WorldWideScience

Sample records for sympathetic neuroeffector transmission

  1. Vascular neuroeffector activity in the rat during pregnancy

    International Nuclear Information System (INIS)

    Hart, J.L.; Freas, W.; Muldoon, S.M.

    1986-01-01

    The activity of the vascular neuroeffector junction was examined in pregnant (PG) and non-pregnant (NPG) rats to determine if changes could account for the reported alterations in sympathetic control of the maternal circulation. Caudal and mesenteric arteries were removed from NPG and 19-21PG rats and prepared for isometric tension recording in Krebs-filled, 37 0 C tissue baths. At optimal passive tension frequency-response measurements were obtained with and without cocaine (10- 5 M), followed by norepinephrine (NE) and tyramine conc-response measurements. The densely innervated caudal artery developed more tension in response to NE, tyramine and transmural electrical stimulation than did the moderately innervated mesenteric artery. There were no significant differences in responses between vessels from NPG and PG rats, NE content, 3 H-NE accumulation, and effects of plasma on 3 H-NE accumulation of NPG and PG caudal arteries were also compared. The NE content of the NPG artery (8.61 +/- .61) was not different from that of the PG artery (9.97 +/- .71 μg/g). Also, NE accumulation was similar, and plasma inhibited 3 H-NE accumulation to the same extent. These results indicate that vascular neuroeffector functions of NE release, receptor sensitivity and uptake are not modified in the rat during pregnancy. Changes in sympathetic control of the circulation previously reported, therefore, are likely to be dependent on alterations at sites other than the neuroeffector junction

  2. Sympathetic rhythms and nervous integration.

    Science.gov (United States)

    Gilbey, Michael P

    2007-04-01

    . Thus, induction and modulation of spinal cord oscillators may be mechanisms that influence ganglionic and neuroeffector transmission. 6. The study of sympathetic rhythms may not only further understanding of sympathetic control, but may also inform on the relevance of rhythmic nervous activities in general.

  3. Neuroeffector connections of giant multimodal neurons in the African snail Achatina fulica.

    Science.gov (United States)

    Bugai, V V; Zhuravlev, V L; Safonova, T A

    2005-07-01

    A new method of making preparations was used to analyse the neuroeffector connections of the paired giant neurons of the African snail Achatina fulica. These neurons were found to induce postsynaptic potentials in the muscles of the mantle, heart, the wall of the pulmonary cavity, and the muscular elements of the renal complex, the pericardium, the sexual apparatus, the walls of the cerebral arteries, the filaments of the columellar muscles, the wall of the abdomen, and the tentacle retractor muscles. Rhythmic neuron activity led to the development of marked facilitation and long-term potentiation of synaptic potentials. The possible significance of the multiple neuroeffector connections of giant neurons is discussed.

  4. Pre- and post-synaptic sympathetic function in human hibernating myocardium

    International Nuclear Information System (INIS)

    John, Anna S.; Pepper, John R.; Dreyfus, Gilles D.; Pennell, Dudley J.; Mongillo, Marco; Khan, Muhammad T.; Depre, Christophe; Rimoldi, Ornella E.; Camici, Paolo G.

    2007-01-01

    Impaired pre-synaptic noradrenaline uptake-1 mechanism has been reported in a swine model of hibernating myocardium (HM). To ascertain whether adrenergic neuroeffector abnormalities are present in human HM, we combined functional measurements in vivo using cardiovascular magnetic resonance (CMR) and positron emission tomography (PET) to assess pre- and post-synaptic sympathetic function. Twelve patients with coronary artery disease and chronic left ventricular (LV) dysfunction underwent CMR at baseline and 6 months after bypass for assessment of regional and global LV function and identification of segments with reversible dysfunction. Before surgery, myocardial noradrenaline uptake-1 ([ 11 C]meta-hydroxy-ephedrine; HED) and β-adrenoceptor (β-AR) density ([ 11 C]CGP-12177) were measured with PET. Patient PET data were compared with those in 18 healthy controls. The volume of distribution (V d ) of HED in HM (47.95±28.05 ml/g) and infarcted myocardium (42.69±25.76 ml/g) was significantly reduced compared with controls (66.09±14.48 ml/g). The V d of HED in normal myocardium (49.93±20.48 ml/g) of patients was also lower than that in controls and the difference was close to statistical significance (p=0.06). Myocardial β-AR density was significantly lower in HM (5.49±2.35 pmol/g), infarcted (4.82±2.61 pmol/g) and normal (5.86±1.81 pmol/g) segments of patients compared with healthy controls (8.61±1.32 pmol/g). Noradrenaline uptake-1 mechanism and β-AR density are reduced in the myocardium of patients with chronic LV dysfunction and evidence of HM. The increased sympathetic activity to the heart in these patients is a generalised rather than regional phenomenon which is likely to contribute to the remodelling process of the whole LV rather than playing a causative role in HM. (orig.)

  5. Pre- and post-synaptic sympathetic function in human hibernating myocardium

    Energy Technology Data Exchange (ETDEWEB)

    John, Anna S.; Pepper, John R.; Dreyfus, Gilles D.; Pennell, Dudley J. [Imperial College, Hammersmith Hospital, National Heart and Lung Institute, London (United Kingdom); Mongillo, Marco; Khan, Muhammad T. [Imperial College, Hammersmith Hospital, Medical Research Council Clinical Sciences Centre, London (United Kingdom); Depre, Christophe [University of Medicine and Dentistry New Jersey, Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, New Jersey, NJ (United States); University of Medicine and Dentistry New Jersey, Cardiovascular Research Institute, Department of Medicine, New Jersey, NJ (United States); Rimoldi, Ornella E. [Imperial College, Hammersmith Hospital, National Heart and Lung Institute, London (United Kingdom); Imperial College, Hammersmith Hospital, Medical Research Council Clinical Sciences Centre, London (United Kingdom); New York Medical College, Cardiovascular Research Institute, Department of Medicine, Valhalla, NY (United States); Camici, Paolo G. [Imperial College, Hammersmith Hospital, National Heart and Lung Institute, London (United Kingdom); Imperial College, Hammersmith Hospital, Medical Research Council Clinical Sciences Centre, London (United Kingdom)

    2007-12-15

    Impaired pre-synaptic noradrenaline uptake-1 mechanism has been reported in a swine model of hibernating myocardium (HM). To ascertain whether adrenergic neuroeffector abnormalities are present in human HM, we combined functional measurements in vivo using cardiovascular magnetic resonance (CMR) and positron emission tomography (PET) to assess pre- and post-synaptic sympathetic function. Twelve patients with coronary artery disease and chronic left ventricular (LV) dysfunction underwent CMR at baseline and 6 months after bypass for assessment of regional and global LV function and identification of segments with reversible dysfunction. Before surgery, myocardial noradrenaline uptake-1 ([{sup 11}C]meta-hydroxy-ephedrine; HED) and {beta}-adrenoceptor ({beta}-AR) density ([{sup 11}C]CGP-12177) were measured with PET. Patient PET data were compared with those in 18 healthy controls. The volume of distribution (V{sub d}) of HED in HM (47.95{+-}28.05 ml/g) and infarcted myocardium (42.69{+-}25.76 ml/g) was significantly reduced compared with controls (66.09{+-}14.48 ml/g). The V{sub d} of HED in normal myocardium (49.93{+-}20.48 ml/g) of patients was also lower than that in controls and the difference was close to statistical significance (p=0.06). Myocardial {beta}-AR density was significantly lower in HM (5.49{+-}2.35 pmol/g), infarcted (4.82{+-}2.61 pmol/g) and normal (5.86{+-}1.81 pmol/g) segments of patients compared with healthy controls (8.61{+-}1.32 pmol/g). Noradrenaline uptake-1 mechanism and {beta}-AR density are reduced in the myocardium of patients with chronic LV dysfunction and evidence of HM. The increased sympathetic activity to the heart in these patients is a generalised rather than regional phenomenon which is likely to contribute to the remodelling process of the whole LV rather than playing a causative role in HM. (orig.)

  6. Sympathetic block by metal clips may be a reversible operation

    DEFF Research Database (Denmark)

    Thomsen, Lars L; Mikkelsen, Rasmus T; Derejko, Miroslawa

    2014-01-01

    , but the question of reversibility remains controversial. Two recent experimental studies found severe histological signs of nerve damage 4-6 weeks after clip removal, but they only used conventional histopathological staining methods. METHODS: Thoracoscopic clipping of the sympathetic trunk was performed in adult...... the sympathetic chain vary tremendously. Most surgeons transect or resect the sympathetic chain, but application of a metal clip that blocks transmission of nerve impulses in the sympathetic chain is used increasingly worldwide. This approach offers potential reversibility if patients regret surgery...... suggests in theory that application of metal clips to the sympathetic chain is a reversible procedure if only the observation period is prolonged. Further studies with longer periods between application and removal as well as investigations of nerve conduction should be encouraged, because we do not know...

  7. Effects of renal sympathetic denervation on cardiac sympathetic activity and function in patients with therapy resistant hypertension

    NARCIS (Netherlands)

    van Brussel, Peter M.; Eeftinck Schattenkerk, Daan W.; Dobrowolski, Linn C.; de Winter, Robbert J.; Reekers, Jim A.; Verberne, Hein J.; Vogt, Liffert; van den Born, Bert-Jan H.

    2016-01-01

    Renal sympathetic denervation (RSD) is currently being investigated in multiple studies of sympathetically driven cardiovascular diseases such as heart failure and arrhythmias. Our aim was to assess systemic and cardiac sympatholytic effects of RSD by the measurement of cardiac sympathetic activity

  8. Resting sympathetic activity is associated with the sympathetically mediated component of energy expenditure following a meal.

    Science.gov (United States)

    Limberg, Jacqueline K; Malterer, Katherine R; Matzek, Luke J; Levine, James A; Charkoudian, Nisha; Miles, John M; Joyner, Michael J; Curry, Timothy B

    2017-08-01

    Individuals with high plasma norepinephrine (NE) levels at rest have a smaller reduction in resting energy expenditure (REE) following β -adrenergic blockade. If this finding extends to the response to a meal, it could have important implications for the role of the sympathetic nervous system in energy balance and weight gain. We hypothesized high muscle sympathetic nerve activity (MSNA) would be associated with a low sympathetically mediated component of energy expenditure following a meal. Fourteen young, healthy adults completed two visits randomized to continuous saline (control) or intravenous propranolol to achieve systemic β -adrenergic blockade. Muscle sympathetic nerve activity and REE were measured (indirect calorimetry) followed by a liquid mixed meal (Ensure). Measures of energy expenditure continued every 30 min for 5 h after the meal and are reported as an area under the curve (AUC). Sympathetic support of energy expenditure was calculated as the difference between the AUC during saline and β -blockade (AUC P ropranolol -AUC S aline , β -REE) and as a percent (%) of control (AUC P ropranolol ÷AUC S aline  × 100). β -REE was associated with baseline sympathetic activity, such that individuals with high resting MSNA (bursts/100 heart beats) and plasma NE had the greatest sympathetically mediated component of energy expenditure following a meal (MSNA: β -REE R  =   -0.58, P =  0.03; %REE R  = -0.56, P =  0.04; NE: β -REE R  = -0.55, P  = 0.0535; %REE R  = -0.54, P  = 0.0552). Contrary to our hypothesis, high resting sympathetic activity is associated with a greater sympathetically mediated component of energy expenditure following a liquid meal. These findings may have implications for weight maintenance in individuals with varying resting sympathetic activity. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Coping with dehydration: sympathetic activation and regulation of glutamatergic transmission in the hypothalamic PVN

    Science.gov (United States)

    Bardgett, Megan E.; Chen, Qing-Hui; Guo, Qing; Calderon, Alfredo S.; Andrade, Mary Ann

    2014-01-01

    Autonomic and endocrine profiles of chronic hypertension and heart failure resemble those of acute dehydration. Importantly, all of these conditions are associated with exaggerated sympathetic nerve activity (SNA) driven by glutamatergic activation of the hypothalamic paraventricular nucleus (PVN). Here, studies sought to gain insight into mechanisms of disease by determining the role of PVN ionotropic glutamate receptors in supporting SNA and mean arterial pressure (MAP) during dehydration and by elucidating mechanisms regulating receptor activity. Blockade of PVN N-methyl-d-aspartate (NMDA) receptors reduced (P dehydrated (DH) (48 h water deprivation) rats, but had no effect in euhydrated (EH) controls. Blockade of PVN α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors had no effect in either group. NMDA in PVN caused dose-dependent increases of renal SNA and MAP in both groups, but the maximum agonist evoked response (Emax) of the renal SNA response was greater (P dehydration increases excitatory NMDA receptor tone in PVN. Reduced glial-mediated glutamate uptake was identified as a key contributing factor. Defective glutamate uptake in PVN could therefore be an important, but as yet unexplored, mechanism driving sympathetic hyperactivity in chronic cardiovascular diseases. PMID:24671240

  10. RAGE mediates the inactivation of nAChRs in sympathetic neurons under high glucose conditions.

    Science.gov (United States)

    Chandna, Andrew R; Nair, Manoj; Chang, Christine; Pennington, Paul R; Yamamoto, Yasuhiko; Mousseau, Darrell D; Campanucci, Verónica A

    2015-02-01

    Autonomic dysfunction is a serious complication of diabetes and can lead to cardiovascular abnormalities and premature death. It was recently proposed that autonomic dysfunction is triggered by oxidation-mediated inactivation of neuronal nicotinic acetylcholine receptors (nAChRs), impairing synaptic transmission in sympathetic ganglia and resulting in autonomic failure. We investigated whether the receptor for advanced glycation end products (RAGE) and its role in the generation of reactive oxygen species (ROS) could be contributing to the events that initiate sympathetic malfunction under high glucose conditions. Using biochemical, live imaging and electrophysiological tools we demonstrated that exposure of sympathetic neurons to high glucose increases RAGE expression and oxidative markers, and that incubation with RAGE ligands (e.g. AGEs, S100 and HMGB1) mimics both ROS elevation and nAChR inactivation. In contrast, co-treatment with either antioxidants or an anti-RAGE IgG prevented the inactivation of nAChRs. Lastly, a role for RAGE in this context was corroborated by the lack of sensitivity of sympathetic neurons from RAGE knock-out mice to high glucose. These data define a pivotal role for RAGE in initiating the events associated with exposure of sympathetic neurons to high glucose, and strongly support RAGE signaling as a potential therapeutic target in the autonomic complications associated with diabetes. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Neurochemistry of bulbospinal presympathetic neurons of the medulla oblongata.

    Science.gov (United States)

    Stornetta, Ruth L

    2009-11-01

    This review focuses on presympathetic neurons in the medulla oblongata including the adrenergic cell groups C1-C3 in the rostral ventrolateral medulla and the serotonergic, GABAergic and glycinergic neurons in the ventromedial medulla. The phenotypes of these neurons including colocalized neuropeptides (e.g., neuropeptide Y, enkephalin, thyrotropin-releasing hormone, substance P) as well as their relative anatomical location are considered in relation to predicting their function in control of sympathetic outflow, in particular the sympathetic outflows controlling blood pressure and thermoregulation. Several explanations are considered for how the neuroeffectors coexisting in these neurons might be functioning, although their exact purpose remains unknown. Although there is abundant data on potential neurotransmitters and neuropeptides contained in the presympathetic neurons, we are still unable to predict function and physiology based solely on the phenotype of these neurons.

  12. Netrin-1 controls sympathetic arterial innervation.

    Science.gov (United States)

    Brunet, Isabelle; Gordon, Emma; Han, Jinah; Cristofaro, Brunella; Broqueres-You, Dong; Liu, Chun; Bouvrée, Karine; Zhang, Jiasheng; del Toro, Raquel; Mathivet, Thomas; Larrivée, Bruno; Jagu, Julia; Pibouin-Fragner, Laurence; Pardanaud, Luc; Machado, Maria J C; Kennedy, Timothy E; Zhuang, Zhen; Simons, Michael; Levy, Bernard I; Tessier-Lavigne, Marc; Grenz, Almut; Eltzschig, Holger; Eichmann, Anne

    2014-07-01

    Autonomic sympathetic nerves innervate peripheral resistance arteries, thereby regulating vascular tone and controlling blood supply to organs. Despite the fundamental importance of blood flow control, how sympathetic arterial innervation develops remains largely unknown. Here, we identified the axon guidance cue netrin-1 as an essential factor required for development of arterial innervation in mice. Netrin-1 was produced by arterial smooth muscle cells (SMCs) at the onset of innervation, and arterial innervation required the interaction of netrin-1 with its receptor, deleted in colorectal cancer (DCC), on sympathetic growth cones. Function-blocking approaches, including cell type-specific deletion of the genes encoding Ntn1 in SMCs and Dcc in sympathetic neurons, led to severe and selective reduction of sympathetic innervation and to defective vasoconstriction in resistance arteries. These findings indicate that netrin-1 and DCC are critical for the control of arterial innervation and blood flow regulation in peripheral organs.

  13. AMPUTATION AND REFLEX SYMPATHETIC DYSTROPHY

    NARCIS (Netherlands)

    GEERTZEN, JHB; EISMA, WH

    Reflex sympathetic dystrophy is a chronic pain syndrome characterized by chronic burning pain, restricted range of motion, oedema and vasolability. Patients are difficult to treat and the prognosis is very often poor. This report emphasizes that an amputation in case of a reflex sympathetic

  14. Renal sympathetic nerve ablation for treatment-resistant hypertension

    Science.gov (United States)

    Krum, Henry; Schlaich, Markus; Sobotka, Paul

    2013-01-01

    Hypertension is a major risk factor for increased cardiovascular events with accelerated sympathetic nerve activity implicated in the pathogenesis and progression of disease. Blood pressure is not adequately controlled in many patients, despite the availability of effective pharmacotherapy. Novel procedure- as well as device-based strategies, such as percutaneous renal sympathetic nerve denervation, have been developed to improve blood pressure in these refractory patients. Renal sympathetic denervation not only reduces blood pressure but also renal as well as systemic sympathetic nerve activity in such patients. The reduction in blood pressure appears to be sustained over 3 years after the procedure, which suggests absence of re-innervation of renal sympathetic nerves. Safety appears to be adequate. This approach may also have potential in other disorders associated with enhanced sympathetic nerve activity such as congestive heart failure, chronic kidney disease and metabolic syndrome. This review will focus on the current status of percutaneous renal sympathetic nerve denervation, clinical efficacy and safety outcomes and prospects beyond refractory hypertension. PMID:23819768

  15. Intracranial Pressure Is a Determinant of Sympathetic Activity

    Directory of Open Access Journals (Sweden)

    Eric A. Schmidt

    2018-02-01

    Full Text Available Intracranial pressure (ICP is the pressure within the cranium. ICP rise compresses brain vessels and reduces cerebral blood delivery. Massive ICP rise leads to cerebral ischemia, but it is also known to produce hypertension, bradycardia and respiratory irregularities due to a sympatho-adrenal mechanism termed Cushing response. One still unresolved question is whether the Cushing response is a non-synaptic acute brainstem ischemic mechanism or part of a larger physiological reflex for arterial blood pressure control and homeostasis regulation. We hypothesize that changes in ICP modulates sympathetic activity. Thus, modest ICP increase and decrease were achieved in mice and patients with respectively intra-ventricular and lumbar fluid infusion. Sympathetic activity was gauged directly by microneurography, recording renal sympathetic nerve activity in mice and muscle sympathetic nerve activity in patients, and gauged indirectly in both species by heart-rate variability analysis. In mice (n = 15, renal sympathetic activity increased from 29.9 ± 4.0 bursts.s−1 (baseline ICP 6.6 ± 0.7 mmHg to 45.7 ± 6.4 bursts.s−1 (plateau ICP 38.6 ± 1.0 mmHg and decreased to 34.8 ± 5.6 bursts.s−1 (post-infusion ICP 9.1 ± 0.8 mmHg. In patients (n = 10, muscle sympathetic activity increased from 51.2 ± 2.5 bursts.min−1 (baseline ICP 8.3 ± 1.0 mmHg to 66.7 ± 2.9 bursts.min−1 (plateau ICP 25 ± 0.3 mmHg and decreased to 58.8 ± 2.6 bursts.min−1 (post-infusion ICP 14.8 ± 0.9 mmHg. In patients 7 mmHg ICP rise significantly increases sympathetic activity by 17%. Heart-rate variability analysis demonstrated a significant vagal withdrawal during the ICP rise, in accordance with the microneurography findings. Mice and human results are alike. We demonstrate in animal and human that ICP is a reversible determinant of efferent sympathetic outflow, even at relatively low ICP levels. ICP is a biophysical stress related to the forces within the brain. But ICP

  16. Fibromyalgia: When Distress Becomes (Un)sympathetic Pain

    OpenAIRE

    Martinez-Lavin, Manuel

    2012-01-01

    Fibromyalgia is a painful stress-related disorder. A key issue in fibromyalgia research is to investigate how distress could be converted into pain. The sympathetic nervous system is the main element of the stress response system. In animal models, physical trauma, infection, or distressing noise can induce abnormal connections between the sympathetic nervous system and the nociceptive system. Dorsal root ganglia sodium channels facilitate this type of sympathetic pain. Similar mechanisms may...

  17. Sympathetic reflex control of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Henriksen, O

    1991-01-01

    Sympathetic vasoconstrictor reflexes are essential for the maintenance of arterial blood pressure in upright position. It has been generally believed that supraspinal sympathetic vasoconstrictor reflexes elicited by changes in baroreceptor activity play an important role. Recent studies on human...... sympathetic vasoconstrictor reflexes are blocked. Blood flow has been measure by the local 133Xe-technique. The results indicate the presence of spinal as well as supraspinal sympathetic vasoconstrictor reflexes to human peripheral tissues. Especially is emphasized the presence of a local sympathetic veno...... skeletal muscle, cutaneous and subcutaneous tissues of the limbs indicate that the situation is more complex. Measurements have been carried out during acute as well as chronic sympathetic denervation. Spinal sympathetic reflex mechanisms have been evaluated in tetraplegic patients, where supraspinal...

  18. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  19. Inhibition of angiotensin II-induced facilitation of sympathetic neurotransmission in the pithed rat: a comparison between losartan, irbesartan, telmisartan, and captopril

    NARCIS (Netherlands)

    Balt, J. C.; Mathy, M. J.; Pfaffendorf, M.; van Zwieten, P. A.

    2001-01-01

    Numerous studies have shown that angiotensin II enhances sympathetic nervous transmission. The objective of the present study was to quantify the inhibitory effect of the angiotensin II type 1 (AT1) receptor blockers losartan, irbesartan and telmisartan and the angiotensin converting enzyme (ACE)

  20. Sympathetic Nerve Injury in Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Evangelos Diamantis

    2018-04-01

    Full Text Available The double innervation of the thyroid comes from the sympathetic and parasympathetic nervous system. Injury rates during surgery are at 30% but can be minimized by upwardly preparing the thyroid vessels at the level of thyroid capsule. Several factors have been accused of increasing the risk of injury including age and tumor size. Our aim was to investigate of there is indeed any possible correlations between these factors and a possible increase in injury rates following thyroidectomy. Seven studies were included in the meta-analysis. Statistical correlation was observed for a positive relationship between injury of the sympathetic nerve and thyroid malignancy surgery (p < 0.001; I2 = 74% No statistical correlations were observed for a negative or positive relationship between injury of the sympathetic nerve and tumor size. There was also no statistically significant value observed for the correlation of the patients’ age with the risk of sympathetic nerve injury (p = 0.388. Lack of significant correlation reported could be due to the small number of studies and great heterogeneity between them.

  1. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  2. Renal Sympathetic Denervation: Hibernation or Resurrection?

    Science.gov (United States)

    Papademetriou, Vasilios; Doumas, Michael; Tsioufis, Costas

    The most current versions of renal sympathetic denervation have been invented as minimally invasive approaches for the management of drug-resistant hypertension. The anatomy, physiology and pathophysiology of renal sympathetic innervation provide a strong background supporting an important role of the renal nerves in the regulation of blood pressure (BP) and volume. In addition, historical data with surgical sympathectomy and experimental data with surgical renal denervation indicate a beneficial effect on BP levels. Early clinical studies with transcatheter radiofrequency ablation demonstrated impressive BP reduction, accompanied by beneficial effects in target organ damage and other disease conditions characterized by sympathetic overactivity. However, the failure of the SYMPLICITY 3 trial to meet its primary efficacy end point raised a lot of concerns and put the field of renal denervation into hibernation. This review aims to translate basic research into clinical practice by presenting the anatomical and physiological basis for renal sympathetic denervation, critically discussing the past and present knowledge in this field, where we stand now, and also speculating about the future of the intervention and potential directions for research. © 2016 S. Karger AG, Basel.

  3. Imbalance between sympathetic and sensory innervation in peritoneal endometriosis.

    Science.gov (United States)

    Arnold, Julia; Barcena de Arellano, Maria L; Rüster, Carola; Vercellino, Giuseppe F; Chiantera, Vito; Schneider, Achim; Mechsner, Sylvia

    2012-01-01

    To investigate possible mechanisms of pain pathophysiology in patients with peritoneal endometriosis, a clinical study on sensory and sympathetic nerve fibre sprouting in endometriosis was performed. Peritoneal lesions (n=40) and healthy peritoneum (n=12) were immunostained and analysed with anti-protein gene product 9.5 (PGP 9.5), anti-substance P (SP) and anti-tyrosine hydroxylase (TH), specific markers for intact nerve fibres, sensory nerve fibres and sympathetic nerve fibres, respectively, to identify the ratio of sympathetic and sensory nerve fibres. In addition, immune cell infiltrates in peritoneal endometriotic lesions were analysed and the nerve growth factor (NGF) and interleukin (IL)-1β expression was correlate with the nerve fibre density. Peritoneal fluids from patients with endometriosis (n=40) and without endometriosis (n=20) were used for the in vitro neuronal growth assay. Cultured chicken dorsal root ganglia (DRG) and sympathetic ganglia were stained with anti-growth associated protein 43 (anti-GAP 43), anti-SP and anti-TH. We could detect an increased sensory and decreased sympathetic nerve fibres density in peritoneal lesions compared to healthy peritoneum. Peritoneal fluids of patients with endometriosis compared to patients without endometriosis induced an increased sprouting of sensory neurites from DRG and decreased neurite outgrowth from sympathetic ganglia. In conclusion, this study demonstrates an imbalance between sympathetic and sensory nerve fibres in peritoneal endometriosis, as well as an altered modulation of peritoneal fluids from patients with endometriosis on sympathetic and sensory innervation which might directly be involved in the maintenance of inflammation and pain. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Sympathetic activation during early pregnancy in humans

    Science.gov (United States)

    Jarvis, Sara S; Shibata, Shigeki; Bivens, Tiffany B; Okada, Yoshiyuki; Casey, Brian M; Levine, Benjamin D; Fu, Qi

    2012-01-01

    Sympathetic activity has been reported to increase in normotensive pregnant women, and to be even greater in women with gestational hypertension and preeclampsia at term. Whether sympathetic overactivity develops early during pregnancy, remaining high throughout gestation, or whether it only occurs at term providing the substrate for hypertensive disorders is unknown. We tested the hypothesis that sympathetic activation occurs early during pregnancy in humans. Eleven healthy women (29 ± 3 (SD) years) without prior hypertensive pregnancies were tested during the mid-luteal phase (PRE) and early pregnancy (EARLY; 6.2 ± 1.2 weeks of gestation). Muscle sympathetic nerve activity (MSNA) and haemodynamics were measured supine, at 30 deg and 60 deg upright tilt for 5 min each. Blood samples were drawn for catecholamines, direct renin, and aldosterone. MSNA was significantly greater during EARLY than PRE (supine: 25 ± 8 vs. 14 ± 8 bursts min−1, 60 deg tilt: 49 ± 14 vs. 40 ± 10 bursts min−1; main effect, P < 0.05). Resting diastolic pressure trended lower (P = 0.09), heart rate was similar, total peripheral resistance decreased (2172 ± 364 vs. 2543 ± 352 dyne s cm−5; P < 0.05), sympathetic vascular transduction was blunted (0.10 ± 0.05 vs. 0.36 ± 0.47 units a.u.−1 min−1; P < 0.01), and both renin (supine: 27.9 ± 6.2 vs. 14.2 ± 8.7 pg ml−1, P < 0.01) and aldosterone (supine: 16.7 ± 14.1 vs. 7.7 ± 6.8 ng ml−1, P = 0.05) were higher during EARLY than PRE. These results suggest that sympathetic activation is a common characteristic of early pregnancy in humans despite reduced diastolic pressure and total peripheral resistance. These observations challenge conventional thinking about blood pressure regulation during pregnancy, showing marked sympathetic activation occurring within the first few weeks of conception, and may provide the substrate for pregnancy induced cardiovascular complications. PMID:22687610

  5. Sympathetic vasoconstrictor nerve function in alcoholic neuropathy

    DEFF Research Database (Denmark)

    Jensen, K; Andersen, K; Smith, T

    1984-01-01

    (18% and 48% decrease respectively). However, in three patients with moderate neuropathy, and in one patient with no signs of neuropathy, this veno-arteriolar reflex was absent, indicating dysfunction of the peripheral sympathetic adrenergic nerve fibres. The three patients also showed a lesser degree......The peripheral sympathetic vasomotor nerve function was investigated in 18 male chronic alcoholics admitted for intellectual impairment or polyneuropathy. By means of the local 133Xenon washout technique, the sympathetic veno-arteriolar axon-reflex was studied. This normally is responsible for a 50...... comprise not only the peripheral sensory and motor nerve fibres, but also the thin pseudomotor and vasomotor nerves....

  6. Sympathetic chain Schwannoma

    International Nuclear Information System (INIS)

    Al-Mashat, Faisal M.

    2009-01-01

    Schwannomas are rare, benign, slowly growing tumors arising from Schwann cells that line nerve sheaths. Schwannomas arising from the cervical sympathetic chain are extremely rare. Here, we report a case of a 70-year-old man who presented with only an asymptomatic neck mass. Physical examination revealed a left sided Horner syndrome and a neck mass with transmitted pulsation and anterior displacement of the carotid artery. Computed tomography (CT) showed a well-defined non-enhancing mass with vascular displacement. The nerve of origin of this encapsulated tumor was the sympathetic chain. The tumor was excised completely intact. The pathologic diagnosis was Schwannoma (Antoni type A and Antoni type B). The patient has been well and free of tumor recurrence for 14 months with persistence of asymptomatic left sided Horner syndrome. The clinical, radiological and pathological evaluations, therapy and postoperative complications of this tumor are discussed. (author)

  7. Polyphenols, Antioxidants and the Sympathetic Nervous System.

    Science.gov (United States)

    Bruno, Rosa Maria; Ghiadoni, Lorenzo

    2018-01-01

    A high dietary intake of polyphenols has been associated with a reduced cardiovascular mortality, due to their antioxidant properties. However, growing evidence suggests that counteracting oxidative stress in cardiovascular disease might also reduce sympathetic nervous system overactivity. This article reviews the most commonly used techniques to measure sympathetic activity in humans; the role of sympathetic activation in the pathophysiology of cardiovascular diseases; current evidence demonstrating that oxidative stress is involved in the regulation of sympathetic activity and how antioxidants and polyphenols might counteract sympathetic overactivity, particularly focusing on preliminary data from human studies. The main mechanisms by which polyphenols are cardioprotective are related to the improvement of vascular function and their anti-atherogenic effect. Furthermore, a blood pressure-lowering effect was consistently demonstrated in randomized controlled trials in humans, when the effect of flavonoid-rich foods, such as tea and chocolate, was tested. More recent studies suggest that inhibition of sympathetic overactivity might be one of the mechanisms by which these substances exert their cardioprotective effects. Indeed, an increased adrenergic traffic to the vasculature is a major mechanism of disease in a number of cardiovascular and extra-cardiac diseases, including hypertension, obesity, metabolic syndrome and heart failure. A considerable body of evidence, mostly from experimental studies, support the hypothesis that reactive oxygen species might exert sympathoexcitatory effects both at the central and at the peripheral level. Accordingly, supplementation with antioxidants might reduce adrenergic overdrive to the vasculature and blunt cardiovascular reactivity to stress. While supplementation with "classical" antioxidants such as ROS-scavengers has many limitations, increasing the intake of polyphenol-rich foods seems to be a promising novel therapeutic

  8. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors. PMID:23487769

  9. Sympathetic vasoconstriction takes an unexpected pannexin detour

    DEFF Research Database (Denmark)

    Schak Nielsen, Morten

    2015-01-01

    Sympathetic vasoconstriction plays an important role in the control of blood pressure and the distribution of blood flow. In this issue of Science Signaling, Billaud et al. show that sympathetic vasoconstriction occurs through a complex scheme involving the activation of large-pore pannexin 1...... channels and the subsequent release of adenosine triphosphate that promotes contraction in an autocrine and paracrine manner. This elaborate mechanism may function as a point of intercept for other signaling pathways-for example, in relation to the phenomenon "functional sympatholysis," in which exercise...... abrogates sympathetic vasoconstriction in skeletal muscle. Because pannexin 1 channels are inhibited by nitric oxide, they may function as a switch to turn off adrenergic signaling in skeletal muscle during exercise....

  10. Vestibular control of sympathetic activity. An otolith-sympathetic reflex in humans.

    Science.gov (United States)

    Kaufmann, H; Biaggioni, I; Voustianiouk, A; Diedrich, A; Costa, F; Clarke, R; Gizzi, M; Raphan, T; Cohen, B

    2002-04-01

    It has been proposed that a vestibular reflex originating in the otolith organs and other body graviceptors modulates sympathetic activity during changes in posture with regard to gravity. To test this hypothesis, we selectively stimulated otolith and body graviceptors sinusoidally along different head axes in the coronal plane with off-vertical axis rotation (OVAR) and recorded sympathetic efferent activity in the peroneal nerve (muscle sympathetic nerve activity, MSNA), blood pressure, heart rate, and respiratory rate. All parameters were entrained during OVAR at the frequency of rotation, with MSNA increasing in nose-up positions during forward linear acceleration and decreasing when nose-down. MSNA was correlated closely with blood pressure when subjects were within +/-90 degrees of nose-down positions with a delay of 1.4 s, the normal latency of baroreflex-driven changes in MSNA. Thus, in the nose-down position, MSNA was probably driven by baroreflex afferents. In contrast, when subjects were within +/-45 degrees of the nose-up position, i.e., when positive linear acceleration was maximal along the naso-ocipital axis, MSNA was closely related to gravitational acceleration at a latency of 0.4 s. This delay is too short for MSNA changes to be mediated by the baroreflex, but it is compatible with the delay of a response originating in the vestibular system. We postulate that a vestibulosympathetic reflex, probably originating mainly in the otolith organs, contributes to blood pressure maintenance during forward linear acceleration. Because of its short latency, this reflex may be one of the earliest mechanisms to sustain blood pressure upon standing.

  11. The role of sympathetic nervous system in the progression of chronic kidney disease in the era of catheter based sympathetic renal denervation.

    Science.gov (United States)

    Petras, Dimitrios; Koutroutsos, Konstantinos; Kordalis, Athanasios; Tsioufis, Costas; Stefanadis, Christodoulos

    2013-08-01

    The kidney has been shown to be critically involved as both trigger and target of sympathetic nervous system overactivity in both experimental and clinical studies. Renal injury and ischemia, activation of renin angiotensin system and dysfunction of nitric oxide system have been implicated in adrenergic activation from kidney. Conversely, several lines of evidence suggest that sympathetic overactivity, through functional and morphological alterations in renal physiology and structure, may contribute to kidney injury and chronic kidney disease progression. Pharmacologic modulation of sympathetic nervous system activity has been found to have a blood pressure independent renoprotective effect. The inadequate normalization of sympathoexcitation by pharmacologic treatment asks for novel treatment options. Catheter based renal denervation targets selectively both efferent and afferent renal nerves and functionally denervates the kidney providing blood pressure reduction in clinical trials and renoprotection in experimental models by ameliorating the effects of excessive renal sympathetic drive. This review will focus on the role of sympathetic overactivity in the pathogenesis of kidney injury and CKD progression and will speculate on the effect of renal denervation to these conditions.

  12. Inflammation in CRPS: role of the sympathetic supply.

    Science.gov (United States)

    Schlereth, Tanja; Drummond, Peter D; Birklein, Frank

    2014-05-01

    Acute Complex Regional Pain Syndrome (CRPS) is associated with signs of inflammation such as increased skin temperature, oedema, skin colour changes and pain. Pro-inflammatory cytokines (tumour necrosis factor-α (TNF-α), interleukin-2 (IL-2), IL-1beta, IL-6) are up-regulated, whereas anti-inflammatory cytokines (IL-4, IL-10) are diminished. Adaptive immunity seems to be involved in CRPS pathophysiology as many patients have autoantibodies directed against β2 adrenergic and muscarinic-2 receptors. In an animal tibial fracture model changes in the innate immune response such as up-regulation of keratinocytes are also found. Additionally, CRPS is accompanied by increased neurogenic inflammation which depends mainly on neuropeptides such as CGRP and Substance P. Besides inflammatory signs, sympathetic nervous system involvement in CRPS results in cool skin, increased sweating and sympathetically-maintained pain. The norepinephrine level is lower in the CRPS-affected than contralateral limb, but sympathetic sprouting and up-regulation of alpha-adrenoceptors may result in an adrenergic supersensitivity. The sympathetic nervous system and inflammation interact: norepinephrine influences the immune system and the production of cytokines. There is substantial evidence that this interaction contributes to the pathophysiology and clinical presentation of CRPS, but this interaction is not straightforward. How inflammation in CRPS might be exaggerated by sympathetic transmitters requires further elucidation. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effect of sympathetic activity on capsaicin-evoked pain, hyperalgesia, and vasodilatation.

    Science.gov (United States)

    Baron, R; Wasner, G; Borgstedt, R; Hastedt, E; Schulte, H; Binder, A; Kopper, F; Rowbotham, M; Levine, J D; Fields, H L

    1999-03-23

    Painful nerve and tissue injuries can be exacerbated by activity in sympathetic neurons. The mechanisms of sympathetically maintained pain (SMP) are unclear. To determine the effect of cutaneous sympathetic activity on pain induced by primary afferent C-nociceptor sensitization with capsaicin in humans. In healthy volunteers capsaicin was applied topically (n = 12) or injected into the forearm skin (n = 10) to induce spontaneous pain, dynamic and punctate mechanical hyperalgesia, and antidromic (axon reflex) vasodilatation (flare). Intensity of pain and hyperalgesia, axon reflex vasodilatation (laser Doppler), and flare size and area of hyperalgesia (planimetry) were assessed. The local skin temperature at the application and measurement sites was kept constant at 35 degrees C. In each individual the analyses were performed during the presence of high and low sympathetic skin activity induced by whole-body cooling and warming with a thermal suit. By this method sympathetic vasoconstrictor activity is modulated in the widest range that can be achieved physiologically. The degree of vasoconstrictor discharge was monitored by measuring skin blood flow (laser Doppler) and temperature (infrared thermometry) at the index finger. The intensity and spatial distribution of capsaicin-evoked spontaneous pain and dynamic and punctate mechanical hyperalgesia were identical during the presence of high and low sympathetic discharge. Antidromic vasodilatation and flare size were significantly diminished when sympathetic vasoconstrictor neurons were excited. Cutaneous sympathetic vasoconstrictor activity does not influence spontaneous pain and mechanical hyperalgesia after capsaicin-induced C-nociceptor sensitization. When using physiologic stimulation of sympathetic activity, the capsaicin model is not useful for elucidating mechanisms of SMP. In neuropathic pain states with SMP, different mechanisms may be present.

  14. The articulo-cardiac sympathetic reflex in spinalized, anesthetized rats.

    Science.gov (United States)

    Nakayama, Tomohiro; Suzuki, Atsuko; Ito, Ryuzo

    2006-04-01

    Somatic afferent regulation of heart rate by noxious knee joint stimulation has been proven in anesthetized cats to be a reflex response whose reflex center is in the brain and whose efferent arc is a cardiac sympathetic nerve. In the present study we examined whether articular stimulation could influence heart rate by this efferent sympathetic pathway in spinalized rats. In central nervous system (CNS)-intact rats, noxious articular movement of either the knee or elbow joint resulted in an increase in cardiac sympathetic nerve activity and heart rate. However, although in acutely spinalized rats a noxious movement of the elbow joint resulted in a significant increase in cardiac sympathetic nerve activity and heart rate, a noxious movement of the knee joint had no such effect and resulted in only a marginal increase in heart rate. Because this marginal increase was abolished by adrenalectomy suggests that it was due to the release of adrenal catecholamines. In conclusion, the spinal cord appears to be capable of mediating, by way of cardiac sympathetic nerves, the propriospinally induced reflex increase in heart rate that follows noxious stimulation of the elbow joint, but not the knee joint.

  15. Renal sympathetic denervation: MDCT evaluation of the renal arteries.

    LENUS (Irish Health Repository)

    Hutchinson, Barry D

    2013-08-01

    Percutaneous transluminal renal sympathetic denervation is a new treatment of refractory systemic hypertension. The purpose of this study was to assess the clinical utility of MDCT to evaluate the anatomic configuration of the renal arteries in the context of renal sympathetic denervation.

  16. Myocardial Infarction Causes Transient Cholinergic Transdifferentiation of Cardiac Sympathetic Nerves via gp130.

    Science.gov (United States)

    Olivas, Antoinette; Gardner, Ryan T; Wang, Lianguo; Ripplinger, Crystal M; Woodward, William R; Habecker, Beth A

    2016-01-13

    Sympathetic and parasympathetic control of the heart is a classic example of norepinephrine (NE) and acetylcholine (ACh) triggering opposing actions. Sympathetic NE increases heart rate and contractility through activation of β receptors, whereas parasympathetic ACh slows the heart through muscarinic receptors. Sympathetic neurons can undergo a developmental transition from production of NE to ACh and we provide evidence that mouse cardiac sympathetic nerves transiently produce ACh after myocardial infarction (MI). ACh levels increased in viable heart tissue 10-14 d after MI, returning to control levels at 21 d, whereas NE levels were stable. At the same time, the genes required for ACh synthesis increased in stellate ganglia, which contain most of the sympathetic neurons projecting to the heart. Immunohistochemistry 14 d after MI revealed choline acetyltransferase (ChAT) in stellate sympathetic neurons and vesicular ACh transporter immunoreactivity in tyrosine hydroxylase-positive cardiac sympathetic fibers. Finally, selective deletion of the ChAT gene from adult sympathetic neurons prevented the infarction-induced increase in cardiac ACh. Deletion of the gp130 cytokine receptor from sympathetic neurons prevented the induction of cholinergic genes after MI, suggesting that inflammatory cytokines induce the transient acquisition of a cholinergic phenotype in cardiac sympathetic neurons. Ex vivo experiments examining the effect of NE and ACh on rabbit cardiac action potential duration revealed that ACh blunted both the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. This raises the possibility that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility. Sympathetic neurons normally make norepinephrine (NE), which increases heart rate and the contractility of cardiac myocytes. We found that, after myocardial infarction, the sympathetic neurons

  17. Sympathetic Innervation during Development Is Necessary for Pancreatic Islet Architecture and Functional Maturation

    Directory of Open Access Journals (Sweden)

    Philip Borden

    2013-07-01

    Full Text Available Sympathetic neurons depend on target-derived neurotrophic cues to control their survival and growth. However, whether sympathetic innervation contributes reciprocally to the development of target tissues is less clear. Here, we report that sympathetic innervation is necessary for the formation of the pancreatic islets of Langerhans and for their functional maturation. Genetic or pharmacological ablation of sympathetic innervation during development resulted in altered islet architecture, reduced insulin secretion, and impaired glucose tolerance in mice. Similar defects were observed with pharmacological blockade of β-adrenergic signaling. Conversely, the administration of a β-adrenergic agonist restored islet morphology and glucose tolerance in deinnervated animals. Furthermore, in neuron-islet cocultures, sympathetic neurons promoted islet cell migration in a β-adrenergic-dependent manner. This study reveals that islet architecture requires extrinsic inductive cues from neighboring tissues such as sympathetic nerves and suggests that early perturbations in sympathetic innervation might underlie metabolic disorders.

  18. Effects of sympathetic denervation or chronic reserpine on potassium (42K) and chloride (36Cl) efflux from guinea-pig vas deferens

    International Nuclear Information System (INIS)

    Urquilla, P.R.; Jones, A.W.; Fleming, W.W.

    1980-01-01

    Potassium ( 42 K) or chloride ( 36 Cl) efflux curves were determined in guinea-pig vas deferens from control, reserpine-treated animals (1 mg/kg/day i.p. for 5 days), and from animals whose vas deferens had been sympathetically denervated 1 week before. Steady-state 42 K turnover in control tissues was 0.0052+-0.0002 min -1 ; neither reserpine treatment nor sympathetic denervation changed this parameter significantly. Control 36 Cl turnover was 0.058+-0.002 min -1 and it was unaffected by either procedure. Methoxamine (3x10 -6 to 10 -4 M) induced dose-related increases in the fractional exchange of 42 K and 36 Cl. These were of greater magnitude after sympathetic denervation or reserpine treatment. Furtrethonium also produced dose-dependent increases in 42 K efflux; its dose-response curve was shifted 2.6-fold to the left of the control curve by reserpine treatment. These results indicate that interruption of adrenergic transmission to the guinea-pig vas deferens is associated with increased changes in membrane permeability to Cl and possibly K in response to drug activation of α-adrenergic and cholinegic receptors. It is suggested that the supersensitivity phenomenon observed in the guinea-pig vas deferens after reserpine or sympathetic denervation is, in part, related to improved transduction of drug-receptor interaction into ionic permeability changes. (Auth.)

  19. Sympathetic Innervation Promotes Arterial Fate by Enhancing Endothelial ERK Activity.

    Science.gov (United States)

    Pardanaud, Luc; Pibouin-Fragner, Laurence; Dubrac, Alexandre; Mathivet, Thomas; English, Isabel; Brunet, Isabelle; Simons, Michael; Eichmann, Anne

    2016-08-19

    Arterial endothelial cells are morphologically, functionally, and molecularly distinct from those found in veins and lymphatic vessels. How arterial fate is acquired during development and maintained in adult vessels is incompletely understood. We set out to identify factors that promote arterial endothelial cell fate in vivo. We developed a functional assay, allowing us to monitor and manipulate arterial fate in vivo, using arteries isolated from quails that are grafted into the coelom of chick embryos. Endothelial cells migrate out from the grafted artery, and their colonization of host arteries and veins is quantified. Here we show that sympathetic innervation promotes arterial endothelial cell fate in vivo. Removal of sympathetic nerves decreases arterial fate and leads to colonization of veins, whereas exposure to sympathetic nerves or norepinephrine imposes arterial fate. Mechanistically, sympathetic nerves increase endothelial ERK (extracellular signal-regulated kinase) activity via adrenergic α1 and α2 receptors. These findings show that sympathetic innervation promotes arterial endothelial fate and may lead to novel approaches to improve arterialization in human disease. © 2016 American Heart Association, Inc.

  20. The Effect of Sympathetic Antagonists on the Antidepressant Action ...

    African Journals Online (AJOL)

    Alprazolam is an anti-anxiety drug shown to be effective in the treatment of depression. In this study, the effect of sympathetic receptor antagonists on alprazolam–induced antidepressant action was studied using a mouse model of forced swimming behavioral despair. The interaction of three sympathetic receptor ...

  1. Baroreflex control of sympathetic activity in experimental hypertension

    Directory of Open Access Journals (Sweden)

    M.C.C. Irigoyen

    1998-09-01

    Full Text Available The arterial baroreceptor reflex system is one of the most powerful and rapidly acting mechanisms for controlling arterial pressure. The purpose of the present review is to discuss data relating sympathetic activity to the baroreflex control of arterial pressure in two different experimental models: neurogenic hypertension by sinoaortic denervation (SAD and high-renin hypertension by total aortic ligation between the renal arteries in the rat. SAD depresses baroreflex regulation of renal sympathetic activity in both the acute and chronic phases. However, increased sympathetic activity (100% was found only in the acute phase of sinoaortic denervation. In the chronic phase of SAD average discharge normalized but the pattern of discharges was different from that found in controls. High-renin hypertensive rats showed overactivity of the renin angiotensin system and a great depression of the baroreflexes, comparable to the depression observed in chronic sinoaortic denervated rats. However, there were no differences in the average tonic sympathetic activity or changes in the pattern of discharges in high-renin rats. We suggest that the difference in the pattern of discharges may contribute to the increase in arterial pressure lability observed in chronic sinoaortic denervated rats.

  2. Effect of sympathetic nerve block on acute inflammatory pain and hyperalgesia

    DEFF Research Database (Denmark)

    Pedersen, J L; Rung, G W; Kehlet, H

    1997-01-01

    BACKGROUND: Sympathetic nerve blocks relieve pain in certain chronic pain states, but the role of the sympathetic pathways in acute pain is unclear. Thus the authors wanted to determine whether a sympathetic block could reduce acute pain and hyperalgesia after a heat injury in healthy volunteers....... The duration and quality of blocks were evaluated by the sympatogalvanic skin response and skin temperature. Bilateral heat injuries were produced on the medial surfaces of the calves with a 50 x 25 mm thermode (47 degrees C, 7 min) 45 min after the blocks. Pain intensity induced by heat, pain thresholds...... between sympathetic block and placebo for pain or mechanical allodynia during injury, or pain thresholds, pain responses to heat, or areas of secondary hyperalgesia after the injury. The comparisons were done for the period when the block was effective. CONCLUSION: Sympathetic nerve block did not change...

  3. Renal sympathetic denervation in hypertension.

    Science.gov (United States)

    Doumas, Michael; Faselis, Charles; Papademetriou, Vasilios

    2011-11-01

    Despite the abundance of antihypertensive drugs, resistant hypertension remains a major clinical problem. Recent technological advances render interventional management of resistant hypertension one of the hottest topics in the hypertension field. The aim of this review is to present the pathophysiologic background and the mechanisms mediating blood pressure reduction after renal sympathetic denervation, to analyze recent findings with this fascinating approach and to critically suggest future research directions. Catheter-based, ablation-induced renal sympathetic denervation was initially studied in 45 patients with resistant hypertension in a proof-of-concept study. Impressive blood pressure reductions of about 30/15  mmHg were achieved at 6 months, without serious complications. A second, controlled, randomized (but not blinded) study confirmed the results, verifying the efficacy and safety of the procedure. A recent report revealed the 2-year durability of blood pressure reduction. Data published so far indicate that ablation-induced renal denervation is a feasible, effective, and well tolerated interventional approach for the management of resistant hypertension. The groundbreaking studies of renal denervation in drug-resistant hypertension pave the way for further research in other disease conditions in which sympathetic overactivity seems to play a critical role. This initial wave of enthusiasm needs to be followed by rigorous investigation, for the proper identification of the potential and the limitations, indications, and contraindications of this approach.

  4. Egr3 dependent sympathetic target tissue innervation in the absence of neuron death.

    Directory of Open Access Journals (Sweden)

    Lin Li

    Full Text Available Nerve Growth Factor (NGF is a target tissue derived neurotrophin required for normal sympathetic neuron survival and target tissue innervation. NGF signaling regulates gene expression in sympathetic neurons, which in turn mediates critical aspects of neuron survival, axon extension and terminal axon branching during sympathetic nervous system (SNS development. Egr3 is a transcription factor regulated by NGF signaling in sympathetic neurons that is essential for normal SNS development. Germline Egr3-deficient mice have physiologic dysautonomia characterized by apoptotic sympathetic neuron death and abnormal innervation to many target tissues. The extent to which sympathetic innervation abnormalities in the absence of Egr3 is caused by altered innervation or by neuron death during development is unknown. Using Bax-deficient mice to abrogate apoptotic sympathetic neuron death in vivo, we show that Egr3 has an essential role in target tissue innervation in the absence of neuron death. Sympathetic target tissue innervation is abnormal in many target tissues in the absence of neuron death, and like NGF, Egr3 also appears to effect target tissue innervation heterogeneously. In some tissues, such as heart, spleen, bowel, kidney, pineal gland and the eye, Egr3 is essential for normal innervation, whereas in other tissues such as lung, stomach, pancreas and liver, Egr3 appears to have little role in innervation. Moreover, in salivary glands and heart, two tissues where Egr3 has an essential role in sympathetic innervation, NGF and NT-3 are expressed normally in the absence of Egr3 indicating that abnormal target tissue innervation is not due to deregulation of these neurotrophins in target tissues. Taken together, these results clearly demonstrate a role for Egr3 in mediating sympathetic target tissue innervation that is independent of neuron survival or neurotrophin deregulation.

  5. Sympathetic skin response evoked by laser skin stimulation

    OpenAIRE

    Rossi, P.; Truini, A.; Serrao, M.; Iannetti, G. D.; Parisi, L.; Pozzessere, G.; Cruccu, G.

    2002-01-01

    The objective of this study was to evoke sympathetic skin responses (SSRs) in healthy subjects using laser stimulation and to compare these responses with those induced by conventional electrical stimuli. Twenty healthy subjects were investigated. SSRs were obtained using electrical and laser stimuli delivered to the wrist controlateral to the recording site. The sympathetic sudomotor conduction velocity (SSFCV) was measured in 8 subjects by simultaneously recording the SSR from the hand and ...

  6. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress.

    Science.gov (United States)

    Wilson, Thad E

    2017-05-01

    Thermal stress is a profound sympathetic stress in humans; kidney responses involve altered renal sympathetic nerve activity (RSNA), renal blood flow, and renal epithelial transport. During mild cold stress, RSNA spectral power but not total activity is altered, renal blood flow is maintained or decreased, and epithelial transport is altered consistent with a sympathetic stress coupled with central volume loaded state. Hypothermia decreases RSNA, renal blood flow, and epithelial transport. During mild heat stress, RSNA is increased, renal blood flow is decreased, and epithelial transport is increased consistent with a sympathetic stress coupled with a central volume unloaded state. Hyperthermia extends these directional changes, until heat illness results. Because kidney responses are very difficult to study in humans in vivo, this review describes and qualitatively evaluates an in vivo human skin model of sympathetically regulated epithelial tissue compared to that of the nephron. This model utilizes skin responses to thermal stress, involving 1) increased skin sympathetic nerve activity (SSNA), decreased skin blood flow, and suppressed eccrine epithelial transport during cold stress; and 2) increased SSNA, skin blood flow, and eccrine epithelial transport during heat stress. This model appears to mimic aspects of the renal responses. Investigations of skin responses, which parallel certain renal responses, may aid understanding of epithelial-sympathetic nervous system interactions during cold and heat stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Alterations of sympathetic nerve fibers in avascular necrosis of femoral head.

    Science.gov (United States)

    Li, Deqiang; Liu, Peilai; Zhang, Yuankai; Li, Ming

    2015-01-01

    Avascular necrosis of the femoral head (ANFH) was mainly due to alterations of bone vascularity. And noradrenaline (NA), as the neurotransmitter of the sympathetic nervous system (SNS), leads to the vasoconstriction by activating its α-Receptor. This study was to explore the nerve fiber density of the femoral head in the rabbit model of ANFH. Twenty New Zealand white rabbits were used in this study. The rabbit model of ANFH was established by the injection of methylprednisolone acetate. The nerve fiber density and distribution in the femoral head was determined using an Olympus BH2 microscope. Significant fewer sympathetic nerve fibers was found in the ANFH intertrochanteric bone samples (P = 0.036) with osteonecrosis. The number of sympathetic nerve fibers was compared between the two groups. And less sympathetic nerve fibers were found in later stage ANFH samples in comparison with those of early stages. ANFH might be preceded by an inflammatory reaction, and an inflammatory response might lead to arthritic changes in tissue samples, which in turn reduces the number of sympathetic nerve fibers.

  8. Synergistic application of cardiac sympathetic decentralization and comprehensive psychiatric treatment in the management of anxiety and electrical storm

    Directory of Open Access Journals (Sweden)

    Sahib S Khalsa

    2014-01-01

    Full Text Available We report here, for the first time, two cases demonstrating a synergistic application of bilateral cardiac sympathetic decentralization and multimodal psychiatric treatment for the assessment and management of anxiety following recurrent Implantable Cardioverter Defibrillator (ICD shocks. In a first case the combination of bilateral cardiac sympathetic decentralization (BCSD, cognitive behavioral psychotherapy and anxiolytic medication was sufficient to attenuate the patient’s symptoms and maladaptive behaviors, with a maintained benefit at 1 year. Among the more prominent subjective changes, we observed a decrease in aversive interoceptive sensations, particularly of the heartbeat following BCSD. The patient continued to experience cognitive threat appraisals on a frequent basis, although these were no longer incapacitating. In a second case, we report the effect of BCSD on autonomic tone and subjective state. In the post-lesion state we observed attenuated sympathetic responses to the valsalva maneuver, isometric handgrip and mental arithmetic stressor, including decreased systolic and diastolic blood pressure and decreased skin conductance. Collectively, these preliminary findings suggest that an integrative, multidisciplinary approach to treating anxiety disorders in the setting of ventricular arrhythmias and recurrent ICD shocks can result in sustained improvements in physical, psychological and functional status. These findings raise the possibility of a potential role for the stellate ganglion in the modulation of emotional experience and afferent transmission of interoceptive information to the central nervous system.

  9. Sympathetic arousal as a marker of chronicity in childhood stuttering.

    Science.gov (United States)

    Zengin-Bolatkale, Hatun; Conture, Edward G; Walden, Tedra A; Jones, Robin M

    2018-01-01

    This study investigated whether sympathetic activity during a stressful speaking task was an early marker for stuttering chronicity. Participants were 9 children with persisting stuttering, 23 children who recovered, and 17 children who do not stutter. Participants performed a stress-inducing picture-naming task and skin conductance was measured across three time points. Findings indicated that at the initial time point, children with persisting stuttering exhibited higher sympathetic arousal during the stressful speaking task than children whose stuttering recovered. Findings are taken to suggest that sympathetic activity may be an early marker of heightened risk for chronic stuttering.

  10. Sympathetic Overactivity in Chronic Kidney Disease: Consequences and Mechanisms

    Directory of Open Access Journals (Sweden)

    Jasdeep Kaur

    2017-08-01

    Full Text Available The incidence of chronic kidney disease (CKD is increasing worldwide, with more than 26 million people suffering from CKD in the United States alone. More patients with CKD die of cardiovascular complications than progress to dialysis. Over 80% of CKD patients have hypertension, which is associated with increased risk of cardiovascular morbidity and mortality. Another common, perhaps underappreciated, feature of CKD is an overactive sympathetic nervous system. This elevation in sympathetic nerve activity (SNA not only contributes to hypertension but also plays a detrimental role in the progression of CKD independent of any increase in blood pressure. Indeed, high SNA is associated with poor prognosis and increased cardiovascular morbidity and mortality independent of its effect on blood pressure. This brief review will discuss some of the consequences of sympathetic overactivity and highlight some of the potential pathways contributing to chronically elevated SNA in CKD. Mechanisms leading to chronic sympathoexcitation in CKD are complex, multifactorial and to date, not completely understood. Identification of the mechanisms and/or signals leading to sympathetic overactivity in CKD are crucial for development of effective therapeutic targets to reduce the increased cardiovascular risk in this patient group.

  11. Innervating sympathetic neurons regulate heart size and the timing of cardiomyocyte cell cycle withdrawal.

    Science.gov (United States)

    Kreipke, R E; Birren, S J

    2015-12-01

    Sympathetic drive to the heart is a key modulator of cardiac function and interactions between heart tissue and innervating sympathetic fibres are established early in development. Significant innervation takes place during postnatal heart development, a period when cardiomyocytes undergo a rapid transition from proliferative to hypertrophic growth. The question of whether these innervating sympathetic fibres play a role in regulating the modes of cardiomyocyte growth was investigated using 6-hydroxydopamine (6-OHDA) to abolish early sympathetic innervation of the heart. Postnatal chemical sympathectomy resulted in rats with smaller hearts, indicating that heart growth is regulated by innervating sympathetic fibres during the postnatal period. In vitro experiments showed that sympathetic interactions resulted in delays in markers of cardiomyocyte maturation, suggesting that changes in the timing of the transition from hyperplastic to hypertrophic growth of cardiomyocytes could underlie changes in heart size in the sympathectomized animals. There was also an increase in the expression of Meis1, which has been linked to cardiomyocyte cell cycle withdrawal, suggesting that sympathetic signalling suppresses cell cycle withdrawal. This signalling involves β-adrenergic activation, which was necessary for sympathetic regulation of cardiomyocyte proliferation and hypertrophy. The effect of β-adrenergic signalling on cardiomyocyte hypertrophy underwent a developmental transition. While young postnatal cardiomyocytes responded to isoproterenol (isoprenaline) with a decrease in cell size, mature cardiomyocytes showed an increase in cell size in response to the drug. Together, these results suggest that early sympathetic effects on proliferation modulate a key transition between proliferative and hypertrophic growth of the heart and contribute to the sympathetic regulation of adult heart size. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  12. Sympathetic nerves: How do they affect angiogenesis, particularly during wound healing of soft tissues?

    Science.gov (United States)

    Pan, Liangli; Tang, Jianbing; Liu, Hongwei; Cheng, Biao

    2016-01-01

    Angiogenesis is essential for wound healing, and angiogenesis impairment can result in chronic ulcers. Studies have shown that the sympathetic nervous system has an important role in angiogenesis. In recent years, researchers have focused on the roles of sympathetic nerves in tumor angiogenesis. In fact, sympathetic nerves can affect angiogenesis in the wound healing of soft tissues, and may have a similar mechanism of action as that seen in tumorigenesis. Sympathetic nerves act primarily through interactions between the neurotransmitters released from nerve endings and receptors present in target organs. Among this, activation or inhibition of adrenergic receptors (mainly β-adrenergic receptors) influence formation of new blood vessels considerably. As sympathetic nerves locate near pericytes in microvessel, go along the capillaries and there are adrenergic receptors present in endothelial cells and pericytes, sympathetic nerves may participate in angiogenesis by influencing the endothelial cells and pericytes of new capillaries. Studying the roles of sympathetic nerves on the angiogenesis of wound healing can contribute to understanding the mechanisms of tissue repair, tissue regeneration, and tumorigenesis, thereby providing new therapeutic perspectives.

  13. Recurrent postoperative CRPS I in patients with abnormal preoperative sympathetic function.

    Science.gov (United States)

    Ackerman, William E; Ahmad, Mahmood

    2008-02-01

    A complex regional pain syndrome of an extremity that has previously resolved can recur after repeat surgery at the same anatomic site. Complex regional pain syndrome is described as a disease of the autonomic nervous system. The purpose of this study was to evaluate preoperative and postoperative sympathetic function and the recurrence of complex regional pain syndrome type I (CRPS I) in patients after repeat carpal tunnel surgery. Thirty-four patients who developed CRPS I after initial carpal tunnel releases and required repeat open carpal tunnel surgeries were studied. Laser Doppler imaging (LDI) was used to assess preoperative sympathetic function 5-7 days prior to surgery and to assess postoperative sympathetic function 19-22 days after surgery or 20-22 days after resolution of the CRPS I. Sympathetic nervous system function was prospectively examined by testing reflex-evoked vasoconstrictor responses to sympathetic stimuli recorded with LDI of both hands. Patients were assigned to 1 of 2 groups based on LDI responses to sympathetic provocation. Group I (11 of 34) patients had abnormal preoperative LDI studies in the hands that had prior surgeries, whereas group II (23 of 34) patients had normal LDI studies. Each patient in this study had open repeat carpal tunnel surgery. In group I, 8 of 11 patients had recurrent CRPS I, whereas in group II, 3 of 23 patients had recurrent CRPS I. All of the recurrent CRPS I patients were successfully treated with sympathetic blockade, occupational therapy, and pharmacologic modalities. Repeat LDI after recurrent CRPS I resolution was abnormal in 8 of 8 group I patients and in 1 of 3 group II patients. CRPS I can recur after repeat hand surgery. Our study results may, however, identify those individuals who may readily benefit from perioperative therapies. Prognostic I.

  14. Efficacy of B-Type Natriuretic Peptide Is Coupled to Phosphodiesterase 2A in Cardiac Sympathetic Neurons.

    Science.gov (United States)

    Li, Dan; Lu, Chieh-Ju; Hao, Guoliang; Wright, Hannah; Woodward, Lavinia; Liu, Kun; Vergari, Elisa; Surdo, Nicoletta C; Herring, Neil; Zaccolo, Manuela; Paterson, David J

    2015-07-01

    Elevated B-type natriuretic peptide (BNP) regulates cGMP-phosphodiesterase activity. Its elevation is regarded as an early compensatory response to cardiac failure where it can facilitate sympathovagal balance and cardiorenal homeostasis. However, recent reports suggest a paradoxical proadrenergic action of BNP. Because phosphodiesterase activity is altered in cardiovascular disease, we tested the hypothesis that BNP might lose its efficacy by minimizing the action of cGMP on downstream pathways coupled to neurotransmission. BNP decreased norepinephrine release from atrial preparations in response to field stimulation and also significantly reduced the heart rate responses to sympathetic nerve stimulation in vitro. Using electrophysiological recording and fluorescence imaging, BNP also reduced the depolarization evoked calcium current and intracellular calcium transient in isolated cardiac sympathetic neurons. Pharmacological manipulations suggested that the reduction in the calcium transient was regulated by a cGMP/protein kinase G pathway. Fluorescence resonance energy transfer measurements for cAMP, and an immunoassay for cGMP, showed that BNP increased cGMP, but not cAMP. In addition, overexpression of phosphodiesterase 2A after adenoviral gene transfer markedly decreased BNP stimulation of cGMP and abrogated the BNP responses to the calcium current, intracellular calcium transient, and neurotransmitter release. These effects were reversed on inhibition of phosphodiesterase 2A. Moreover, phosphodiesterase 2A activity was significantly elevated in stellate neurons from the prohypertensive rat compared with the normotensive control. Our data suggest that abnormally high levels of phosphodiesterase 2A may provide a brake against the inhibitory action of BNP on sympathetic transmission. © 2015 American Heart Association, Inc.

  15. The sympathetic and sensory innervation of rat airways: origin and neurochemical characterisation

    OpenAIRE

    Radtke, Anne

    2010-01-01

    Sensory and sympathetic innervation of Brown Norway rat airways were investigated using retrograde neuronal tracing with fluorescent dyes and double labelling immunofluorescence. Sensory neurons projecting to the lung are located in nodose and jugular vagal ganglia. Sympathetic neuronal supply of the lung originates in the stellate ganglia and superior cervical ganglia. Concerning immuno-reactivity for the SP and NOS in sensory and NPY and TH in sympathetic neurons were investigated. IR for S...

  16. Schwanomma From Cervical Sympathetic Chain Ganglion - A Rare Presentation.

    Science.gov (United States)

    Asma, A Affee; Kannah, E

    2015-10-01

    Schwanommas arising from cervical sympathetic chain are tumours that are rare in occurrence. These lesions are usually difficult to differentiate from a vagal schwanomma and a carotid body tumour during the initial workup. In this report, a rarely seen huge cervical sympathetic chain schwanomma case with partial Horner's syndrome is being presented in detail, which to our known knowledge, is one of the few cases reported in literature.

