonic genetic changes leading to disease have to be explored on the molecular level to serve as specific targets for patient-tailored therapies. Last, a concerted noninvasive analysis of both endogenous and exogenous gene expression in animal models as well as the clinical setting is desirable to effectively translate new treatment strategies from experimental into clinical application. All of these issues can be addressed by multimodal radionuclide and magnetic resonance imaging techniques and fall into the exciting and fast growing field of molecular and functional imaging. Noninvasive imaging of endogenous gene expression by means of positron emission tomography (PET may reveal insight into the molecular basis of pathogenesis and metabolic activity of the glioma and the extent of treatment response. When exogenous genes are introduced to serve for a therapeutic function, PET imaging may reveal the assessment of the “location,” “magnitude,” and

  8. Molecular Transporters for Desalination Applications

    Science.gov (United States)

    2014-08-02

    May-2009 17-Feb-2014 Approved for Public Release; Distribution Unlimited Molecular transporters for desalination applications The views, opinions and...12211 Research Triangle Park, NC 27709-2211 desalination biomimetric membranes activated chemical transport REPORT DOCUMENTATION PAGE 11. SPONSOR...ABSTRACT Molecular transporters for desalination applications Report Title The primary goal of the ‘Molecular Transporter’ program was to develop a precise

  9. Computational methods for molecular imaging

    CERN Document Server

    Shi, Kuangyu; Li, Shuo

    2015-01-01

    This volume contains original submissions on the development and application of molecular imaging computing. The editors invited authors to submit high-quality contributions on a wide range of topics including, but not limited to: • Image Synthesis & Reconstruction of Emission Tomography (PET, SPECT) and other Molecular Imaging Modalities • Molecular Imaging Enhancement • Data Analysis of Clinical & Pre-clinical Molecular Imaging • Multi-Modal Image Processing (PET/CT, PET/MR, SPECT/CT, etc.) • Machine Learning and Data Mining in Molecular Imaging. Molecular imaging is an evolving clinical and research discipline enabling the visualization, characterization and quantification of biological processes taking place at the cellular and subcellular levels within intact living subjects. Computational methods play an important role in the development of molecular imaging, from image synthesis to data analysis and from clinical diagnosis to therapy individualization. This work will bring readers fro...

  10. Molecular Mechanisms of Preeclampsia

    Science.gov (United States)

    Hod, Tammy; Cerdeira, Ana Sofia; Karumanchi, S. Ananth

    2015-01-01

    Preeclampsia is a pregnancy-specific disease characterized by new onset hypertension and proteinuria after 20 wk of gestation. It is a leading cause of maternal and fetal morbidity and mortality worldwide. Exciting discoveries in the last decade have contributed to a better understanding of the molecular basis of this disease. Epidemiological, experimental, and therapeutic studies from several laboratories have provided compelling evidence that an antiangiogenic state owing to alterations in circulating angiogenic factors leads to preeclampsia. In this review, we highlight the role of key circulating antiangiogenic factors as pathogenic biomarkers and in the development of novel therapies for preeclampsia. PMID:26292986

  11. Molecular biology and reproduction.

    Science.gov (United States)

    McDonough, P G

    1999-03-01

    Modern molecular biology has provided unique insights into the fundamental understanding of reproductive disorders and the detection of microorganisms. The remarkable advances in DNA diagnostics have been expedited by the development of polymerase chain reaction (PCR) and the ability to isolate DNA and RNA from many different sources such as blood, saliva, hair roots, microscopic slides, paraffin-embedded tissue sections, clinical swabs, and even cancellous bone. These technical advances have been bolstered by the development of an increasing number of effective screening techniques to scan genomic DNA for unknown point mutations. The continued development of technology will ultimately result in automated DNA (desoxyribonucleic acid) diagnosis for the practicing clinician. The continuing expansion of information concerning the human genome will place an increasing emphasis on bioinformatics and the use of computer software for analyzing DNA sequences. With the automation of DNA diagnosis and the use of small samples (500 nanograms), the direct examination of the DNA of a patient, fetus, or microorganism will emerge as a definitive means of establishing the presence of the specific genetic change that causes disease. A knowledge of the precise pathology at the molecular level has and will provide important insights into the biochemical basis for many human diseases. A firm knowledge of the DNA alterations in disease and expression patterns of specific genes will provide for more directed therapeutic strategies. The refinement of vector technology and nuclear transplantion techniques will provide the opportunity for directed gene therapy to the early human embryo. This presentation is designed to acquaint the reader with current techniques of testing at the DNA level, prototype mutations in the reproductive sciences, new concepts in the molecular mechanisms of disease that affect reproduction, and therapeutic opportunities for the future. It is hoped that future

  12. The nonequilibrium molecular dynamics

    International Nuclear Information System (INIS)

    Hoover, W.G.

    1992-03-01

    MOLECULAR DYNAMICS has been generalized in order to simulate a variety of NONEQUILIBRIUM systems. This generalization has been achieved by adopting microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress. Some of the problems already treated include rapid plastic deformation, intense heat conduction, strong shockwaves simulation, and far-from-equilibrium phase transformations. Continuing advances in technique and in the modeling of interatomic forces, coupled with qualitative improvements in computer hardware, are enabling such simulations to approximate real-world microscale and nanoscale experiments

  13. Molecular neurobiology of addiction.

    Science.gov (United States)

    Nestler, E J

    2001-01-01

    Addiction can be viewed as a form of drug-induced neural plasticity. One of the best established molecular mechanisms of addiction is the upregulation of the cAMP second messenger pathway, which occurs in many neuronal cell types in response to chronic administration of opiates or other drugs of abuse. This upregulation and the resulting activation of the transcription factor CREB appear to mediate aspects of tolerance and dependence. In contrast, induction of another transcription factor, termed delta FosB, exerts the opposite effect and may contribute to sensitized responses to drug exposure. Knowledge of these mechanisms could lead to more effective treatments for addictive disorders.

  14. Nanoformulations for molecular MRI

    Science.gov (United States)

    Tu, Chuqiao; Louie, Angelique Y.

    2012-01-01

    Nanoscale contrast agents have shown the ability to increase the detection sensitivity of MRI by several orders of magnitude, endowing this traditionally macroscopic modality with the ability to observe unique molecular signatures. Herein, we describe three types of nanoparticulate contrast agents: iron oxide nanoparticles, gadolinium-based nanoparticles, and bio-essential manganese, cobalt, nickel, and copper ion-containing nanoformulations. Some of these agents have been approved for clinical use, but more are still under development for medical imaging. The advantages and disadvantages of each nanoformulation, in terms of intrinsic magnetism, ease of synthesis, and biodistribution, etc. are discussed. PMID:22488901

  15. Molecular mechanisms in gliomagenesis

    DEFF Research Database (Denmark)

    Hulleman, Esther; Helin, Kristian

    2005-01-01

    , in order to design novel therapies and treatments for GBM, research has recently intensified to identify the cellular and molecular mechanisms leading to GBM formation. Modeling of astrocytomas by genetic manipulation of mice suggests that deregulation of the pathways that control gliogenesis during normal...... brain development, such as the differentiation of neural stem cells (NSCs) into astrocytes, might contribute to GBM formation. These pathways include growth factor-induced signal transduction routes and processes that control cell cycle progression, such as the p16-CDK4-RB and the ARF-MDM2-p53 pathways...

  16. Handbook of molecular plasmonics

    CERN Document Server

    Sala, Fabio Della

    2013-01-01

    While several reviews and books on surface nanophotonics and fluorescence spectroscopy are available, an updated focus on molecular plasmonics, including both theoretical methods and experimental aspects, is still lacking. This handbook is a comprehensive overview on the physics of the plasmon-emitter interaction, ranging from electromagnetism to quantum mechanics, from metal-enhanced fluorescence to surface-enhanced Raman scattering, from optical microscopy to synthesis of metal nanoparticles, filling the gap in the literature of this merging field. It allows experimentalists to have a solid

  17. Molecular ecological network analyses

    Directory of Open Access Journals (Sweden)

    Deng Ye

    2012-05-01

    Full Text Available Abstract Background Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Results Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs through Random Matrix Theory (RMT-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological

  18. Molecular collision theory

    CERN Document Server

    Child, M S

    2010-01-01

    This high-level monograph offers an excellent introduction to the theory required for interpretation of an increasingly sophisticated range of molecular scattering experiments. There are five helpful appendixes dealing with continuum wavefunctions, Green's functions, semi-classical connection formulae, curve-crossing in the momentum representation, and elements of classical mechanics.The contents of this volume have been chosen to emphasize the quantum mechanical and semi-classical nature of collision events, with little attention given to purely classical behavior. The treatment is essentiall

  19. De novo molecular design

    CERN Document Server

    Schneider, Gisbert

    2013-01-01

    Systematically examining current methods and strategies, this ready reference covers a wide range of molecular structures, from organic-chemical drugs to peptides, Proteins and nucleic acids, in line with emerging new drug classes derived from biomacromolecules. A leader in the field and one of the pioneers of this young discipline has assembled here the most prominent experts from across the world to provide first-hand knowledge. While most of their methods and examples come from the area of pharmaceutical discovery and development, the approaches are equally applicable for chemical probes an

  20. Molecular water oxidation catalysis

    CERN Document Server

    Llobet, Antoni

    2014-01-01

    Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most importan

  1. Nuclear molecular states

    International Nuclear Information System (INIS)

    Abe, Y.

    1975-01-01

    The effects of polarization on the stability of α-cluster structures in 8 Be and 12 C nuclei are studied in the intrinsic states. The extent of the polarization of α-clusters is investigated by employing a molecular-orbital model. Two α-cluster structure of 8 Be is shown to be extremely stable, and a triangular configuration of three α-clusters is also shown to be stable, but the polarizations of α-clusters are found rather large. Gruemmer--Faessler's method is discussed and their results are shown to be trivial

  2. Introduction to basic molecular biologic techniques for molecular imaging researches

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2004-01-01

    Molecular imaging is a rapidly growing field due to the advances in molecular biology and imaging technologies. With the introduction of imaging reporter genes into the cell, diverse cellular processes can be monitored, quantified and imaged non-invasively in vivo. These processes include the gene expression, protein-protein interactions, signal transduction pathways, and monitoring of cells such as cancer cells, immune cells, and stem cells. In the near future, molecular imaging analysis will allow us to observe the incipience and progression of the disease. These will make us easier to give a diagnosis in the early stage of intractable diseases such as cancer, neuro-degenerative disease, and immunological disorders. Additionally, molecular imaging method will be a valuable tool for the real-time evaluation of cells in molecular biology and the basic biological studies. As newer and more powerful molecular imaging tools become available, it will be necessary to corporate clinicians, molecular biologists and biochemists for the planning, interpretation, and application of these techniques to their fullest potential. In order for such a multidisciplinary team to be effective, it is essential that a common understanding of basic biochemical and molecular biologic techniques is achieved. Basic molecular techniques for molecular imaging methods are presented in this paper

  3. Organic and molecular magnets

    International Nuclear Information System (INIS)

    Blundell, S J; Pratt, F L

    2004-01-01

    Historically most materials in magnetic applications are based on inorganic materials. Recently, however, organic and molecular materials have begun to show increasing promise. Purely organic ferromagnets, based upon nitronyl nitroxide radicals, show long range magnetic order at very low temperatures in the region of 1 K, while sulfur based radicals show weak ferromagnetism at temperatures up to 36 K. It is also possible to prepare molecule based magnets in which transition metal ions are used to provide the magnetic moment, but organic groups mediate the interactions. This strategy has produced magnetic materials with a large variety of structures, including chains, layered systems and three-dimensional networks, some of which show ordering at room temperature and some of which have very high coercivity. Even if long range magnetic order is not achieved, the spin crossover effect may be observed, which has important applications. Further magnetic materials may be obtained by constructing charge transfer salts, which can produce metallic molecular magnets. Another development is single-molecule magnets, formed by preparing small magnetic clusters. These materials can show macroscopic quantum tunnelling of the magnetization and may have uses as memory devices or in quantum computation applications. (topical review)

  4. Molecular Aspects of Capacitation

    Directory of Open Access Journals (Sweden)

    Gulfidan Zulfikaroglu

    2010-02-01

    Full Text Available Male and female gamets are derived from the primordial germ cells, which migrate from the wall of the yolk sac toward the developing gonads. Following a series of mitotic divisions these cells increase in number at the gonads. The primordial germ cells differentiate into spermatogonia and take the form of mature spermatozoa after spermotogensis and spermotogenesis at puberty. Capacitation is the reaction, which includes all of the molecular and physiological events of mature sperm to gain the ability of fertilizing oocytes at metaphase 2 in the female genital tract. Some molecular events significant in the initiation of capacitation have been identified as cholesterol efflux from the sperm plasma membrane, increased membrane fluidity, modulation of intracellular ion concentration, hyperpolarization of the sperm plasma membrane and increased protein tyrosine phosphorylation. During capacitation, the spermatozoa acquires the ability to penetrate the corona radiata and to bind to the zona pellucida. This binding triggers acrosome reaction which occurs by the development of multiple fenestrations between the outer acrosomal membrane and the plasma membrane of the spermatozoon. After the fusion of oocyte and sperm plasma membranes, sperm and oocyt pronuclei are joined together to compose the zygote. [Archives Medical Review Journal 2010; 19(1.000: 12-24

  5. Molecular beam kinetics

    International Nuclear Information System (INIS)

    Behrens, R. Jr.

    1975-11-01

    The design of a crossed molecular beam ''supermachine'' for neutral--neutral collisions is discussed. The universal electron bombardment ionizer, mass filter, and ion detection system of the detector, the supersonic nozzle sources, the differential pumping arrangement for the sources and detector, the time-of-flight detection of scattered products, and the overall configuration of the apparatus are described. The elastic scattering of two systems, CH 4 + Ar and NH 3 + Ar, has been measured using the supermachine with two supersonic nozzle sources. The rainbow structure and the interference oscillations are seen in each system. The best fit to the data was found using a Morse--Spline--Van der Waals (MSV) potential. The three potential parameters epsilon, r/sub m/, and β were found to be 2.20(+-0.04) x 10 -14 ergs, 3.82(+-0.04)A, and 7.05 +- 0.20 for CH 4 + Ar, and 2.21(+-0.04) x 10 -14 ergs 3.93 (+-0.05)A, and 8.45 +- 0.30 for NH 3 + Ar. A new phenomenon in crossed molecular beams of condensation of a molecule on a cluster to form a complex was observed. A bromine molecule condensed on clusters of chlorine (Cl 2 )/sub chi/ and ammonia (NH 3 )/sub chi/. The value of chi for measurements in these experiments ranges from 7 to 40 for chlorine clusters and from 10 to 70 ammonia clusters

  6. Molecular interference and nanostructures

    International Nuclear Information System (INIS)

    Deachapunya, S.; Goldfarb, F.; Major, A.; Arndt, M.

    2005-01-01

    Full text: The experiments in Vienna prove and investigate the quantum behavior, such as quantum interference and quantum decoherence with big molecules such as meso-tetraphenylporphyrins , fullerenes, and large derivative thereof. The main goal is to test up to which mass and complexity which one can still observe quantum interference. One of the major challenges in recent experiments with high mass molecules is the low detection efficiency, for example 0.01 percent or even below for masses above 2000 Dalton. To improve the detection system, lithography and scanning probe microscopy (SPM) methods are being explored since they promise of 100 percent detection efficiency in principle. Moreover, we investigate the potential use of molecule interferometry for molecular nanolithography, i.e. for the deposition of nanometer-sized particles in nanosized patterns. In the first results, we have studied physical properties of tetraphenylporphyrin, C44H30N4 (TPP) such as photobleaching and molecular mobility on several surfaces i.e. quartz, mica, Si, aldehyde biochip surface under high vacuum conditions. We have investigated their properties by using fluorescence and atomic force microscopy. (author)

  7. Chemoradiotherapy and molecular biology

    International Nuclear Information System (INIS)

    Hasegawa, Masatoshi; Mitsuhashi, Norio; Niibe, Hideo

    2000-01-01

    The current status of chemoradiotherapy was reviewed from the standpoint of molecular biology. Chemoradiotherapy was conducted to achieve systemic tumor control, to intensify the response to irradiation, and to reduce adverse reactions. The mechanisms of the efficacy of chemoradiotherapy were: modification of dose-response relationships, inhibition of tumor cell recovery from sublethal damage or potential lethal damage, effects on cell dynamics and the cell cycle, improvement of blood flow or reoxygenation, recruitment, improvement of drug uptake, increased cell damage. Cell death (necrosis and apoptosis) and cancer-related genes were described, as the essential points, because they are involved in the response to chemoradiotherapy. Cisplatin (platinum compound), 5-fluorouracil, etoposide, and taxoid (paclitaxel, docetaxel) were the principal anticancer agents used for chemoradiotherapy, and they enhanced the effects of irradiation. However, even when good responses or synergism between anticancer drug and radiotherapy was observed in in vitro studies, there was little therapeutic advantage clinically. Data from in vitro and in vivo studies should be collected and systemized, and ''molecular biology in chemotherapy'' that can be applied clinically may become established. (K.H.)

  8. Molecular biology of potyviruses.

    Science.gov (United States)

    Revers, Frédéric; García, Juan Antonio

    2015-01-01

    Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses. © 2015 Elsevier Inc. All rights reserved.