  17. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine

    Energy Technology Data Exchange (ETDEWEB)

    Stanton, M.S.; Tuli, M.M.; Radtke, N.L.; Heger, J.J.; Miles, W.M.; Mock, B.H.; Burt, R.W.; Wellman, H.N.; Zipes, D.P. (Indiana Univ. School of Medicine, IN (USA))

    1989-11-15

    Transmural myocardial infarction in dogs produces denervation of sympathetic nerves in viable myocardium apical to the infarct that may be arrhythmogenic. It is unknown whether sympathetic denervation occurs in humans. The purpose of this study was to use iodine-123-metaiodobenzylguanidine (MIBG), a radiolabeled guanethidine analog that is actively taken up by sympathetic nerve terminals, to image noninvasively the cardiac sympathetic nerves in patients with and without ventricular arrhythmias after myocardial infarction. Results showed that 10 of 12 patients with spontaneous ventricular tachyarrhythmias after myocardial infarction exhibited regions of thallium-201 uptake indicating viable perfused myocardium, with no MIBG uptake. Such a finding is consistent with sympathetic denervation. One patient had frequent episodes of nonsustained ventricular tachycardia induced at exercise testing that was eliminated by beta-adrenoceptor blockade. Eleven of the 12 patients had ventricular tachycardia induced at electrophysiologic study and metoprolol never prevented induction. Sympathetic denervation was also detected in two of seven postinfarction patients without ventricular arrhythmias. Normal control subjects had no regions lacking MIBG uptake. This study provides evidence that regional sympathetic denervation occurs in humans after myocardial infarction and can be detected noninvasively by comparing MIBG and thallium-201 images. Although the presence of sympathetic denervation may be related to the onset of spontaneous ventricular tachyarrhythmias in some patients, it does not appear to be related to sustained ventricular tachycardia induced at electrophysiologic study.

  18. Role of sympathetic nervous system and neuropeptides in obesity hypertension

    Directory of Open Access Journals (Sweden)

    J.E. Hall

    2000-06-01

    Full Text Available Obesity is the most common cause of human essential hypertension in most industrialized countries. Although the precise mechanisms of obesity hypertension are not fully understood, considerable evidence suggests that excess renal sodium reabsorption and a hypertensive shift of pressure natriuresis play a major role. Sympathetic activation appears to mediate at least part of the obesity-induced sodium retention and hypertension since adrenergic blockade or renal denervation markedly attenuates these changes. Recent observations suggest that leptin and its multiple interactions with neuropeptides in the hypothalamus may link excess weight gain with increased sympathetic activity. Leptin is produced mainly in adipocytes and is believed to regulate energy balance by acting on the hypothalamus to reduce food intake and to increase energy expenditure via sympathetic activation. Short-term administration of leptin into the cerebral ventricles increases renal sympathetic activity, and long-term leptin infusion at rates that mimic plasma concentrations found in obesity raises arterial pressure and heart rate via adrenergic activation in non-obese rodents. Transgenic mice overexpressing leptin also develop hypertension. Acute studies suggest that the renal sympathetic effects of leptin may depend on interactions with other neurochemical pathways in the hypothalamus, including the melanocortin-4 receptor (MC4-R. However, the role of this pathway in mediating the long-term effects of leptin on blood pressure is unclear. Also, it is uncertain whether there is resistance to the chronic renal sympathetic and blood pressure effects of leptin in obese subjects. In addition, leptin also has other cardiovascular and renal actions, such as stimulation of nitric oxide formation and improvement of insulin sensitivity, which may tend to reduce blood pressure in some conditions. Although the role of these mechanisms in human obesity has not been elucidated, this

  19. RESISTIN, AN ADIPOKINE WITH NON-GENERALISED ACTIONS ON SYMPATHETIC NERVE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Emilio eBadoer

    2015-11-01

    Full Text Available The World Health Organisation has called obesity a global epidemic. There is a strong association between body weight gain and blood pressure. A major determinant of blood pressure is the level of activity in sympathetic nerves innervating cardiovascular organs. A characteristic of obesity, in both humans and in animal models, is an increase in sympathetic nerve activity to the skeletal muscle vasculature and to the kidneys. Obesity is now recognised as a chronic, low level inflammatory condition and pro-inflammatory cytokines are elevated including those produced by adipose tissue. The most well known adipokine released from fat tissue is leptin. The adipokine, resistin,, is also released from adipose tissue. Resistin can act in the central nervous system to influence the sympathetic nerve activity. Here, we review the effects of resistin on sympathetic nerve activity and compare them with leptin. We build an argument that resistin and leptin may have complex interactions. Firstly, they may augment each other as both are excitatory on sympathetic nerves innervating cardiovascular organs; In contrast, they could antagonize each other’s actions on brown adipose tissue, a key metabolic organ. These interactions may be important in conditions in which leptin and resistin are elevated, such as in obesity.

  20. Continuous Thoracic Sympathetic Ganglion Block in Complex Regional Pain Syndrome Patients with Spinal Cord Stimulation Implantation

    Directory of Open Access Journals (Sweden)

    EungDon Kim

    2016-01-01

    Full Text Available The sympathetic block is widely used for treating neuropathic pain such as complex regional pain syndrome (CRPS. However, single sympathetic block often provides only short-term effect. Moreover, frequent procedures for sympathetic block may increase the risk of complications. The use of epidural route may be limited by concern of infection in case of previous implantation of the spinal cord stimulation (SCS. In contrast, a continuous sympathetic block can be administered without such concerns. The continuous thoracic sympathetic block (TSGB has been used to treat the ischemic disease and other neuropathic conditions such as postherpetic neuralgia. We administered continuous thoracic sympathetic block using catheter in CRPS patients who underwent SCS implantations and achieved desirable outcomes. We believe a continuous sympathetic block is a considerable option before performing neurolysis or radiofrequency rhizotomy and even after SCS implantation.

  1. Effect of experimental hyperinsulinemia on sympathetic nervous system activity in the rat

    International Nuclear Information System (INIS)

    Young, J.B.

    1988-01-01

    Since insulin acutely stimulates the sympathetic nervous system, a role for sympathetic overactivity has been hypothesized to underlie the association between chronic hyperinsulinemia and hypertension. To assess the effect of sustained hyperinsulinemia on sympathetic function, [ 3 H]norepinephrine (NE) turnover was measured in rats injected with insulin for 14d. NE turnover in insulin-treated animals given free access to lab chow and a 10% sucrose solution was compared with that obtained in rats fed chow alone or chow plus sucrose. Sucrose ingestion increased NE turnover in heart, brown adipose tissue, and liver, but exogenous insulin did not augment turnover beyond that seen in animals given sucrose alone. This study, therefore, provides no evidence that chronic hyperinsulinemia, sufficient to induce peripheral insulin resistance, stimulates sympathetic activity more than that produced by chronic sucrose ingestion

  2. Sympathetic Blocks Provided Sustained Pain Relief in a Patient with Refractory Painful Diabetic Neuropathy

    Directory of Open Access Journals (Sweden)

    Jianguo Cheng

    2012-01-01

    Full Text Available The sympathetic nervous system has been implicated in pain associated with painful diabetic neuropathy. However, therapeutic intervention targeted at the sympathetic nervous system has not been established. We thus tested the hypothesis that sympathetic nerve blocks significantly reduce pain in a patient with painful diabetic neuropathy who has failed multiple pharmacological treatments. The diagnosis of small fiber sensory neuropathy was based on clinical presentations and confirmed by skin biopsies. A series of 9 lumbar sympathetic blocks over a 26-month period provided sustained pain relief in his legs. Additional thoracic paravertebral blocks further provided control of the pain in the trunk which can occasionally be seen in severe diabetic neuropathy cases, consequent to extensive involvement of the intercostal nerves. These blocks provided sustained and significant pain relief and improvement of quality of life over a period of more than two years. We thus provided the first clinical evidence supporting the notion that sympathetic nervous system plays a critical role in painful diabetic neuropathy and sympathetic blocks can be an effective management modality of painful diabetic neuropathy. We concluded that the sympathetic nervous system is a valuable therapeutic target of pharmacological and interventional modalities of treatments in painful diabetic neuropathy patients.

  3. Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function.

    Science.gov (United States)

    Wengrowski, Anastasia M; Wang, Xin; Tapa, Srinivas; Posnack, Nikki Gillum; Mendelowitz, David; Kay, Matthew W

    2015-02-01

    Release of norepinephrine (NE) from sympathetic neurons enhances heart rate (HR) and developed force through activation of β-adrenergic receptors, and this sympathoexcitation is a key risk for the generation of cardiac arrhythmias. Studies of β-adrenergic modulation of cardiac function typically involve the administration of exogenous β-adrenergic receptor agonists to directly elicit global β-adrenergic receptor activation by bypassing the involvement of sympathetic nerve terminals. In this work, we use a novel method to activate sympathetic fibres within the myocardium of Langendorff-perfused hearts while measuring changes in electrical and mechanical function. The light-activated optogenetic protein channelrhodopsin-2 (ChR2) was expressed in murine catecholaminergic sympathetic neurons. Sympathetic fibres were then photoactivated to examine changes in contractile force, HR, and cardiac electrical activity. Incidence of arrhythmia was measured with and without exposure to photoactivation of sympathetic fibres, and hearts were optically mapped to detect changes in action potential durations and conduction velocities. Results demonstrate facilitation of both developed force and HR after photostimulated release of NE, with increases in contractile force and HR of 34.5 ± 5.5 and 25.0 ± 9.3%, respectively. Photostimulation of sympathetic fibres also made hearts more susceptible to arrhythmia, with greater incidence and severity. In addition, optically mapped action potentials displayed a small but significant shortening of the plateau phase (-5.5 ± 1.0 ms) after photostimulation. This study characterizes a powerful and clinically relevant new model for studies of cardiac arrhythmias generated by increasing the activity of sympathetic nerve terminals and the resulting activation of myocyte β-adrenergic receptors. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  4. The sympathetic nervous system in polycystic ovary syndrome: a novel therapeutic target?

    Science.gov (United States)

    Lansdown, Andrew; Rees, D Aled

    2012-12-01

    Polycystic ovary syndrome (PCOS) is a common endocrine condition associated with long-term health risks, including type 2 diabetes and vascular dysfunction in addition to reproductive sequelae. Many of the common features of PCOS, such as central obesity, hyperinsulinaemia and obstructive sleep apnoea (OSA), are associated with chronic sympathetic overactivity, suggesting that sympathoexcitation may be involved in the pathogenesis of this condition. Rodent models of polycystic ovaries have shown that ovarian sympathetic outflow may be increased, accompanied by elevated intra-ovarian synthesis of nerve growth factor (NGF) which may be involved in initiation of ovarian pathology. Patients with PCOS have evidence of increased muscle sympathetic nerve activity (MSNA), altered heart rate variability and attenuated heart rate recovery postexercise, compared with age- and BMI-matched controls, suggesting a generalized increase in sympathetic nerve activity. Active weight loss can reduce MSNA and whole body noradrenaline spillover, whereas low-frequency electroacupuncture decreased MSNA in overweight women with PCOS. Treatment of OSA with continuous positive airways pressure may reduce plasma noradrenaline levels and diastolic blood pressure and improve cardiac sympathovagal balance. Renal sympathetic denervation also reduced MSNA, noradrenaline spillover and blood pressure in two PCOS subjects with hypertension, accompanied by improved insulin sensitivity. The sympathetic nervous system may thus offer a new therapeutic target in PCOS but larger and longer-term studies are needed before these treatments can be considered in clinical practice. © 2012 Blackwell Publishing Ltd.

  5. Sympathetic Responses to Central Hypovolemia: New Insights from Microneurographic Recordings

    Science.gov (United States)

    2012-04-26

    Surgical Research, Fort Sam Houston, TX, USA 2 Department of Health and Kinesiology , The University of Texas at San Antonio, San Antonio, TX, USA Edited...suggested that this phenomenon may represent sympathetic baroreflex deafferentation (Cooke et al., 2009), as the fused bursts observed during intense ...Convertino, V. A. (2009). Muscle sympathetic nerve activity during intense lower body negative pressure to presyn- cope in humans. J. Physiol. (Lond

  6. SYMPATHETIC FILAMENT ERUPTIONS FROM A BIPOLAR HELMET STREAMER IN THE SUN

    International Nuclear Information System (INIS)

    Yang Jiayan; Jiang Yunchun; Zheng Ruisheng; Bi Yi; Hong Junchao; Yang Bo

    2012-01-01

    On 2005 August 5, two solar filaments erupted successively from different confined arcades underlying a common overarching multiple-arcade bipolar helmet streamer. We present detailed observations of these two events and identify them as sympathetic filament eruptions. The first (F1) is a small active-region filament located near the outskirts of the streamer arcade. It underwent a nonradial eruption, initially moving in the interior of the streamer arcade and resulting in an over-and-out coronal mass ejection. The second filament (F2), a larger quiescent one far away from F1, was clearly disturbed during the F1 eruption. It then underwent a very slow eruption and finally disappeared completely and permanently. Because two belt-shaped diffuse dimmings formed along the footprints of the streamer arcade in the first eruption and persisted throughout the complete disappearance of F2, the eruption series are interpreted as sympathetic: the simple expansion of the common streamer arcade forced by the F1 eruption weakened magnetic flux overlying F2 and thus led to its slow eruption, with the dimming formation indicating their physical connection. Our observations suggest that multiple-arcade bipolar helmet-streamer configurations are appropriate to producing sympathetic eruptions. Combined with the recent observations of unipolar-streamer sympathetic events, it appears that a multiple-arcade unipolar or bipolar helmet streamer can serve as a common magnetic configuration for sympathetic eruptions.

  7. Highly localized interactions between sensory neurons and sprouting sympathetic fibers observed in a transgenic tyrosine hydroxylase reporter mouse

    Directory of Open Access Journals (Sweden)

    Zhang Jun-Ming

    2011-07-01

    Full Text Available Abstract Background Sprouting of sympathetic fibers into sensory ganglia occurs in many preclinical pain models, providing a possible anatomical substrate for sympathetically enhanced pain. However, the functional consequences of this sprouting have been controversial. We used a transgenic mouse in which sympathetic fibers expressed green fluorescent protein, observable in live tissue. Medium and large diameter lumbar sensory neurons with and without nearby sympathetic fibers were recorded in whole ganglion preparations using microelectrodes. Results After spinal nerve ligation, sympathetic sprouting was extensive by 3 days. Abnormal spontaneous activity increased to 15% and rheobase was reduced. Spontaneously active cells had Aαβ conduction velocities but were clustered near the medium/large cell boundary. Neurons with sympathetic basket formations had a dramatically higher incidence of spontaneous activity (71% and had lower rheobase than cells with no sympathetic fibers nearby. Cells with lower density nearby fibers had intermediate phenotypes. Immunohistochemistry of sectioned ganglia showed that cells surrounded by sympathetic fibers were enriched in nociceptive markers TrkA, substance P, or CGRP. Spontaneous activity began before sympathetic sprouting was observed, but blocking sympathetic sprouting on day 3 by cutting the dorsal ramus in addition to the ventral ramus of the spinal nerve greatly reduced abnormal spontaneous activity. Conclusions The data suggest that early sympathetic sprouting into the sensory ganglia may have highly localized, excitatory effects. Quantitatively, neurons with sympathetic basket formations may account for more than half of the observed spontaneous activity, despite being relatively rare. Spontaneous activity in sensory neurons and sympathetic sprouting may be mutually re-enforcing.

  8. Schwanomma From Cervical Sympathetic Chain Ganglion – A Rare Presentation

    Science.gov (United States)

    Asma, A. Affee

    2015-01-01

    Schwanommas arising from cervical sympathetic chain are tumours that are rare in occurrence. These lesions are usually difficult to differentiate from a vagal schwanomma and a carotid body tumour during the initial workup. In this report, a rarely seen huge cervical sympathetic chain schwanomma case with partial Horner’s syndrome is being presented in detail, which to our known knowledge, is one of the few cases reported in literature. PMID:26557566

  9. Pain increases during sympathetic arousal in patients with complex regional pain syndrome.

    Science.gov (United States)

    Drummond, P D; Finch, P M; Skipworth, S; Blockey, P

    2001-10-09

    To investigate the effect of sympathetic arousal on pain and vasomotor responses in healthy control subjects and patients with complex regional pain syndrome (CRPS), and to determine whether pain increases in patients with particular symptoms. In experiments 1 and 2, capsaicin was applied to the forearm of 24 healthy subjects to induce thermal hyperalgesia. Vascular responses were monitored and subjects rated thermal hyperalgesia before and after being startled (experiment 1), and before, during, and after mental arithmetic, breath holding, forehead cooling, the Valsalva maneuver, and a cold pressor test in experiment 2. In a third experiment, sensitivity to heat, cold, and mechanical stimulation was investigated in 61 patients with CRPS. Pain ratings and vascular and electrodermal responses were recorded after patients were startled and during forehead cooling. In experiment 1, thermal hyperalgesia decreased in healthy control subjects after they were startled, and digital blood vessels constricted symmetrically. In experiment 2, thermal hyperalgesia decreased during and after other forms of sympathetic arousal. However, in experiment 3, ratings of clinical pain increased during forehead cooling or after being startled in over 70% of patients with CRPS. Pain increased most consistently during forehead cooling in patients with cold allodynia or punctate allodynia. Digital blood vessels constricted more intensely on the symptomatic than the nonsymptomatic side in patients with CRPS during sympathetic arousal. Normal inhibitory influences on pain during sympathetic arousal are compromised in the majority of patients with CRPS. The augmented vasoconstrictor response in the symptomatic limb during sympathetic arousal is consistent with adrenergic supersensitivity. An adrenergic sensitivity in nociceptive afferents might contribute to pain and hyperalgesia during sympathetic arousal in certain patients with CRPS.

  10. Factitious lymphoedema as a psychiatric condition mimicking reflex sympathetic dystrophy: a case report

    Directory of Open Access Journals (Sweden)

    Nwaejike Nnamdi

    2008-06-01

    Full Text Available Abstract Introduction Reflex sympathetic dystrophy can result in severe disability with only one in five patients able to fully resume prior activities. Therefore, it is important to diagnose this condition early and begin appropriate treatment. Factitious lymphoedema can mimic reflex sympathetic dystrophy and is caused by self-inflicted tourniquets, blows to the arm or repeated skin irritation. Patients with factitious lymphoedema have an underlying psychiatric disorder but usually present to emergency or orthopaedics departments. Factitious lymphoedema can then be misdiagnosed as reflex sympathetic dystrophy. The treatment for factitious lymphoedema is dealing with the underlying psychiatric condition. Case presentation We share our experience of treating a 33-year-old man, who presented with factitious lymphoedema, initially diagnosed as reflex sympathetic dystrophy. Conclusion Awareness of this very similar differential diagnosis allows early appropriate treatment to be administered.

  11. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons

    Directory of Open Access Journals (Sweden)

    Vitor Fortuna

    2015-06-01

    Full Text Available The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs develop in close proximity to the dorsal aorta (DA and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA differentiation of SN precursors temporally coincides with vascular mural cell (VMC recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation.

  12. Paroxysmal sympathetic hyperactivity: An entity to keep in mind.

    Science.gov (United States)

    Godoy, D A; Panhke, P; Guerrero Suarez, P D; Murillo-Cabezas, F

    2017-12-15

    Paroxysmal sympathetic hyperactivity (PSH) is a potentially life-threatening neurological emergency secondary to multiple acute acquired brain injuries. It is clinically characterized by the cyclic and simultaneous appearance of signs and symptoms secondary to exacerbated sympathetic discharge. The diagnosis is based on the clinical findings, and high alert rates are required. No widely available and validated homogeneous diagnostic criteria have been established to date. There have been recent consensus attempts to shed light on this obscure phenomenon. Its physiopathology is complex and has not been fully clarified. However, the excitation-inhibition model is the theory that best explains the different aspects of this condition, including the response to treatment with the available drugs. The key therapeutic references are the early recognition of the disorder, avoiding secondary injuries and the triggering of paroxysms. Once sympathetic crises occur, they must peremptorily aborted and prevented. of the later the syndrome is recognized, the poorer the patient outcome. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  13. Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia.

    Science.gov (United States)

    Prabhakar, Nanduri R; Kumar, Ganesh K

    2010-11-30

    Sleep disordered breathing with recurrent apneas is one of the most frequently encountered breathing disorder in adult humans and preterm infants. Recurrent apnea patients exhibit several co-morbidities including hypertension and persistent sympathetic activation. Intermittent hypoxia (IH) resulting from apneas appears to be the primary stimulus for evoking autonomic changes. The purpose of this article is to briefly review the effects of IH on chemo- and baro-reflexes and circulating vasoactive hormones and their contribution to sympathetic activation and blood pressures. Sleep apnea patients and IH-treated rodents exhibit exaggerated arterial chemo-reflex. Studies on rodent models demonstrated that IH leads to hyperactive carotid body response to hypoxia. On the other hand, baro-reflex function is attenuated in patients with sleep apnea and in IH-treated rodents. Circulating vasoactive hormone levels are elevated in sleep apnea patients and in rodent models of IH. Thus, persistent sympathetic activation and hypertension associated with sleep apneas seems to be due to a combination of altered chemo- and baro-reflexes resulting in sympathetic activation and action of elevated circulating levels of vasoactive hormones on vasculature. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Literary ethnographic writing as sympathetic experiment

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Line

    perhaps only implicitly) of research. But we have no direct access to the subjective world of others and can only inhabit their point of view by way of imagination. Writing literary ethnographic text is one way, I will argue, of experimenting with such sympathetic imagination. By putting together observed...

  15. Renal sympathetic denervation for resistant hypertension.

    Science.gov (United States)

    Froeschl, Michael; Hadziomerovic, Adnan; Ruzicka, Marcel

    2013-05-01

    Resistant hypertension is an increasingly prevalent health problem associated with important adverse cardiovascular outcomes. The pathophysiology that underlies this condition involves increased function of both the sympathetic nervous system and the renin-angiotensin II-aldosterone system. A crucial link between these 2 systems is the web of sympathetic fibres that course within the adventitia of the renal arteries. These nerves can be targeted by applying radiofrequency energy from the lumen of the renal arteries to renal artery walls (percutaneous renal sympathetic denervation [RSD]), an approach that has attracted great interest. This paper critically reviews the evidence supporting the use of RSD. Small studies suggest that RSD can produce dramatic blood pressure reductions: In the randomized Symplicity HTN-2 trial of 106 patients, the mean fall in blood pressure at 6 months in patients who received the treatment was 32/12 mm Hg. However, there are limitations to the evidence for RSD in the treatment of resistant hypertension. These include the small number of patients studied; the lack of any placebo-controlled evidence; the fact that blood pressure outcomes were based on office assessments, as opposed to 24-hour ambulatory monitoring; the lack of longer-term efficacy data; and the lack of long-term safety data. Some of these concerns are being addressed in the ongoing Renal Denervation in Patients With Uncontrolled Hypertension (Symplicity HTN-3) trial. The first percutaneous RSD system was approved by Health Canada in the spring of 2012. But until more and better-quality data are available, this procedure should generally be reserved for those patients whose resistant hypertension is truly uncontrolled. Copyright © 2013 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  16. Sympathetic mediated vasomotion and skin capillary permeability in diabetic patients with peripheral neuropathy

    NARCIS (Netherlands)

    Lefrandt, JD; Hoeven, JH; Roon, AM; Smit, AJ; Hoogenberg, K

    Aims/hypothesis. A loss of sympathetic function could lead to changes in capillary fluid filtration in diabetic patients. We investigated whether a decreased sympathetically mediated vasomotion in the skin in diabetic patients with peripheral neuropathy is associated with an abnormal capillary

  17. Pet measurements of presynaptic sympathetic nerve terminals in the heart

    International Nuclear Information System (INIS)

    Schwaiger, M.; Hutchins, G.D.; Wieland, D.M.

    1991-01-01

    [ 18 F]Metaraminol (FMR) and [ 11 C]hydroxyephedrine (HED) are catecholamine analogues that have been developed at the University of Michigan for the noninvasive characterization of the sympathetic nervous system of the heart using positron emission tomography (PET). Pharmacological studies employing neurotoxins and uptake inhibitors have demonstrated that both FMR and HED specifically trace the uptake and storage of catecholamines in sympathetic nerve terminals with little nonspecific tracer accumulation. These compounds exhibit excellent qualitative imaging characteristics with heart-to-blood ratios exceeding 6:1 as early as 15 min after intravenous injection in both animals (HED and FMR) and humans (HED). Tracer kinetic modeling techniques have been employed for the quantitative assessment of neuronal catecholamine uptake and storage. Indices of neuronal function, such as the volume of tracer distribution derived from the kinetic models, have been employed in preliminary human studies. Comparison of the tissue distribution volume of HED between normal (control subjects) and denervated (recent transplant patients) cardiac tissue demonstrates a dynamic range of approximately 5:1. This distribution volume is reduced by 60% from normal in patients with dilated cardiomyopathy, indicating dysfunction of the sympathetic system. These results show that HED used in combination with PET provides a sophisticated quantitative approach for studying the sympathetic nervous system of the normal and diseased human heart

  18. Positron emission tomographic imaging of cardiac sympathetic innervation and function

    International Nuclear Information System (INIS)

    Goldstein, D.S.; Chang, P.C.; Eisenhofer, G.; Miletich, R.; Finn, R.; Bacher, J.; Kirk, K.L.; Bacharach, S.; Kopin, I.J.

    1990-01-01

    Sites of uptake, storage, and metabolism of [ 18 F]fluorodopamine and excretion of [ 18 F]fluorodopamine and its metabolites were visualized using positron emission tomographic (PET) scanning after intravenous injection of the tracer into anesthetized dogs. Radioactivity was concentrated in the renal pelvis, heart, liver, spleen, salivary glands, and gall bladder. Uptake of 18F by the heart resulted in striking delineation of the left ventricular myocardium. Pretreatment with desipramine markedly decreased cardiac positron emission, consistent with dependence of the heart on neuronal uptake (uptake-1) for removal of circulating catecholamines. In reserpinized animals, cardiac positron emission was absent within 30 minutes after injection of [ 18 F]-6-fluorodopamine, demonstrating that the emission in untreated animals was from radioactive labeling of the sympathetic storage vesicles. Decreased positron emission from denervated salivary glands confirmed that the tracer was concentrated in sympathetic neurons. Radioactivity in the gall bladder and urinary system depicted the hepatic and renal excretion of the tracer and its metabolites. Administration of tyramine or nitroprusside increased and ganglionic blockade with trimethaphan decreased the rate of loss of myocardial radioactivity. The results show that PET scanning after administration of [ 18 F]fluorodopamine can be used to visualize sites of sympathetic innervation, follow the metabolism and renal and hepatic excretion of catecholamines, and examine cardiac sympathetic function

  19. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, G.L.; Palma, R.K.; Brito, J.O.; Sanches, I.C. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil); Irigoyen, M.C. [Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); De Angelis, K. [Laboratório de Fisiologia Translacional, Programa de Ciências da Reabilitação, Universidade Nove de Julho, São Paulo, SP (Brazil)

    2015-03-27

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation.

  20. Dynamic resistance training decreases sympathetic tone in hypertensive ovariectomized rats

    International Nuclear Information System (INIS)

    Shimojo, G.L.; Palma, R.K.; Brito, J.O.; Sanches, I.C.; Irigoyen, M.C.; De Angelis, K.

    2015-01-01

    The aim of this study was to investigate the effects of resistance exercise training on hemodynamics and cardiac autonomic control in ovariectomized spontaneously hypertensive rats. Female rats were divided into 4 groups: sedentary control (SC), sedentary hypertensive (SH), sedentary hypertensive ovariectomized (SHO), and resistance-trained hypertensive ovariectomized (RTHO). Resistance exercise training was performed on a vertical ladder (5 days/week, 8 weeks) at 40-60% maximal load. Direct arterial pressure was recorded. Vagal and sympathetic tones were measured by heart rate (HR) responses to methylatropine (3 mg/kg, iv) and propranolol (4 mg/kg, iv). Ovariectomy resulted in additional increases in blood pressure in hypertensive rats and was associated with decreased vagal tone. Resistance exercise trained rats had lower mean arterial pressure than untrained rats (RTHO: 159±2.2 vs SHO: 177±3.4 mmHg), as well as resting bradycardia (RTHO: 332±9.0 vs SHO: 356±5 bpm). Sympathetic tone was also lower in the trained group. Moreover, sympathetic tone was positively correlated with resting HR (r=0.7, P<0.05). The additional arterial pressure increase in hypertensive rats caused by ovarian hormone deprivation was attenuated by moderate-intensity dynamic resistance training. This benefit may be associated with resting bradycardia and reduced cardiac sympathetic tone after training, which suggests potential benefits of resistance exercise for the management of hypertension after ovarian hormone deprivation

  1. The sympathetic innervation of the heart: Important new insights.

    Science.gov (United States)

    Coote, J H; Chauhan, R A

    2016-08-01

    Autonomic control of the heart has a significant influence over development of life threatening arrhythmias that can lead to sudden cardiac death. Sympathetic activity is known to be upregulated during these conditions and hence the sympathetic nerves present a target for treatment. However, a better understanding of the anatomy and physiology of cardiac sympathetic nerves is required for the progression of clinical interventions. This review explores the organization of the cardiac sympathetic nerves, from the preganglionic origin to the postganglionic innervations, and provides an overview of literature surrounding anti-arrhythmic therapies including thoracic sympathectomy and dorsal spinal cord stimulation. Several features of the innervation are clear. The cardiac nerves differentially supply the nodal and myocardial tissue of the heart and are dependent on activity generated in spinal neurones in the upper thoracic cord which project to synapse with ganglion cells in the stellate complex on each side. Networks of spinal interneurones determine the pattern of activity. Groups of spinal neurones selectively target specific regions of the heart but whether they exhibit a functional selectivity has still to be elucidated. Electrical or ischemic signals can lead to remodeling of nerves in the heart or ganglia. Surgical and electrical methods are proving to be clinically beneficial in reducing atrial and ventricular arrhythmias, heart failure and severe cardiac pain. This is a rapidly developing area and we need more basic understanding of how these methods work to ensure safety and reduction of side effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Temperament affects sympathetic nervous function in a normal population.

    Science.gov (United States)

    Kim, Bora; Lee, Jae-Hon; Kang, Eun-Ho; Yu, Bum-Hee

    2012-09-01

    Although specific temperaments have been known to be related to autonomic nervous function in some psychiatric disorders, there are few studies that have examined the relationship between temperaments and autonomic nervous function in a normal population. In this study, we examined the effect of temperament on the sympathetic nervous function in a normal population. Sixty eight healthy subjects participated in the present study. Temperament was assessed using the Korean version of the Cloninger Temperament and Character Inventory (TCI). Autonomic nervous function was determined by measuring skin temperature in a resting state, which was recorded for 5 minutes from the palmar surface of the left 5th digit using a thermistor secured with a Velcro® band. Pearson's correlation analysis and multiple linear regression were used to examine the relationship between temperament and skin temperature. A higher harm avoidance score was correlated with a lower skin temperature (i.e. an increased sympathetic tone; r=-0.343, p=0.004) whereas a higher persistence score was correlated with a higher skin temperature (r=0.433, p=0.001). Hierarchical linear regression analysis revealed that harm avoidance was able to predict the variance of skin temperature independently, with a variance of 7.1% after controlling for sex, blood pressure and state anxiety and persistence was the factor predicting the variance of skin temperature with a variance of 5.0%. These results suggest that high harm avoidance is related to an increased sympathetic nervous function whereas high persistence is related to decreased sympathetic nervous function in a normal population.

  3. Sympathetic network drive during water deprivation does not increase respiratory or cardiac rhythmic sympathetic nerve activity.

    Science.gov (United States)

    Holbein, Walter W; Toney, Glenn M

    2013-06-15

    Effects of water deprivation on rhythmic bursting of sympathetic nerve activity (SNA) were investigated in anesthetized, bilaterally vagotomized, euhydrated (control) and 48-h water-deprived (WD) rats (n = 8/group). Control and WD rats had similar baseline values of mean arterial pressure, heart rate, end-tidal CO2, and central respiratory drive. Although integrated splanchnic SNA (sSNA) was greater in WD rats than controls (P analysis of respiratory rhythmic bursting of sSNA revealed that inspiratory rhythmic burst amplitude was actually smaller (P analysis revealed that water deprivation had no effect on either the amplitude or periodicity of the cardiac rhythmic oscillation of sSNA. Collectively, these data indicate that the increase of sSNA produced by water deprivation is not attributable to either increased respiratory or cardiac rhythmic burst discharge. Thus the sympathetic network response to acute water deprivation appears to differ from that of chronic sympathoexcitation in neurogenic forms of arterial hypertension, where increased respiratory rhythmic bursting of SNA and baroreflex adaptations have been reported.

  4. Sympathetic activity of S-(+-ketamine low doses in the epidural space

    Directory of Open Access Journals (Sweden)

    Slobodan Mihaljevic

    2014-07-01

    Full Text Available BACKGROUND AND OBJECTIVES: S-(+-ketamine is an intravenous anaesthetic and sympathomimetic with properties of local anaesthetic. It has an effect of an analgetic and local anaesthetic when administered epidurally, but there are no data whether low doses of S-(+-ketamine have sympathomimetic effects. The aim of this study was to determine whether low doses of S-(+-ketamine, given epidurally together with local anaesthetic, have any effect on sympathetic nervous system, both systemic and below the level of anaesthetic block. METHODS: The study was conducted on two groups of patients to whom epidural anaesthesia was administered to. Local anaesthesia (0.5% bupivacaine was given to one group (control group while local anaesthesia and S-(+-ketamine were given to other group. Age, height, weight, systolic, diastolic and mean arterial blood pressure were measured. Non-competitive enzyme immunochemistry method (Cat Combi ELISA was used to determine the concentrations of catecholamines (adrenaline and noradrenaline. Immunoenzymometric determination with luminescent substrate on a machine called Vitros Eci was used to determine the concentration of cortisol. Pulse transit time was measured using photoplethysmography. Mann-Whitney U-test, Wilcoxon test and Friedman ANOVA were the statistical tests. Blood pressure, pulse, adrenaline, noradrenaline and cortisol concentrations were measured in order to estimate systemic sympathetic effects. RESULTS: 40 patients in the control group were given 0.5% bupivacaine and 40 patients in the test group were given 0.5% bupivacaine with S-(+-ketamine. Value p < 0.05 has been taken as a limit of statistical significance. CONCLUSIONS: Low dose of S-(+-ketamine administered epidurally had no sympathomimetic effects; it did not change blood pressure, pulse, serum hormones or pulse transit time. Low dose of S-(+-ketamine administered epidurally did not deepen sympathetic block. Adding 25 mg of S-(+-ketamine to 0

  5. Diabetic cardiac autonomic dysfunction. Parasympathetic versus sympathetic

    International Nuclear Information System (INIS)

    Uehara, Akihiko; Kurata, Chinori; Sugi, Toshihiko; Mikami, Tadashi; Shouda, Sakae

    1999-01-01

    Diabetic cardiac autonomic dysfunction often causes lethal arrhythmia and sudden cardiac death. 123 I-Metaiodobenzylguanidine (MIBG) can evaluate cardiac sympathetic dysfunction, and analysis of heart rate variability (HRV) can reflect cardiac parasympathetic activity. We examined whether cardiac parasympathetic dysfunction assessed by HRV may correlate with sympathetic dysfunction assessed by MIBG in diabetic patients. In 24-hour electrocardiography, we analyzed 4 HRV parameters: high-frequency power (HF), HF in the early morning (EMHF), rMSSD and pNN50. MIBG planar images and SPECT were obtained 15 minutes (early) and 150 minutes (late) after injection and the heart washout rate was calculated. The defect score in 9 left ventricular regions was scored on a 4 point scale (0=normal - 3=severe defect). In 20 selected diabetic patients without congestive heart failure, coronary artery disease and renal failure, parasympathetic HRV parameters had a negative correlation with the sum of defect scores (DS) in the late images (R=-0.47 to -0.59, p<0.05) and some parameters had a negative correlation with the washout rate (R=-0.50 to -0.55, p<0.05). In a total of 64 diabetic patients also, these parameters had a negative correlation with late DS (R=-0.28 to -0.35, p<0.05) and early DS (R=-0.27 to -0.32, p<0.05). The progress of diabetic cardiac parasympathetic dysfunction may parallel the sympathetic one. (author)

  6. Assessment of cardiac sympathetic nerve integrity with positron emission tomography

    International Nuclear Information System (INIS)

    Raffel, David M.; Wieland, Donald M.

    2001-01-01

    The autonomic nervous system plays a critical role in the regulation of cardiac function. Abnormalities of cardiac innervation have been implicated in the pathophysiology of many heart diseases, including sudden cardiac death and congestive heart failure. In an effort to provide clinicians with the ability to regionally map cardiac innervation, several radiotracers for imaging cardiac sympathetic neurons have been developed. This paper reviews the development of neuronal imaging agents and discusses their emerging role in the noninvasive assessment of cardiac sympathetic innervation

  7. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.

    Science.gov (United States)

    Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne

    2015-06-23

    The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. SYMPATHETIC NEURAL AND HEMODYNAMIC RESPONSES DURING COLD PRESSOR TEST IN ELDERLY BLACKS AND WHITES

    Science.gov (United States)

    Okada, Yoshiyuki; Jarvis, Sara S.; Best, Stuart A.; Edwards, Jeffrey G.; Hendrix, Joseph M.; Adams-Huet, Beverley; Vongpatanasin, Wanpen; Levine, Benjamin D.; Fu, Qi

    2016-01-01

    The sympathetic response during the cold pressor test (CPT) has been reported to be greater in young blacks than whites, especially in those with a family history of hypertension. Since blood pressure (BP) increases with age, we evaluated whether elderly blacks have greater sympathetic activation during CPT than age-matched whites. BP, heart rate (HR), cardiac output (Qc), and muscle sympathetic nerve activity (MSNA) were measured during supine baseline, 2-min CPT, and 3-min recovery in 47 elderly [68±7 (SD) yrs] volunteers (12 blacks, 35 whites). Baseline BP, HR, Qc, or MSNA did not differ between races. Systolic and diastolic BP (DBP) and HR increased during CPT (all P0.05). Qc increased during CPT and up to 30 sec of recovery in both groups, but was lower in blacks than whites. MSNA increased during CPT in both groups (both P<0.001); the increase in burst frequency was similar between groups, while the increase in total activity was smaller in blacks (P=0.030 for interaction). Peak change (Δ) in DBP was correlated with Δ total activity at 1 min into CPT in both blacks (r=0.78, P=0.003) and whites (r=0.43, P=0.009), while the slope was significantly greater in blacks (P=0.007). Thus, elderly blacks have smaller sympathetic and central hemodynamic (e.g., Qc) responses, but a greater pressor response for a given sympathetic activation during CPT than elderly whites. This response may stem from augmented sympathetic vascular transduction, greater sympathetic activation to other vascular bed(s), and/or enhanced non-adrenergically mediated vasoconstriction in elderly blacks. PMID:27021009

  9. Effects of Antidepressants, but not Psychopathology, on Cardiac Sympathetic Control : A Longitudinal Study

    NARCIS (Netherlands)

    Licht, Carmilla M. M.; Penninx, Brenda W. J. H.; de Geus, Eco J. C.

    2012-01-01

    Increased sympathetic activity has been hypothesized to have a role in the elevated somatic disease risk in persons with depressive or anxiety disorders. However, it remains unclear whether increased sympathetic activity reflects a direct effect of anxiety or depression or an indirect effect of

  10. Separate neurochemical classes of sympathetic postganglionic neurons project to the left ventricle of the rat heart.

    Science.gov (United States)

    Richardson, R J; Grkovic, I; Allen, A M; Anderson, C R

    2006-04-01

    The sympathetic innervation of the rat heart was investigated by retrograde neuronal tracing and multiple label immunohistochemistry. Injections of Fast Blue made into the left ventricular wall labelled sympathetic neurons that were located along the medial border of both the left and right stellate ganglia. Cardiac projecting sympathetic postganglionic neurons could be grouped into one of four neurochemical populations, characterised by their content of calbindin and/or neuropeptide Y (NPY). The subpopulations of neurons contained immunoreactivity to both calbindin and NPY, immunoreactivity to calbindin only, immunoreactivity to NPY only and no immunoreactivity to calbindin or NPY. Sympathetic postganglionic neurons were also labelled in vitro with rhodamine dextran applied to the cut end of a cardiac nerve. The same neurochemical subpopulations of sympathetic neurons were identified by using this technique but in different proportions to those labelled from the left ventricle. Preganglionic terminals that were immunoreactive for another calcium-binding protein, calretinin, preferentially surrounded retrogradely labelled neurons that were immunoreactive for both calbindin and NPY. The separate sympathetic pathways projecting to the rat heart may control different cardiac functions.

  11. Enlarged superior cervical sympathetic ganglion mimicking a metastatic lymph node in the retropharyngeal space: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Min; Kim, Jin Na; Kim, Se Hoon; Choi, Eun Chang [Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    The superior cervical sympathetic ganglion, the largest and most cranial of the three cervical sympathetic ganglia, transfers sympathetic signals to specific targets on the head and neck. This ganglion is located just lateral to the retropharyngeal space along the medial margin of the carotid sheath. Located thus, an enlarged superior cervical sympathetic ganglion can mimic a metastatic lymph node in the retropharyngeal space of the suprahyoid neck in head and neck cancer patients. However, this is often disregarded by radiologists due to lack of interest in its anatomic location. We present a case of an enlarged superior cervical sympathetic ganglion mimicking a retropharyngeal metastatic lymph node in a 42-year-old man with oral tongue cancer.

  12. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves.

    Science.gov (United States)

    Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H

    2017-05-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats.

    Science.gov (United States)

    Li, Peng; Huang, Pei-Pei; Yang, Yun; Liu, Chi; Lu, Yan; Wang, Fang; Sun, Wei; Kong, Xiang-Qing

    2017-01-01

    Li P, Huang P, Yang Y, Liu C, Lu Y, Wang F, Sun W, Kong X. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats. J Appl Physiol 122: 121-129, 2017. First published October 14, 2016; doi:10.1152/japplphysiol.01019.2015-Sympathetic activity is enhanced in patients with essential or secondary hypertension, as well as in various hypertensive animal models. Therapeutic targeting of sympathetic activation is considered an effective antihypertensive strategy. We hypothesized that renal sympathetic denervation (RSD) attenuates hypertension and improves vascular remodeling and renal disease in the 2-kidney, 1-clip (2K1C) rat model. Rats underwent 2K1C modeling or sham surgery; then rats underwent RSD or sham surgery 4 wk later, thus resulting in four groups (normotensive-sham, normotensive-RSD, 2K1C-sham, and 2K1C-RSD). Norepinephrine was measured by ELISA. Echocardiography was used to assess heart function. Fibrosis and apoptosis were assessed by Masson and TUNEL staining. Changes in mean arterial blood pressure in response to hexamethonium and plasma norepinephrine levels were used to evaluate basal sympathetic nerve activity. The 2K1C modeling success rate was 86.8%. RSD reversed the elevated systolic blood pressure induced by 2K1C, but had no effect on body weight. Compared with rats in the 2K1C-sham group, rats in the 2K1C-RSD group showed lower left ventricular mass/body weight ratio, interventricular septal thickness in diastole, left ventricular end-systolic diameter, and left ventricular posterior wall thickness in systole, whereas fractional shortening and ejection fraction were higher. Right kidney apoptosis and left kidney hypertrophy were not changed by RSD. Arterial fibrosis was lower in animals in the 2K1C-RSD group compared with those in the 2K1C-sham group. RSD reduced plasma norepinephrine and basal sympathetic activity in rats in the 2K1C-RSD group compared with rats in the 2K1C-sham group. These

  14. Dynamic interaction between the heart and its sympathetic innervation following T5 spinal cord transection.

    Science.gov (United States)

    Lujan, Heidi L; Janbaih, Hussein; DiCarlo, Stephen E

    2012-10-15

    Midthoracic spinal cord injury (SCI) is associated with enhanced sympathetic support of heart rate as well as myocardial damage related to calcium overload. The myocardial damage may elicit an enhanced sympathetic support of contractility to maintain ventricular function. In contrast, the level of inotropic drive may be reduced to match the lower afterload that results from the injury-induced reduction in arterial pressure. Accordingly, the inotropic response to midthoracic SCI may be increased or decreased but has not been investigated and therefore remains unknown. Furthermore, the altered ventricular function may be associated with anatomical changes in cardiac sympathetic innervation. To determine the inotropic drive following midthoracic SCI, a telemetry device was used for repeated measurements of left ventricular (LV) function, with and without beta-adrenergic receptor blockade, in rats before and after midthoracic SCI or sham SCI. In addition, NGF content (ELISA) and dendritic arborization (cholera toxin B immunohistochemistry and Sholl analysis) of cardiac-projecting sympathetic postganglionic neurons in the stellate ganglia were determined. Midthoracic SCI was associated with an enhanced sympathetic support of heart rate, dP/dt(+), and dP/dt(-). Importantly, cardiac function was lower following blockade of the sympathetic nervous system in rats with midthoracic SCI compared with sham-operated rats. Finally, these functional neuroplastic changes were associated with an increased NGF content and structural neuroplasticity within the stellate ganglia. Results document impaired LV function with codirectional changes in chronotropic and inotropic responses following midthoracic SCI. These functional changes were associated with a dynamic interaction between the heart and its sympathetic innervation.

  15. Revision on Renal Sympathetic Ablation in the Treatment of Resistant Hypertension.

    Science.gov (United States)

    Saraiva, Ana Filipa

    2016-01-01

    Hypertension is one of the most prevalent diseases in the world, with about 1 billion people affected and a possible increase to 1.5 billion by 2025. Despite advances in treatment, a proportion of patients remain resistant to conventional treatment and uncontrolled, and this can adversely affect future cardiovascular events and mortality. This alarming growth is already reflected in an important public health problem and one of the largest economic burdens of health, requiring new approaches and development of different strategies to fight this problem. This review will focus on the definition of resistant hypertension and its etiology, as well as in contemporary evidence supporting the usefulness of renal sympathetic denervation while addressing current and emerging devices, potential treatment indications in the future and unresolved issues that need to be addressed before renal sympathetic denervation can be adopted not only as a last resort exclusively for resistant hypertension. Finally an evaluation algorithm for patients with resistant hypertension which should be implemented before the execution of this technique will be proposed. Renal sympathetic denervation is a technique that possibly could have future implications in the population with hypertension, especially those with true resistant hypertension. This technique aims to reduce the renal sympathetic activation (a component in the pathophysiology of hypertension) through the destruction of the renal sympathetic nerves located in the adventitia of the renal arteries. There are several catheters that can be used; each with its specifications and therefore their selection should be made individually depending on the profile of the patient. However, a detailed pre-procedure evaluation is extremely important to exclude the large percentage of individuals with uncontrolled hypertension due to several factors that make it impossible to control blood pressure, but are likely to be corrected and as such should

  16. Sympathetic regulation and anterior cingulate cortex volume are altered in a rat model of chronic back pain.

    Science.gov (United States)

    Touj, Sara; Houle, Sébastien; Ramla, Djamel; Jeffrey-Gauthier, Renaud; Hotta, Harumi; Bronchti, Gilles; Martinoli, Maria-Grazia; Piché, Mathieu

    2017-06-03

    Chronic pain is associated with autonomic disturbance. However, specific effects of chronic back pain on sympathetic regulation remain unknown. Chronic pain is also associated with structural changes in the anterior cingulate cortex (ACC), which may be linked to sympathetic dysregulation. The aim of this study was to determine whether sympathetic regulation and ACC surface and volume are affected in a rat model of chronic back pain, in which complete Freund Adjuvant (CFA) is injected in back muscles. Sympathetic regulation was assessed with renal blood flow (RBF) changes induced by electrical stimulation of a hind paw, while ACC structure was examined by measuring cortical surface and volume. RBF changes and ACC volume were compared between control rats and rats injected with CFA in back muscles segmental (T10) to renal sympathetic innervation or not (T2). In rats with CFA, chronic inflammation was observed in the affected muscles in addition to increased nuclear factor-kappa B (NF-kB) protein expression in corresponding spinal cord segments (p=0.01) as well as decreased ACC volume (pchronic pain at T2 (p'schronic back pain alters sympathetic functions through non-segmental mechanisms, possibly by altering descending regulatory pathways from ACC. Yet, segmental somato-sympathetic reflexes may compete with non-segmental processes depending on the back region affected by pain and according to the segmental organization of the sympathetic nervous system. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Using a forehead reflectance pulse oximeter to detect changes in sympathetic tone.

    Science.gov (United States)

    Wendelken, Suzanne M; McGrath, Susan P; Akay, Metin; Blike, George T

    2004-01-01

    The extreme conditions of combat and multi-casualty rescue often make field triage difficult and put the medic or first responder at risk. In an effort to improve field triage, we have developed an automated remote triage system called ARTEMIS (automated remote triage and emergency management information system) for use in the battlefield or disaster zone. Common to field injuries is a sudden change in arterial pressure resulting from massive blood loss or shock. In effort to stabilize the arterial pressure, the sympathetic system is strongly activated and sympathetic tone is increased. This preliminary research seeks to empirically demonstrate that a forehead reflectance pulse oximeter is a viable sensor for detecting sudden changes in sympathetic tone. We performed the classic supine-standing experiment and collected the raw waveform, the photoplethysmogram (PPG), continuously using a forehead reflectance pulse oximeter. The resulting waveform was processed in Matlab using various spectral analysis techniques (FFT and AR). Our preliminary results show that a relative ratio analysis (low frequency power/high frequency power) for both the raw PPG signal and its derived pulse statistics (height, beat-to-beat interval) is a useful technique for detecting change in sympathetic tone resulting from positional change.

  18. Change in sympathetic nerve firing pattern associated with dietary weight loss in the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Elisabeth Annie Lambert

    2011-08-01

    Full Text Available Sympathetic activation in subjects with the metabolic syndrome (MS plays a role in the pathogenesis of cardiovascular disease development. Diet-induced weight loss decreases sympathetic outflow. However the mechanisms that account for sympathetic inhibition are not known. We sought to provide a detailed description of the sympathetic response to diet by analyzing the firing behavior of single-unit sympathetic nerve fibres. Fourteen subjects (57±2 years, 9 men, 5 females fulfilling ATP III criteria for the MS underwent a 3-month low calorie diet. Metabolic profile, hemodynamic parameters and multi-unit and single unit muscle sympathetic nerve activity (MSNA, microneurography were assessed prior to and at the end of the diet. Patients’ weight dropped from 96±4 to 88±3 kg (P<0.001. This was associated with a decrease in systolic and diastolic blood pressure (-12 ±3 and -5±2 mmHg, P<0.05, and in heart rate (-7±2 bpm, P<0.01 and an improvement in all metabolic parameters (fasting glucose: -0.302.1±0.118 mmol/l, total cholesterol: -0.564±0.164 mmol/l, triglycerides: -0.414±0.137 mmol/l, P<0.05. Multi-unit MSNA decreased from 68±4 to 59±5 bursts per 100 heartbeats (P<0.05. Single-unit MSNA indicated that the firing rate of individual vasoconstrictor fibres decreased from 59±10 to 32±4 spikes per 100 heart beats (P<0.05. The probability of firing decreased from 34±5 to 23±3 % of heartbeats (P<0.05, and the incidence of multiple firing decreased from 14±4 to 6±1 % of heartbeats (P<0.05. Cardiac and sympathetic baroreflex function were significantly improved (cardiac slope: 6.57±0.69 to 9.57±1.20 msec.mmHg-1; sympathetic slope: -3.86±0.34 to -5.05±0.47 bursts per 100 heartbeats.mmHg-1 P<0.05 for both. Hypocaloric diet decreased sympathetic activity and improved hemodynamic and metabolic parameters. The sympathoinhibition associated with weight loss involves marked changes, not only in the rate but also in the firing pattern of

  19. Sympathetic nerve-derived ATP regulates renal medullary blood flow via vasa recta pericytes

    Directory of Open Access Journals (Sweden)

    Scott S Wildman

    2013-10-01

    Full Text Available Pericyte cells are now known to be a novel locus of blood flow control, being able to regulate capillary diameter via their unique morphology and expression of contractile proteins. We have previously shown that exogenous ATP causes constriction of vasa recta via renal pericytes, acting at a variety of membrane bound P2 receptors on descending vasa recta, and therefore may be able to regulate medullary blood flow (MBF. Regulation of MBF is essential for appropriate urine concentration and providing essential oxygen and nutrients to this region of high, and variable, metabolic demand. Various sources of endogenous ATP have been proposed, including from epithelial, endothelial and red blood cells in response to stimuli such as mechanical stimulation, local acidosis, hypoxia, and exposure to various hormones. Extensive sympathetic innervation of the nephron has previously been shown, however the innervation reported has focused around the proximal and distal tubules, and ascending loop of Henle. We hypothesise that sympathetic nerves are an additional source of ATP acting at renal pericytes and therefore regulate MBF. Using a rat live kidney slice model in combination with video imaging and confocal microscopy techniques we firstly show sympathetic nerves in close proximity to vasa recta pericytes in both the outer and inner medulla. Secondly, we demonstrate pharmacological stimulation of sympathetic nerves in situ (by tyramine evokes pericyte-mediated vasoconstriction of vasa recta capillaries; inhibited by the application of the P2 receptor antagonist suramin. Lastly, tyramine-evoked vasoconstriction of vasa recta by pericytes is significantly less than ATP-evoked vasoconstriction. Sympathetic innervation may provide an additional level of functional regulation in the renal medulla that is highly localized. It now needs to be determined under which physiological/pathophysiological circumstances that sympathetic innervation of renal pericytes is

  20. Central vs. peripheral neuraxial sympathetic control of porcine ventricular electrophysiology

    Science.gov (United States)

    Yamakawa, Kentaro; Howard-Quijano, Kimberly; Zhou, Wei; Rajendran, Pradeep; Yagishita, Daigo; Vaseghi, Marmar; Ajijola, Olujimi A.; Armour, J. Andrew; Shivkumar, Kalyanam; Ardell, Jeffrey L.

    2015-01-01

    Sympathoexcitation is associated with ventricular arrhythmogenesis. The aim of this study was to determine the role of thoracic dorsal root afferent neural inputs to the spinal cord in modulating ventricular sympathetic control of normal heart electrophysiology. We hypothesize that dorsal root afferent input tonically modulates basal and evoked efferent sympathetic control of the heart. A 56-electrode sock placed on the epicardial ventricle in anesthetized Yorkshire pigs (n = 17) recorded electrophysiological function, as well as activation recovery interval (ARI) and dispersion in ARI, at baseline conditions and during stellate ganglion electrical stimulation. Measures were compared between intact states and sequential unilateral T1–T4 dorsal root transection (DRTx), ipsilateral ventral root transection (VRTx), and contralateral dorsal and ventral root transections (DVRTx). Left or right DRTx decreased global basal ARI [Lt.DRTx: 369 ± 12 to 319 ± 13 ms (P < 0.01) and Rt.DRTx: 388 ± 19 to 356 ± 15 ms (P < 0.01)]. Subsequent unilateral VRTx followed by contralateral DRx+VRTx induced no further change. In intact states, left and right stellate ganglion stimulation shortened ARIs (6 ± 2% vs. 17 ± 3%), while increasing dispersion (+139% vs. +88%). There was no difference in magnitude of ARI or dispersion change with stellate stimulation following spinal root transections. Interruption of thoracic spinal afferent signaling results in enhanced basal cardiac sympathoexcitability without diminishing the sympathetic response to stellate ganglion stimulation. This suggests spinal dorsal root transection releases spinal cord-mediated tonic inhibitory control of efferent sympathetic tone, while maintaining intrathoracic cardiocentric neural networks. PMID:26661096

  1. Sympathetic neurons modulate the beat rate of pluripotent cell-derived cardiomyocytes in vitro.

    Science.gov (United States)

    Takeuchi, Akimasa; Shimba, Kenta; Mori, Masahide; Takayama, Yuzo; Moriguchi, Hiroyuki; Kotani, Kiyoshi; Lee, Jong-Kook; Noshiro, Makoto; Jimbo, Yasuhiko

    2012-12-01

    Although stem cell-derived cardiomyocytes have great potential for the therapy of heart failure, it is unclear whether their function after grafting can be controlled by the host sympathetic nervous system, a component of the autonomic nervous system (ANS). Here we demonstrate the formation of functional connections between rat sympathetic superior cervical ganglion (SCG) neurons and pluripotent (P19.CL6) cell-derived cardiomyocytes (P19CMs) in compartmentalized co-culture, achieved using photolithographic microfabrication techniques. Formation of synapses between sympathetic neurons and P19CMs was confirmed by immunostaining with antibodies against β-3 tubulin, synapsin I and cardiac troponin-I. Changes in the beat rate of P19CMs were triggered after electrical stimulation of the co-cultured SCG neurons, and were affected by the pulse frequency of the electrical stimulation. Such changes in the beat rate were prevented when propranolol, a β-adrenoreceptor antagonist, was added to the culture medium. These results suggest that the beat rate of differentiated cardiomyocytes can be modulated by electrical stimulation of connected sympathetic neurons.

  2. The biophysics of renal sympathetic denervation using radiofrequency energy.

    Science.gov (United States)

    Patel, Hitesh C; Dhillon, Paramdeep S; Mahfoud, Felix; Lindsay, Alistair C; Hayward, Carl; Ernst, Sabine; Lyon, Alexander R; Rosen, Stuart D; di Mario, Carlo

    2014-05-01

    Renal sympathetic denervation is currently performed in the treatment of resistant hypertension by interventionists who otherwise do not typically use radiofrequency (RF) energy ablation in their clinical practice. Adequate RF lesion formation is dependent upon good electrode-tissue contact, power delivery, electrode-tissue interface temperature, target-tissue impedance and the size of the catheter's active electrode. There is significant interplay between these variables and hence an appreciation of the biophysical determinants of RF lesion formation is required to provide effective and safe clinical care to our patients. In this review article, we summarize the biophysics of RF ablation and explain why and how complications of renal sympathetic denervation may occur and discuss methods to minimise them.

  3. A model-based approach for the evaluation of vagal and sympathetic activities in a newborn lamb.

    Science.gov (United States)

    Le Rolle, Virginie; Ojeda, David; Beuchée, Alain; Praud, Jean-Paul; Pladys, Patrick; Hernández, Alfredo I

    2013-01-01

    This paper proposes a baroreflex model and a recursive identification method to estimate the time-varying vagal and sympathetic contributions to heart rate variability during autonomic maneuvers. The baroreflex model includes baroreceptors, cardiovascular control center, parasympathetic and sympathetic pathways. The gains of the global afferent sympathetic and vagal pathways are identified recursively. The method has been validated on data from newborn lambs, which have been acquired during the application of an autonomic maneuver, without medication and under beta-blockers. Results show a close match between experimental and simulated signals under both conditions. The vagal and sympathetic contributions have been simulated and, as expected, it is possible to observe different baroreflex responses under beta-blockers compared to baseline conditions.

  4. Differential Toxicities of Intraneurally Injected Mercuric Chloride for Sympathetic and Somatic Motor Fibers: An Ultrastructural Study

    Directory of Open Access Journals (Sweden)

    Shih-Jung Cheng

    2011-02-01

    Conclusion: This study demonstrated an undue susceptibility of sympathetic fibers to mercury intoxication. The mechanisms that underlie the selective reaction of sympathetic fibers to mercury warrant further investigation.

  5. Agmatine suppresses peripheral sympathetic tone by inhibiting N-type Ca(2+) channel activity via imidazoline I2 receptor activation.

    Science.gov (United States)

    Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo

    2016-08-26

    Agmatine, a putative endogenous ligand of imidazoline receptors, suppresses cardiovascular function by inhibiting peripheral sympathetic tone. However, the molecular identity of imidazoline receptor subtypes and its cellular mechanism underlying the agmatine-induced sympathetic suppression remains unknown. Meanwhile, N-type Ca(2+) channels are important for the regulation of NA release in the peripheral sympathetic nervous system. Therefore, it is possible that agmatine suppresses NA release in peripheral sympathetic nerve terminals by inhibiting Ca(2+) influx through N-type Ca(2+) channels. We tested this hypothesis by investigating agmatine effect on electrical field stimulation (EFS)-evoked contraction and NA release in endothelium-denuded rat superior mesenteric arterial strips. We also investigated the effect of agmatine on the N-type Ca(2+) current in superior cervical ganglion (SCG) neurons in rats. Our study demonstrates that agmatine suppresses peripheral sympathetic outflow via the imidazoline I2 receptor in rat mesenteric arteries. In addition, the agmatine-induced suppression of peripheral vascular sympathetic tone is mediated by modulating voltage-dependent N-type Ca(2+) channels in sympathetic nerve terminals. These results suggest a potential cellular mechanism for the agmatine-induced suppression of peripheral sympathetic tone. Furthermore, they provide basic and theoretical information regarding the development of new agents to treat hypertension. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Exercise training attenuates sympathetic activation and oxidative stress in diet-induced obesity.

    Science.gov (United States)

    Li, G; Liu, J-Y; Zhang, H-X; Li, Q; Zhang, S-W

    2015-01-01

    It is known that excessive sympathetic activity and oxidative stress are enhanced in obesity. This study aimed to clarify whether exercise training (ET) attenuates sympathetic activation and oxidative stress in obesity. The obesity was induced by high-fat diet (HFD) for 12 weeks. Male Sprague-Dawley rats were assigned to four groups: regular diet (RD) plus sedentary (RD-S), RD plus ET (RD-ET), HFD plus sedentary (HFD-S), and HFD plus ET (HFD-ET). The rats in RD-ET and HFD-ET groups were trained on a motorized treadmill for 60 min/day, five days/week for 8 weeks. The sympathetic activity was evaluated by the plasma norepinephrine (NE) level. The superoxide anion, malondialdehyde and F2-isoprostanes levels in serum and muscles were measured to evaluate oxidative stress. The ET prevented the increases in the body weight, arterial pressure and white adipose tissue mass in HFD rats. The NE level in plasma and oxidative stress related parameters got lower in HFD-ET group compared with HFD-S group. We have found decreased mRNA and protein levels of toll-like receptor (TLR)-2 and TLR-4 by ET in HFD rats. These findings suggest that ET may be effective for attenuating sympathetic activation and oxidative stress in diet-induced obesity.

  7. Sympathetic responses during saline infusion into the veins of an occluded limb.

    Science.gov (United States)

    Cui, Jian; McQuillan, Patrick; Moradkhan, Raman; Pagana, Charles; Sinoway, Lawrence I

    2009-07-15

    Animal studies have shown that the increased intravenous pressure stimulates the group III and IV muscle afferent fibres, and in turn induce cardiovascular responses. However, this pathway of autonomic regulation has not been examined in humans. The aim of this study was to examine the hypothesis that infusion of saline into the venous circulation of an arterially occluded vascular bed evokes sympathetic activation in healthy individuals. Blood pressure, heart rate, and muscle sympathetic nerve activity (MSNA) responses were assessed in 19 young healthy subjects during local infusion of 40 ml saline into a forearm vein in the circulatory arrested condition. From baseline (11.8 +/- 1.2 bursts min(-1)), MSNA increased significantly during the saline infusion (22.5 +/- 2.6 bursts min(-1), P Blood pressure also increased significantly during the saline infusion. Three control trials were performed during separate visits. The results from the control trial show that the observed MSNA and blood pressure responses were not due to muscle ischaemia. The present data show that saline infusion into the venous circulation of an arterially occluded vascular bed induces sympathetic activation and an increase in blood pressure. We speculate that the infusion under such conditions stimulates the afferent endings near the vessels, and evokes the sympathetic activation.

  8. Control of sympathetic vasomotor tone by catecholaminergic C1 neurones of the rostral ventrolateral medulla oblongata

    Science.gov (United States)

    Marina, Nephtali; Abdala, Ana P.L.; Korsak, Alla; Simms, Annabel E.; Allen, Andrew M.; Paton, Julian F.R.; Gourine, Alexander V.

    2011-01-01

    Aims Increased sympathetic tone in obstructive sleep apnoea results from recurrent episodes of systemic hypoxia and hypercapnia and might be an important contributor to the development of cardiovascular disease. In this study, we re-evaluated the role of a specific population of sympathoexcitatory catecholaminergic C1 neurones of the rostral ventrolateral medulla oblongata in the control of sympathetic vasomotor tone, arterial blood pressure, and hypercapnia-evoked sympathetic and cardiovascular responses. Methods and results In anaesthetized rats in vivo and perfused rat working heart brainstem preparations in situ, C1 neurones were acutely silenced by application of the insect peptide allatostatin following cell-specific targeting with a lentiviral vector to express the inhibitory Drosophila allatostatin receptor. In anaesthetized rats with denervated peripheral chemoreceptors, acute inhibition of 50% of the C1 neuronal population resulted in ∼50% reduction in renal sympathetic nerve activity and a profound fall in arterial blood pressure (by ∼25 mmHg). However, under these conditions systemic hypercapnia still evoked vigorous sympathetic activation and the slopes of the CO2-evoked sympathoexcitatory and cardiovascular responses were not affected by inhibition of C1 neurones. Inhibition of C1 neurones in situ resulted in a reversible fall in perfusion pressure and the amplitude of respiratory-related bursts of thoracic sympathetic nerve activity. Conclusion These data confirm a fundamental physiological role of medullary catecholaminergic C1 neurones in maintaining resting sympathetic vasomotor tone and arterial blood pressure. However, C1 neurones do not appear to mediate sympathoexcitation evoked by central actions of CO2. PMID:21543384

  9. Adrenergic innervation of the developing chick heart: neural crest ablations to produce sympathetically aneural hearts

    International Nuclear Information System (INIS)

    Kirby, M.; Stewart, D.

    1984-01-01

    Ablation of various regions of premigratory trunk neural crest which gives rise to the sympathetic trunks was used to remove sympathetic cardiac innervation. Neuronal uptake of [ 3 H]-norepinephrine was used as an index of neuronal development in the chick atrium. Following ablation of neural crest over somites 10-15 or 15-20, uptake was significantly decreased in the atrium at 16 and 17 days of development. Ablation of neural crest over somites 5-10 and 20-25 caused no decrease in [ 3 H]-norepinephrine uptake. Removal of neural crest over somites 5-25 or 10-20 caused approximately equal depletions of [ 3 H]-norepinephrine uptake in the atrium. Cardiac norepinephrine concentration was significantly depressed following ablation of neural crest over somites 5-25 but not over somites 10-20. Light-microscopic and histofluorescent preparations confirmed the absence of sympathetic trunks in the region of the normal origin of the sympathetic cardiac nerves following neural crest ablation over somites 10-20. The neural tube and dorsal root ganglia were damaged in the area of the neural-crest ablation; however, all of these structures were normal cranial and caudal to the lesioned area. Development of most of the embryos as well as the morphology of all of the hearts was normal following the lesion. These results indicate that it is possible to produce sympathetically aneural hearts by neural-crest ablation; however, sympathetic cardiac nerves account for an insignificant amount of cardiac norepinephrine

  10. Renal sympathetic denervation for treatment of patients with heart failure: summary of the available evidence.

    Science.gov (United States)

    Nammas, Wail; Koistinen, Juhani; Paana, Tuomas; Karjalainen, Pasi P

    2017-08-01

    Heart failure syndrome results from compensatory mechanisms that operate to restore - back to normal - the systemic perfusion pressure. Sympathetic overactivity plays a pivotal role in heart failure; norepinephrine contributes to maintenance of the systemic blood pressure and increasing preload. Cardiac norepinephrine spillover increases in patients with heart failure; norepinephrine exerts direct toxicity on cardiac myocytes resulting in a decrease of synthetic activity and/or viability. Importantly, cardiac norepinephrine spillover is a powerful predictor of mortality in patients with moderate to severe HF. This provided the rationale for trials that demonstrated survival benefit associated with the use of beta adrenergic blockers in heart failure with reduced ejection fraction. Nevertheless, the MOXCON trial demonstrated that rapid uptitration of moxonidine (inhibitor of central sympathetic outflow) in patients with heart failure was associated with excess mortality and morbidity, despite reduction of plasma norepinephrine. Interestingly, renal norepinephrine spillover was the only independent predictor of adverse outcome in patients with heart failure, in multivariable analysis. Recently, renal sympathetic denervation has emerged as a novel approach for control of blood pressure in patients with treatment-resistant hypertension. This article summarizes the available evidence for the effect of renal sympathetic denervation in the setting of heart failure. Key messages Experimental studies supported a beneficial effect of renal sympathetic denervation in heart failure with reduced ejection fraction. Clinical studies demonstrated improvement of symptoms, and left ventricular function. In heart failure and preserved ejection fraction, renal sympathetic denervation is associated with improvement of surrogate endpoints.

  11. Chewing-induced hypertension in afferent baroreflex failure: a sympathetic response?

    Science.gov (United States)

    Fuente Mora, Cristina; Norcliffe-Kaufmann, Lucy; Palma, Jose-Alberto; Kaufmann, Horacio

    2015-11-01

    What is the central question of this study? Our goal was to understand the autonomic responses to eating in patients with congenital afferent baroreflex failure, by documenting changes in blood pressure and heart rate with chewing, swallowing and stomach distension. What is the main finding and its importance? Patients born with lesions in the afferent baroreceptor pathways have an exaggerated pressor response to food intake. This appears to be a sympathetically mediated response, triggered by chewing, that occurs independently of swallowing or distension of the stomach. The chewing-induced pressor response may be useful as a counter-manoeuvre to prevent orthostatic hypotension in these patients. Familial dysautonomia (FD) is a rare genetic disease with extremely labile blood pressure resulting from baroreflex deafferentation. Patients have marked surges in sympathetic activity, frequently surrounding meals. We conducted an observational study to document the autonomic responses to eating in patients with FD and to determine whether sympathetic activation was caused by chewing, swallowing or stomach distension. Blood pressure and R-R intervals were measured continuously while chewing gum (n = 15), eating (n = 20) and distending the stomach by percutaneous endoscopic gastrostomy tube feeding (n = 9). Responses were compared with those of normal control subjects (n = 10) and of patients with efferent autonomic failure (n = 10) who have chronically impaired sympathetic outflow. In patients with FD, eating was associated with a marked but transient pressor response (P Chewing gum evoked a similar increase in blood pressure that was higher in patients with FD than in control subjects (P = 0.0001), but was absent in patients with autonomic failure. In patients with FD, distending the stomach by percutaneous endoscopic gastrostomy tube feeding failed to elicit a pressor response. The results provide indirect evidence that chewing triggers sympathetic

  12. Cardiac sympathetic nervous system imaging with (123)I-meta-iodobenzylguanidine: Perspectives from Japan and Europe

    NARCIS (Netherlands)

    Nakajima, K.; Scholte, A.; Nakata, T.; Dimitriu-Leen, A.C.; Chikamori, T.; Vitola, J.V.; Yoshinaga, K.

    2017-01-01

    Cardiac sympathetic nervous system dysfunction is closely associated with risk of serious cardiac events in patients with heart failure (HF), including HF progression, pump-failure death, and sudden cardiac death by lethal ventricular arrhythmia. For cardiac sympathetic nervous system imaging,

  13. Loss of Sympathetic Nerves in Spleens from Patients with End Stage Sepsis

    Directory of Open Access Journals (Sweden)

    Donald B. Hoover

    2017-12-01

    Full Text Available The spleen is an important site for central regulation of immune function by noradrenergic sympathetic nerves, but little is known about this major region of neuroimmune communication in humans. Experimental studies using animal models have established that sympathetic innervation of the spleen is essential for cholinergic anti-inflammatory responses evoked by vagal nerve stimulation, and clinical studies are evaluating this approach for treating inflammatory diseases. Most data on sympathetic nerves in spleen derive from rodent studies, and this work has established that remodeling of sympathetic innervation can occur during inflammation. However, little is known about the effects of sepsis on spleen innervation. Our primary goals were to (i localize noradrenergic nerves in human spleen by immunohistochemistry for tyrosine hydroxylase (TH, a specific noradrenergic marker, (ii determine if nerves occur in close apposition to leukocytes, and (iii determine if splenic sympathetic innervation is altered in patients who died from end stage sepsis. Staining for vesicular acetylcholine transporter (VAChT was done to screen for cholinergic nerves. Archived paraffin tissue blocks were used. Control samples were obtained from trauma patients or patients who died after hemorrhagic stroke. TH + nerves were associated with arteries and arterioles in all control spleens, occurring in bundles or as nerve fibers. Individual TH + nerve fibers entered the perivascular region where some appeared in close apposition to leukocytes. In marked contrast, spleens from half of the septic patients lacked TH + nerves fibers and the average abundance of TH + nerves for the septic group was only 16% of that for the control group (control: 0.272 ± 0.060% area, n = 6; sepsis: 0.043 ± 0.026% area, n = 8; P < 0.005. All spleens lacked cholinergic innervation. Our results provide definitive evidence for the distribution of noradrenergic

  14. Axon Guidance of Sympathetic Neurons to Cardiomyocytes by Glial Cell Line-Derived Neurotrophic Factor (GDNF)

    NARCIS (Netherlands)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Hirabayashi, Masumi; Watabe, Kazuhiko; Jimbo, Yasuhiko; Kodama, Itsuo; Komuro, Issei

    2013-01-01

    Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF) promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs) and sympathetic neurons (SNs) isolated from neonatal

  15. Chronic renin inhibition lowers blood pressure and reduces upright muscle sympathetic nerve activity in hypertensive seniors

    Science.gov (United States)

    Okada, Yoshiyuki; Jarvis, Sara S; Best, Stuart A; Bivens, Tiffany B; Adams-Huet, Beverley; Levine, Benjamin D; Fu, Qi

    2013-01-01

    Cardiovascular risk remains high in patients with hypertension even with adequate blood pressure (BP) control. One possible mechanism may be sympathetic activation via the baroreflex. We tested the hypothesis that chronic inhibition of renin reduces BP without sympathetic activation, but diuresis augments sympathetic activity in elderly hypertensives. Fourteen patients with stage-I hypertension (66 ± 5 (SD) years) were treated with a direct renin inhibitor, aliskiren (n= 7), or a diuretic, hydrochlorothiazide (n= 7), for 6 months. Muscle sympathetic nerve activity (MSNA), BP, direct renin and aldosterone were measured during supine and a graded head-up tilt (HUT; 5 min 30° and 20 min 60°), before and after treatment. Sympathetic baroreflex sensitivity (BRS) was assessed. Both groups had similar BP reductions after treatment (all P < 0.01), while MSNA responses were different between hydrochlorothiazide and aliskiren (P= 0.006 pre/post × drug). Both supine and upright MSNA became greater after hydrochlorothiazide treatment (supine, 72 ± 18 post vs. 64 ± 15 bursts (100 beats)−1 pre; 60° HUT, 83 ± 10 vs. 78 ± 13 bursts (100 beats)−1; P= 0.002). After aliskiren treatment, supine MSNA remained unchanged (69 ± 13 vs. 64 ± 8 bursts (100 beats)−1), but upright MSNA was lower (74 ± 15 vs. 85 ± 10 bursts (100 beats)−1; P= 0.012 for pre/post × posture). Direct renin was greater after both treatments (both P < 0.05), while upright aldosterone was greater after hydrochlorothiazide only (P= 0.002). The change in upright MSNA by the treatment was correlated with the change of aldosterone (r= 0.74, P= 0.002). Upright sympathetic BRS remained unchanged after either treatment. Thus, chronic renin inhibition may reduce upright MSNA through suppressed renin activity, while diuresis may evoke sympathetic activation via the upregulated renin–angiotensin–aldosterone system, without changing intrinsic sympathetic baroreflex function in elderly hypertensive

  16. Sympathetic skin responses in patients with hyperthyroidism.

    Science.gov (United States)

    Gozke, E; Ozyurt, Z; Dortcan, N; Ore, O; Kocer, A; Ozer, E

    2007-01-01

    The aim of this study was to investigate the disorders of sympathetic nervous system in patients with hyperthyroidism using sympathetic skin response (SSR). Twenty-two newly diagnosed cases with hyperthyroidism were included in the study. The results were compared with those of 20 healthy controls. SSR was recorded with the contralateral electrical stimulation of the median nerve (of the upper extremities) and tibial nerve (of the lower extremities) with active electrodes placed on palms and soles and reference electrodes attached on the dorsal aspects of hands and feet. Ages of the cases with hyperthyroidism and controls ranged between 15-65 years (mean: 46.7 +/- 15.0 years) and 24-62 years (mean: 39.6 +/- 9.8 years) respectively (p > 0.05). In all the control subjects SSR could be obtained, while from the lower extremities of 4 cases with hyperthyroidism (18.0%) SSR could not be elicited. Mean SSR latencies of lower extremities were found significantly longer than control group (p nervous system involvement in cases with hyperthyroidism.

  17. Insulin resistance is associated with impaired cardiac sympathetic innervation in patients with heart failure.

    Science.gov (United States)

    Paolillo, S; Rengo, G; Pellegrino, T; Formisano, R; Pagano, G; Gargiulo, P; Savarese, G; Carotenuto, R; Petraglia, L; Rapacciuolo, A; Perrino, C; Piscitelli, S; Attena, E; Del Guercio, L; Leosco, D; Trimarco, B; Cuocolo, A; Perrone-Filardi, P

    2015-10-01

    Insulin resistance (IR) represents, at the same time, cause and consequence of heart failure (HF) and affects prognosis in HF patients, but pathophysiological mechanisms remain unclear. Hyperinsulinemia, which characterizes IR, enhances sympathetic drive, and it can be hypothesized that IR is associated with impaired cardiac sympathetic innervation in HF. Yet, this hypothesis has never been investigated. Aim of the present observational study was to assess the relationship between IR and cardiac sympathetic innervation in non-diabetic HF patients. One hundred and fifteen patients (87% males; 65 ± 11.3 years) with severe-to-moderate HF (ejection fraction 32.5 ± 9.1%) underwent iodine-123 meta-iodobenzylguanidine ((123)I-MIBG) myocardial scintigraphy to assess sympathetic innervation and Homeostasis Model Assessment Insulin Resistance (HOMA-IR) evaluation to determine the presence of IR. From (123)I-MIBG imaging, early and late heart to mediastinum (H/M) ratios and washout rate were calculated. Seventy-two (63%) patients showed IR and 43 (37%) were non-IR. Early [1.68 (IQR 1.53-1.85) vs. 1.79 (IQR 1.66-1.95); P = 0.05] and late H/M ratio [1.50 (IQR 1.35-1.69) vs. 1.65 (IQR 1.40-1.85); P = 0.020] were significantly reduced in IR compared with non-IR patients. Early and late H/M ratio showed significant inverse correlation with fasting insulinemia and HOMA-IR. Cardiac sympathetic innervation is more impaired in patients with IR and HF compared with matched non-IR patients. These findings shed light on the relationship among IR, HF, and cardiac sympathetic nervous system. Additional studies are needed to clarify the pathogenetic relationship between IR and HF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  18. Early life stress sensitizes the renal and systemic sympathetic system in rats.

    Science.gov (United States)

    Loria, Analia S; Brands, Michael W; Pollock, David M; Pollock, Jennifer S

    2013-08-01

    We hypothesized that maternal separation (MS), an early life stress model, induces a sensitization of the sympathetic system. To test this hypothesis, we evaluated the renal and systemic sympathetic system in 12- to 14-wk-old male control or MS rats with the following parameters: 1) effect of renal denervation on conscious renal filtration capacity, 2) norepinephrine (NE) content in key organs involved in blood pressure control, and 3) acute systemic pressor responses to adrenergic stimulation or ganglion blockade. MS was performed by separating pups from their mothers for 3 h/day from day 2 to 14; controls were nonhandled littermates. Glomerular filtration rate (GFR) was examined in renal denervated (DnX; within 2 wk) or sham rats using I¹²⁵-iothalamate plasma clearance. MS-DnX rats showed significantly increased GFR compared with MS-SHAM rats (3.8 ± 0.4 vs. 2.4 ± 0.2 ml/min, respectively, P renal nerves regulate GFR in MS rats. NE content was significantly increased in organ tissues from MS rats (P renal and systemic sympathetic system. Conscious MS rats displayed a significantly greater increase in mean arterial pressure (MAP) in response to NE (2 μg/kg ip) and a greater reduction in MAP in response to mecamylamine (2 mg/kg ip, P renal and systemic sympathetic system ultimately impairing blood pressure regulation.

  19. Renal sympathetic nervous system and the effects of denervation on renal arteries.

    Science.gov (United States)

    Kannan, Arun; Medina, Raul Ivan; Nagajothi, Nagapradeep; Balamuthusamy, Saravanan

    2014-08-26

    Resistant hypertension is associated with chronic activation of the sympathetic nervous system resulting in various comorbidities. The prevalence of resistant hypertension is often under estimated due to various reasons. Activation of sympathetic nervous system at the renal- as well as systemic- level contributes to the increased level of catecholamines and resulting increase in the blood pressure. This increased activity was demonstrated by increased muscle sympathetic nerve activity and renal and total body noradrenaline spillover. Apart from the hypertension, it is hypothesized to be associated with insulin resistance, congestive heart failure and obstructive sleep apnea. Renal denervation is a novel procedure where the sympathetic afferent and efferent activity is reduced by various techniques and has been used successfully to treat drug-resistant hypertension improvement of various metabolic derangements. Renal denervation has the unique advantage of offering the denervation at the renal level, thus mitigating the systemic side effects. Renal denervation can be done by various techniques including radiofrequency ablation, ultrasound guided ablation and chemical ablation. Various trials evaluated the role of renal denervation in the management of resistant hypertension and have found promising results. More studies are underway to evaluate the role of renal denervation in patients presenting with resistant hypertension in different scenarios. Appropriate patient selection might be the key in determining the effectiveness of the procedure.

  20. Increased Sympathetic Renal Innervation in Hemodialysis Patients Is the Anatomical Substrate of Sympathetic Hyperactivity in End-Stage Renal Disease.

    Science.gov (United States)

    Mauriello, Alessandro; Rovella, Valentina; Anemona, Lucia; Servadei, Francesca; Giannini, Elena; Bove, Pierluigi; Anselmo, Alessandro; Melino, Gerry; Di Daniele, Nicola

    2015-11-26

    Renal denervation represents an emerging treatment for resistant hypertension in patients with end-stage renal disease, but data about the anatomic substrate of this treatment are lacking. Therefore, the aim of this study was to investigate the morphological basis of sympathetic hyperactivity in the setting of hemodialysis patients to identify an anatomical substrate that could warrant the use of this new therapeutic approach. The distribution of sympathetic nerves was evaluated in the adventitia of 38 renal arteries that were collected at autopsy or during surgery from 25 patients: 9 with end-stage renal disease on dialysis (DIAL group) and 16 age-matched control nondialysis patients (CTRL group). Patients in the DIAL group showed a significant increase in nerve density in the internal area of the peri-adventitial tissue (within the first 0.5 mm of the beginning of the adventitia) compared with the CTRL group (4.01±0.30 versus 2.87±0.28×mm(2), P=0.01). Regardless of dialysis, hypertensive patients with signs of severe arteriolar damage had a greater number of nerve endings in the most internal adventitia, and this number was significantly higher than in patients without hypertensive arteriolar damage (3.90±0.36 versus 2.87±0.41×mm(2), P=0.04), showing a correlation with hypertensive arteriolar damage rather than with hypertensive clinical history. The findings from this study provide a morphological basis underlying sympathetic hyperactivity in patients with end-stage renal disease and might offer useful information to improve the use of renal denervation in this group of patients. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  1. Comparison of sympathetic nerve responses to neck and forearm isometric exercise

    Science.gov (United States)

    Steele, S. L. Jr; Ray, C. A.

    2000-01-01

    PURPOSE: Although the autonomic and cardiovascular responses to arm and leg exercise have been studied, the sympathetic adjustments to exercise of the neck have not. The purpose of the present study was twofold: 1) to determine sympathetic and cardiovascular responses to isometric contractions of the neck extensors and 2) to compare sympathetic and cardiovascular responses to isometric exercise of the neck and forearm. METHODS: Muscle sympathetic nerve activity (MSNA), mean arterial pressure (MAP), and heart rate were measured in nine healthy subjects while performing isometric neck extension (INE) and isometric handgrip (IHG) in the prone position. After a 3-min baseline period, subjects performed three intensities of INE for 2.5 min each: 1) unloaded (supporting head alone), 2) 10% maximal voluntary contraction (MVC), and 3) 30% MVC, then subjects performed two intensities (10% and 30% MVC) of IHG for 2.5 min. RESULTS: Supporting the head by itself did not significantly change any of the variables. During [NE, MAP significantly increased by 10 +/- 2 and 31 +/- 4 mm Hg and MSNA increased by 67 +/- 46 and 168 +/- 36 units/30 s for 10% and 30% MVC, respectively. IHG and INE evoked similar responses at 10% MVC, but IHG elicited higher peak MAP and MSNA at 30% MVC (37 +/- 7 mm Hg (P INE can elicit marked increases in MSNA and cardiovascular responses but that it evokes lower peak responses as compared to IHG. We speculate that possible differences in muscle fiber type composition, muscle mass, and/or muscle architecture of the neck and forearm are responsible for these differences in peak responses.

  2. Effects of catheter-based renal denervation on cardiac sympathetic activity and innervation in patients with resistant hypertension.

    Science.gov (United States)

    Donazzan, Luca; Mahfoud, Felix; Ewen, Sebastian; Ukena, Christian; Cremers, Bodo; Kirsch, Carl-Martin; Hellwig, Dirk; Eweiwi, Tareq; Ezziddin, Samer; Esler, Murray; Böhm, Michael

    2016-04-01

    To investigate, whether renal denervation (RDN) has a direct effect on cardiac sympathetic activity and innervation density. RDN demonstrated its efficacy not only in reducing blood pressure (BP) in certain patients, but also in decreasing cardiac hypertrophy and arrhythmias. These pleiotropic effects occur partly independent from the observed BP reduction. Eleven patients with resistant hypertension (mean office systolic BP 180 ± 18 mmHg, mean antihypertensive medications 6.0 ± 1.5) underwent I-123-mIBG scintigraphy to exclude pheochromocytoma. We measured cardiac sympathetic innervation and activity before and 9 months after RDN. Cardiac sympathetic innervation was assessed by heart to mediastinum ratio (H/M) and sympathetic activity by wash out ratio (WOR). Effects on office BP, 24 h ambulatory BP monitoring, were documented. Office systolic BP and mean ambulatory systolic BP were significantly reduced from 180 to 141 mmHg (p = 0.006) and from 149 to 129 mmHg (p = 0.014), respectively. Cardiac innervation remained unchanged before and after RDN (H/M 2.5 ± 0.5 versus 2.6 ± 0.4, p = 0.285). Cardiac sympathetic activity was significantly reduced by 67 % (WOR decreased from 24.1 ± 12.7 to 7.9 ± 25.3 %, p = 0.047). Both, responders and non-responders experienced a reduction of cardiac sympathetic activity. RDN significantly reduced cardiac sympathetic activity thereby demonstrating a direct effect on the heart. These changes occurred independently from BP effects and provide a pathophysiological basis for studies, investigating the potential effect of RDN on arrhythmias and heart failure.

  3. Changes in the Skin Conductance Monitor as an End Point for Sympathetic Nerve Blocks.

    Science.gov (United States)

    Gungor, Semih; Rana, Bhumika; Fields, Kara; Bae, James J; Mount, Lauren; Buschiazzo, Valeria; Storm, Hanne

    2017-11-01

    There is a lack of objective methods for determining the achievement of sympathetic block. This study validates the skin conductance monitor (SCM) as an end point indicator of successful sympathetic blockade as compared with traditional monitors. This interventional study included 13 patients undergoing 25 lumbar sympathetic blocks to compare time to indication of successful blockade between the SCM indices and traditional measures, clinically visible hyperemia, clinically visible engorgement of veins, subjective skin temperature difference, unilateral thermometry monitoring, bilateral comparative thermometry monitoring, and change in waveform amplitude in pulse oximetry plethysmography, within a 30-minute observation period. Differences in the SCM indices were studied pre- and postblock to validate the SCM. SCM showed substantially greater odds of indicating achievement of sympathetic block in the next moment (i.e., hazard rate) compared with all traditional measures (clinically visible hyperemia, clinically visible engorgement of veins, subjective temperature difference, unilateral thermometry monitoring, bilateral comparative thermometry monitoring, and change in waveform amplitude in pulse oximetry plethysmography; P ≤ 0.011). SCM indicated successful block for all (100%) procedures, while the traditional measures failed to indicate successful blocks in 16-84% of procedures. The SCM indices were significantly higher in preblock compared with postblock measurements (P SCM is a more reliable and rapid response indicator of a successful sympathetic blockade when compared with traditional monitors. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  4. Neural correlates of fear-induced sympathetic response associated with the peripheral temperature change rate.

    Science.gov (United States)

    Yoshihara, Kazufumi; Tanabe, Hiroki C; Kawamichi, Hiroaki; Koike, Takahiko; Yamazaki, Mika; Sudo, Nobuyuki; Sadato, Norihiro

    2016-07-01

    Activation of the sympathetic nervous system is essential for coping with environmental stressors such as fearful stimuli. Recent human imaging studies demonstrated that activity in some cortical regions, such as the anterior cingulate cortex (ACC) and anterior insula cortex (aIC), is related to sympathetic activity. However, little is known about the functional brain connectivity related to sympathetic response to fearful stimuli. The participants were 32 healthy, right-handed volunteers. Functional magnetic resonance imaging (fMRI) was used to examine brain activity when watching horror and control movies. Fingertip temperature was taken during the scanning as a measure of sympathetic response. The movies were watched a second time, and the degree of fear (9-point Likert-type scale) was evaluated every three seconds. The brain activity of the ACC, bilateral aIC, and bilateral anterior prefrontal cortex (aPFC) was correlated with the change rate of fingertip temperature, with or without fearful stimuli. Functional connectivity analysis revealed significantly greater positive functional connectivity between the amygdala and the ACC and between the amygdala and the aIC when watching the horror movie than when watching the control movie. Whole-brain psycho-physiological interaction (PPI) analysis revealed that the functional connectivity between the left amygdala and the ACC was modulated according to the fear rating. Our results indicate that the increased functional connectivity between the left amygdala and the ACC represents a sympathetic response to fearful stimuli. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Muscle sympathetic nerve activity is related to a surrogate marker of endothelial function in healthy individuals.

    Directory of Open Access Journals (Sweden)

    Yrsa Bergmann Sverrisdóttir

    Full Text Available BACKGROUND: Evidence from animal studies indicates the importance of an interaction between the sympathetic nervous system and the endothelium for cardiovascular regulation. However the interaction between these two systems remains largely unexplored in humans. The aim of this study was to investigate whether directly recorded sympathetic vasoconstrictor outflow is related to a surrogate marker of endothelial function in healthy individuals. METHODS AND RESULTS: In 10 healthy normotensive subjects (3 f/7 m, (age 37+/-11 yrs, (BMI 24+/-3 kg/m(2 direct recordings of sympathetic action potentials to the muscle vascular bed (MSNA were performed and endothelial function estimated with the Reactive Hyperaemia- Peripheral Arterial Tonometry (RH-PAT technique. Blood samples were taken and time spent on leisure-time physical activities was estimated. In all subjects the rate between resting flow and the maximum flow, the Reactive Hyperemic index (RH-PAT index, was within the normal range (1.9-3.3 and MSNA was as expected for age and gender (13-44 burst/minute. RH-PAT index was inversely related to MSNA (r = -0.8, p = 0.005. RH-PAT index and MSNA were reciprocally related to time (h/week spent on physical activity (p = 0.005 and p = 0.006 respectively and platelet concentration (PLT (p = 0.02 and p = 0.004 respectively. CONCLUSIONS: Our results show that sympathetic nerve activity is related to a surrogate marker of endothelial function in healthy normotensive individuals, indicating that sympathetic outflow may be modulated by changes in endothelial function. In this study time spent on physical activity is identified as a predictor of sympathetic nerve activity and endothelial function in a group of healthy individuals. The results are of importance in understanding mechanisms underlying sympathetic activation in conditions associated with endothelial dysfunction and emphasise the importance of a daily exercise routine for maintenance of cardiovascular

  6. Electroacupuncture Improved the Function of Myocardial Ischemia Involved in the Hippocampus-Paraventricular Nucleus-Sympathetic Nerve Pathway

    Directory of Open Access Journals (Sweden)

    Shuai Cui

    2018-01-01

    Full Text Available We investigated the hippocampus-paraventricular nucleus- (PVN- sympathetic nerve pathway in electroacupuncture (EA at the heart meridian for the treatment of myocardial ischemia by observing PVN neuronal discharge, sympathetic nerve discharge, and hemodynamics parameters. Sprague Dawley (SD rats were equally divided into four groups: Sham, Model, Model + EA, and Model + EA + Lesion. The model rat was established by ligating the left anterior descending branch of the coronary artery. Changes in the sympathetic nerve discharge and hemodynamic parameters were observed. The Model + EA exhibited a significantly lower discharge frequency of PVN neurons compared with the Model. The Model + EA + Lesion had a significantly higher discharge frequency compared with the Model + EA. The total discharge frequency of PVN neurons and interneurons were positively correlated with the sympathetic nerve discharge. The total discharge frequency of PVN neurons was positively correlated with heart rate (HR and negatively correlated with mean arterial pressure (MAP and rate pressure product (RPP. The discharge frequency of interneurons was positively correlated with HR and negatively correlated with MAP and RPP. The hippocampus-PVN-sympathetic nerve pathway is involved in electroacupuncture at the heart meridian and interneurons are the key neurons in PVNs.

  7. [Relationship between sympathetic activity and response to treatment with atenolol in hypertensive patients. Investigation group of the study of efficiency and tolerance of atenolol in hypertensive patients with increase in the sympathetic activity].

    Science.gov (United States)

    de la Sierra, A

    1999-06-19

    Therapeutical response to antihypertensive treatment is poorly predicted by individual clinical or biochemical characteristics. Some preliminary data indicate that therapeutical response to atenolol might depend on physical and/or sympathetic activity. The aim of the present study was to evaluate the blood pressure response to atenolol depending on physical and sympathetic activity. One thousand one hundred forty hypertensive patients were treated with the beta adrenorecepetor blocker atenolol in an open fashion during 3 months. Before the beginning of the treatment, we evaluated current weekly physical activity (direct interview), as well as sympathetic activity (direct interview and baseline heart rate). Age or physical activity did not correlate with blood pressure response to atenolol. Conversely, hypertensive patients with symptoms suggesting sympathetic overactivity (three or more of the following symptoms: palpitations, anxiety, diaphoresis, headache, tremor or weakness; n = 456), showed a more pronounced decrease in systolic (27.7 [13.4] vs 25.8 [14.3] mmHg; p = 0.0226) and diastolic (17.6 [8.3] vs 15.5 [8.6] mmHg; p = 0.0001) blood pressures (SBP and DBP), with respect to the remaining hypertensive patients (n = 719). Moreover, we found a statistically significant correlation between blood pressure fall with atenolol and baseline heart rate (r = 0.107, P anxiety, emotional tension or sympathetic overactivity are associated with a more pronounced blood pressure fall to antihypertensive treatment with atenolol. These circumstances may play a role when choosing a new antihypertensive therapy.

  8. Adolescent sympathetic activity and salivary C-reactive protein: The effects of parental behavior.

    Science.gov (United States)

    Nelson, Benjamin W; Byrne, Michelle L; Simmons, Julian G; Whittle, Sarah; Schwartz, Orli S; Reynolds, Eric C; O'Brien-Simpson, Neil M; Sheeber, Lisa; Allen, Nicholas B

    2017-10-01

    This study utilized a novel multisystem approach to investigate the effect of observed parental behavior on the relationship between biological mechanisms associated with disease processes (i.e., autonomic physiology and immune response) among their adolescent children. Thirty-three adolescents (23 males), aged 11-13, and their parents participated in a laboratory session in which adolescents provided baseline measures of autonomic (sympathetic) activity, and adolescents and 1 parent participated in a laboratory based dyadic conflict resolution interaction task. This included 3 male parent/male adolescent dyads, 20 female parent/male adolescent dyads, 3 male parent/female adolescent dyads, and 7 female parent/female adolescent dyads. Approximately 3 years later, adolescents provided a salivary measure of C-Reactive Protein (sCRP) to index inflammation. Analyses revealed a positive association between sympathetic activity and sCRP, as well as a moderating role of positive parental behavior in this relationship, such that the association between sympathetic activity and sCRP was greater among adolescents whose parents displayed shorter duration of positive affect. Overall findings indicate parental behavior may influence the association between adolescent sympathetic activity and inflammatory processes. These findings have important implications for understanding the impact of psychosocial factors on biological mechanisms of disease. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Sympathetic stimulation alters left ventricular relaxation and chamber size.

    Science.gov (United States)

    Burwash, I G; Morgan, D E; Koilpillai, C J; Blackmore, G L; Johnstone, D E; Armour, J A

    1993-01-01

    Alterations in left ventricular (LV) contractility, relaxation, and chamber dimensions induced by efferent sympathetic nerve stimulation were investigated in nine anesthetized open-chest dogs in sinus rhythm. Supramaximal stimulation of acutely decentralized left stellate ganglia augmented heart rate, LV systolic pressure, and rate of LV pressure rise (maximum +dP/dt, 1,809 +/- 191 to 6,304 +/- 725 mmHg/s) and fall (maximum -dP/dt, -2,392 +/- 230 to -4,458 +/- 482 mmHg/s). It also reduced the time constant of isovolumic relaxation, tau (36.5 +/- 4.8 to 14.9 +/- 1.1 ms). Simultaneous two-dimensional echocardiography recorded reductions in end-diastolic and end-systolic LV cross-sectional chamber areas (23 and 31%, respectively), an increase in area ejection fraction (32%), and increases in end-diastolic and end-systolic wall thicknesses (14 and 13%, respectively). End-systolic and end-diastolic wall stresses were unchanged by stellate ganglion stimulation (98 +/- 12 to 95 +/- 9 dyn x 10(3)/cm2; 6.4 +/- 2.4 to 2.4 +/- 0.3 dyn x 10(3)/cm2, respectively). Atrial pacing to similar heart rates did not alter monitored indexes of contractility. Dobutamine and isoproterenol induced changes similar to those resulting from sympathetic neuronal stimulation. These data indicate that when the efferent sympathetic nervous system increases left ventricular contractility and relaxation, concomitant reductions in systolic and diastolic dimensions of that chamber occur that are associated with increasing wall thickness such that LV wall stress changes are minimized.

  10. Anorexia nervosa depends on adrenal sympathetic hyperactivity: opposite neuroautonomic profile of hyperinsulinism syndrome

    Directory of Open Access Journals (Sweden)

    Lechin F

    2010-09-01

    Full Text Available Fuad Lechin1,2, Bertha van der Dijs1,2, Betty Pardey-Maldonado1, Jairo E Rivera1, Scarlet Baez1, Marcel E Lechin31Department of Pathophysiology, Sections of Neuroendocrinology, Neuropharmacology, and Neurochemistry, Instituto de Medicina Experimental, Faculty of Medicine, Universidad Central de Venezuela, Caracas; 2Instituto de Vias Digestivas Caracas, Centro Clínico Profesional, Caracas, Venezuela; 3Department of Internal Medicine, Texas A and M Health Science Center, College of Medicine, Texas, USAObjective: The aim of our study was to determine the central and peripheral autonomic nervous system profiles underlying anorexia nervosa (AN syndrome, given that affected patients present with the opposite clinical profile to that seen in the hyperinsulinism syndrome.Design: We measured blood pressure and heart rate, as well as circulating neurotransmitters (noradrenaline, adrenaline, dopamine, plasma serotonin, and platelet serotonin, using high-performance liquid chromatography with electrochemical detection, during supine resting, one minute of orthostasis, and after five minutes of exercise. In total, 22 AN patients (12 binge-eating/purging type and 10 restricting type and age-, gender-, and race-matched controls (70 ± 10.1% versus 98 ± 3.0% of ideal body weight were recruited.Results: We found that patients with AN had adrenal sympathetic overactivity and neural sympathetic underactivity, demonstrated by a predominance of circulating adrenaline over noradrenaline levels, not only during the supine resting state (52 ± 2 versus 29 ± 1 pg/mL but also during orthostasis (67 ± 3 versus 32 ± 2 pg/mL, P < 0.05 and after exercise challenge (84 ± 4 versus 30 ± 3 pg/mL, P < 0.01.Conclusion: Considering that this peripheral autonomic nervous system disorder depends on the absolute predominance of adrenomedullary C1 adrenergic nuclei over A5 noradrenergic pontine nucleus, let us ratify the abovementioned findings. The AN syndrome depends on the

  11. Increased sympathetic tone in forearm subcutaneous tissue in primary hypothyroidism

    DEFF Research Database (Denmark)

    Vagn Nielsen, H; Hasselström, K; Feldt-Rasmussen, U

    1987-01-01

    vasoconstriction normally seen after lowering the forearm 40 cm below heart level was absent since SBF only decreased by 4% (+/- 7%, P greater than 0.1) during these conditions. In head-up vertical position we noticed a diminished baroreceptor response as SBF at heart level was reduced by 11% (+/- 7%, P greater...... than 0.1) compared to supine position. After proximal local anaesthesia SBF increased by 351% (+/- 81%, P less than 0.01) and disclosed a normal vasoconstrictor response as SBF was reduced by 53% (+/- 5%, P less than 0.01) during arm lowering. Five of the treated patients were restudied.......02)). In conclusion sympathetic vasoconstrictor activity in adipose tissue is markedly increased in primary hypothyroidism. Sympathetic tone and arterial pressure are reduced during treatment....

  12. Does transcutaneous nerve stimulation have effect on sympathetic skin response?

    Science.gov (United States)

    Okuyucu, E Esra; Turhanoğlu, Ayşe Dicle; Guntel, Murat; Yılmazer, Serkan; Savaş, Nazan; Mansuroğlu, Ayhan

    2018-01-01

    This study examined the effects of transcutaneous electrical nerve stimulation (TENS) on the sympathetic nerve system by sympathetic skin response test. Fifty-five healthy volunteers received either: (i) 30minutes TENS (25 participants) (ii) 30minutes sham TENS (30 participants) and SSR test was performed pre- and post-TENS. The mean values of latency and peak-to-peak amplitude of five consecutive SSRs were calculated. A significant amplitude difference was found between TENS and sham TENS group both in right and left hand (p=0.04, p=0.01, respectively). However there was no significant latancy difference between two groups (p>0.05 ). TENS has an inhibitory effect on elicited SNS responses when compared with sham TENS control group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Clinical evaluation of 123I-MIBG for assessment of sympathetic nervous system in the heart

    International Nuclear Information System (INIS)

    Hirosawa, Koushitiro; Tanaka, Takeshi; Hisada, Kin-ichi; Bunko, Hisashi.

    1991-01-01

    Multi-center clinical trial of 123 I-metaiodobenzylguanidine ( 123 I-MIBG) was carried out to assess its utility as a scintigraphic imaging agent reflecting sympathetic neuronal function in cardiovascular field. Studies were performed on patients with heart diseases of three categories, myocardial infarction, angina pectoris and cardiomyopathy. Scintigraphic images, reflecting sympathetic neuronal function, were obtained with 123 I-MIBG from all of those categories of patients and the efficacy of the imaging was revealed in 781 (95.0%) out of 822 patients. In some patients abnormality was suggested in sympathetic neuronal function with 123 I-MIBG imaging, in spite of normal findings with myocardial perfusion scintigraphy by 201 TlCl. In all 981 patients studied with 123 I-MIBG, there have been no severe adverse reactions, except complaints of burning on injection site of the agent or nausea, ect. from 4 patients. We conclude that 123 I-MIBG imaging is one of the effective tools for diagnostic use reflecting topical sympathetic neuronal function in the heart, judging from its safety and efficacy. (author)

  14. Sympathetic neural responses to smoking are age dependent

    Czech Academy of Sciences Publication Activity Database

    Hering, D.; Somers, V. K.; Kára, T.; Kucharska, W.; Jurák, Pavel; Bieniaszewski, L.; Narkiewicz, K.

    2006-01-01

    Roč. 24, č. 4 (2006), s. 691-695 ISSN 0263-6352 R&D Projects: GA ČR(CZ) GA102/05/0402 Institutional research plan: CEZ:AV0Z20650511 Keywords : sympathetic neural response * blood pressure * heart rate * smoking Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 4.021, year: 2006

  15. Foxo1 regulates Dbh expression and the activity of the sympathetic nervous system in vivo

    Directory of Open Access Journals (Sweden)

    Daisuke Kajimura

    2014-10-01

    Full Text Available The transcription factor FoxO1 regulates multiple physiological processes. Here, we show that FoxO1 is highly expressed in neurons of the locus coeruleus and of various sympathetic ganglions, but not in the adrenal medulla. Consistent with this pattern of expression, mice lacking FoxO1 only in sympathetic neurons (FoxO1Dbh−/− display a low sympathetic tone without modification of the catecholamine content in the adrenal medulla. As a result, FoxO1Dbh−/− mice demonstrate an increased insulin secretion, improved glucose tolerance, low energy expenditure, and high bone mass. FoxO1 favors catecholamine synthesis because it is a potent regulator of the expression of Dbh that encodes the initial and rate-limiting enzyme in the synthesis of these neurotransmitters. By identifying FoxO1 as a transcriptional regulator of the sympathetic tone, these results advance our understanding of the control of some aspects of metabolism and of bone mass accrual.

  16. Sympathetic cooling of ions in a hybrid atom ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Hoeltkemeier, Bastian

    2016-10-27

    In this thesis the dynamics of a trapped ion immersed in a spatially localized buffer gas is investigated. For a homogeneous buffer gas, the ion's energy distribution reaches a stable equilibrium only if the mass of the buffer gas atoms is below a critical value. This limitation can be overcome by using multipole traps in combination and/or a spatially confined buffer gas. Using a generalized model for elastic collisions of the ion with the buffer gas atoms, the ion's energy distribution is numerically determined for arbitrary buffer gas distributions and trap parameters. Three regimes characterized by the respective analytic form of the ion's equilibrium energy distribution are found. One of these is a novel regime at large atom-to-ion mass ratios where the final ion temperature can tuned by adiabatically decreasing the spatial extension of the buffer gas and the effective ion trap depth (forced sympathetic cooling). The second part of the thesis presents a hybrid atom ion trap designed for sympathetic cooling of hydroxide anions. In this hybrid trap the anions are immersed in a cloud of laser cooled rubidium atoms. The translational and rovibrational temperatures of the anions is probed by photodetachment tomography and spectroscopy which shows the first ever indication of sympathetic cooling of anions by laser cooled atoms.

  17. The Effects of Sympathetic Inhibition on Metabolic and Cardiopulmonary Responses to Exercise in Hypoxic Conditions.

    Science.gov (United States)

    Scalzo, Rebecca L; Peltonen, Garrett L; Binns, Scott E; Klochak, Anna L; Szallar, Steve E; Wood, Lacey M; Larson, Dennis G; Luckasen, Gary J; Irwin, David; Schroeder, Thies; Hamilton, Karyn L; Bell, Christopher

    2015-12-01

    Pre-exertion skeletal muscle glycogen content is an important physiological determinant of endurance exercise performance: low glycogen stores contribute to premature fatigue. In low-oxygen environments (hypoxia), the important contribution of carbohydrates to endurance performance is further enhanced as glucose and glycogen dependence is increased; however, the insulin sensitivity of healthy adult humans is decreased. In light of this insulin resistance, maintaining skeletal muscle glycogen in hypoxia becomes difficult, and subsequent endurance performance is impaired. Sympathetic inhibition promotes insulin sensitivity in hypoxia but may impair hypoxic exercise performance, in part due to suppression of cardiac output. Accordingly, we tested the hypothesis that hypoxic exercise performance after intravenous glucose feeding in a low-oxygen environment will be attenuated when feeding occurs during sympathetic inhibition. On 2 separate occasions, while breathing a hypoxic gas mixture, 10 healthy men received 1 hour of parenteral carbohydrate infusion (20% glucose solution in saline; 75 g), after which they performed stationary cycle ergometer exercise (~65% maximal oxygen uptake) until exhaustion. Forty-eight hours before 1 visit, chosen randomly, sympathetic inhibition via transdermal clonidine (0.2 mg/d) was initiated. The mean time to exhaustion after glucose feeding both with and without sympathetic inhibition was not different (22.7 ± 5.4 minutes vs 23.5 ± 5.1 minutes; P = .73). Sympathetic inhibition protects against hypoxia-mediated insulin resistance without influencing subsequent hypoxic endurance performance. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  18. Experiencing Physical Pain Leads to More Sympathetic Moral Judgments

    Science.gov (United States)

    Xiao, Qianguo; Zhu, Yi; Luo, Wen-bo

    2015-01-01

    Previous studies have shown that observing another’s pain can evoke other-oriented emotions, which instigate empathic concern for another’s needs. It is not clear whether experiencing first-hand physical pain may also evoke other-oriented emotion and thus influence people’s moral judgment. Based on the embodied simulation literature and neuroimaging evidence, the present research tested the idea that participants who experienced physical pain would be more sympathetic in their moral judgments. Study 1 showed that ice-induced physical pain facilitated higher self-assessments of empathy, which motivated participants to be more sympathetic in their moral judgments. Study 2 confirmed findings in study 1 and also showed that State Perspective Taking subscale of the State Empathy Scale mediated the effects of physical pain on moral judgment. These results provide support for embodied view of morality and for the view that pain can serve a positive psychosocial function. PMID:26465603

  19. Role of the Sympathetic Nervous System and Its Modulation in Renal Hypertension.

    Science.gov (United States)

    Sata, Yusuke; Head, Geoffrey A; Denton, Kate; May, Clive N; Schlaich, Markus P

    2018-01-01

    The kidneys are densely innervated with renal efferent and afferent nerves to communicate with the central nervous system. Innervation of major structural components of the kidneys, such as blood vessels, tubules, the pelvis, and glomeruli, forms a bidirectional neural network to relay sensory and sympathetic signals to and from the brain. Renal efferent nerves regulate renal blood flow, glomerular filtration rate, tubular reabsorption of sodium and water, as well as release of renin and prostaglandins, all of which contribute to cardiovascular and renal regulation. Renal afferent nerves complete the feedback loop via central autonomic nuclei where the signals are integrated and modulate central sympathetic outflow; thus both types of nerves form integral parts of the self-regulated renorenal reflex loop. Renal sympathetic nerve activity (RSNA) is commonly increased in pathophysiological conditions such as hypertension and chronic- and end-stage renal disease. Increased RSNA raises blood pressure and can contribute to the deterioration of renal function. Attempts have been made to eliminate or interfere with this important link between the brain and the kidneys as a neuromodulatory treatment for these conditions. Catheter-based renal sympathetic denervation has been successfully applied in patients with resistant hypertension and was associated with significant falls in blood pressure and renal protection in most studies performed. The focus of this review is the neural contribution to the control of renal and cardiovascular hemodynamics and renal function in the setting of hypertension and chronic kidney disease, as well as the specific roles of renal efferent and afferent nerves in this scenario and their utility as a therapeutic target.

  20. Cardiorespiratory Coupling: Common Rhythms in Cardiac, Sympathetic, and Respiratory Activities

    Science.gov (United States)

    Dick, Thomas E.; Hsieh, Yee-Hsee; Dhingra, Rishi R.; Baekey, David M.; Galán, Roberto F.; Wehrwein, Erica; Morris, Kendall F.

    2014-01-01

    Cardiorespiratory coupling is an encompassing term describing more than the well-recognized influences of respiration on heart rate and blood pressure. Our data indicate that cardiorespiratory coupling reflects a reciprocal interaction between autonomic and respiratory control systems, and the cardiovascular system modulates the ventilatory pattern as well. For example, cardioventilatory coupling refers to the influence of heart beats and arterial pulse pressure on respiration and is the tendency for the next inspiration to start at a preferred latency after the last heart beat in expiration. Multiple complementary, well-described mechanisms mediate respiration’s influence on cardiovascular function, whereas mechanisms mediating the cardiovascular system’s influence on respiration may only be through the baroreceptors but are just being identified. Our review will describe a differential effect of conditioning rats with either chronic intermittent or sustained hypoxia on sympathetic nerve activity but also on ventilatory pattern variability. Both intermittent and sustained hypoxia increase sympathetic nerve activity after 2 weeks but affect sympatho-respiratory coupling differentially. Intermittent hypoxia enhances sympatho-respiratory coupling, which is associated with low variability in the ventilatory pattern. In contrast, after constant hypobaric hypoxia, 1-to-1 coupling between bursts of sympathetic and phrenic nerve activity is replaced by 2-to-3 coupling. This change in coupling pattern is associated with increased variability of the ventilatory pattern. After baro-denervating hypobaric hypoxic-conditioned rats, splanchnic sympathetic nerve activity becomes tonic (distinct bursts are absent) with decreases during phrenic nerve bursts and ventilatory pattern becomes regular. Thus, conditioning rats to either intermittent or sustained hypoxia accentuates the reciprocal nature of cardiorespiratory coupling. Finally, identifying a compelling physiologic

  1. Gudmundur Finnbogason, "sympathetic understanding," and early Icelandic psychology.

    Science.gov (United States)

    Pind, Jörgen L

    2008-05-01

    Gudmundur Finnbogason (1873-1944) was a pioneer of Icelandic psychology. He was educated at the University of Copenhagen where he finished his M.A. in 1901 in philosophy, specializing in psychology. During the years 1901-1905, Finnbogason played a major role in establishing and shaping the future of primary education in Iceland. He defended his doctoral thesis on "sympathetic understanding" at the University of Copenhagen in 1911. This work deals with the psychology of imitation. In it Finnbogason defends the view that imitation is basically perception so that there is a direct link from perception to motor behavior. Through imitation people tend to assume the countenance and demeanor of other people, thus showing, in Finnbogason's terminology, "sympathetic understanding." Finnbogason's theory of imitation in many respects anticipates contemporary approaches to the psychology of imitation. In 1918 Finnbogason became professor of applied psychology at the recently founded University of Iceland. Here he attempted to establish psychology as an independent discipline. In this he was unsuccessful; his chair was abolished in 1924.

  2. Chemical lumbar sympathetic plexus block in Buerger′s disease: Current scenario

    Directory of Open Access Journals (Sweden)

    Rampal Singh

    2014-01-01

    Full Text Available Introduction: High incidences of Buerger′s disease (43-62% in India draw our attention towards available treatment modalities in such patients. Patients with this disease are in severe pain and agony. Pain relief by any means remains first and foremost priority in such patients and if patient is able to sleep even one pain free night it is a boon for the patients. The purpose of study was to test the hypothesis that lumber sympathetic block relieves the pain of ischemic limb in Buerger′s disease. Aims and Objectives: To study the effect of chemical lumber sympathetic block on visual analog score (VAS score and walking distance of the patients. Materials and Methods: Lumber sympathetic block was given under C-arm guidance with 17.5 cm long 22 G spinal needle at L3 and L4 level. Diagnostic block was given initially with plain bupivacaine 0.25% with two needle technique. Total seven blocks series were given in all patients. Final block was given with phenol 8%, 8 ml at L3 and L4 level. In postoperative period, VAS score was observed. Effect of block on walking distance was assessed on 3 rd day before giving next block. Statistical analysis: Software Statistical Package for Social Sciences (SPSS version 11.5 was used for statistical analysis. Data were analyzed by paired t-test and P-value < 0.05 was considered as significant. Results: Both VAS and walking distance improved significantly after each successive block. Healing of ulcers of foot is also noted. Conclusion: Despite advances in treatment modalities in such patients, lumber sympathetic block is still very cost-effective, safe, and least-invasive technique in treating painful ischemic legs.

  3. Sensory and sympathetic correlates of heat pain sensitization and habituation in men and women.

    Science.gov (United States)

    Breimhorst, M; Hondrich, M; Rebhorn, C; May, A; Birklein, F

    2012-10-01

    Habituation and sensitization are important behavioural responses to repeated exposure to painful stimuli, but little is known about the factors determining sensory, affective and sympathetic habituation to repeated pain stimulation in men and women. Thirty volunteers (15 women) underwent a standardized heat pain paradigm spread over 8 consecutive days. At the beginning of the experiment, personality dimensions, coping strategies and pain catastrophizing thoughts were determined. Receiving a series of 10 blocks of six painful heat stimuli a day, participants rated pain intensity and unpleasantness. Skin conductance was recorded throughout the sessions. The results show similar habituation of both the sensory and affective dimensions of pain in men and women, although skin conductance did not undergo a significant decrease across the eight days. When focusing on single daily sessions, women showed pain sensitization but sympathetic habituation, while men showed pain sensitization but stable sympathetic activation. Our findings therefore indicate that the process of long-term habituation to painful heat stimuli is a common feature in both genders, whereas men and women might differently recruit their sympathetic nervous system for short-term pain processing. This study could potentially help to better evaluate gender-specific mechanisms in pain perception. © 2012 European Federation of International Association for the Study of Pain Chapters.

  4. The Sympathetic Release Test: A Test Used to Assess Thermoregulation and Autonomic Control of Blood Flow

    Science.gov (United States)

    Tansey, E. A.; Roe, S. M.; Johnson, C. J.

    2014-01-01

    When a subject is heated, the stimulation of temperature-sensitive nerve endings in the skin, and the raising of the central body temperature, results in the reflex release of sympathetic vasoconstrictor tone in the skin of the extremities, causing a measurable temperature increase at the site of release. In the sympathetic release test, the…

  5. Sympathetic ingrowth: A result of cholinergic nerve injury in the adult mammalian brain

    International Nuclear Information System (INIS)

    Davis, J.N.

    1986-01-01

    This paper describes sympathetic ingrowth, its regulation and function. The study leads to a better understanding of the molecular mechanisms that probably underlie the regulation of other neuronal rearrangements. The authors examine tritium-2-deoxyglucose uptake in the hippocampal formation after septal leasions. Preliminary experiments suggest that the septo-hippocampal fibers do influence tritium-2-deoxyglucose uptake throughout the hippocampal formation in normal animals. If sympathetic ingrowth also can influence this uptake, this could provide further evidence for an adaptive role of this noradrenergic replacement of cholinergic neurons

  6. Role of the Sympathetic Nervous System and Its Modulation in Renal Hypertension

    Directory of Open Access Journals (Sweden)

    Yusuke Sata

    2018-03-01

    Full Text Available The kidneys are densely innervated with renal efferent and afferent nerves to communicate with the central nervous system. Innervation of major structural components of the kidneys, such as blood vessels, tubules, the pelvis, and glomeruli, forms a bidirectional neural network to relay sensory and sympathetic signals to and from the brain. Renal efferent nerves regulate renal blood flow, glomerular filtration rate, tubular reabsorption of sodium and water, as well as release of renin and prostaglandins, all of which contribute to cardiovascular and renal regulation. Renal afferent nerves complete the feedback loop via central autonomic nuclei where the signals are integrated and modulate central sympathetic outflow; thus both types of nerves form integral parts of the self-regulated renorenal reflex loop. Renal sympathetic nerve activity (RSNA is commonly increased in pathophysiological conditions such as hypertension and chronic- and end-stage renal disease. Increased RSNA raises blood pressure and can contribute to the deterioration of renal function. Attempts have been made to eliminate or interfere with this important link between the brain and the kidneys as a neuromodulatory treatment for these conditions. Catheter-based renal sympathetic denervation has been successfully applied in patients with resistant hypertension and was associated with significant falls in blood pressure and renal protection in most studies performed. The focus of this review is the neural contribution to the control of renal and cardiovascular hemodynamics and renal function in the setting of hypertension and chronic kidney disease, as well as the specific roles of renal efferent and afferent nerves in this scenario and their utility as a therapeutic target.

  7. J.H. Pons on 'Sympathetic insanity': With an introduction by GE Berrios.

    Science.gov (United States)

    Berrios, G E; Pons, J H

    2014-09-01

    The ancient concept of 'sympathy' originally referred to a putative affinity or force that linked all natural objects together. This notion was later used to explain the manner in which human beings related and felt for each other. A large literature exists on both the physical and psychological definitions of sympathy. Until the nineteenth century the conceptual apparatus of medicine preserved the view that the organs of the human body had a sympathetic affinity for each other. In addition to these 'physiological' (normal) sympathies there were morbid ones which explained the existence of various diseases. A morbid sympathy link also explained the fact that insanity followed the development of pathological changes in the liver, spleen, stomach and other bodily organs. These cases were classified as 'sympathetic insanities'. After the 1880s, the sympathy narrative was gradually replaced by physiological, endocrinological and psychodynamic explanations. The clinical states involved, however, are often observed in hospital practice and constitute the metier of 'consultation-liaison psychiatry'. Hence, it is surprising that historical work on the development of this discipline has persistently ignored the concept of 'sympathetic insanity'. © The Author(s) 2014.

  8. Reflex sympathetic dystrophy/complex regional pain syndrome, type 1

    African Journals Online (AJOL)

    Enrique

    with MRI every 3 months and the bone marrow oedema disappeared after 6 months. Introduction ... SA JOURNAL OF RADIOLOGY • August 2004. Reflex sympathetic dystrophy/complex regional pain syndrome, type 1 ... may be either trauma of external origin or iatrogenic, post surgery. In some patients particularly children ...

  9. Sympathetic Wigner-function tomography of a dark trapped ion

    DEFF Research Database (Denmark)

    Mirkhalaf, Safoura; Mølmer, Klaus

    2012-01-01

    A protocol is provided to reconstruct the Wigner function for the motional state of a trapped ion via fluorescence detection on another ion in the same trap. This “sympathetic tomography” of a dark ion without optical transitions suitable for state measurements is based on the mapping of its...

  10. Recruitment pattern of sympathetic muscle neurons during premature ventricular contractions in heart failure patients and controls.

    Science.gov (United States)

    Maslov, Petra Zubin; Breskovic, Toni; Brewer, Danielle N; Shoemaker, J Kevin; Dujic, Zeljko

    2012-12-01

    Premature ventricular contractions (PVC) elicit larger bursts of multiunit muscle sympathetic nerve activity (MSNA), reflecting the ability to increase postganglionic axonal recruitment. We tested the hypothesis that chronic heart failure (CHF) limits the ability to recruit postganglionic sympathetic neurons as a response to PVC due to the excessive sympathetic activation in these patients. Sympathetic neurograms of sufficient signal-to-noise ratio were obtained from six CHF patients and from six similarly aged control individuals. Action potentials (APs) were extracted from the multiunit sympathetic neurograms during sinus rhythm bursts and during the post-PVC bursts. These APs were classified on the basis of the frequency per second, the content per burst, and the peak-to-peak amplitude, which formed the basis of binning the APs into active clusters. Compared with controls, CHF had higher APs per burst and higher number of active clusters per sinus rhythm burst (P < 0.05). Compared with sinus rhythm bursts, both groups increased AP frequency and the number of active clusters in the post-PVC burst (P < 0.05). However, compared with controls, the increase in burst integral, AP frequency, and APs per burst during the post-PVC burst was less in CHF patients. Nonetheless, the PVC-induced increase in active clusters per burst was similar between the groups. Thus, these CHF patients retained the ability to recruit larger APs but had a diminished ability to increase overall AP content.

  11. Slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with chronic heart failure: from modeling to clinical application.

    Science.gov (United States)

    Harada, Daisuke; Asanoi, Hidetsugu; Takagawa, Junya; Ishise, Hisanari; Ueno, Hiroshi; Oda, Yoshitaka; Goso, Yukiko; Joho, Shuji; Inoue, Hiroshi

    2014-10-15

    Influences of slow and deep respiration on steady-state sympathetic nerve activity remain controversial in humans and could vary depending on disease conditions and basal sympathetic nerve activity. To elucidate the respiratory modulation of steady-state sympathetic nerve activity, we modeled the dynamic nature of the relationship between lung inflation and muscle sympathetic nerve activity (MSNA) in 11 heart failure patients with exaggerated sympathetic outflow at rest. An autoregressive exogenous input model was utilized to simulate entire responses of MSNA to variable respiratory patterns. In another 18 patients, we determined the influence of increasing tidal volume and slowing respiratory frequency on MSNA; 10 patients underwent a 15-min device-guided slow respiration and the remaining 8 had no respiratory modification. The model predicted that a 1-liter, step increase of lung volume decreased MSNA dynamically; its nadir (-33 ± 22%) occurred at 2.4 s; and steady-state decrease (-15 ± 5%), at 6 s. Actually, in patients with the device-guided slow and deep respiration, respiratory frequency effectively fell from 16.4 ± 3.9 to 6.7 ± 2.8/min (P state MSNA was decreased by 31% (P state MSNA. Thus slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with high levels of resting sympathetic tone as in heart failure. Copyright © 2014 the American Physiological Society.

  12. Retrogradely Transported TrkA Endosomes Signal Locally within Dendrites to Maintain Sympathetic Neuron Synapses

    Directory of Open Access Journals (Sweden)

    Kathryn M. Lehigh

    2017-04-01

    Full Text Available Sympathetic neurons require NGF from their target fields for survival, axonal target innervation, dendritic growth and formation, and maintenance of synaptic inputs from preganglionic neurons. Target-derived NGF signals are propagated retrogradely, from distal axons to somata of sympathetic neurons via TrkA signaling endosomes. We report that a subset of TrkA endosomes that are transported from distal axons to cell bodies translocate into dendrites, where they are signaling competent and move bidirectionally, in close proximity to synaptic protein clusters. Using a strategy for spatially confined inhibition of TrkA kinase activity, we found that distal-axon-derived TrkA signaling endosomes are necessary within sympathetic neuron dendrites for maintenance of synapses. Thus, TrkA signaling endosomes have unique functions in different cellular compartments. Moreover, target-derived NGF mediates circuit formation and synapse maintenance through TrkA endosome signaling within dendrites to promote aggregation of postsynaptic protein complexes.

  13. Increased cardiac sympathetic activity in patients with hypothyroidism as determined by iodine-123 metaiodobenzylguanidine scintigraphy

    International Nuclear Information System (INIS)

    Momose, Mitsuru; Inaba, Shigeki; Emori, Toshiaki; Imamura, Kimiharu; Kawano, Katsunori; Ueda, Tetsuro; Kobayashi, Hideki; Hosoda, Saichi

    1997-01-01

    Clinical manifestations of hypothyroidism, such as bradycardia, suggest decreased sympathetic tone. However, previous studies in patients with hypothyroidism have suggested that increased plasma noradrenaline (NA) levels represent enhanced general sympathetic activity. As yet, cardiac sympathetic activity (CSA) in hypothyroidism has not been clarified. To evaluate CSA in patients with hypothyroidism, iodine-123 metaiodobenzylguanidine (MIBG) scintigraphy was performed in eight patients with hypothyroidism before therapy and in ten normal control patients. Planar images were obtained at 15 min and 4 h after injection of MIBG. The ratio of early myocardial uptake to the total injected dose (MU) and myocardial clearance of MIBG within 4 h p.i. (MC) were calculated. Plasma NA was also measured, and echocardiography was performed in all patients. Those patients with hypothyroidism in the euthyroid state after medical therapy were also evaluated in a similar manner. Left ventricular ejection fraction, measured by echocardiography, did not differ significantly between the groups. NA, MU and MC were significantly higher in patients with hypothyroidism than in controls, and all parameters were decreased after therapy. MC was well correlated with NA in hypothyroidism (r=0.86) before therapy. We conclude that CSA is increased in patients with hypothyroidism, in parallel with the enhanced general sympathetic activity. (orig.). With 4 figs., 2 tabs

  14. Serotonin and Serotonin Transporters in the Adrenal Medulla: A Potential Hub for Modulation of the Sympathetic Stress Response.

    Science.gov (United States)

    Brindley, Rebecca L; Bauer, Mary Beth; Blakely, Randy D; Currie, Kevin P M

    2017-05-17

    Serotonin (5-HT) is an important neurotransmitter in the central nervous system where it modulates circuits involved in mood, cognition, movement, arousal, and autonomic function. The 5-HT transporter (SERT; SLC6A4) is a key regulator of 5-HT signaling, and genetic variations in SERT are associated with various disorders including depression, anxiety, and autism. This review focuses on the role of SERT in the sympathetic nervous system. Autonomic/sympathetic dysfunction is evident in patients with depression, anxiety, and other diseases linked to serotonergic signaling. Experimentally, loss of SERT function (SERT knockout mice or chronic pharmacological block) has been reported to augment the sympathetic stress response. Alterations to serotonergic signaling in the CNS and thus central drive to the peripheral sympathetic nervous system are presumed to underlie this augmentation. Although less widely recognized, SERT is robustly expressed in chromaffin cells of the adrenal medulla, the neuroendocrine arm of the sympathetic nervous system. Adrenal chromaffin cells do not synthesize 5-HT but accumulate small amounts by SERT-mediated uptake. Recent evidence demonstrated that 5-HT 1A receptors inhibit catecholamine secretion from adrenal chromaffin cells via an atypical mechanism that does not involve modulation of cellular excitability or voltage-gated Ca 2+ channels. This raises the possibility that the adrenal medulla is a previously unrecognized peripheral hub for serotonergic control of the sympathetic stress response. As a framework for future investigation, a model is proposed in which stress-evoked adrenal catecholamine secretion is fine-tuned by SERT-modulated autocrine 5-HT signaling.

  15. The clinical value of cardiac sympathetic imaging in heart failure

    DEFF Research Database (Denmark)

    Christensen, Thomas Emil; Kjaer, Andreas; Hasbak, Philip

    2014-01-01

    The autonomic nervous system plays an important role in the pathology of heart failure. The single-photon emission computed tomography tracer iodine-123-metaiodobenzylguanidine ((123) I-MIBG) can be used to investigate the activity of the predominant neurotransmitter of the sympathetic nervous...

  16. Treatment of Reflex sympathetic dystrophy with Bee venom -Using Digital Infrared Thermographic Imaging-

    Directory of Open Access Journals (Sweden)

    Myung-jang Lim

    2006-12-01

    Full Text Available Objectives : The purpose of this case is to report the patient with Reflex sympathetic dystrophy, who is improved by Bee venom. Method : We treated the patient with Bee venom who was suffering from Reflex sympathetic dystrophy, using Digital Infrared Thermographic Imaging and Verbal Numerical Rating Scale(VNRS to evaluate the therapeutic effects. We compared the temperature of the patient body before and after treatment. Result and Conclusion : We found that Bee venom had excellent outcome to relieve pain, atrophy and ankle joint ROM, and that Bee venom also had clinical effect on hypothermia on the Digital Infrared Thermographic Imaging.

  17. Renal hemodynamic effects of activation of specific renal sympathetic nerve fiber groups.

    Science.gov (United States)

    DiBona, G F; Sawin, L L

    1999-02-01

    To examine the effect of activation of a unique population of renal sympathetic nerve fibers on renal blood flow (RBF) dynamics, anesthetized rats were instrumented with a renal sympathetic nerve activity (RSNA) recording electrode and an electromagnetic flow probe on the ipsilateral renal artery. Peripheral thermal receptor stimulation (external heat) was used to activate a unique population of renal sympathetic nerve fibers and to increase total RSNA. Total RSNA was reflexly increased to the same degree with somatic receptor stimulation (tail compression). Arterial pressure and heart rate were increased by both stimuli. Total RSNA was increased to the same degree by both stimuli but external heat produced a greater renal vasoconstrictor response than tail compression. Whereas both stimuli increased spectral density power of RSNA at both cardiac and respiratory frequencies, modulation of RBF variability by fluctuations of RSNA was small at these frequencies, with values for the normalized transfer gain being approximately 0.1 at >0.5 Hz. During tail compression coherent oscillations of RSNA and RBF were found at 0.3-0.4 Hz with normalized transfer gain of 0.33 +/- 0.02. During external heat coherent oscillations of RSNA and RBF were found at both 0.2 and 0.3-0.4 Hz with normalized transfer gains of 0. 63 +/- 0.05 at 0.2 Hz and 0.53 +/- 0.04 to 0.36 +/- 0.02 at 0.3-0.4 Hz. Renal denervation eliminated the oscillations in RBF at both 0.2 and 0.3-0.4 Hz. These findings indicate that despite similar increases in total RSNA, external heat results in a greater renal vasoconstrictor response than tail compression due to the activation of a unique population of renal sympathetic nerve fibers with different frequency-response characteristics of the renal vasculature.

  18. 1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections.

    Science.gov (United States)

    Marker, David R; U Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J; Fichtinger, Gabor; Iordachita, Iulian I; Carrino, John A; Fritz, Jan

    2017-01-01

    The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1-5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus.

  19. Functional role of diverse changes in sympathetic nerve activity in regulating arterial pressure during REM sleep.

    Science.gov (United States)

    Yoshimoto, Misa; Yoshida, Ikue; Miki, Kenju

    2011-08-01

    This study aimed to investigate whether REM sleep evoked diverse changes in sympathetic outflows and, if so, to elucidate why REM sleep evokes diverse changes in sympathetic outflows. Male Wistar rats were chronically implanted with electrodes to measure renal (RSNA) and lumbar sympathetic nerve activity (LSNA), electroencephalogram, electromyogram, and electrocardiogram, and catheters to measure systemic arterial and central venous pressure; these parameters were measured simultaneously and continuously during the sleep-awake cycle in the same rat. REM sleep resulted in a step reduction in RNSA by 36.1% ± 2.7% (P sleep. In contrast to REM sleep, RSNA, LSNA, systemic arterial pressure, and heart rate increased in a unidirectional manner associated with increases in physical activity levels in the order from NREM sleep, quiet awake, moving, and grooming state. Thus, the relationship between RSNA vs. LSNA and systemic arterial pressure vs. heart rate observed during REM sleep was dissociated compared with that obtained during the other behavioral states. It is suggested that the diverse changes in sympathetic outflows during REM sleep may be needed to increase systemic arterial pressure by balancing vascular resistance between muscles and vegetative organs without depending on the heart.