  9. Assessment of Molecular Modeling & Simulation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  10. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  11. Molecular imaging II

    International Nuclear Information System (INIS)

    Semmler, Wolfhard; Schwaiger, Markus

    2008-01-01

    The aim of this textbook of molecular imaging is to provide an up to date review of this rapidly growing field and to discuss basic methodological aspects necessary for the interpretation of experimental and clinical results. Emphasis is placed on the interplay of imaging technology and probe development, since the physical properties of the imaging approach need to be closely linked with the biologic application of the probe (i.e. nanoparticles and microbubbles). Various chemical strategies are discussed and related to the biologic applications. Reporter-gene imaging is being addressed not only in experimental protocols, but also first clinical applications are discussed. Finally, strategies of imaging to characterize apoptosis and angiogenesis are described and discussed in the context of possible clinical translation. (orig.)

  12. Molecular mechanisms of carcinogenesis

    International Nuclear Information System (INIS)

    Hall, E.J.

    1997-01-01

    The possibility that chromosomal changes are responsible for neoplasia was proposed in the early years of this century. A combination of improved cytogenetics and the advent of recombinant technology has settled the issue. As recently as 20 years ago, however, the genetic and molecular basis of familiar predisposition to cancer were a mystery, and it is only in the last few years that light has been shed on a few specific types of malignancies. As the genetic basis of human cancer had been documented, a number of genes have been identified as functioning either as oncogenes which act in a dominant fashion to promote tumor growth when mutated, or as tumor suppressor genes which act in a recessive fashion

  13. Atomic and molecular sciences

    International Nuclear Information System (INIS)

    Lane, N.F.

    1989-01-01

    The theoretical atomic and molecular physics program at Rice University addresses basic questions about the collision dynamics of electrons, atoms, ions and molecules, emphasizing processes related to possible new energy technologies and other applications. The program focuses on inelastic collision processes that are important in understanding energy and ionization balance in disturbed gases and plasmas. Emphasis is placed on systems and processes where some experimental information is available or where theoretical results may be expected to stimulate new measurements. Examples of current projects include: excitation and charge-transfer processes; orientation and alignment of excited states following collisions; Rydberg atom collisions with atoms and molecules; Penning ionization and ion-pair formation in atom-atom collisions; electron-impact ionization in dense, high-temperature plasmas; electron-molecule collisions; and related topics

  14. Molecular marker applications in plants.

    Science.gov (United States)

    Hayward, Alice C; Tollenaere, Reece; Dalton-Morgan, Jessica; Batley, Jacqueline

    2015-01-01

    Individuals within a population of a sexually reproducing species will have some degree of heritable genomic variation caused by mutations, insertion/deletions (INDELS), inversions, duplications, and translocations. Such variation can be detected and screened using molecular, or genetic, markers. By definition, molecular markers are genetic loci that can be easily tracked and quantified in a population and may be associated with a particular gene or trait of interest. This chapter will review the current major applications of molecular markers in plants.

  15. Electrical properties of molecular crystals

    International Nuclear Information System (INIS)

    Barraud, A.

    1968-01-01

    This literature survey summarizes the electrical properties of molecular crystals: molecular crystal structure, transport and excitation mechanisms of charge-carriers, and differences compared to inorganic semi-conductors. The main results concerning the electrical conductivity of the most-studied molecular crystals are presented, together with the optical and photo-electrical properties of these crystals. Finally the different types of electrical measurements used are reviewed, as well as the limits of each method. (author) [fr

  16. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wenjun, E-mail: wjzheng@buffalo.edu; Glenn, Paul [Department of Physics, University at Buffalo, Buffalo, New York 14260 (United States)

    2015-01-21

    The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, which is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variant—while the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L.

  17. Molecular studies by electron spectroscopy

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1977-01-01

    Experience gained in experimental nuclear physics has played a large role in the development of electron spectroscopy as a powerful tool for studying chemical systems. The use of ESCA (Electron Spectroscopy for Chemical Analysis) for the mapping of molecular properties connected with inner as well as outer electron shells is reviewed, mainly from a phenomological point of view. Molecular Auger electron spectroscopy is described as a means of gaining information on details in molecular structure, simultaneously being extensively applied for surface studies. Future highly promising research areas for molecular electron spectroscopy are suggested to be (e,2e) processes as well as continued exploitation of synchrotron radiation from high energy nuclear devices. (Auth.)

  18. Molecular machines open cell membranes.

    Science.gov (United States)

    García-López, Víctor; Chen, Fang; Nilewski, Lizanne G; Duret, Guillaume; Aliyan, Amir; Kolomeisky, Anatoly B; Robinson, Jacob T; Wang, Gufeng; Pal, Robert; Tour, James M

    2017-08-30

    Beyond the more common chemical delivery strategies, several physical techniques are used to open the lipid bilayers of cellular membranes. These include using electric and magnetic fields, temperature, ultrasound or light to introduce compounds into cells, to release molecular species from cells or to selectively induce programmed cell death (apoptosis) or uncontrolled cell death (necrosis). More recently, molecular motors and switches that can change their conformation in a controlled manner in response to external stimuli have been used to produce mechanical actions on tissue for biomedical applications. Here we show that molecular machines can drill through cellular bilayers using their molecular-scale actuation, specifically nanomechanical action. Upon physical adsorption of the molecular motors onto lipid bilayers and subsequent activation of the motors using ultraviolet light, holes are drilled in the cell membranes. We designed molecular motors and complementary experimental protocols that use nanomechanical action to induce the diffusion of chemical species out of synthetic vesicles, to enhance the diffusion of traceable molecular machines into and within live cells, to induce necrosis and to introduce chemical species into live cells. We also show that, by using molecular machines that bear short peptide addends, nanomechanical action can selectively target specific cell-surface recognition sites. Beyond the in vitro applications demonstrated here, we expect that molecular machines could also be used in vivo, especially as their design progresses to allow two-photon, near-infrared and radio-frequency activation.

  19. Molecular pathology and thyroid FNA.

    Science.gov (United States)

    Poller, D N; Glaysher, S

    2017-12-01

    This review summarises molecular pathological techniques applicable to thyroid FNA. The molecular pathology of thyroid tumours is now fairly well understood. Molecular methods may be used as a rule-in test for diagnosis of malignancy in thyroid nodules, eg BRAF V600E point mutation, use of a seven-gene mutational panel (BRAF V600E, RAS genes, RET/PTC or PAX8/PPARG rearrangement), or as a comprehensive multigene next-generation sequencing panel, eg ThyroSeq v2. Molecular methods can also be applied as rule-out tests for malignancy in thyroid nodules, eg Afirma or ThyroSeq v2 or as markers of prognosis, eg TERT promoter mutation or other gene mutations including BRAF V600E, TP53 and AKT1, and as tests for newly defined tumour entities such as non-invasive follicular thyroid neoplasm with papillary like nuclei, or as a molecular marker(s) for targeted therapies. This review describes practical examples of molecular techniques as applied to thyroid FNA in routine clinical practice and the value of molecular diagnostics in thyroid FNA. It describes the range of molecular abnormalities identified in thyroid nodules and thyroid cancers with some practical applications of molecular methods to diagnosis and prognosis of thyroid nodules and thyroid cancer. © 2017 John Wiley & Sons Ltd.

  20. Molecular machines open cell membranes

    Science.gov (United States)

    García-López, Víctor; Chen, Fang; Nilewski, Lizanne G.; Duret, Guillaume; Aliyan, Amir; Kolomeisky, Anatoly B.; Robinson, Jacob T.; Wang, Gufeng; Pal, Robert; Tour, James M.

    2017-08-01

    Beyond the more common chemical delivery strategies, several physical techniques are used to open the lipid bilayers of cellular membranes. These include using electric and magnetic fields, temperature, ultrasound or light to introduce compounds into cells, to release molecular species from cells or to selectively induce programmed cell death (apoptosis) or uncontrolled cell death (necrosis). More recently, molecular motors and switches that can change their conformation in a controlled manner in response to external stimuli have been used to produce mechanical actions on tissue for biomedical applications. Here we show that molecular machines can drill through cellular bilayers using their molecular-scale actuation, specifically nanomechanical action. Upon physical adsorption of the molecular motors onto lipid bilayers and subsequent activation of the motors using ultraviolet light, holes are drilled in the cell membranes. We designed molecular motors and complementary experimental protocols that use nanomechanical action to induce the diffusion of chemical species out of synthetic vesicles, to enhance the diffusion of traceable molecular machines into and within live cells, to induce necrosis and to introduce chemical species into live cells. We also show that, by using molecular machines that bear short peptide addends, nanomechanical action can selectively target specific cell-surface recognition sites. Beyond the in vitro applications demonstrated here, we expect that molecular machines could also be used in vivo, especially as their design progresses to allow two-photon, near-infrared and radio-frequency activation.

  1. Bienvenida la Medicina Molecular

    Directory of Open Access Journals (Sweden)

    Orlando R. Serrano-Barrera

    2015-11-01

    Full Text Available No ha cambiado la medicina, sino que ha avanzado. Los métodos clínico-epidemiológicos  incluyen hoy y se benefician del conocimiento de las bases moleculares del proceso salud-enfermedad, tanto las variaciones individuales, como los caracteres compartidos por comunidades y poblaciones, que las hacen resistentes o vulnerables a una enfermedad. La estimación presintomática e, incluso, prenatal del riesgo de enfermar, el diagnóstico, el pronóstico, la elección del tratamiento más ajustado al paciente, las posibilidades de rehabilitación y reinserción social, la educación y promoción sanitarias son todos momentos del proceso de toma de decisiones, que el médico debe asumir en el nuevo escenario de una ciencia que ha logrado discernir las implicaciones de un número creciente de moléculas, sus variantes, sus formas mutadas y sus interacciones con otras moléculas y con factores ambientales. (1 ¿Cuán lejos está tal panorama de nuestra práctica clínica? También en nuestros escenarios se hace medicina molecular. Así ha sido desde que en 1949 Pauling catalogara la primera enfermedad molecular: la anemia drepanocítica. (2 La más temprana acción de prevención, la vacunación, se realiza a diario en las áreas de salud e incluye preparados conformados por moléculas obtenidas por vía recombinante o síntesis química, como el antígeno de superficie del virus de la hepatitis B y el polisacárido de membrana del Haemophilus influenzae, respectivamente. (3 La pesquisa poblacional de cáncer de próstata, enfocado hacia los hombres mayores de 50 años o con síntomas sugestivos, se auxilia de la cuantificación en sangre del antígeno prostático específico. (4 El tratamiento del infarto agudo del miocardio, ahora la segunda causa de muerte en Cuba, incluye la trombolisis con estreptocinasa, otra biomolécula recombinante. (5 En desarrollo, en etapa de ensayos clínicos o ya como productos registrados algunas vacunas terap

  2. Artificial surface-mounted molecular rotors: Molecular dynamics simulations

    Czech Academy of Sciences Publication Activity Database

    Vacek, Jaroslav; Michl, Josef

    2007-01-01

    Roč. 17, č. 5 (2007), s. 730-739 ISSN 1616-301X R&D Projects: GA AV ČR IAA400550616; GA MŠk ME 857 Institutional research plan: CEZ:AV0Z40550506 Keywords : molecular dynamics * molecular machines * nanomaterials Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 7.496, year: 2007

  3. Binary Molecular Complexes and the Nature of Molecular Association

    African Journals Online (AJOL)

    Asurvey is presented of the results of some ab initio calculations of the properties of a variety of binary molecular complexes. The properties include the molecular structures, the interaction energies and the vibrational spectra. The interaction energies have been correlated with some physical properties of the interacting ...

  4. Thermally driven molecular linear motors - A molecular dynamics study

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard Lawrence

    2009-01-01

    We conduct molecular dynamics simulations of a molecular linear motor consisting of coaxial carbon nanotubes with a long outer carbon nanotube confining and guiding the motion of an inner short, capsule-like nanotube. The simulations indicate that the motion of the capsule can be controlled...

  5. Molecular Modeling: A Powerful Tool for Drug Design and Molecular ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 5. Molecular Modeling: A Powerful Tool for Drug Design and Molecular Docking. Rama Rao Nadendla. General Article Volume 9 Issue 5 May 2004 pp 51-60. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Molecular Modeling: A Powerful Tool for Drug Design and Molecular ...

    Indian Academy of Sciences (India)

    Molecular modeling has become a valuable and essential tool to medicinal chemists in the drug design process. Molecular modeling describes the generation, manipula- tion or representation of three-dimensional structures of molecules and associated physico-chemical properties. It involves a range of computerized ...

  7. The Weiss molecular field and the local molecular field

    International Nuclear Information System (INIS)

    Neel, L.

    1959-01-01

    Initially, the present report outlines the work done by P. Weiss in the molecular field and spontaneous magnetization theory. It then stresses the success of the theory in the interpretation of the magnetic and energetic properties of ferro-magnetic bodies, and indicates recent progress: 'the energetic molecular field, and the corrective molecular field of the equation of state'. In the second part, the author reviews the difficulties encountered by the theory, and shows how they were overcome by the introduction of the notion of the 'local molecular field', thus supplying the key to the properties of anti-ferro and ferri-magnetic bodies. The present level of progress in the interpretation of the magnetic properties of pyrrhotite, which played a major part in the molecular field discoveries, is also discussed in paragraph 4 and appendices. (author) [fr

  8. Molecular digital pathology: progress and potential of exchanging molecular data.

    Science.gov (United States)

    Roy, Somak; Pfeifer, John D; LaFramboise, William A; Pantanowitz, Liron

    2016-09-01

    Many of the demands to perform next generation sequencing (NGS) in the clinical laboratory can be resolved using the principles of telepathology. Molecular telepathology can allow facilities to outsource all or a portion of their NGS operation such as cloud computing, bioinformatics pipelines, variant data management, and knowledge curation. Clinical pathology laboratories can electronically share diverse types of molecular data with reference laboratories, technology service providers, and/or regulatory agencies. Exchange of electronic molecular data allows laboratories to perform validation of rare diseases using foreign data, check the accuracy of their test results against benchmarks, and leverage in silico proficiency testing. This review covers the emerging subject of molecular telepathology, describes clinical use cases for the appropriate exchange of molecular data, and highlights key issues such as data integrity, interoperable formats for massive genomic datasets, security, malpractice and emerging regulations involved with this novel practice.

  9. HIV Molecular Immunology 2015

    Energy Technology Data Exchange (ETDEWEB)

    Yusim, Karina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Korber, Bette Tina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Brander, Christian [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Barouch, Dan [Beth Israel Deaconess Medical Center, Boston, MA (United States). Division of Vaccine Research; de Boer, Rob [Utrecht University, Utrecht (Netherlands). Faculty of Biology; Haynes, Barton F. [Duke Univ., Durham, NC (United States). Duke Human Vaccine Institute and Departments of Medicine, Surgery and Immunology; Koup, Richard [National Inst. of Health (NIH), Bethesda, MD (United States). Vaccine Research Center; Moore, John P. [Cornell Univ., Ithaca, NY (United States). Weill Medical College; Walker, Bruce D. [Ragon Institute, Cambridge, MA (United States); Watkins, David [Wisconsin Regional Primate Research Center, Madison, WI (United States)

    2016-04-05

    The scope and purpose of the HIV molecular immunology database: HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2015 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/ content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and binding sites within each protein, moving from left to right through the coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as cross-reactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins

  10. Cardiovascular molecular imaging of apoptosis

    International Nuclear Information System (INIS)

    Wolters, S.L.; Reutelingsperger, C.P.M.; Corsten, M.F.; Hofstra, L.; Narula, J.

    2007-01-01

    Molecular imaging strives to visualise processes at the molecular and cellular level in vivo. Understanding these processes supports diagnosis and evaluation of therapeutic efficacy on an individual basis and thereby makes personalised medicine possible. Apoptosis is a well-organised mode of cell suicide that plays a role in cardiovascular diseases (CVD). Apoptosis is associated with loss of cardiomyocytes following myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart. Thus, apoptosis constitutes an attractive target for molecular imaging of CVD. Our current knowledge about the molecular players and mechanisms underlying apoptosis offers a rich palette of potential molecular targets for molecular imaging. However, only a few have been successfully developed so far. This review highlights aspects of the molecular machinery and biochemistry of apoptosis relevant to the development of molecular imaging probes. It surveys the role of apoptosis in four major areas of CVD and portrays the importance and future perspectives of apoptosis imaging. The annexin A5 imaging protocol is emphasised since it is the most advanced protocol to measure apoptosis in both preclinical and clinical studies. (orig.)

  11. Peltier cooling in molecular junctions

    Science.gov (United States)

    Cui, Longji; Miao, Ruijiao; Wang, Kun; Thompson, Dakotah; Zotti, Linda Angela; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2018-02-01

    The study of thermoelectricity in molecular junctions is of fundamental interest for the development of various technologies including cooling (refrigeration) and heat-to-electricity conversion1-4. Recent experimental progress in probing the thermopower (Seebeck effect) of molecular junctions5-9 has enabled studies of the relationship between thermoelectricity and molecular structure10,11. However, observations of Peltier cooling in molecular junctions—a critical step for establishing molecular-based refrigeration—have remained inaccessible. Here, we report direct experimental observations of Peltier cooling in molecular junctions. By integrating conducting-probe atomic force microscopy12,13 with custom-fabricated picowatt-resolution calorimetric microdevices, we created an experimental platform that enables the unified characterization of electrical, thermoelectric and energy dissipation characteristics of molecular junctions. Using this platform, we studied gold junctions with prototypical molecules (Au-biphenyl-4,4'-dithiol-Au, Au-terphenyl-4,4''-dithiol-Au and Au-4,4'-bipyridine-Au) and revealed the relationship between heating or cooling and charge transmission characteristics. Our experimental conclusions are supported by self-energy-corrected density functional theory calculations. We expect these advances to stimulate studies of both thermal and thermoelectric transport in molecular junctions where the possibility of extraordinarily efficient energy conversion has been theoretically predicted2-4,14.