  20. Sympathetic ophthalmia after 23-gauge transconjunctival sutureless vitrectomy

    Directory of Open Access Journals (Sweden)

    Masatoshi Haruta

    2010-11-01

    Full Text Available Masatoshi Haruta1, Hirokazu Mukuno2, Kazuaki Nishijima3, Hitoshi Takagi4, Mihori Kita51Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, Japan; 2Department of Ophthalmology, Konan Hospital, Kobe, Hyogo, Japan; 3Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan; 4Department of Ophthalmology, St Marianna University School of Medicine, Kawasaki, Kanagawa, Japan; 5Department of Ophthalmology, Hyogo Prefectural Amagasaki Hospital, Amagasaki, Hyogo, JapanPurpose: We report a case of a sympathetic ophthalmia that occurred after 23-gauge transconjunctival sutureless vitrectomy for a retinal detachment.Case report: A 41-year-old Japanese woman underwent combined phacoemulsification with intraocular lens implantation and 23-gauge transconjunctival sutureless vitrectomy for a rhegmatogenous retinal detachment in the right eye. Endolaser photocoagulation and silicone oil tamponade were used to manage inferior retinal holes. Four weeks after the surgery, she returned with a 5-day history of reduced vision and metamorphopsia in her left eye. Slit-lamp examination showed a shallow anterior chamber in the right eye and moderate anterior uveitis bilaterally. Silicone oil bubbles and pigment dispersion were observed in the subconjunctival space adjacent to the right eye’s superonasal sclerotomy site. Fundus examination showed multifocal serous retinal detachments in both eyes. A diagnosis of sympathetic ophthalmia was made and the patient was treated with intensive topical and systemic steroids. The subretinal fluid cleared in both eyes following treatment. Twelve months after the onset of inflammation, the patient’s condition was stable on a combination of oral cyclosporine and topical steroids. Sunset glow retinal changes remain, but there has been no evidence of recurrent inflammation.Conclusion: Sympathetic ophthalmia can develop after 23-gauge

  1. Effects of the α-adrenoceptor antagonists phentolamine, phenoxybenzamine, and Idazoxan on sympathetic blood flow control in the periodontal ligament of the cat

    International Nuclear Information System (INIS)

    Edwall, B.; Gazelius, B.

    1988-01-01

    Blood flow changes in the periodontal ligament (PDL) were measured indirectly by monitoring the local clearance of 125 I - during electric sympathetic nerve stimulation or close intra-arterial infusions of either noradrenaline (NA) or adrenaline (ADR) before and after administration of phentolamine (PA), phenoxybenzamine (PBZ) or Idazoxan (RX). At the doses used in the present study, PA was the only antagonist that significantly reduced the blood flow decrease seen on activation of sympathetic fibers, although PBZ also reduced this response. Idazoxan, however, did not induce the consistent effect on blood flow decreases seen on sympathetic activation. All three α-adrenoceptor antagonists almost abolished the effects of exogenously administered NA and ADR. The results suggest the presence of functional post-junctional adrenoceptors of both the α 1 and α 2 subtypes in the sympathetic regulation of the blood flow in the PDL of the cat. A component of the response elicited by electrical sympathetic stimulation appeared to be resistant to α-adrenoceptor blockade. Administration of guanethidine (which inhibits further release of NA and neuropeptide Y) after PA abolished this residual sympathetic response

  2. Study of sympathetic nerve activity in young Indian obese individuals

    Directory of Open Access Journals (Sweden)

    B Kalpana

    2013-01-01

    Full Text Available Background: Obesity is the culmination of a chronic imbalance between energy intake and energy expenditure. This energy balance can be potentially affected by the activity of autonomic nervous system (ANS. Altered sympathetic nerve function may be of importance in obesity. Objective: The present study is an attempt to pinpoint the defect (if any in the activity of sympathetic limb of the ANS in obesity, by subjecting to isometric exercise stress. Materials and Methods: A total of 81 females belonging to the age group of 18-22 years were recruited for the study. The participants were divided into two groups as normal weight and obese based on WHO guidelines for Asia Pacific region. After recording the resting blood pressure, they were subjected to isometric exercise by Handgrip dynamometer. Blood pressure was recorded again, and the difference was noted down. All recorded parameters were compared between two groups using unpaired t test. The relationship between body mass index (BMI and rise in diastolic pressure was quantified by Pearson′s correlation test. A P value less than 0.05 was considered as significant. Results: In obese, the diastolic pressure was significantly higher at rest, but showed reduced rise during handgrip test in comparison with normal weight individuals. Also, the rise in diastolic pressure exhibited a negative relation with BMI. Conclusion: The result is suggestive of impaired autonomic function at rest and reduced sympathetic activity in the group of obese when subjected to stress. This could make them more prone for future development of hypertension or other cardiovascular disorders.

  3. Sympathetic neurons are a powerful driver of myocyte function in cardiovascular disease.

    Science.gov (United States)

    Larsen, Hege E; Lefkimmiatis, Konstantinos; Paterson, David J

    2016-12-14

    Many therapeutic interventions in disease states of heightened cardiac sympathetic activity are targeted to the myocytes. However, emerging clinical data highlights a dominant role in disease progression by the neurons themselves. Here we describe a novel experimental model of the peripheral neuro-cardiac axis to study the neuron's ability to drive a myocyte cAMP phenotype. We employed a co-culture of neonatal ventricular myocytes and sympathetic stellate neurons from normal (WKY) and pro-hypertensive (SHR) rats that are sympathetically hyper-responsive and measured nicotine evoked cAMP responses in the myocytes using a fourth generation FRET cAMP sensor. We demonstrated the dominant role of neurons in driving the myocyte ß-adrenergic phenotype, where SHR cultures elicited heightened myocyte cAMP responses during neural activation. Moreover, cross-culturing healthy neurons onto diseased myocytes rescued the diseased cAMP response of the myocyte. Conversely, healthy myocytes developed a diseased cAMP response if diseased neurons were introduced. Our results provide evidence for a dominant role played by the neuron in driving the adrenergic phenotype seen in cardiovascular disease. We also highlight the potential of using healthy neurons to turn down the gain of neurotransmission, akin to a smart pre-synaptic ß-blocker.

  4. Peptidergic modulation of efferent sympathetic neurons in intrathoracic ganglia regulating the canine heart.

    Science.gov (United States)

    Armour, J A

    1989-05-01

    When either substance P or vasoactive intestinal peptide was injected into an acutely decentralized intrathoracic sympathetic ganglion, short-lasting augmentation of cardiac chronotropism and inotropism was induced. These augmentations were induced before the fall in systemic arterial pressure occurred which was a consequence of these peptides leaking into the systemic circulation in enough quantity to alter peripheral vascular resistance directly. When similar volumes of normal saline were injected into an intrathoracic ganglion, no significant cardiac changes were induced. When substance P or vasoactive intestinal peptide was administered into an intrathoracic ganglion, similar cardiac augmentations were induced either before or after the intravenous administration of hexamethonium. In contrast, when these peptides were injected into an intrathoracic ganglion in which the beta-adrenergic blocking agent timolol (0.1 mg/0.1 ml of normal saline) had been administered no cardiac augmentation occurred. These data imply that in the presence of beta-adrenergic blockade intraganglionic administration of substance P or vasoactive intestinal peptide does not modify enough intrathoracic neurons to alter cardiac chronotropism and inotropism detectably. When neuropeptide Y was injected into an intrathoracic ganglion, no cardiac changes occurred. However, when cardiac augmentations were induced by sympathetic preganglionic axon stimulation these were enhanced following the intraganglionic administration of neuropeptide Y. As this effect occurred after timolol was administered into the ipsilateral ganglia, but not after intravenous administration of hexamethonium, it is proposed that the effects of neuropeptide Y are dependent upon functioning intrathoracic ganglionic nicotinic cholinergic synaptic mechanisms. Intravenous administration of either morphine or [D-ala2,D-leu5]enkephalin acetate did not alter the capacity of the preganglionic sympathetic axons to augment the heart

  5. Cardiac sympathetic neuronal damage precedes myocardial fibrosis in patients with Anderson-Fabry disease

    International Nuclear Information System (INIS)

    Imbriaco, Massimo; Piscopo, Valentina; Ponsiglione, Andrea; Nappi, Carmela; Puglia, Marta; Dell'Aversana, Serena; Spinelli, Letizia; Cuocolo, Alberto; Pellegrino, Teresa; Petretta, Mario; Riccio, Eleonora; Pisani, Antonio

    2017-01-01

    Cardiac sympathetic denervation may be detectable in patients with Anderson-Fabry disease (AFD), suggesting its usefulness for early detection of the disease. However, the relationship between sympathetic neuronal damage measured by 123 I-metaiodobenzylguanidine (MIBG) imaging with myocardial fibrosis on cardiac magnetic resonance (CMR) is still unclear. Cardiac sympathetic innervation was assessed by 123 I-MIBG single-photon emission computed tomography (SPECT) in 25 patients with genetically proved AFD. Within one month from MIBG imaging, all patients underwent contrast-enhanced CMR. MIBG defect size and fibrosis size on CMR were measured for the left ventricle (LV) and expressed as %LV. Patients were divided into three groups according to MIBG and CMR findings: (1) matched normal, without MIBG defects and without fibrosis on CMR (n = 10); (2) unmatched, with MIBG defect but without fibrosis (n = 5); and (3) matched abnormal, with MIBG defect and fibrosis (n = 10). The three groups did not differ with respect to age, gender, α-galactosidase, proteinuria, glomerular filtration rate, and troponin I, while New York Heart Association class (p = 0.008), LV hypertrophy (p = 0.05), and enzyme replacement therapy (p = 0.02) were different among groups. Although in patients with matched abnormal findings, there was a significant correlation between MIBG defect size and area of fibrosis at CMR (r 2 = 0.98, p < 0.001), MIBG defect size was larger than fibrosis size (26 ± 23 vs. 18 ± 13%LV, p = 0.02). Sympathetic neuronal damage is frequent in AFD patients, and it may precede myocardial damage, such as fibrosis. Thus, 123 I-MIBG imaging can be considered a challenging technique for early detection of cardiac involvement in AFD. (orig.)

  6. Enhanced sympathetic arousal in response to FMRI scanning correlates with task induced activations and deactivations.

    Directory of Open Access Journals (Sweden)

    Markus Muehlhan

    Full Text Available It has been repeatedly shown that functional magnetic resonance imaging (fMRI triggers distress and neuroendocrine response systems. Prior studies have revealed that sympathetic arousal increases, particularly at the beginning of the examination. Against this background it appears likely that those stress reactions during the scanning procedure may influence task performance and neural correlates. However, the question how sympathetic arousal elicited by the scanning procedure itself may act as a potential confounder of fMRI data remains unresolved today. Thirty-seven scanner naive healthy subjects performed a simple cued target detection task. Levels of salivary alpha amylase (sAA, as a biomarker for sympathetic activity, were assessed in samples obtained at several time points during the lab visit. SAA increased two times, immediately prior to scanning and at the end of the scanning procedure. Neural activation related to motor preparation and timing as well as task performance was positively correlated with the first increase. Furthermore, the first sAA increase was associated with task induced deactivation (TID in frontal and parietal regions. However, these effects were restricted to the first part of the experiment. Consequently, this bias of scanner related sympathetic activation should be considered in future fMRI investigations. It is of particular importance for pharmacological investigations studying adrenergic agents and the comparison of groups with different stress vulnerabilities like patients and controls or adolescents and adults.

  7. Simulating sympathetic detonation using the hydrodynamic models and constitutive equations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Hoon; Kim, Min Sung; Yoh, Jack J. [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Sun, Tae Boo [Hanwha Corporation Defense Rand D Center, Daejeon (Korea, Republic of)

    2016-12-15

    A Sympathetic detonation (SD) is a detonation of an explosive charge by a nearby explosion. Most of times it is unintended while the impact of blast fragments or strong shock waves from the initiating donor explosive is the cause of SD. We investigate the SD of a cylindrical explosive charge (64 % RDX, 20 % Al, 16 % HTPB) contained in a steel casing. The constitutive relations for high explosive are obtained from a thermo-chemical code that provides the size effect data without the rate stick data typically used for building the rate law and equation of state. A full size SD test of eight pallet-packaged artillery shells is performed that provides the pressure data while the hydrodynamic model with proper constitutive relations for reactive materials and the fragmentation model for steel casing is conducted to replicate the experimental findings. The work presents a novel effort to accurately model and reproduce the sympathetic detonation event with a reduced experimental effort.

  8. Subtle involvement of the sympathetic nervous system in amyotrophic lateral sclerosis.

    NARCIS (Netherlands)

    Oey, P.L.; Vos, P.E.; Wieneke, G.H.; Wokke, J.H.J.; Blankestijn, P.J.; Karemaker, J.M.

    2002-01-01

    The literature on the involvement of the autonomic nervous system (ANS) in amyotrophic lateral sclerosis (ALS) is conflicting. We therefore investigated several aspects of autonomic function, namely muscle sympathetic nerve activity (MSNA), blood pressure, cardiac function (electrocardiogram; ECG),

  9. Subtle involvement of the sympathetic nervous system in amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Oey, P. Liam; Vos, Pieter E.; Wieneke, George H.; Wokke, John H. J.; Blankestijn, Peter J.; Karemaker, John M.

    2002-01-01

    The literature on the involvement of the autonomic nervous system (ANS) in amyotrophic lateral sclerosis (ALS) is conflicting. We therefore investigated several aspects of autonomic function, namely muscle sympathetic nerve activity (MSNA), blood pressure, cardiac function (electrocardiogram; ECG),

  10. Influence of exercise modality on cardiac parasympathetic and sympathetic indices during post-exercise recovery.

    Science.gov (United States)

    Michael, Scott; Jay, Ollie; Graham, Kenneth S; Davis, Glen M

    2018-02-12

    This study investigated indirect measures of post-exercise parasympathetic reactivation (using heart-rate-variability, HRV) and sympathetic withdrawal (using systolic-time-intervals, STI) following upper- and lower-body exercise. Randomized, counter-balanced, crossover. 13 males (age 26.4±4.7years) performed maximal arm-cranking (MAX-ARM) and leg-cycling (MAX-LEG). Subsequently, participants undertook separate 8-min bouts of submaximal HR-matched exercise of each mode (ARM and LEG). HRV (including natural-logarithm of root-mean-square-of-successive-differences, Ln-RMSSD) and STI (including pre-ejection-period, PEP) were assessed throughout 10-min seated recovery. Peak-HR was higher (p=0.001) during MAX-LEG (182±7beatsmin -1 ) compared with MAX-ARM (171±12beatsmin -1 ), while HR (preflecting sympathetic withdrawal). Exercise modality appears to influence post-exercise parasympathetic reactivation and sympathetic withdrawal in an intensity-dependent manner. These results highlight the need for test standardization and may be relevant to multi-discipline athletes and in clinical applications with varying modes of exercise testing. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. Mirror Neurons and Literature: Empathy and the Sympathetic Imagination in the Fiction of J.M. Coetzee

    Directory of Open Access Journals (Sweden)

    Hilmar Heister

    2015-01-01

    Full Text Available In the two essays “The Philosophers and the Animals” and “The Poets and the Animals” (in The Lives of Animals, 1999 J.M. Coetzee lets Elizabeth Costello urge us to use our sympathetic imagination in order to access the experience of others—in particular, animals—and engage with them empathetically. Coetzee’s fiction illustrates how the use of the sympathetic imagination might evoke empathy in the reader. Narrative structure and the character’s mode of introspection engage the reader’s empathy through an ambivalent process of distancing and approximation, as Fritz Breithaupt puts forward in his narrative theory of empathy (Kulturen der Empathie, 2009. The sympathetic imagination and the complementary notion of embodiment feature prominently in Coetzee’s fictional discourse and resonate with neuroscience’s research on mirror neurons and their relation to empathy.

  12. Anatomic assessment of sympathetic peri-arterial renal nerves in man.

    Science.gov (United States)

    Sakakura, Kenichi; Ladich, Elena; Cheng, Qi; Otsuka, Fumiyuki; Yahagi, Kazuyuki; Fowler, David R; Kolodgie, Frank D; Virmani, Renu; Joner, Michael

    2014-08-19

    Although renal sympathetic denervation therapy has shown promising results in patients with resistant hypertension, the human anatomy of peri-arterial renal nerves is poorly understood. The aim of our study was to investigate the anatomic distribution of peri-arterial sympathetic nerves around human renal arteries. Bilateral renal arteries were collected from human autopsy subjects, and peri-arterial renal nerve anatomy was examined by using morphometric software. The ratio of afferent to efferent nerve fibers was investigated by dual immunofluorescence staining using antibodies targeted for anti-tyrosine hydroxylase and anti-calcitonin gene-related peptide. A total of 10,329 nerves were identified from 20 (12 hypertensive and 8 nonhypertensive) patients. The mean individual number of nerves in the proximal and middle segments was similar (39.6 ± 16.7 per section and 39.9 ± 1 3.9 per section), whereas the distal segment showed fewer nerves (33.6 ± 13.1 per section) (p = 0.01). Mean subject-specific nerve distance to arterial lumen was greatest in proximal segments (3.40 ± 0.78 mm), followed by middle segments (3.10 ± 0.69 mm), and least in distal segments (2.60 ± 0.77 mm) (p renal sympathetic nerve fibers is lower in distal segments and dorsal locations. There is a clear predominance of efferent nerve fibers, with decreasing prevalence of afferent nerves from proximal to distal peri-arterial and renal parenchyma. Understanding these anatomic patterns is important for refinement of renal denervation procedures. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  13. Percutaneous renal sympathetic nerve ablation for loin pain haematuria syndrome.

    Science.gov (United States)

    Gambaro, Giovanni; Fulignati, Pierluigi; Spinelli, Alessio; Rovella, Valentina; Di Daniele, Nicola

    2013-09-01

    Loin pain haematuria syndrome (LPHS) is a severe renal pain condition of uncertain origin and often resistant to treatment. Nephrectomy and renal autotrasplantation have occasionally been performed in very severe cases. Its pathogenesis is controversial. A 40-year-old hypertensive lady was diagnosed with LPHS after repeated diagnostic imaging procedures had ruled out any renal, abdominal or spinal conditions to justify pain. Notwithstanding treatment with three drugs, she had frequent hypertensive crises during which the loin pain was dramatically exacerbated. Vascular causes of the pain and hypertension were investigated and excluded. Her renal function was normal. The patient was referred to a multidisciplinary pain clinic, but had no significant improvement in her pain symptoms despite the use of non-steroidal anti-inflammatory drugs, adjuvant antidepressants and opioid-like agents. The pain and the discomfort were so severe that her quality of life was very poor, and her social and professional activities were compromised. Nephrectomy and renal autotransplantation have occasionally been performed in these cases. Since visceral pain signals flow through afferent sympathetic fibres, we felt that percutaneous catheter-based radiofrequency ablation of the renal sympathetic nerve fibres (recently introduced for the treatment of drug-resistant hypertension) could be valuable for pain relief. We treated the patient with radiofrequency ablation (Medtronic Symplicity Catheter) applied only to the right renal artery. After a 6-month follow-up, the patient is pain free and normotensive with all drugs withdrawn. She has experienced no hypertensive crises in the meantime. This observation suggests that percutaneous sympathetic denervation could prove to be an effective mini-invasive strategy for the treatment of chronic renal pain, and LPHS in particular.

  14. Central Gi(2) proteins, sympathetic nervous system and blood pressure regulation

    Czech Academy of Sciences Publication Activity Database

    Zicha, Josef

    2016-01-01

    Roč. 216, č. 3 (2016), s. 258-259 ISSN 1748-1708 Institutional support: RVO:67985823 Keywords : inhibitory G proteins * sympathetic nervous system * central blood pressure control Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.867, year: 2016

  15. Quantitation of cardiac sympathetic innervation in rabbits using 11C-hydroxyephedrine PET: relation to 123I-MIBG uptake

    International Nuclear Information System (INIS)

    Nomura, Yusuke; Kajinami, Kouji; Matsunari, Ichiro; Takamatsu, Hiroyuki; Murakami, Yoshihiro; Matsuya, Takahiro; Chen, Wei-Ping; Taki, Junichi; Nakajima, Kenichi; Nekolla, Stephan G.

    2006-01-01

    Although 11 C-hydroxyephedrine ( 11 C-HED) PET is used to map cardiac sympathetic innervation, no studies have shown the feasibility of quantitation of 11 C-HED PET in small- to medium-sized animals. Furthermore, its relation to 123 I-MIBG uptake, the most widely used sympathetic nervous tracer, is unknown. The aims of this study were to establish in vivo sympathetic nerve imaging in rabbits using 11 C-HED PET, and to compare the retention of 11 C-HED with that of 123 I-MIBG. Twelve rabbits were assigned to three groups; control (n=4), chemical denervation by 6-hydroxydopamine (6-OHDA) (n=4) and reserpine treated to inhibit vesicular uptake (n=4). After simultaneous injection of 11 C-HED and 123 I-MIBG, all animals underwent dynamic 11 C-HED PET for 40 min with arterial blood sampling. The 11 C-HED retention fraction and normalised 11 C-HED activity measured by tissue sampling were compared with those measured by PET. Both the 11 C-HED retention fraction and the normalised 11 C-HED activity measured by PET correlated closely with those measured by tissue sampling (R=0.96027, p 11 C-HED and 123 I-MIBG. Reserpine pretreatment reduced 11 C-HED retention by 50%, but did not reduce 123 I-MIBG retention at 40 min after injection. Non-invasive quantitation of cardiac sympathetic innervation using 11 C-HED PET is feasible and gives reliable estimates of cardiac sympathetic innervation in rabbits. Additionally, although both 11 C-HED and 123 I-MIBG are specific for sympathetic neurons, 11 C-HED may be more specific for intravesicular uptake than 123 I-MIBG in some situations, such as that seen in reserpine pretreatment. (orig.)

  16. Regulators of human white adipose browning: evidence for sympathetic control and sexual dimorphic responses to sprint interval training.

    Directory of Open Access Journals (Sweden)

    Rebecca L Scalzo

    Full Text Available The conversion of white adipose to the highly thermogenic beige adipose tissue has been proposed as a potential strategy to counter the unfavorable consequences of obesity. Three regulators of this conversion have recently emerged but information regarding their control is limited, and contradictory. We present two studies examining the control of these regulators. Study 1: In 10 young men, the plasma concentrations of irisin and fibroblast growth factor 21 (FGF21 were determined prior to and during activation of the sympathetic nervous system via hypoxic gas breathing (FIO2 = 0.11. The measurements were performed twice, once with and once without prior/concurrent sympathetic inhibition via transdermal clonidine administration. FGF21 was unaffected by basal sympathetic inhibition (338±113 vs. 295±80 pg/mL; P = 0.43; mean±SE, but was increased during hypoxia mediated sympathetic activation (368±135; this response was abrogated (P = 0.035 with clonidine (269±93. Irisin was unaffected by sympathetic inhibition and/or hypoxia (P>0.21. Study 2: The plasma concentration of irisin and FGF21, and the skeletal muscle protein content of fibronectin type III domain containing 5 (FNDC5 was determined in 19 young adults prior to and following three weeks of sprint interval training (SIT. SIT decreased FGF21 (338±78 vs. 251±36; P = 0.046 but did not affect FNDC5 (P = 0.79. Irisin was decreased in males (127±18 vs. 90±23 ng/mL; P = 0.045 and increased in females (139±14 vs. 170±18. Collectively, these data suggest a potential regulatory role of acute sympathetic activation pertaining to the browning of white adipose; further, there appears to be a sexual dimorphic response of irisin to SIT.

  17. Adenosine (ADO) released during orthodromic stimulation of the frog sympathetic ganglion inhibits phosphatidylinositol turnover (PI) associated with synaptic transmission

    International Nuclear Information System (INIS)

    Curnish, R.; Bencherif, M.; Rubio, R.; Berne, R.M.

    1986-01-01

    The authors have previously demonstrated that 3 H-purine release was enhanced during synaptic activation of the prelabelled frog sympathetic ganglion. In addition, during orthodromic stimulation, there is an increased 3 H-inositol release (an index of PI) that occurs during the poststimulation period and not during the period of stimulation. They hypothesized that endogenous ADO inhibits PI turnover during orthodromic stimulation. To test this hypothesis (1) they performed experiments to directly measure ADO release in the extracellular fluid by placing the ganglion in a 5 μl drop of Ringer's and let it come to equilibrium with the interstitial fluid, (2) they destroyed endogenous ADO by suffusing adenosine deaminase (ADA) during the stimulation period. Their results show (1) orthodromic stimulation increases release of ADO into the bathing medium, (2) ADA induced an increase of PI during the stimulation period in contrast to an increase seen only during the poststimulation period when ADA was omitted. They conclude that there is dual control of PI during synaptic activity, a stimulatory effect (cause unknown) and a short lived inhibitory effect that is probably caused by adenosine

  18. Micro-anatomy of the renal sympathetic nervous system: a human postmortem histologic study.

    Science.gov (United States)

    Atherton, Daniel S; Deep, Nicholas L; Mendelsohn, Farrell O

    2012-07-01

    Hypertension remains an epidemic uncontrolled with pharmacologic therapies. A novel catheter inserted into the renal artery has been shown to lower blood pressure by ablating the renal sympathetic nerves with radiofrequency energy delivered through the arterial wall. We report a histologic study describing the anatomic substrate for this technique, specifically the renal sympathetic nervous system. Histological sections from proximal, middle, and distal renal artery segments from nine renal arteries (five human autopsies) were analyzed. Nerves were manually counted and their distance from the lumen-intima interface was measured using a micrometer. The nerves were then categorized by location into 0.5-mm-wide "rings" that were arranged circumferentially around the renal artery lumen. Of all nerves detected, 1.0% was in the 0-0.5 mm ring, 48.3% were in the 0.5-1.0 mm ring, 25.6% were in the 1.0-1.5 mm ring, 15.5% were in the 1.5-2.0 mm ring, and 9.5% were in the 2.0-2.5 mm ring. Beyond 0.5 mm, the proportion of nerves tended to decrease as the distance from the lumen increased. Totally, 90.5% of all nerves in this study existed within 2.0 mm of the renal artery lumen. Additionally, the number of nerves tended to increase along the length of the artery from proximal to distal segments (proximal = 216; middle = 323; distal = 417). In conclusion, our analysis indicates that a great proportion of renal sympathetic nerves have close proximity to the lumen-intima interface and should thus be accessible via renal artery interventional approaches such as catheter ablation. This data provides important anatomic information for the development of ablation and other type devices for renal sympathetic denervation. © 2011 Wiley Periodicals, Inc.

  19. Pneumatic antishock garment inflation activates the human sympathetic nervous system by abdominal compression.

    Science.gov (United States)

    Garvin, Nathan M; Levine, Benjamin D; Raven, Peter B; Pawelczyk, James A

    2014-01-01

    Pneumatic antishock garments (PASG) have been proposed to exert their blood pressure-raising effect mechanically, i.e. by increasing venous return and vascular resistance of the lower body. We tested whether, alternatively, PASG inflation activates the sympathetic nervous system. Five men and four women wore PASG while mean arterial pressure (MAP), muscle sympathetic nerve activity (MSNA), heart rate and stroke volume were measured. One leg bladder (LEG) and the abdominal bladder (ABD) of the trousers were inflated individually and in combination (ABD+LEG), at 60 or 90 mmHg for 3 min. By the end of 3 min of inflation, conditions that included the ABD region caused significant increases in MAP in a dose-dependent fashion (7 ± 2, 8 ± 3, 14 ± 4 and 13 ± 5 mmHg for ABD60, ABD+LEG60, ABD90 and ABD+LEG90, respectively, P < 0.05). Likewise, inflation that included ABD caused significant increases in total MSNA compared with control values [306 ± 70, 426 ± 98 and 247 ± 79 units for ABD60, ABD90 and ABD+LEG90, respectively, P < 0.05 (units = burst frequency × burst amplitude]. There were no changes in MAP or MSNA in the LEG-alone conditions. The ABD inflation also caused a significant decrease in stroke volume (-11 ± 3 and -10 ± 3 ml per beat in ABD90 and ABD+LEG90, respectively, P < 0.05) with no change in cardiac output. Neither cardiopulmonary receptor deactivation nor mechanical effects can account for a slowly developing rise in both sympathetic activity and blood pressure during ABD inflation. Rather, these data provide direct evidence that PASG inflation activates the sympathetic nervous system secondarily to abdominal, but not leg, compression.

  20. Cardiac sympathetic neuronal damage precedes myocardial fibrosis in patients with Anderson-Fabry disease

    Energy Technology Data Exchange (ETDEWEB)

    Imbriaco, Massimo; Piscopo, Valentina; Ponsiglione, Andrea; Nappi, Carmela; Puglia, Marta; Dell' Aversana, Serena; Spinelli, Letizia; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy); Pellegrino, Teresa [National Council of Research, Institute of Biostructure and Bioimaging, Naples (Italy); Petretta, Mario [University Federico II, Department of Translational Medical Sciences, Naples (Italy); Riccio, Eleonora; Pisani, Antonio [University of Naples Federico II, Department of Public Health, Naples (Italy)

    2017-12-15

    Cardiac sympathetic denervation may be detectable in patients with Anderson-Fabry disease (AFD), suggesting its usefulness for early detection of the disease. However, the relationship between sympathetic neuronal damage measured by {sup 123}I-metaiodobenzylguanidine (MIBG) imaging with myocardial fibrosis on cardiac magnetic resonance (CMR) is still unclear. Cardiac sympathetic innervation was assessed by {sup 123}I-MIBG single-photon emission computed tomography (SPECT) in 25 patients with genetically proved AFD. Within one month from MIBG imaging, all patients underwent contrast-enhanced CMR. MIBG defect size and fibrosis size on CMR were measured for the left ventricle (LV) and expressed as %LV. Patients were divided into three groups according to MIBG and CMR findings: (1) matched normal, without MIBG defects and without fibrosis on CMR (n = 10); (2) unmatched, with MIBG defect but without fibrosis (n = 5); and (3) matched abnormal, with MIBG defect and fibrosis (n = 10). The three groups did not differ with respect to age, gender, α-galactosidase, proteinuria, glomerular filtration rate, and troponin I, while New York Heart Association class (p = 0.008), LV hypertrophy (p = 0.05), and enzyme replacement therapy (p = 0.02) were different among groups. Although in patients with matched abnormal findings, there was a significant correlation between MIBG defect size and area of fibrosis at CMR (r{sup 2} = 0.98, p < 0.001), MIBG defect size was larger than fibrosis size (26 ± 23 vs. 18 ± 13%LV, p = 0.02). Sympathetic neuronal damage is frequent in AFD patients, and it may precede myocardial damage, such as fibrosis. Thus, {sup 123}I-MIBG imaging can be considered a challenging technique for early detection of cardiac involvement in AFD. (orig.)

  1. Vagal and sympathetic activity in burnouts during a mentally demanding workday

    NARCIS (Netherlands)

    Zanstra, Ydwine J.; Schellekens, Jan M. H.; Schaap, Cas; Kooistra, Libbe

    2006-01-01

    Objective: We study differences in task performance and related sympathetic-vagal reaction patterns between burnouts and controls during a mentally demanding workday. Method: Thirty-nine adults with burnout and 40 healthy controls performed mental tasks during a simulated workday. At pretest, just

  2. Baroreflex dysfunction and augmented sympathetic nerve responses during mental stress in veterans with post-traumatic stress disorder.

    Science.gov (United States)

    Park, Jeanie; Marvar, Paul J; Liao, Peizhou; Kankam, Melanie L; Norrholm, Seth D; Downey, Ryan M; McCullough, S Ashley; Le, Ngoc-Anh; Rothbaum, Barbara O

    2017-07-15

    Patients with post-traumatic stress disorder (PTSD) are at a significantly higher risk of developing hypertension and cardiovascular disease. The mechanisms underlying this increased risk are not known. Studies have suggested that PTSD patients have an overactive sympathetic nervous system (SNS) that could contribute to cardiovascular risk; however, sympathetic function has not previously been rigorously evaluated in PTSD patients. Using direct measurements of sympathetic nerve activity and pharmacological manipulation of blood pressure, we show that veterans with PTSD have augmented SNS and haemodynamic reactivity during both combat-related and non-combat related mental stress, impaired sympathetic and cardiovagal baroreflex sensitivity, and increased inflammation. Identifying the mechanisms contributing to increased cardiovascular (CV) risk in PTSD will pave the way for developing interventions to improve sympathetic function and reduce CV risk in these patients. Post-traumatic stress disorder (PTSD) is associated with increased cardiovascular (CV) risk. We tested the hypothesis that PTSD patients have augmented sympathetic nervous system (SNS) and haemodynamic reactivity during mental stress, as well as impaired arterial baroreflex sensitivity (BRS). Fourteen otherwise healthy Veterans with combat-related PTSD were compared with 14 matched Controls without PTSD.  Muscle sympathetic nerve activity (MSNA), continuous blood pressure (BP) and electrocardiography were measured at baseline, as well as during two types of mental stress:  combat-related mental stress using virtual reality combat exposure (VRCE) and non-combat related stress using mental arithmetic (MA). A cold pressor test (CPT) was administered for comparison. BRS was tested using pharmacological manipulation of BP via the Modified Oxford technique at rest and during VRCE. Blood samples were analysed for inflammatory biomarkers. Baseline characteristics, MSNA and haemodynamics were similar between

  3. Sympathetic arousal, but not disturbed executive functioning, mediates the impairment of cognitive flexibility under stress.

    Science.gov (United States)

    Marko, Martin; Riečanský, Igor

    2018-05-01

    Cognitive flexibility emerges from an interplay of multiple cognitive systems, of which lexical-semantic and executive are thought to be the most important. Yet this has not been addressed by previous studies demonstrating that such forms of flexible thought deteriorate under stress. Motivated by these shortcomings, the present study evaluated several candidate mechanisms implied to mediate the impairing effects of stress on flexible thinking. Fifty-seven healthy adults were randomly assigned to psychosocial stress or control condition while assessed for performance on cognitive flexibility, working memory capacity, semantic fluency, and self-reported cognitive interference. Stress response was indicated by changes in skin conductance, hearth rate, and state anxiety. Our analyses showed that acute stress impaired cognitive flexibility via a concomitant increase in sympathetic arousal, while this mediator was positively associated with semantic fluency. Stress also decreased working memory capacity, which was partially mediated by elevated cognitive interference, but neither of these two measures were associated with cognitive flexibility or sympathetic arousal. Following these findings, we conclude that acute stress impairs cognitive flexibility via sympathetic arousal that modulates lexical-semantic and associative processes. In particular, the results indicate that stress-level of sympathetic activation may restrict the accessibility and integration of remote associates and bias the response competition towards prepotent and dominant ideas. Importantly, our results indicate that stress-induced impairments of cognitive flexibility and executive functions are mediated by distinct neurocognitive mechanisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The pattern of activation of the sympathetic nervous system during tilt-induced syncope.

    Science.gov (United States)

    Zyśko, Dorota; Gajek, Jacek; Sciborski, Ryszard; Smereka, Jacek; Checiński, Igor; Mazurek, Walentyna

    2007-04-01

    A 49-year-old patient with a history of situational syncope and minimal electrocardiographic signs of accessory pathway is described. The evidence for pre-excitation was present only during the sympathetic activation caused by exercise testing and isoprenaline infusion. This phenomenon served as an indicator of significant adrenergic drive to the heart after the tilt-induced syncope. The meaning of the observed electrocardiographic changes in the course of neurocardiogenic reaction and its contribution to the understanding of the sympatho-vagal balance during vasovagal syncope is discussed. The lack of preexcitation signs during syncope and its appearance several seconds after the syncope-related sinus pause indicates sympathetic withdrawal before and shortly after the asystole. The possible pathophysiological mechanisms are discussed.

  5. Carotid body (Thermoreceptors, sympathetic neural activation, and cardiometabolic disease

    Directory of Open Access Journals (Sweden)

    Rodrigo Iturriaga

    Full Text Available The carotid body (CB is the main peripheral chemoreceptor that senses the arterial PO2, PCO2 and pH. In response to hypoxemia, hypercapnia and acidosis, carotid chemosensory discharge elicits reflex respiratory, autonomic and cardiovascular adjustments. The classical construct considers the CB as the main peripheral oxygen sensor, triggering reflex physiological responses to acute hypoxemia and facilitating the ventilatory acclimation to chronic hypoxemia at high altitude. However, a growing body of experimental evidence supports the novel concept that an abnormally enhanced CB chemosensory input to the brainstem contributes to overactivation of the sympathetic nervous system, and consequent pathology. Indeed, the CB has been implicated in several diseases associated with increases in central sympathetic outflow. These include hypertension, heart failure, sleep apnea, chronic obstructive pulmonary disease and metabolic syndrome. Indeed, ablation of the CB has been proposed for the treatment of severe and resistant hypertension in humans. In this review, we will analyze and discuss new evidence supporting an important role for the CB chemoreceptor in the progression of autonomic and cardiorespiratory alterations induced by heart failure, obstructive sleep apnea, chronic obstructive pulmonary disease and metabolic syndrome.

  6. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41).

    Science.gov (United States)

    Kimura, Ikuo; Inoue, Daisuke; Maeda, Takeshi; Hara, Takafumi; Ichimura, Atsuhiko; Miyauchi, Satoshi; Kobayashi, Makio; Hirasawa, Akira; Tsujimoto, Gozoh

    2011-05-10

    The maintenance of energy homeostasis is essential for life, and its dysregulation leads to a variety of metabolic disorders. Under a fed condition, mammals use glucose as the main metabolic fuel, and short-chain fatty acids (SCFAs) produced by the colonic bacterial fermentation of dietary fiber also contribute a significant proportion of daily energy requirement. Under ketogenic conditions such as starvation and diabetes, ketone bodies produced in the liver from fatty acids are used as the main energy sources. To balance energy intake, dietary excess and starvation trigger an increase or a decrease in energy expenditure, respectively, by regulating the activity of the sympathetic nervous system (SNS). The regulation of metabolic homeostasis by glucose is well recognized; however, the roles of SCFAs and ketone bodies in maintaining energy balance remain unclear. Here, we show that SCFAs and ketone bodies directly regulate SNS activity via GPR41, a Gi/o protein-coupled receptor for SCFAs, at the level of the sympathetic ganglion. GPR41 was most abundantly expressed in sympathetic ganglia in mouse and humans. SCFA propionate promoted sympathetic outflow via GPR41. On the other hand, a ketone body, β-hydroxybutyrate, produced during starvation or diabetes, suppressed SNS activity by antagonizing GPR41. Pharmacological and siRNA experiments indicated that GPR41-mediated activation of sympathetic neurons involves Gβγ-PLCβ-MAPK signaling. Sympathetic regulation by SCFAs and ketone bodies correlated well with their respective effects on energy consumption. These findings establish that SCFAs and ketone bodies directly regulate GPR41-mediated SNS activity and thereby control body energy expenditure in maintaining metabolic homeostasis.

  7. Production and sympathetic cooling of complex molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaobo

    2008-06-24

    This thesis reports on experimental and theoretical studies of the sympathetic cooling of complex molecular ions demonstrating that this general method for cooling atomic and molecular ions is reliable and efficient. For this purpose, complex molecular ions and barium ions have been confined simultaneously in a linear Paul trap. The complex molecular ions are generated in an electrospray ionization system and transferred to the trap via a 2 m long octopole ion guide. These molecular ions are pre-cooled by room temperature helium buffer gas so that they can be captured by the trap. The atomic barium ions are loaded from a barium evaporator oven and are laser-cooled by a 493 nm cooling laser and a 650 nm repumping laser. Due to the mutual Coulomb interaction among these charged particles, the kinetic energy of the complex molecular ions can be reduced significantly. In our experiments we have demonstrated the sympathetic cooling of various molecules (CO{sub 2}, Alexa Fluor 350, glycyrrhetinic acid, cytochrome c) covering a wide mass range from a few tens to 13000 amu. In every case the molecular ions could be cooled down to millikelvin temperatures. Photo-chemical reactions of the {sup 138}Ba{sup +} ions in the ({sup 2}P{sub 1/2}) excited state with gases such as O{sub 2}, CO{sub 2}, or N{sub 2}O, could be observed. If the initial {sup 138}Ba{sup +} ion ensemble is cold, the produced {sup 138}BaO{sup +} ions are cold as well, with a similar temperature as the laser-cooled barium ions (a few tens of millikelvin). The back-reaction of {sup 138}BaO{sup +} ions with neutral CO to {sup 138}Ba{sup +} is possible and was observed in our experiments as well. A powerful molecular dynamics (MD) simulation program has been developed. With this program dynamic properties of ion ensembles, such as sympathetic interactions or heating effects, have been investigated and experimental results have been analyzed to obtain, for example, ion numbers and temperatures. Additionally, the

  8. Production and sympathetic cooling of complex molecular ions

    International Nuclear Information System (INIS)

    Zhang, Chaobo

    2008-01-01

    This thesis reports on experimental and theoretical studies of the sympathetic cooling of complex molecular ions demonstrating that this general method for cooling atomic and molecular ions is reliable and efficient. For this purpose, complex molecular ions and barium ions have been confined simultaneously in a linear Paul trap. The complex molecular ions are generated in an electrospray ionization system and transferred to the trap via a 2 m long octopole ion guide. These molecular ions are pre-cooled by room temperature helium buffer gas so that they can be captured by the trap. The atomic barium ions are loaded from a barium evaporator oven and are laser-cooled by a 493 nm cooling laser and a 650 nm repumping laser. Due to the mutual Coulomb interaction among these charged particles, the kinetic energy of the complex molecular ions can be reduced significantly. In our experiments we have demonstrated the sympathetic cooling of various molecules (CO 2 , Alexa Fluor 350, glycyrrhetinic acid, cytochrome c) covering a wide mass range from a few tens to 13000 amu. In every case the molecular ions could be cooled down to millikelvin temperatures. Photo-chemical reactions of the 138 Ba + ions in the ( 2 P 1/2 ) excited state with gases such as O 2 , CO 2 , or N 2 O, could be observed. If the initial 138 Ba + ion ensemble is cold, the produced 138 BaO + ions are cold as well, with a similar temperature as the laser-cooled barium ions (a few tens of millikelvin). The back-reaction of 138 BaO + ions with neutral CO to 138 Ba + is possible and was observed in our experiments as well. A powerful molecular dynamics (MD) simulation program has been developed. With this program dynamic properties of ion ensembles, such as sympathetic interactions or heating effects, have been investigated and experimental results have been analyzed to obtain, for example, ion numbers and temperatures. Additionally, the feasibility of nondestructive spectroscopy via an optical dipole excitation

  9. Burst Activity and Heart Rhythm Modulation in the Sympathetic Outflow to the Heart

    National Research Council Canada - National Science Library

    Baselli, G

    2001-01-01

    In 13 decerebrate, artificially ventilated cats preganglionic sympathetic outflow to the heart was recorded with ECG and ventilation signal, A novel algorithm was implemented that extracts weighted...

  10. Lumbar Sympathetic Plexus Block as a Treatment for Postamputation Pain: Methodology for a Randomized Controlled Trial.

    Science.gov (United States)

    McCormick, Zachary L; Hendrix, Andrew; Dayanim, David; Clay, Bryan; Kirsling, Amy; Harden, Norman

    2018-03-08

    We present a technical protocol for rigorous assessment of patient-reported outcomes and psychophysical testing relevant to lumbar sympathetic blocks for the treatment of postamputation pain (PAP). This description is intended to inform future prospective investigation. Series of four participants from a blinded randomized sham-controlled trial. Tertiary, urban, academic pain medicine center. Four participants with a single lower limb amputation and associated chronic PAP. Participants were randomized to receive a lumbar sympathetic block with 0.25% bupivacaine or sham needle placement. Patient-rated outcome measures included the numerical rating scale (NRS) for pain, the McGill Pain Questionnaire-Short Form, Center for Epidemiological Studies Depression Scale, Pain and Anxiety Symptoms Scale-short version, and Pain Disability Index (PDI). Psychophysical and biometric testing was also performed, which included vibration sensation testing, pinprick sensation testing, brush sensation testing, Von Frey repeated weighted pinprick sensation, and thermal quantitative sensory testing. In the four described cases, treatment of PAP with a single lumbar sympathetic block but not sham intervention resulted in reduction of both residual limb pain and phantom limb pain as well as perceived disability on the PDI at three-month follow-up. An appropriately powered randomized controlled study using this methodology may not only aid in determining the possible clinical efficacy of lumbar sympathetic block in PAP, but could also improve our understanding of underlying pathophysiologic mechanisms of PAP.

  11. TARGETED STELLATE DECENTRALIZATION: IMPLICATIONS FOR SYMPATHETIC CONTROL OF VENTRICULAR ELECTROPHYSIOLOGY

    Science.gov (United States)

    Buckley, Una; Yamakawa, Kentaro; Takamiya, Tatsuo; Armour, J. Andrew; Shivkumar, Kalyanam; Ardell, Jeffrey L.

    2015-01-01

    Background Selective, bilateral cervicothoracic sympathectomy has proven to be effective for managing ventricular arrhythmias in the setting of structural heart disease. The procedure currently employed removes the caudal portions of both stellate ganglia, along with thoracic chain ganglia down to T4 ganglia. Objective To define the relative contributions of T1-T2 and the T3-T4 paravertebral ganglia in modulating ventricular electrical function. Methods In anesthetized vagotomised porcine subjects (n=8), the heart was exposed via sternotomy along with right and left paravertebral sympathetic ganglia to the T4 level. A 56-electrode epicardial sock was placed over both ventricles to assess epicardial activation recovery intervals (ARI) in response to individually stimulating right and left stellate vs T3 paravertebral ganglia. Responses to T3 stimuli were repeated following surgical removal of the caudal portions of stellate ganglia and T2 bilaterally. Results In intact preparations, stellate ganglion vs T3 stimuli (4Hz, 4ms duration) were titrated to produce equivalent decreases in global ventricular ARIs (right-side 85±6 vs 55±10 ms; left-side 24±3 vs 17±7 ms). Threshold of stimulus intensity applied to T3 ganglia to achieve threshold was 3 times that of T1 threshold. ARIs in unstimulated states were unaffected by bilateral stellate-T2 ganglion removal. Following acute decentralization, T3 stimulation failed to change ARIs. Conclusion Preganglionic sympathetic efferents arising from the T1-T4 spinal cord that project to the heart transit through stellate ganglia via the paravertebral chain. T1-T2 surgical excision is thus sufficient to functionally interrupt central control of peripheral sympathetic efferent activity. PMID:26282244

  12. Central Fibroblast Growth Factor 21 Browns White Fat via Sympathetic Action in Male Mice.

    Science.gov (United States)

    Douris, Nicholas; Stevanovic, Darko M; Fisher, Ffolliott M; Cisu, Theodore I; Chee, Melissa J; Nguyen, Ngoc L; Zarebidaki, Eleen; Adams, Andrew C; Kharitonenkov, Alexei; Flier, Jeffrey S; Bartness, Timothy J; Maratos-Flier, Eleftheria

    2015-07-01

    Fibroblast growth factor 21 (FGF21) has multiple metabolic actions, including the induction of browning in white adipose tissue. Although FGF21 stimulated browning results from a direct interaction between FGF21 and the adipocyte, browning is typically associated with activation of the sympathetic nervous system through cold exposure. We tested the hypothesis that FGF21 can act via the brain, to increase sympathetic activity and induce browning, independent of cell-autonomous actions. We administered FGF21 into the central nervous system via lateral ventricle infusion into male mice and found that the central treatment increased norepinephrine turnover in target tissues that include the inguinal white adipose tissue and brown adipose tissue. Central FGF21 stimulated browning as assessed by histology, expression of uncoupling protein 1, and the induction of gene expression associated with browning. These effects were markedly attenuated when mice were treated with a β-blocker. Additionally, neither centrally nor peripherally administered FGF21 initiated browning in mice lacking β-adrenoceptors, demonstrating that an intact adrenergic system is necessary for FGF21 action. These data indicate that FGF21 can signal in the brain to activate the sympathetic nervous system and induce adipose tissue thermogenesis.

  13. Acute sex hormone suppression reduces skeletal muscle sympathetic nerve activity.

    Science.gov (United States)

    Day, Danielle S; Gozansky, Wendolyn S; Bell, Christopher; Kohrt, Wendy M

    2011-10-01

    Comparisons of sympathetic nervous system activity (SNA) between young and older women have produced equivocal results, in part due to inadequate control for potential differences in sex hormone concentrations, age, and body composition. The aim of the present study was to determine the effect of a short-term reduction in sex hormones on tonic skeletal muscle sympathetic nerve activity (MSNA), an indirect measure of whole body SNA, using an experimental model of sex hormone deficiency in young women. We also assessed the independent effects of estradiol and progesterone add-back therapy on MSNA. MSNA was measured in 9 women (30±2 years; mean±SE) on three separate occasions: during the mid-luteal menstrual cycle phase, on the fifth day of gonadotropin-releasing hormone antagonist (GnRHant) administration, and after 5 days add-back of either estradiol (n=4) or progesterone (n=3) during continued GnRHant administration. In response to GnRHant, there were significant reductions in serum estradiol and progesterone (both psuppression attenuates MSNA and that this may be related to the suppression of progesterone rather than estradiol.

  14. Differential effects of adrenergic antagonists (Carvedilol vs Metoprolol on parasympathetic and sympathetic activity: a comparison of clinical results

    Directory of Open Access Journals (Sweden)

    Heather L. Bloom

    2014-08-01

    Full Text Available Background Cardiovascular autonomic neuropathy (CAN is recognized as a significant health risk, correlating with risk of heart disease, silent myocardial ischemia or sudden cardiac death. Beta-blockers are often prescribed to minimize risk. Objectives In this second of two articles, the effects on parasympathetic and sympathetic activity of the alpha/beta-adrenergic blocker, Carvedilol, are compared with those of the selective beta-adrenergic blocker, Metoprolol. Methods Retrospective, serial autonomic nervous system test data from 147 type 2 diabetes mellitus patients from eight ambulatory clinics were analyzed. Patients were grouped according to whether a beta-blocker was (1 introduced, (2 discontinued or (3 continued without adjustment. Group 3 served as the control. Results Introducing Carvedilol or Metoprolol decreased heart rate and blood pressure, and discontinuing them had the opposite effect. Parasympathetic activity increased with introducing Carvedilol. Sympathetic activity increased more after discontinuing Carvedilol, suggesting better sympathetic suppression. With ongoing treatment, resting parasympathetic activity decreased with Metoprolol but increased with Carvedilol. Conclusion Carvedilol has a more profound effect on sympathovagal balance than Metoprolol. While both suppress sympathetic activity, only Carvedilol increases parasympathetic activity. Increased parasympathetic activity may underlie the lower mortality risk with Carvedilol.

  15. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice.

    Science.gov (United States)

    Nohara, Kazunari; Waraich, Rizwana S; Liu, Suhuan; Ferron, Mathieu; Waget, Aurélie; Meyers, Matthew S; Karsenty, Gérard; Burcelin, Rémy; Mauvais-Jarvis, Franck

    2013-06-15

    Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.

  16. CaMKII Regulates Synaptic NMDA Receptor Activity of Hypothalamic Presympathetic Neurons and Sympathetic Outflow in Hypertension.

    Science.gov (United States)

    Li, De-Pei; Zhou, Jing-Jing; Zhang, Jixiang; Pan, Hui-Lin

    2017-11-01

    NMDAR activity in the hypothalamic paraventricular nucleus (PVN) is increased and critically involved in heightened sympathetic vasomotor tone in hypertension. Calcium/calmodulin-dependent protein kinase II (CaMKII) binds to and modulates NMDAR activity. In this study, we determined the role of CaMKII in regulating NMDAR activity of PVN presympathetic neurons in male spontaneously hypertensive rats (SHRs). NMDAR-mediated EPSCs and puff NMDA-elicited currents were recorded in spinally projecting PVN neurons in SHRs and male Wistar-Kyoto (WKY) rats. The basal amplitude of evoked NMDAR-EPSCs and puff NMDA currents in retrogradely labeled PVN neurons were significantly higher in SHRs than in WKY rats. The CaMKII inhibitor autocamtide-2-related inhibitory peptide (AIP) normalized the increased amplitude of NMDAR-EPSCs and puff NMDA currents in labeled PVN neurons in SHRs but had no effect in WKY rats. Treatment with AIP also normalized the higher frequency of NMDAR-mediated miniature EPSCs of PVN neurons in SHRs. CaMKII-mediated phosphorylation level of GluN2B serine 1303 (S1303) in the PVN, but not in the hippocampus and frontal cortex, was significantly higher in SHRs than in WKY rats. Lowering blood pressure with celiac ganglionectomy in SHRs did not alter the increased level of phosphorylated GluN2B S1303 in the PVN. In addition, microinjection of AIP into the PVN significantly reduced arterial blood pressure and lumbar sympathetic nerve discharges in SHRs. Our findings suggest that CaMKII activity is increased in the PVN and contributes to potentiated presynaptic and postsynaptic NMDAR activity to elevate sympathetic vasomotor tone in hypertension. SIGNIFICANCE STATEMENT Heightened sympathetic vasomotor tone is a major contributor to the development of hypertension. Although glutamate NMDA receptor (NMDAR)-mediated excitatory drive in the hypothalamus plays a critical role in increased sympathetic output in hypertension, the molecular mechanism involved in

  17. ACE INHIBITION ATTENUATES SYMPATHETIC CORONARY VASOCONSTRICTION IN PATIENTS WITH CORONARY-ARTERY DISEASE

    NARCIS (Netherlands)

    PERONDI, R; SAINO, A; TIO, RA; POMIDOSSI, G; GREGORINI, L; ALESSIO, P; MORGANTI, A; ZANCHETTI, A; MANCIA, G

    Background. In humans, angiotensin converting enzyme (ACE) inhibition attenuates the vasoconstriction induced by sympathetic stimulation in a number of peripheral districts. Whether this is also the case in the coronary circulation is unknown, however. Methods and Results. In nine normotensive

  18. The Place of Operations upon the Sympathetic System in the Treatment of Poliomyelitis.

    Science.gov (United States)

    Ogilvie, W H

    1933-02-01

    Revived interest in sympathetic surgery originated in orthopaedics. Royle's theories and operations. Their trial, failure and final abandonment. Value of sympathetic operations widely investigated; while finality has not been reached they have proved effective for three main purposes: (1) Relief of pain especially in bladder diseases. (2) Removal of inhibition and sphincteric spasm in alimentary, anal and bladder diseases. (3) Production of vaso-dilatation in (a) vaso-spastic diseases; (b) vaso-degenerative diseases; (c) conditions not due to arterial disease in which increased blood supply is beneficial.Poliomyelitis falls into the last group.-Cause of poor blood supply uncertain; ? lack of function; ? upset of some reflex; ? paralysis of vaso-dilators.TWO PROBLEMS ARISE, BOTH OF WHICH MAY BE TREATED BY OPERATIONS ON THE SYMPATHETIC: (1) The cold, blue limb, which develops chilblains, sores, or even deep ulcers every winter, often stopping treatment and requiring patient to be confined to bed. (2) The limb with considerable and rapidly increasing shortening. Sometimes these limbs show a fair return of power, and were it not for the heavy boot made necessary by the shortening, the patient could be made to walk well.Method of attack.-(1) Periarterial sympathectomy; (2) ramisectomy; (3) ganglionectomy. Physiological basis of each. Criticism of (1) and (2).Details of the operation for ganglionectomy.-Alternative approaches and their advantages. The immediate and late results of the procedure.Five cases discussed briefly.

  19. HIF2A and IGF2 Expression Correlates in Human Neuroblastoma Cells and Normal Immature Sympathetic Neuroblasts

    Directory of Open Access Journals (Sweden)

    Sofie Mohlin

    2013-03-01

    Full Text Available During normal sympathetic nervous system (SNS development, cells of the ganglionic lineage can malignantly transform and develop into the childhood tumor neuroblastoma. Hypoxia-inducible transcription factors (HIFs mediate cellular responses during normal development and are central in the adaptation to oxygen shortage. HIFs are also implicated in the progression of several cancer forms, and high HIF-2α expression correlates with disseminated disease and poor outcome in neuroblastoma. During normal SNS development, HIF2A is transiently expressed in neuroblasts and chromaffin cells. SNS cells can, during development, be distinguished by distinct gene expression patterns, and insulin-like growth factor 2 (IGF2 is a marker of sympathetic chromaffin cells, whereas sympathetic neuroblasts lack IGF2 expression. Despite the neuronal derivation of neuroblastomas, we show that neuroblastoma cell lines and specimens express IGF2 and that expression of HIF2A and IGF2 correlates, with the strongest correlation in high-stage tumors. In neuroblastoma, both IGF2 and HIF2A are hypoxia-driven and knocking down IGF2 at hypoxia resulted in downregulated HIF2A levels. HIF-2α and IGF2 were strongly expressed in subsets of immature neuroblastoma cells, suggesting that these two genes could be co-expressed also at early stages of SNS development. We show that IGF2 is indeed expressed in sympathetic chain ganglia at embryonic week 6.5, a developmental stage when HIF-2α is present. These findings provide a rationale for the unexpected IGF2 expression in neuroblastomas and might suggest that IGF2 and HIF2A positive neuroblastoma cells are arrested at an embryonic differentiation stage corresponding to the stage when sympathetic chain ganglia begins to coalesce.

  20. Marital conflict and children's externalizing behavior: interactions between parasympathetic and sympathetic nervous system activity

    National Research Council Canada - National Science Library

    El-Sheikh, Mona; Beauchaine, Theodore P; Moore, Ginger A

    2009-01-01

    "Toward greater specificity in the prediction of externalizing problems in the context of interparental conflict, interactions between children's parasympathetic and sympathetic nervous system (PNS and SNS...

  1. Responses of sympathetic nervous system to cold exposure in vibration syndrome subjects and age-matched healthy controls.

    Science.gov (United States)

    Nakamoto, M

    1990-01-01

    Plasma norepinephrine and epinephrine in vibration syndrome subjects and age-matched healthy controls were measured for the purpose of estimating the responsibility of the sympathetic nervous system to cold exposure. In preliminary experiment, it was confirmed that cold air exposure of the whole body was more suitable than one-hand immersion in cold water. In the main experiment, 195 subjects were examined. Sixty-five subjects had vibration syndrome with vibration-induced white finger (VWF + group) and 65 subjects had vibration syndrome without VWF (VWF- group) and 65 controls had no symptoms (control group). In the three groups, plasma norepinephrine levels increased during cold air exposure of whole body at 7 degrees +/- 1.5 degrees C. Blood pressure increased and skin temperature decreased during cold exposure. Percent increase of norepinephrine in the VWF+ group was the highest while that in VWF- group followed and that in the control group was the lowest. This whole-body response of the sympathetic nervous system to cold conditions reflected the VWF which are characteristic symptoms of vibration syndrome. Excluding the effects of shivering and a cold feeling under cold conditions, it was confirmed that the sympathetic nervous system in vibration syndrome is activated more than in the controls. These results suggest that vibration exposure to hand and arm affects the sympathetic nervous system.

  2. Temperament Affects Sympathetic Nervous Function in a Normal Population

    OpenAIRE

    Kim, Bora; Lee, Jae-Hon; Kang, Eun-Ho; Yu, Bum-Hee

    2012-01-01

    Objective Although specific temperaments have been known to be related to autonomic nervous function in some psychiatric disorders, there are few studies that have examined the relationship between temperaments and autonomic nervous function in a normal population. In this study, we examined the effect of temperament on the sympathetic nervous function in a normal population. Methods Sixty eight healthy subjects participated in the present study. Temperament was assessed using the Korean vers...

  3. Cardiac sympathetic neuronal imaging using PET

    International Nuclear Information System (INIS)

    Lautamaeki, Riikka; Tipre, Dnyanesh; Bengel, Frank M.

    2007-01-01

    Balance of the autonomic nervous system is essential for adequate cardiac performance, and alterations seem to play a key role in the development and progression of various cardiac diseases. PET imaging of the cardiac autonomic nervous system has advanced extensively in recent years, and multiple pre- and postsynaptic tracers have been introduced. The high spatial and temporal resolution of PET enables noninvasive quantification of neurophysiologic processes at the tissue level. Ligands for catecholamine receptors, along with radiolabeled catecholamines and catecholamine analogs, have been applied to determine involvement of sympathetic dysinnervation at different stages of heart diseases such as ischemia, heart failure, and arrhythmia. This review summarizes the recent findings in neurocardiological PET imaging. Experimental studies with several radioligands and clinical findings in cardiac dysautonomias are discussed. (orig.)

  4. Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia

    Directory of Open Access Journals (Sweden)

    Suuronen Erik J

    2011-08-01

    Full Text Available Abstract Background Diabetes mellitus is strongly associated with cardiovascular dysfunction, derived in part from impairment of sympathetic nervous system signaling. Glucose, insulin, and non-esterified fatty acids are potent stimulants of sympathetic activity and norepinephrine (NE release. We hypothesized that sustained hyperglycemia in the high fat diet-fed streptozotocin (STZ rat model of sustained hyperglycemia with insulin resistance would exhibit progressive sympathetic nervous dysfunction in parallel with deteriorating myocardial systolic and/or diastolic function. Methods Cardiac sympathetic nervous integrity was investigated in vivo via biodistribution of the positron emission tomography radiotracer and NE analogue [11C]meta-hydroxyephedrine ([11C]HED. Cardiac systolic and diastolic function was evaluated by echocardiography. Plasma and cardiac NE levels and NE reuptake transporter (NET expression were evaluated as correlative measurements. Results The animal model displays insulin resistance, sustained hyperglycemia, and progressive hypoinsulinemia. After 8 weeks of persistent hyperglycemia, there was a significant 13-25% reduction in [11C]HED retention in myocardium of STZ-treated hyperglycemic but not euglycemic rats as compared to controls. There was a parallel 17% reduction in immunoblot density for NE reuptake transporter, a 1.2 fold and 2.5 fold elevation of cardiac and plasma NE respectively, and no change in sympathetic nerve density. No change in ejection fraction or fractional area change was detected by echocardiography. Reduced heart rate, prolonged mitral valve deceleration time, and elevated transmitral early to atrial flow velocity ratio measured by pulse-wave Doppler in hyperglycemic rats suggest diastolic impairment of the left ventricle. Conclusions Taken together, these data suggest that sustained hyperglycemia is associated with elevated myocardial NE content and dysregulation of sympathetic nervous system

  5. Dissociation between neural and vascular responses to sympathetic stimulation : contribution of local adrenergic receptor function

    Science.gov (United States)

    Jacob, G.; Costa, F.; Shannon, J.; Robertson, D.; Biaggioni, I.

    2000-01-01

    Sympathetic activation produced by various stimuli, eg, mental stress or handgrip, evokes regional vascular responses that are often nonhomogeneous. This phenomenon is believed to be the consequence of the recruitment of differential central neural pathways or of a sympathetically mediated vasodilation. The purpose of this study was to determine whether a similar heterogeneous response occurs with cold pressor stimulation and to test the hypothesis that local differences in adrenergic receptor function could be in part responsible for this diversity. In 8 healthy subjects, local norepinephrine spillover and blood flow were measured in arms and legs at baseline and during sympathetic stimulation induced by baroreflex mechanisms (nitroprusside infusion) or cold pressor stimulation. At baseline, legs had higher vascular resistance (27+/-5 versus 17+/-2 U, P=0.05) despite lower norepinephrine spillover (0.28+/-0.04 versus 0.4+/-0.05 mg. min(-1). dL(-1), P=0.03). Norepinephrine spillover increased similarly in both arms and legs during nitroprusside infusion and cold pressor stimulation. On the other hand, during cold stimulation, vascular resistance increased in arms but not in legs (20+/-9% versus -7+/-4%, P=0.03). Increasing doses of isoproterenol and phenylephrine were infused intra-arterially in arms and legs to estimate beta-mediated vasodilation and alpha-induced vasoconstriction, respectively. beta-Mediated vasodilation was significantly lower in legs compared with arms. Thus, we report a dissociation between norepinephrine spillover and vascular responses to cold stress in lower limbs characterized by a paradoxical decrease in local resistance despite increases in sympathetic activity. The differences observed in adrenergic receptor responses cannot explain this phenomenon.

  6. Pituitary adenylate cyclase-activating polypeptide stimulates glucose production via the hepatic sympathetic innervation in rats.

    Science.gov (United States)

    Yi, Chun-Xia; Sun, Ning; Ackermans, Mariette T; Alkemade, Anneke; Foppen, Ewout; Shi, Jing; Serlie, Mireille J; Buijs, Ruud M; Fliers, Eric; Kalsbeek, Andries

    2010-07-01

    The unraveling of the elaborate brain networks that control glucose metabolism presents one of the current challenges in diabetes research. Within the central nervous system, the hypothalamus is regarded as the key brain area to regulate energy homeostasis. The aim of the present study was to investigate the hypothalamic mechanism involved in the hyperglycemic effects of the neuropeptide pituitary adenylyl cyclase-activating polypeptide (PACAP). Endogenous glucose production (EGP) was determined during intracerebroventricular infusions of PACAP-38, vasoactive intestinal peptide (VIP), or their receptor agonists. The specificity of their receptors was examined by coinfusions of receptor antagonists. The possible neuronal pathway involved was investigated by 1) local injections in hypothalamic nuclei, 2) retrograde neuronal tracing from the thoracic spinal cord to hypothalamic preautonomic neurons together with Fos immunoreactivity, and 3) specific hepatic sympathetic or parasympathetic denervation to block the autonomic neuronal input to liver. Intracerebroventricular infusion of PACAP-38 increased EGP to a similar extent as a VIP/PACAP-2 (VPAC2) receptor agonist, and intracerebroventricular administration of VIP had significantly less influence on EGP. The PACAP-38 induced increase of EGP was significantly suppressed by preinfusion of a VPAC2 but not a PAC1 receptor antagonist, as well as by hepatic sympathetic but not parasympathetic denervation. In the hypothalamus, Fos immunoreactivity induced by PACAP-38 was colocalized within autonomic neurons in paraventricular nuclei projecting to preganglionic sympathetic neurons in the spinal cord. Local infusion of PACAP-38 directly into the PVN induced a significant increase of EGP. This study demonstrates that PACAP-38 signaling via sympathetic preautonomic neurons located in the paraventricular nucleus is an important component in the hypothalamic control of hepatic glucose production.

  7. The role of the sympathetic nervous system in radiation-induced apoptosis in jejunal crypt cells of spontaneously hypertensive rats

    International Nuclear Information System (INIS)

    Matsuu, Mutsumi; Shichijo; Kazuko; Nakamura, Yasuko; Ikeda, Yuji; Naito, Shinji; Ito, Masahiro; Okaichi, Kumio; Sekine, Ichiro

    2000-01-01

    To evaluate the effect of the sympathetic nervous system on radiation-induced apoptosis in jejunal crypt cells, apoptosis levels were compared in spontaneously hypertensive rats (SHR), animals which are a genetic hyperfunction model of the sympathetic nervous system, and normotensive Wistar-Kyoto rats (WKY). SHR and WKY were exposed to whole body X-ray irradiation at doses from 0.5 to 2 Gy. The apoptotic index in jejunal crypt cells was significantly greater in SHR than in WKY at each time point after irradiation and at each dose. WKY and SHR were treated with reserpine to induce sympathetic dysfunction, and were subsequently exposed to irradiation. Reserpine administration to SHR or WKY resulted in a significant suppression of apoptosis. p53 accumulation was detected in the jejunum in both WKY and SHR after irradiation by Western blotting analysis. There were no significant differences in the levels of p53 accumulation in irradiated intestine between WKY and SHR. These findings suggested that hyperfunction of the sympathetic nervous system is involved in the mechanism of high susceptibility to radiation-induced apoptosis of the jejunal crypt cells. (author)

  8. Exposure to a high-fat diet alters leptin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits.

    Science.gov (United States)

    Prior, Larissa J; Eikelis, Nina; Armitage, James A; Davern, Pamela J; Burke, Sandra L; Montani, Jean-Pierre; Barzel, Benjamin; Head, Geoffrey A

    2010-04-01

    The activation of the sympathetic nervous system through the central actions of the adipokine leptin has been suggested as a major mechanism by which obesity contributes to the development of hypertension. However, direct evidence for elevated sympathetic activity in obesity has been limited to muscle. The present study examined the renal sympathetic nerve activity and cardiovascular effects of a high-fat diet (HFD), as well as the changes in the sensitivity to intracerebroventricular leptin. New Zealand white rabbits fed a 13.5% HFD for 4 weeks showed modest weight gain but a 2- to 3-fold greater accumulation of visceral fat compared with control rabbits. Mean arterial pressure, heart rate, and plasma norepinephrine concentration increased by 8%, 26%, and 87%, respectively (Pdiet rabbits and was correlated to plasma leptin (r=0.87; Pfat accumulation through consumption of a HFD leads to marked sympathetic activation, which is related to increased responsiveness to central sympathoexcitatory effects of leptin. The paradoxical reduction in hypothalamic neuronal activation by leptin suggests a marked "selective leptin resistance" in these animals.