  12. Teaching Molecular Biology with Microcomputers.

    Science.gov (United States)

    Reiss, Rebecca; Jameson, David

    1984-01-01

    Describes a series of computer programs that use simulation and gaming techniques to present the basic principles of the central dogma of molecular genetics, mutation, and the genetic code. A history of discoveries in molecular biology is presented and the evolution of these computer assisted instructional programs is described. (MBR)

  13. Cardiovascular molecular imaging of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, S.L.; Reutelingsperger, C.P.M. [Maastricht University, Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht (Netherlands); Corsten, M.F.; Hofstra, L. [Maastricht University, Department of Cardiology, Cardiovascular Research Institute Maastricht, P.O. Box 616, Maastricht (Netherlands); Narula, J. [University of California Irvine, Department of Cardiology, Irvine (United States)

    2007-06-15

    Molecular imaging strives to visualise processes at the molecular and cellular level in vivo. Understanding these processes supports diagnosis and evaluation of therapeutic efficacy on an individual basis and thereby makes personalised medicine possible. Apoptosis is a well-organised mode of cell suicide that plays a role in cardiovascular diseases (CVD). Apoptosis is associated with loss of cardiomyocytes following myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart. Thus, apoptosis constitutes an attractive target for molecular imaging of CVD. Our current knowledge about the molecular players and mechanisms underlying apoptosis offers a rich palette of potential molecular targets for molecular imaging. However, only a few have been successfully developed so far. This review highlights aspects of the molecular machinery and biochemistry of apoptosis relevant to the development of molecular imaging probes. It surveys the role of apoptosis in four major areas of CVD and portrays the importance and future perspectives of apoptosis imaging. The annexin A5 imaging protocol is emphasised since it is the most advanced protocol to measure apoptosis in both preclinical and clinical studies. (orig.)

  14. Structural biology of Molecular machines

    Indian Academy of Sciences (India)

    Administrator

    a structural biology perspective. TANWEER HUSSAIN. Molecular Reproduction, Development and Genetics (MRDG). Indian Institute of Science (IISc). Bangalore. Symposium on “Molecular Machines: a multidiscipline enterprise” 1st July 2017. 28th mid-year meeting of Indian Academy of Sciences at IISc, Bangalore ...

  15. Electron transport in molecular junctions

    DEFF Research Database (Denmark)

    Jin, Chengjun

    This thesis addresses the electron transport in molecular junctions, focusing on the energy level alignment and correlation effects. Various levels of theory have been applied to study the structural and electronic effects in different molecular junctions, starting from the single particle density...

  16. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  17. Molecular motion in restricted geometries

    Indian Academy of Sciences (India)

    Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time ...

  18. Molecular physiology of seeds

    International Nuclear Information System (INIS)

    Hajduch, M.

    2014-05-01

    Plant development is well described. However, full understanding of the regulation of processes associated with plant development is still missing. Present Dr.Sc. thesis advances our understanding of the regulation of plant development by quantitative proteomics analyses of seed development of soybean, canola, castor, flax, and model plant arabidopsis in control and environmentally challenged environments. The analysis of greenhouse-grown soybean, canola, castor, and arabidospis provided complex characterization of metabolic processes during seed development, for instance, of carbon assimilation into fatty acids. Furthermore, the analyses of soybean and flax grown in Chernobyl area provided in-depth characterization of seed development in radio-contaminated environment. Soybean and flax were altered by radio-contaminated environment in different way. However, these alterations resulted into modifications in seed oil content. Further analyses showed that soybean and flax possess alterations of carbon metabolism in cytoplasm and plastids along with increased activity of photosynthetic apparatus. Our present experiments are focused on further characterization of molecular bases that might be responsible for alterations of seed oil content in Chernobyl grown plants. (author)

  19. Molecular methods for biofilms

    KAUST Repository

    Ferrera, Isabel

    2014-08-30

    This chapter deals with both classical and modern molecular methods that can be useful for the identification of microorganisms, elucidation and comparison of microbial communities, and investigation of their diversity and functions. The most important and critical steps necessary for all molecular methods is DNA isolation from microbial communities and environmental samples; these are discussed in the first part. The second part provides an overview over DNA polymerase chain reaction (PCR) amplification and DNA sequencing methods. Protocols and analysis software as well as potential pitfalls associated with application of these methods are discussed. Community fingerprinting analyses that can be used to compare multiple microbial communities are discussed in the third part. This part focuses on Denaturing Gradient Gel Electrophoresis (DGGE), Terminal Restriction Fragment Length Polymorphism (T-RFLP) and Automated rRNA Intergenic Spacer Analysis (ARISA) methods. In addition, classical and next-generation metagenomics methods are presented. These are limited to bacterial artificial chromosome and Fosmid libraries and Sanger and next-generation 454 sequencing, as these methods are currently the most frequently used in research. Isolation of nucleic acids: This chapter discusses, the most important and critical steps necessary for all molecular methods is DNA isolation from microbial communities and environmental samples. Nucleic acid isolation methods generally include three steps: cell lysis, removal of unwanted substances, and a final step of DNA purification and recovery. The first critical step is the cell lysis, which can be achieved by enzymatic or mechanical procedures. Removal of proteins, polysaccharides and other unwanted substances is likewise important to avoid their interference in subsequent analyses. Phenol-chloroform-isoamyl alcohol is commonly used to recover DNA, since it separates nucleic acids into an aqueous phase and precipitates proteins and

  20. Landscapes and molecular evolution

    Science.gov (United States)

    Schuster, Peter

    1997-02-01

    Evolution of RNA molecules in vitro is visualized as a hill-climbing process on a fitness landscape that can be derived from molecular properties and functions. The optimization process is shaped by a high degree of redundance in sequence-to-structure mappings: there are many more sequences than structures and sequences folding into the same structure are (almost) randomly distributed in sequence space. Two consequences of this redundance are important for evolution: shape space covering by small connected regions in sequence space and the existence of extended neutral networks. Both results together explain how nature can fast and efficiently find solutions to complex optimization problems by trial and error while the number of possible genotypes exceeds all imagination. In the presence of neutral networks populations avoid being caught in evolutionary traps and eventually reach the global optimum through a composite dynamics of adaptive walks and random drift. Results derived from mathematical analysis are confronted with the results of computer simulation and available experimental data.

  1. Molecular nuclear cardiac imaging

    International Nuclear Information System (INIS)

    Lee, Dong Soo; Paeng, Jin Chul

    2004-01-01

    Molecular nuclear cardiac imaging has included Tc-99m Annexin imaging to visualize myocardial apoptosis, but is now usually associated with gene therapy and cell-based therapy. Cardiac gene therapy was not successful so far but cardiac reporter gene imaging was made possible using HSV-TK (herpes simplex virus thymidine kinase) and F-18 FHBG (fluoro-hydroxymethylbutyl guanine) or I-124 FIAU (fluoro-deoxyiodo-arabino-furanosyluracil). Gene delivery was performed by needle injection with or without catheter guidance. TK expression did not last longer than 2 weeks in myocardium. Cell-based therapy of ischemic heart or failing heart looks promising, but biodistribution and differentiation of transplanted cells are not known. Reporter genes can be transfected to the stem/progenitor cells and cells containing these genes can be transplanted to the recipients using catheter-based purging or injection. Repeated imaging should be available and if promoter are varied to let express reporter transgenes, cellular (trans)differentiation can be studied. NIS (sodium iodide symporter) or D2R receptor genes are promising in this aspect

  2. Molecular factors in migraine

    Science.gov (United States)

    Kowalska, Marta; Prendecki, Michał; Kozubski, Wojciech; Lianeri, Margarita; Dorszewska, Jolanta

    2016-01-01

    Migraine is a common neurological disorder that affects 11% of adults worldwide. This disease most likely has a neurovascular origin. Migraine with aura (MA) and more common form - migraine without aura (MO) – are the two main clinical subtypes of disease. The exact pathomechanism of migraine is still unknown, but it is thought that both genetic and environmental factors are involved in this pathological process. The first genetic studies of migraine were focused on the rare subtype of MA: familial hemiplegic migraine (FHM). The genes analysed in familial and sporadic migraine are: MTHFR, KCNK18, HCRTR1, SLC6A4, STX1A, GRIA1 and GRIA3. It is possible that migraine is a multifactorial disease with polygenic influence. Recent studies have shown that the pathomechanisms of migraine involves both factors responsible for immune response and oxidative stress such as: cytokines, tyrosine metabolism, homocysteine; and factors associated with pain transmission and emotions e.g.: serotonin, hypocretin-1, calcitonin gene-related peptide, glutamate. The correlations between genetic variants of the HCRTR1 gene, the polymorphism 5-HTTLPR and hypocretin-1, and serotonin were observed. It is known that serotonin inhibits the activity of hypocretin neurons and may affect the appearance of the aura during migraine attack. The understanding of the molecular mechanisms of migraine, including genotype-phenotype correlations, may contribute to finding markers important for the diagnosis and treatment of this disease. PMID:27191890

  3. The Berkeley Molecular Decelerator

    Science.gov (United States)

    Kalnins, Juris; Lambertson, Glen; Nishimura, Hiroshi; Gould, Harvey

    2003-05-01

    We describe the design the Berkeley Molecular Decelerator (BMD), now under construction at LBNL. It decelerates polar molecules in a strong-field seeking state from 310 m/s to: about 100 m/s in it's first stage, to 30 m/s in it's second stage, and to as-low-as 4 m/s in it's last stage. The BMD will have a high intensity due to it's transverse acceptance of 3.5 mm-mr (at it's input) and a pulse length of 0.16 ms. The transverse acceptance is maintained by alternating gradient focusing [1]. The pulse length remains constant in the first two stages, which use decelerating electrodes of decreasing length. In the last stage, the pulse is stretched to reduce the longitudinal energy spread. Successive pulses, decelerated to 30 m/s or less, can be arranged to collide with each other in a crossed beam geometry for cold collision experiments at velocities from 30 m/s down to 4 m/s. [1] J. G. Kalnins, G. Lambertson, and H. Gould, Rev. Sci. Instr.73, 2557 (2002)

  4. Superradiance From Molecular Nanomagnets

    Science.gov (United States)

    Chudnovsky, Eugene M.

    2003-03-01

    Magnetic dipolar transitions in individual magnetic molecules occur with a very low probability. However, typical wavelengths of the corresponding electromagnetic radiation are in the millimeter range, that is, comparable to the crystal size. This may result in the superradiance: The coherent emission of the electromagnetic radiation by the entire crystal, with the rate increased by the total number of molecules as compared to the rate of the individual emission. Rigorous theory of the superradiant resonant magnetic relaxation will be presented, that generalizes the Landau-Zener effect for the case of a macroscopic number of magnetic molecules coupled through the electromagnetic radiation [1]. Possible evidence of coherent electromagnetic effects in crystals of molecular nanomagnets placed inside a resonant cavity will be reported [2]. (This work has been supported by the NSF grant No. DMR-9978882.) [1] E. M. Chudnovsky and D. A. Garanin, Phys. Rev. Lett. 89, 157201 (7 Oct 2002). [2] J. Tejada, E. M. Chudnovsky, R. Amigo, and J. M. Hernandez, cond-mat/0210340 (16 Oct 2002).

  5. Radically enhanced molecular recognition

    KAUST Repository

    Trabolsi, Ali

    2009-12-17

    The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication. © 2010 Macmillan Publishers Limited. All rights reserved.

  6. Chirality in molecular collision dynamics

    Science.gov (United States)

    Lombardi, Andrea; Palazzetti, Federico

    2018-02-01

    Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.

  7. Handbook of Molecular Force Spectroscopy

    CERN Document Server

    Noy, Aleksandr

    2008-01-01

    "...Noy's Handbook of Molecular Force Spectroscopy is both a timely and useful summary of fundamental aspects of molecular force spectroscopy, and I believe it would make a worthwhile addition to any good scientific library. New research groups that are entering this field would be well advisedto study this handbook in detail before venturing into the exciting and challenging world of molecular force spectroscopy." Matthew F. Paige, University of Saskatchewan, Journal of the American Chemical Society Modern materials science and biophysics are increasingly focused on studying and controlling intermolecular interactions on the single-molecule level. Molecular force spectroscopy was developed in the past decade as the result of several unprecedented advances in the capabilities of modern scientific instrumentation, and defines a number of techniques that use mechanical force measurements to study interactions between single molecules and molecular assemblies in chemical and biological systems. Examples of these...

  8. Molecular Diagnosis of Phytoplasmas

    Directory of Open Access Journals (Sweden)

    C. Marzachì

    2004-08-01

    Full Text Available Phytoplasmas are wall-less prokaryotes associated with diseases in numerous plant species worldwide. In nature they are transmitted by phloem-sucking insects. Yellowing, decline, witches’ broom, leaf curl, floral virescence and phyllody are the most conspicuous symptoms associated with phytoplasmas, although infections are sometimes asymptomatic. Since phytoplasmas cannot be cultured in vitro, molecular techniques are needed for their diagnosis and characterization. The titer of phytoplasma cells in the phloem of infected plants may vary according to the season and the plant species, and it is often very low in woody hosts. Different DNA extraction procedures have therefore been tried out to obtain phytoplasma DNA at a concentration and purity high enough for effective diagnosis. DNA/DNA hybridization methods were reported in the nineties to be appropriate for the detection of phytoplasmas, but at present PCR is considered the most suitable. Universal and group-specific primers have been designed on the rRNA operon of the phytoplasma genome and on plasmid sequences. RFLP analysis of the obtained amplicons has classified these pathogens into major 16Sr RNA groups. Group-specific primers have also been designed on other genomic sequences. PCR is a very sensitive technique, but due to the low titre of phytoplasmas a further increase in sensitivity may be required for accurate diagnosis. This is routinely obtained with a second round of PCR (nested PCR. The drawback of nested PCR is that there is a greater chance of obtaining false positives due to contamination. Many authors have therefore developed protocols based on hybridization (PCR/dot blot or serological approaches (PCR/ELISA to increase the sensitivity and specificity of the direct PCR, reducing the risks due to nested PCR. Real time PCR protocols may also improve the sensitivity and specificity of the direct PCR assay.

  9. HIV Molecular Immunology 2014

    Energy Technology Data Exchange (ETDEWEB)

    Yusim, Karina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Korber, Bette Tina Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Barouch, Dan [Beth Israel Deaconess Medical Center, Boston, MA (United States); Koup, Richard [Vaccine Research Center National Institutes of Health (United States); de Boer, Rob [Utrecht Univ. (Netherlands). Dept. of Biology; Moore, John P. [Cornell Univ., Ithaca, NY (United States). Weill Medical College; Brander, Christian [Institucioi Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Haynes, Barton F. [Duke Univ., Durham, NC (United States). Duke Human Vaccine Institute and Departments of Medicine, Surgery and Immunology; Walker, Bruce D. [Ragon Institute of Massachusetts General Hospital, Cambridge, MA (United States); Harvard Univ., Cambridge, MA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-02-03

    HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2014 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and binding sites within each protein, moving from left to right through the coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as crossreactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins are provided.

  10. SOYBEAN - MOLECULAR ASPECTS OF BREEDING

    Directory of Open Access Journals (Sweden)

    Aleksandra Sudarić

    2012-12-01

    Full Text Available The book Soybean: Molecular Aspects of Breeding focuses recent progress in our understanding of the genetics and molecular biology of soybean. This book is divided into four parts and contains 22 chapters. Part I, Molecular Biology and Biotechnology focuses advances in molecular biology and laboratory procedures that have been developed recently to manipulate DNA. Part II, Breeding for abiotic stress covers proteomics approaches form as a powerful tool for investigating the molecular mechanisms of the plant responses to various types of abiotic stresses. Part III, Breeding for biotic stress addresses issues related to application of molecular based strategies in order to increase soybean resistance to various biotic factors. Part IV, Recent Technology reviews recent technologies into the realm of soybean monitoring, processing and product use. While the information accumulated in this book is of primary interest for plant breeders, valuable insights are also offered to agronomists, molecular biologists, physiologists, plant pathologists, food scientists and students. The book is a result of efforts made by many experts from different countries (USA, Japan, Croatia, Serbia, China, Canada, Malawi, Iran, Hong Kong, Brasil, Mexico.

  11. Magnetohydrodynamic Models of Molecular Tornadoes

    Energy Technology Data Exchange (ETDEWEB)

    Au, Kelvin; Fiege, Jason D., E-mail: fiege@physics.umanitoba.ca [Department of Physics and Astronomy, University of Manitoba Winnipeg, MB R3T 2N2 (Canada)

    2017-07-10

    Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.

  12. Magnetohydrodynamic Models of Molecular Tornadoes

    Science.gov (United States)

    Au, Kelvin; Fiege, Jason D.

    2017-07-01

    Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.

  13. [Molecular breast imaging. An update].