  9. Effects of Electrical Stimulation in Sympathetic Neuron-Cardiomyocyte Co-cultures

    Science.gov (United States)

    Takeuchi, Akimasa; Tani, Hiromasa; Mori, Masahide; Moriguchi, Hiroyuki; Kotani, Kiyoshi; Lee, Jong-Kook; Noshiro, Makoto; Jimbo, Yasuhiko

    The sympathetic nervous system is one of the principal sources for regulating cardiovascular functions. Little is known, however, about the network-level interactions between sympathetic neurons and cardiomyocytes. In this study, a semi-separated co-culture system of superior cervical ganglion (SCG) neurons and ventricular myocytes (VMs) was developed by using a polydimethylsyloxane (PDMS) chamber placed on a microelectrode-array (MEA) substrate. Neurites of SCG neurons passed through a conduit of the chamber and reached VMs. Evoked activities of SCG neurons were observed from several electrodes immediately after applying constant-voltage stimulation (1 V, 1 ms, biphasic square pulses) to SCG neurons by using 32 electrodes. Furthermore, this stimulation was applied to SCG neurons at the frequency of 1, 5 and 10 Hz. After applying these three kinds of stimulations, mean minute contraction rate of VMs increased with an increase in the frequency of stimulation. These results suggest that changes in contraction rate of VMs after applying electrical stimulations to SCG neurons depend on frequencies of these stimulations and that the heart-regulating mechanisms as well as that in the body were formed in this co-culture system.

  10. Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans.

    Science.gov (United States)

    Kamiya, Atsunori; Michikami, Daisaku; Shiozawa, Tomoki; Iwase, Satoshi; Hayano, Junichiro; Kawada, Toru; Sunagawa, Kenji; Mano, Tadaaki

    2004-05-01

    Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P antigravity leg muscles.

  11. Neural and sympathetic activity associated with exploration in decision-making: Further evidence for involvement of insula

    Directory of Open Access Journals (Sweden)

    Hideki eOhira

    2014-11-01

    Full Text Available We previously reported that sympathetic activity was associated with exploration in decision-making indexed by entropy, which is a concept in information theory and indexes randomness of choices or the degree of deviation from sticking to recent experiences of gains and losses, and that activation of the anterior insula mediated this association. The current study aims to replicate and to expand these findings in a situation where contingency between options and outcomes is manipulated. Sixteen participants performed a stochastic decision-making task in which we manipulated a condition with low uncertainty of gain/loss (contingent-reward condition and a condition with high uncertainty of gain/loss (random-reward condition. Regional cerebral blood flow was measured by 15O-water positron emission tomography (PET, and cardiovascular parameters and catecholamine in the peripheral blood were measured, during the task. In the contingent-reward condition, norepinephrine as an index of sympathetic activity was positively correlated with entropy indicating exploration in decision-making. Norepinephrine was negatively correlated with neural activity in the right posterior insula, rostral anterior cingulate cortex, and dorsal pons, suggesting neural bases for detecting changes of bodily states. Furthermore, right anterior insular activity was negatively correlated with entropy, suggesting influences on exploration in decision-making. By contrast, in the random-reward condition, entropy correlated with activity in the dorsolateral prefrontal and parietal cortices but not with sympathetic activity. These findings suggest that influences of sympathetic activity on exploration in decision-making and its underlying neural mechanisms might be dependent on the degree of uncertainty of situations.

  12. Vibration sense and sympathetic vasoconstrictor activity in patients with occlusive arterial disease

    DEFF Research Database (Denmark)

    Bjerre-Jepsen, K; Henriksen, O; Parm, Martin Lehnsbo

    1983-01-01

    function was studied by the capability of the local sympathetic venoarteriolar reflex (Henriksen 1977) elicited by lowering the leg to induce an arteriolar constriction in subcutaneous tissue at the ankle level. Blood flow was measured by the local isotope washout technique. In only five patients with loss...

  13. A novel interaction between sympathetic overactivity and aberrant regulation of renin by miR-181a in BPH/2J genetically hypertensive mice.

    Science.gov (United States)

    Jackson, Kristy L; Marques, Francine Z; Watson, Anna M D; Palma-Rigo, Kesia; Nguyen-Huu, Thu-Phuc; Morris, Brian J; Charchar, Fadi J; Davern, Pamela J; Head, Geoffrey A

    2013-10-01

    Genetically hypertensive mice (BPH/2J) are hypertensive because of an exaggerated contribution of the sympathetic nervous system to blood pressure. We hypothesize that an additional contribution to elevated blood pressure is via sympathetically mediated activation of the intrarenal renin-angiotensin system. Our aim was to determine the contribution of the renin-angiotensin system and sympathetic nervous system to hypertension in BPH/2J mice. BPH/2J and normotensive BPN/3J mice were preimplanted with radiotelemetry devices to measure blood pressure. Depressor responses to ganglion blocker pentolinium (5 mg/kg i.p.) in mice pretreated with the angiotensin-converting enzyme inhibitor enalaprilat (1.5 mg/kg i.p.) revealed a 2-fold greater sympathetic contribution to blood pressure in BPH/2J mice during the active and inactive period. However, the depressor response to enalaprilat was 4-fold greater in BPH/2J compared with BPN/3J mice, but only during the active period (P=0.01). This was associated with 1.6-fold higher renal renin messenger RNA (mRNA; P=0.02) and 0.8-fold lower abundance of micro-RNA-181a (P=0.03), identified previously as regulating human renin mRNA. Renin mRNA levels correlated positively with depressor responses to pentolinium (r=0.99; P=0.001), and BPH/2J mice had greater renal sympathetic innervation density as identified by tyrosine hydroxylase staining of cortical tubules. Although there is a major sympathetic contribution to hypertension in BPH/2J mice, the renin-angiotensin system also contributes, doing so to a greater extent during the active period and less during the inactive period. This is the opposite of the normal renin-angiotensin system circadian pattern. We suggest that renal hyperinnervation and enhanced sympathetically induced renin synthesis mediated by lower micro-RNA-181a contributes to hypertension in BPH/2J mice.

  14. Sympathetically maintained pain presenting first as temporomandibular disorder, then as parotid dysfunction.

    Science.gov (United States)

    Giri, Subha; Nixdorf, Donald

    2007-03-01

    Complex regional pain syndrome (CRPS) is a chronic condition characterized by intense pain, swelling, redness, hypersensitivity and additional sudomotor effects. In all 13 cases of CRPS in the head and neck region reported in the literature, nerve injury was identified as the etiology for pain initiation. In this article, we present the case of a 30-year-old female patient with sympathetically maintained pain without apparent nerve injury. Her main symptoms--left-side preauricular pain and inability to open her mouth wide--mimicked temporomandibular joint arthralgia and myofascial pain of the masticatory muscles. Later, symptoms of intermittent preauricular pain and swelling developed, along with hyposalivation, which mimicked parotitis. After an extensive diagnostic process, no definitive underlying pathology could be identified and a diagnosis of neuropathic pain with a prominent sympathetic component was made. Two years after the onset of symptoms and initiation of care, treatment with repeated stellate ganglion blocks and enteral clonidine pharmacotherapy provided adequate pain relief.

  15. Mean 24-hours sympathetic nervous system activity decreases during head-down tilted bed rest but not during microgravity

    Science.gov (United States)

    Christensen, Nj; Heer, M.; Ivanova, K.; Norsk, P.

    Sympathetic nervous system activity is closely related to gravitational stress in ground based experiments. Thus a high activity is present in the standing-up position and a very low activity is observed during acute head-out water immersion. Adjustments in sympathetic activity are necessary to maintain a constant blood pressure during variations in venous return. Head-down tilted bed rest is applied as a model to simulate changes observed during microgravity. The aim of the present study was to test the hypothesis that mean 24-hours sympathetic activity was low and similar during space flight and in ground based observation obtained during long-term head-down tilted bed rest. Forearm venous plasma noradrenaline was measured by a radioenzymatic technique as an index of muscle sympathetic activity and thrombocyte noradrenaline and adrenaline were measured as indices of mean 24-hours sympathoadrenal activity. Previous results have indicated that thrombocyte noradrenaline level has a half-time of 2 days. Thus to reflect sympathetic activity during a specific experiment the study period must last for at least 6 days and a sample must be obtained within 12 hours after the experiment has ended. Ten normal healthy subjects were studied before and during a 14 days head-down tilted bed rest as well as during an ambulatory study period of a similar length. The whole experiment was repeated while the subjects were on a low calorie diet. Thrombocyte noradrenaline levels were studied in 4 cosmonauts before and within 12 hours after landing after more than 7 days in flight. Thrombocyte noradrenaline decreased markedly during the head-down tilted bed rest (pdifferent in cosmonauts and in subjects participating in the head down tilted bed rest study (170± 29% (Mean± SEM) vs. 57± 7%, respectively; presponse to combined effects of a reduced plasma volume and an increased vascular capacity in flight.

  16. Effect of Atorvastatin vs. Rosuvastatin on cardiac sympathetic nerve activity in non-diabetic patients with dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Tsutamoto, Takayoshi; Ibe, Kunihiro [Toyosato Hospital, Toyosato, Shiga (Japan); Sakai, Hiroshi; Yamaji, Masayuki; Kawahara, Chiho; Nakae, Ichiro; Fujii, Masanori; Yamamoto, Takashi; Horie, Minoru [Shiga Univ. of Medical Science, Faculty of Medicine, Otsu, Shiga (Japan)

    2011-08-15

    Effects of statin therapy on cardiac sympathetic nerve activity in patients with chronic heart failure (CHF) have not previously been evaluated. To compare the effects of lipophilic atorvastatin and hydrophilic rosuvastatin on cardiac sympathetic nerve activity in CHF patients with dilated cardiomyopathy (DCM), 63 stable outpatients with DCM, who were already receiving standard therapy for CHF, were randomized to atorvastatin (n=32) or rosuvastatin (n=31). We evaluated cardiac sympathetic nerve activity by cardiac {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy, hemodynamic parameters and neurohumoral factors before and after 6 months of treatment. There were no differences in the baseline characteristics of the 2 groups. In the rosuvastatin group, there were no changes in MIBG parameters, left ventricular ejection fraction or plasma levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP) after 6 months of treatment. In contrast, the atorvastatin group showed a significant increase in the delayed heart/mediastinum count ratio (2.18{+-}0.4 vs. 2.36{+-}0.4, P<0.0001), and the washout rate was significantly decreased (34.8{+-}5.7 vs. 32.6{+-}6.3%, P=0.0001) after 6 months of treatment compared with the baseline values. The plasma NT-proBNP level was also significantly decreased (729{+-}858 vs. 558{+-}747 pg/ml, P=0.0139). Lipophilic atorvastatin but not hydrophilic rosuvastatin improves cardiac sympathetic nerve activity in CHF patients with DCM. (author)

  17. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism affects sympathetic tone in a gender-specific way.

    Science.gov (United States)

    Chang, Chuan-Chia; Chang, Hsin-An; Chen, Tien-Yu; Fang, Wen-Hui; Huang, San-Yuan

    2014-09-01

    The Val/Val genotype of the brain-derived neurotrophic factor (BDNF) polymorphism (Val66Met) has been reported to affect human anxiety-related phenotypes. Substantial research has demonstrated that anxiety is associated with sympathetic activation, while sex steroid hormones have been shown to exert differential actions in regulating BDNF expression. Thus, we examined whether the BDNF variant modulates autonomic function in a gender-dependent manner. From 708 adults initially screened for medical and psychiatric illnesses, a final cohort of 583 drug-free healthy Han Chinese (355 males, 228 females; age 34.43±8.42 years) was recruited for BDNF genotyping (Val/Val: 136, 23.3%, Val/Met: 294, 50.4%, and Met/Met: 153, 26.2%). Time- and frequency-domain analyses of heart rate variability (HRV) were used to assess autonomic outflow to the heart. Significant genotype-by-gender interaction effects were found on HRV indices. Even after adjusting for possible confounders, male participants bearing the Val/Val genotype had significant increases in low frequency (LF), LF% and LF/high frequency (HF) ratio, indicating altered sympathovagal balance with increased sympathetic modulation, compared to male Met/Met homozygotes. Females, however, showed an opposite but non-significant pattern. These results suggest that the studied BDNF polymorphism is associated with sympathetic control in a gender-specific way. The findings here support the view that male subjects with the Val/Val genotype have increased risk of anxiety by association with sympathetic activation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Liver afferents contribute to water drinking-induced sympathetic activation in human subjects: a clinical trial.

    Directory of Open Access Journals (Sweden)

    Marcus May

    Full Text Available Water drinking acutely increases sympathetic activity in human subjects. In animals, the response appears to be mediated through transient receptor potential channel TRPV4 activation on osmosensitive hepatic spinal afferents, described as osmopressor response. We hypothesized that hepatic denervation attenuates water drinking-induced sympathetic activation. We studied 20 liver transplant recipients (44±2.6 years, 1.2±0.1 years post transplant as model of hepatic denervation and 20 kidney transplant recipients (43±2.6 years, 0.8±0.1 years post transplant as immunosuppressive drug matched control group. Before and after 500 ml water ingestion, we obtained venous blood samples for catecholamine analysis. We also monitored brachial and finger blood pressure, ECG, and thoracic bioimpedance. Plasma norepinephrine concentration had changed by 0.01±0.07 nmol/l in liver and by 0.21±0.07 nmol/l in kidney transplant recipients (p<0.05 between groups after 30-40 minutes of water drinking. While blood pressure and systemic vascular resistance increased in both groups, the responses tended to be attenuated in liver transplant recipients. Our findings support the idea that osmosensitive hepatic afferents are involved in water drinking-induced sympathetic activation in human subjects.ClinicalTrials.gov NCT01237431.

  19. Liver Afferents Contribute to Water Drinking-Induced Sympathetic Activation in Human Subjects: A Clinical Trial

    Science.gov (United States)

    May, Marcus; Gueler, Faikah; Barg-Hock, Hannelore; Heiringhoff, Karl-Heinz; Engeli, Stefan; Heusser, Karsten; Diedrich, André; Brandt, André; Strassburg, Christian P.; Tank, Jens; Sweep, Fred C. G. J.; Jordan, Jens

    2011-01-01

    Water drinking acutely increases sympathetic activity in human subjects. In animals, the response appears to be mediated through transient receptor potential channel TRPV4 activation on osmosensitive hepatic spinal afferents, described as osmopressor response. We hypothesized that hepatic denervation attenuates water drinking-induced sympathetic activation. We studied 20 liver transplant recipients (44±2.6 years, 1.2±0.1 years post transplant) as model of hepatic denervation and 20 kidney transplant recipients (43±2.6 years, 0.8±0.1 years post transplant) as immunosuppressive drug matched control group. Before and after 500 ml water ingestion, we obtained venous blood samples for catecholamine analysis. We also monitored brachial and finger blood pressure, ECG, and thoracic bioimpedance. Plasma norepinephrine concentration had changed by 0.01±0.07 nmol/l in liver and by 0.21±0.07 nmol/l in kidney transplant recipients (pwater drinking. While blood pressure and systemic vascular resistance increased in both groups, the responses tended to be attenuated in liver transplant recipients. Our findings support the idea that osmosensitive hepatic afferents are involved in water drinking-induced sympathetic activation in human subjects. Trial Registration ClinicalTrials.gov NCT01237431 PMID:22016786

  20. Inhibition of facilitation of sympathetic neurotransmission and angiotensin II-induced pressor effects in the pithed rat: comparison between valsartan, candesartan, eprosartan and embusartan

    NARCIS (Netherlands)

    Balt, J. C.; Mathy, M. J.; Pfaffendorf, M.; van Zwieten, P. A.

    2001-01-01

    In the pithed rat model, endogenously generated angiotensin (Ang) II can enhance sympathetic neurotransmission by acting on Ang II type 1 (AT1) receptors that are located on sympathetic nerve terminals. To compare the inhibitory potency of candesartan, valsartan, eprosartan and embusartan in

  1. Influence of the polyol pathway on norepinephrine transporter reduction in diabetic cardiac sympathetic nerves: implications for heterogeneous accumulation of MIBG

    International Nuclear Information System (INIS)

    Kiyono, Yasushi; Kajiyama, Satomi; Fujiwara, Hiromi; Kanegawa, Naoki; Saji, Hideo

    2005-01-01

    Cardiac scintigraphic studies using 123 I-labeled metaiodobenzylguanidine ([ 123 I]MIBG) have demonstrated heterogeneous myocardial accumulation of MIBG in diabetes. The accumulation has been found to correlate with a heterogeneous decrease in the expression of norepinephrine transporter (NET). In diabetic peripheral nerve tissue, polyol pathways are activated and cause nerve dysfunction and degeneration. However, there has been little research on the polyol pathway and cardiac sympathetic nerves. Therefore, to assess the influence of the polyol pathway on cardiac sympathetic nervous function, we investigated the regional accumulation of MIBG and NET protein expression in diabetic model rats treated with aldose reductase inhibitor (ARI) for the blockade of polyol pathways. Rats were given a single intravenous injection of streptozotocin (n=76, STZ-D rats). Starting the day after STZ injection, ARI was administered daily to 42 of the rats for 4 weeks (ARI-D rats). To assess the cardiac sympathetic nervous function, [ 125 I]MIBG autoradiographic experiments were carried out. Finally, NET protein expression was assessed with a saturation binding assay. The myocardial sorbitol concentration was significantly higher in STZ-D rats than in ARI-D rats. There was no heterogeneous accumulation of MIBG in ARI-D rats. There was a heterogeneous decrease of NET expression in STZ-D rats, but not in ARI-D or control rats. The gathered data indicate that the enhanced polyol pathway correlates with the decrease in regional cardiac sympathetic nervous function, and this impairment may lead to the reduction of NET protein in cardiac sympathetic nerves of the diabetic inferior wall. (orig.)

  2. Nitric Oxide Orchestrates a Power-Law Modulation of Sympathetic Firing Behaviors in Neonatal Rat Spinal Cords

    Directory of Open Access Journals (Sweden)

    Chun-Kuei Su

    2018-03-01

    Full Text Available Nitric oxide (NO is a diffusible gas and has multifarious effects on both pre- and postsynaptic events. As a consequence of complex excitatory and inhibitory integrations, NO effects on neuronal activities are heterogeneous. Using in vitro preparations of neonatal rats that retain the splanchnic sympathetic nerves and the thoracic spinal cord as an experimental model, we report here that either enhancement or attenuation of NO production in the neonatal rat spinal cords could increase, decrease, or not change the spontaneous firing behaviors recorded from splanchnic sympathetic single fibers. To elucidate the mathematical features of NO-mediated heterogeneous responses, the ratios of changes in firing were plotted against their original firing rates. In log-log plots, a linear data distribution demonstrated that NO-mediated heterogeneity in sympathetic firing responses was well described by a power function. Selective antagonists were applied to test if glycinergic, GABAergic, glutamatergic, and cholinergic neurotransmission in the spinal cord are involved in NO-mediated power-law firing modulations (plFM. NO-mediated plFM diminished in the presence of mecamylamine (an open-channel blocker of nicotinic cholinergic receptors, indicating that endogenous nicotinic receptor activities were essential for plFM. Applications of strychnine (a glycine receptor blocker, gabazine (a GABAA receptor blocker, or kynurenate (a broad-spectrum ionotropic glutamate receptor blocker also caused plFM. However, strychnine- or kynurenate-induced plFM was diminished by L-NAME (an NO synthase inhibitor pretreatments, indicating that the involvements of glycine or ionotropic glutamate receptor activities in plFM were secondary to NO signaling. To recapitulate the arithmetic natures of the plFM, the plFM were simulated by firing changes in two components: a step increment and a fractional reduction of their basal firing activities. Ionotropic glutamate receptor

  3. Cervical sympathetic chain schwannoma masquerading as a carotid body tumour with a postoperative complication of first-bite syndrome.

    LENUS (Irish Health Repository)

    Casserly, Paula

    2012-01-31

    Carotid body tumours (CBT) are the most common tumours at the carotid bifurcation. Widening of the bifurcation is usually demonstrated on conventional angiography. This sign may also be produced by a schwannoma of the cervical sympathetic plexus. A 45-year-old patient presented with a neck mass. Investigations included contrast-enhanced CT, MRI and magnetic resonance arteriography with contrast enhancement. Radiologically, the mass was considered to be a CBT due to vascular enhancement and splaying of the internal and external carotid arteries. Intraoperatively, it was determined to be a cervical sympathetic chain schwannoma (CSCS). The patient had a postoperative complication of first-bite syndrome (FBS).Although rare, CSCS should be considered in the differential diagnosis for tumours at the carotid bifurcation. Damage to the sympathetic innervation to the parotid gland can result in severe postoperative pain characterised by FBS and should be considered in all patients undergoing surgery involving the parapharyngeal space.

  4. SYMPATHETIC SOLAR FILAMENT ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui; Liu, Ying D.; Zimovets, Ivan; Hu, Huidong; Yang, Zhongwei [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Dai, Xinghua, E-mail: liuxying@spaceweather.ac.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2016-08-10

    The 2015 March 15 coronal mass ejection as one of the two that together drove the largest geomagnetic storm of solar cycle 24 so far was associated with sympathetic filament eruptions. We investigate the relations between the different filaments involved in the eruption. A surge-like small-scale filament motion is confirmed as the trigger that initiated the erupting filament with multi-wavelength observations and using a forced magnetic field extrapolation method. When the erupting filament moved to an open magnetic field region, it experienced an obvious acceleration process and was accompanied by a C-class flare and the rise of another larger filament that eventually failed to erupt. We measure the decay index of the background magnetic field, which presents a critical height of 118 Mm. Combining with a potential field source surface extrapolation method, we analyze the distributions of the large-scale magnetic field, which indicates that the open magnetic field region may provide a favorable condition for F2 rapid acceleration and have some relation with the largest solar storm. The comparison between the successful and failed filament eruptions suggests that the confining magnetic field plays an important role in the preconditions for an eruption.

  5. EXERCISE-INDUCED SYMPATHETIC FFA MOBILIZATION IN VMH-LESIONED RATS IS NORMALIZED BY FASTING

    NARCIS (Netherlands)

    Balkan, B.; Dijk, G. van; Strubbe, J.H.; Bruggink, J.E.; Steffens, A.B.

    This study investigates whether reduced sympathetic responses during physical exercise in ventromedial hypothalamus (VMH)-lesioned obese rats are the direct result of damage to hypothalamic circuits or a secondary effect of the altered metabolism in obesity. Obese, VMH-lesioned rats and lean

  6. Study of sympathetic nervous function under effort induced ischemia in patients with angina pectoris with I-123 metaiodobenzylguanidine (MIBG) myocardial SPECT images

    International Nuclear Information System (INIS)

    Tanaka, Takeshi; Aizawa, Tadanori; Kato, Kazuzo; Ogasawara, Ken; Sakuma, Toru; Kirigaya, Hajime; Hirosaka, Akira; Igarashi, Masaki

    1990-01-01

    I-123 metaiodobenzylguanidine (MIBG) is a norepinephrine analog, which can be used to study the sympathetic nervous function of the heart. With MIBG myocardial SPECT images sympathetic nervous function under effort induced ischemia were studied in 18 patients with significant coronary artery lesions. In 5 patients with effort induced ischemic region in stress Tl-201 myocardial images rest MIBG images were collected and then exercise stress test was performed. Patients continued exercising for 3 minutes after onset of symptom. Post-stress MIBG images were collected. Definite ischemic region was noted in stress Tl-201 myocardial images, however no differences were noted between rest and post-stress MIBG images. These results suggested that exercise induced ischemia did not enhance release of uptaken MIBG. In 13 patients with significant coronary artery lesions symptom-limited exercise stress test was performed MIBG and Tl-201 were simultaneously injected at onset of symptom and patients continued exercising for an additional one minute. In 6 cases (46%, 6/13) MIBG defects with Tl-201 uptake were noted. These results showed that exercise induced ischemia depressed net MIBG uptake and that sympathetic nervous function (MIBG images) may be more sensitive to ischemic damage than muscle (Tl-201 images). It is suggested that exercise induced ischemia depressed reuptake of norepinephrine at sympathetic nervous endings. MIBG myocardial SPECT images may be useful for evaluating sympathetic nervous function under ischemia. (author)

  7. Macrophage populations and cardiac sympathetic denervation during L-NAME-induced hypertension in rats

    DEFF Research Database (Denmark)

    Neves, S R S; Machado, C R S; Pinto, A M T

    2006-01-01

    The rat model of hypertension induced by prolonged treatment with Nomega-nitro-L-arginine methyl ester (L-NAME) has been extensively used. However, the effects on cardiac autonomic innervation are unknown. Here, the cardiac sympathetic innervation is analyzed in parallel with myocardial lesions a...

  8. Data in support on the shape of Schwann cells and sympathetic neurons onto microconically structured silicon surfaces

    Directory of Open Access Journals (Sweden)

    C. Simitzi

    2015-09-01

    Full Text Available This article contains data related to the research article entitled “Laser fabricated discontinuous anisotropic microconical substrates as a new model scaffold to control the directionality of neuronal network outgrowth” in the Biomaterials journal [1]. Scanning electron microscopy (SEM analysis is performed to investigate whether Schwann cells and sympathetic neurons alter their morphology according to the underlying topography, comprising arrays of silicon microcones with anisotropic geometrical characteristics [1]. It is observed that although soma of sympathetic neurons always preserves its round shape, this is not the case for Schwann cells that become highly polarized in high roughness microconical substrates.

  9. Release of NPY in pig pancreas: Dual parasympathetic and sympathetic regulation

    International Nuclear Information System (INIS)

    Sheikh, S.P.; Holst, J.J.; Skak-Nielsen, T.; Knigge, U.; Warberg, J.; Theodorsson-Norheim, E.; Hoekfelt, T.; Lundberg, J.M.; Schwartz, T.W.

    1988-01-01

    Several lines of evidence have connected neuropeptide Y (NPY), a 36-residue polypeptide, to the sympathetic division of the autonomic nervous system. The authors studied the localization, the molecular characteristics, and the release of NPY and norepinephrine (NE) in the porcine pancreas. Immunohistochemical investigations revealed that NPY nerves around blood vessels were likely to be of adrenergic nature, whereas NPY-immunoreactive fibers close to exocrine and endocrine cells may originate from local ganglia also containing VIP (vasoactive intestinal peptide) and PHI (peptide histidine isoleucine). Electrical stimulation of the splanchnic nerve supply to the isolated perfused pig pancreas resulted in a corelease of NPY and NE into the venous effluent. Stimulation of the vagal nerves caused a sevenfold larger release of NPY without affecting the NE secretion. Characterization of the NPY immunoreactivity in the pancreatic tissue and in the venous effluent by gel filtration, high-performance liquid chromatography, and isoelectric focusing shoed that the immunoreactive NPY was indistinguishable from synthetic porcine NPY. It is concluded that, although NPY is associated with sympathetic perivascular neurons, the majority of the pancreatic NPY-containing nerve fibers are likely to belong to the parasympathetic division of the autonomic nervous system

  10. Sympathetic dysfunction in vasovagal syncope and the postural orthostatic tachycardia syndrome

    Directory of Open Access Journals (Sweden)

    Elisabeth eLambert

    2014-07-01

    Full Text Available Orthostatic intolerance is the inability to tolerate the upright posture and is relieved by recumbence. It most commonly affects young women and has a major impact on quality of life and psychosocial well being. Several forms of orthostatic intolerance have been described. The most common one is the recurrent vasovagal syncope (VVS phenotype which presents as a transient and abrupt loss of consciousness and postural tone that is followed by rapid recovery. Another common type of orthostatic intolerance is the postural orthostatic tachycardia syndrome (POTS which is characterized by an excessive rise in heart rate upon standing and is associated with symptoms of presyncope such as light-headedness, fatigue, palpitations and nausea. Maintenance of arterial pressure under condition of reduced central blood volume during the orthostasis is accomplished in large part through sympathetic efferent nerve traffic to the peripheral vasculature. Therefore sympathetic nervous system (SNS dysfunction is high on the list of possible contributors to the pathophysiology of orthostatic intolerance. Investigations into the role of the SNS in orthostatic intolerance have yielded mixed results. This review outlines the current knowledge of the function of the SNS in both VVS and POTS.

  11. Sympathetic activity of S-(+-ketamine low doses in the epidural space

    Directory of Open Access Journals (Sweden)

    Slobodan Mihaljevic

    2014-07-01

    Full Text Available Background and objectives: S-(+-ketamine is an intravenous anaesthetic and sympathomimetic with properties of local anaesthetic. It has an effect of an analgetic and local anaesthetic when administered epidurally, but there are no data whether low doses of S-(+-ketamine have sympathomimetic effects. The aim of this study was to determine whether low doses of S-(+-ketamine, given epidurally together with local anaesthetic, have any effect on sympathetic nervous system, both systemic and below the level of anaesthetic block. Methods: The study was conducted on two groups of patients to whom epidural anaesthesia was administered to. Local anaesthesia (0.5% bupivacaine was given to one group (control group while local anaesthesia and S-(+-ketamine were given to other group. Age, height, weight, systolic, diastolic and mean arterial blood pressure were measured. Non-competitive enzyme immunochemistry method (Cat Combi ELISA was used to determine the concentrations of catecholamines (adrenaline and noradrenaline. Immunoenzymometric determination with luminescent substrate on a machine called Vitros Eci was used to determine the concentration of cortisol. Pulse transit time was measured using photoplethysmography. Mann–Whitney U-test, Wilcoxon test and Friedman ANOVA were the statistical tests. Blood pressure, pulse, adrenaline, noradrenaline and cortisol concentrations were measured in order to estimate systemic sympathetic effects. Results: 40 patients in the control group were given 0.5% bupivacaine and 40 patients in the test group were given 0.5% bupivacaine with S-(+-ketamine. Value p < 0.05 has been taken as a limit of statistical significance. Conclusions: Low dose of S-(+-ketamine administered epidurally had no sympathomimetic effects; it did not change blood pressure, pulse, serum hormones or pulse transit time. Low dose of S-(+-ketamine administered epidurally did not deepen sympathetic block. Adding 25 mg of S-(+-ketamine to 0

  12. Patterns of Sympathetic Responses Induced by Different Stress Tasks

    Science.gov (United States)

    Fechir, M; Schlereth, T; Purat, T; Kritzmann, S; Geber, C; Eberle, T; Gamer, M; Birklein, F

    2008-01-01

    Stress tasks are used to induce sympathetic nervous system (SNS) arousal. However, the efficacy and the patterns of SNS activation have not been systematically compared between different tasks. Therefore, we analyzed SNS activation during the following stress tasks: Presentation of negative, positive, and – as a control – neutral affective pictures, Color-Word interference test (CWT), mental arithmetic under time limit, singing a song aloud, and giving a spontaneous talk. We examined 11 healthy subjects and recorded the following SNS parameters: Activation of emotional sweating by quantitative sudometry, skin vasoconstriction by laser-Doppler flowmetry, heart rate by ECG, blood pressure by determination of pulse wave transit time (PWTT), and electromyographic (EMG) activity of the trapezius muscle. Moreover, subjective stress ratings were acquired for each task using a visual analog scale. All tasks were felt significantly stressful when compared to viewing neutral pictures. However, SNS activation was not reliable: Affective pictures did not induce a significant SNS response; singing, giving a talk and mental arithmetic selectively increased heart rate and emotional sweating. Only the CWT globally activated the SNS. Regarding all tasks, induction of emotional sweating, increase of heart rate and blood pressure significantly correlated with subjective stress ratings, in contrast to EMG and skin vasoconstriction. Our results show that the activation of the SNS widely varies depending on the stress task. Different stress tasks differently activate the SNS, which is an important finding when considering sympathetic reactions - in clinical situations and in research. PMID:19018304

  13. Renal sympathetic denervation in the treatment of resistant hypertension.

    Science.gov (United States)

    Sánchez-Álvarez, Catalina; González-Vélez, Miguel; Stilp, Erik; Ward, Charisse; Mena-Hurtado, Carlos

    2014-12-01

    Arterial hypertension (HTN) is a major health problem worldwide. Treatment-resistant hypertension (trHTN) is defined as the failure to achieve target blood pressure despite the concomitant use of maximally tolerated doses of three different antihypertensive medications, including a diuretic. trHTN is associated with considerable morbidity and mortality. Renal sympathetic denervation (RDn) is available and implemented abroad as a strategy for the treatment of trHTN and is currently under clinical investigation in the United States. Selective renal sympathectomy via an endovascular approach effectively decreases renal sympathetic nerve hyperactivity leading to a decrease in blood pressure. The Symplicity catheter, currently under investigation in the United States, is a 6-French compatible system advanced under fluoroscopic guidance via percutaneous access of the common femoral artery to the distal lumen of each of the main renal arteries. Radiofrequency (RF) energy is then applied to the endoluminal surface of the renal arteries via an electrode located at the tip of the catheter. Two clinical trials (Symplicity HTN 1 and Symplicity HTN 2) have shown the efficacy of RDn with a post-procedure decline of 27/17 mmHg at 12 months and 32/12 mmHg at 6 months, respectively, with few minor adverse events. Symplicity HTN-3 study is a, multi-center, prospective, single-blind, randomized, controlled study currently under way and will provide further insights about the safety and efficacy of renal denervation in patients with trHTN.

  14. A new function for ATP: activating cardiac sympathetic afferents during myocardial ischemia.

    Science.gov (United States)

    Fu, Liang-Wu; Longhurst, John C

    2010-12-01

    Myocardial ischemia activates cardiac sympathetic afferents leading to chest pain and reflex cardiovascular responses. Brief myocardial ischemia leads to ATP release in the interstitial space. Furthermore, exogenous ATP and α,β-methylene ATP (α,β-meATP), a P2X receptor agonist, stimulate cutaneous group III and IV sensory nerve fibers. The present study tested the hypothesis that endogenous ATP excites cardiac afferents during ischemia through activation of P2 receptors. Nerve activity of single unit cardiac sympathetic afferents was recorded from the left sympathetic chain or rami communicates (T(2)-T(5)) in anesthetized cats. Single fields of 45 afferents (conduction velocities = 0.25-4.92 m/s) were identified in the left ventricle with a stimulating electrode. Five minutes of myocardial ischemia stimulated 39 of 45 cardiac afferents (8 Aδ, 37 C fibers). Epicardial application of ATP (1-4 μmol) stimulated six ischemically sensitive cardiac afferents in a dose-dependent manner. Additionally, epicardial ATP (2 μmol), ADP (2 μmol), a P2Y agonist, and α,β-meATP (0.5 μmol) significantly activated eight other ischemically sensitive afferents. Third, pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid, a P2 receptor antagonist, abolished the responses of six afferents to epicardial ATP (2 μmol) and attenuated the ischemia-related increase in activity of seven other afferents by 37%. In the absence of P2 receptor blockade, cardiac afferents responded consistently to repeated application of ATP (n = 6) and to recurrent myocardial ischemia (n = 6). Finally, six ischemia-insensitive cardiac spinal afferents did not respond to epicardial ATP (2-4 μmol), although these afferents did respond to epicardial bradykinin. Taken together, these data indicate that, during ischemia, endogenously released ATP activates ischemia-sensitive, but not ischemia-insensitive, cardiac spinal afferents through stimulation of P2 receptors likely located on the cardiac sensory

  15. Randomized sham-controlled trial of renal sympathetic denervation in mild resistant hypertension.

    Science.gov (United States)

    Desch, Steffen; Okon, Thomas; Heinemann, Diana; Kulle, Konrad; Röhnert, Karoline; Sonnabend, Melanie; Petzold, Martin; Müller, Ulrike; Schuler, Gerhard; Eitel, Ingo; Thiele, Holger; Lurz, Philipp

    2015-06-01

    Few data are available with regard to the effectiveness of renal sympathetic denervation in patients with resistant hypertension yet only mildly elevated blood pressure (BP). Patients with resistant hypertension and slightly elevated BP (day-time systolic pressure, 135-149 and diastolic pressure, 90-94 mm Hg on 24-hour ambulatory measurement) were randomized in a 1:1 ratio to renal sympathetic denervation with the Symplicity Flex Catheter (Medtronic) or an invasive sham procedure. The primary efficacy end point was the change in 24-hour systolic BP at 6 months between groups in the intention to treat population. A total of 71 patients underwent randomization. Baseline day-time systolic BP was 144.4±4.8 mm Hg in patients assigned to denervation and 143.0±4.7 mm Hg in patients randomized to the sham procedure. The mean change in 24-hour systolic BP in the intention to treat cohort at 6 months was -7.0 mm Hg (95% confidence interval, -10.8 to -3.2) for patients undergoing denervation and -3.5 mm Hg (95% confidence interval, -6.7 to -0.2) in the sham group (P=0.15). In the per protocol population, the change in 24-hour systolic BP at 6 months was -8.3 mm Hg (95% confidence interval, -11.7 to -5.0) for patients undergoing denervation and -3.5 mm Hg (95% confidence interval, -6.8 to -0.2) in the sham group (P=0.042). In patients with mild resistant hypertension, renal sympathetic denervation failed to show a significant reduction in the primary end point of 24-hour systolic BP at 6 months between groups in the intention to treat analysis. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01656096. © 2015 American Heart Association, Inc.

  16. Muscle afferent receptors engaged in augmented sympathetic responsiveness in peripheral artery disease

    Directory of Open Access Journals (Sweden)

    Jianhua eLi

    2012-07-01

    Full Text Available The exercise pressor reflex (EPR is a neural control mechanism responsible for the cardiovascular responses to exercise. As exercise is initiated, thin fiber muscle afferent nerves are activated by mechanical and metabolic stimuli arising in the contracting muscles. This leads to reflex increases in arterial blood pressure and heart rate primarily through activation of sympathetic nerve activity (SNA. Studies of humans and animals have indicated that the EPR is exaggerated in a number of cardiovascular diseases. For the last several years, studies have specifically employed a rodent model to examine the mechanisms at receptor and cellular levels by which responses of SNA and blood pressure to static exercise are heightened in peripheral artery disease (PAD, one of the most common cardiovascular disorders. A rat model of this disease has well been established. Specifically, femoral artery occlusion is used to study intermittent claudication that is observed in human PAD. The receptors on thin fiber muscle afferents that are engaged in this disease include transient receptor potential vanilloid type 1 (TRPV1, purinergic P2X and acid sensing ion channel (ASIC. The role played by nerve growth factor (NGF in regulating those sensory receptors in the processing of amplified EPR was also investigated. The purpose of this review is to focus on a theme namely that PAD accentuates autonomic reflex responses to exercise and further address regulatory mechanisms leading to abnormal sympathetic responsiveness. This review will present some of recent results in regard with several receptors in muscle sensory neurons in contribution to augmented autonomic reflex responses in PAD. Review of the findings from recent studies would lead to a better understanding in integrated processing of sympathetic nervous system in PAD.

  17. Contemporary review on the pathogenesis of takotsubo syndrome: The heart shedding tears: Norepinephrine churn and foam at the cardiac sympathetic nerve terminals.

    Science.gov (United States)

    Y-Hassan, Shams; De Palma, Rodney

    2017-02-01

    Takotsubo syndrome (TS), an increasingly recognized acute cardiac disease entity, is characterized by a unique pattern of circumferential and typically regional left ventricular wall motion abnormality resulting in a conspicuous transient ballooning of the left ventricle during systole. The mechanism of the disease remains elusive. However, the sudden onset of acute myocardial stunning in a systematic pattern extending beyond a coronary artery territory; the history of a preceding emotional or physical stress factor in two thirds of cases; the signs of sympathetic denervation at the regions of left ventricular dysfunction on sympathetic scintigraphy; the finding of myocardial edema and other signs consistent with (catecholamine-induced) myocarditis shown by cardiac magnetic resonance imaging; and the contraction band necrosis on histopathological examination all argue strongly for the involvement of the cardiac sympathetic nervous system in the pathogenesis of TS. In this narrative review, extensive evidence in support of local cardiac sympathetic nerve hyperactivation, disruption and norepinephrine spillover causing TS in predisposed patients is provided. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. MR-guided Periarterial Ethanol Injection for Renal Sympathetic Denervation: A Feasibility Study in Pigs

    International Nuclear Information System (INIS)

    Streitparth, F.; Walter, A.; Stolzenburg, N.; Heckmann, L.; Breinl, J.; Rinnenthal, J. L.; Beck, A.; De Bucourt, M.; Schnorr, J.; Bernhardt, U.; Gebauer, B.; Hamm, B.; Günther, R. W.

    2013-01-01

    Purpose. To evaluate the feasibility and efficacy of image-guided periarterial ethanol injection as an alternative to transluminal radiofrequency ablation. Methods. Unilateral renal periarterial ethanol injection was performed under general anesthesia in 6 pigs with the contralateral kidney serving as control. All interventions were performed in an open 1.0 T MRI system under real-time multiplanar guidance. The injected volume was 5 ml (95 % ethanol labelled marked MR contrast medium) in 2 pigs and 10 ml in 4 pigs. Four weeks after treatment, the pigs underwent MRI including MRA and were killed. Norepinephrine (NE) concentration in the renal parenchyma served as a surrogate parameter to analyze the efficacy of sympathetic denervation. In addition, the renal artery and sympathetic nerves were examined histologically to identify evidence of vascular and neural injury. Results. In pigs treated with 10 ml ethanol, treatment resulted in neural degeneration. We found a significant reduction of NE concentration in the kidney parenchyma of 53 % (p < 0.02) compared with the untreated contralateral kidney. In pigs treated with 5 ml ethanol, no significant changes in histology or NE were observed. There was no evidence of renal arterial stenosis in MRI, macroscopy or histology in any pig. Conclusion. MR-guided periarterial ethanol injection was feasible and efficient for renal sympathetic denervation in a swine model. This technique may be a promising alternative to the catheter-based approach in the treatment of resistant arterial hypertension.

  19. MR-guided Periarterial Ethanol Injection for Renal Sympathetic Denervation: A Feasibility Study in Pigs

    Energy Technology Data Exchange (ETDEWEB)

    Streitparth, F., E-mail: florian.streitparth@charite.de; Walter, A.; Stolzenburg, N.; Heckmann, L.; Breinl, J. [Charite, Humboldt University, Department of Radiology (Germany); Rinnenthal, J. L. [Charite, Humboldt University, Department of Neuropathology (Germany); Beck, A.; De Bucourt, M.; Schnorr, J. [Charite, Humboldt University, Department of Radiology (Germany); Bernhardt, U. [InnoRa GmbH (Germany); Gebauer, B.; Hamm, B.; Guenther, R. W. [Charite, Humboldt University, Department of Radiology (Germany)

    2013-06-15

    Purpose. To evaluate the feasibility and efficacy of image-guided periarterial ethanol injection as an alternative to transluminal radiofrequency ablation. Methods. Unilateral renal periarterial ethanol injection was performed under general anesthesia in 6 pigs with the contralateral kidney serving as control. All interventions were performed in an open 1.0 T MRI system under real-time multiplanar guidance. The injected volume was 5 ml (95 % ethanol labelled marked MR contrast medium) in 2 pigs and 10 ml in 4 pigs. Four weeks after treatment, the pigs underwent MRI including MRA and were killed. Norepinephrine (NE) concentration in the renal parenchyma served as a surrogate parameter to analyze the efficacy of sympathetic denervation. In addition, the renal artery and sympathetic nerves were examined histologically to identify evidence of vascular and neural injury. Results. In pigs treated with 10 ml ethanol, treatment resulted in neural degeneration. We found a significant reduction of NE concentration in the kidney parenchyma of 53 % (p < 0.02) compared with the untreated contralateral kidney. In pigs treated with 5 ml ethanol, no significant changes in histology or NE were observed. There was no evidence of renal arterial stenosis in MRI, macroscopy or histology in any pig. Conclusion. MR-guided periarterial ethanol injection was feasible and efficient for renal sympathetic denervation in a swine model. This technique may be a promising alternative to the catheter-based approach in the treatment of resistant arterial hypertension.

  20. Influence of ventilation and hypocapnia on sympathetic nerve responses to hypoxia in normal humans.

    Science.gov (United States)

    Somers, V K; Mark, A L; Zavala, D C; Abboud, F M

    1989-11-01

    The sympathetic response to hypoxia depends on the interaction between chemoreceptor stimulation (CRS) and the associated hyperventilation. We studied this interaction by measuring sympathetic nerve activity (SNA) to muscle in 13 normal subjects, while breathing room air, 14% O2, 10% O2, and 10% O2 with added CO2 to maintain isocapnia. Minute ventilation (VE) and blood pressure (BP) increased significantly more during isocapnic hypoxia (IHO) than hypocapnic hypoxia (HHO). In contrast, SNA increased more during HHO [40 +/- 10% (SE)] than during IHO (25 +/- 19%, P less than 0.05). To determine the reason for the lesser increase in SNA with IHO, 11 subjects underwent voluntary apnea during HHO and IHO. Apnea potentiated the SNA responses to IHO more than to HHO. SNA responses to IHO were 17 +/- 7% during breathing and 173 +/- 47% during apnea whereas SNA responses to HHO were 35 +/- 8% during breathing and 126 +/- 28% during apnea. During ventilation, the sympathoexcitation of IHO (compared with HHO) is suppressed, possibly for two reasons: 1) because of the inhibitory influence of activation of pulmonary afferents as a result of a greater increase in VE, and 2) because of the inhibitory influence of baroreceptor activation due to a greater rise in BP. Thus in humans, the ventilatory response to chemoreceptor stimulation predominates and restrains the sympathetic response. The SNA response to chemoreceptor stimulation represents the net effect of the excitatory influence of the chemoreflex and the inhibitory influence of pulmonary afferents and baroreceptor afferents.

  1. Effect of percutaneous renal sympathetic nerve radiofrequency ablation in patients with severe heart failure.

    Science.gov (United States)

    Dai, Qiming; Lu, Jing; Wang, Benwen; Ma, Genshan

    2015-01-01

    This study aimed to investigate the clinical feasibility and effects of percutaneous renal sympathetic nerve radiofrequency ablation in patients with heart failure. A total of 20 patients with heart failure were enrolled, aged from 47 to 75 years (63±10 years). They were divided into the standard therapy (n = 10), and renal nerve radiofrequency ablation groups (n = 10). There were 15 males and 5 female patients, including 8 ischemic cardiomyopathy, 8 dilated cardiomyopathy, and 8 hypertensive cardiopathy. All of the patients met the criteria of New York Heart Association classes III-IV cardiac function. Patients with diabetes and renal failure were excluded. Percutaneous renal sympathetic nerve radiofrequency ablation was performed on the renal artery wall under X-ray guidance. Serum electrolytes, neurohormones, and 24 h urine volume were recorded 24 h before and after the operation. Echocardiograms were performed to obtain left ventricular ejection fraction at baseline and 6 months. Heart rate, blood pressure, symptoms of dyspnea and edema were also monitored. After renal nerve ablation, 24 h urine volume was increased, while neurohormone levels were decreased compared with those of pre-operation and standard therapy. No obvious change in heart rate or blood pressure was recorded. Symptoms of heart failure were improved in patients after the operation. No complications were recorded in the study. Percutaneous renal sympathetic nerve radiofrequency ablation may be a feasible, safe, and effective treatment for the patients with severe congestive heart failure.

  2. Ongoing myocardial damage relates to cardiac sympathetic nervous disintegrity in patients with heart failure

    International Nuclear Information System (INIS)

    Arimoto, Takanori; Takeishi, Yasuchika; Niizeki, Takeshi

    2005-01-01

    Iodine-123-metaiodobenzylguanidine ( 123 I-MIBG) has been used to assess the integrity and function of the cardiac sympathetic nervous system in patients with heart failure. Heart-type fatty acid binding protein (H-FABP) is released into the circulation when the myocardium is injured, and H-FABP has been recently used as a novel marker for the diagnosis of ongoing myocardial damage. The aim of the present study was to compare cardiac sympathetic nervous activity assessed by 123 I-MIBG imaging with serum levels of H-FABP in patients with heart failure. Fifty patients with chronic heart failure were studied. 123 I-MIBG imaging was carried out at 30 min (early) and 240 min (delayed) after the tracer injection. We measured serum levels of H-FABP using a sandwich enzyme linked immunosorbent assay. Heart to mediastinum (H/M) ratios of 123 I-MIBG decreased and washout rate increased with higher New York Heart Association (NYHA) functional class. H-FABP, norepinephrine and brain natriuretic peptide (BNP) levels increased as the severity of NYHA class advanced. Delayed H/M ratio was significantly correlated with H-FABP (r=-0.296, p=0.029) and BNP (r=-0.335, p=0.0213). Myocardial washout rate of 123 I-MIBG was also correlated with H-FABP (r=0.469, p 123 I-MIBG imaging is an appropriate approach to evaluate non-invasively not only cardiac sympathetic nervous activity, but also latent ongoing myocardial damage in the failing heart. (author)

  3. Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system

    Science.gov (United States)

    Jöckel, Andreas; Faber, Aline; Kampschulte, Tobias; Korppi, Maria; Rakher, Matthew T.; Treutlein, Philipp

    2015-01-01

    Sympathetic cooling with ultracold atoms and atomic ions enables ultralow temperatures in systems where direct laser or evaporative cooling is not possible. It has so far been limited to the cooling of other microscopic particles, with masses up to 90 times larger than that of the coolant atom. Here, we use ultracold atoms to sympathetically cool the vibrations of a Si3N4 nanomembrane, the mass of which exceeds that of the atomic ensemble by a factor of 1010. The coupling of atomic and membrane vibrations is mediated by laser light over a macroscopic distance and is enhanced by placing the membrane in an optical cavity. We observe cooling of the membrane vibrations from room temperature to 650 ± 230 mK, exploiting the large atom-membrane cooperativity of our hybrid optomechanical system. With technical improvements, our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as nanomembranes or levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state.

  4. Sympathetic nerve damage and restoration after ischemia-reperfusion injury as assessed by {sup 11}C-hydroxyephedrine

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Rudolf A.; Higuchi, Takahiro [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); University of Wuerzburg, Comprehensive Heart Failure Center, Wuerzburg (Germany); Maya, Yoshifumi [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Nihon Medi-Physics Co., Ltd., Research Centre, Chiba (Japan); Rischpler, Christoph [Technische Universitaet Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Muenchen (Germany); Javadi, Mehrbod S. [Johns Hopkins University, Division of Nuclear Medicine, Russell H. Morgan Department of Radiology, Baltimore, MD (United States); Fukushima, Kazuhito [Hyogo College of Medicine, Department of Radiology, Hyogo (Japan); Lapa, Constantin [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Herrmann, Ken [University of Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); David Geffen School of Medicine at UCLA, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States)

    2016-02-15

    An altered state of the cardiac sympathetic nerves is an important prognostic factor in patients with coronary artery disease. The aim of this study was to investigate regional sympathetic nerve damage and restoration utilizing a rat model of myocardial transient ischemia and a catecholamine analog PET tracer, {sup 11}C-hydroxyephedrine ({sup 11}C-HED). Transient myocardial ischemia was induced by coronary occlusion for 20 min and reperfusion in male Wistar rats. Dual-tracer autoradiography was performed subacutely (7 days) and chronically (2 months) after ischemia, and in control rats without ischemia using {sup 11}C-HED as a marker of sympathetic innervation and {sup 201}TI for perfusion. Additional serial in vivo cardiac {sup 11}C-HED and {sup 18}F-FDG PET scans were performed in the subacute and chronic phases after ischemia. After transient ischemia, the {sup 11}C-HED uptake defect areas in both the subacute and chronic phases were clearly larger than the perfusion defect areas in the midventricular wall. The subacute {sup 11}C-HED uptake defect showed a transmural pattern, whereas uptake recovered in the subepicardial portion in the chronic phase. Tyrosine hydroxylase antibody nerve staining confirmed regional denervation corresponding to areas of decreased {sup 11}C-HED uptake. Serial in vivo PET imaging visualized reductions in the area of the {sup 11}C-HED uptake defects in the chronic phase consistent with autoradiography and histology. Higher susceptibility of sympathetic neurons compared to myocytes was confirmed by a larger {sup 11}C-HED defect with a corresponding histologically identified region of denervation. Furthermore, partial reinnervation was observed in the chronic phase as shown by recovery of subepicardial {sup 11}C-HED uptake. (orig.)

  5. The Impact of Sympathetic Components of Emotional Intelligence on Citizenship Behavior of Physicians

    Directory of Open Access Journals (Sweden)

    Elham Sahafi

    2012-03-01

    Full Text Available Objective: One of the most important characteristics of an effective employee performance is person'sSympathetic components of emotional intelligence that has been increasingly considered in anenterprise environment. In this article, we will survey this component in promoting citizenship behaviorof physicians.Materials and methods: In a descriptive, co relational and statistical community approach Theoutstanding performance of an organization using simple random sampling method, 212 cases wereincluded as doctors having subspecialty of the infertility in the Islamic Republic of Iran. A questionnairewas used for data collection. After summarization, structural equation modeling techniques were usedfor analysis and interpretation of research data.Results: The Sympathetic component has a significant positive impact on organizational citizenshipbehavior (T=2.90 and this factor with the effect of 0.46% has the impact on organizational citizenshipbehavior.Conclusion: Considering the importance of sympathy aspect due to results of this research hospitalmanagers are recommended to consider the importance of emotional intelligence in order to enhancethe social capabilities of citizenship behaviors of physicians.

  6. Sympathetic cooling of nanospheres with cold atoms

    Science.gov (United States)

    Montoya, Cris; Witherspoon, Apryl; Ranjit, Gambhir; Casey, Kirsten; Kitching, John; Geraci, Andrew

    2016-05-01

    Ground state cooling of mesoscopic mechanical structures could enable new hybrid quantum systems where mechanical oscillators act as transducers. Such systems could provide coupling between photons, spins and charges via phonons. It has recently been shown theoretically that optically trapped dielectric nanospheres could reach the ground state via sympathetic cooling with trapped cold atoms. This technique can be beneficial in cases where cryogenic operation of the oscillator is not practical. We describe experimental advances towards coupling an optically levitated dielectric nanosphere to a gas of cold Rubidium atoms. The sphere and the cold atoms are in separate vacuum chambers and are coupled using a one-dimensional optical lattice. This work is partially supported by NSF, Grant Nos. PHY-1205994,PHY-1506431.

  7. Alpha-Blocker Treatment Response in Men With Lower Urinary Tract Symptoms Based on Sympathetic Activity: Prospective, Multicenter, Open-Labeled, Observational Study

    Directory of Open Access Journals (Sweden)

    Sung Gon Park

    2015-06-01

    Full Text Available Purpose: In this study, we compared the treatment outcomes for an α-blocker between 2 groups of men, one with high sympathetic activity (HSA and another with low sympathetic activity (LSA or normal sympathetic activity. Methods: A total of 159 men (≥50 years of age with lower urinary tract symptoms resulting from benign prostatic hyperplasia were analyzed. We assigned patients to groups according to their sympathetic activity, which was evaluated by heart ratevariability measurements. HSA was defined as a low frequency/high frequency ratio greater than 1.6. All patients received 10mg of alfuzosin once a day for 12 weeks. The primary end point was a change in the total International Prostate SymptomScore (IPSS at 12 weeks from baseline. Results: Sixty-seven men were assigned to the HSA group and 92 men were assigned to the LSA group. The baseline characteristics were not significantly different between the 2 groups, and the response to alfuzosin was good in both groups. Themean total IPSS change was not different between the groups. Both groups were not significantly different with respect to the changes in maximal flow rate, IPSS voiding or storage symptom subscores, quality of life, and rates of adverse drug events. TheHSA group showed a similar willingness to continue treatment compared to the LSA group, although their treatment satisfaction rating was lower. Conclusions: The therapeutic effects of alfuzosin did not differ in regards to the differences in sympathetic activity, but treatment satisfaction ratings were lower in the HSA group.

  8. Comparison of thermogenic sympathetic response to food intake between obese and non-obese young women.

    Science.gov (United States)

    Matsumoto, T; Miyawaki, C; Ue, H; Kanda, T; Yoshitake, Y; Moritani, T

    2001-02-01

    Sympathetic nervous system abnormality in humans is still a matter of debate. The present study was designed to examine diet-induced autonomic nervous system activity and metabolic change in obese and non-obese young women. Sixteen age- and height-matched obese and non-obese young women participated in this study. Sympathovagal activities were assessed by means of our newly developed spectral analysis procedure of heart-rate variability during the resting condition and after mixed-food ingestion (480 kcal). Energy expenditure was also measured under these two conditions. There was no significant difference in any of the parameters of the heart-rate variability between the obese group and control group during the resting condition. In the control group, both absolute values (221.5 +/- 54.5 vs. 363.8 +/- 43.7 ms2, p frequency component and global sympathetic nervous system index (1.46 +/- 0.19 vs. 3.26 +/- 0.61, p food ingestion compared with the values obtained after resting condition. However, no such sympathetic response was found in the obese group. Energy expenditure increased in the two groups after the meal, but the magnitude of the increase above the preprandial resting condition was significantly greater in the control group than in the obese group (11.2 +/- 2.3 vs. 6.7 +/- 0.8%, p food intake, which might be related to lowered capacity of thermogenesis and the state of obesity.

  9. Molecular Mechanisms Underlying β-Adrenergic Receptor-Mediated Cross-Talk between Sympathetic Neurons and Immune Cells

    Directory of Open Access Journals (Sweden)

    Dianne Lorton

    2015-03-01

    Full Text Available Cross-talk between the sympathetic nervous system (SNS and immune system is vital for health and well-being. Infection, tissue injury and inflammation raise firing rates of sympathetic nerves, increasing their release of norepinephrine (NE in lymphoid organs and tissues. NE stimulation of β2-adrenergic receptors (ARs in immune cells activates the cAMP-protein kinase A (PKA intracellular signaling pathway, a pathway that interfaces with other signaling pathways that regulate proliferation, differentiation, maturation and effector functions in immune cells. Immune–SNS cross-talk is required to maintain homeostasis under normal conditions, to develop an immune response of appropriate magnitude after injury or immune challenge, and subsequently restore homeostasis. Typically, β2-AR-induced cAMP is immunosuppressive. However, many studies report actions of β2-AR stimulation in immune cells that are inconsistent with typical cAMP–PKA signal transduction. Research during the last decade in non-immune organs, has unveiled novel alternative signaling mechanisms induced by β2-AR activation, such as a signaling switch from cAMP–PKA to mitogen-activated protein kinase (MAPK pathways. If alternative signaling occurs in immune cells, it may explain inconsistent findings of sympathetic regulation of immune function. Here, we review β2-AR signaling, assess the available evidence for alternative signaling in immune cells, and provide insight into the circumstances necessary for “signal switching” in immune cells.

  10. [The influence of single moderate exercise on the sympathetic nervous system activity in patients with essential hypertension].

    Science.gov (United States)

    Gajek, Jacek; Zyśko, Dorota

    2002-12-01

    Sympathetic nervous system may play an important role in development and maintenance of hypertension. Its activity can be assessed by plasma levels of catecholamines, neuropeptide Y (NPY) and adrenergic receptor density. Hypertensive subjects may be more prone to reveal overactivity of sympathetic nervous system, for instance as a result of physical stress. The aim of the study was to determine the activity of sympathetic nervous system in young patients with newly recognized, untreated mild hypertension. The study was carried out in 22 patients (age 38.5 +/- 10.3 years) and 20 normotensive volunteers (age 38.5 +/- 8.6 years) as a control group, matched for sex. Density of alpha 2- and beta-adrenergic receptors using 3H-yohimbine and 125I-cyanopindolol respectively, total catecholamines and plasma renin activity using radioenzymatic assay, neuropeptide Y and aldosterone using radioimmunoassay were assessed in the blood taken in the supine position and after moderate bicycle ergometer exercise. Plasma concentration of NPY at rest did not differ between the groups, but increased significantly after exercise and was greater in hypertensive patients (p < 0.05). The density of alpha 2- and beta-adrenergic receptors at rest and after exercise in hypertensive subjects was unchanged when comparing to healthy individuals. The plasma concentrations of endogenous catecholamines, plasma renin activity and aldosterone level increase during exercise in both studied groups (p < 0.05). Aldosterone level was higher in hypertensive patients at rest (p < 0.05). There was a negative correlation between baseline aldosterone and NPY levels in hypertensive patients (r = -0.44, p < 0.05). Moderate exercise in hypertensive subjects causes the hyperactivity of sympathetic nervous system expressed as increase of NPY plasma level.

  11. Sex differences in the modulation of vasomotor sympathetic outflow during static handgrip exercise in healthy young humans

    Science.gov (United States)

    Jarvis, Sara S.; VanGundy, Tiffany B.; Galbreath, M. Melyn; Shibata, Shigeki; Okazaki, Kazunobu; Reelick, Miriam F.; Levine, Benjamin D.

    2011-01-01

    Sex differences in sympathetic neural control during static exercise in humans are few and the findings are inconsistent. We hypothesized women would have an attenuated vasomotor sympathetic response to static exercise, which would be further reduced during the high sex hormone [midluteal (ML)] vs. the low hormone phase [early follicular (EF)]. We measured heart rate (HR), blood pressure (BP), and muscle sympathetic nerve activity (MSNA) in 11 women and 10 men during a cold pressor test (CPT) and static handgrip to fatigue with 2 min of postexercise circulatory arrest (PECA). HR increased during handgrip, reached its peak at fatigue, and was comparable between sexes. BP increased during handgrip and PECA where men had larger increases from baseline. Mean ± SD MSNA burst frequency (BF) during handgrip and PECA was lower in women (EF, P < 0.05), as was ΔMSNA-BF smaller (main effect, both P < 0.01). ΔTotal activity was higher in men at fatigue (EF: 632 ± 418 vs. ML: 598 ± 342 vs. men: 1,025 ± 416 a.u./min, P < 0.001 for EF and ML vs. men) and during PECA (EF: 354 ± 321 vs. ML: 341 ± 199 vs. men: 599 ± 327 a.u./min, P < 0.05 for EF and ML vs. men). During CPT, HR and MSNA responses were similar between sexes and hormone phases, confirming that central integration and the sympathetic efferent pathway was comparable between the sexes and across hormone phases. Women demonstrated a blunted metaboreflex, unaffected by sex hormones, which may be due to differences in muscle mass or fiber type and, therefore, metabolic stimulation of group IV afferents. PMID:21508291

  12. Sympathetic, sensory, and nonneuronal contributions to the cutaneous vasoconstrictor response to local cooling.

    Science.gov (United States)

    Johnson, John M; Yen, Tony C; Zhao, Kun; Kosiba, Wojciech A

    2005-04-01

    Previous work indicates that sympathetic nerves participate in the vascular responses to direct cooling of the skin in humans. We evaluated this hypothesis further in a four-part series by measuring changes in cutaneous vascular conductance (CVC) from forearm skin locally cooled from 34 to 29 degrees C for 30 min. In part 1, bretylium tosylate reversed the initial vasoconstriction (-14 +/- 6.6% control CVC, first 5 min) to one of vasodilation (+19.7 +/- 7.7%) but did not affect the response at 30 min (-30.6 +/- 9% control, -38.9 +/- 6.9% bretylium; both P 0.05 between treatments). In part 2, yohimbine and propranolol (YP) also reversed the initial vasoconstriction (-14.3 +/- 4.2% control) to vasodilation (+26.3 +/- 12.1% YP), without a significant effect on the 30-min response (-26.7 +/- 6.1% YP, -43.2 +/- 6.5% control; both P 0.05 between sites). In part 3, the NPY Y1 receptor antagonist BIBP 3226 had no significant effect on either phase of vasoconstriction (P > 0.05 between sites both times). In part 4, sensory nerve blockade by anesthetic cream (Emla) also reversed the initial vasoconstriction (-20.1 +/- 6.4% control) to one of vasodilation (+213.4 +/- 87.0% Emla), whereas the final levels did not differ significantly (-37.7 +/- 10.1% control, -37.2 +/- 8.7% Emla; both P 0.05 between treatments). These results indicate that local cooling causes cold-sensitive afferents to activate sympathetic nerves to release norepinephrine, leading to a local cutaneous vasoconstriction that masks a nonneurogenic vasodilation. Later, a vasoconstriction develops with or without functional sensory or sympathetic nerves.

  13. Clinical evaluation of carbon-11-phenylephrine: MAO-sensitive marker of cardiac sympathetic neurons.

    Science.gov (United States)

    Raffel, D M; Corbett, J R; del Rosario, R B; Gildersleeve, D L; Chiao, P C; Schwaiger, M; Wieland, D M

    1996-12-01

    The sympathomimetic drug phenylephrine recently has been labeled with 11C for use in PET studies of cardiac sympathetic innervation. Previous reports using isolated perfused rat heart models indicate that phenylephrine is metabolized by intraneuronal monoamine oxidase (MAO). This report compares the imaging characteristics, neuronal selectivity and kinetics of (-)-[11C]phenylephrine (PHEN) to the structurally similar but MAO-resistant analog (-)-[11C]-meta-hydroxyephedrine (HED), an established heart neuronal marker. Fourteen healthy volunteers were studied with PET and PHEN. Ten had paired studies with HED; four of the 10 were scanned a second time with each tracer after oral administration of desipramine, a selective neuronal transport blocker. Hemodynamic and electrocardiographic responses were monitored. Blood levels of intact radiotracer and radiolabeled metabolites were determined from venous blood samples taken during the PET study. Myocardial retention indices for both tracers were calculated. No hemodynamic or electrocardiographic effects were observed with either tracer. PHEN showed reduced myocardial retention at 50 min compared to HED; however, image quality and uniformity of distribution were comparable. PHEN cleared from myocardium with a mean half-time of 59 +/- 5 min, while myocardial levels of HED remained constant. PHEN metabolites appeared in the blood approximately three times faster than HED metabolites. Desipramine pretreatment markedly reduced (> 60%) myocardial retention of both PHEN and HED. PHEN provides PET images of human heart comparable in quality and uniformity to HED. Like HED, PHEN localizes in the sympathetic nerves of the heart. However, the more rapid efflux of PHEN, that is likely mediated by MAO, may provide information on the functional status of cardiac sympathetic neurons unobtainable with HED.

  14. Mechanisms of Sympathetic Activation and Blood Pressure Elevation by Intermittent Hypoxia

    OpenAIRE

    Prabhakar, Nanduri R.; Kumar, Ganesh K.

    2010-01-01

    Sleep disordered breathing with recurrent apneas is one of the most frequently encountered breathing disorder in adult humans and preterm infants. Recurrent apnea patients exhibit several co-morbidities including hypertension and persistent sympathetic activation. Intermittent hypoxia (IH) resulting from apneas appears to be the primary stimulus for evoking autonomic changes. The purpose of this article is to briefly review the effects of IH on chemo-and baro-reflexes and circulating vasoacti...