    Science.gov (United States)

    Pinker, K; Helbich, T H; Magometschnigg, H; Fueger, B; Baltzer, P

    2014-03-01

    The aim of molecular imaging is to visualize and quantify biological, physiological and pathological processes at cellular and molecular levels. Molecular imaging using various techniques has recently become established in breast imaging. Currently molecular imaging techniques comprise multiparametric magnetic resonance imaging (MRI) using dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI), proton MR spectroscopy ((1)H-MRSI), nuclear imaging by breast-specific gamma imaging (BSGI), positron emission tomography (PET) and positron emission mammography (PEM) and combinations of techniques (e.g. PET-CT and multiparametric PET-MRI). Recently, novel techniques for molecular imaging of breast tumors, such as sodium imaging ((23)Na-MRI), phosphorus spectroscopy ((31)P-MRSI) and hyperpolarized MRI as well as specific radiotracers have been developed and are currently under investigation. It can be expected that molecular imaging of breast tumors will enable a simultaneous assessment of the multiple metabolic and molecular processes involved in cancer development and thus an improved detection, characterization, staging and monitoring of response to treatment will become possible.

  14. Molecular thermodynamics of nonideal fluids

    CERN Document Server

    Lee, Lloyd L

    2013-01-01

    Molecular Thermodynamics of Nonideal Fluids serves as an introductory presentation for engineers to the concepts and principles behind and the advances in molecular thermodynamics of nonideal fluids. The book covers related topics such as the laws of thermodynamics; entropy; its ensembles; the different properties of the ideal gas; and the structure of liquids. Also covered in the book are topics such as integral equation theories; theories for polar fluids; solution thermodynamics; and molecular dynamics. The text is recommended for engineers who would like to be familiarized with the concept

  15. Selective Adsorption of Tetrahydropalmatine by a Molecularly ...

    African Journals Online (AJOL)

    NICO

    - ity of the MIP. KEYWORDS. Molecularly imprinted polymer, tetrahydropalmatine, selective adsorption, microcalorimetry, modified rosin. 1. Introduction. Molecular imprinting is a technique for preparing molecular imprinted polymers (MIP) that ...

  16. Physical adsorption and molecular dynamics

    International Nuclear Information System (INIS)

    Cohan, N.V.

    1981-01-01

    Some aspects of noble gases adsorption (except He) on graphite substracts are reviewed. Experimental results from this adsorption are analyzed and compared with molecular dynamics calculations. (L.C.) [pt

  17. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  18. Black Sprayable Molecular Adsorber Coating

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of this technology project is to develop, optimize, and flight qualify a black version of the molecular adsorber coating and a conductive version...

  19. Emerging molecular phenotypes of asthma

    Science.gov (United States)

    Ray, Anuradha; Oriss, Timothy B.

    2014-01-01

    Although asthma has long been considered a heterogeneous disease, attempts to define subgroups of asthma have been limited. In recent years, both clinical and statistical approaches have been utilized to better merge clinical characteristics, biology, and genetics. These combined characteristics have been used to define phenotypes of asthma, the observable characteristics of a patient determined by the interaction of genes and environment. Identification of consistent clinical phenotypes has now been reported across studies. Now the addition of various 'omics and identification of specific molecular pathways have moved the concept of clinical phenotypes toward the concept of molecular phenotypes. The importance of these molecular phenotypes is being confirmed through the integration of molecularly targeted biological therapies. Thus the global term asthma is poised to become obsolete, being replaced by terms that more specifically identify the pathology associated with the disease. PMID:25326577

  20. Molecular diagnosis of infectious diseases

    National Research Council Canada - National Science Library

    Decker, Jochen; Reischl, Udo

    2004-01-01

    ... permission from the Publisher. Methods in Molecular Medicine™ is a trademark of The Humana Press Inc. All authored papers, comments, opinions, conclusions, or recommendations are those of the a...

  1. Research for molecular magnetic theory

    International Nuclear Information System (INIS)

    Kuang Xiaoyu; Zhou Kangwei; Gou Qingquan

    2002-01-01

    Recently, the authors have established a DSF theoretical method suitable for researching molecular magnetism of the compounds consisting of transition group elements. By this method, the authors have revealed that the ferromagnetism of molecules is due to the cross-interaction between d orbitals of adjacent transition-metal ions, and that the antiferromagnetism is due to the parallel interactions. Further more, the authors have also established a magnetism theory for hetero-dinuclear molecular systems and covalent molecular systems, respectively. With these theoretical methods, a systematical studies are performed for the magnetism origin and the magnetism variation rule of transition metal complex molecules in various inorganic compounds, organic compounds and biologic proteins, and a reasonable explanation is presented for the strong antiferromagnetic coupling phenomenon in the catalysis active center of ribonucleotide reductase. This indicates that the main physical mechanisms are the combined effect of the direct-exchange, kinetic exchange and the molecular covalent property

  2. EAACI Molecular Allergology User's Guide

    NARCIS (Netherlands)

    Matricardi, P. M.; Kleine-Tebbe, J.; Hoffmann, H. J.; Valenta, R.; Hilger, C.; Hofmaier, S.; Aalberse, R. C.; Agache, I.; Asero, R.; Ballmer-Weber, B.; Barber, D.; Beyer, K.; Biedermann, T.; Bilò, M. B.; Blank, S.; Bohle, B.; Bosshard, P. P.; Breiteneder, H.; Brough, H. A.; Caraballo, L.; Caubet, J. C.; Crameri, R.; Davies, J. M.; Douladiris, N.; Ebisawa, M.; EIgenmann, P. A.; Fernandez-Rivas, M.; Ferreira, F.; Gadermaier, G.; Glatz, M.; Hamilton, R. G.; Hawranek, T.; Hellings, P.; Hoffmann-Sommergruber, K.; Jakob, T.; Jappe, U.; Jutel, M.; Kamath, S. D.; Knol, E. F.; Korosec, P.; Kuehn, A.; Lack, G.; Lopata, A. L.; Mäkelä, M.; Morisset, M.; Niederberger, V.; Nowak-Węgrzyn, A. H.; Papadopoulos, N. G.; Pastorello, E. A.; Pauli, G.; Platts-Mills, T.; Posa, D.; Poulsen, L. K.; Raulf, M.; Sastre, J.; Scala, E.; Schmid, J. M.; Schmid-Grendelmeier, P.; van Hage, M.; van Ree, R.; Vieths, S.; Weber, R.; Wickman, M.; Muraro, A.; Ollert, M.

    2016-01-01

    The availability of allergen molecules ('components') from several protein families has advanced our understanding of immunoglobulin E (IgE)-mediated responses and enabled 'component-resolved diagnosis' (CRD). The European Academy of Allergy and Clinical Immunology (EAACI) Molecular Allergology

  3. Molecular Advancements in Forensic Odontology.

    Science.gov (United States)

    Babu Rs, A; Rose, D

    2015-05-11

    Forensic odontology explores the field of human identification through dental tissues in cases where there is the destruction of body tissues in criminal investigations and mass disasters. Forensic odontology involves dentists participating in legal and criminal issues. Parameters such as age and gender identification are important in identifying the person or persons. Over the last two decades, the molecular aspect of forensic sciences has increased, and these molecular techniques now provide a novel approach to forensic odontology. Molecular advancements in science like DNA analysis have extended the range of forensic dentistry, as teeth possess the character of resistance toward physical or chemical aggressions. Teeth provide the abundant space for DNA, and hence teeth represent an excellent source of genomic DNA. The present paper focusses on molecular advancements in the field of forensic odontology.

  4. Computer representation of molecular surfaces

    International Nuclear Information System (INIS)

    Max, N.L.

    1981-01-01

    This review article surveys recent work on computer representation of molecular surfaces. Several different algorithms are discussed for producing vector or raster drawings of space-filling models formed as the union of spheres. Other smoother surfaces are also considered

  5. Microfluidic technology for molecular diagnostics.

    Science.gov (United States)

    Robinson, Tom; Dittrich, Petra S

    2013-01-01

    Molecular diagnostics have helped to improve the lives of millions of patients worldwide by allowing clinicians to diagnose patients earlier as well as providing better ongoing therapies. Point-of-care (POC) testing can bring these laboratory-based techniques to the patient in a home setting or to remote settings in the developing world. However, despite substantial progress in the field, there still remain many challenges. Progress in molecular diagnostics has benefitted greatly from microfluidic technology. This chapter aims to summarise the more recent advances in microfluidic-based molecular diagnostics. Sections include an introduction to microfluidic technology, the challenges of molecular diagnostics, how microfluidic advances are working to solve these issues, some alternative design approaches, and detection within these systems.

  6. The Role of Molecular Motors in the Mechanics of Active Gels and the Effects of Inertia, Hydrodynamic Interaction and Compressibility in Passive Microrheology

    Science.gov (United States)

    2014-07-01

    interaction, compressibility and non- conservative forces in passive microrheology. A type of biological material that has proven specially chal- lenging...ELIMINATIONOF INERTIA FROMAGENERALIZED LANGE- VIN EQUATION: APPLICATIONS TO MICROBEAD RHEOL- OGY MODELING AND DATA ANALYSIS . . . . . . . . . . 10 2.1...46 2.12 Accumulated circulation for a bead trapped in an optical tweezer with non- conservative forces along the optical axis. For the

  7. Microrheology of concentrated DNA solutions using optical tweezers

    Indian Academy of Sciences (India)

    Wintec

    we report the determination of microrheological properties of concentrated, double-stranded calf thymus ... Double-stranded DNA having contour length greater ... Indeed, single-mole- cule studies have shown that low ionic strength increases the persistence length of DNA (Baumann et al 1997). The polymeric and highly ...

  8. Laser tweezers: spectroscopy of optically trapped micron-sized particles

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, K.M.; Livett, M.K.; Nugent, K.W. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Information is often obtained about biological systems by analysis of single cells in the system. The optimum conditions for this analysis are when the cells are living and in their natural surroundings as they will be performing their normal functions and interactions. Analysis of cells can be difficult due to their mobility. Laser tweezing is a non contact method that can be employed to overcome this problem and provides a powerful tool in the analysis of functions and interactions at single cell level. In this investigation Raman spectra of a molecule of {beta} - carotene, dissolved in microdroplets of oil was obtained. The droplets were trapped using Nd-YAG beam and a low intensity Ar{sup +} beam was used to analyse the trapped particles. 2 refs., 5 figs.

  9. Microrheology of concentrated DNA solutions using optical tweezers

    Indian Academy of Sciences (India)

    . In this work, we report the determination of microrheological properties of concentrated, double-stranded calf thymus DNA (CT-DNA) solutions using passive, laser-scattering based particle-tracking methodology. From power spectral analysis, ...

  10. Photodiode Based Detection for Multiple Trap Optical Tweezers

    DEFF Research Database (Denmark)

    Ott, Dino

    This thesis is concerned with the position tracking of microscopic, optically trapped particles and the quantification of the forces acting on them. A new detection method for simultaneous, three-dimensional tracking of multiple particles is presented, its performance is evaluated, and its...... usefulness is illustrated in specific application examples. Optical traps enable contact-less, all-optical manipulation of microscopic objects. Over the last decades, this laser-based micro-manipulation tool has facilitated numerous exciting discoveries within biology and physics, and it is today regarded...... as one of the workhorses of biophysical research. There exists a variety of implementations of optical traps, from simple single traps to complex multiple traps with engineered three-dimensional light fields. In comparison to single beam optical traps, multiple beam optical traps offer more freedom...

  11. Measuring microscopic forces and torques using optical tweezers

    CSIR Research Space (South Africa)

    McLaren, MG

    2009-07-01

    Full Text Available in the laboratory Rotation of birefringent calcite particles by the transfer of spin angular momentum rad/s 0.0957.1 ±=ω Nm104.0 105.7 2121 −− ×±×=τ Transfer of orbital angular momentum with a vortex beam of order ℓ = 1 Nm100.2102.1 2020 −− ×±×=τ rad/s 09...

  12. Virtual Environment for Manipulating Microscopic Particles With Optical Tweezers

    OpenAIRE

    Lee, Yong-Gu; Lyons, Kevin W.; LeBrun, Thomas W.

    2003-01-01

    In this paper, virtual reality techniques are used to define an intuitive interface to a nanoscale manipulation device. This device utilizes optical methods to focus laser light to trap and reposition nano-to-microscopic particles. The underlying physics are simulated by the use of Lagrange mechanics. A unique control method for the manipulation of the particles is also provided. The user can naturally grab and steer the particles. Behind the scene, a complex computation is performed to find ...

  13. Microrheology of concentrated DNA solutions using optical tweezers

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Semiflexible biopolymers play a vital role in shaping cellular structure and rigidity. In this work, we report the determination of microrheological properties of concentrated, double-stranded calf thymus. DNA (CT-DNA) solutions using passive, laser-scattering based particle-tracking methodology. From power.

  14. Molecular mechanisms of rosacea pathogenesis

    Directory of Open Access Journals (Sweden)

    Davydova A.M.

    2013-09-01

    Full Text Available The article presents possible molecular mechanisms for rosacea pathogenesis from current domestic and foreign clinical observations and laboratory research: regulation and expression defects of antimicrobial peptides, vascular endothelial growth factor, the effect of serine proteases, oxidative stress, reactive oxygen species and ferritin on the occurrence and course of rosacea. New developments in molecular biology and genetics are advanced for researching the interaction of multiple factors involved in rosacea pathogenesis, as well as providing the bases for potentially new therapies.

  15. Molecular Detection of Antimicrobial Resistance

    Science.gov (United States)

    Fluit, Ad C.; Visser, Maarten R.; Schmitz, Franz-Josef

    2001-01-01

    The determination of antimicrobial susceptibility of a clinical isolate, especially with increasing resistance, is often crucial for the optimal antimicrobial therapy of infected patients. Nucleic acid-based assays for the detection of resistance may offer advantages over phenotypic assays. Examples are the detection of the methicillin resistance-encoding mecA gene in staphylococci, rifampin resistance in Mycobacterium tuberculosis, and the spread of resistance determinants across the globe. However, molecular assays for the detection of resistance have a number of limitations. New resistance mechanisms may be missed, and in some cases the number of different genes makes generating an assay too costly to compete with phenotypic assays. In addition, proper quality control for molecular assays poses a problem for many laboratories, and this results in questionable results at best. The development of new molecular techniques, e.g., PCR using molecular beacons and DNA chips, expands the possibilities for monitoring resistance. Although molecular techniques for the detection of antimicrobial resistance clearly are winning a place in routine diagnostics, phenotypic assays are still the method of choice for most resistance determinations. In this review, we describe the applications of molecular techniques for the detection of antimicrobial resistance and the current state of the art. PMID:11585788

  16. Molecular wires, switches and memories

    Science.gov (United States)

    Chen, Jia

    Molecular electronics, an emerging field, makes it possible to build individual molecules capable of performing functions identical or analogous to present- day conductors, switches, or memories. These individual molecules, with a nano-meter scale characteristic length, can be designed and chemically synthesized with specific atoms, geometries and charge distribution. This thesis focuses on the design, and measurements of molecular wires, and related strategically engineered structures-molecular switches and memories. The experimental system relies on a thermodynamically driven self-assembling process to attach molecules onto substrate surfaces without intervention from outside. The following topics will be discussed: directed nanoscale manipulation of self-assembled molecules using scanning tunneling microscope; investigation on through-bond transport of nanoscale symmetric metal/conjugated self- assembled monolayers (SAM)/metal junctions, where non- Ohmic thermionic emission was observed to be the dominant process, with isocyanide-Pd contacts showing the lowest thermionic barrier of 0.22 eV; the first realization of robust and large reversible switching behavior in an electronic device that utilizes molecules containing redox centers as the active component, exhibiting negative differential resistance (NDR) and large on-off peak-to-valley ratio (PVR); observation of erasable storage of higher conductivity states in these redox- center containing molecular devices, and demonstration of a two-terminal electronically programmable and erasable molecular memory cell with long bit retention time.

  17. Molecular diagnostics for human leptospirosis.

    Science.gov (United States)

    Waggoner, Jesse J; Pinsky, Benjamin A

    2016-10-01

    The definitive diagnosis of leptospirosis, which results from infection with spirochetes of the genus Leptospira, currently relies on the use of culture, serological testing (microscopic agglutination testing), and molecular detection. The purpose of this review is to describe new molecular diagnostics for Leptospira and discuss advancements in the use of available methods. Efforts have been focused on improving the clinical sensitivity of Leptospira detection using molecular methods. In this review, we describe a reoptimized pathogenic species-specific real-time PCR (targeting lipL32) that has demonstrated improved sensitivity, findings by two groups that real-time reverse-transcription PCR assays targeting the 16S rrs gene can improve detection, and two new loop-mediated amplification techniques. Quantitation of leptospiremia, detection in different specimen types, and the complementary roles played by molecular detection and microscopic agglutination testing will be discussed. Finally, a protocol for Leptospira strain subtyping using variable number tandem repeat targets and high-resolution melting will be described. Molecular diagnostics have an established role for the diagnosis of leptospirosis and provide an actionable diagnosis in the acute setting. The use of real-time reverse-transcription PCR for testing serum/plasma and cerebrospinal fluid, when available, may improve the detection of Leptospira without decreasing clinical specificity.

  18. Manipulation of molecular structures with magnetic fields

    NARCIS (Netherlands)

    Boamfa, M.I.

    2003-01-01

    The present thesis deals with the use of magnetic fields as a handle to manipulate matter at a molecular level and as a tool to probe molecular properties or inter molecular interactions. The work consists of in situ optical studies of (polymer) liquid crystals and molecular aggregates in high

  19. Magnetic resonance molecular imaging in cancer research

    International Nuclear Information System (INIS)

    Wu Peihong; Wang Guohui

    2005-01-01

    The magnetic resonance (MR) molecular imaging can be defined as the in vivo characterization and measurement of biologic processes at the molecular and gene level by the means of MR imaging science. The purpose of molecular imaging is to diagnose tumor more early and specifically and monitor the anti-tumor therapy response. The present researches of molecular imaging focus on the specific MR molecular probes, molecular imaging of tumor angiogenesis, genetic imaging, and magnetic resonance spectroscopic imaging, and so on. Because of it has high spatial resolution and functional imaging, the MR molecular imaging will play an important role in the tumor diagnosis and treatment in 21 century. (authors)

  20. Microwave regeneration of molecular sieves

    International Nuclear Information System (INIS)

    Singh, V.P.