  15. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature

    Science.gov (United States)

    Alawi, Khadija M.; Aubdool, Aisah A.; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D.; Keeble, Julie E.

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders.—Alawi, K. M., Aubdool, A. A., Liang, L., Wilde, E., Vepa, A., Psefteli, M.-P., Brain, S. D., Keeble, J. E. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. PMID:26136480

  16. Assessment of left ventricular ejection force and sympathetic skin response in normotensive and hypertensive subjects: A double-blind observational comparative case–control study

    Directory of Open Access Journals (Sweden)

    Tarun Saxena

    2016-09-01

    Conclusion: Stage 1 hypertension is a stage of increased sympathetic activity, leading to increased LVEF and hypertension (resetting of baroreceptors; stage 2 hypertension is a stage of normal sympathetic activity, increased LVEF, increased SV, and hypertension (possibly a stage of shift of renal equilibrium curve/renal output curve and blood pressure to a newer level.

  17. Exposure to a high-fat diet during development alters leptin and ghrelin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits.

    Science.gov (United States)

    Prior, Larissa J; Davern, Pamela J; Burke, Sandra L; Lim, Kyungjoon; Armitage, James A; Head, Geoffrey A

    2014-02-01

    Exposure to maternal obesity or a maternal diet rich in fat during development may have adverse outcomes in offspring, such as the development of obesity and hypertension. The present study examined the effect of a maternal high-fat diet (m-HFD) on offspring blood pressure and renal sympathetic nerve activity, responses to stress, and sensitivity to central administration of leptin and ghrelin. Offspring of New Zealand white rabbits fed a 13% HFD were slightly heavier than offspring from mothers fed a 4% maternal normal fat diet (Pfat pad mass (P=0.015). Mean arterial pressure, heart rate, and renal sympathetic nerve activity at 4 months of age were 7%, 7%, and 24% greater, respectively (Pfat diet rabbits, and the renal sympathetic nerve activity response to airjet stress was enhanced in the m-HFD group. m-HFD offspring had markedly elevated pressor and renal sympathetic nerve activity responses to intracerebroventricular leptin (5-100 µg) and enhanced sympathetic responses to intracerebroventricular ghrelin (1-5 nmol). In contrast, there was resistance to the anorexic effects of intracerebroventricular leptin and less neuronal activation as detected by Fos immunohistochemistry in the arcuate (-57%; Pfat diet rabbits. We conclude that offspring from mothers consuming an HFD exhibit an adverse cardiovascular profile in adulthood because of altered central hypothalamic sensitivity to leptin and ghrelin.

  18. Increase in Operator's Sympathetic Nerve Activity during Complicated Hepatobiliary Surgery: Evidence for Surgeons' Mental Stress.

    Science.gov (United States)

    Yamanouchi, Kosho; Hayashida, Naomi; Kuba, Sayaka; Sakimura, Chika; Kuroki, Tamotsu; Togo, Michita; Katayama, Noritada; Takamura, Noboru; Eguchi, Susumu

    2015-11-01

    Surgeons often experience stress during operations. The heart rate variability (HRV) is the variability in the beat-to-beat interval, which has been used as parameters of stress. The purpose of this study was to evaluate mental stress of surgeons before, during and after operations, especially during pancreaticoduodenectomy (PD) and living donor liver transplantation (LDLT). Additionally, the parameters were compared in various procedures during the operations. By frequency domain method using electrocardiograph, we measured the high frequency (HF) component, representing the parasympathetic activity, and the low frequency (LF)/HF ratio, representing the sympathetic activity. In all 5 cases of PD, the surgeon showed significantly lower HF component and higher LF/HF during operation, indicating predominance of sympathetic nervous system and increased stress, than those before the operation (p operation. Out of the 4 LDLT cases, the value of HF was decreased in two and the LF/HF increased in three cases (p operation compared to those before the operation. In all cases, the value of HF was decreased and/or the LF/HF increased significantly during the reconstruction of the vessels or bile ducts than during the removal of the liver. Thus, sympathetic nerve activity increased during hepatobiliary surgery compared with the level before the operation, and various procedures during the operations induced diverse changes in the autonomic nervous activities. The HRV analysis could assess the chronological changes of mental stress by measuring the autonomic nervous balances.

  19. Spinal Cord Injury-Induced Dysautonomia via Plasticity in Paravertebral Sympathetic Postganglionic

    Science.gov (United States)

    2016-10-01

    resting membrane potential (-57 ± 9 mV ) [Fig. 4A], membrane resistance (985 ± 501 MΩ), and τm (99 ± 49 ms) [Fig. 4B]. Threshold voltage was...typically 10 mV higher than resting membrane potential, action potentials displayed after-hyperpolarization and some cells displayed post-inhibitory...firing in rat sympathetic neurons and thereby contribute to ganglionic amplification. Frontiers in neurology 1:130. Springer MG, Kullmann PH, Horn JP

  20. Marital Conflict and Children's Externalizing Behavior: Interactions between Parasympathetic and Sympathetic Nervous System Activity

    Science.gov (United States)

    El-Sheikh, Mona; Kouros, Chrystyna D.; Erath, Stephen; Cummings, E. Mark; Keller, Peggy; Staton, Lori

    2009-01-01

    Toward greater specificity in the prediction of externalizing problems in the context of interparental conflict, interactions between children's parasympathetic and sympathetic nervous system (PNS and SNS) activity were examined as moderators. PNS activity was indexed by respiratory sinus arrhythmia (RSA) and RSA reactivity (RSA-R) to lab…

  1. Reduction of Blood Pressure Following After Renal Artery Adventitia Stripping During Total Nephroureterectomy: Potential Effect of Renal Sympathetic Denervation.

    Science.gov (United States)

    Okamura, Keisuke; Satou, Shunsuke; Setojima, Keita; Shono, Shinjiro; Miyajima, Shigero; Ishii, Tatsu; Shirai, Kazuyuki; Urata, Hidenori

    2018-05-16

    BACKGROUND Catheter-based renal sympathetic denervation has been reported to be effective for treatment resistance hypertension in Australia and Europe. However, in the blinded SYMPLICITY HTN-3 trial, renal denervation did not achieve a significant decrease in blood pressure (BP) in comparison to sham controls. There have been various discussions on the factors that influenced this result. CASE REPORT Two men on antihypertensive therapy underwent unilateral radical nephroureterectomy for cancer of the renal pelvis. When the renal artery adventitia was stripped and cauterized just before renal artery ligation, the measured BP of the 2 men increased after stripping adventitia and decreased gradually after cauterization of the renal artery. This was presumably due to removal of renal artery sympathetic nerves, similar to the mechanism of catheter-based renal sympathetic denervation, although anesthesia, fluid infusion, and/or mesenteric traction may have had an influence. CONCLUSIONS A similar strategy involving thoracolumbar sympathectomy was reported about 50 years ago. The clinically significant blood pressure reduction in these patients suggests renal denervation is effective.

  2. Increased intrinsic excitability of muscle vasoconstrictor preganglionic neurons may contribute to the elevated sympathetic activity in hypertensive rats.

    Science.gov (United States)

    Briant, Linford J B; Stalbovskiy, Alexey O; Nolan, Matthew F; Champneys, Alan R; Pickering, Anthony E

    2014-12-01

    Hypertension is associated with pathologically increased sympathetic drive to the vasculature. This has been attributed to increased excitatory drive to sympathetic preganglionic neurons (SPN) from brainstem cardiovascular control centers. However, there is also evidence supporting increased intrinsic excitability of SPN. To test this hypothesis, we made whole cell recordings of muscle vasoconstrictor-like (MVClike) SPN in the working-heart brainstem preparation of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats. The MVClike SPN have a higher spontaneous firing frequency in the SH rat (3.85 ± 0.4 vs. 2.44 ± 0.4 Hz in WKY; P = 0.011) with greater respiratory modulation of their activity. The action potentials of SH SPN had smaller, shorter afterhyperpolarizations (AHPs) and showed diminished transient rectification indicating suppression of an A-type potassium conductance (IA). We developed mathematical models of the SPN to establish if changes in their intrinsic properties in SH rats could account for their altered firing. Reduction of the maximal conductance density of IA by 15-30% changed the excitability and output of the model from the WKY to a SH profile, with increased firing frequency, amplified respiratory modulation, and smaller AHPs. This change in output is predominantly a consequence of altered synaptic integration. Consistent with these in silico predictions, we found that intrathecal 4-aminopyridine (4-AP) increased sympathetic nerve activity, elevated perfusion pressure, and augmented Traube-Hering waves. Our findings indicate that IA acts as a powerful filter on incoming synaptic drive to SPN and that its diminution in the SH rat is potentially sufficient to account for the increased sympathetic output underlying hypertension. Copyright © 2014 the American Physiological Society.

  3. Massive choroidal hemorrhage after intravitreal administration of bevacizumab (Avastin® for AMD followed by controlateral sympathetic ophthalmia

    Directory of Open Access Journals (Sweden)

    Dimitrios Brouzas

    2009-08-01

    Full Text Available Dimitrios Brouzas, Chryssanthi Koutsandrea, Marilita Moschos, Spiros Papadimitriou, Ioannis Ladas, Michael Apostolopoulos1st Eye Department , University of Athens, Athens, GreecePurpose: To report a severe ocular complication initiated ten days after intravitreal administration of bevacizumab (Avastin®, in a patient with exudative age-related macular degeneration (AMD.Patients and method: Case report.Results: Ten days after intravitreal injection of 1.25 mg Avastin®, the patient manifested acute loss of vision with excruciating pain. An extensive choroidal detachment was evident in close contact with the lens, which necessitated an emergency sclerotomy with reconstruction of the anterior chamber. Four months later, the eye proceeded to phthisis bulbi. Five months after the injection, the patient complained of mild pain, photophobia, and visual acuity deterioration from the fellow eye. The diagnosis of sympathetic ophthalmia was suggested and treated with intravitreal injections of triamcinolone acetonide every three months with good response, complicated by elevation of intraocular pressure which we managed with Ahmet valve implantation.Conclusion: Serious ocular complications after intravitreal of Avastin® can not be excluded, including massive choroidal hemorrhage and sympathetic ophthalmia of the fellow eye.Keywords: Avastin® complication, intravitreal injection, choroidal detachment, Phthisis bulbi, sympathetic ophthalmia

  4. Racemic ketamine decreases muscle sympathetic activity but maintains the neural response to hypotensive challenges in humans

    NARCIS (Netherlands)

    Kienbaum, P.; Heuter, T.; Michel, M. C.; Peters, J.

    2000-01-01

    BACKGROUND: Cardiovascular stimulation and increased catecholamine plasma concentrations during ketamine anesthesia have been attributed to increased central sympathetic activity as well as catecholamine reuptake inhibition in various experimental models. However, direct recordings of efferent

  5. Assessment of central chemosensitivity and cardiac sympathetic nerve activity using I-123 MIBG imaging in central sleep apnea syndrome in patients with dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Meguro, Kentaro; Nagai, Ryozo; Toyama, Takuji; Adachi, Hitoshi; Ohshima, Shigeru; Taniguchi, Koichi

    2007-01-01

    Iodine-123 m-iodobenzylguanidine (MIBG) imaging has been used to study cardiac sympathetic function in various cardiac diseases. Central sleep apnea syndrome (CSAS) occurs frequently in patients with chronic heart failure (CHF) and is reported to be associated with a poor prognosis. One of the mechanisms of its poor prognosis may be related to impaired cardiac sympathetic activity. However, the relationship between chemosensitivity to carbon dioxide, which is reported to correlate with the severity of CSAS, and cardiac sympathetic activity has not been investigated. Therefore, this study was undertaken to assess cardiac sympathetic function and chemosensitivity to carbon dioxide in CHF patients. The oxygen desaturation index (ODI) was evaluated in 21 patients with dilated cardiomyopathy (male/female: 19/2, left ventricular ejection fraction (LVEF) 5 times/h underwent polysomnography. Patients with an apnea hypopnea index >15/h but without evidence of obstructive apnea were defined as having CSAS. Early (15 min) and delayed (4 hr) planar MIBG images were obtained from these patients. The mean counts in the whole heart and the mediastinum were obtained. The heart-to-mediastinum count ratio of the delayed image (H/M) and the corrected myocardial washout rate (WR) were also calculated. The central chemoreflex was assessed with the rebreathing method using a hypercapnic gas mixture (7% CO 2 and 93% O 2 ). Ten of the 21 patients had CSAS. The H/M ratio was similar in patients both with and without CSAS (1.57±0.18 vs. 1.59±0.14, p=0.82). However, the WR was higher in patients with CSAS than in patients without CSAS (40±8% vs. 30±12%, p<0.05). ODI significantly correlated with central chemosensitivity to carbon dioxide. Moreover, there was a highly significant correlation between WR and central chemosensitivity (r=0.65, p<0.05). However, there was no correlation between ODI and the WR (r=0.36, p=0.11). Cardiac sympathetic nerve activity in patients with CHF and CSAS is

  6. Myocardial pre-synaptic sympathetic function correlates with glucose uptake in the failing human heart

    International Nuclear Information System (INIS)

    Mongillo, Marco; Leccisotti, Lucia; John, Anna S.; Pennell, Dudley J.; Camici, Paolo G.

    2007-01-01

    We have previously shown that the myocardium of patients with heart failure (HF) is insulin resistant. Chronic β-adrenergic stimulation has been implicated in insulin resistance in cultured cardiomyocytes in vitro, where sustained noradrenaline stimulation inhibited insulin-modulated glucose uptake. As the failing heart is characterized by increased sympathetic drive, we hypothesized that there is a correlation between pre-synaptic sympathetic function and insulin sensitivity in the myocardium of patients with HF. Eight patients (aged 67 ± 7 years) with coronary artery disease and left ventricular dysfunction (ejection fraction 44 ± 10%) underwent function and viability assessment with cardiovascular magnetic resonance. Myocardial glucose utilization (MGU) was measured using positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG). Pre-synaptic noradrenaline re-uptake was measured by calculating [ 11 C]meta-hydroxy-ephedrine (HED) volume of distribution (V d ) with PET. Two groups of healthy volunteers served as controls for the FDG (n = 8, aged 52 ± 4 years, p -1 .g -1 ) and dysfunctional (0.49 ± 0.14 μmol.min -1 .g -1 ) segments compared with controls (0.61 ± 0.7 μmol.min -1 .g -1 ; p d was reduced in dysfunctional segments of patients (38.9 ± 21.2 ml.g -1 ) compared with normal segments (52.2 ± 19.6 ml.g -1 ) and compared with controls (62.7 ± 11.3 ml.g -1 ). In patients, regional MGU was correlated with HED V d . The results of this study provide novel evidence of a correlation between cardiac sympathetic function and insulin sensitivity, which may represent one of the mechanisms contributing to insulin resistance in failing human hearts. (orig.)

  7. Fostering College-Going Expectations of Immigrant Students through the Sympathetic Touch of School Leadership

    Science.gov (United States)

    Liou, Daniel D.

    2016-01-01

    This article intends to support the efforts of administrators, teachers, and community activists to center race, equity, and anti-deficit perspectives within the practice of school leadership. By drawing upon methods of critical race studies, and Du Bois's 1935 concept of the sympathetic touch, the author provides examples of anti-deficit…

  8. Sympathetic neural adaptation to hypocaloric diet with or without exercise training in obese metabolic syndrome subjects

    DEFF Research Database (Denmark)

    Straznicky, Nora E; Lambert, Elisabeth A; Nestel, Paul J

    2010-01-01

    Sympathetic nervous system (SNS) overactivity contributes to the pathogenesis and target organ complications of obesity. This study was conducted to examine the effects of lifestyle interventions (weight loss alone or together with exercise) on SNS function....

  9. Memory coherence of a sympathetically cooled trapped-ion qubit

    International Nuclear Information System (INIS)

    Home, J. P.; McDonnell, M. J.; Szwer, D. J.; Keitch, B. C.; Lucas, D. M.; Stacey, D. N.; Steane, A. M.

    2009-01-01

    We demonstrate sympathetic cooling of a 43 Ca + trapped-ion 'memory' qubit by a 40 Ca + 'coolant' ion sufficiently near the ground state of motion for fault-tolerant quantum logic, while maintaining coherence of the qubit. This is an essential ingredient in trapped-ion quantum computers. The isotope shifts are sufficient to suppress decoherence and phase shifts of the memory qubit due to the cooling light which illuminates both ions. We measure the qubit coherence during ten cycles of sideband cooling, finding a coherence loss of 3.3% per cooling cycle. The natural limit of the method is O(10 -4 ) infidelity per cooling cycle.

  10. Individual sympathetic postganglionic neurons coinnervate myenteric ganglia and smooth muscle layers in the gastrointestinal tract of the rat.

    Science.gov (United States)

    Walter, Gary C; Phillips, Robert J; McAdams, Jennifer L; Powley, Terry L

    2016-09-01

    A full description of the terminal architecture of sympathetic axons innervating the gastrointestinal (GI) tract has not been available. To label sympathetic fibers projecting to the gut muscle wall, dextran biotin was injected into the celiac and superior mesenteric ganglia (CSMG) of rats. Nine days postinjection, animals were euthanized and stomachs and small intestines were processed as whole mounts (submucosa and mucosa removed) to examine CSMG efferent terminals. Myenteric neurons were counterstained with Cuprolinic Blue; catecholaminergic axons were stained immunohistochemically for tyrosine hydroxylase. Essentially all dextran-labeled axons (135 of 136 sampled) were tyrosine hydroxylase-positive. Complete postganglionic arbors (n = 154) in the muscle wall were digitized and analyzed morphometrically. Individual sympathetic axons formed complex arbors of varicose neurites within myenteric ganglia/primary plexus and, concomitantly, long rectilinear arrays of neurites within circular muscle/secondary plexus or longitudinal muscle/tertiary plexus. Very few CSMG neurons projected exclusively (i.e., ∼100% of an arbor's varicose branches) to myenteric plexus (∼2%) or smooth muscle (∼14%). With less stringent inclusion criteria (i.e., ≥85% of an axon's varicose branches), larger minorities of neurons projected predominantly to either myenteric plexus (∼13%) or smooth muscle (∼27%). The majority (i.e., ∼60%) of all individual CSMG postganglionics formed mixed, heterotypic arbors that coinnervated extensively (>15% of their varicose branches per target) both myenteric ganglia and smooth muscle. The fact that ∼87% of all sympathetics projected either extensively or even predominantly to smooth muscle, while simultaneously contacting myenteric plexus, is consistent with the view that these neurons control GI muscle directly, if not exclusively. J. Comp. Neurol. 524:2577-2603, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Low plasma volume coincides with sympathetic hyperactivity and reduced baroreflex sensitivity in formerly preeclamptic patients.

    NARCIS (Netherlands)

    Courtar, D.A.; Spaanderman, M.E.A.; Aardenburg, R.; Janssen, B.J.; Peeters, L.L.

    2006-01-01

    BACKGROUND: Preeclampsia is associated with enhanced sympathetic activity as well as subnormal plasma volume. Meanwhile, in over 50% of these complicated pregnancies, the subnormal plasma volume has been found to persist for a prolonged period after pregnancy. The objective of this study is to test

  12. Altered differential control of sympathetic outflow following sedentary conditions: Role of subregional neuroplasticity in the RVLM

    Directory of Open Access Journals (Sweden)

    Madhan Subramanian

    2016-07-01

    Full Text Available Despite the classically held belief of an all-or-none activation of the sympathetic nervous system, differential responses in sympathetic nerve activity (SNA can occur acutely at varying magnitudes and in opposing directions. Sympathetic nerves also appear to contribute differentially to various disease states including hypertension and heart failure. Previously we have reported that sedentary conditions enhanced responses of splanchnic SNA (SSNA but not lumbar SNA (LSNA to activation of the rostral ventrolateral medulla (RVLM in rats. Bulbospinal RVLM neurons from sedentary rats also exhibit increased dendritic branching in rostral regions of the RVLM. We hypothesized that regionally specific structural neuroplasticity would manifest as enhanced SSNA but not LSNA following activation of the rostral RVLM. To test this hypothesis, groups of physically active (10-12 weeks on running wheels or sedentary, male Sprague-Dawley rats were instrumented to record mean arterial pressure, LSNA and SSNA under Inactin anesthesia and during microinjections of glutamate (30 nl, 10 mM into multiple sites within the RVLM. Sedentary conditions enhanced SSNA but not LSNA responses and SSNA responses were enhanced at more central and rostral sites. Results suggest that enhanced SSNA responses in rostral RVLM coincide with enhanced dendritic branching in rostral RVLM observed previously. Identifying structural and functional neuroplasticity in specific populations of RVLM neurons may help identify new treatments for cardiovascular diseases, known to be more prevalent in sedentary individuals.

  13. Clinical usefulness of 123I-metaiodobenzylguanidine myocardial scintigraphy in diabetic patients with cardiac sympathetic nerve dysfunction

    International Nuclear Information System (INIS)

    Miyanaga, Hajime; Yoneyama, Satoshi; Kamitani, Tadaaki; Kawasaki, Shingo; Takahashi, Toru; Kunishige, Hiroshi

    1995-01-01

    To assess the clinical utility of 123 I-metaiodobenzylguanidine (MIBG) scintigraphy in evaluating cardiac sympathetic nerve disturbance in diabetic patients, we performed MIBG scintigraphy in 18 diabetic patients and 11 normal controls. Diabetic patients with symptomatic neuropathy (DM2) had a significantly lower heart to mediastinum uptake ratio than did those without neuropathy or normal controls in initial and delayed images (initial image, 1.90±0.27 vs 2.32±0.38, 2.41±0.40, p<0.01; delayed image, 1.80±0.31 vs 2.48±0.35, 2.56±0.28, p<001, respectively). Defect score, assessed visually, were higher in DM2 patients than in patients in the other two groups (initial image, 7±2.6 vs 1.5±1.9, 0.7±0.9; delayed image 10.6±3.3 vs 4.0±2.5, 1.7±1.6 p<0.01, respectively). The maximum washout rate in DM2 patients was also higher than those in patients in the other two groups. The findings of these indices obtained from MIBG scintigraphy coincided with the % low-frequency power extracted from heart rate fluctuations using a power spectral analysis and the results of the Schellong test, which were used to evaluate sympathetic function. These results suggest that MIBG scintigraphy may be useful for evaluating cardiac sympathetic nerve disturbance in patients with diabetes. (author)

  14. Expression of adenosine triphosphate-sensitive potassium channels in rats with cirrhosis: correlationship with sympathetic activity and renal function

    Directory of Open Access Journals (Sweden)

    Julio Cesar Martins Monte

    2006-12-01

    Full Text Available Objective: The aim of this study was to perform a direct analysis ofKATP mRNA expression by RT-PCR in kidney and isolated aorta fromrats with cirrhosis (induced by carbon tetrachloride and controls.The present study also analyses the relation between induced cirrhosisand urinary excretion of sodium and sympathetic activity in cirrhoticrats. Methods: Rats were placed in metabolic cages and allowedfree access to food and water. Cirrhosis was induced by repeateddoses of carbon tetrachloride by gastric gavage. After some weeks,the kidney and aorta were dissected and utilized for RNA extraction.Blood and urine were analyzed for electrolytes. Renal function wasestimated by creatinine clearance and sodium urinary excretion.Serum catecholamines were measured by HPLC analysis. Results:First, RT-PCR analysis showed that KATP mRNA is expressed in liverwith cirrhosis and intense fibrosis, but not with moderate fibrosis.Second, RT-PCR analysis revealed that KATP mRNA was detectedonly in aorta dissected from rats with cirrhosis. Finally, an enhancedreabsorption of sodium without renal failure suggests a potentialmediator would increase the activity of the sympathetic system.Conclusion: These results suggest that KATP mRNA is expressed incirrhotic rats with sympathetic activation and renal dysfunction. Thischannel might be involved in another route where the vascular tonecan be modulated in cirrhosis.

  15. Evaluation of myocardial sympathetic nerve function in patients with mitral valve prolapse using iodine-123-metaiodobenzylguanidine myocardial scintigraphy

    International Nuclear Information System (INIS)

    Kishi, Fumiko; Nomura, Masahiro; Yukinaka, Michiko

    1996-01-01

    Mitral valve prolapse (MVP) is closely related to myocardial sympathetic nerve function. This study evaluated the presence of impaired myocardial sympathetic nerve function by Iodine-123-metaiodobenzylguanidine (MIBG) scintigraphy in nine patients with MVP. For comparison, 15 healthy subjects without heart disease were investigated (control group). Single photon emission computed tomography (SPECT) and anterior planar myocardial scintigraphy were performed 15 min (initial images) and 3 hours (delayed images) after injection of MIBG (111 MBq). The location and degrees of reduced tracer uptake were evaluated. Myocardial MIBG uptake was quantified by uptake ratio of the heart (H) to upper mediastinum (M) on the anterior planar images (H/M). Percentage washout of MIBG in nine sectors of all oblique slices along the short-axis was calculated. The washout rates were higher at the inferoposterior and septal segments in patients with anterior leaflet prolapse, and at inferoposterior and lateral segments in patients with posterior leaflet prolapse. The bull's eye map showed increased washout rate in the apical and posteroseptal basal segments. There was no significant difference in the H/M ratio between MVP patients and the control group. These results indicate that MIBG can be used to evaluate localized myocardial sympathetic nerve function in MVP. (author)

  16. Locus coeruleus lesions and PCOS: role of the central and peripheral sympathetic nervous system in the ovarian function of rat

    Directory of Open Access Journals (Sweden)

    Farideh Zafari Zangeneh

    2012-01-01

    Full Text Available Polycystic ovary syndrome (PCOS is a complex endocrine and metabolic disorder associated with ovulatory dysfunction”. “Autonomic and central nervous systems play important roles in the regulation of ovarian physiology”. The noradrenergic nucleus locus coeruleus (LC plays a central role in the regulation of the sympathetic nervous system and synaptically connected to the preganglionic cell bodies of the ovarian sympathetic pathway and its activation is essential to trigger spontaneous or induced LH surges. This study evaluates sympathetic outflow in central and peripheral pathways in PCO rats. Objective: Our objectives in this study were (1 to estimate LC activity in rats with estradiol valerate (EV-induced PCO; (2 to antagonized alpha2a adrenoceptor in systemic conditions with yohimbine. Materials and Methods: Forty two rats were divided into two groups: 1 LC and yohimbine and 2 control. Every group subdivided in two groups: eighteen rats were treated with estradiol valerate for induction of follicular cysts and the remainders were sesame oil groups. Results: Estradiol concentration was significantly augmented by the LC lesion in PCO rats (p<0.001, while LC lesion could not alter serum concentrations of LH and FSH, like yohimbine. The morphological observations of ovaries of LC lesion rats showed follicles with hyperthecosis, but yohimbine reduced the number of cysts, increased corpus lutea and developed follicles. Conclusion: Rats with EV-induced PCO increased sympathetic activity. LC lesion and yohimbine decreased the number of cysts and yohimbine increased corpus lutea and developed follicles in PCO rats.

  17. Origins of the sympathetic innervation to the nasal-associated lymphoid tissue (NALT): an anatomical substrate for a neuroimmune connection.

    Science.gov (United States)

    Marafetti, Lucas E; Romeo, Horacio E

    2014-11-15

    The participation of sympathetic nerve fibers in the innervation of the nasal-associated lymphoid tissues (NALT) was investigated in hamsters. Vesicular monoamine transporter 2 (VMAT2), an established sympathetic marker, is expressed in all neurons of superior cervical ganglia (SCG). In addition, VMAT2 -immunoreactive nerve fibers were localized in the NALT as well as in adjacent anatomical structures of the upper respiratory tract. Unilateral surgical ablation of the SCG abolished VMAT2 innervation patterns ipsilaterally while the contra lateral side is unaffected. These results provide the anatomical substrate for a neuroimmune connection in the NALT. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans

    NARCIS (Netherlands)

    Kox, M.; Eijk, L.T.G.J. van; Zwaag, J.; Wildenberg, J. van den; Sweep, F.C.; Hoeven, J.G. van der; Pickkers, P.

    2014-01-01

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot

  19. Trapping cold ground state argon atoms for sympathetic cooling of molecules

    OpenAIRE

    Edmunds, P. D.; Barker, P. F.

    2014-01-01

    We trap cold, ground-state, argon atoms in a deep optical dipole trap produced by a build-up cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of co-trapped metastable argon atoms using a new type of parametric loss spectroscopy. Using this technique we als...

  20. Self-handicapping and obesity: is there a sympathetic audience out there?

    Science.gov (United States)

    Schill, T; Beyler, J; Wehr, J; Swigert, L; Tatter, T

    1991-06-01

    After reading a case description of a 20-year-old woman, subjects attributed her personal shortcomings to her weight rather than to herself per se. In particular, people who scored higher on a measure of self-handicapping were even more likely to attribute shortcomings to a person's weight and excuse or overlook them. A person who attributes shortcomings to being overweight will very likely find a sympathetic audience. These results support the suggestion by Baumeister, Kahn, and Tice (1990) that obesity can be a self-handicapping strategy.

  1. The Suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons

    NARCIS (Netherlands)

    Buijs, Ruud M.; la Fleur, Susanne E.; Wortel, Joke; van Heyningen, Caroline; Zuiddam, Laura; Mettenleiter, Thomas C.; Kalsbeek, Andries; Nagai, Katsuya; Niijima, Akira

    2003-01-01

    Opposing parasympathetic and sympathetic signals determine the autonomic output of the brain to the body and the change in balance over the sleep-wake cycle. The suprachiasmatic nucleus (SCN) organizes the activity/inactivity cycle and the behaviors that go along with it, but it is unclear how the

  2. Laser-Doppler Flowmetry and Horner’s Syndrome in Patients with Complete Unilateral Damage to the Parasellar Sympathetic Fibers During Cavernous Sinus Surgery

    Science.gov (United States)

    Benedičič, Mitja; Debevc, David; Dolenc, Vinko V.; Bošnjak, Roman

    2006-01-01

    Aim To determine ocular, sudomotor, and vasomotor components of Horner’s syndrome resulting from complete unilateral intraoperative damage to the parasellar sympathetic fibers during cavernous sinus surgery. Methods Complete damage to the parasellar sympathetic fibers was found in four patients operated for central skull base lesions. Pupilometry, eyelid fissure measurement, Hertel’s exophthalmometry, starch iodine sweat test, and laser-Doppler perfusion assessment of bilaterally symmetrical forehead and cheek areas were performed. Results Pupil diameter was smaller and the eyelid fissure was >2 mm narrower on the affected side in all four patients. Exophthalmometry after the operation never revealed >1 mm difference. Anhydrosis was localized to the medial forehead in three and to the entire forehead in one patient. Average perfusion did not significantly differ between the affected and opposite side of the forehead or cheek. Conclusions The parasellar sympathetic fibers exclusively innervate the orbit and variably innervate the forehead sweat glands. No conclusion regarding their contribution to the facial vasomotor control could be established. PMID:16625695

  3. The localization of primary efferent sympathetic neurons innervating the porcine thymus – a retrograde tracing study

    Directory of Open Access Journals (Sweden)

    Paweł Kulik

    2017-01-01

    Full Text Available The autonomic nervous system is a sophisticated and independent structure composed of two antagonistic (opposing divisions (sympathetic and parasympathetic that control many vital functions including: homeostasis maintenance, heart rate, blood circulation, secretion, etc. Thymus is one of the most important primary lymphoid organs playing a role in the developing of a juvenile’s immune system mainly by maturation, development, and migration of T-cells (T lymphocytes. In the last decades, several studies identifying sources of the thymic autonomic supply have been undertaken in humans and several laboratory rodents but not in higher mammals such as the pig. Therefore, in the present work, retrograde tracing technique of Fast Blue and DiI was used to investigate the sources of sympathetic efferent supply to the porcine thymus. After Fast Blue injection into the right lobe of the thymus, the presence of Fast Blue-positive neurons was found in the unilateral cranial cervical ganglion (82.8 ± 3.0% of total Fast Blue-positive neurons as well as in the middle cervical ganglion (17.2 ± 3.0%. Injection of DiI resulted in the presence of retrograde tracer in neurons of the cranial cervical ganglion (80.4 ± 2.3% of total amount of DiI-labelled neurons, the middle cervical ganglion (18.4 ± 1.9%, and the cervicothoracic ganglion (1.2 ± 0.8%. The present report provides the first data describing in details the localization of primary efferent sympathetic neurons innervating the porcine thymus.

  4. Reflex sympathetic dystrophy syndrome: MR imaging study

    International Nuclear Information System (INIS)

    Masciocchi, C.; Fascetti, E.; Bonanni, G.; Calvisi, V.; Buoni, C.; Passariello, R.

    1987-01-01

    Reflex sympathetic dystrophy syndrome (RSDS) is characterized by pain, swelling, and limitation of motion. The etiology and pathophysiology mechanism have not yet been identified. We considered eight patients with clinical signs of RSDS, in five cases located at the knee joint and in three cases in the hip. In all cases conventional radiography and radionuclide bone scanning were performed before MR imaging. Conventional radiography was negative in three cases while scintigraphy demonstrated the lesion in all patients. MR imaging showed an area of low intensity signal on T1-weighted scans and an increased signal intensity on T2-weighted images. This area is located at the bone marrow and its regular and homogeneous. This specific finding on MR images is due to reflect edema by hyperemia of the bone marrow. The MR imaging diagnosis was confirmed on clinical and radiological follow-up. MR imaging can have a role in the differential diagnosis when other studies are nondiagnostic or nonspecific for RSDS

  5. Ablation of lumbar sympathetic ganglia by absolute ethanol injection and paravertebral catheter placement under CT guidance: evaluation of the efficacy

    International Nuclear Information System (INIS)

    Xu Hua; Xiong Yuanchang; Shao Chengwei; Zuo Changjing; Sheng Jing; Tian Jianming

    2009-01-01

    Objective: To evaluate the ablation of lumbar sympathetic ganglia by using single injection of absolute ethanol and retaining a paravertebral catheter under CT guidance for the treatment of lower extremity ischemia. Methods: Single absolute ethanol injection of L2 sympathetic ganglia was done in 25 cases (group B), single absolute ethanol injection of L2 sympathetic ganglia together with placement of a paravertebral catheter at L3 was carried out in 23 cases (group BT). All the procedures were performed under CT guidance. Three days after the procedure, the pain severity of the lower limbs was evaluated based on VAS method. If the patient in group BT still had a VAS score ≥4 on the third day, 3 ml of 1% lidocaine was infected via the retained catheter in the prone position. If VAS score became ≤3 at 5 min after the injection, additional 5 ml of ethanol was given through the catheter. The pain severity was evaluated again one week later. VAS score, analgesic dose and temperature of lower limbs were recorded. Results: One week after the procedure the excellent rate and effective rate for group B were 32% and 80% respectively, while for group BT were 60.9% and 95.7% respectively, with a significant difference between two groups (P<0.01). Conclusion: For the ablation of lumbar sympathetic ganglia the combination of single absolute ethanol injection with paravertebral catheter placement under CT guidance is superior to the single absolute ethanol injection. This technique is more individual with better results and is more likely to be accepted by the patients. (authors)

  6. Potential Role of Semaphorin 3A and Its Receptors in Regulating Aberrant Sympathetic Innervation in Peritoneal and Deep Infiltrating Endometriosis.

    Science.gov (United States)

    Liang, Yanchun; Wang, Wei; Huang, Jiaming; Tan, Hao; Liu, Tianyu; Shang, Chunliang; Liu, Duo; Guo, Luyan; Yao, Shuzhong

    2015-01-01

    Previous studies have demonstrated the involvement of nerve repellent factors in regulation of the imbalanced innervation of endometriosis. This prospective study aims to explore the role of Sema 3A in regulating aberrant sympathetic innervation in peritoneal and deep infiltrating endometriosis. Ectopic endometriotic lesion were collected from patients with peritoneal endometriosis (n = 24) and deep infiltrating endometriosis of uterosacral ligament (n = 20) undergoing surgery for endometriosis. Eutopic endometrial samples were collected from patients with endometriosis (n = 22) or without endometriosis (n = 26). Healthy peritoneum (n = 13) from the lateral pelvic wall and healthy uterosacral ligament (n = 13) were obtained from patients who had no surgical and histological proof of endometriosis during hysterectomy for uterine fibroids. Firstly, we studied the immunostaining of Sema 3A, Plexin A1 and NRP-1 in all the tissues described above. Then we studied the nerve fiber density (NFD) of endometriosis-associated (sympathetic) nerve and para-endometriotic (sympathetic) nerve by double immunofluorescence staining. Finally we analyzed the relationship between expression of Sema 3A in stromal cells of endometriotic lesion and the aberrant innervation of endometriosis. Semi-quantitative immunostaining demonstrated that (1) Higher immunostaining of Sema 3A were found in the eutopic endometrial glandular epithelial cells from patients with endometriosis (p = 0.041) than those without endometriosis; (2) Sema 3A immunostaining was higher in glandular epithelial cells of peritoneal endometriosis (Pendometriosis, while its expression in ectopic stormal cells in both groups were significantly lower than that from eutopic endometrium of women without endometirosis (Pendometriosis-associated sympathetic nerve of peritoneal endometriosis (pendometriosis of uterosacral ligament (pperitoneal and deep infiltrating endometriosis.

  7. RESTING SYMPATHETIC BAROREFLEX SENSITIVITY IN SUBJECTS WITH LOW AND HIGH TOLERANCE TO CENTRAL HYPOVOLEMIA INDUCED BY LOWER BODY NEGATIVE PRESSURE

    Directory of Open Access Journals (Sweden)

    Carmen eHinojosa-Laborde

    2014-06-01

    Full Text Available Central hypovolemia elicited by orthostasis or hemorrhage triggers sympathetically-mediated baroreflex responses to maintain organ perfusion; these reflexes are less sensitive in patients with orthostatic intolerance, and during conditions of severe blood loss, may result in cardiovascular collapse (decompensatory or circulatory shock. The ability to tolerate central hypovolemia is variable and physiological factors contributing to tolerance are emerging. We tested the hypothesis that resting muscle sympathetic nerve activity (MSNA and sympathetic baroreflex sensitivity (BRS are attenuated in male and female subjects who have low tolerance (LT to central hypovolemia induced by lower body negative pressure (LBNP. MSNA and diastolic arterial pressure (DAP were recorded in 47 human subjects who subsequently underwent LBNP to tolerance (onset of presyncopal symptoms. LT subjects experienced presyncopal symptoms prior to completing LBNP of -60 mm Hg, and subjects with high tolerance (HT experienced presyncopal symptoms after completing LBNP after -60 mmHg. Contrary to our hypothesis, resting MSNA burst incidence was not different between LT and HT subjects, and was not related to time to presyncope. BRS was assessed as the slope of the relationship between spontaneous fluctuations in DAP and MSNA during 5 min of supine rest. MSNA burst incidence/DAP correlations were greater than or equal to 0.5 in 37 subjects (LT: n= 9; HT: n=28, and BRS was not different between LT and HT (-1.8 ± 0.3 vs. -2.2 ± 0.2 bursts•(100 beats-1•mmHg-1, p=0.29. We conclude that tolerance to central hypovolemia is not related to either resting MSNA or sympathetic BRS.

  8. Potential Role of Semaphorin 3A and Its Receptors in Regulating Aberrant Sympathetic Innervation in Peritoneal and Deep Infiltrating Endometriosis

    Science.gov (United States)

    Liang, Yanchun; Wang, Wei; Huang, Jiaming; Tan, Hao; Liu, Tianyu; Shang, Chunliang; Liu, Duo; Guo, Luyan; Yao, Shuzhong

    2015-01-01

    Previous studies have demonstrated the involvement of nerve repellent factors in regulation of the imbalanced innervation of endometriosis. This prospective study aims to explore the role of Sema 3A in regulating aberrant sympathetic innervation in peritoneal and deep infiltrating endometriosis. Ectopic endometriotic lesion were collected from patients with peritoneal endometriosis (n = 24) and deep infiltrating endometriosis of uterosacral ligament (n = 20) undergoing surgery for endometriosis. Eutopic endometrial samples were collected from patients with endometriosis (n = 22) or without endometriosis (n = 26). Healthy peritoneum (n = 13) from the lateral pelvic wall and healthy uterosacral ligament (n = 13) were obtained from patients who had no surgical and histological proof of endometriosis during hysterectomy for uterine fibroids. Firstly, we studied the immunostaining of Sema 3A, Plexin A1 and NRP-1 in all the tissues described above. Then we studied the nerve fiber density (NFD) of endometriosis-associated (sympathetic) nerve and para-endometriotic (sympathetic) nerve by double immunofluorescence staining. Finally we analyzed the relationship between expression of Sema 3A in stromal cells of endometriotic lesion and the aberrant innervation of endometriosis. Semi-quantitative immunostaining demonstrated that (1) Higher immunostaining of Sema 3A were found in the eutopic endometrial glandular epithelial cells from patients with endometriosis (p = 0.041) than those without endometriosis; (2) Sema 3A immunostaining was higher in glandular epithelial cells of peritoneal endometriosis (Pendometriosis, while its expression in ectopic stormal cells in both groups were significantly lower than that from eutopic endometrium of women without endometirosis (Pendometriosis-associated sympathetic nerve of peritoneal endometriosis (pendometriosis of uterosacral ligament (pendometriosis. PMID:26720585

  9. Excess portal venous long-chain fatty acids induce syndrome X via HPA axis and sympathetic activation

    NARCIS (Netherlands)

    Benthem, L; Keizer, Klaas-Jan; Wiegman, CH; De Boer, SF; Strubbe, JH; Steffens, AB; Kuipers, F; Scheurink, AJW

    2000-01-01

    We tested the hypothesis that excessive portal venous supply of long-chain fatty acids to the liver contributes to the development of insulin resistance via activation of the hypothalamus-pituitary-adrenal axis (HPA axis) and sympathetic system. Rats received an intraportal infusion of the

  10. The Gata3 transcription factor is required for the survival of embryonic and adult sympathetic neurons

    NARCIS (Netherlands)

    K. Tsarovina (Konstantina); T. Reiff (Tobias); J. Stubbusch (Jutta); D. Kurek (Dorota); F.G. Grosveld (Frank); R. Parlato (Rosanna); G. Schütz (Günther); H. Rohrer (Hermann)

    2010-01-01

    textabstractThe transcription factor Gata3 is essential for the development of sympathetic neurons and adrenal chromaffin cells. As Gata3 expression is maintained up to the adult stage, we addressed its function in differentiated sympathoadrenal cells at embryonic and adult stages by conditional

  11. Autonomic markers of emotional processing: skin sympathetic nerve activity in humans during exposure to emotionally charged images.

    Science.gov (United States)

    Brown, Rachael; James, Cheree; Henderson, Luke A; Macefield, Vaughan G

    2012-01-01

    The sympathetic innervation of the skin primarily subserves thermoregulation, but the system has also been commandeered as a means of expressing emotion. While it is known that the level of skin sympathetic nerve activity (SSNA) is affected by anxiety, the majority of emotional studies have utilized the galvanic skin response as a means of inferring increases in SSNA. The purpose of the present study was to characterize the changes in SSNA when showing subjects neutral or emotionally charged images from the International Affective Picture System (IAPS). SSNA was recorded via tungsten microelectrodes inserted into cutaneous fascicles of the common peroneal nerve in ten subjects. Neutral images, positively charged images (erotica) or negatively charged images (mutilation) were presented in blocks of fifteen images of a specific type, each block lasting 2 min. Images of erotica or mutilation were presented in a quasi-random fashion, each block following a block of neutral images. Both images of erotica or images of mutilation caused significant increases in SSNA, but the increases in SSNA were greater for mutilation. The increases in SSNA were often coupled with sweat release and cutaneous vasoconstriction; however, these markers were not always consistent with the SSNA increases. We conclude that SSNA, comprising cutaneous vasoconstrictor and sudomotor activity, increases with both positively charged and negatively charged emotional images. Measurement of SSNA provides a more comprehensive assessment of sympathetic outflow to the skin than does the use of sweat release alone as a marker of emotional processing.

  12. Scintigraphic assessment of cardiac sympathetic innervation with I-123-metaiodobenzylguanidine in cardiomyopathy. Special reference to cardiac arrhythmia

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Takahisa; Otsuka, Nobuaki; Sone, Teruki; Mimura, Hiroaki; Yanagimoto, Shinichi; Tomomitsu, Tatsushi; Fukunaga, Masao [Kawasaki Medical School, Kurashiki, Okayama (Japan); Morita, Koichi

    1999-07-01

    Cardiac sympathetic imagings with I-123-metaiodobenzylguanidine (MIBG) were carried out in 5 cases with dilated cardiomyopathy (DCM), 26 cases with hypertrophic cardiomyopathy (HCM), and 4 cases without cardiac disease as a control to assess cardiac sympathetic innervation qualitatively and quantitatively, and to clarify the relation of MIBG accumulation to arrhythmia. MIBG scintigraphy was performed at 15 min. (early image) and 4 hr. (delayed image) after intravenous injection of MIBG 111 MBq. The MIBG uptake ratio of mediastinum (H/M) and the cardiac washout rate (WR) from early to delayed images were calculated. On both early and delayed SPECTs, MIBG uptake was assessed by defect scores (DSs). Regarding the cases with HCM, the MIBG uptake ratio, WR, and DS were also compared in cases with and without arrhythmia. In DCM, the MIBG uptake on delayed SPECT was markedly low, the H/M ratio was significantly lower, and the DS was significantly higher than in the control (all p<0.05). As for the WR, there was no significant difference between HCM, DCM and the control. In HCM, significantly reduced MIBG uptake was observed in cases with ventricular techycardia (VT) and in cases with atrial fibrillation (Af), as compared with cases without arrhythmia (all p<0.05). There results suggest that MIBG scintigraphy might be a useful tool in the assessment of cardiac sympathetic abnormalities in cardiomyopathy, especially in cases with arrhythmia. (author)

  13. Metaiodobenzylguanidine [131I] scintigraphy detects impaired myocardial sympathetic neuronal transport function of canine mechanical-overload heart failure

    International Nuclear Information System (INIS)

    Rabinovitch, M.A.; Rose, C.P.; Rouleau, J.L.

    1987-01-01

    In heart failure secondary to chronic mechanical overload, cardiac sympathetic neurons demonstrate depressed catecholamine synthetic and transport function. To assess the potential of sympathetic neuronal imaging for detection of depressed transport function, serial scintigrams were acquired after the intravenous administration of metaiodobenzylguanidine [ 131 I] to 13 normal dogs, 3 autotransplanted (denervated) dogs, 5 dogs with left ventricular failure, and 5 dogs with compensated left ventricular hypertrophy due to a surgical arteriovenous shunt. Nine dogs were killed at 14 hours postinjection for determination of metaiodobenzylguanidine [ 131 I] and endogenous norepinephrine content in left atrium, left ventricle, liver, and spleen. By 4 hours postinjection, autotransplanted dogs had a 39% reduction in mean left ventricular tracer accumulation, reflecting an absent intraneuronal tracer pool. Failure dogs demonstrated an accelerated early mean left ventricular tracer efflux rate (26.0%/hour versus 13.7%/hour in normals), reflecting a disproportionately increased extraneuronal tracer pool. They also showed reduced late left ventricular and left atrial concentrations of tracer, consistent with a reduced intraneuronal tracer pool. By contrast, compensated hypertrophy dogs demonstrated a normal early mean left ventricular tracer efflux rate (16.4%/hour) and essentially normal late left ventricular and left atrial concentrations of tracer. Metaiodobenzylguanidine [ 131 I] scintigraphic findings reflect the integrity of the cardiac sympathetic neuronal transport system in canine mechanical-overload heart failure. Metaiodobenzylguanidine [ 123 I] scintigraphy should be explored as a means of early detection of mechanical-overload heart failure in patients

  14. Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts

    International Nuclear Information System (INIS)

    DiCicco-Bloom, E.; Black, I.B.

    1988-01-01

    While neuronal mitosis is uniquely restricted to early development, the underlying regulation remains to be defined. The authors have now developed a dissociated, embryonic sympathetic neuron culture system that uses fully defined medium in which cells enter the mitotic cycle. The cultured cells expressed two neuronal traits, tyrosine hydroxylase and the neuron-specific 160-kDa neurofilament subunit protein, but were devoid of glial fibrillary acidic protein, a marker for non-myelin-forming Schwann cells in ganglia. Approximately one-third of the tyrosine hydroxylase-positive cells synthesized DNA in culture, specifically incorporating [ 3 H]thymidine into their nuclei. They used this system to define factors regulating the mitotic cycle in sympathetic neuroblasts. Members of the insulin family of growth factors, including insulin and insulin-like growth factors I and II, regulated DNA synthesis in the presumptive neuroblasts. Insulin more than doubled the proportion of tyrosine hydroxylase-positive cells entering the mitotic cycle, as indicated by autoradiography of [ 3 H]thymidine incorporation into nuclei. Scintillation spectrometry was an even more sensitive index of DNA synthesis. In contrast, the trophic protein nerve growth factor exhibited no mitogenic effect, suggesting that the mitogenic action of insulin growth factors is highly specific. The observations are discussed in the context of the detection of insulin growth factors and receptors in the developing brain

  15. Bilateral thoracoscopic splanchnicectomy for pain in patients with chronic pancreatitis impairs adrenomedullary but not noradrenergic sympathetic function.

    NARCIS (Netherlands)

    Buscher, H.C.J.L.; Lenders, J.W.M.; Wilder-Smith, O.H.G.; Sweep, C.G.J.; Goor, H. van

    2012-01-01

    BACKGROUND: Bilateral thoracoscopic splanchnicectomy (BTS) is a well-known technique to alleviate intractable pain in patients with chronic pancreatitis. BTS not only disrupts afferent fibers from the pancreas that mediate pain but also postganglionic sympathetic fibers, which originate in segments

  16. Sympathetic arousal increases a negative memory bias in young women with low sex hormone levels

    Science.gov (United States)

    Nielsen, Shawn E.; Barber, Sarah J.; Chai, Audrey; Clewett, David V.; Mather, Mara

    2015-01-01

    Emotionally arousing events are typically better attended to and remembered than neutral ones. Current theories propose that arousal-induced increases in norepinephrine during encoding bias attention and memory in favor of affectively salient stimuli. Here, we tested this hypothesis by manipulating levels of physiological arousal prior to encoding and examining how it influenced memory for emotionally salient images, particularly those that are negative rather than positive in valence. We also tested whether sex steroid hormones interact with noradrenergic activity to influence these emotional memory biases in women. Healthy naturally cycling women and women on hormonal contraception completed one of the following physiological arousal manipulations prior to viewing a series of negative, positive and neutral images: 1) Immediate handgrip arousal – isometric handgrip immediately prior to encoding, 2) Residual handgrip arousal – isometric handgrip 15 min prior to encoding, or 3) No handgrip. Sympathetic arousal was measured throughout the session via pupil diameter changes. Levels of 17β-estradiol and progesterone were measured via salivary samples. Memory performance was assessed approximately 10 minutes after encoding using a surprise free recall test. The results indicated that handgrip successfully increased sympathetic arousal compared to the control task. Under immediate handgrip arousal, women showed enhanced memory for negative images over positive images; this pattern was not observed in women assigned to the residual and no-handgrip arousal conditions. Additionally, under immediate handgrip arousal, both high estradiol and progesterone levels attenuated the memory bias for negative over positive images. Follow-up hierarchical linear models revealed consistent effects when accounting for trial-by-trial variability in normative International Affective Picture System valence and arousal ratings. These findings suggest that heightened sympathetic arousal

  17. Mood states, sympathetic activity, and in vivo beta-adrenergic receptor function in a normal population.

    Science.gov (United States)

    Yu, Bum-Hee; Kang, Eun-Ho; Ziegler, Michael G; Mills, Paul J; Dimsdale, Joel E

    2008-01-01

    The purpose of this study was to examine the relationship between mood states and beta-adrenergic receptor function in a normal population. We also examined if sympathetic nervous system activity is related to mood states or beta-adrenergic receptor function. Sixty-two participants aged 25-50 years were enrolled in this study. Mood states were assessed using the Profile of Mood States (POMS). Beta-adrenergic receptor function was determined using the chronotropic 25 dose isoproterenol infusion test. Level of sympathetic nervous system activity was estimated from 24-hr urine norepinephrine excretion. Higher tension-anxiety, depression-dejection, and anger-hostility were related to decreased beta-adrenergic receptor sensitivity (i.e., higher chronotropic 25 dose values), but tension-anxiety was the only remaining independent predictor of beta-adrenergic receptor function after controlling for age, gender, ethnicity, and body mass index (BMI). Urinary norepinephrine excretion was unrelated to either mood states or beta-adrenergic receptor function. These findings replicate previous reports that anxiety is related to decreased (i.e., desensitized) beta-adrenergic receptor sensitivity, even after controlling for age, gender, ethnicity, and body mass index.

  18. The Effect of Sympathetic Antagonists on the Antidepressant Action of Alprazolam

    Directory of Open Access Journals (Sweden)

    Gorash ZM

    2008-01-01

    Full Text Available Alprazolam is an anti-anxiety drug shown to be effective in the treatment of depression. In this study, the effect of sympathetic receptor antagonists on alprazolam–induced antidepressant action was studied using a mouse model of forced swimming behavioral despair. The interaction of three sympathetic receptor antagonists with benzodiazepines, which may impact the clinical use of alprazolam, was also studied. Behavioral despair was examined in six groups of albino mice. Drugs were administered intraperitoneally. The control group received only a single dose of 1% Tween 80. The second group received a single dose of alprazolam, and the third group received an antagonist followed by alprazolam. The fourth group was treated with imipramine, and the fifth group received an antagonist followed by imipramine. The sixth group was treated with a single dose of an antagonist alone (atenolol, a β1-selective adrenoceptor antagonist; propranolol, a non selective β-adrenoceptor antagonist; and prazocin, an α1-adrenoceptor antagonist. Results confirmed the antidepressant action of alprazolam and imipramine. Prazocin treatment alone produced depression, but it significantly potentiated the antidepressant actions of imipramine and alprazolam. Atenolol alone produced an antidepressant effect and potentiated the antidepressant action of alprazolam. Propranolol treatment alone produced depression, and antagonized the effects of alprazolam and imipramine, even producing depression in combined treatments. In conclusion, our results reveal that alprazolam may produce antidepressant effects through the release of noradrenaline, which stimulates β2 receptors to produce an antidepressant action. Imipramine may act by activating β2 receptors by blocking or down-regulating β1 receptors.

  19. Effect of Switching from Cilnidipine to Azelnidipine on Cardiac Sympathetic Nerve Function in Patients with Heart Failure Preserved Ejection Fraction.

    Science.gov (United States)

    Kiuchi, Shunsuke; Hisatake, Shinji; Kabuki, Takayuki; Oka, Takashi; Dobashi, Shintaro; Fujii, Takahiro; Ikeda, Takanori

    2018-01-27

    Cardiac sympathetic nerve activity is known to play a key role in the development and progression of heart failure (HF). Azelnidipine, an L-type calcium channel blocker (CCB), inhibits the sympathetic nerve activity of the central system. In contrast, cilnidipine, an N-type CCB, inhibits the sympathetic nerve activity of the peripheral system. CCBs are recommended as class IIa in patients with HF preserved ejection fraction (HFpEF); however, there are no comparative data on the difference in effect of cilnidipine and azelnidipine in patients with HFpEF and hypertension. We investigated the difference in effect of azelnidipine compared with cilnidipine in patients with HFpEF. Twenty-four consecutive HF patients who received angiotensin II type1a receptor blocker and beta blocker from April 2013 to January 2015 were enrolled. Cilnidipine was switched to azelnidipine during the follow-up period. Blood pressures, heart rate, blood tests, echocardiography, and 123 I-metaiodobenzylguanidine (MIBG) cardiac-scintigraphy were measured before and after 6 months from azelnidipine administration. B-type natriuretic peptide tended to decrease after switching to azelnidipine; however, there were no significant differences between the pre-state and post-state (pre-state: 118.5 pg/mL and post-state: 78.4 pg/mL, P = 0.137). Other laboratory findings, including catecholamine, also did not change significantly. In echocardiography, there were no significant differences in systolic and diastolic functions at the pre-state and post-state. As for MIBG, there were no significant changes in heart/mediastinum ratio. However, washout rate was significantly reduced (pre-state: 42.9 and post-state: 39.6, P = 0.030). Azelnidipine improved the dysfunction of cardiac sympathetic nerve activity compared with cilnidipine in patients with HFpEF.

  20. External light activates hair follicle stem cells through eyes via an ipRGC-SCN-sympathetic neural pathway.

    Science.gov (United States)

    Fan, Sabrina Mai-Yi; Chang, Yi-Ting; Chen, Chih-Lung; Wang, Wei-Hung; Pan, Ming-Kai; Chen, Wen-Pin; Huang, Wen-Yen; Xu, Zijian; Huang, Hai-En; Chen, Ting; Plikus, Maksim V; Chen, Shih-Kuo; Lin, Sung-Jan

    2018-06-29

    Changes in external light patterns can alter cell activities in peripheral tissues through slow entrainment of the central clock in suprachiasmatic nucleus (SCN). It remains unclear whether cells in otherwise photo-insensitive tissues can achieve rapid responses to changes in external light. Here we show that light stimulation of animals' eyes results in rapid activation of hair follicle stem cells with prominent hair regeneration. Mechanistically, light signals are interpreted by M1-type intrinsically photosensitive retinal ganglion cells (ipRGCs), which signal to the SCN via melanopsin. Subsequently, efferent sympathetic nerves are immediately activated. Increased norepinephrine release in skin promotes hedgehog signaling to activate hair follicle stem cells. Thus, external light can directly regulate tissue stem cells via an ipRGC-SCN autonomic nervous system circuit. Since activation of sympathetic nerves is not limited to skin, this circuit can also facilitate rapid adaptive responses to external light in other homeostatic tissues.

  1. Voltage-Induced Ca²⁺ Release in Postganglionic Sympathetic Neurons in Adult Mice.

    Directory of Open Access Journals (Sweden)

    Hong-Li Sun

    Full Text Available Recent studies have provided evidence that depolarization in the absence of extracellular Ca2+ can trigger Ca2+ release from internal stores in a variety of neuron subtypes. Here we examine whether postganglionic sympathetic neurons are able to mobilize Ca2+ from intracellular stores in response to depolarization, independent of Ca2+ influx. We measured changes in cytosolic ΔF/F0 in individual fluo-4 -loaded sympathetic ganglion neurons in response to maintained K+ depolarization in the presence (2 mM and absence of extracellular Ca2+ ([Ca2+]e. Progressive elevations in extracellular [K+]e caused increasing membrane depolarizations that were of similar magnitude in 0 and 2 mM [Ca2+]e. Peak amplitude of ΔF/F0 transients in 2 mM [Ca2+]e increased in a linear fashion as the membrane become more depolarized. Peak elevations of ΔF/F0 in 0 mM [Ca2+]e were ~5-10% of those evoked at the same membrane potential in 2 mM [Ca2+]e and exhibited an inverse U-shaped dependence on voltage. Both the rise and decay of ΔF/F0 transients in 0 mM [Ca2+]e were slower than those of ΔF/F0 transients evoked in 2 mM [Ca2+]e. Rises in ΔF/F0 evoked by high [K+]e in the absence of extracellular Ca2+ were blocked by thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ ATPase, or the inositol 1,4,5-triphosphate (IP3 receptor antagonists 2-aminoethoxydiphenyl borate and xestospongin C, but not by extracellular Cd2+, the dihydropyridine antagonist nifedipine, or by ryanodine at concentrations that caused depletion of ryanodine-sensitive Ca2+ stores. These results support the notion that postganglionic sympathetic neurons possess the ability to release Ca2+ from IP3-sensitive internal stores in response to membrane depolarization, independent of Ca2+ influx.

  2. Myocardial pre-synaptic sympathetic function correlates with glucose uptake in the failing human heart

    Energy Technology Data Exchange (ETDEWEB)

    Mongillo, Marco; Leccisotti, Lucia [Hammersmith Hospital, Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, London (United Kingdom); John, Anna S. [Hammersmith Hospital, National Heart and Lung Institute, Imperial College, London (United Kingdom); Pennell, Dudley J. [Royal Brompton Hospital, National Heart and Lung Institute, Imperial College, London (United Kingdom); Camici, Paolo G. [Hammersmith Hospital, Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, London (United Kingdom); Hammersmith Hospital, National Heart and Lung Institute, Imperial College, London (United Kingdom)

    2007-08-15

    We have previously shown that the myocardium of patients with heart failure (HF) is insulin resistant. Chronic {beta}-adrenergic stimulation has been implicated in insulin resistance in cultured cardiomyocytes in vitro, where sustained noradrenaline stimulation inhibited insulin-modulated glucose uptake. As the failing heart is characterized by increased sympathetic drive, we hypothesized that there is a correlation between pre-synaptic sympathetic function and insulin sensitivity in the myocardium of patients with HF. Eight patients (aged 67 {+-} 7 years) with coronary artery disease and left ventricular dysfunction (ejection fraction 44 {+-} 10%) underwent function and viability assessment with cardiovascular magnetic resonance. Myocardial glucose utilization (MGU) was measured using positron emission tomography (PET) with {sup 18}F-fluorodeoxyglucose (FDG). Pre-synaptic noradrenaline re-uptake was measured by calculating [{sup 11}C]meta-hydroxy-ephedrine (HED) volume of distribution (V{sub d}) with PET. Two groups of healthy volunteers served as controls for the FDG (n = 8, aged 52 {+-} 4 years, p < 0.01 vs patients) and HED (n = 8, aged 40 {+-} 6 years, p < 0.01 vs patients) data. MGU in patients was reduced in both normal remote (0.44 {+-} 0.14 {mu}mol.min{sup -1}.g{sup -1}) and dysfunctional (0.49 {+-} 0.14 {mu}mol.min{sup -1}.g{sup -1}) segments compared with controls (0.61 {+-} 0.7 {mu}mol.min{sup -1}.g{sup -1}; p < 0.001 vs both). HED V{sub d} was reduced in dysfunctional segments of patients (38.9 {+-} 21.2 ml.g{sup -1}) compared with normal segments (52.2 {+-} 19.6 ml.g{sup -1}) and compared with controls (62.7 {+-} 11.3 ml.g{sup -1}). In patients, regional MGU was correlated with HED V{sub d}. The results of this study provide novel evidence of a correlation between cardiac sympathetic function and insulin sensitivity, which may represent one of the mechanisms contributing to insulin resistance in failing human hearts. (orig.)

  3. Resting sympathetic arousal moderates the association between parasympathetic reactivity and working memory performance in adults reporting high levels of life stress.

    Science.gov (United States)

    Giuliano, Ryan J; Gatzke-Kopp, Lisa M; Roos, Leslie E; Skowron, Elizabeth A

    2017-08-01

    The neurovisceral integration model stipulates that autonomic function plays a critical role in the regulation of higher-order cognitive processes, yet most work to date has examined parasympathetic function in isolation from sympathetic function. Furthermore, the majority of work has been conducted on normative samples, which typically demonstrate parasympathetic withdrawal to increase arousal needed to complete cognitive tasks. Little is known about how autonomic regulation supports cognitive function in populations exposed to high levels of stress, which is critical given that chronic stress exposure alters autonomic function. To address this, we sought to characterize how parasympathetic (high-frequency heart rate variability, HF-HRV) and sympathetic (preejection period, PEP) measures of cardiac function contribute to individual differences in working memory (WM) capacity in a sample of high-risk women. HF-HRV and PEP were measured at rest and during a visual change detection measure of WM. Multilevel modeling was used to examine within-person fluctuations in WM performance throughout the task concurrently with HF-HRV and PEP, as well as between-person differences as a function of resting HF-HRV and PEP levels. Results indicate that resting PEP moderated the association between HF-HRV reactivity and WM capacity. Increases in WM capacity across the task were associated with increases in parasympathetic activity, but only among individuals with longer resting PEP (lower sympathetic arousal). Follow-up analyses showed that shorter resting PEP was associated with greater cumulative risk exposure. These results support the autonomic space framework, in that the relationship between behavior and parasympathetic function appears dependent on resting sympathetic activation. © 2017 Society for Psychophysiological Research.

  4. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Secher, Niels H

    2011-01-01

    This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF...... perfusion and reduces the near-infrared determined cerebral oxygenation at rest, but not during exercise associated with an increased cerebral metabolic rate for oxygen (CMRO(2)), suggesting competition between CMRO(2) and sympathetic control of CBF. CMRO(2) does not change during even intense handgrip...

  5. Thermography imaging during static and controlled thermoregulation in complex regional pain syndrome type 1: diagnostic value and involvement of the central sympathetic system

    Directory of Open Access Journals (Sweden)

    Westra Mirjam

    2006-05-01

    Full Text Available Abstract Background Complex Regional Pain Syndrome type 1 (CRPS1 is a clinical diagnosis based on criteria describing symptoms of the disease. The main aim of the present study was to compare the sensitivity and specificity of calculation methods used to assess thermographic images (infrared imaging obtained during temperature provocation. The secondary objective was to obtain information about the involvement of the sympathetic system in CRPS1. Methods We studied 12 patients in whom CRPS1 was diagnosed according to the criteria of Bruehl. High and low whole body cooling and warming induced and reduced sympathetic vasoconstrictor activity. The degree of vasoconstrictor activity in both hands was monitored using a videothermograph. The sensitivity and specificity of the calculation methods used to assess the thermographic images were calculated. Results The temperature difference between the hands in the CRPS patients increases significantly when the sympathetic system is provoked. At both the maximum and minimum vasoconstriction no significant differences were found in fingertip temperatures between both hands. Conclusion The majority of CRPS1 patients do not show maximal obtainable temperature differences between the involved and contralateral extremity at room temperature (static measurement. During cold and warm temperature challenges this temperature difference increases significantly. As a result a higher sensitivity and specificity could be achieved in the diagnosis of CRPS1. These findings suggest that the sympathetic efferent system is involved in CRPS1.

  6. Impaired autonomic regulation of resistance arteries in mice with low vascular endothelial growth factor or upon vascular endothelial growth factor trap delivery

    DEFF Research Database (Denmark)

    Storkebaum, Erik; Ruiz de Almodovar, Carmen; Meens, Merlijn

    2010-01-01

    BACKGROUND: Control of peripheral resistance arteries by autonomic nerves is essential for the regulation of blood flow. The signals responsible for the maintenance of vascular neuroeffector mechanisms in the adult, however, remain largely unknown. METHODS AND RESULTS: Here, we report that VEGF( ...

  7. Revisiting renovascular imaging for renal sympathetic denervation: current techniques and applications

    Energy Technology Data Exchange (ETDEWEB)

    Pua, Uei; Tan, Cher Heng [Tan Tock Seng Hospital, Department of Diagnostic Radiology, Singapore (Singapore); Ho, Hee Hwa; Tan, Julian Ko Beng; Ong, Paul Jau Leong [Tan Tock Seng Hospital, Department of Cardiology, Singapore (Singapore)

    2014-08-28

    Renal sympathetic denervation (RDN) is an emerging technique in the treatment of resistant hypertension, most commonly performed using an endovascular approach. Clinical and anatomical criteria for RDN are well established and imaging plays an integral role in selecting patients with suitable anatomy, procedural planning and device selection. Nevertheless, the current body of literature surrounding imaging related to RDN remains limited. The purpose of this article is to illustrate the expectations and limitations of various imaging techniques, including Doppler ultrasound, CT angiography, MR angiography and newer techniques such as non-contrast MR angiography, in the context of RDN. (orig.)

  8. Revisiting renovascular imaging for renal sympathetic denervation: current techniques and applications

    International Nuclear Information System (INIS)

    Pua, Uei; Tan, Cher Heng; Ho, Hee Hwa; Tan, Julian Ko Beng; Ong, Paul Jau Leong

    2015-01-01

    Renal sympathetic denervation (RDN) is an emerging technique in the treatment of resistant hypertension, most commonly performed using an endovascular approach. Clinical and anatomical criteria for RDN are well established and imaging plays an integral role in selecting patients with suitable anatomy, procedural planning and device selection. Nevertheless, the current body of literature surrounding imaging related to RDN remains limited. The purpose of this article is to illustrate the expectations and limitations of various imaging techniques, including Doppler ultrasound, CT angiography, MR angiography and newer techniques such as non-contrast MR angiography, in the context of RDN. (orig.)

  9. Deletion of Dicer in smooth muscle affects voiding pattern and reduces detrusor contractility and neuroeffector transmission.

    Directory of Open Access Journals (Sweden)

    Mardjaneh Karbalaei Sadegh

    Full Text Available MicroRNAs have emerged as important regulators of smooth muscle phenotype and may play important roles in pathogenesis of various smooth muscle related disease states. The aim of this study was to investigate the role of miRNAs for urinary bladder function. We used an inducible and smooth muscle specific Dicer knockout (KO mouse which resulted in significantly reduced levels of miRNAs, including miR-145, miR-143, miR-22, miR125b-5p and miR-27a, from detrusor preparations without mucosa. Deletion of Dicer resulted in a disturbed micturition pattern in vivo and reduced depolarization-induced pressure development in the isolated detrusor. Furthermore, electrical field stimulation revealed a decreased cholinergic but maintained purinergic component of neurogenic activation in Dicer KO bladder strips. The ultrastructure of detrusor smooth muscle cells was well maintained, and the density of nerve terminals was similar. Western blotting demonstrated reduced contents of calponin and desmin. Smooth muscle α-actin, SM22α and myocardin were unchanged. Activation of strips with exogenous agonists showed that depolarization-induced contraction was preferentially reduced; ATP- and calyculin A-induced contractions were unchanged. Quantitative real time PCR and western blotting demonstrated reduced expression of Cav1.2 (Cacna1c. It is concluded that smooth muscle miRNAs play an important role for detrusor contractility and voiding pattern of unrestrained mice. This is mediated in part via effects on expression of smooth muscle differentiation markers and L-type Ca(2+ channels in the detrusor.

  10. EVALUATION OF THE BODY ADAPTIVE POTENTIAL AND ORIGINAL OF THE SYMPATHETIC NERVOUS SYSTEM TONE IN GIRLS AGED FROM 8 TO 17

    Directory of Open Access Journals (Sweden)

    A.A. Bolova

    2008-01-01

    Full Text Available The article highlights the findings obtained from the examination of 200 girls aged from 8 to 17, who underwent active orthostatic tests to study the adaptive capabilities of the body and initial tone of the sympathetic nervous system. The examination was carried out with ankar 131 computer cardio analyzer. The given try allowed the researchers to get an idea about the state of the compensatory and adaptive mechanisms of the girls during the puberty and identify the high risk groups of school students in terms of dysregulation of the sympathetic nervous system and genital system pathology.Key words: puberty, vegetative tone, active orthostatic test, girls.

  11. Transvenous stimulation of the renal sympathetic nerves increases systemic blood pressure: a potential new treatment option for neurocardiogenic syncope.

    Science.gov (United States)

    Madhavan, Malini; Desimone, Christopher V; Ebrille, Elisa; Mulpuru, Siva K; Mikell, Susan B; Johnson, Susan B; Suddendorf, Scott H; Ladewig, Dorothy J; Gilles, Emily J; Danielsen, Andrew J; Asirvatham, Samuel J

    2014-10-01

    Neurocardiogenic syncope (NCS) is a common and sometimes debilitating disorder, with no consistently effective treatment. NCS is due to a combination of bradycardia and vasodilation leading to syncope. Although pacemaker devices have been tried in treating the bradycardic aspect of NCS, no device-based therapy exists to treat the coexistent vasodilation that occurs. The renal sympathetic innervation has been the target of denervation to treat hypertension. We hypothesized that stimulation of the renal sympathetic nerves can increase blood pressure and counteract vasodilation in NCS. High-frequency stimulation (800-900 pps, 10 V, 30-200 seconds) was performed using a quadripolar catheter in the renal vein of 7 dogs and 1 baboon. A significant increase in blood pressure (BP; mean [SD] systolic BP 117 [±28] vs. 128 [±33], diastolic BP 75 [±19] vs. 87 [±29] mmHg) was noted during the stimulation, which returned to baseline after cessation of stimulation. The mean increase in systolic and diastolic BP was 13.0 (±3.3) (P = 0.006) and 10.2 (±4.6) (P = 0.08), respectively. We report the first ever study of feasibility and safety of high-frequency electrical stimulation of the renal sympathetic innervation to increase BP in animal models. This has potential applications in the treatment of hypotensive states such as NCS. © 2014 Wiley Periodicals, Inc.

  12. Anatomic Patterns of Renal Arterial Sympathetic Innervation: New Aspects for Renal Denervation.

    Science.gov (United States)

    Imnadze, Guram; Balzer, Stefan; Meyer, Baerbel; Neumann, Joerg; Krech, Rainer Horst; Thale, Joachim; Franz, Norbert; Warnecke, Henning; Awad, Khaled; Hayek, Salim S; Devireddy, Chandan

    2016-12-01

    Initial studies of catheter-based renal arterial sympathetic denervation to lower blood pressure in resistant hypertensive patients renewed interest in the sympathetic nervous system's role in the pathogenesis of hypertension. However, the SYMPLICITY HTN-3 study failed to meet its prespecified blood pressure lowering efficacy endpoint. To date, only a limited number of studies have described the microanatomy of renal nerves, of which, only two involve humans. Renal arteries were harvested from 15 cadavers from the Klinikum Osnabruck and Schuchtermann Klinik, Bad Rothenfelde. Each artery was divided longitudinally in equal thirds (proximal, middle, and distal), with each section then divided into equal superior, inferior, anterior, and posterior quadrants, which were then stained. Segments containing no renal nerves were given a score value = 0, 1-2 nerves with diameter 4 nerves or nerve diameter ≥600 µm a score = 3. A total of 22 renal arteries (9 right-sided, 13 left-sided) were suitable for examination. Overall, 691 sections of 5 mm thickness were prepared. Right renal arteries had significantly higher mean innervation grade (1.56 ± 0.85) compared to left renal arteries (1.09 ± 0.87) (P renal artery has significantly higher innervation scores than the left. The anterior and superior quadrants of the renal arteries scored higher in innervation than the posterior and inferior quadrants did. The distal third of the renal arteries are more innervated than the more proximal segments. These findings warrant further evaluation of the spatial innervation patterns of the renal artery in order to understand how it may enhance catheter-based renal arterial denervation procedural strategy and outcomes. The SYMPLICITY HTN-3 study dealt a blow to the idea of the catheter-based renal arterial sympathetic denervation. We investigated the location and patterns of periarterial renal nerves in cadaveric human renal arteries. To quantify the density of the

  13. Cardiac Sympathetic Hyperactivity after Chemotherapy: Early Sign of Cardiotoxicity?

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Sarita Lígia Pessoa de Melo Machado [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Hospital Agamenon Magalhães (HAM), Recife, PE (Brazil); Brandão, Simone Cristina Soares, E-mail: simonecordis@yahoo.com.br [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Andrade, Luciana Raposo [Hospital Santa Joana, Recife, PE (Brazil); Maia, Rafael José Coelho [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil); Hospital Agamenon Magalhães (HAM), Recife, PE (Brazil); Markman Filho, Brivaldo [Pós-Graduação em Ciências da Saúde da Universidade Federal de Pernambuco (PGCS-UFPE), Recife, PE (Brazil)

    2015-09-15

    Chemotherapy with anthracyclines and trastuzumab can cause cardiotoxicity. Alteration of cardiac adrenergic function assessed by metaiodobenzylguanidine labeled with iodine-123 ({sup 123}I-mIBG) seems to precede the drop in left ventricular ejection fraction. To evaluate and to compare the presence of cardiovascular abnormalities among patients with breast cancer undergoing chemotherapy with anthracyclines and trastuzumab, and only with anthracycline. Patients with breast cancer were analyzed clinical, laboratory, electrocardiographic and echocardiographic and cardiac sympathetic activity. In scintigraphic images, the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum, and the washout rate were calculated. The variables were compared between patients who received anthracyclines and trastuzumab (Group 1) and only anthracyclines (Group 2). Twenty patients, with mean age 57 ± 14 years, were studied. The mean left ventricular ejection fraction by echocardiography was 67.8 ± 4.0%. Mean washout rate was 28.39 ± 9.23% and the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum was 2.07 ± 0.28. Of the patients, 82% showed an increased in washout rate, and the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum decreased in 25%. Concerning the groups, the mean washout rate of Group 1 was 32.68 ± 9.30% and of Group 2 was 24.56 ± 7.72% (p = 0,06). The ratio of {sup 123}I-mIBG uptake between the heart and mediastinum was normal in all patients in Group 2, however, the Group 1, showed 50% the ratio of {sup 123}I-mIBG uptake between the heart and mediastinum ≤ 1.8 (p = 0.02). In women with breast cancer undergoing chemotherapy, assessment of cardiac sympathetic activity with {sup 123}I-mIBG appears to be an early marker of cardiotoxicity. The combination of chemotherapy showed higher risk of cardiac adrenergic hyperactivity.

  14. "Head versus heart": Effect of monetary frames on expression of sympathetic magical concerns

    OpenAIRE

    Paul Rozin; Heidi Grant; Stephanie Weinberg; Scott Parker

    2007-01-01

    Most American respondents give ``irrational,'' magical responses in a variety of situations that exemplify the sympathetic magical laws of similarity and contagion. In most of these cases, respondents are aware that their responses (usually rejections, as of fudge crafted to look like dog feces, or a food touched by a sterilized, dead cockroach) are not ``scientifically'' justified, but they are willing to avow them. We interpret this, in some sense, as ``heart over head.'' We report in this ...

  15. Plasma dihydroxyphenylalanine (DOPA) is independent of sympathetic activity in humans

    DEFF Research Database (Denmark)

    Eldrup, E; Christensen, N J; Andreasen, J

    1989-01-01

    in diabetic patients with autonomic neuropathy compared to diabetics without neuropathy, whereas baseline plasma DOPA concentrations were similar in the three groups investigated: 6.55 (5.03-7.26, median [interquartile range], n = 8) nmol l-1 in diabetics with neuropathy, 7.41 (5.79-7.97, n = 8) nmol l-1...... in diabetics without neuropathy, and 6.85 (5.58-7.36, n = 8) nmol l-1 in controls. No relationship was obtained between baseline values of plasma NE and plasma DOPA. Plasma DOPA did not change in the upright position, whereas plasma NE increased significantly. Our results indicate that plasma DOPA...... is not related to sympathetic activity and may be of non-neuronal origin....

  16. Leptin regulates bone formation via the sympathetic nervous system

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  17. Dysregulation of Neuronal Ca2+ Channel Linked to Heightened Sympathetic Phenotype in Prohypertensive States

    OpenAIRE

    Larsen, Hege E.; Bardsley, Emma N.; Lefkimmiatis, Konstantinos; Paterson, David J.

    2016-01-01

    Hypertension is associated with impaired nitric oxide (NO)–cyclic nucleotide (CN)-coupled intracellular calcium (Ca2+) homeostasis that enhances cardiac sympathetic neurotransmission. Because neuronal membrane Ca2+ currents are reduced by NO-activated S-nitrosylation, we tested whether CNs affect membrane channel conductance directly in neurons isolated from the stellate ganglia of spontaneously hypertensive rats (SHRs) and their normotensive controls. Using voltage-clamp and cAMP–protein kin...

  18. Search for HRV-parameters that detect a sympathetic shift in heart failure patients on beta-blocker treatment

    NARCIS (Netherlands)

    Zhang, Yanru; de Peuter, Olav R.; Kamphuisen, Pieter W.; Karemaker, John M.

    2013-01-01

    Background: A sympathetic shift in heart rate variability (HRV) from high to lower frequencies may be an early signal of deterioration in a monitored patient. Most chronic heart failure (CHF) patients receive (3-blockers. This tends to obscure HRV observation by increasing the fast variations. We

  19. Chemistry and biology of radiotracers that target changes in sympathetic and parasympathetic nervous systems in heart disease.

    Science.gov (United States)

    Eckelman, William C; Dilsizian, Vasken

    2015-06-01

    Following the discovery of the sympathetic and parasympathetic nervous system, numerous adrenoceptor drugs were radiolabeled and potent radioligands were prepared in order to image the β-adrenergic and the muscarinic systems. But the greatest effort has been in preparing noradrenaline analogs, such as norepinephrine, (11)C-metahydroxyephedrine, and (123)I-metaiodobenzylguanidine that measure cardiac sympathetic nerve varicosities. Given the technical and clinical challenges in designing and validating targeted adrenoceptor-binding radiotracers, namely the heavily weighted flow dependence and relatively low target-to-background ratio, both requiring complicated mathematic analysis, and the inability of targeted adrenoceptor radioligands to have an impact on clinical care of heart disease, the emphasis has been on radioligands monitoring the norepinephrine pathway. The chemistry and biology of such radiotracers, and the clinical and prognostic impact of these innervation imaging studies in patients with heart disease, are examined. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  20. Autonomic nervous system dysfunction in children with severe tetanus: dissociation of cardiac and vascular sympathetic control

    Directory of Open Access Journals (Sweden)

    Mazzei de Davila C.A.

    2003-01-01

    Full Text Available The medical records of ten pediatric patients with a clinical diagnosis of tetanus were reviewed retrospectively. The heart rate and blood pressure of all tetanus patients were measured noninvasively every hour during the first two weeks of hospitalization. Six of ten tetanus patients presented clinical evidence of sympathetic hyperactivity (group A and were compared with a control group consisting of four children who required mechanical ventilation for diseases other than tetanus (group B. Heart rate and blood pressure simultaneously and progressively increased to a maximum by day 7. The increase over baseline was 43.70 ± 11.77 bpm (mean ± SD for heart rate (P<0.01 and 38.60 ± 26.40 mmHg for blood pressure (P<0.01. These values were higher and significantly different from those of the control group (group B at day 6, which had an average heart rate increase over baseline of 19.35 ± 12.26 bpm (P<0.05 and blood pressure of 10.24 ± 13.30 mmHg (P<0.05. By the end of the second week of hospitalization, in group A the increase of systolic blood pressure over baseline had diminished to 9.60 ± 15.37 mmHg (P<0.05, but the heart rate continued to be elevated (27.80 ± 33.92 bpm, P = NS, when compared to day 7 maximal values. The dissociation of these two cardiovascular variables at the end of the second week of hospitalization suggests the presence of asymmetric cardiac and vascular sympathetic control. One possible explanation for these observations is a selective and delayed action of tetanus toxin on the inhibitory neurons which control sympathetic outflow to the heart.

  1. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Ibrahim M Salman

    2015-08-01

    Full Text Available Chronic kidney disease (CKD is associated with sympathetic hyperactivity and impaired blood pressure control reflex responses, yet direct evidence demonstrating these features of autonomic dysfunction in conscious animals is still lacking. Here we measured renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP using telemetry-based recordings in a rat model of CKD, the Lewis Polycystic Kidney (LPK rat, and assessed responses to chemoreflex activation and acute stress. Male LPK and Lewis control animals (total n=16 were instrumented for telemetric recording of RSNA and MAP. At 12–13 weeks-of-age, resting RSNA and MAP, sympathetic and haemodynamic responses to both peripheral (hypoxia: 10% O2 and central chemoreflex (hypercapnia: 7% CO2 activation and acute stress (open-field exposure, were measured. As indicators of renal function, urinary protein (UPro and creatinine (Ucr levels were assessed. LPK rats had higher resting RSNA (1.2±0.1 vs. 0.6±0.1 µV, p<0.05 and MAP (151±8 vs. 97±2 mmHg, p<0.05 compared to Lewis. MAP was negatively correlated with Ucr (r=-0.80, p=0.002 and positively correlated with RSNA (r=0.66, p=0.014, with multiple linear regression modeling indicating the strongest correlation was with Ucr. RSNA and MAP responses to activation of the central chemoreflex and open-field stress were reduced in the LPK relative to the Lewis (all p<0.05. This is the first description of dual conscious telemetry recording of RSNA and MAP in a genetic rodent model of CKD. Elevated RSNA is likely a key contributor to the marked hypertension in this model, while attenuated RSNA and MAP responses to central chemoreflex activation and acute stress in the LPK indicate possible deficits in the neural processing of autonomic outflows evoked by these sympathoexcitatory pathways.

  2. Reactive oxygen species in the paraventricular nucleus of the hypothalamus alter sympathetic activity during metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    JOSIANE CAMPOS CRUZ

    2015-12-01

    Full Text Available The paraventricular nucleus of the hypothalamus (PVN contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II, which activates AT1 receptors in the circumventricular organs (OCVs, mainly in the subfornical organ (SFO. Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS, leading to increases in sympathetic nerve activity (SNA. Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS: dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS.

  3. Sympathetic Denervation Accelerates Wound Contraction but Inhibits Reepithelialization and Pericyte Proliferation in Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Zhifang Zheng

    2017-01-01

    Full Text Available Previous studies focused on the effects of sympathetic denervation with 6-hydroxydopamine (6-OHDA on nondiabetic wounds, but the effects of 6-OHDA on diabetic wounds have not been previously reported. In this study, treated mice received intraperitoneal 6-OHDA, and control mice received intraperitoneal injections of normal saline. Full-thickness wounds were established on the backs of mice. The wounds were sectioned (four mice per group for analysis at 2, 5, 7, 10, 14, 17, and 21 days after injury. The wound areas in the control group were larger than those in the treatment group. Histological scores for epidermal and dermal regeneration were reduced in the 6-OHDA-treated group on day 21. The mast cells (MCs in each field decreased after sympathectomy on days 17 and 21. The expression levels of norepinephrine, epidermal growth factor (EGF, interleukin-1 beta, NG2 proteoglycan, and desmin in the treatment group were less than those in the control group. In conclusion, 6-OHDA delays reepithelialization during wound healing in diabetic mice by decreasing EGF, but increases wound contraction by reducing IL-1β levels and the number of MCs. Besides, 6-OHDA led to reduced pericyte proliferation in diabetic wounds, which might explain the vascular dysfunction after sympathetic nerve loss in diabetic wounds.

  4. Skin conductance at baseline and postheel lance reflects sympathetic activation in neonatal opiate withdrawal.

    Science.gov (United States)

    Oji-Mmuo, Christiana N; Michael, Eric J; McLatchy, Jacqueline; Lewis, Mary M; Becker, Julie E; Doheny, Kim Kopenhaver

    2016-03-01

    Skin conductance (SC) provides an objective measure of autonomic system regulation through sympathetic-mediated filling of sweat glands. This study aimed to test the utility of SC to detect sympathetic activation in neonatal abstinence syndrome (NAS). Fourteen term (mean, SE: 38.8 ± 0.35 weeks gestational age) neonates with chronic prenatal opiate exposure were enrolled. SC (peaks/seconds and mean of peaks) was measured at baseline, during heel lance/squeeze (HLS) and recovery from HLS at 24-48 (mean 38) hours of life prior to treatment for NAS. Blinded coders with established reliability assessed neonates using the Modified Finnegan Neonatal Scoring System (MFNSS). Nonparametric tests were used to determine group differences, phase differences from baseline to HLS and HLS to recovery, and associations between MFNSS and SC measures. Neonates that would later require morphine treatment for NAS (n = 6) had higher baseline SC mean of peaks than those that did not require treatment (n = 8) (p < 0.05). Moreover, there were unique phase differences between groups and SC positively correlated with MFNSS (p < 0.05). SC provides early identification of NAS severity. However, a larger sample is needed to determine sensitivity and specificity of SC for early identification of NAS and treatment effectiveness. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  5. Alterations of left ventricular deformation and cardiac sympathetic derangement in patients with systolic heart failure: a 3D speckle tracking echocardiography and cardiac {sup 123}I-MIBG study

    Energy Technology Data Exchange (ETDEWEB)

    Leosco, Dario; Parisi, Valentina; Pagano, Gennaro; Femminella, Grazia Daniela; Bevilacqua, Agnese; Formisano, Roberto; Ferro, Gaetana; De Lucia, Claudio; Ferrara, Nicola [University Federico II, Department of Translational Medical Science, Naples (Italy); Pellegrino, Teresa [Italian National Research Council (CNR), Institute of Biostructure and Bioimaging, Naples (Italy); University Federico II, Department of Advanced Biomedical Science, Naples (Italy); Paolillo, Stefania [University Federico II, Department of Advanced Biomedical Science, Naples (Italy); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples (Italy); Prastaro, Maria; Filardi, Pasquale Perrone; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Science, Naples (Italy); Rengo, Giuseppe [University Federico II, Department of Translational Medical Science, Naples (Italy); Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, BN (Italy)

    2015-09-15

    Myocardial contractile function is under the control of cardiac sympathetic activity. Three-dimensional speckle tracking echocardiography (3D-STE) and cardiac imaging with {sup 123}I-metaiodobenzylguanidine ({sup 123}I-MIBG) are two sophisticated techniques for the assessment of left ventricular (LV) deformation and sympathetic innervation, respectively, which offer important prognostic information in patients with heart failure (HF). The purpose of this investigation was to explore, in patients with systolic HF, the relationship between LV deformation assessed by 3D-STE and cardiac sympathetic derangement evaluated by {sup 123}I-MIBG imaging. We prospectively studied 75 patients with systolic HF. All patients underwent a 3D-STE study (longitudinal, circumferential, area and radial) and {sup 123}I-MIBG planar and SPECT cardiac imaging. 3D-STE longitudinal, circumferential and area strain values were correlated with {sup 123}I-MIBG late heart to mediastinum (H/M) ratio and late SPECT total defect score. After stratification of the patients according to ischaemic or nonischaemic HF aetiology, we observed a good correlation of all 3D-STE measurements with late H/M ratio and SPECT data in the ischaemic group, but in patients with HF of nonischaemic aetiology, no correlation was found between LV deformation and cardiac sympathetic activity. At the regional level, the strongest correlation between LV deformation and adrenergic innervation was found for the left anterior descending coronary artery distribution territory for all four 3D-STE values. In multivariate linear regression analyses, including age, gender, LV ejection fraction, NYHA class, body mass index, heart rate and HF aetiology, only 3D-STE area and radial strain values significantly predicted cardiac sympathetic derangement on {sup 123}I-MIBG late SPECT. This study indicated that 3D-STE measurements are correlated with {sup 123}I-MIBG planar and SPECT data. Furthermore, 3D-STE area and radial strain values

  6. Pathophysiology of Resistant Hypertension: The Role of Sympathetic Nervous System

    Directory of Open Access Journals (Sweden)

    Costas Tsioufis

    2011-01-01

    Full Text Available Resistant hypertension (RH is a powerful risk factor for cardiovascular morbidity and mortality. Among the characteristics of patients with RH, obesity, obstructive sleep apnea, and aldosterone excess are covering a great area of the mosaic of RH phenotype. Increased sympathetic nervous system (SNS activity is present in all these underlying conditions, supporting its crucial role in the pathophysiology of antihypertensive treatment resistance. Current clinical and experimental knowledge points towards an impact of several factors on SNS activation, namely, insulin resistance, adipokines, endothelial dysfunction, cyclic intermittent hypoxaemia, aldosterone effects on central nervous system, chemoreceptors, and baroreceptors dysregulation. The further investigation and understanding of the mechanisms leading to SNS activation could reveal novel therapeutic targets and expand our treatment options in the challenging management of RH.

  7. Bioelectronic block of paravertebral sympathetic nerves mitigates post-myocardial infarction ventricular arrhythmias.

    Science.gov (United States)

    Chui, Ray W; Buckley, Una; Rajendran, Pradeep S; Vrabec, Tina; Shivkumar, Kalyanam; Ardell, Jeffrey L

    2017-11-01

    Autonomic dysfunction contributes to induction of ventricular tachyarrhythmia (VT). To determine the efficacy of charge-balanced direct current (CBDC), applied to the T1-T2 segment of the paravertebral sympathetic chain, on VT inducibility post-myocardial infarction (MI). In a porcine model, CBDC was applied in acute animals (n = 7) to optimize stimulation parameters for sympathetic blockade and in chronic MI animals (n = 7) to evaluate the potential for VTs. Chronic MI was induced by microsphere embolization of the left anterior descending coronary artery. At termination, in anesthetized animals and following thoracotomy, an epicardial sock array was placed over both ventricles and a quadripolar carousel electrode positioned underlying the right T1-T2 paravertebral chain. In acute animals, the efficacy of CBDC carousel (CBDCC) block was assessed by evaluating cardiac function during T2 paravertebral ganglion stimulation with and without CBDCC. In chronic MI animals, VT inducibility was assessed by extrasystolic (S1-S2) stimulations at baseline and under >66% CBDCC blockade of T2-evoked sympathoexcitation. CBDCC demonstrated a current-dependent and reversible block without impacting basal cardiac function. VT was induced at baseline in all chronic MI animals. One animal died after baseline induction. Of the 6 remaining animals, only 1 was reinducible with simultaneous CBDCC application (P block of the T1-T2 paravertebral chain with CBDCC reduced VT in a chronic MI model. CBDCC prolonged VERP, without altering baseline cardiac function, resulting in improved electrical stability. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  8. Force transmissibility versus displacement transmissibility

    Science.gov (United States)

    Lage, Y. E.; Neves, M. M.; Maia, N. M. M.; Tcherniak, D.

    2014-10-01

    It is well-known that when a single-degree-of-freedom (sdof) system is excited by a continuous motion of the foundation, the force transmissibility, relating the force transmitted to the foundation to the applied force, equals the displacement transmissibility. Recent developments in the generalization of the transmissibility to multiple-degree-of-freedom (mdof) systems have shown that similar simple and direct relations between both types of transmissibility do not appear naturally from the definitions, as happens in the sdof case. In this paper, the authors present their studies on the conditions under which it is possible to establish a relation between force transmissibility and displacement transmissibility for mdof systems. As far as the authors are aware, such a relation is not currently found in the literature, which is justified by being based on recent developments in the transmissibility concept for mdof systems. Indeed, it does not appear naturally, but the authors observed that the needed link is present when the displacement transmissibility is obtained between the same coordinates where the applied and reaction forces are considered in the force transmissibility case; this implies that the boundary conditions are not exactly the same and instead follow some rules. This work presents a formal derivation of the explicit relation between the force and displacement transmissibilities for mdof systems, and discusses its potential and limitations. The authors show that it is possible to obtain the displacement transmissibility from measured forces, and the force transmissibility from measured displacements, opening new perspectives, for example, in the identification of applied or transmitted forces. With this novel relation, it becomes possible, for example, to estimate the force transmissibility matrix with the structure off its supports, in free boundary conditions, and without measuring the forces. As far as force identification is concerned, this

  9. alfa-Amylase as a reliable and convenient measure of sympathetic activity: don’t start salivating just yet!

    NARCIS (Netherlands)

    Bosch, JA; Veerman, J.W.; de Geus, E.J.C.; Proctor, J.

    2011-01-01

    Recent years have seen a growing interest in salivary α-amylase (sAA) as a non-invasive marker for sympathetic nervous system (SNS) activity. Saliva offers many advantages as a biomarker fluid and sAA is one of its most plentiful components. sAA is a digestive enzyme that breaks down starch, which

  10. α-Amylase as a reliable and convenient measure of sympathetic activity: don't start salivating just yet!

    NARCIS (Netherlands)

    Bosch, J.A.; Veerman, E.C.I.; de Geus, E.J.; Proctor, G.B.

    2011-01-01

    Recent years have seen a growing interest in salivary α-amylase (sAA) as a non-invasive marker for sympathetic nervous system (SNS) activity. Saliva offers many advantages as a biomarker fluid and sAA is one of its most plentiful components. sAA is a digestive enzyme that breaks down starch, which

  11. Remodelling of cardiac sympathetic re-innervation with thoracic spinal cord stimulation improves left ventricular function in a porcine model of heart failure.

    Science.gov (United States)

    Liao, Song-Yan; Liu, Yuan; Zuo, Mingliang; Zhang, Yuelin; Yue, Wensheng; Au, Ka-Wing; Lai, Wing-Hon; Wu, Yangsong; Shuto, Chika; Chen, Peter; Siu, Chung-Wah; Schwartz, Peter J; Tse, Hung-Fat

    2015-12-01

    Thoracic spinal cord stimulation (SCS) has been shown to improve left ventricular ejection fraction (LVEF) in heart failure (HF). Nevertheless, the optimal duration (intermittent vs. continuous) of stimulation and the mechanisms of action remain unclear. We performed chronic thoracic SCS at the level of T1-T3 (50 Hz, pulse width 0.2 ms) in 30 adult pigs with HF induced by myocardial infarction and rapid ventricular pacing for 4 weeks. All the animals were treated with daily oral metoprolol succinate (25 mg) plus ramipril (2.5 mg), and randomized to a control group (n = 10), intermittent SCS (4 h ×3, n = 10) or continuous SCS (24 h, n = 10) for 10 weeks. Serial measurements of LVEF and +dP/dt and serum levels of norepinephrine and B-type natriuretic peptide (BNP) were measured. After sacrifice, immunohistological studies of myocardial sympathetic and parasympathetic nerve sprouting and innervation were performed. Echocardiogram revealed a significant increase in LVEF and +dP/dt at 10 weeks in both the intermittent and continuous SCS group compared with controls (P < 0.05). In both SCS groups, there was diffuse sympathetic nerve sprouting over the infarct, peri-infarct, and normal regions compared with only the peri-infarct and infarct regions in the control group. In addition, sympathetic innervation at the peri-infarct and infarct regions was increased following SCS, but decreased in the control group. Myocardium norepinephrine spillover and serum BNP at 10 weeks was significantly decreased only in the continuous SCS group (P < 0.05). In a porcine model of HF, SCS induces significant remodelling of cardiac sympathetic innervation over the peri-infarct and infarct regions and is associated with improved LV function and reduced myocardial norepinephrine spillover. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  12. Sympathetic neural modulation of the immune system

    International Nuclear Information System (INIS)

    Madden, K.S.

    1989-01-01

    One route by which the central nervous system communicates with lymphoid organs in the periphery is through the sympathetic nervous system (SNS). To study SNS regulation of immune activity in vivo, selective removal of peripheral noradrenergic nerve fibers was achieved by administration of the neurotoxic drug, 6-hydroxydopamine (6-OHDA), to adult mice. To assess SNS influence on lymphocyte proliferation in vitro, uptake of 125 iododeoxyuridine ( 125 IUdR), a DNA precursor, was measured following 6-OHDA treatment. Sympathectomy prior to epicutaneous immunization with TNCB did not alter draining lymph nodes (LN) cell proliferation, whereas 6-OHDA treatment before footpad immunization with KLH reduced DNA synthesis in popliteal LN by 50%. In mice which were not deliberately immunized, sympathectomy stimulated 125 IUdR uptake inguinal and axillary LN, spleen, and bone marrow. In vitro, these LN and spleen cells exhibited decreased proliferation responses to the T cell mitogen, concanavalin A (Con A), whereas lipopolysaccharide (LPS)-stimulated IgG secretion was enhanced. Studies examining 51 Cr-labeled lymphocyte trafficking to LN suggested that altered cell migration may play a part in sympathectomy-induced changes in LN cell function

  13. Bone mineral density in reflex sympathetic dystrophy

    International Nuclear Information System (INIS)

    Saghaphi, M.; Azarian, A.

    2002-01-01

    Objectives: Reflex Sympathetic Dystrophy (RSD) is a complex of symptoms that produce pain burning sensation, swelling, tenderness, autonomic and physical dysfunction in joint areas, particularly distal of a limb. Osteopenia or osteoporosis is an important finding that is produced gradually in involved limb. Three phase bone can scan help to diagnosis of RSD. The disease may be bilateral but is mostly unilateral. As it is believed that bone densitometry will show osteopenia more accurate than plain comparative radiographs of the involved limbs, we investigated in patients with RSD. Methods: During last three years, 8 patients with RSD were admitted. Bone mineral density was measured for 5 patients by DEXA method. The patients were 3 males and 2 females with age range of 20 to 48 years (mean 32 years). The involved areas were ankle and foot in 4, and wrist and hand in one patient. Results: Mean Bone Mineral Content (BMC) of 4 involved lower limbs were 475 +-73 grams comparing with 516+-72 grams of uninvolved limbs (p t h patient was not significant. conclusion: comparative bone mineral density in patients with RSD of the lower limbs contributes to more accurate diagnosis than plain radiographs

  14. Role of autoinhibitory feedback in cardiac sympathetic transmission

    International Nuclear Information System (INIS)

    Angus, J.A.; Korner, P.I.; Jackman, G.P.; Bobik, A.; Kopin, I.J.

    1984-01-01

    The relationship between two indices of transmitter release measured simultaneously and the frequency of 4 field pulses (0.125-2 Hz) were obtained from superfused guinea pig right atria after labelling with 3 H-noradrenaline. The relationships between 3 H-efflux or rate responses and frequency were hyperbolic. Autoinhibitory feedback did not play a role since phentolamine (1 microM) did not alter the 3 H-efflux or rate responses to 4 field pulses that gave 50-60% of the maximum rate response. In the presence of neuronal uptake block (desipramine (0.1 microM) phentolamine enhanced 3 H-efflux and rate responses to 4 field pulses at all frequencies. In the absence of desipramine prolonged trains of field pulses (8-12 pulses) at low frequency (0.25 Hz) were not sufficient to activate autoinhibitory feedback. At 2 Hz phentolamine enhanced both responses at 12 field pulses. We conclude that in the right atrium autoinhibitory feedback plays little role in the modulation of transmitter release at levels of stimulation that cause 50-60% of maximum tissue response. The presence of neuronal uptake inhibition or high stimulus strengths are necessary to evoke autoinhibitory feedback

  15. Renal Sympathetic Denervation by CT-Guided Ethanol Injection: A Phase II Pilot Trial of a Novel Technique

    International Nuclear Information System (INIS)

    Ricke, J.; Seidensticker, M.; Becker, S.; Schiefer, J.; Adamchic, I.; Lohfink, K.; Kandulski, M.; Heller, A.; Mertens, P. R.

    2016-01-01

    ObjectivesCT-guided ethanol-mediated renal sympathetic denervation in treatment of therapy-resistant hypertension was performed to assess patient safety and collect preliminary data on treatment efficacy.Materials and MethodsEleven patients with therapy-resistant hypertension (blood pressure of >160 mmHg despite three different antihypertensive drugs including a diuretic) and following screening for secondary causes were enrolled in a phase II single arm open label pilot trial of CT-guided neurolysis of sympathetic renal innervation. Primary endpoint was safety, and secondary endpoint was a decrease of the mean office as well as 24-h systolic blood pressure in follow-up. Follow-up visits at 4 weeks, 3, and 6 months included 24-h blood pressure assessments, office blood pressure, laboratory values, as well as full clinical and quality of life assessments.ResultsNo toxicities ≥3° occurred. Three patients exhibited worsened kidney function in follow-up analyses. When accounting all patients, office systolic blood pressure decreased significantly at all follow-up visits (maximal mean decrease −41.2 mmHg at 3 months). The mean 24-h systolic blood pressure values decreased significantly at 3 months, but not at 6 months (mean: −9.7 and −6.3 mmHg, respectively). Exclusion of five patients who had failed catheter-based endovascular denervation and/or were incompliant for antihypertensive drug intake revealed a more pronounced decrease of 24-h systolic blood pressure (mean: −18.3 and −15.2 mmHg at 3 and 6 months, p = 0.03 and 0.06).ConclusionCT-guided sympathetic denervation proved to be safe and applicable under various anatomical conditions with more renal arteries and such of small diameter

  16. Renal Sympathetic Denervation by CT-Guided Ethanol Injection: A Phase II Pilot Trial of a Novel Technique

    Energy Technology Data Exchange (ETDEWEB)

    Ricke, J., E-mail: jens.ricke@med.ovgu.de; Seidensticker, M.; Becker, S. [Otto-von-Guericke University Magdeburg, Department of Radiology and Nuclear Medicine, Universitätsklinikum Magdeburg AöR (Germany); Schiefer, J. [Universitätsklinikum Magdeburg AöR, Department of Nephrology and Hypertension, Diabetes and Endocrinology (Germany); Adamchic, I.; Lohfink, K. [Otto-von-Guericke University Magdeburg, Department of Radiology and Nuclear Medicine, Universitätsklinikum Magdeburg AöR (Germany); Kandulski, M.; Heller, A.; Mertens, P. R. [Universitätsklinikum Magdeburg AöR, Department of Nephrology and Hypertension, Diabetes and Endocrinology (Germany)

    2016-02-15

    ObjectivesCT-guided ethanol-mediated renal sympathetic denervation in treatment of therapy-resistant hypertension was performed to assess patient safety and collect preliminary data on treatment efficacy.Materials and MethodsEleven patients with therapy-resistant hypertension (blood pressure of >160 mmHg despite three different antihypertensive drugs including a diuretic) and following screening for secondary causes were enrolled in a phase II single arm open label pilot trial of CT-guided neurolysis of sympathetic renal innervation. Primary endpoint was safety, and secondary endpoint was a decrease of the mean office as well as 24-h systolic blood pressure in follow-up. Follow-up visits at 4 weeks, 3, and 6 months included 24-h blood pressure assessments, office blood pressure, laboratory values, as well as full clinical and quality of life assessments.ResultsNo toxicities ≥3° occurred. Three patients exhibited worsened kidney function in follow-up analyses. When accounting all patients, office systolic blood pressure decreased significantly at all follow-up visits (maximal mean decrease −41.2 mmHg at 3 months). The mean 24-h systolic blood pressure values decreased significantly at 3 months, but not at 6 months (mean: −9.7 and −6.3 mmHg, respectively). Exclusion of five patients who had failed catheter-based endovascular denervation and/or were incompliant for antihypertensive drug intake revealed a more pronounced decrease of 24-h systolic blood pressure (mean: −18.3 and −15.2 mmHg at 3 and 6 months, p = 0.03 and 0.06).ConclusionCT-guided sympathetic denervation proved to be safe and applicable under various anatomical conditions with more renal arteries and such of small diameter.

  17. Usefulness of cardiac 125I-metaiodobenzylguanidine uptake for evaluation of cardiac sympathetic nerve abnormalities in diabetic rats

    International Nuclear Information System (INIS)

    Abe, Nanami; Kashiwagi, Atsunori; Shigeta, Yukio

    1992-01-01

    We investigated cardiac sympathetic nerve abnormalities in streptozocin-induced diabetic rats using 125 I-metaiodobenzylguanidine (MIBG). The radioactivity ratio of cardiac tissue to 1 ml blood (H/B) was used as an index of cardiac MIBG uptake. Cardiac 125 I-MIBG uptake (H/B) in 4-, 8- and 20-wk diabetic rats was 48% lower than that in control rats. Similar results were obtained even when the data were corrected for g wet tissue weight. Although there was no improvement in H/B following 2-wk insulin treatment, the H/B ratio increased significantly, to 85% of control levels, following 4 wk insulin treatment indicating the reversibility of impaired MIBG uptake in diabetic rats. In vivo reserpine treatment resulted in a 50% reduction in the H/B value in control rats. However, the treatment did not significantly suppress uptake in diabetic rats. Cardiac norepinephrine content in both * 4- and ** 8-wk diabetic rats was significantly ( * p ** p 125 I-MIBG in diabetic rats is significantly impaired due to cardiac sympathetic nerve abnormalities. These abnormalities are reversible, however, dependent on the diabetic state. (author)

  18. Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis

    Science.gov (United States)

    Muschter, Dominique; Schäfer, Nicole; Stangl, Hubert; Straub, Rainer H.; Grässel, Susanne

    2015-01-01

    Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA). Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA) alters bone marrow-derived macrophage (BMM) osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate in this process. Therefore, BMMs from Dark Agouti rats at different CIA stages were differentiated into osteoclasts in vitro and osteoclast number, cathepsin K activity, matrix resorption and apoptosis were analyzed in the presence of acetylcholine (ACh), noradrenaline (NA) vasoactive intestinal peptide (VIP) and assay-dependent, adenylyl cyclase activator NKH477. We observed modulation of neurotransmitter receptor mRNA expression in CIA osteoclasts without affecting protein level. CIA stage-dependently altered marker gene expression associated with osteoclast differentiation and activity without affecting osteoclast number or activity. Neurotransmitter stimulation modulated osteoclast differentiation, apoptosis and activity. VIP, NA and adenylyl cyclase activator NKH477 inhibited cathepsin K activity and osteoclastogenesis (NKH477, 10-6M NA) whereas ACh mostly acted pro-osteoclastogenic. We conclude that CIA alone does not affect metabolism of in vitro generated osteoclasts whereas stimulation with NA, VIP plus specific activation of adenylyl cyclase induced anti-resorptive effects probably mediated via cAMP signaling. Contrary, we suggest pro-osteoclastogenic and pro-resorptive properties of ACh mediated via muscarinic receptors. PMID:26431344

  19. The Role of Lumbar Sympathetic Nerves in Regulation of Blood Flow to Skeletal Muscle during Anaphylactic Hypotension in Anesthetized Rats.

    Directory of Open Access Journals (Sweden)

    Jie Song

    Full Text Available During hypovolemic shock, skeletal muscle blood flow could be redistributed to vital organs via vasoconstriction in part evoked by activation of the innervating sympathetic nerve activity. However, it is not well known whether this mechanism operates during anaphylactic shock. We determined the femoral artery blood flow (FBF and lumbar sympathetic nerve activity (LSNA mainly regulating the hindquater muscle blood flow during anaphylactic hypotension in anesthetized rats. Anesthetized Sprague-Dawley rats were randomly allocated to the following groups (n = 7/group: (1 non-sensitized, (2 anaphylaxis, (3 anaphylaxis-lumbar sympathectomy (LS and (4 anaphylaxis-sinoaortic denervation (SAD groups. Anaphylaxis was induced by an intravenous injection of the ovalbumin antigen to the sensitized rats. The systemic arterial pressure (SAP, heart rate (HR, central venous pressure (CVP, FBF and LSNA were continuously measured. In the anaphylaxis group, LSNA and HR increased, while SAP and FBF decreased after antigen injection. In the anaphylaxis-SAD group, LSNA did not significantly change during the early phase, but the responses of SAP and FBF were similar to those in the anaphylaxis group. In the anaphylaxis-LS group, both FBF and SAP decreased similarly to the anaphylaxis group during anaphylactic hypotension. These results indicated that LSNA increased via baroreceptor reflex, but this sympathoexcitation or LS did not affect antigen-induced decreases in FBF or SAP. Lumbar sympathetic nerves are not involved in regulation of the blood flow to the hindlimb or systemic blood pressure during anaphylactic hypotension in anesthetized rats.

  20. Reduced capacity of cardiac efferent sympathetic neurons to release noradrenaline and modify cardiac function in tachycardia-induced canine heart failure.

    Science.gov (United States)

    Cardinal, R; Nadeau, R; Laurent, C; Boudreau, G; Armour, J A

    1996-09-01

    To investigate the capacity of efferent sympathetic neurons to modulate the failing heart, stellate ganglion stimulation was performed in dogs with biventricular heart failure induced by rapid ventricular pacing (240 beats/min) for 4-6 weeks. Less noradrenaline was released from cardiac myoneural junctions into coronary sinus blood in response to left stellate ganglion stimulation in anesthetized failing heart preparations (582 pg/mL, lower and upper 95% confidence intervals of 288 and 1174 pg/mL, n = 19) compared with healthy heart preparations (6391 pg/mL, 95% confidence intervals of 4180 and 9770 pg/mL, n = 14; p < 0.001). There was substantial adrenaline extraction by failing hearts (49 +/- 6%), although it was slightly lower than in healthy heart preparations (65 +/- 9%, p = 0.055). In contrast with healthy heart preparations, no net release of adrenaline occurred during stellate ganglion stimulation in any of the failing heart preparations, and ventricular tissue levels of adrenaline fell below the sensitivity limit of the HPLC technique. In failing heart preparations, maximal electrical stimulation of right or left stellate ganglia resulted in minimal augmentation of left ventricular intramyocardial (17%) and chamber (12%) systolic pressures. These indices were augmented by 145 and 97%, respectively, following exogenous noradrenaline administration. Thus, the cardiac efferent sympathetic neurons' reduced capacity to release noradrenaline and modify cardiac function can contribute to reduction of sympathetic support to the failing heart.

  1. Deleterious effect of salusin-β in paraventricular nucleus on sympathetic activity and blood pressure via NF-κB signaling in a rat model of obesity hypertension.

    Science.gov (United States)

    Huang, Xiaodong; Wang, Yanchun; Ren, Kuang

    2015-08-01

    The paraventricular nucleus (PVN) has been shown to play a critical role in regulating blood pressure and sympathetic activity in obesity hypertension (OH). Salusin-β is a bioactive peptide with potential roles in mediating cardiovascular activity. The study was designed to test the hypothesis that salusin-β in the PVN can modulate sympathetic activity and blood pressure in OH. Male Sprague-Dawley rats were used to induce OH by a 12-week feeding of a high-fat diet (42% kcal as fat). Microinjection of salusin-β into the PVN increased the renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) in a dose-dependent manner, whereas salusin-β antibody elicited significant decreases in RSNA, MAP and HR, and abolished the effects of salusin-β only in the OH rats. As expected, the OH rats had a higher norepinephrine level, which was further increased by salusin-β. Furthermore, salusin-β in the PVN accelerated the nuclear translocation of the p65 subunit of nuclear factor kappa B (NF-KB) and the degradation of IKB-α (an endogenous inhibitor of NF-KB). Pretreatment with pyrrolidine dithiocarbamate (an exogenous inhibitor of NF-KB) decreased RSNA, MAP and HR, and abolished the effects of salusin-β in the PVN in the OH rats. We concluded that salusin-β in the PVN markedly increased sympathetic outflow and blood pressure in diet-induced OH rats via NF-κB signaling.

  2. Sympathetic Release of Splenic Monocytes Promotes Recurring Anxiety Following Repeated Social Defeat.

    Science.gov (United States)

    McKim, Daniel B; Patterson, Jenna M; Wohleb, Eric S; Jarrett, Brant L; Reader, Brenda F; Godbout, Jonathan P; Sheridan, John F

    2016-05-15

    Neuroinflammatory signaling may contribute to the pathophysiology of chronic anxiety disorders. Previous work showed that repeated social defeat (RSD) in mice promoted stress-sensitization that was characterized by the recurrence of anxiety following subthreshold stress 24 days after RSD. Furthermore, splenectomy following RSD prevented the recurrence of anxiety in stress-sensitized mice. We hypothesize that the spleen of RSD-exposed mice became a reservoir of primed monocytes that were released following neuroendocrine activation by subthreshold stress. Mice were subjected to subthreshold stress (i.e., single cycle of social defeat) 24 days after RSD, and immune and behavioral measures were taken. Subthreshold stress 24 days after RSD re-established anxiety-like behavior that was associated with egress of Ly6C(hi) monocytes from the spleen. Moreover, splenectomy before RSD blocked monocyte trafficking to the brain and prevented anxiety-like behavior following subthreshold stress. Splenectomy, however, had no effect on monocyte accumulation or anxiety when determined 14 hours after RSD. In addition, splenocytes cultured 24 days after RSD exhibited a primed inflammatory phenotype. Peripheral sympathetic inhibition before subthreshold stress blocked monocyte trafficking from the spleen to the brain and prevented the re-establishment of anxiety in RSD-sensitized mice. Last, β-adrenergic antagonism also prevented splenic monocyte egress after acute stress. The spleen served as a unique reservoir of primed monocytes that were readily released following sympathetic activation by subthreshold stress that promoted the re-establishment of anxiety. Collectively, the long-term storage of primed monocytes in the spleen may have a profound influence on recurring anxiety disorders. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity.

    Science.gov (United States)

    Nogueiras, Ruben; Pérez-Tilve, Diego; Veyrat-Durebex, Christelle; Morgan, Donald A; Varela, Luis; Haynes, William G; Patterson, James T; Disse, Emmanuel; Pfluger, Paul T; López, Miguel; Woods, Stephen C; DiMarchi, Richard; Diéguez, Carlos; Rahmouni, Kamal; Rohner-Jeanrenaud, Françoise; Tschöp, Matthias H

    2009-05-06

    We investigated a possible role of the central glucagon-like peptide (GLP-1) receptor system as an essential brain circuit regulating adiposity through effects on nutrient partitioning and lipid metabolism independent from feeding behavior. Both lean and diet-induced obesity mice were used for our experiments. GLP-1 (7-36) amide was infused in the brain for 2 or 7 d. The expression of key enzymes involved in lipid metabolism was measured by real-time PCR or Western blot. To test the hypothesis that the sympathetic nervous system may be responsible for informing adipocytes about changes in CNS GLP-1 tone, we have performed direct recording of sympathetic nerve activity combined with experiments in genetically manipulated mice lacking beta-adrenergic receptors. Intracerebroventricular infusion of GLP-1 in mice directly and potently decreases lipid storage in white adipose tissue. These effects are independent from nutrient intake. Such CNS control of adipocyte metabolism was found to depend partially on a functional sympathetic nervous system. Furthermore, the effects of CNS GLP-1 on adipocyte metabolism were blunted in diet-induced obese mice. The CNS GLP-1 system decreases fat storage via direct modulation of adipocyte metabolism. This CNS GLP-1 control of adipocyte lipid metabolism appears to be mediated at least in part by the sympathetic nervous system and is independent of parallel changes in food intake and body weight. Importantly, the CNS GLP-1 system loses the capacity to modulate adipocyte metabolism in obese states, suggesting an obesity-induced adipocyte resistance to CNS GLP-1.

  4. Asian women have attenuated sympathetic activation but enhanced renal–adrenal responses during pregnancy compared to Caucasian women

    Science.gov (United States)

    Okada, Yoshiyuki; Best, Stuart A; Jarvis, Sara S; Shibata, Shigeki; Parker, Rosemary S; Casey, Brian M; Levine, Benjamin D; Fu, Qi

    2015-01-01

    Abstract Asians have a lower prevalence of hypertensive disorders of pregnancy than Caucasians. Since sympathetic overactivity and dysregulation of the renal–adrenal system (e.g. low aldosterone levels) have been found in preeclamptic women, we hypothesized that Asians have lower muscle sympathetic nerve activity (MSNA) and greater aldosterone concentrations during normal pregnancy than Caucasians. In a prospective study, blood pressure (BP), heart rate (HR), and MSNA were measured during supine and upright tilt (30 deg and 60 deg for 5 min each) in 9 Asians (32 ± 1 years (mean ± SEM)) and 12 Caucasians (29 ± 1 years) during pre-, early (≤8 weeks of gestation) and late (32–36 weeks) pregnancy, and post-partum (6–10 weeks after delivery). Supine MSNA increased with pregnancy in both groups (P < 0.001); it was significantly lower in Asians than Caucasians (14 ± 3 vs. 23 ± 3 bursts min−1 and 16 ± 5 vs. 30 ± 3 bursts min−1 in early and late pregnancy, respectively; P = 0.023). BP decreased during early pregnancy (P < 0.001), but was restored during late pregnancy. HR increased during pregnancy (P < 0.001) with no racial difference (P = 0.758). MSNA increased during tilting and it was markedly lower in Asians than Caucasians in late pregnancy (31 ± 6 vs. 49 ± 3 bursts min−1 at 60 deg tilt; P = 0.003). Upright BP was lower in Asians, even in pre-pregnancy (P = 0.006), and this racial difference persisted during pregnancy. Direct renin and aldosterone increased during pregnancy (both P < 0.001); these hormones were greater in Asians (P = 0.086 and P = 0.014). Thus, Asians have less sympathetic activation but more upregulated renal–adrenal responses than Caucasians during pregnancy. These results may explain, at least in part, why Asian women are at low risk of hypertensive disorders in pregnancy. Key points Asian women have a lower prevalence of hypertensive disorders of pregnancy than Caucasian

  5. Regional interaction between myocardial sympathetic denervation, contractile dysfunction, and fibrosis in heart failure with preserved ejection fraction: {sup 11}C-hydroxyephedrine PET study

    Energy Technology Data Exchange (ETDEWEB)

    Aikawa, Tadao; Naya, Masanao; Obara, Masahiko [Hokkaido University, Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Sapporo (Japan); Oyama-Manabe, Noriko [Hokkaido University Hospital, Department of Diagnostic and Interventional Radiology, Sapporo (Japan); Manabe, Osamu [Hokkaido University, Department of Nuclear Medicine, Faculty of Medicine and Graduate School of Medicine, Sapporo (Japan); Magota, Keiichi [Hokkaido University Hospital, Division of Medical Imaging and Technology, Sapporo (Japan); Ito, Yoichi M. [Hokkaido University, Department of Biostatistics, Faculty of Medicine and Graduate School of Medicine, Sapporo (Japan); Katoh, Chietsugu [Hokkaido University, Department of Biomedical Science and Engineering, Faculty of Health Sciences, Sapporo (Japan); Tamaki, Nagara [Kyoto Prefectural University of Medicine, Department of Radiology, Kyoto (Japan)

    2017-10-15

    This investigation aimed to identify significant predictors of regional sympathetic denervation quantified by {sup 11}C-hydroxyephedrine (HED) positron emission tomography (PET) in patients with heart failure with preserved left ventricular ejection fraction (HFpEF). Included in the study were 34 patients (age 63 ± 15 years, 23 men) with HFpEF (left ventricular ejection fraction ≥40%) and 11 age-matched volunteers without heart failure. Cardiac magnetic resonance imaging was performed to measure left ventricular size and function, and the extent of myocardial late gadolinium enhancement (LGE). {sup 11}C-HED PET was performed to quantify myocardial sympathetic innervation that was expressed as a {sup 11}C-HED retention index (RI, %/min). To identify predictors of regional {sup 11}C-HED RI in HFpEF patients, we propose a multivariate mixed-effects model for repeated measures over segments with an unstructured covariance matrix. Global {sup 11}C-HED RI was significantly lower and more heterogeneous in HFpEF patients than in volunteers (P < 0.01 for all). Regional {sup 11}C-HED RI was correlated positively with systolic wall thickening (r = 0.42, P < 0.001) and negatively with the extent of LGE (r = -0.43, P < 0.001). Segments in HFpEF patients with a large extent of LGE had the lowest regional {sup 11}C-HED RI among all segments (P < 0.001 in post hoc tests). Multivariate analysis demonstrated that systolic wall thickening and the extent of LGE were significant predictors of regional {sup 11}C-HED RI in HFpEF patients (both P ≤ 0.001). Regional sympathetic denervation was associated with contractile dysfunction and fibrotic burden in HFpEF patients, suggesting that regional sympathetic denervation may provide an integrated measure of myocardial damage in HFpEF. (orig.)

  6. The synthesis of a new cardiac sympathetic nerve imaging agent N-[11C]CH3-dopamine and biodistribution study

    International Nuclear Information System (INIS)

    Yulin He; Weina Zhou; Xiangcheng Wang; Baoliang Bao; Guojian Zhang; Cheng Wang; Chunmei Wang; Xuemei Wang; Wei Fang

    2014-01-01

    In this study, we synthesized and characterized N-[ 11 C]methyl-dopamine ([ 11 C]MDA) for cardiac sympathetic nerve imaging. [ 11 C]MDA was synthesized by direct N-methylation of dopamine with [ 11 C]methyl iodide and purified by semi-preparation reverse high pressure liquid chromatography (HPLC). The total synthesis time was 45 min including HPLC purification. The radiochemical yields of [ 11 C]MDA was 20 ± 3 %, without decay correction. The radiochemical purity was >98 % and the specific activity was about 50 GBq/mmol. The biological properties of [ 11 C]MDA were evaluated by biodistribution study in normal mice. PET imaging was performed in healthy Chinese mini-swines. Biodistribution study showed that [ 11 C]MDA had high myocardium uptake. PET/CT imaging showed [ 11 C]MDA had clear and symmetrical myocardium uptake, which was blocked obviously by injecting imipramine hydrochloride. [ 11 C]MDA would be a promising candidate of radiotracer for cardiac sympathetic nervous system imaging. (author)

  7. Electrical modulation of the sympathetic nervous system in order to augment cerebral blood flow : a protocol for an experimental study

    NARCIS (Netherlands)

    Ter Laan, Mark; van Dijk, J. Marc C.; Staal, Michiel J.; Elting, Jan-Willem J.

    2011-01-01

    Introduction: Cerebral blood flow (CBF) is regulated by several mechanisms. Neurogenic control has been a matter of debate, even though several publications reported the effects of changes in sympathetic tone on CBF. Transcutaneous electrical nerve stimulation and spinal-cord stimulation have been

  8. Median Sacral Artery, Sympathetic Nerves, and the Coccygeal Body: A Study Using Serial Sections of Human Embryos and Fetuses.

    Science.gov (United States)

    Jin, Zhe Wu; Cho, Kwang Ho; Jang, Hyung Suk; Murakami, Gen; Rodríguez-Vázquez, Jose Francisco

    2016-07-01

    To examine how the median sacral artery (MSA) is involved with the coccygeal body or glomus coccygeum, we studied serial frontal or sagittal sections of 14 embryos (approximately 5-6 weeks of gestation) and 12 fetuses (10-18 weeks). At five weeks, the caudal end of the dorsal aorta (i.e., MSA) accompanied putative sympathetic ganglion cells in front of the upper coccygeal and lower sacral vertebrae. At six weeks, a candidate for the initial coccygeal body was identified as a longitudinal arterial plexus involving nerve fibers and sympathetic ganglion cells between arteries. At 10-18 weeks, the MSA exhibited a highly tortuous course at the lower sacral and coccygeal levels, and was attached to and surrounded by veins, nerve fibers, and sympathetic ganglion cells near and between the bilateral origins of the levator ani muscle. Immunohistochemistry demonstrated expression of tyrosine hydroxylase and chromogranin A in the nerves. However, throughout the stages examined, we found no evidence suggestive of an arteriovenous anastomosis, such as well-developed smooth muscle. An acute anterior flexure of the vertebrae at the lower sacrum, as well as regression of the secondary neural tube, seemed to induce arterial plexus formation from an initial straight MSA. Nerves and ganglion cells were likely to be secondarily involved with the plexus because of the close topographical relationship. However, these nerves might play a major role in the extreme change into adult morphology. An arteriovenous anastomosis along the MSA might be an overinterpretation, at least in the prenatal human. Anat Rec, 299:819-827, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Rats with steroid-induced polycystic ovaries develop hypertension and increased sympathetic nervous system activity

    Directory of Open Access Journals (Sweden)

    Ploj Karolina

    2005-09-01

    Full Text Available Abstract Background Polycystic ovary syndrome (PCOS is a complex endocrine and metabolic disorder associated with ovulatory dysfunction, abdominal obesity, hyperandrogenism, hypertension, and insulin resistance. Methods Our objectives in this study were (1 to estimate sympathetic-adrenal medullary (SAM activity by measuring mean systolic blood pressure (MSAP in rats with estradiol valerate (EV-induced PCO; (2 to estimate alpha1a and alpha2a adrenoceptor expression in a brain area thought to mediate central effects on MSAP regulation and in the adrenal medulla; (3 to assess hypothalamic-pituitary-adrenal (HPA axis regulation by measuring adrenocorticotropic hormone (ACTH and corticosterone (CORT levels in response to novel-environment stress; and (4 to measure abdominal obesity, sex steroids, and insulin sensitivity. Results The PCO rats had significantly higher MSAP than controls, higher levels of alpha1a adrenoceptor mRNA in the hypothalamic paraventricular nucleus (PVN, and lower levels of alpha2a adrenoceptor mRNA in the PVN and adrenal medulla. After exposure to stress, PCO rats had higher ACTH and CORT levels. Plasma testosterone concentrations were lower in PCO rats, and no differences in insulin sensitivity or in the weight of intraabdominal fat depots were found. Conclusion Thus, rats with EV-induced PCO develop hypertension and increased sympathetic and HPA-axis activity without reduced insulin sensitivity, obesity, or hyperandrogenism. These findings may have implications for mechanisms underlying hypertension in PCOS.

  10. Perinatal exposure to a high-fat diet is associated with reduced hepatic sympathetic innervation in one-year old male Japanese macaques.

    Directory of Open Access Journals (Sweden)

    Wilmon F Grant

    Full Text Available Our group recently demonstrated that maternal high-fat diet (HFD consumption is associated with non-alcoholic fatty liver disease, increased apoptosis, and changes in gluconeogenic gene expression and chromatin structure in fetal nonhuman primate (NHP liver. However, little is known about the long-term effects that a HFD has on hepatic nervous system development in offspring, a system that plays an important role in regulating hepatic metabolism. Utilizing immunohistochemistry and Real-Time PCR, we quantified sympathetic nerve fiber density, apoptosis, inflammation, and other autonomic components in the livers of fetal and one-year old Japanese macaques chronically exposed to a HFD. We found that HFD exposure in-utero and throughout the postnatal period (HFD/HFD, when compared to animals receiving a CTR diet for the same developmental period (CTR/CTR, is associated with a 1.7 fold decrease in periportal sympathetic innervation, a 5 fold decrease in parenchymal sympathetic innervation, and a 2.5 fold increase in hepatic apoptosis in the livers of one-year old male animals. Additionally, we observed an increase in hepatic inflammation and a decrease in a key component of the cholinergic anti-inflammatory pathway in one-year old HFD/HFD offspring. Taken together, these findings reinforce the impact that continuous exposure to a HFD has in the development of long-term hepatic pathologies in offspring and highlights a potential neuroanatomical basis for hepatic metabolic dysfunction.

  11. Mechanisms responsible for postmenopausal hypertension in a rat model: Roles of the renal sympathetic nervous system and the renin-angiotensin system.

    Science.gov (United States)

    Maranon, Rodrigo O; Reckelhoff, Jane F

    2016-02-01

    Hypertension in postmenopausal women is less well controlled than in age-matched men. The aging female SHR is a model of postmenopausal hypertension that is mediated in part by activation of the renin-angiotensin system (RAS) and by the renal sympathetic nervous system. In this study, the hypothesis was tested that renal denervation would lower the blood pressure in old female SHR and would attenuate the antihypertensive effects of AT1 receptor antagonism. Retired breeder female SHR were subjected to right uninephrectomy (UNX) and left renal denervation (RD) or UNX and sham, and 2 weeks later, baseline mean arterial pressure (MAP; radiotelemetry) was measured for 4 days, and then rats were treated with angiotensin (AT1) receptor antagonist, losartan (40 mg/kg/day po) for 6 days. Renal denervation reduced MAP in old females compared to sham (172 ± 6 vs. 193 ± 6 mm Hg; P renal sympathetic nervous system and the RAS have independent effects to control the blood pressure in old female SHR. Since the denervated rats treated with losartan remained hypertensive, the data also suggest that other mechanisms than the RAS and renal sympathetic nervous system contribute to the hypertension in old female SHR. The data also suggest that multiple mechanisms may mediate the elevated blood pressure in postmenopausal women. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  12. Central nervous system neuropeptide Y regulates mediators of hepatic phospholipid remodeling and very low-density lipoprotein triglyceride secretion via sympathetic innervation

    Directory of Open Access Journals (Sweden)

    Jennifer M. Rojas

    2015-03-01

    Conclusions: These data support a model in which CNS NPY modulates mediators of hepatic PL remodeling and VLDL maturation to stimulate VLDL-TG secretion that is dependent on the Y1 receptor and sympathetic signaling to the liver.

  13. Association between left ventricular regional sympathetic denervation and mechanical dyssynchrony in phase analysis: a cardiac CZT study

    International Nuclear Information System (INIS)

    Gimelli, Alessia; Genovesi, Dario; Giorgetti, Assuero; Kusch, Annette; Liga, Riccardo; Marzullo, Paolo

    2014-01-01

    To evaluate the relationships among myocardial sympathetic innervation, perfusion and mechanical synchronicity assessed with cardiac cadmium-zinc-telluride (CZT) scintigraphy. A group of 29 patients underwent an evaluation of myocardial perfusion with 99m Tc-tetrofosmin CZT scintigraphy and adrenergic innervation with 123 I-metaiodobenzylguanidine (MIBG) CZT scintigraphy. The summed rest score (SRS), motion score (SMS) and thickening score (STS), as well as the summed 123 I-MIBG defect score (SS-MIBG), were determined. Regional tracer uptake for both 99m Tc-tetrofosmin and 123 I-MIBG was also calculated. Finally, the presence of significant myocardial mechanical dyssynchrony was evaluated in phase analysis on gated CZT images and the region of latest mechanical activation identified. Significant mechanical dyssynchrony was present in 17 patients (59 %) and associated with higher SRS (P = 0.030), SMS (P 123 I-MIBG uptake (P = 0.012) that overwhelmed the effect of depressed regional perfusion. Left ventricular mechanical dyssynchrony is associated with greater depression in contractile function and greater impairments in regional myocardial perfusion and sympathetic activity. In patients with dyssynchrony, the region of latest mechanical activation is characterized by a significantly altered adrenergic tone. (orig.)

  14. Assessing the strength of cardiac and sympathetic baroreflex controls via transfer entropy during orthostatic challenge

    Science.gov (United States)

    Porta, Alberto; Marchi, Andrea; Bari, Vlasta; De Maria, Beatrice; Esler, Murray; Lambert, Elisabeth; Baumert, Mathias

    2017-05-01

    The study assesses the strength of the causal relation along baroreflex (BR) in humans during an incremental postural challenge soliciting the BR. Both cardiac BR (cBR) and sympathetic BR (sBR) were characterized via BR sequence approaches from spontaneous fluctuations of heart period (HP), systolic arterial pressure (SAP), diastolic arterial pressure (DAP) and muscle sympathetic nerve activity (MSNA). A model-based transfer entropy method was applied to quantify the strength of the coupling from SAP to HP and from DAP to MSNA. The confounding influences of respiration were accounted for. Twelve young healthy subjects (20-36 years, nine females) were sequentially tilted at 0°, 20°, 30° and 40°. We found that (i) the strength of the causal relation along the cBR increases with tilt table inclination, while that along the sBR is unrelated to it; (ii) the strength of the causal coupling is unrelated to the gain of the relation; (iii) transfer entropy indexes are significantly and positively associated with simplified causality indexes derived from BR sequence analysis. The study proves that causality indexes are complementary to traditional characterization of the BR and suggests that simple markers derived from BR sequence analysis might be fruitfully exploited to estimate causality along the BR. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  15. [Improvement of approach to performance of lumbar sympathetic blockade in patients with tissue ischemia of the lower extremities].

    Science.gov (United States)

    Panov, V M; Fesenko, U A; Kutsyn, V M

    2014-06-01

    New access for performance of sympathic blockade in region of aortal bifurcation, was elaborated, basing on calculations, conducted on 30 spiral computeric tomograms of lumbar and sacral parts of vertebral column. Application of the method permits to escape such complications, as a renal and the main vessels damage, the sympathetic nerves blockade, do not demand roentgenological control.