    1984-05-01

    Molecular sieve driers have been included in the design of tritium handling systems for fusion reactors. In these systems there is a need to maintain extremely low exit dew points from the driers as well as a capability to rapidly reduce tritium concentrations following an accident. The required capacity of the driers is very high. The conventional method of regenerating these sieves after a water adsorption cycle is with hot air. However, because water is rapidly heated by microwave energy, this technology may be suitable for decreasing the bed regeneration time and hence may allow reduced capital and operating costs associated with a smaller bed. The present study was conducted to obtain preliminary information on the technical feasibility of regenerating molecular sieves with microwave energy. The study concentrated on Type 4A molecular sieve with a few tests on Type 13X sieve and also a silica gel adsorbent

  1. Astrophysical interpretation of molecular spectra

    International Nuclear Information System (INIS)

    Scoville, N.Z.

    1984-01-01

    As sensitive, high resolution spectrometers are developed throughout the infrared great progress is anticipated in understanding not only the young-stellar objects but also the active galaxy nuclei so luminous in the far-infrared. In the infrared the variety of atomic and molecular spectroscopic transitions is capable of probing conditions ranging from hot circumstellar HII regions, molecular envelopes, and shock fronts at > 2000 K down to cold, low density interstellar gas at < 10 K. The ability to measure both physical conditions and kinematics aids in the separation of the physical regimes and in the building of a coherent dynamic/evolutionary model. The author briefly reviews the characteristics of some of the observed molecular transitions and theoretical considerations important for understanding their excitation. (Auth.)

  2. Laser ionization of molecular clusters

    International Nuclear Information System (INIS)

    Desai, S.; Feigerle, C.S.

    1995-01-01

    Multiphoton ionization coupled with mass spectrometry was used to investigate molecular cluster distributions. Three examples will be discussed in this presentation. First, in studies of neat nitric oxide clusters, (NO) m , an interesting odd-even intensity alternation was observed and will be discussed in terms of electron-pairing considerations. In a separate study, the binary clusters comprising nitric oxide and methane preferentially form a stoichiometric cluster made up of repeating units of (NO) 2 CH 4 . These presumably represent a particularly strongly bound open-quotes van der Waalsclose quotes subunit. Finally, in similar studies of neat carbon disulfide clusters, (CS 2 ) m , additional photon absorption after the two-photon ionization step stimulates a series of intracluster ion-molecular reactions leading to formation of S m + and (CS) m + polymers, as well as intermediate species such as S m + (CS 2 ). This molecular cluster analogue of open-quotes laser snowclose quotes will be described in detail

  3. Molecular biomimetics: nanotechnology through biology

    Science.gov (United States)

    Sarikaya, Mehmet; Tamerler, Candan; Jen, Alex K.-Y.; Schulten, Klaus; Baneyx, François

    2003-09-01

    Proteins, through their unique and specific interactions with other macromolecules and inorganics, control structures and functions of all biological hard and soft tissues in organisms. Molecular biomimetics is an emerging field in which hybrid technologies are developed by using the tools of molecular biology and nanotechnology. Taking lessons from biology, polypeptides can now be genetically engineered to specifically bind to selected inorganic compounds for applications in nano- and biotechnology. This review discusses combinatorial biological protocols, that is, bacterial cell surface and phage-display technologies, in the selection of short sequences that have affinity to (noble) metals, semiconducting oxides and other technological compounds. These genetically engineered proteins for inorganics (GEPIs) can be used in the assembly of functional nanostructures. Based on the three fundamental principles of molecular recognition, self-assembly and DNA manipulation, we highlight successful uses of GEPI in nanotechnology.

  4. Slow molecular recognition by RNA.

    Science.gov (United States)

    Gleitsman, Kristin R; Sengupta, Raghuvir N; Herschlag, Daniel

    2017-12-01

    Molecular recognition is central to biological processes, function, and specificity. Proteins associate with ligands with a wide range of association rate constants, with maximal values matching the theoretical limit set by the rate of diffusional collision. As less is known about RNA association, we compiled association rate constants for all RNA/ligand complexes that we could find in the literature. Like proteins, RNAs exhibit a wide range of association rate constants. However, the fastest RNA association rates are considerably slower than those of the fastest protein associations and fall well below the diffusional limit. The apparently general observation of slow association with RNAs has implications for evolution and for modern-day biology. Our compilation highlights a quantitative molecular property that can contribute to biological understanding and underscores our need to develop a deeper physical understanding of molecular recognition events. © 2017 Gleitsman et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  5. State-Dependent Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Ciann-Dong Yang

    2014-10-01

    Full Text Available This paper proposes a new mixed quantum mechanics (QM—molecular mechanics (MM approach, where MM is replaced by quantum Hamilton mechanics (QHM, which inherits the modeling capability of MM, while preserving the state-dependent nature of QM. QHM, a single mechanics playing the roles of QM and MM simultaneously, will be employed here to derive the three-dimensional quantum dynamics of diatomic molecules. The resulting state-dependent molecular dynamics including vibration, rotation and spin are shown to completely agree with the QM description and well match the experimental vibration-rotation spectrum. QHM can be incorporated into the framework of a mixed quantum-classical Bohmian method to enable a trajectory interpretation of orbital-spin interaction and spin entanglement in molecular dynamics.

  6. State-dependent molecular dynamics.

    Science.gov (United States)

    Yang, Ciann-Dong; Weng, Hung-Jen

    2014-10-09

    This paper proposes a new mixed quantum mechanics (QM)-molecular mechanics (MM) approach, where MM is replaced by quantum Hamilton mechanics (QHM), which inherits the modeling capability of MM, while preserving the state-dependent nature of QM. QHM, a single mechanics playing the roles of QM and MM simultaneously, will be employed here to derive the three-dimensional quantum dynamics of diatomic molecules. The resulting state-dependent molecular dynamics including vibration, rotation and spin are shown to completely agree with the QM description and well match the experimental vibration-rotation spectrum. QHM can be incorporated into the framework of a mixed quantum-classical Bohmian method to enable a trajectory interpretation of orbital-spin interaction and spin entanglement in molecular dynamics.

  7. Molecular diagnostics of myeloproliferative neoplasms

    DEFF Research Database (Denmark)

    Langabeer, S. E.; Andrikovics, H.; Asp, J.

    2015-01-01

    identified. These discoveries have been rapidly incorporated into evolving molecular diagnostic algorithms. Whilst many of these mutations appear to have prognostic implications, establishing MPN diagnosis is of immediate clinical importance with selection, implementation and the continual evaluation...... of the appropriate laboratory methodology to achieve this diagnosis similarly vital. The advantages and limitations of these approaches in identifying and quantitating the common MPN-associated mutations are considered herein with particular regard to their clinical utility. The evolution of molecular diagnostic...... applications and platforms has occurred in parallel with the discovery of MPN-associated mutations, and it therefore appears likely that emerging technologies such as next-generation sequencing and digital PCR will in the future play an increasing role in the molecular diagnosis of MPN....

  8. The Molecular Biology of Pestiviruses.

    Science.gov (United States)

    Tautz, Norbert; Tews, Birke Andrea; Meyers, Gregor

    2015-01-01

    Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter. © 2015 Elsevier Inc. All rights reserved.

  9. Molecular profiling of intrahepatic cholangiocarcinoma

    DEFF Research Database (Denmark)

    Oliveira, Douglas V N P; Zhang, Shanshan; Chen, Xin

    2017-01-01

    . Areas covered: The present review article outlines the main studies and resulting discoveries on the molecular profiling of iCCA, with a special emphasis on the different techniques used for this purpose, the diagnostic and prognostic markers identified, as well as the genes and pathways that could......INTRODUCTION: Intrahepatic cholangiocarcinoma (iCCA) is the second most frequent primary tumor of the liver and a highly lethal disease. Therapeutic options for advanced iCCA are limited and ineffective due to the largely incomplete understanding of the molecular pathogenesis of this deadly tumor...... be potentially targeted with innovative therapies. Expert commentary: Molecular profiling has led to the identification of distinct iCCA subtypes, characterized by peculiar genetic alterations and transcriptomic features. Targeted therapies against some of the identified genes are ongoing and hold great promise...

  10. Molecular diagnostics of neurodegenerative disorders.

    Science.gov (United States)

    Agrawal, Megha; Biswas, Abhijit

    2015-01-01

    Molecular diagnostics provide a powerful method to detect and diagnose various neurological diseases such as Alzheimer's and Parkinson's disease. The confirmation of such diagnosis allows early detection and subsequent medical counseling that help specific patients to undergo clinically important drug trials. This provides a medical pathway to have better insight of neurogenesis and eventual cure of the neurodegenerative diseases. In this short review, we present recent advances in molecular diagnostics especially biomarkers and imaging spectroscopy for neurological diseases. We describe advances made in Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), and finally present a perspective on the future directions to provide a framework for further developments and refinements of molecular diagnostics to combat neurodegenerative disorders.

  11. Molecular clouds near supernova remnants

    International Nuclear Information System (INIS)

    Wootten, H.A.

    1978-01-01

    The physical properties of molecular clouds near supernova remnants were investigated. Various properties of the structure and kinematics of these clouds are used to establish their physical association with well-known remmnants. An infrared survey of the most massive clouds revealed embedded objects, probably stars whose formation was induced by the supernova blast wave. In order to understand the relationship between these and other molecular clouds, a control group of clouds was also observed. Excitation models for dense regions of all the clouds are constructed to evaluate molecular abundances in these regions. Those clouds that have embedded stars have lower molecular abundances than the clouds that do not. A cloud near the W28 supernova remnant also has low abundances. Molecular abundances are used to measure an important parameter, the electron density, which is not directly observable. In some clouds extensive deuterium fractionation is observed which confirms electron density measurements in those clouds. Where large deuterium fractionation is observed, the ionization rate in the cloud interior can also be measured. The electron density and ionization rate in the cloud near W28 are higher than in most clouds. The molecular abundances and electron densities are functions of the chemical and dynamical state of evolution of the cloud. Those clouds with lowest abundances are probably the youngest clouds. As low-abundance clouds, some clouds near supernova remnants may have been recently swept from the local interstellar material. Supernova remnants provide sites for star formation in ambient clouds by compressing them, and they sweep new clouds from more diffuse local matter

  12. Advanced molecular devices based on light-driven molecular motors

    NARCIS (Netherlands)

    Chen, Jiawen

    2015-01-01

    Nature has provided a large collection of molecular machines and devices that are among the most amazing nanostructures on this planet. These machines are able to operate complex biological processes which are of great importance in our organisms. Inspired by these natural devices, artificial

  13. Towards molecular electronics with large-area molecular junctions

    NARCIS (Netherlands)

    Akkerman, HB; Blom, PWM; de Leeuw, DM; de Boer, B

    2006-01-01

    Electronic transport through single molecules has been studied extensively by academic(1-8) and industrial(9,10) research groups. Discrete tunnel junctions, or molecular diodes, have been reported using scanning probes(11,12), break junctions(13,14), metallic crossbars(6) and nanopores(8,15). For

  14. Light and Redox Switchable Molecular Components for Molecular Electronics

    NARCIS (Netherlands)

    Browne, Wesley R.; Feringa, Bernard

    2010-01-01

    The field of molecular and organic electronics has seen rapid progress in recent years, developing from concept and design to actual demonstration devices in which both single molecules and self-assembled monolayers are employed as light-responsive components. Research in this field has seen

  15. Molecular Modeling: A Powerful Tool for Drug Design and Molecular ...

    Indian Academy of Sciences (India)

    data. GENERAL I ARTICLE of programmable calculators (starting around 1956 with the introduction of Fortran), computers as visualization aids (around. 1970) .... ous applications of computer assisted molecular modeling tech- niques are .... thods are less complicated, fast, and are able to handle very large systems ...

  16. Simulation of sub-molecular and supra-molecular fluids

    NARCIS (Netherlands)

    Frenkel, D.

    1991-01-01

    Computer simulations indicate that many forms of liquid crystalline order in lyotropic systems may be due to simple excluded volume effects. Yet, there is more to liquid crystalline ordering than simple hard-core repulsion. In order to understand liquid crystalline order in supra-molecular systems

  17. Molecular characterization of composite interfaces

    International Nuclear Information System (INIS)

    Ishida, H.

    1982-01-01

    The Fourier Transform Infrared Spectroscopy was applied to elucidate the molecular structures of the glass/matrix interface. The various interfaces and interphases were studied. It is found that the structure of the silane in a treating solution is important in determining the structure of the silane on glass fibers, influences the macroscopic properties of composites. The amount of silane on glass fibers, the state of hydrogen bonding, orientation, copolymerization of the organicfunctionality with the matrix, curing of the silane, and effect of water on the interface were investigated. It is shown that the molecular approach is useful to interpret and predict physicomechanical properties of composites

  18. Molecular catalytic coal liquid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Yang, Shiyong [Univ. of Chicago, IL (United States)

    1995-12-31

    This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under very mild conditions. Accomplishments and conclusions are discussed.

  19. Molecular calculations with B functions

    International Nuclear Information System (INIS)

    Steinborn, E.O.; Homeier, H.H.H.; Ema, I.; Lopez, R.; Ramirez, G.

    2000-01-01

    A program for molecular calculations with B functions is reported and its performance is analyzed. All the one- and two-center integrals and the three-center nuclear attraction integrals are computed by direct procedures, using previously developed algorithms. The three- and four-center electron repulsion integrals are computed by means of Gaussian expansions of the B functions. A new procedure for obtaining these expansions is also reported. Some results on full molecular calculations are included to show the capabilities of the program and the quality of the B functions to represent the electronic functions in molecules

  20. A sampling of molecular dynamics

    Science.gov (United States)

    Sindhikara, Daniel Jon

    The sheer vastness of the number of computations required to simulate a biological molecule puts incredible pressure on algorithms to be efficient while maintaining sufficient accuracy. This dissertation summarizes various projects whose purposes address the large span of types of problems in molecular dynamics simulations of biological systems including: increasing efficiency, measuring convergence, avoiding pitfalls, and an application and analysis of a biological system. Chapters 3 and 4 deal with an enhanced sampling algorithm called "replica exchange molecular dynamics" which is designed to speed-up molecular dynamics simulations. The optimization of a key parameter of these simulations is analyzed. In these successive projects, it was found conclusively that maximizing "exchange attempt frequency" is the most efficient way to run a replica exchange molecular dynamics simulation. Chapter 5 describes an enhanced metric for convergence in parallel simulations called the normalized ergodic measure. The metric is applied to several properties for several replica exchange simulations. Advantages of this metric over other methods are described. Chapter 6 describes the implementation and optimization of an enhanced sampling algorithm similar to replica exchange molecular dynamics called multicanonical algorithm replica exchange molecular dynamics. The algorithm was implemented into a biomolecular simulation suite called AMBER. Additionally several parameters were analyzed and optimized. In Chapter 7, a pitfall in molecular dynamics is observed in biological systems that is caused by negligent use of a simulation's "thermostat". It was found that if the same pseudorandom number seed were used for multiple systems, they eventually synchronize. In this project, synchronization was observed in biological molecules. Various negative effects including corruption of data are pointed out. Chapter 8 describes molecular dynamics simulation of NikR, a homotetrameric nickel

  1. Light-responsive molecular containers.

    Science.gov (United States)

    Díaz-Moscoso, Alejandro; Ballester, Pablo

    2017-04-25

    Encapsulation of small molecules in molecular containers able to release them in a controlled way in order to perform specific tasks (e.g. catalysis or drug delivery) constitutes an idea that has been around for several years. Light is becoming a perfect external stimulus to control the behaviour of molecular capsules. Photocontrol is a clean and reliable technique, allowing reversibility of the processes in many cases. In addition, researchers in this field are moving from mere function description of the capsules to a deeper understanding of the processes governing these systems. We have compiled a selection of reported studies and highlighted the most relevant findings in this rapidly developing field.

  2. Molecular pathophysiology of cerebral edema.

    Science.gov (United States)

    Stokum, Jesse A; Gerzanich, Volodymyr; Simard, J Marc

    2016-03-01

    Advancements in molecular biology have led to a greater understanding of the individual proteins responsible for generating cerebral edema. In large part, the study of cerebral edema is the study of maladaptive ion transport. Following acute CNS injury, cells of the neurovascular unit, particularly brain endothelial cells and astrocytes, undergo a program of pre- and post-transcriptional changes in the activity of ion channels and transporters. These changes can result in maladaptive ion transport and the generation of abnormal osmotic forces that, ultimately, manifest as cerebral edema. This review discusses past models and current knowledge regarding the molecular and cellular pathophysiology of cerebral edema. © The Author(s) 2015.

  3. Molecular epidemiology of human rhinoviruses

    OpenAIRE

    Savolainen-Kopra, Carita

    2006-01-01

    The first part of this work investigates the molecular epidemiology of a human enterovirus (HEV), echovirus 30 (E-30). This project is part of a series of studies performed in our research team analyzing the molecular epidemiology of HEV-B viruses. A total of 129 virus strains had been isolated in different parts of Europe. The sequence analysis was performed in three different genomic regions: 420 nucleotides (nt) in the VP4/VP2 capsid protein coding region, the entire VP1 capsid protein cod...

  4. Molecular Formula and Molecular Weight - NBDC NikkajiRDF | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us NBDC NikkajiRDF Molecular Formula and Molecular Weight Data detail Data name Molecular Formula and Molecular...cular Formula and Molecular Weight - NBDC NikkajiRDF | LSDB Archive ... ...329 triples - About This Database Database Description Download License Update History of This Database Site Policy | Contact Us Mole

  5. Tuning molecular orbitals in molecular electronics and spintronics.

    Science.gov (United States)

    Kim, Woo Youn; Kim, Kwang S

    2010-01-19

    With the advance of nanotechnology, a variety of molecules, from single atoms to large-scale structures such as graphene or carbon nanotubes, have been investigated for possible use as molecular devices. Molecular orbitals (MOs) are a key ingredient in determining the transport properties of molecules, because they contain all the quantum mechanical information of molecular electronic structures and offer spatial conduction channels for electron transport. Therefore, the delicate modulation of the MOs enables us to tune the performance of electron transport through the molecule. Electric and magnetic fields are powerful and readily accessible means for that purpose. In this Account, we describe the effects of external fields on molecular electronic and spintronic devices. Quantum transport through a molecule that connects source and drain electrodes depends strongly on the alignment of molecular energy levels with respect to the chemical potentials at both electrodes. This dependence results from the energy levels being exploited in resonant tunneling processes when the molecule is weakly coupled to the electrodes in the molecular junction. Molecular energy levels can be shifted by the Stark effect of an external electric field. For a molecule with no permanent dipole moment, the polarizability is the primary factor determining the energy shift of each MO, according to the second-order Stark effect; more polarizable MOs undergo a larger energy shift. Interestingly, even a small shift may lead to a completely nontrivial result. For example, we show a magnetic on-off switching phenomenon of a molecule controlled by an electric field. If a molecule has a nonmagnetic ground state but a highly polarizable magnetic excited state with an energy slightly above the ground state, the magnetic excited state can have lower energy than the ground state under a sufficiently strong electric field. A magnetic field is normally used to control spin orientation in a ferromagnetic

  6. Molecular modeling of inorganic compounds

    National Research Council Canada - National Science Library

    Comba, Peter; Hambley, Trevor W; Martin, Bodo

    2009-01-01

    ... mechanics to inorganic and coordination compounds. Initially, simple metal complexes were modeled, but recently the field has been extended to include organometallic compounds, catalysis and the interaction of metal ions with biological macromolecules. The application of molecular mechanics to coordination compounds is complicated by the numbe...

  7. MOLECULARLY IMPRINTED POLYMER TECHNOLOGY: A ...

    African Journals Online (AJOL)

    dell

    chemical memory for the template molecules (Fig. 1). Thus if an enantiomer is used as a molecular template in MIP preparation, the resulting imprinted ... Limonene (methyl-4-prop-1-en-2-yl-cyclohexene) is a colourless liquid terpene hydrocarbon. The R-isomer has a strong smell of oranges; the S-isomer that of lemons.

  8. Measurement Frontiers in Molecular Biology

    Science.gov (United States)

    Laderman, Stephen

    2009-03-01

    Developments of molecular measurements and manipulations have long enabled forefront research in evolution, genetics, biological development and its dysfunction, and the impact of external factors on the behavior of cells. Measurement remains at the heart of exciting and challenging basic and applied problems in molecular and cell biology. Methods to precisely determine the identity and abundance of particular molecules amongst a complex mixture of similar and dissimilar types require the successful design and integration of multiple steps involving biochemical manipulations, separations, physical probing, and data processing. Accordingly, today's most powerful methods for characterizing life at the molecular level depend on coordinated advances in applied physics, biochemistry, chemistry, computer science, and engineering. This is well illustrated by recent approaches to the measurement of DNA, RNA, proteins, and intact cells. Such successes underlie well founded visions of how molecular biology can further assist in answering compelling scientific questions and in enabling the development of remarkable advances in human health. These visions, in turn, are motivating the interdisciplinary creation of even more comprehensive measurements. As a further and closely related consequence, they are motivating innovations in the conceptual and practical approaches to organizing and visualizing large, complex sets of interrelated experimental results and distilling from those data compelling, informative conclusions.

  9. Light-driven molecular motors

    NARCIS (Netherlands)

    van Delden, RA; Feringa, BL; Kuzmany, H; Fink, J; Mehring, M; Roth, S

    2004-01-01

    Molecular motors can be defined as molecules that are able to convert any type of energy input (a fuel) into controlled motion. These systems can be categorized into linear and rotary motors, depending on the motion induced. This brief account will discuss the state of affairs of the research on

  10. Molecular Tools For Biodiversity Conservation

    Indian Academy of Sciences (India)

    ... habits that make them difficultstudy subjects when using conventional field techniques.Molecular tools can be used to decipher distributions andpopulation connectedness in fragmented habitats and identifypopulations of immediate conservation concern. We discussthese with case studies on some cat species in India.

  11. Molecular mobility in sugar glasses

    NARCIS (Netherlands)

    Dries, van den I.J.

    2000-01-01

    Glasses are liquids that exhibit solid state behavior as a result of their extremely high viscosity. Regarding their application to foods, glasses play a role in the preservation of foods, due to their high viscosity and the concomitant low molecular mobility. This thesis focuses on sugar

  12. Yam ( Dioscorea spp.) molecular breeding

    African Journals Online (AJOL)

    Some progress has been made in recent years in germplasm characterization and the development of molecular markers for genome analysis. A genetic linkage map based on amplified fragment length polymorphism (AFLP) markers has been constructed for Guinea and water yams. These linkage maps were used to scan ...

  13. Molecular embryology: methods and protocols

    National Research Council Canada - National Science Library

    Sharpe, Paul T; Mason, Ivor

    1999-01-01

    ... in Molecular Biology™ is a trademark of The Humana Press Inc. All authored papers, comments, opinions, conclusions, or recommendations are those of the author(s), and do not necessarily reflect the views of the publisher. This publication is printed on acid-free paper. ANSI Z39.48-1984 (American Standards Institute) Permanence of Paper for Printed Library Materials....

  14. Molecular pathology of the prions

    National Research Council Canada - National Science Library

    Baker, Harry F

    2001-01-01

    .... Methods in Molecular Medicine™ is a trademark of The Humana Press Inc. The content and opinions expressed in this book are the sole work of the authors and editors, who have warranted due diligence in the creation and issuance of their work. The publisher, editors, and authors are not responsible for errors or omissions or for any consequences arising from t...

  15. Mordred: a molecular descriptor calculator.

    Science.gov (United States)

    Moriwaki, Hirotomo; Tian, Yu-Shi; Kawashita, Norihito; Takagi, Tatsuya

    2018-02-06

    Molecular descriptors are widely employed to present molecular characteristics in cheminformatics. Various molecular-descriptor-calculation software programs have been developed. However, users of those programs must contend with several issues, including software bugs, insufficient update frequencies, and software licensing constraints. To address these issues, we propose Mordred, a developed descriptor-calculation software application that can calculate more than 1800 two- and three-dimensional descriptors. It is freely available via GitHub. Mordred can be easily installed and used in the command line interface, as a web application, or as a high-flexibility Python package on all major platforms (Windows, Linux, and macOS). Performance benchmark results show that Mordred is at least twice as fast as the well-known PaDEL-Descriptor and it can calculate descriptors for large molecules, which cannot be accomplished by other software. Owing to its good performance, convenience, number of descriptors, and a lax licensing constraint, Mordred is a promising choice of molecular descriptor calculation software that can be utilized for cheminformatics studies, such as those on quantitative structure-property relationships.

  16. Molecular bioinformatics: algorithms and applications

    National Research Council Canada - National Science Library

    Schulze-Kremer, S

    1996-01-01

    ... on molecular biology, especially D N A sequence analysis and protein structure prediction. These two issues are also central to this book. Other application areas covered here are: interpretation of spectroscopic data and discovery of structure-function relationships in D N A and proteins. Figure 1 depicts the interdependence of computer science,...

  17. Topology of molecular interaction networks

    NARCIS (Netherlands)

    Winterbach, W.; Van Mieghem, P.; Reinders, M.; Wang, H.; De Ridder, D.

    2013-01-01

    Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over

  18. Molecular Tools For Biodiversity Conservation

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/reso/023/03/0309-0324. Keywords. Felidae, phylogeography, distributions, conservation, ecology, scat, cats, Indian tiger. Abstract. Molecular techniques are gaining importance in biodiversityconservation in India. They are especially beneficial in thecase of rare species with cryptic habits ...

  19. An invitation to molecular magnetism.

    Science.gov (United States)

    Pinkowicz, Dawid; Chorazy, Szymon; Stefańczyk, Olaf

    2011-01-01

    Molecular magnetism is a new and extremely fascinating field on the borders of chemistry, physics and materials science. The design and synthesis of molecule-based magnets requires the chemist to exert considerable control over the molecules to arrange them appropriately. It also demands the development of new theories to explain the complex magneto-structural behaviour of these intriguing solids. Molecular magnetism is still at a very early stage of development. The main challenge is to increase the strength of the magnetic interactions between spin carriers so the resulting materials can be usable at room temperature. However molecular magnets exhibit true potential to become multifunctional materials. They show some considerable advantages over conventional magnets: optical transparency, chemical sensitivity and low weight to name just a few. The following article is not a complete review of the field. Its aim is rather to show how beautiful and versatile magnetic molecular solids can be, and to encourage the in-depth study of the subject.

  20. Molecular basis of familial hypercholesterolemia

    NARCIS (Netherlands)

    Bruikman, Caroline S.; Hovingh, Gerard K.; Kastelein, John J. P.

    2017-01-01

    Purpose of review To provide an overview about the molecular basis of familial hypercholesterolemia. Recent findings Familial hypercholesterolemia is a common hereditary cause of premature coronary heart disease. It has been estimated that 1 in every 250 individuals has heterozygous familial

  1. Cotransporters as molecular water pumps

    DEFF Research Database (Denmark)

    Zeuthen, Thomas; MacAulay, Nanna

    2002-01-01

    Molecular water pumps are membrane proteins of the cotransport type in which a flux of water is coupled to substrate fluxes by a mechanism within the protein. Free energy can be exchanged between the fluxes. Accordingly, the flux of water may be relatively independent of the external water chemical...

  2. Synthesis of functionalized molecular motors

    NARCIS (Netherlands)

    ter Wiel, MKJ; Feringa, BL

    2005-01-01

    Synthetic routes to two molecular motors are reported. The sterically hindered central olefinic bond connecting the two halves of these C,symmetric molecules was prepared by a McMurry reaction. In this way, a motor with two five-membered rings and a motor with two six-membered rings were prepared,

  3. Molecular pathogenesis of intrahepatic cholangiocarcinoma

    DEFF Research Database (Denmark)

    Andersen, Jesper Bøje

    2014-01-01

    Cholangiocarcinoma (CCA) is an orphan cancer of the hepatobiliary tract, the incidence of which has increased in the past decade. The molecular pathogenesis of this treatment-refractory disease is poorly understood. Desmoplasia is a key causal feature of CCA; however, a majority of tumors develop...

  4. Low-dimensional molecular metals

    CERN Document Server

    Toyota, Naoki; Muller, Jens

    2007-01-01

    Assimilating research in the field of low-dimensional metals, this monograph provides an overview of the status of research on quasi-one- and two-dimensional molecular metals, describing normal-state properties, magnetic field effects, superconductivity, and the phenomena of interacting p and d electrons.

  5. SUPPLEMENTARY INFORMATION Synthesis and Molecular ...

    Indian Academy of Sciences (India)

    APOORVA MISRA

    S28: Binding mode for compounds, MTX docked and minimized in the DHFR binding pocket, with residues involved in its recognition Molecular docking structure and ligand protein binding sites of. MTX- a)-Best possible pose of compound MTX (boll and stick structure) showing hydrogen bond. (red color line) and bond ...

  6. Cancer Stratification by Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Justus Weber

    2015-03-01

    Full Text Available The lack of specificity of traditional cytotoxic drugs has triggered the development of anticancer agents that selectively address specific molecular targets. An intrinsic property of these specialized drugs is their limited applicability for specific patient subgroups. Consequently, the generation of information about tumor characteristics is the key to exploit the potential of these drugs. Currently, cancer stratification relies on three approaches: Gene expression analysis and cancer proteomics, immunohistochemistry and molecular imaging. In order to enable the precise localization of functionally expressed targets, molecular imaging combines highly selective biomarkers and intense signal sources. Thus, cancer stratification and localization are performed simultaneously. Many cancer types are characterized by altered receptor expression, such as somatostatin receptors, folate receptors or Her2 (human epidermal growth factor receptor 2. Similar correlations are also known for a multitude of transporters, such as glucose transporters, amino acid transporters or hNIS (human sodium iodide symporter, as well as cell specific proteins, such as the prostate specific membrane antigen, integrins, and CD20. This review provides a comprehensive description of the methods, targets and agents used in molecular imaging, to outline their application for cancer stratification. Emphasis is placed on radiotracers which are used to identify altered expression patterns of cancer associated markers.

  7. EAACI Molecular Allergology User's Guide

    NARCIS (Netherlands)

    Matricardi, P. M.; Kleine-Tebbe, J.; Hoffmann, H. J.; Valenta, R.; Hilger, C.; Hofmaier, S.; Aalberse, R. C.; Agache, I.; Asero, R.; Ballmer-Weber, B.; Barber, D.; Beyer, K.; Biedermann, T.; Bilò, M. B.; Blank, S.; Bohle, B.; Bosshard, P. P.; Breiteneder, H.; Brough, H. A.; Caraballo, L.; Caubet, J. C.; Crameri, R.; Davies, J. M.; Douladiris, N.; Ebisawa, M.; EIgenmann, P. A.; Fernandez-Rivas, M.; Ferreira, F.; Gadermaier, G.; Glatz, M.; Hamilton, R. G.; Hawranek, T.; Hellings, P.; Hoffmann-Sommergruber, K.; Jakob, T.; Jappe, U.; Jutel, M.; Kamath, S. D.; Knol, E. F.; Korosec, P.; Kuehn, A.; Lack, G.; Lopata, A. L.; Mäkelä, M.; Morisset, M.; Niederberger, V.; Nowak-Węgrzyn, A. H.; Papadopoulos, N. G.; Pastorello, E. A.; Pauli, G.; Platts-Mills, T.; Posa, D.; Poulsen, L. K.; Raulf, M.; Sastre, J.; Scala, E.; Schmid, J. M.; Schmid-Grendelmeier, P.; van Hage, M.; van Ree, R.; Vieths, S.; Weber, R.; Wickman, M.; Muraro, A.; Ollert, M.

    2016-01-01

    The availability of allergen molecules (‘components’) from several protein families has advanced our understanding of immunoglobulin E (IgE)-mediated responses and enabled ‘component-resolved diagnosis’ (CRD). The European Academy of Allergy and Clinical Immunology (EAACI) Molecular Allergology

  8. Molecular Regionalization of the Diencephalon

    Directory of Open Access Journals (Sweden)

    Almudena eMartinez-Ferre

    2012-05-01

    Full Text Available The anatomic complexity of the diencephalon depends on precise molecular and cellular regulative mechanisms orchestrated by regional morphogenetic organizers at the neural tube stage. In the diencephalon, like in other neural tube regions, dorsal and ventral signals codify positional information to specify ventro-dorsal regionalization. Retinoic acid, Fgf8, BMPs and Wnts signals are the molecular factors acting upon the diencephalic epithelium to specify dorsal structures, while Shh is the main ventralizing signal. A central diencephalic organizer, the zona limitans intrathalamica (ZLI, appears after neurulation in the central diencephalic alar plate, establishing additional antero-posterior positional information inside diencephalic alar plate. Based on Shh expression, the ZLI acts as a morphogenetic center, which cooperates with other signals in thalamic specification and pattering in the alar plate of diencephalon. Indeed, Shh is expressed first in the basal plate extending dorsally through the ZLI epithelium as the development proceeds. Despite the importance of ZLI in diencephalic morphogenesis the mechanisms that regulate its development remain incompletely understood. Actually, controversial interpretations in different experimental models have been proposed. That is, experimental results have suggested that (i the juxtaposition of the molecularly heterogeneous neuroepithelial areas, (ii cell reorganization in the epithelium and/or (iii planar and vertical inductions in the neural epithelium, are required for ZLI specification and development. We will review some experimental data to approach the study of the molecular regulation of diencephalic regionalization, with special interest in the cellular mechanisms underlying planar inductions.

  9. STATINS AND MYOPATHY: MOLECULAR MECHANISMS

    Directory of Open Access Journals (Sweden)

    O. M. Drapkina

    2012-01-01

    Full Text Available The safety of statin therapy is considered. In particular the reasons of a complication such as myopathy are discussed in detail. The molecular mechanisms of statin myopathy , as well as its risk factors are presented. The role of coenzyme Q10 in the myopathy development and coenzyme Q10 application for the prevention of this complication are considered. 

  10. Molecular approaches to contraceptive development

    Indian Academy of Sciences (India)

    Unknown

    Molecular approaches for contraceptive development rely on the identification of genes and target validation. Some major genomic technologies for identification of gene targets are: expressed sequence tags (est), secreted protein analysis, differential display (Liang and Pardee. 1992), DNA micro array (Debouck and ...

  11. Papillomaviruses: Molecular and clinical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Howley, P.M.; Broker, T.R.

    1985-01-01

    This book contains nine sections, each consisting of several papers. The section headings are : Papillomaviruses and Human Genital Tract Diseases;Papillomaviruses and Human Cutaneous Diseases, Papillomaviruses and Human Oral and Laryngeal Diseases;Therapeutic Approaches to Papillomavirus Infections;Animal Papillomaviruses;Molecular Biology;Transcription, Replication, and Genome Organization;Epithelial Cell Culture;Papillomavirus Transformation;and Viral Vectors.

  12. Molecular biology in cardiovascular anaesthesia

    NARCIS (Netherlands)

    Weber, Nina C.; Schlack, Wolfgang; Preckel, Benedikt

    2008-01-01

    Purpose of review The last few years have seen rapid technical developments of methods in molecular biology which are increasingly used as powerful tools in experimental and clinical research. A basic knowledge of these techniques becomes increasingly important for the clinically working

  13. Atomic, molecular and optical physics

    International Nuclear Information System (INIS)

    1990-01-01

    This is related to the actual situation and perspectives of atomic, molecular and optical physics in Brazil. It gives a general overview of the most important research groups in the above mentioned areas. It discusses as well, the future trends of Brazilian universities and the financing of these groups. (A.C.A.S.)

  14. Methods for plant molecular biology

    National Research Council Canada - National Science Library

    Weissbach, Arthur; Weissbach, Herbert

    1988-01-01

    .... Current techniques to carry out plant cell culture and protoplast formation are described as are methods for gene and organelle transfer. The detection of DNA and RNA viruses by molecular probes or ELISA assays and the cloning and transcription of viral RNA complete the volume.

  15. Molecular biology of Plasmodiophora brassicae

    DEFF Research Database (Denmark)

    Siemens, Johannes; Bulman, Simon; Rehn, Frank

    2009-01-01

    of several genes have been revealed, and the expression of those genes has been linked to development of clubroot to some extent. In addition, the sequence data have reinforced the inclusion of the plasmodiophorids within the Cercozoa. The recent successes in molecular biology have produced new approaches...

  16. Molecular mechanisms of insulin resistance

    African Journals Online (AJOL)

    This review discusses recent advances in understanding of the structure and function of the insulin receptor and insulin action, and how these relate to the clinical aspects of insulin resistance associated with non-insulin-dependent diabetes and other disorders. Improved understanding of the molecular basis of insulin ...

  17. Molecular Tools For Biodiversity Conservation

    Indian Academy of Sciences (India)

    to a blend of various subjects. Conservation biology has gained. Keywords. Felidae, phylogeography, distribu- tions, conservation, ecology, scat, cats, Indian tiger. immensely from major technological advancements ranging from molecular genetic tools to space technology. Information on ecological aspects of several ...

  18. Space station molecular sieve development

    Science.gov (United States)

    Chang, C.; Rousseau, J.

    1986-01-01

    An essential function of a space environmental control system is the removal of carbon dioxide (CO2) from the atmosphere to control the partial pressure of this gas at levels lower than 3 mm Hg. The use of regenerable solid adsorbents for this purpose was demonstrated effectively during the Skylab mission. Earlier sorbent systems used zeolite molecular sieves. The carbon molecular sieve is a hydrophobic adsorbent with excellent potential for space station application. Although carbon molecular sieves were synthesized and investigated, these sieves were designed to simulate the sieving properties of 5A zeolite and for O2/N2 separation. This program was designed to develop hydrophobic carbon molecular sieves for CO2 removal from a space station crew environment. It is a first phase effort involved in sorbent material development and in demonstrating the utility of such a material for CO2 removal on space stations. The sieve must incorporate the following requirements: it must be hydrophobic; it must have high dynamic capacity for carbon dioxide at the low partial pressure of the space station atmosphere; and it must be chemiclly stable and will not generate contaminants.

  19. Molecular Mechanism of Heterogeneous Catalysis

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 6. Molecular Mechanism of Heterogeneous Catalysis - The 2007 Nobel Prize in Chemistry. R S Swathi K L Sebastian. General Article Volume 13 Issue 6 June 2008 pp 548-560 ...

  20. Molecular mechanisms underlying bacterial persisters

    DEFF Research Database (Denmark)

    Maisonneuve, Etienne; Gerdes, Kenn

    2014-01-01

    All bacteria form persisters, cells that are multidrug tolerant and therefore able to survive antibiotic treatment. Due to the low frequencies of persisters in growing bacterial cultures and the complex underlying molecular mechanisms, the phenomenon has been challenging to study. However, recent...

  1. Energy localization and molecular dissociation

    International Nuclear Information System (INIS)

    Takeno, S.; Tsironis, G.P.

    2005-01-01

    We study analytically as well as numerically the role that large-amplitude vibrations play during the process of molecular dissociation. Our model consists of a linear three-atom molecule composed of identical atoms interacting with their nearest neighbors by Morse potentials. We find a close relation between energy localization and bond breaking and evaluate numerically the corresponding reaction paths

  2. Comparative molecular cytogenetics in Cetartiodactyla.

    Science.gov (United States)

    Rubes, J; Musilova, P; Kopecna, O; Kubickova, S; Cernohorska, H; Kulemsina, A I

    2012-01-01

    Cetartiodactyla comprises Artiodactyla (even-toed ungulates) and Cetacea (whales, dolphins and porpoises). Artiodactyla is a large taxon represented by about 200 living species ranked in 10 families. Cetacea are classified into 13 families with almost 80 species. Many publications concerning karyotypic relationships in Cetartiodactyla have been published in previous decades. Formerly, the karyotypes of closely related species were compared by chromosome banding. Introduction of molecular cytogenetic methods facilitated comparative mapping between species with highly rearranged karyotypes and distantly related species. Such information is a prerequisite for the understanding of karyotypic phylogeny and the reconstruction of the karyotypes of common ancestors. This study summarizes the data on chromosome evolution in Cetartiodactyla, mainly derived from molecular cytogenetic studies. Traditionally, phylogenetic relationships of most groups have been estimated using morphological data. However, the results of some molecular studies of mammalian phylogeny are discordant with traditional conceptions of phylogeny. Cetartiodactyls provide several examples of incongruence between traditional morphological and molecular data. Such cases of conflict include the relationships of the major clades of artiodactyls, the relationships among the extant families of the suborder Ruminantia or the phylogeny of the family Bovidae. The most unexpected aspect of the molecular phylogeny was the recognition that Cetacea is a deeply nested member of Artiodactyla. The largest living order of terrestrial hoofed mammals is the even-toed hoofed mammals, or Artiodactyla. The artiodactyls are composed of over 190 living species including pigs, peccaries, hippos, camels, llamas, deer, pronghorns, giraffes, sheep, goats, cattle and antelopes. Cetacea is an order of wholly aquatic mammals, which include whales, dolphins and porpoises. Cetartiodactyla has become the generally accepted name for the

  3. Molecular Testing for Gastrointestinal Cancer

    Directory of Open Access Journals (Sweden)

    Hye Seung Lee

    2017-03-01

    Full Text Available With recent advances in molecular diagnostic methods and targeted cancer therapies, several molecular tests have been recommended for gastric cancer (GC and colorectal cancer (CRC. Microsatellite instability analysis of gastrointestinal cancers is performed to screen for Lynch syndrome, predict favorable prognosis, and screen patients for immunotherapy. The epidermal growth factor receptor (EGFR tyrosine kinase inhibitor has been approved in metastatic CRCs with wildtype RAS (KRAS and NRAS exon 2–4. A BRAF mutation is required for predicting poor prognosis. Additionally, amplification of human epidermal growth factor receptor 2 (HER2 and MET is also associated with resistance to EGFR inhibitor in metastatic CRC patients. The BRAF V600E mutation is found in sporadic microsatellite unstable CRCs, and thus is helpful for ruling out Lynch syndrome. In addition, the KRAS mutation is a prognostic biomarker and the PIK3CA mutation is a molecular biomarker predicting response to phosphoinositide 3-kinase/AKT/mammalian target of rapamycin inhibitors and response to aspirin therapy in CRC patients. Additionally, HER2 testing should be performed in all recurrent or metastatic GCs. If the results of HER2 immunohistochemistry are equivocal, HER2 silver or fluorescence in situ hybridization testing are essential for confirmative determination of HER2 status. Epstein-Barr virus–positive GCs have distinct characteristics, including heavy lymphoid stroma, hypermethylation phenotype, and high expression of immune modulators. Recent advances in next-generation sequencing technologies enable us to examine various genetic alterations using a single test. Pathologists play a crucial role in ensuring reliable molecular testing and they should also take an integral role between molecular laboratories and clinicians.

  4. Monolayer atomic crystal molecular superlattices

    Science.gov (United States)

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O.; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A., III; Huang, Yu; Duan, Xiangfeng

    2018-03-01

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  5. EDITORIAL: Focus on Molecular Electronics FOCUS ON MOLECULAR ELECTRONICS

    Science.gov (United States)

    Scheer, Elke; Reineker, Peter

    2008-06-01

    The notion 'molecular electronics' has been used more frequently since the 1970s and summarizes a series of physical phenomena and ideas for their application in connection with organic molecules, oligomers, polymers, organic aggregates and solids. The properties studied in this field were connected to optical and electrical phenomena, such as optical absorption, fluorescence, nonlinear optics, energy transport, charge transfer, electrical conductance, and electron and nuclear spin-resonance. The final goal was and is to build devices which can compete or surpass some aspects of inorganic semiconductor devices. For example, on the basis of organic molecules there exist rectifiers, transistors, molecular wires, organic light emitting diodes, elements for photovoltaics, and displays. With respect to applications, one aspect of the organic materials is their broad variability and the lower effort and costs for their processability. The step from microstructures to the investigation of nanostructures is a big challenge also in this field and has lead to what nowadays is called molecular electronics in its narrow sense. In this field the subjects of the studies are often single molecules, e.g. single molecule optical spectroscopy, electrical conductance, i.e. charge transport through a single molecule, the influence of vibrational degrees of freedom, etc. A challenge here is to provide the techniques for addressing in a reproducible way the molecular scale. In another approach small molecular ensembles are studied in order to avoid artefacts from particular contact situations. The recent development of the field is presented in [1-8]. In this Focus Issue we present new results in the field of 'molecular electronics', both in its broad and specialized sense. One of the basic questions is the distribution of the energy levels responsible for optical absorption on the one hand and for the transport of charge on the other. A still unanswered question is whether the Wannier

  6. Advances in molecular vibrations and collision dynamics molecular clusters

    CERN Document Server

    Bacic, Zatko

    1998-01-01

    This volume focuses on molecular clusters, bound by van der Waals interactions and hydrogen bonds. Twelve chapters review a wide range of recent theoretical and experimental advances in the areas of cluster vibrations, spectroscopy, and reaction dynamics. The authors are leading experts, who have made significant contributions to these topics.The first chapter describes exciting results and new insights in the solvent effects on the short-time photo fragmentation dynamics of small molecules, obtained by combining heteroclusters with femtosecond laser excitation. The second is on theoretical work on effects of single solvent (argon) atom on the photodissociation dynamics of the solute H2O molecule. The next two chapters cover experimental and theoretical aspects of the energetics and vibrations of small clusters. Chapter 5 describes diffusion quantum Monte Carlo calculations and non additive three-body potential terms in molecular clusters. The next six chapters deal with hydrogen-bonded clusters, refle...

  7. Molecular Engineering of dosimetric materials; Ingenieria Molecular de materiales dosimetricos

    Energy Technology Data Exchange (ETDEWEB)

    Salas, P.; Castano, V.M. [Instituto de Fisica, UNAM, A.P. 1-1010, Queretaro (Mexico); Mendoza, D.; Gonzalez, P. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027 Mexico D.F. (Mexico)

    1999-07-01

    It was studied the thermoluminescent response to the gamma radiation of a new family of solid materials of zircon-silica. In this study some materials have been prepared by the sol-gel method with different stoichiometric relations, finding that it is possible to control, at least, partially, the thermoluminescent behavior starting from the Molecular Engineering of those materials, since the mixture of both ceramics allows to produce materials with different spatial structures. (Author)

  8. Molecular active plasmonics: controlling plasmon resonances with molecular machines

    KAUST Repository

    Zheng, Yue Bing

    2009-08-26

    The paper studies the molecular-level active control of localized surface plasmon resonances (LSPRs) of Au nanodisk arrays with molecular machines. Two types of molecular machines - azobenzene and rotaxane - have been demonstrated to enable the reversible tuning of the LSPRs via the controlled mechanical movements. Azobenzene molecules have the property of trans-cis photoisomerization and enable the photo-induced nematic (N)-isotropic (I) phase transition of the liquid crystals (LCs) that contain the molecules as dopant. The phase transition of the azobenzene-doped LCs causes the refractive-index difference of the LCs, resulting in the reversible peak shift of the LSPRs of the embedded Au nanodisks due to the sensitivity of the LSPRs to the disks\\' surroundings\\' refractive index. Au nanodisk array, coated with rotaxanes, switches its LSPRs reversibly when it is exposed to chemical oxidants and reductants alternatively. The correlation between the peak shift of the LSPRs and the chemically driven mechanical movement of rotaxanes is supported by control experiments and a time-dependent density functional theory (TDDFT)-based, microscopic model.

  9. Functionalisation of the hinge region in receptor molecules for explosive detection

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2003-01-01

    The functionalisation of the hinge region in a molecular tweezer molecule showing a strong binding to explosives is presented. Two versatile functional groups are introduced, a carboxylic acid and a bromine atom. (C) 2003 Elsevier Ltd. All rights reserved.......The functionalisation of the hinge region in a molecular tweezer molecule showing a strong binding to explosives is presented. Two versatile functional groups are introduced, a carboxylic acid and a bromine atom. (C) 2003 Elsevier Ltd. All rights reserved....

  10. General perspectives for molecular nuclear imaging

    International Nuclear Information System (INIS)

    Chung, June Key

    2004-01-01

    Molecular imaging provides a visualization of normal as well as abnormal cellular processes at a molecular or genetic level rather than at an anatomical level. Conventional medical imaging methods utilize the imaging signals produced by nonspecific physico-chemical interaction. However, molecular imaging methods utilize the imaging signals derived from specific cellular or molecular events. Because molecular and genetic changes precede anatomical change in the course of disease development, molecular imaging can detect early events in disease progression. In the near future, through molecular imaging we can understand basic mechanisms of disease, and diagnose earlier and, subsequently, treat earlier intractable disease such as cancer, neuro-degenerative diseases, and immunologic disorders. In beginning period, nuclear medicine started as a molecular imaging, and has had a leading role in the field of molecular imaging. But recently molecular imaging has been rapidly developed. Besides nuclear imaging, molecular imaging methods such as optical imaging, magnetic resonance imaging are emerging. Each imaging modalities have their advantages and weaknesses. The opportunities from molecular imaging look bright. We should try nuclear medicine continues to have a leading role in molecular imaging

  11. General perspectives for molecular nuclear imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chung, June Key [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2004-04-01

    Molecular imaging provides a visualization of normal as well as abnormal cellular processes at a molecular or genetic level rather than at an anatomical level. Conventional medical imaging methods utilize the imaging signals produced by nonspecific physico-chemical interaction. However, molecular imaging methods utilize the imaging signals derived from specific cellular or molecular events. Because molecular and genetic changes precede anatomical change in the course of disease development, molecular imaging can detect early events in disease progression. In the near future, through molecular imaging we can understand basic mechanisms of disease, and diagnose earlier and, subsequently, treat earlier intractable disease such as cancer, neuro-degenerative diseases, and immunologic disorders. In beginning period, nuclear medicine started as a molecular imaging, and has had a leading role in the field of molecular imaging. But recently molecular imaging has been rapidly developed. Besides nuclear imaging, molecular imaging methods such as optical imaging, magnetic resonance imaging are emerging. Each imaging modalities have their advantages and weaknesses. The opportunities from molecular imaging look bright. We should try nuclear medicine continues to have a leading role in molecular imaging.

  12. Epitaxial nucleation and growth of molecular films

    Science.gov (United States)

    Hooks, Daniel Edwin

    2000-10-01

    The last decade has witnessed an increased emphasis on the design and use of molecular-based materials, commonly in thin film form, as components in electronic devices, sensors, displays, and logic elements. The growing interest in films based on molecular components, rather than their more traditional inorganic counterparts, stems largely from the premise that collective optical and electronic properties can be systematically manipulated through molecular design. Many of these properties depend strongly upon film structure and orientation with respect to the substrate upon which they are deposited. This relationship mandates careful attention to the interface between the primary molecular overlayer and the substrate. Further advances in molecular films and multilayer composites based on molecular films require improved understanding of the role of epitaxy in molecular organization as well as the nucleation events that precede film formation. Determination of critical nucleus dimensions and elucidation of the factors that govern critical size are particularly important for fabricating nanoscale molecular features and controlling domain defects in contiguous molecular films. This thesis describes an examination of the role of epitaxy in the growth of molecular films, including a hierarchical classification and grammar of molecular epitaxy, an atomic force microscopy (AFM) investigation of the intercalation of molecular components into multilayer organic-inorganic composites, and an AFM investigation of the nucleation of molecular films.

  13. Molecular robots with sensors and intelligence.

    Science.gov (United States)

    Hagiya, Masami; Konagaya, Akihiko; Kobayashi, Satoshi; Saito, Hirohide; Murata, Satoshi

    2014-06-17

    CONSPECTUS: What we can call a molecular robot is a set of molecular devices such as sensors, logic gates, and actuators integrated into a consistent system. The molecular robot is supposed to react autonomously to its environment by receiving molecular signals and making decisions by molecular computation. Building such a system has long been a dream of scientists; however, despite extensive efforts, systems having all three functions (sensing, computation, and actuation) have not been realized yet. This Account introduces an ongoing research project that focuses on the development of molecular robotics funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan). This 5 year project started in July 2012 and is titled "Development of Molecular Robots Equipped with Sensors and Intelligence". The major issues in the field of molecular robotics all correspond to a feedback (i.e., plan-do-see) cycle of a robotic system. More specifically, these issues are (1) developing molecular sensors capable of handling a wide array of signals, (2) developing amplification methods of signals to drive molecular computing devices, (3) accelerating molecular computing, (4) developing actuators that are controllable by molecular computers, and (5) providing bodies of molecular robots encapsulating the above molecular devices, which implement the conformational changes and locomotion of the robots. In this Account, the latest contributions to the project are reported. There are four research teams in the project that specialize on sensing, intelligence, amoeba-like actuation, and slime-like actuation, respectively. The molecular sensor team is focusing on the development of molecular sensors that can handle a variety of signals. This team is also investigating methods to amplify signals from the molecular sensors. The molecular intelligence team is developing molecular computers and is currently focusing on a new photochemical technology for accelerating DNA

  14. Further VSEPRing about molecular geometries

    Science.gov (United States)

    Hargittai, István; Menyhárd, Dóra K.

    2010-08-01

    Ronald J. Gillespie's valence shell electron pair repulsion (VSEPR) model has been very successful in research and education within rather well-defined domains of inorganic compounds for predicting molecular shapes and variations in structural features. Considerations of non-bonded interactions have extended its applicability in the realm of smaller central atoms and larger ligands. The structure of xenon hexafluoride played a pivotal role in convincing the doubters of the validity and utility of the model in the early days of its history. Curiously, whereas most of the molecular structures of noble-gas compounds have been excellent examples of the VSEPR model, xenon hexafluoride represents a more involved case. Its structure is still not known in full, but currently it is not known at a much higher level of sophistication than before.

  15. Prediction of molecular crystal structures

    CERN Document Server

    Beyer, T

    2001-01-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of parac...

  16. Molecular imaging. Fundamentals and applications

    International Nuclear Information System (INIS)

    Tian, Jie

    2013-01-01

    Covers a wide range of new theory, new techniques and new applications. Contributed by many experts in China. The editor has obtained the National Science and Technology Progress Award twice. ''Molecular Imaging: Fundamentals and Applications'' is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book.

  17. Molecular basis for mitochondrial signaling

    CERN Document Server

    2017-01-01

    This book covers recent advances in the study of structure, function, and regulation of metabolite, protein and ion translocating channels, and transporters in mitochondria. A wide array of cutting-edge methods are covered, ranging from electrophysiology and cell biology to bioinformatics, as well as structural, systems, and computational biology. At last, the molecular identity of two important channels in the mitochondrial inner membrane, the mitochondrial calcium uniporter and the mitochondrial permeability transition pore have been established. After years of work on the physiology and structure of VDAC channels in the mitochondrial outer membrane, there have been multiple discoveries on VDAC permeation and regulation by cytosolic proteins. Recent breakthroughs in structural studies of the mitochondrial cholesterol translocator reveal a set of novel unexpected features and provide essential clues for defining therapeutic strategies. Molecular Basis for Mitochondrial Signaling covers these and many more re...

  18. Molecular approaches for bacterial azoreductases

    Directory of Open Access Journals (Sweden)

    Montira Leelakriangsak

    2013-12-01

    Full Text Available Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N- in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study bacterial azoreductases. The construction of the recombinant protein by cloning and the overexpression of azoreductase is described. The mechanisms and function of bacterial azoreductases can be studied by other molecular techniques discussed in this review, such as RT-PCR, southern blot analysis, western blot analysis, zymography, and muta-genesis in order to understand bacterial azoreductase properties, function and application. In addition, understanding the regulation of azoreductase gene expression will lead to the systematic use of gene manipulation in bacterial strains for new strategies in future waste remediation technologies.

  19. Laser cooling of molecular anions.

    Science.gov (United States)

    Yzombard, Pauline; Hamamda, Mehdi; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-05-29

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarize the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C_{2}^{-}, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photodetachment process is present, as well as Doppler laser cooling of trapped C_{2}^{-}, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources, and antimatter physics.

  20. Laser Cooling of Molecular Anions

    CERN Document Server

    Yzombard, Pauline; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-01-01

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarise the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C$\\_2^-$, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photo-detachment process is present, as well as Doppler laser cooling of trapped C$\\_2^-$, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources and antimatter physics.

  1. Molecular imaging by cardiovascular MR.

    Science.gov (United States)

    Cyrus, Tillmann; Lanza, Gregory M; Wickline, Samuel A

    2007-01-01

    Do molecularly-targeted contrast agents have what it takes to usher in a paradigm shift as to how we will image cardiovascular disease in the near future? Moreover, are non-invasive vulnerable plaque detection and preemptive treatments with these novel nanoparticulate agents within reach for clinical applications? In this article, we attempt to make a compelling case for how the advent of molecularly-targeted nanoparticle technology may change the way we detect atherosclerotic lesions, determine their clinical significance and even provide non-invasive treatments. Focusing on imaging with cardiovascular MR, an overview of the latest developments in this rapidly evolving field of so-called "intelligent" contrast agents that are able to interrogate the vascular wall and various complementary advanced imaging technologies are presented.

  2. [Molecular pathology of neurogenetic diseases].

    Science.gov (United States)

    Suzuki, Y

    1995-03-01

    Recently, techniques of molecular biology have been widely applied to child neurology, and a new aspect of the pathogenesis of neurogenetic diseases has been revealed. In this article, recent results of molecular analysis in my laboratory were briefly reviewed on hereditary beta-galactosidase deficiency. After cDNA cloning, a number of gene mutations have been identified; mainly missense mutations, such as single-base substitution, duplication, insertion, and splice site mutation. A clear phenotype-genotype correlation was established for some mutations specific to the late-onset forms of the disease. Intracellular events of mutant proteins expressed by these mutant genes were heterogeneous, and expected to be closely connected to the pathogenesis of each phenotype. On the basis of these data, a unified clinical classification was proposed for GM1-gangliosidosis and Morquio B disease, together with a new concept of "beta-galactosidosis" for the diseases with beta-galactosidase gene mutations.

  3. Molecular dissociation in dilute gas

    Science.gov (United States)

    Renfrow, S. N.; Duggan, J. L.; McDaniel, F. D.

    1999-06-01

    The charge state distributions (CSD) produced during molecular dissociation are important to both Trace Element Accelerator Mass Spectrometry (TEAMS) and the ion implantation industry. The CSD of 1.3-1.7 MeV SiN+, SiMg+, SiMn+, and SiZn+ molecules have been measured for elements that do not form atomic negative ions (N, Mg, Mn, and Zn) using a NEC Tandem Pelletron accelerator. The molecules were produced in a Cs sputter negative ion source, accelerated, magnetically analyzed, and then passed through an N2 gas cell. The neutral and charged breakups where analyzed using an electrostatic deflector and measured with particle detectors. Equilibrium CSD were determined and comparisons made between molecular and atomic ion data.

  4. Tumor Molecular Imaging with Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhen Cheng

    2016-03-01

    Full Text Available Molecular imaging (MI can provide not only structural images using traditional imaging techniques but also functional and molecular information using many newly emerging imaging techniques. Over the past decade, the utilization of nanotechnology in MI has exhibited many significant advantages and provided new opportunities for the imaging of living subjects. It is expected that multimodality nanoparticles (NPs can lead to precise assessment of tumor biology and the tumor microenvironment. This review addresses topics related to engineered NPs and summarizes the recent applications of these nanoconstructs in cancer optical imaging, ultrasound, photoacoustic imaging, magnetic resonance imaging (MRI, and radionuclide imaging. Key challenges involved in the translation of NPs to the clinic are discussed.

  5. [Molecular biology of brain meningiomas].

    Science.gov (United States)

    Byvalsev, V A; Stepanov, I A; Belykh, E G; Yarullina, A I

    2017-01-01

    Meningiomas are by far the most common tumors arising from the minges. A myriad of aberrant signaling pathways involved with meningioma tumorigenesis, have been discovered. Understanding these disrupted pathways will aid in deciphering the relationship between various genetic changes and their downstream effects on meningioma pathogenesis. An understanding of the genetic and molecular profile of meningioma would provide a valuable first step towards developing more effective treatment for this intracranial tumor. Chromosomes 1, 10, 14, 22, their associated genes, have been linked to meningioma proliferation and progression. It is presumed that through an understanding of these genetic factors, more educated meningioma treatment techniques can be implemented. Future therapies will include combinations of targeted molecular agents including gene therapy, si-RNA mediation, proton therapy, and other approaches as a result of continued progress in the understanding of genetic and biological changes associated with meningiomas.

  6. Magnetohydrodynamic shocks in molecular clouds

    International Nuclear Information System (INIS)

    Chernoff, D.F.

    1985-01-01

    Part one develops the mathematical and physical theory of one-dimensional, time-independent subalfvenic flow in partially ionized gas with magnetic fields, for application to shocks in molecular clouds. Unlike normal gas-dynamic shocks, the neutral flow may be continuous and cool if the gas radiates efficiently and does not self-ionize. Analytic solutions are given in the limit that the neutral gas is either adiabatic or isothermal (cold). Numerical techniques are developed and applied to find the neutral flow under general circumstances. Part two extends the theory and results of part one in three ways: (1) to faster, superalfvenic flow, (2) to complex gases containing heavy charged particles (grains) in addition to ions, containing heavy charged particles (grains) in addition to ions, electrons and neutrals, and (3) to the entire range in (Omega tau), the ratio of charged particle damping time to gyroperiod, expected in gas flows in molecular clouds

  7. Alport syndrome. Molecular genetic aspects

    DEFF Research Database (Denmark)

    Hertz, Jens Michael

    2009-01-01

    a highly efficient and sensitive molecular diagnostic approach for analysing the COL4A5 gene in putative AS cases. Based on the present results and the litterature, an algorithm for molecular genetic analysis of the COL4A5 gene is suggested. The overall mutation detection rate was found to be 53......Alport syndrome (AS) is a progressive renal disease that is characterised by hematuria and progressive renal failure, and often accompanied by progressive high-tone sensorineural hearing loss and ocular changes in form of macular flecks and lenticonus. AS is a genetic heterogenous disease, and X...... practice for carrier detection and prenatal diagnosis, in order to be able to offer a better genetic counselling to the families. Knowledge of a possible correlation between genotype and phenotype can be of help in predicting the prognosis. Samples from 135 probands suspected of AS and 359...

  8. Molecular, cellular, and tissue engineering

    CERN Document Server

    Bronzino, Joseph D

    2015-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug deliver...

  9. Viscosity kernel of molecular fluids

    DEFF Research Database (Denmark)

    Puscasu, Ruslan; Todd, Billy; Daivis, Peter

    2010-01-01

    forms that fit the wave-vector-dependent kernel data over a large density and wave-vector range have also been tested. Finally, a structural normalization of the kernels in physical space is considered. Overall, the real-space viscosity kernel has a width of roughly 3–6 atomic diameters, which means......The wave-vector dependent shear viscosities for butane and freely jointed chains have been determined. The transverse momentum density and stress autocorrelation functions have been determined by equilibrium molecular dynamics in both atomic and molecular hydrodynamic formalisms. The density......, temperature, and chain length dependencies of the reciprocal and real-space viscosity kernels are presented. We find that the density has a major effect on the shape of the kernel. The temperature range and chain lengths considered here have by contrast less impact on the overall normalized shape. Functional...

  10. Quantum Properties of Molecular Nanomagnets

    Science.gov (United States)

    2017-08-28

    Workshop on Novel Magnetic and Multifunctional Materials in Paris, France 4-8 July 2016 2015: 3 invited talks at Pacifichem Int Conf. , Honolulu (USA) 15...livelink/llisapi.dll AOARD Scientific Project on Novel Nanomagnetic and Multifunctional Materials . Title: Quantum Properties of Molecular Nanomagnets...Emilia) Italy. Prof. Stephen Hill, Florida State University and National High Magnetic Field Laboratory (USA) Prof. Takeji Takui, Osaka City University

  11. Controlling proteins through molecular springs.

    Science.gov (United States)

    Zocchi, Giovanni

    2009-01-01

    We argue that the mechanical control of proteins-the notion of controlling chemical reactions and processes by mechanics-is conceptually interesting. We give a brief review of the main accomplishments so far, leading to our present approach of using DNA molecular springs to exert controlled stresses on proteins. Our focus is on the physical principles that underlie both artificial mechanochemical devices and natural mechanisms of allostery.

  12. Molecular Engineering of dosimetric materials

    International Nuclear Information System (INIS)

    Salas, P.; Castano, V.M.; Mendoza, D.; Gonzalez, P.

    1999-01-01

    It was studied the thermoluminescent response to the gamma radiation of a new family of solid materials of zircon-silica. In this study some materials have been prepared by the sol-gel method with different stoichiometric relations, finding that it is possible to control, at least, partially, the thermoluminescent behavior starting from the Molecular Engineering of those materials, since the mixture of both ceramics allows to produce materials with different spatial structures. (Author)

  13. Molecular descriptors of benzenoid systems

    Directory of Open Access Journals (Sweden)

    Nazeran Idrees

    Full Text Available Molecular descriptors are being widely used in QSAR/QSPR studies in chemistry and drug designing as well as modeling of compounds. Different topological descriptors have been formulated to investigate the physio chemical properties and chemical reactivity of compounds. In this article we gave exact relations for first and second Zagreb index, hyper Zagreb index, multiplicative Zagreb indices as well as first and second Zagreb polynomials for some benzenoid systems.

  14. Molecular Properties through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2011-01-01

    We review the theory related to the calculation of electric and magnetic molecular properties through polarizable embedding. In particular, we derive the expressions for the response functions up to the level of cubic response within the density functional theory-based polarizable embedding (PE......-DFT) formalism. In addition, we discuss some illustrative applications related to the calculation of nuclear magnetic resonance parameters, nonlinear optical properties, and electronic excited states in solution....

  15. A recycling molecular beam reactor

    International Nuclear Information System (INIS)

    Prada-Silva, G.; Haller, G.L.; Fenn, J.B.

    1974-01-01

    In a Recycling Molecular Beam Reactor, RMBR, a beam of reactant gas molecules is formed from a supersonic free jet. After collision with a target the molecules pass through the vacuum pumps and are returned to the nozzle source. Continuous recycling permits the integration of very small reaction probabilities into measurable conversions which can be analyzed by gas chromatography. Some preliminary experiments have been carried out on the isomerization of cyclopropane

  16. Molecular invariants: atomic group valence

    International Nuclear Information System (INIS)

    Mundim, K.C.; Giambiagi, M.; Giambiagi, M.S. de.

    1988-01-01

    Molecular invariants may be deduced in a very compact way through Grassman algebra. In this work, a generalized valence is defined for an atomic group; it reduces to the Known expressions for the case of an atom in a molecule. It is the same of the correlations between the fluctions of the atomic charges qc and qd (C belongs to the group and D does not) around their average values. Numerical results agree with chemical expectation. (author) [pt

  17. Molecular Analyses of Transgenic Plants.

    Science.gov (United States)

    Trijatmiko, Kurniawan Rudi; Arines, Felichi Mae; Oliva, Norman; Slamet-Loedin, Inez Hortense; Kohli, Ajay

    2016-01-01

    One of the major challenges in plant molecular biology is to generate transgenic plants that express transgenes stably over generations. Here, we describe some routine methods to study transgene locus structure and to analyze transgene expression in plants: Southern hybridization using DIG chemiluminescent technology for characterization of transgenic locus, SYBR Green-based real-time RT-PCR to measure transgene transcript level, and protein immunoblot analysis to evaluate accumulation and stability of transgenic protein product in the target tissue.

  18. Controlling molecular transport through nanopores

    Science.gov (United States)

    Keyser, Ulrich F.

    2011-01-01

    Nanopores are emerging as powerful tools for the detection and identification of macromolecules in aqueous solution. In this review, we discuss the recent development of active and passive controls over molecular transport through nanopores with emphasis on biosensing applications. We give an overview of the solutions developed to enhance the sensitivity and specificity of the resistive-pulse technique based on biological and solid-state nanopores. PMID:21715402

  19. Controlling molecular transport through nanopores

    OpenAIRE

    Keyser, Ulrich F.

    2011-01-01

    Nanopores are emerging as powerful tools for the detection and identification of macromolecules in aqueous solution. In this review, we discuss the recent development of active and passive controls over molecular transport through nanopores with emphasis on biosensing applications. We give an overview of the solutions developed to enhance the sensitivity and specificity of the resistive-pulse technique based on biological and solid-state nanopores.

  20. Molecular Mechanisms of Nickel Allergy

    OpenAIRE

    Saito, Masako; Arakaki, Rieko; Yamada, Akiko; Tsunematsu, Takaaki; Kudo, Yasusei; Ishimaru, Naozumi

    2016-01-01

    Allergic contact hypersensitivity to metals is a delayed-type allergy. Although various metals are known to produce an allergic reaction, nickel is the most frequent cause of metal allergy. Researchers have attempted to elucidate the mechanisms of metal allergy using animal models and human patients. Here, the immunological and molecular mechanisms of metal allergy are described based on the findings of previous studies, including those that were recently published. In addition, the adsorptio...