  16. Sympathetic science: Charles Darwin, Joseph Hooker, and the passions of Victorian naturalists.

    Science.gov (United States)

    Endersby, Jim

    2009-01-01

    This essay examines the complex tangle of emotional and scientific attachments that linked Darwin and botanist Joseph Dalton Hooker. Analyzing their roles as husbands, fathers, and novel readers demonstrates that possessing and expressing sympathy was as important for Victorian naturalists as it was for Victorian husbands. Sympathy was a scientific skill that Victorian naturalists regarded as necessary to fully understand the living world; although sympathy became increasingly gendered as feminine over the course of the century, its importance to male naturalists requires us to rethink the ways gender roles were negotiated in Victorian Britain. Botany was, for men like Darwin and Hooker, an acceptably masculine pursuit that nevertheless allowed--and even required--them to be sensitive and sympathetic.

  17. Moderate caloric restriction during gestation in rats alters adipose tissue sympathetic innervation and later adiposity in offspring.

    Directory of Open Access Journals (Sweden)

    Ana Paula García

    Full Text Available Maternal prenatal undernutrition predisposes offspring to higher adiposity in adulthood. Mechanisms involved in these programming effects, apart from those described in central nervous system development, have not been established. Here we aimed to evaluate whether moderate caloric restriction during early pregnancy in rats affects white adipose tissue (WAT sympathetic innervation in the offspring, and its relationship with adiposity development. For this purpose, inguinal and retroperitoneal WAT (iWAT and rpWAT, respectively were analyzed in male and female offspring of control and 20% caloric-restricted (from 1-12 d of pregnancy (CR dams. Body weight (BW, the weight, DNA-content, morphological features and the immunoreactive tyrosine hydroxylase and Neuropeptide Y area (TH+ and NPY+ respectively, performed by immunohistochemistry of both fat depots, were studied at 25 d and 6 m of age, the latter after 2 m exposure to high fat diet. At 6 m of life, CR males but not females, exhibited greater BW, and greater weight and total DNA-content in iWAT, without changes in adipocytes size, suggesting the development of hyperplasia in this depot. However, in rpWAT, CR males but not females, showed larger adipocyte diameter, with no changes in DNA-content, suggesting the development of hypertrophy. These parameters were not different between control and CR animals at the age of 25 d. In iWAT, both at 25 d and 6 m, CR males but not females, showed lower TH(+ and NPY(+, suggesting lower sympathetic innervation in CR males compared to control males. In rpWAT, at 6 m but not at 25 d, CR males but not females, showed lower TH(+ and NPY(+. Thus, the effects of caloric restriction during gestation on later adiposity and on the differences in the adult phenotype between internal and subcutaneous fat depots in the male offspring may be associated in part with specific alterations in sympathetic innervation, which may impact on WAT architecture.

  18. Effects of renal sympathetic denervation on 24-hour blood pressure variability

    Directory of Open Access Journals (Sweden)

    Christine Stefanie Zuern

    2012-05-01

    Full Text Available Background: In patients with arterial hypertension, increased blood pressure (BP variability contributes to end organ damage independently from mean levels of arterial BP. Increased BP variability has been linked to alterations in autonomic function including sympathetic overdrive. We hypothesized that catheter-based renal sympathetic denervation (RDN confers beneficial effects on BPV. Methods and Results: Eleven consecutive patients with therapy-refractory arterial hypertension (age 68.9±7.0 years; baseline systolic BP 189±23mmHg despite medication with 5.6±2.1 antihypertensive drugs underwent bilateral RDN. Twenty-four hour ambulatory blood pressure monitoring (ABPM was performed before RDN and six months thereafter. BPV was primarily assessed by means of standard deviation of 24-hour systolic arterial blood pressures (SDsys. Secondary measures of BPV were maximum systolic blood pressure (MAXsys and maximum difference between two consecutive readings of systolic BP (deltamaxsys over 24 hours. Six months after RDN, SDsys, MAXsys and deltamaxsys were significantly reduced from 16.9±4.6mmHg to 13.5±2.5mmHg (p=0.003, from 190±22mmHg to 172±20mmHg (p<0.001 and from 40±15mmHg to 28±7mmHg (p=0.006, respectively, without changes in concomitant antihypertensive therapy. Reductions of SDsys, MAXsys and deltamaxsys were observed in 10/11 (90.9%, 11/11 (100% and 9/11 (81.8% patients, respectively. Although we noted a significant reduction of systolic office blood pressure by 30.4±27.7mmHg (p=0.007, there was only a trend in reduction of average systolic BP assessed from ABPM (149±19mmHg to 142±18mmHg; p=0.086.Conclusions: In patients with therapy-refractory arterial hypertension, RDN leads to significant reductions of BP variability. Effects of RDN on BPV over 24 hours were more pronounced than on average levels of BP.

  19. Sympathetic Nerve Hyperactivity in the Spleen: Causal for Nonpathogenic-Driven Chronic Immune-Mediated Inflammatory Diseases (IMIDs?

    Directory of Open Access Journals (Sweden)

    Denise L. Bellinger

    2018-04-01

    Full Text Available Immune-Mediated Inflammatory Diseases (IMIDs is a descriptive term coined for an eclectic group of diseases or conditions that share common inflammatory pathways, and for which there is no definitive etiology. IMIDs affect the elderly most severely, with many older individuals having two or more IMIDs. These diseases include, but are not limited to, type-1 diabetes, obesity, hypertension, chronic pulmonary disease, coronary heart disease, inflammatory bowel disease, and autoimmunity, such as rheumatoid arthritis (RA, Sjőgren’s syndrome, systemic lupus erythematosus, psoriasis, psoriatic arthritis, and multiple sclerosis. These diseases are ostensibly unrelated mechanistically, but increase in frequency with age and share chronic systemic inflammation, implicating major roles for the spleen. Chronic systemic and regional inflammation underlies the disease manifestations of IMIDs. Regional inflammation and immune dysfunction promotes targeted end organ tissue damage, whereas systemic inflammation increases morbidity and mortality by affecting multiple organ systems. Chronic inflammation and skewed dysregulated cell-mediated immune responses drive many of these age-related medical disorders. IMIDs are commonly autoimmune-mediated or suspected to be autoimmune diseases. Another shared feature is dysregulation of the autonomic nervous system and hypothalamic pituitary adrenal (HPA axis. Here, we focus on dysautonomia. In many IMIDs, dysautonomia manifests as an imbalance in activity/reactivity of the sympathetic and parasympathetic divisions of the autonomic nervous system (ANS. These major autonomic pathways are essential for allostasis of the immune system, and regulating inflammatory processes and innate and adaptive immunity. Pathology in ANS is a hallmark and causal feature of all IMIDs. Chronic systemic inflammation comorbid with stress pathway dysregulation implicate neural-immune cross-talk in the etiology and pathophysiology of IMIDs

  20. Sympathetic neuropathy in diabetes mellitus patients does not elicit Charcot osteoarthropathy

    DEFF Research Database (Denmark)

    Christensen, Tomas M; Simonsen, Lene; Holstein, Per E

    2011-01-01

    AIM: The aim of the study was to determine the degree of neuropathy (autonomic and somatic) in patients with diabetes mellitus with or without Charcot osteoarthropathy (CA). METHODS: Forty-nine patients with diabetes mellitus type 1 or 2 were investigated. The patient population of interest...... with first toe amputation (n=5), a high-risk group for development of CA, and two control groups consisting of diabetes patients with (n=9) or without somatic neuropathy (n=11) were investigated. Regional blood flow in the feet was measured by venous occlusion plethysmography. Quantitation of somatic...... neuropathy was done by the Neuropathy Disability Score and modified Neuropathy Symptom Score. Quantitation of autonomic neuropathy was done by measurements of local venoarteriolar sympathetic axon reflex in the feet and of heart rate variability during deep breathing and orthostatic challenge. RESULTS...

  1. Effects of acute administration of selective serotonin reuptake inhibitors on sympathetic nerve activity

    International Nuclear Information System (INIS)

    Tiradentes, R.V.; Pires, J.G.P.; Silva, N.F.; Ramage, A.G.; Santuzzi, C.H.; Futuro, H.A. Neto

    2014-01-01

    Serotonergic mechanisms have an important function in the central control of circulation. Here, the acute effects of three selective serotonin (5-HT) reuptake inhibitors (SSRIs) on autonomic and cardiorespiratory variables were measured in rats. Although SSRIs require 2-3 weeks to achieve their full antidepressant effects, it has been shown that they cause an immediate inhibition of 5-HT reuptake. Seventy male Wistar rats were anesthetized with urethane and instrumented to record blood pressure, heart rate, renal sympathetic nerve activity (RSNA), and respiratory frequency. At lower doses, the acute cardiovascular effects of fluoxetine, paroxetine and sertraline administered intravenously were insignificant and variable. At middle and higher doses, a general pattern was observed, with significant reductions in sympathetic nerve activity. At 10 min, fluoxetine (3 and 10 mg/kg) reduced RSNA by -33±4.7 and -31±5.4%, respectively, without changes in blood pressure; 3 and 10 mg/kg paroxetine reduced RSNA by -35±5.4 and -31±5.5%, respectively, with an increase in blood pressure +26.3±2.5; 3 mg/kg sertraline reduced RSNA by -59.4±8.6%, without changes in blood pressure. Sympathoinhibition began 5 min after injection and lasted approximately 30 min. For fluoxetine and sertraline, but not paroxetine, there was a reduction in heart rate that was nearly parallel to the sympathoinhibition. The effect of these drugs on the other variables was insignificant. In conclusion, acute peripheral administration of SSRIs caused early autonomic cardiovascular effects, particularly sympathoinhibition, as measured by RSNA. Although a peripheral action cannot be ruled out, such effects are presumably mostly central

  2. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography

    International Nuclear Information System (INIS)

    Schwaiger, M.; Kalff, V.; Rosenspire, K.; Haka, M.S.; Molina, E.; Hutchins, G.D.; Deeb, M.; Wolfe, E. Jr.; Wieland, D.M.

    1990-01-01

    The noninvasive functional characterization of the cardiac sympathetic nervous system by imaging techniques may provide important pathophysiological information in various cardiac disease states. Hydroxyephedrine labeled with carbon 11 has been developed as a new catecholamine analogue to be used in the in vivo evaluation of presynaptic adrenergic nerve terminals by positron emission tomography (PET). To determine the feasibility of this imaging approach in the human heart, six normal volunteers and five patients with recent cardiac transplants underwent dynamic PET imaging after intravenous injection of 20 mCi [11C]hydroxyephedrine. Blood and myocardial tracer kinetics were assessed using a regions-of-interest approach. In normal volunteers, blood 11C activity cleared rapidly, whereas myocardium retained 11C activity with a long tissue half-life. Relative tracer retention in the myocardium averaged 79 +/- 31% of peak activity at 60 minutes after tracer injection. The heart-to-blood 11C activity ratio exceeded 6:1 as soon as 30 minutes after tracer injection, yielding excellent image quality. Little regional variation of tracer retention was observed, indicating homogeneous sympathetic innervation throughout the left ventricle. In the transplant recipients, myocardial [11C]hydroxyephedrine retention at 60 minutes was significantly less (-82%) than that of normal volunteers, indicating only little non-neuronal binding of the tracer in the denervated human heart. Thus, [11C]hydroxyephedrine, in combination with dynamic PET imaging, allows the noninvasive delineation of myocardial adrenergic nerve terminals. Tracer kinetic modeling may permit quantitative assessment of myocardial catecholamine uptake, which will in turn provide insights into the effects of various disease processes on the neuronal integrity of the heart

  3. Renal sympathetic denervation in uncontrolled arterial hypertension after successful repair for aortic coarctation.

    Science.gov (United States)

    Lurz, Philipp; Okon, Thomas; Riede, Thomas; Wagner, Robert; Schuler, Gerhard; Daehnert, Ingo; Desch, Steffen

    2016-01-01

    Uncontrolled arterial hypertension is a frequent problem after successful repair of CoA and has been attributed to increased central sympathetic drive as well as a blunted baroreceptor reflex. RSD is a promising therapy to reduce central sympathetic drive and improve baroreflex sensitivity. 8 patients (age: 27±6 years) with previous surgical and/or percutaneous repair of CoA, absence of any relevant restenosis (invasive gradient across the site of previous treatment 3±4 mmHg) and resistant arterial hypertension (daytime SBP≥140 mmHg on 24 hour ambulatory blood pressure measurements [ABPM] in spite of the concurrent use of 3 antihypertensive agents of different classes or intolerance to BP medications) were included. Bilateral RSD was performed using the Symplicity Flex™ catheter (Medtronic, MN, USA). RSD was successful in all patients with no procedural complications and no evidence for renal artery stenosis 6 months post procedure. From baseline to 6 month follow-up, RSD was followed by a significant reduction in average daytime systolic BP (150.4±7.8 to 143.1±8.0 mmHg; p=0.0117) as well as systolic BP throughout 24 h (146.8±7.3 vs. 140.5±7.8, p=0.04). The BP reductions observed in these patients justify engaging in a larger clinical trial on the efficacy of RSD in this specific type of secondary hypertension and bares the hope that RSD might extend the currently very limited armory against arterial hypertension in young adults with previous repair of CoA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Chewing reduces sympathetic nervous response to stress and prevents poststress arrhythmias in rats.

    Science.gov (United States)

    Koizumi, So; Minamisawa, Susumu; Sasaguri, Kenichi; Onozuka, Minoru; Sato, Sadao; Ono, Yumie

    2011-10-01

    Reducing stress is important in preventing sudden death in patients with cardiovascular disease, as stressful events may cause autonomic imbalance and trigger fatal arrhythmias. Since chewing has been shown to inhibit stress-induced neuronal responses in the hypothalamus, we hypothesized that chewing could ameliorate stress-induced autonomic imbalance and prevent arrhythmias. To test this hypothesis, we analyzed changes in radiotelemetered electrocardiograms in rats that were allowed to chew a wooden stick during a 1-h period of immobilization stress. Chewing significantly reduced the occurrence of ventricular premature beats (VPBs) and complex ventricular ectopy after immobilization and prevented stress-induced prolongation of the QT interval of VPBs throughout the 10-h experimental period. It also prevented prolongation of the QRS complex and fluctuations in the QT interval in normal sinus rhythm beats preceding VPBs during both immobilization and in the poststress period. Fast Fourier transform-based spectral analysis of heart-rate variability further showed that chewing significantly inhibited the stress-induced increase in the power ratio of low-to-high frequency activity (LF/HF: a marker of sympathetic activity) during immobilization and in addition was associated with blunting of the stress-induced increase in plasma noradrenaline observed at the termination of immobilization. Similar suppressive effects on the occurrence of VPBs and the LF/HF were observed in rats that were administered the β-adrenergic blocker propranolol before immobilization. These results indicate that chewing can ameliorate sympathetic hyperactivity during stress and prevent poststress arrhythmias and suggest that chewing may provide a nonpharmacological and cost-effective treatment option for patients with a high risk of stress-induced fatal arrhythmia.

  5. Effects of acute administration of selective serotonin reuptake inhibitors on sympathetic nerve activity

    Energy Technology Data Exchange (ETDEWEB)

    Tiradentes, R.V. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Pires, J.G.P. [Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Escola de Medicina da Empresa Brasileira de Ensino, Vitória, ES (Brazil); Silva, N.F. [Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Ramage, A.G. [Department of Neuroscience, Physiology and Pharmacology, University College London, London (United Kingdom); Santuzzi, C.H. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Futuro, H.A. Neto [Escola de Medicina da Empresa Brasileira de Ensino, Vitória, ES (Brazil); Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Escola Superior de Ciências da Saúde, Santa Casa de Misericórdia de Vitória, Vitória, ES (Brazil)

    2014-05-30

    Serotonergic mechanisms have an important function in the central control of circulation. Here, the acute effects of three selective serotonin (5-HT) reuptake inhibitors (SSRIs) on autonomic and cardiorespiratory variables were measured in rats. Although SSRIs require 2-3 weeks to achieve their full antidepressant effects, it has been shown that they cause an immediate inhibition of 5-HT reuptake. Seventy male Wistar rats were anesthetized with urethane and instrumented to record blood pressure, heart rate, renal sympathetic nerve activity (RSNA), and respiratory frequency. At lower doses, the acute cardiovascular effects of fluoxetine, paroxetine and sertraline administered intravenously were insignificant and variable. At middle and higher doses, a general pattern was observed, with significant reductions in sympathetic nerve activity. At 10 min, fluoxetine (3 and 10 mg/kg) reduced RSNA by -33±4.7 and -31±5.4%, respectively, without changes in blood pressure; 3 and 10 mg/kg paroxetine reduced RSNA by -35±5.4 and -31±5.5%, respectively, with an increase in blood pressure +26.3±2.5; 3 mg/kg sertraline reduced RSNA by -59.4±8.6%, without changes in blood pressure. Sympathoinhibition began 5 min after injection and lasted approximately 30 min. For fluoxetine and sertraline, but not paroxetine, there was a reduction in heart rate that was nearly parallel to the sympathoinhibition. The effect of these drugs on the other variables was insignificant. In conclusion, acute peripheral administration of SSRIs caused early autonomic cardiovascular effects, particularly sympathoinhibition, as measured by RSNA. Although a peripheral action cannot be ruled out, such effects are presumably mostly central.

  6. Sympathetic- and Parasympathetic-Linked Cardiac Function and Prediction of Externalizing Behavior, Emotion Regulation, and Prosocial Behavior among Preschoolers Treated for ADHD

    Science.gov (United States)

    Beauchaine, Theodore P.; Gatzke-Kopp, Lisa; Neuhaus, Emily; Chipman, Jane; Reid, M. Jamila; Webster-Stratton, Carolyn

    2013-01-01

    Objective: To evaluate measures of cardiac activity and reactivity as prospective biomarkers of treatment response to an empirically supported behavioral intervention for attention-deficit/hyperactivity disorder (ADHD). Method: Cardiac preejection period (PEP), an index of sympathetic-linked cardiac activity, and respiratory sinus arrhythmia…

  7. Preoperative Embolization Reduces the Risk of Cathecolamines Release at the Time of Surgical Excision of Large Pelvic Extra-Adrenal Sympathetic Paraganglioma

    Directory of Open Access Journals (Sweden)

    Nicola Di Daniele

    2012-01-01

    Full Text Available A 30-year-old woman with severe hypertension was admitted to the hospital with a history of headache, palpitations, and diaphoresis following sexual intercourse. Twenty-four hour urinary excretion of free catecholamines and metabolites was markedly increased as was serum chromogranin A. Computed tomography scan revealed a large mass in the left adnex site and magnetic resonance imaging confirmed the computer tomography finding, suggesting the presence of extra-adrenal sympathetic paraganglioma. I-metaiodobenzyl guanidine scintigram revealed an increased uptake in the same area. Transcatheter arterial embolization of the mass resulted in marked decreases in blood pressure and urinary excretion of free catecholamines and metabolites. Surgical excision of the mass was then accomplished without complication. Preoperative embolization is a useful and safe procedure which may reduce the risk of catecholamines release at the time of surgical excision in large pelvic extra-adrenal sympathetic paraganglioma.

  8. Sex steroids, insulin sensitivity and sympathetic nerve activity in relation to affective symptoms in women with polycystic ovary syndrome.

    Science.gov (United States)

    Jedel, Elizabeth; Gustafson, Deborah; Waern, Margda; Sverrisdottir, Yrsa Bergmann; Landén, Mikael; Janson, Per Olof; Labrie, Fernand; Ohlsson, Claes; Stener-Victorin, Elisabet

    2011-11-01

    Affective symptoms are poorly understood in polycystic ovary syndrome (PCOS). Clinical signs of hyperandrogenism and high serum androgens are key features in PCOS, and women with PCOS are more likely to be overweight or obese, as well as insulin resistant. Further, PCOS is associated with high sympathetic nerve activity. To elucidate if self-reported hirsutism, body mass index (BMI) and waistline, circulating sex steroids, sex hormone-binding globulin (SHBG), insulin sensitivity and sympathetic nerve activity are associated with depression and anxiety-related symptoms in women with PCOS. Seventy-two women with PCOS, aged 21-37 years, were recruited from the community. Hirsutism was self-reported using the Ferriman-Gallway score. Serum estrogens, sex steroid precursors, androgens and glucuronidated androgen metabolites were analyzed by gas and liquid chromatography/mass spectroscopy (GC-MS/LC-MS/MS) and SHBG by chemiluminiscent microparticle immunoassay (CMIA). Insulin sensitivity was measured with euglycemic hyperinsulinemic clamp. Sympathetic nerve activity was measured with microneurography. Symptoms of depression and anxiety were self-reported using the Montgomery Åsberg Depression Rating Scale (MADRS-S) and the Brief Scale for Anxiety (BSA-S). Circulating concentrations of testosterone (T) (P=0.026), free T (FT) (P=0.025), and androstane-3α 17β-diol-3glucuronide (3G) (P=0.029) were lower in women with depression symptoms of potential clinical relevance (MADR-S≥11). The odds of having a MADRS-S score ≥11 were higher with lower FT and 3G. No associations with BSA-S were noted. Lower circulating FT and 3G were associated with worse self-reported depression symptoms. The relationship between mental health, sex steroids and corresponding metabolites in PCOS requires further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Eyeball pressure stimulation induces subtle sympathetic activation in patients with a history of moderate or severe traumatic brain injury.

    Science.gov (United States)

    Wang, Ruihao; Hösl, Katharina M; Ammon, Fabian; Markus, Jörg; Koehn, Julia; Roy, Sankanika; Liu, Mao; de Rojas Leal, Carmen; Muresanu, Dafin; Flanagan, Steven R; Hilz, Max J

    2018-06-01

    After traumatic brain injury (TBI), there may be persistent central-autonomic-network (CAN) dysfunction causing cardiovascular-autonomic dysregulation. Eyeball-pressure-stimulation (EPS) normally induces cardiovagal activation. In patients with a history of moderate or severe TBI (post-moderate-severe-TBI), we determined whether EPS unveils cardiovascular-autonomic dysregulation. In 51 post-moderate-severe-TBI patients (32.7 ± 10.5 years old, 43.1 ± 33.4 months post-injury), and 30 controls (29.1 ± 9.8 years), we recorded respiration, RR-intervals (RRI), systolic and diastolic blood-pressure (BPsys, BPdia), before and during EPS (120 sec; 30 mmHg), using an ocular-pressure-device (Okulopressor®). We calculated spectral-powers of mainly sympathetic low (LF: 0.04-0.15 Hz) and parasympathetic high (HF: 0.15-0.5 Hz) frequency RRI-fluctuations, sympathetically mediated LF-powers of BPsys, and calculated normalized (nu) LF- and HF-powers of RRI. We compared parameters between groups before and during EPS by repeated-measurement-analysis-of-variance with post-hoc analysis (significance: p < 0.05). At rest, sympathetically mediated LF-BPsys-powers were significantly lower in the patients than the controls. During EPS, only controls significantly increased RRIs and parasympathetically mediated HFnu-RRI-powers, but decreased LF-RRI-powers, LFnu-RRI-powers, and LF-BPsys-powers; in contrast, the patients slightly though significantly increased BPsys upon EPS, without changing any other parameter. In post-moderate-severe-TBI patients, autonomic BP-modulation was already compromised at rest. During EPS, our patients failed to activate cardiovagal modulation but slightly increased BPsys, indicating persistent CAN dysregulation. Our findings unveil persistence of subtle cardiovascular-autonomic dysregulation even years after TBI. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  10. Effects of a combined dietary, exercise and behavioral intervention and sympathetic system on body weight maintenance after intended weight loss: results of a randomized controlled trial.

    Science.gov (United States)

    Mai, Knut; Brachs, Maria; Leupelt, Verena; Schwartzenberg, Reiner Jumpertz-von; Maurer, Lukas; Grüters-Kieslich, Annette; Ernert, Andrea; Bobbert, Thomas; Krude, Heiko; Spranger, Joachim

    2018-01-19

    Lifestyle based weight loss interventions are hampered by long-term inefficacy. Prediction of individuals successfully reducing body weight would be highly desirable. Although sympathetic activity is known to contribute to energy homeostasis, its predictive role in body weight maintenance has not yet been addressed. We investigated, whether weight regain could be modified by a weight maintenance intervention and analyzed the predictive role of weight loss-induced changes of the sympathetic system on long-term weight regain. 156 subjects (age > 18; BMI ≥ 27 kg/m 2 ) participated in a 12-week weight reduction program. After weight loss (T0), 143 subjects (weight loss >8%) were randomized to a 12-month lifestyle intervention or a control group. After 12 months (T12) no further intervention was performed until month 18 (T18). Weight regain at T18 (regain BMI ) was the primary outcome. Evaluation of systemic and tissue specific estimates of sympathetic system was a pre-defined secondary outcome. BMI was reduced by 4.67 ± 1.47 kg/m 2 during the initial weight loss period. BMI maintained low in subjects of the intervention group until T12 (+0.07 ± 2.98 kg/m 2 ; p = 0.58 compared to T0), while control subjects regained +0.98 ± 1.93 kg/m 2 (p predicted regain BMI (R 2  = 0.138; p Predictive sympathetic activity was not persistently modified by the intervention, which may partially explain the lack of long-term success of such interventions. Copyright © 2018. Published by Elsevier Inc.

  11. Thinking anxious, feeling anxious, or both? Cognitive bias moderates the relationship between anxiety disorder status and sympathetic arousal in youth.

    Science.gov (United States)

    Rozenman, Michelle; Vreeland, Allison; Piacentini, John

    2017-01-01

    Cognitive bias and physiological arousal are two putative markers that may underlie youth anxiety. However, data on relationships between cognitive bias and arousal are limited, and typically do not include behavioral measurement of these constructs in order to tap real-time processes. We aimed to examine the relationship between performance-based cognitive bias and sympathetic arousal during stress in clinically anxious and typically-developing youth. The sample included children and adolescents ages 9 to 17 (Mean age=13.18, SD=2.60) who either met diagnostic criteria for primary generalized anxiety, social phobia, or separation anxiety (N=24) or healthy controls who had no history of psychopathology (N=22). Youth completed performance-based measures of attention and interpretation bias. Electrodermal activity was assessed while youth participated in the Trier Social Stress Test for Children (TSST-C; Buske-Kirschbaum, Jobst, & Wustmans, 1997). A mixed models analysis indicated significant linear and non-linear changes in skin conductance, with similar slopes for both groups. Interpretation bias, but not attention bias, moderated the relationship between group status and sympathetic arousal during the TSST-C. Arousal trajectories did not differ for anxious and healthy control youth who exhibited high levels of threat interpretation bias. However, for youth who exhibited moderate and low levels of interpretation bias, the anxious group demonstrated greater arousal slopes than healthy control youth. Results provide initial evidence that the relationship between anxiety status and physiological arousal during stress may be moderated by level of interpretation bias for threat. These findings may implicate interpretation bias as a marker of sympathetic reactivity in youth. Implications for future research and limitations are discussed. Published by Elsevier Ltd.

  12. Vasovagal oscillations and vasovagal responses produced by the Vestibulo-Sympathetic Reflex in the rat

    Directory of Open Access Journals (Sweden)

    Sergei B. Yakushin

    2014-04-01

    Full Text Available Sinusoidal galvanic vestibular stimulation (sGVS induces oscillations in blood pressure (BP and heart rate (HR i.e., vasovagal oscillations, and decreases in BP and HR i.e., vasovagal responses, in isoflurane-anesthetized rats. We determined the characteristics of the vasovagal oscillations, assessed their role in the generation of vasovagal responses and determined whether they could be induced by monaural as well as by binaural sGVS and by oscillation in pitch. Wavelet analyses were used to determine the power distributions of the waveforms. Monaural and binaural sGVS and pitch generated vasovagal oscillations at the frequency and at twice the frequency of stimulation. Vasovagal oscillations and vasovagal responses were maximally induced at low stimulus frequencies (0.025-0.05 Hz. The oscillations were attenuated and the responses were rarely induced at higher stimulus frequencies. Vasovagal oscillations could occur without induction of vasovagal responses, but vasovagal responses were always associated with a vasovagal oscillation. We posit that the vasovagal oscillations originate in a low frequency band that, when appropriately activated by strong sympathetic stimulation, can generate vasovagal oscillations as a precursor for vasovagal responses and syncope. We further suggest that the activity responsible for the vasovagal oscillations arises in low frequency, otolith neurons with orientation vectors close to the vertical axis of the head. These neurons are likely to provide critical input to the Vestibulo-Sympathetic Reflex to increase BP and HR upon changes in head position relative to gravity, and to contribute to the production of vasovagal oscillations and vasovagal responses and syncope when the baroreflex is inactivated.

  13. Inorganic phosphate inhibits sympathetic neurotransmission in canine saphenous veins

    International Nuclear Information System (INIS)

    Edoute, Y.; Vanhoutte, P.M.; Shepherd, J.T.

    1987-01-01

    Inorganic phosphate has been proposed as the initiator of metabolic vasodilatation in active skeletal muscle. The present study was primarily designed to determine if this substance has an inhibitory effect on adrenergic neurotransmission. Rings of canine saphenous veins were suspended for isometric tension recording in organ chambers. A comparison was made of the ability of inorganic phosphate (3 to 14 mM) to relax rings contracted to the same degree by electrical stimulation, exogenous norepinephrine, and prostaglandin F/sub 2α/. The relaxation during electrical stimulation was significantly greater at all concentrations of phosphate. In strips of saphenous veins previously incubated with [ 3 H]norepinephrine, the depression of the contractile response caused by phosphate during electrical stimulated was accompanied by a significant reduction in the overflow of labeled neurotransmitter. Thus inorganic phosphate inhibits sympathetic neurotransmission and hence may have a key role in the sympatholysis in the active skeletal muscles during exercise. By contrast, in this preparation, it has a modest direct relaxing action on the vascular smooth muscle

  14. Estimation of regional myocardial sympathetic neuronal function with I-123 metaiodobenzylguanidine (MIBG) myocardial images in patients with cardiomyopathy

    International Nuclear Information System (INIS)

    Tanaka, Takeshi; Aizawa, Tadanori; Kato, Kazuzo; Nakano, Hajime; Igarashi, Masaki; Ueno, Takashi; Hirosawa, Koshichiro; Kusakabe, Kiyoko.

    1989-01-01

    Myocardial SPECT images with I-123 metaiodobenzylguanidine (MIBG) were obtained in 10 patients with cardiomyopathy under stable state. For myocardial imaging, MIBG and Tl-201 (Tl) were simultaneously injected and collected. The ratio of MIBG to Tl (M/T ratio) in ROI was obtained with 50% cut off levels in order to eliminate background activity. The patients were divided into three major groups: (l) those who had the M/T ratio ranging from 0.8 to l.20 at rest and had marked defects in the infero-lateral region on delayed MIBG images, where pathophysiologically accelerated regional sympathetic neuronal function was suspected (n=5), (II) those who had increased M/T ratios (l.6 and l.7) in the basal septal wall (n=3), and (III) those who had decreased M/T ratios (0.7 and 0.75) in the apical septal wall, where depletion of myocardial norepinephrine was suspected (n=2). These findings indicate the potential of myocardial MIBG images to evaluate myocardial distribution of norepinephrine, i.e. myocardial sympathetic neuronal function. Certain shortcomings, such as an increased background due to dual isotopes and an increased pulmonary uptake of MIBG, require further study on quantitative methods. (Namekawa, K)

  15. New insights on the maternal diet induced-hypertension: potential role of the phenotypic plasticity and sympathetic-respiratory overactivity

    Directory of Open Access Journals (Sweden)

    JOAO HENRIQUE eDA COSTA SILVA

    2015-11-01

    Full Text Available Systemic arterial hypertension (SAH is an important risk factor for cardiovascular disease and affects worldwide population. Current environment including life style coupled with genetic programming have been attributed to the rising incidence of hypertension. Besides, environmental conditions during perinatal development such as maternal malnutrition can program changes in the integration among renal, neural and endocrine system leading to hypertension. This phenomenon is termed phenotypic plasticity and refers to the adjustment of a phenotype in response to environmental input without genetic change, following a novel or unusual input during development. Human and animal studies indicate that fetal exposure to an adverse maternal environment may alter the renal morphology and physiology that contribute to the development of hypertension. Recently, it has been shown that the maternal protein restriction alter the central control of SAH by a mechanism that include respiratory dysfunction and enhanced sympathetic-respiratory coupling at early life, which may contribute to adult hypertension. This review will address the new insights on the maternal diet induced-hypertension that include the potential role of the phenotypic plasticity, specifically the perinatal protein malnutrition, and sympathetic-respiratory overactivity.

  16. Study of nerve fibers nature reinforcing duodenal contractions by electrical stimulation of sympathetic nerve

    Directory of Open Access Journals (Sweden)

    Sveshnikov D.S.

    2011-09-01

    Full Text Available The subject of the article is to investigate the mechanism of increased reactions by electrical stimulation of the sympathetic nerve. Materials and methods: Experiments on dogs have shown that stimulant reactions during blockade of a-adrenergic by phentolamine and (3-adrenergic receptors with propranolol were completely eliminated by lizer-gol —the blocker of 5-HT12-receptors. Results: Infusion of lizergol did not influence on duodenal motor activity and the function of the vagus nerve. Conclusion: Effector neuron is found out to be serotonergic and its action is provided by 5-HT1 2 receptors

  17. Influence of sympathetic nervous system on sensorimotor function: whiplash associated disorders (WAD) as a model.

    Science.gov (United States)

    Passatore, Magda; Roatta, Silvestro

    2006-11-01

    There is increasing interest about the possible involvement of the sympathetic nervous system (SNS) in initiation and maintenance of chronic muscle pain syndromes of different aetiology. Epidemiological data show that stresses of different nature, e.g. work-related, psychosocial, etc., typically characterised by SNS activation, may be a co-factor in the development of the pain syndrome and/or negatively affect its time course. In spite of their clear traumatic origin, whiplash associated disorders (WAD) appear to share many common features with other chronic pain syndromes affecting the musculo-skeletal system. These features do not only include symptoms, like type of pain or sensory and motor dysfunctions, but possibly also some of the pathophysiological mechanisms that may concur to establish the chronic pain syndrome. This review focuses on WAD, particular emphasis being devoted to sensorimotor symptoms, and on the actions exerted by the sympathetic system at muscle level. Besides its well-known action on muscle blood flow, the SNS is able to affect the contractility of muscle fibres, to modulate the proprioceptive information arising from the muscle spindle receptors and, under certain conditions, to modulate nociceptive information. Furthermore, the activity of the SNS itself is in turn affected by muscle conditions, such as its current state of activity, fatigue and pain signals originating in the muscle. The possible involvement of the SNS in the development of WAD is discussed in light of the several positive feedback loops in which it is implicated.

  18. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    Science.gov (United States)

    Angel-Chavez, Luis I; Acosta-Gómez, Eduardo I; Morales-Avalos, Mario; Castro, Elena; Cruzblanca, Humberto

    2015-01-01

    In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  19. Sympathetic influence on the pupillary light response in three red-eared slider turtles (Trachemys scripta elegans).

    Science.gov (United States)

    Dearworth, James R; Cooper, Lori J

    2008-01-01

    We investigated the effects of phenylephrine and its combination with vecuronium bromide on the iris of turtles to determine if the pupillary light response is affected by sympathetic innervation. Three red-eared slider turtles, Trachemys scripta elegans. Diameters of light-adapted pupils were tracked before and after topical application of drugs to eyes. Phenylephrine was applied independently; in a second group of trials, vecuronium bromide was applied with phenylephrine. Rates of pupil dilation in response to drugs were quantified by fitting data with time constant (tau) equations. Phenylephrine dilated the pupil 24%, tau = 29 min. Combination of phenylephrine with vecuronium bromide increased the pupil size 35%, and dilation was more rapid, tau = 14 min. We also were able to predict these time constants by performing different mathematical operations with an equation developed from a prior study using only vecuronium bromide. When this equation was subtracted from the equation for eyes treated with both vecuronium bromide and phenylephrine, the difference gave the observed tau for phenylephrine; when added to phenylephrine, the sum closely matched the tau for eyes treated with vecuronium bromide and phenylephrine. Further, the tau for vecuronium bromide treated eyes was predicted by subtracting the equation for phenylephrine from that of eyes treated with both vecuronium bromide and phenylephrine. Our results suggest that sympathetic innervation interacts with the parasympathetic pathway to control the pupillary light response in turtles.

  20. The role of sympathetic nervous system in the development of neurogenic pulmonary edema in spinal cord-injured rats

    Czech Academy of Sciences Publication Activity Database

    Šedý, Jiří; Zicha, Josef; Nedvídková, J.; Kuneš, Jaroslav

    2012-01-01

    Roč. 112, č. 1 (2012), s. 1-8 ISSN 8750-7587 R&D Projects: GA MŠk(CZ) 1M0510; GA ČR(CZ) GA305/08/0139; GA AV ČR(CZ) IAA500110902 Institutional research plan: CEZ:AV0Z50110509 Keywords : neurogenic pulmonary edema * sympathetic nervous system * baroreflex Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 3.484, year: 2012

  1. Sympathetic cooling and crystallization of ions in a linear Paul trap

    International Nuclear Information System (INIS)

    Drewsen, M.; Bowe, P.; Hornekaer, L.; Brodersen, C.; Schiffer, J.P.; Hangst, J.S.; Schiffer, J.P.

    1999-01-01

    Coulomb crystals, containing up to a few hundred ions of which more than 50% were cooled sympathetically by the Coulomb interaction with laser cooled Mg + ions, have been produced in a linear Paul trap. By controlling the balance of the radiation pressure from the two cooling lasers, the Coulomb crystals could be segregated according to ion species. Previous studies of ion crystals and molecular dynamics simulations suggest that the temperature may be around 10 mK or lower. The obtained results indicate that a wide range of atomic and molecular ions, which due to their internal structures are not amenable to direct laser cooling, can be effectively cooled and localized (crystallized) in linear Paul traps. For high resolution spectroscopy of such ions this may turn out to be very useful. copyright 1999 American Institute of Physics

  2. Stimulation of Host Bone Marrow Stromal Cells by Sympathetic Nerves Promotes Breast Cancer Bone Metastasis in Mice

    OpenAIRE

    Campbell, J. Preston; Karolak, Matthew R.; Ma, Yun; Perrien, Daniel S.; Masood-Campbell, S. Kathryn; Penner, Niki L.; Munoz, Steve A.; Zijlstra, Andries; Yang, Xiangli; Sterling, Julie A.; Elefteriou, Florent

    2012-01-01

    Bone and lung metastases are responsible for the majority of deaths in patients with breast cancer. Following treatment of the primary cancer, emotional and psychosocial factors within this population precipitate time to recurrence and death, however the underlying mechanism(s) remain unclear. Using a mouse model of bone metastasis, we provide experimental evidence that activation of the sympathetic nervous system, which is one of many pathophysiological consequences of severe stress and depr...

  3. Delineating neurotrophin-3 dependent signaling pathways underlying sympathetic axon growth along intermediate targets.

    Science.gov (United States)

    Keeler, Austin B; Suo, Dong; Park, Juyeon; Deppmann, Christopher D

    2017-07-01

    Postganglionic sympathetic neurons detect vascular derived neurotrophin 3 (NT3) via the axonally expressed receptor tyrosine kinase, TrkA, to promote chemo-attraction along intermediate targets. Once axons arrive to their final target, a structurally related neurotrophic factor, nerve growth factor (NGF), also acts through TrkA to promote final target innervation. Does TrkA signal differently at these different locales? We previously found that Coronin-1 is upregulated in sympathetic neurons upon exposure to NGF, thereby endowing the NGF-TrkA complex with new signaling capabilities (i.e. calcium signaling), which dampens axon growth and branching. Based on the notion that axons do not express functional levels of Coronin-1 prior to final target innervation, we developed an in vitro model for axon growth and branching along intermediate targets using Coro1a -/- neurons grown in NT3. We found that, similar to NGF-TrkA, NT3-TrkA is capable of inducing MAPK and PI3K in the presence or absence of Coronin-1. However, unlike NGF, NT3 does not induce calcium release from intracellular stores. Using a combination of pharmacology, knockout neurons and in vitro functional assays, we suggest that the NT3-TrkA complex uses Ras/MAPK and/or PI3K-AKT signaling to induce axon growth and inhibit axon branching along intermediate targets. However, in the presence of Coronin-1, these signaling pathways lose their ability to impact NT3 dependent axon growth or branching. This is consistent with a role for Coronin-1 as a molecular switch for axon behavior and suggests that Coronin-1 suppresses NT3 dependent axon behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Participation of the hypothalamus-hypophysis axis in the sympathetic activation of human obesity.

    Science.gov (United States)

    Grassi, G; Seravalle, G; Dell'Oro, R; Turri, C; Pasqualinotto, L; Colombo, M; Mancia, G

    2001-12-01

    Previous studies have shown that hypothalamic and hypophyseal factors are involved in the acute sympathoexcitation induced by a variety of laboratory stimuli. Whether a chronic condition of sympathetic activation, such as that characterizing human obesity, is also dependent on these factors has never been investigated. In 40 normotensive obese subjects ([mean+/-SEM] age, 39.1+/-0.8 years) we measured blood pressure (Finapres), heart rate (ECG), and postganglionic muscle sympathetic nerve activity (MSNA) (microneurography). In 20 subjects measurements were repeated, according to a double-blind randomized sequence, after a midnight oral dose of dexamethasone (1 mg) (n=10) or placebo (n=10), while in the remaining subjects they were performed again after 1 week of a daily evening oral administration of 1 mg of dexamethasone (n=10) or placebo (n=10). The same protocol was performed in 16 age-matched lean normotensives. In both groups acute dexamethasone administration markedly reduced plasma cortisol (radioimmunoassay), without affecting hemodynamic and neural variables. In contrast to the acute administration, in obese subjects prolonged dexamethasone administration, although not affecting blood pressure and heart rate, significantly reduced both plasma cortisol (from 16.0+/-1.3 to 0.7+/-0.1 microg/dL; P<0.01) and MSNA (from 59.5+/-2.8 to 39.6+/-2.9 bursts per 100 heartbeats; P<0.02; -33.1+/-4.1%). This was not the case in lean subjects, in which the dexamethasone-induced reduction in plasma cortisol was associated with a slight and nonsignificant MSNA decrease. In both lean and obese subjects, placebo administration caused no change in any variable. Thus, prolonged dexamethasone administration exerts in obese subjects marked sympathoinhibitory effects that are not detectable in lean individuals. This suggests that hypothalamic and hypophyseal factors substantially contribute to the sympathoexcitation of obesity.

  5. Free fatty acid receptor 3 is a key target of short chain fatty acid. What is the impact on the sympathetic nervous system?

    Science.gov (United States)

    López Soto, Eduardo Javier; Gambino, Luisina Ongaro; Mustafá, Emilio Román

    2014-01-01

    Nervous system (NS) activity participates in metabolic homeostasis by detecting peripheral signal molecules derived from food intake and energy balance. High quality diets are thought to include fiber-rich foods like whole grain rice, breads, cereals, and grains. Several studies have associated high consumption of fiber-enriched diets with a reduced risk of diabetes, obesity, and gastrointestinal disorders. In the lower intestine, anaerobic fermentation of soluble fibers by microbiota produces short chain fatty acids (SCFAs), key energy molecules that have a recent identified leading role in the intestinal gluconeogenesis, promoting beneficial effects on glucose tolerance and insulin resistance. SCFAs are also signaling molecules that bind to specific G-protein coupled receptors (GPCRs) named Free Fatty Acid Receptor 3 (FFA3, GPR41) and 2 (FFA2, GPR43). However, how SCFAs impact NS activity through their GPCRs is poorly understood. Recently, studies have demonstrated the presence of FFA2 and FFA3 in the sympathetic NS of rat, mouse and human. Two studies have showed that FFA3 activation by SCFAs increases firing and norepinephrine (NE) release from sympathetic neurons. However, the recent study from the Ikeda Laboratory revealed that activation of FFA3 by SCFAs impairs N-type calcium channel (NTCC) activity, which contradicts the idea of FFA3 activation leading to increased action potential evoked NE release. Here we will discuss the scope of the latter study and the putative physiological role of SCFAs and FFAs in the sympathetic NS.

  6. Sympathetic Activity, Assessed by Power Spectral Analysis of Heart Rate Variability, in White-Coat, Masked and Sustained Hypertension Versus True Normotension

    Czech Academy of Sciences Publication Activity Database

    Fagard, R.H.; Stolarz, K.; Kuznetsova, T.; Seidlerová, J.; Tikhonoff, V.; Grodzicki, T.; Nikitin, Y.; Filipovský, J.; Peleška, Jan; Casiglia, E.; Thijs, L.; Staessen, J.A.; Kawecka-Jaszcz, K.

    2007-01-01

    Roč. 25, č. 11 (2007), s. 2280-2285 ISSN 0263-6352 Institutional research plan: CEZ:AV0Z10300504 Keywords : heart rate variability * masked hypertension * power spectral analysis * sympathetic activity * white-coat hypertension Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.364, year: 2007

  7. Adrenal hormones interact with sympathetic innervation to modulate growth of embryonic heart in oculo.

    Science.gov (United States)

    Tucker, D C; Torres, A

    1992-02-01

    To allow experimental manipulation of adrenal hormone and autonomic influences on developing myocardium without alteration of hemodynamic load, embryonic rat heart was cultured in the anterior eye chamber of an adult rat. Sympathetic innervation of embryonic day 12 heart grafts was manipulated by surgical sympathectomy of one eye chamber in each host rat. Adrenal hormone exposure was manipulated by host adrenal medullectomy (MEDX) in experiment 1 and by host adrenalectomy (ADX) in experiment 2. In experiment 1, whole heart grafts were larger in MEDX than in sham-operated hosts by 8 wk in oculo (6.14 +/- 0.71 vs. 5.09 +/- 0.69 mm2 with innervation intact and 7.97 +/- 2.07 vs. 3.09 +/- 0.63 mm2 with sympathetic innervation prevented). In experiment 2, host ADX increased growth of embryonic day 12 ventricles grafted into sympathectomized eye chambers (0.69 +/- 0.10 vs. 0.44 +/- 0.04 mm2) but did not affect growth of grafts in intact eye chambers (0.85 +/- 0.09 vs. 1.05 +/- 0.15 mm2). Corticosterone replacement (4 mg/day) entirely reversed the effect of host ADX on graft growth (superior cervical ganglionectomy, 0.47 +/- 0.03 mm2; intact eye chambers, 0.90 +/- 0.91 mm2). Beating rate of grafts was not affected by adrenal hormone manipulations. These experiments indicate that the compromised growth of embryonic heart grafts placed in sympathectomized eye chambers requires exposure to adult levels of glucocorticoids during the early days after grafting. These results suggest that interactions between neural and hormonal stimulation influence cardiac growth in the in oculo culture system and during normal development.

  8. Neurotrophin responsiveness of sympathetic neurons is regulated by rapid mobilization of the p75 receptor to the cell surface through TrkA activation of Arf6.

    Science.gov (United States)

    Edward Hickman, F; Stanley, Emily M; Carter, Bruce D

    2018-05-22

    The p75 neurotrophin receptor (p75NTR) plays an integral role in patterning the sympathetic nervous system during development. Initially, p75NTR is expressed at low levels as sympathetic axons project toward their targets, which enables neurotrophin-3 (NT3) to activate TrkA receptors and promote growth. Upon reaching nerve growth factor (NGF) producing tissues, p75NTR is up regulated resulting in formation of TrkA-p75 complexes, which are high affinity binding sites selective for NGF, thereby blunting NT3 signaling. The level of p75NTR expressed on the neuron surface is instrumental in regulating trophic factor response; however, the mechanisms by which p75NTR expression is regulated are poorly understood. Here, we demonstrate a rapid, translation independent increase in surface expression of p75NTR in response to NGF in rat sympathetic neurons. p75NTR was mobilized to the neuron surface from GGA3-postitive vesicles through activation of the GTPase Arf6, which was stimulated by NGF, but not NT3 binding to TrkA. Arf6 activation required PI3 kinase activity and was prevented by an inhibitor of the cytohesin family of Arf6 GEFs. Overexpression of a constitutively active Arf6 mutant (Q67L) was sufficient to significantly increase surface expression of p75NTR even in the absence of NGF. Functionally, expression of active Arf6 markedly attenuated the ability of NT3 to promote neuronal survival and neurite outgrowth while the NGF response was unaltered. These data suggest that NGF activation of Arf6 through TrkA is critical for the increase in p75NTR surface expression that enables the switch in neurotrophin responsiveness during development in the sympathetic nervous system. SIGNIFICANCE STATEMENT p75NTR is instrumental in the regulation of neuronal survival and apoptosis during development and is also implicated as a contributor to aberrant neurodegeneration in numerous conditions. Therefore, a better understanding of the mechanisms that mediate p75NTR surface

  9. Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice.

    OpenAIRE

    Nelles, E; Bützler, C; Jung, D; Temme, A; Gabriel, H D; Dahl, U; Traub, O; Stümpel, F; Jungermann, K; Zielasek, J; Toyka, K V; Dermietzel, R; Willecke, K

    1996-01-01

    The gap junctional protein connexin32 is expressed in hepatocytes, exocrine pancreatic cells, Schwann cells, and other cell types. We have inactivated the connexin32 gene by homologous recombination in the mouse genome and have generated homozygous connexin32-deficient mice that were viable and fertile but weighed on the average approximately 17% less than wild-type controls. Electrical stimulation of sympathetic nerves in connexin32-deficient liver triggered a 78% lower amount of glucose mob...

  10. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Secher, Niels H

    2011-01-01

    This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF...... perfusion and reduces the near-infrared determined cerebral oxygenation at rest, but not during exercise associated with an increased cerebral metabolic rate for oxygen (CMRO(2)), suggesting competition between CMRO(2) and sympathetic control of CBF. CMRO(2) does not change during even intense handgrip......-oxidative carbohydrate uptake during exercise. Adrenaline appears to accelerate cerebral glycolysis through a beta2-adrenergic receptor mechanism since noradrenaline is without such an effect. In addition, the exercise-induced cerebral non-oxidative carbohydrate uptake is blocked by combined beta 1/2-adrenergic blockade...

  11. Small passenger car transmission test-Chevrolet 200 transmission

    Science.gov (United States)

    Bujold, M. P.

    1980-01-01

    The small passenger car transmission was tested to supply electric vehicle manufacturers with technical information regarding the performance of commerically available transmissions which would enable them to design a more energy efficient vehicle. With this information the manufacturers could estimate vehicle driving range as well as speed and torque requirements for specific road load performance characteristics. A 1979 Chevrolet Model 200 automatic transmission was tested per a passenger car automatic transmission test code (SAE J651b) which required drive performance, coast performance, and no load test conditions. The transmission attained maximum efficiencies in the mid-eighty percent range for both drive performance tests and coast performance tests. Torque, speed and efficiency curves map the complete performance characteristics for Chevrolet Model 200 transmission.

  12. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    Directory of Open Access Journals (Sweden)

    Luis I Angel-Chavez

    Full Text Available In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV. Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  13. Maternal overreactive sympathetic nervous system responses to repeated infant crying predicts risk for impulsive harsh discipline of infants.

    Science.gov (United States)

    Joosen, Katharina J; Mesman, Judi; Bakermans-Kranenburg, Marian J; van Ijzendoorn, Marinus H

    2013-11-01

    Physiological reactivity to repeated infant crying was examined as a predictor of risk for harsh discipline use with 12-month-olds in a longitudinal study with 48 low-income mother-infant dyads. Physiological reactivity was measured while mothers listened to three blocks of infant cry sounds in a standard cry paradigm when their infants were 3 months old. Signs of harsh discipline use were observed during two tasks during a home visit when the infants were 12 months old. Mothers showing signs of harsh discipline (n = 10) with their 12-month-olds were compared to mothers who did not (n = 38) on their sympathetic (skin conductance levels [SCL]) and parasympathetic (respiratory sinus arrhythmia) reactivity to the cry sounds. Results showed a significant interaction effect for sympathetic reactivity only. Mean SCL of harsh-risk mothers showed a significant different response pattern from baseline to crying and onward into the recovery, suggesting that mean SCL of mothers who showed signs of harsh discipline continued to rise across the repeated bouts of cry sounds while, after an initial increase, mean SCL level of the other mothers showed a steady decline. We suggest that harsh parenting is reflected in physiological overreactivity to negative infant signals and discuss our findings from a polyvagal perspective.

  14. Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice.

    Science.gov (United States)

    Nelles, E; Bützler, C; Jung, D; Temme, A; Gabriel, H D; Dahl, U; Traub, O; Stümpel, F; Jungermann, K; Zielasek, J; Toyka, K V; Dermietzel, R; Willecke, K

    1996-09-03

    The gap junctional protein connexin32 is expressed in hepatocytes, exocrine pancreatic cells, Schwann cells, and other cell types. We have inactivated the connexin32 gene by homologous recombination in the mouse genome and have generated homozygous connexin32-deficient mice that were viable and fertile but weighed on the average approximately 17% less than wild-type controls. Electrical stimulation of sympathetic nerves in connexin32-deficient liver triggered a 78% lower amount of glucose mobilization from glycogen stores, when compared with wild-type liver. Thus, connexin32-containing gap junctions are essential in mouse liver for maximal intercellular propagation of the noradrenaline signal from the periportal (upstream) area, where it is received from sympathetic nerve endings, to perivenous (downstream) hepatocytes. In connexin32-defective liver, the amount of connexin26 protein expressed was found to be lower than in wild-type liver, and the total area of gap junction plaques was approximately 1000-fold smaller than in wild-type liver. In contrast to patients with connexin32 defects suffering from X chromosome-linked Charcot-Marie-Tooth disease (CMTX) due to demyelination in Schwann cells of peripheral nerves, connexin32-deficient mice did not show neurological abnormalities when analyzed at 3 months of age. It is possible, however, that they may develop neurodegenerative symptoms at older age.

  15. High-resolution Observations of Sympathetic Filament Eruptions by NVST

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shangwei; Su, Yingna; Zhou, Tuanhui; Ji, Haisheng [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Van Ballegooijen, Adriaan [5001 Riverwood Avenue, Sarasota, FL 34231 (United States); Sun, Xudong, E-mail: ynsu@pmo.ac.cn [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2017-07-20

    We investigate two sympathetic filament eruptions observed by the New Vacuum Solar Telescope on 2015 October 15. The full picture of the eruptions is obtained from the corresponding Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) observations. The two filaments start from active region NOAA 12434 in the north and end in one large quiescent filament channel in the south. The left filament erupts first, followed by the right filament eruption about 10 minutes later. Clear twist structure and rotating motion are observed in both filaments during the eruption. Both eruptions failed, since the filaments first rise up, then flow toward the south and merge into the southern large quiescent filament. We also observe repeated activations of mini filaments below the right filament after its eruption. Using magnetic field models constructed based on SDO /HMI magnetograms via the flux rope insertion method, we find that the left filament eruption is likely to be triggered by kink instability, while the weakening of overlying magnetic fields due to magnetic reconnection at an X-point between the two filament systems might play an important role in the onset of the right filament eruption.

  16. Survey of Transmission Cost Allocation Methodologies for Regional Transmission Organizations

    Energy Technology Data Exchange (ETDEWEB)

    Fink, S.; Porter, K.; Mudd, C.; Rogers, J.

    2011-02-01

    The report presents transmission cost allocation methodologies for reliability transmission projects, generation interconnection, and economic transmission projects for all Regional Transmission Organizations.

  17. Sympathetic activity induced by naloxone-precipitated morphine withdrawal is blocked in genetically engineered mice lacking functional CRF1 receptor

    International Nuclear Information System (INIS)

    García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria; Laorden, María-Luisa

    2015-01-01

    There is large body evidence indicating that stress can lead to cardiovascular disease. However, the exact brain areas and the mechanisms involved remain to be revealed. Here, we performed a series of experiments to characterize the role of CRF1 receptor (CRF1R) in the stress response induced by naloxone-precipitated morphine withdrawal. The experiments were performed in the hypothalamic paraventricular nucleus (PVN) ventrolateral medulla (VLM), brain regions involved in the regulation of cardiovascular activity, and in the right ventricle by using genetically engineered mice lacking functional CRF1R levels (KO). Mice were treated with increasing doses of morphine and withdrawal was precipitated by naloxone administration. Noradrenaline (NA) turnover, c-Fos, expression, PKA and TH phosphorylated at serine 40, was evaluated by high-performance liquid chromatography (HPLC), immunohistochemistry and immunoblotting. Morphine withdrawal induced an enhancement of NA turnover in PVN in parallel with an increase in TH neurons expressing c-Fos in VLM in wild-type mice. In addition we have demonstrated an increase in NA turnover, TH phosphorylated at serine 40 and PKA levels in heart. The main finding of the present study was that NA turnover, TH positive neurons that express c-Fos, TH phosphorylated at serine 40 and PKA expression observed during morphine withdrawal were significantly inhibited in CRF1R KO mice. Our results demonstrate that CRF/CRF1R activation may contribute to the adaptive changes induced by naloxone-precipitated withdrawal in the heart and in the brain areas which modulate the cardiac sympathetic function and suggest that CRF/CRF1R pathways could be contributing to cardiovascular disease associated to opioid addiction. - Highlights: • Naloxone-precipitated morphine withdrawal increases sympathetic activity in the PVN and heart. • Co-localization of TH phosphorylated at serine 40/c-Fos in the VLM after morphine withdrawal • Naloxone

  18. Sympathetic activity induced by naloxone-precipitated morphine withdrawal is blocked in genetically engineered mice lacking functional CRF1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria; Laorden, María-Luisa

    2015-02-15

    There is large body evidence indicating that stress can lead to cardiovascular disease. However, the exact brain areas and the mechanisms involved remain to be revealed. Here, we performed a series of experiments to characterize the role of CRF1 receptor (CRF1R) in the stress response induced by naloxone-precipitated morphine withdrawal. The experiments were performed in the hypothalamic paraventricular nucleus (PVN) ventrolateral medulla (VLM), brain regions involved in the regulation of cardiovascular activity, and in the right ventricle by using genetically engineered mice lacking functional CRF1R levels (KO). Mice were treated with increasing doses of morphine and withdrawal was precipitated by naloxone administration. Noradrenaline (NA) turnover, c-Fos, expression, PKA and TH phosphorylated at serine 40, was evaluated by high-performance liquid chromatography (HPLC), immunohistochemistry and immunoblotting. Morphine withdrawal induced an enhancement of NA turnover in PVN in parallel with an increase in TH neurons expressing c-Fos in VLM in wild-type mice. In addition we have demonstrated an increase in NA turnover, TH phosphorylated at serine 40 and PKA levels in heart. The main finding of the present study was that NA turnover, TH positive neurons that express c-Fos, TH phosphorylated at serine 40 and PKA expression observed during morphine withdrawal were significantly inhibited in CRF1R KO mice. Our results demonstrate that CRF/CRF1R activation may contribute to the adaptive changes induced by naloxone-precipitated withdrawal in the heart and in the brain areas which modulate the cardiac sympathetic function and suggest that CRF/CRF1R pathways could be contributing to cardiovascular disease associated to opioid addiction. - Highlights: • Naloxone-precipitated morphine withdrawal increases sympathetic activity in the PVN and heart. • Co-localization of TH phosphorylated at serine 40/c-Fos in the VLM after morphine withdrawal • Naloxone

  19. The Aqueous Calyx Extract of Hibiscus sabdariffa Lowers Blood Pressure and Heart Rate via Sympathetic Nervous System Dependent Mechanisms.

    Science.gov (United States)

    Aliyu, B; Oyeniyi, Y J; Mojiminiyi, F B O; Isezuo, S A; Alada, A R A

    2014-12-29

    The antihypertensive effect of Hibiscus sabdariffa (HS) has been validated in animals and man. This study tested the hypothesis that its hypotensive effect may be sympathetically mediated. The cold pressor test (CPT) and handgrip exercise (HGE) were performed in 20 healthy subjects before and after the oral administration of 15mg/Kg HS. The blood pressure (BP) and heart rate (HR) responses were measured digitally. Mean arterial pressure (MAP; taken as representative BP) was calculated. Results are expressed as mean ±SEM. P<0.05 was considered significant. CPT without HS resulted in a significant rise in MAP and HR (111.1±2.1mmHg and 100.8±2.0/min) from the basal values (97.9±1.9mmHg and 87.8±2.1/min; P<0.0001 respectively). In the presence of HS, CPT-induced changes (ΔMAP=10.1±1.7mmHg; ΔHR= 8.4±1.0/min) were significantly reduced compared to its absence (ΔMAP= 13.2±1.2mmHg; ΔHR= 13.8±1.6/min; P<0.0001 respectively). The HGE done without HS also resulted in an increase in MAP and HR (116.3±2.1mmHg and 78.4±1.2/min) from the basal values (94.8±1.6mmHg and 76.1±1.0/min; p<0.0001 respectively). In the presence of HS the HGE-induced changes (ΔMAP= 11.5±1.0mmHg; ΔHR= 3.3±1.0/min) were significantly decreased compared to its absence (ΔMAP=21.4±1.2mmHg; ΔHR= 12.8±2.0/min; P<0.0001 respectively). The CPT and HGE -induced increases in BP and HR suggest Sympathetic nervous system activation. These increases were significantly dampened by HS suggesting, indirectly, that its hypotensive effect may be due to an attenuation of the discharge of the sympathetic nervous system.

  20. TNF-α receptor 1 knockdown in the subfornical organ ameliorates sympathetic excitation and cardiac hemodynamics in heart failure rats.

    Science.gov (United States)

    Yu, Yang; Wei, Shun-Guang; Weiss, Robert M; Felder, Robert B

    2017-10-01

    In systolic heart failure (HF), circulating proinflammatory cytokines upregulate inflammation and renin-angiotensin system (RAS) activity in cardiovascular regions of the brain, contributing to sympathetic excitation and cardiac dysfunction. Important among these is the subfornical organ (SFO), a forebrain circumventricular organ that lacks an effective blood-brain barrier and senses circulating humors. We hypothesized that the tumor necrosis factor-α (TNF-α) receptor 1 (TNFR1) in the SFO contributes to sympathetic excitation and cardiac dysfunction in HF rats. Rats received SFO microinjections of a TNFR1 shRNA or a scrambled shRNA lentiviral vector carrying green fluorescent protein, or vehicle. One week later, some rats were euthanized to confirm the accuracy of the SFO microinjections and the transfection potential of the lentiviral vector. Other rats underwent coronary artery ligation (CL) to induce HF or a sham operation. Four weeks after CL, vehicle- and scrambled shRNA-treated HF rats had significant increases in TNFR1 mRNA and protein, NF-κB activity, and mRNA for inflammatory mediators, RAS components and c-Fos protein in the SFO and downstream in the hypothalamic paraventricular nucleus, along with increased plasma norepinephrine levels and impaired cardiac function, compared with vehicle-treated sham-operated rats. In HF rats treated with TNFR1 shRNA, TNFR1 was reduced in the SFO but not paraventricular nucleus, and the central and peripheral manifestations of HF were ameliorated. In sham-operated rats treated with TNFR1 shRNA, TNFR1 expression was also reduced in the SFO but there were no other effects. These results suggest a key role for TNFR1 in the SFO in the pathophysiology of systolic HF. NEW & NOTEWORTHY Activation of TNF-α receptor 1 in the subfornical organ (SFO) contributes to sympathetic excitation in heart failure rats by increasing inflammation and renin-angiotensin system activity in the SFO and downstream in the hypothalamic

  1. Relationship between left ventricular diastolic function and myocardial sympathetic denervation measured by {sup 123}I-meta-iodobenzylguanidine imaging in Anderson-Fabry disease

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Letizia; Giudice, Caterina Anna; Imbriaco, Massimo; Trimarco, Bruno; Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy); Pellegrino, Teresa [Institute of Biostructure and Bioimaging, National Council of Research, Naples (Italy); Pisani, Antonio; Riccio, Eleonora [University Federico II, Department of Public Health, Naples (Italy); Salvatore, Marco [IRCCS SDN, Naples (Italy)

    2016-04-15

    Whether cardiac sympathetic nervous function abnormalities may be present in patients with Anderson-Fabry disease (AFD) remains unexplored. We investigated the relationship between left ventricular (LV) function and cardiac sympathetic nervous function in patients with AFD. Twenty-five patients (12 men, mean age 43 ± 13 years) with genetically proved AFD and preserved LV ejection fraction and ten age and gender-matched control subjects underwent speckle tracking echocardiography and {sup 123}I-meta-iodobenzylguanidine (MIBG) imaging from which early and late heart to mediastinum (H/M) ratios and myocardial washout rate values were calculated. In AFD patients, a significant correlation between late H/M ratio and LV mass index (r = -61, p = 0.001), left atrial volume (r = -0.72, p < 0.001), systolic pulmonary artery pressure (r = -0.75, p < 0.001), and early diastolic untwisting rate (r = -0.66, p < 0.001) was found. Ten AFD patients exhibited a late H/M ratio below two fold standard deviation of control subjects (≤1.75). Patients showing late H/M ratio ≤ 1.75 had significantly higher LV mass index, relative wall thickness, left atrial volume and systolic pulmonary artery pressure, lower systolic longitudinal strain and an early diastolic untwisting rate compared to patients with late H/M ratio > 1.75. At multivariable linear regression analysis, early diastolic untwisting rate was the only independent predictor of late H/M ratio ≤ 1.75 (odds ratio 1.15, 95 % confidence interval 1.07-1.31, p < 0.05). The present findings provide the first demonstration of a cardiac sympathetic derangement in AFD patients with preserved LV ejection fraction, which is mostly related to LV diastolic dysfunction. (orig.)

  2. Thermogenesis induced by a high-carbohydrate meal in fasted lean and overweight young men: insulin, body fat, and sympathetic nervous system involvement.

    Science.gov (United States)

    Marques-Lopes, Iva; Forga, Luis; Martínez, J Alfredo

    2003-01-01

    This dietary trial was designed to evaluate the effect of an experimental short-term fasting period followed by a high-carbohydrate meal on energy expenditure, thermogenesis, and sympathetic nervous system activity in normal (body mass index 27 kg/m(2)) men who were healthy, non-diabetic or with no other endocrine disease, non-smokers, not taking oral prescription medications, and with a stable body weight for the previous 3 mo. Fasting and fed energy expenditures and diet-induced thermogenesis were measured after a high-carbohydrate meal in seven overweight and six lean young male subjects by indirect calorimetry. Heart rate, urinary excretion of catecholamines, serum glucose, and insulin were also measured over the experimental fasting (7.5 h) and postprandial (4 h) periods. After carbohydrate intake, overweight men showed a significantly higher energy production (kJ/kg of fat-free mass) than did lean individuals, and the diet-induced thermogenesis (percentage of energy intake) was positively correlated with body fat (kg), percentage of body fat, fat-free mass (kg), and fasting pre-meal serum insulin levels. Postprandial cumulative energy expenditure was directly associated with postprandial insulin response and with mean postprandial heart rate values. No significant differences in urinary catecholamines were found between lean and overweight men at basal conditions or during the study period. Overweight individuals showed similar short-term sympathetic nervous system responses induced by an experimental fasting period. Although diet-induced thermogenesis after carbohydrate intake was not statistically different between lean and overweight men, the postprandial insulin response and body fat content seemed to be involved in sympathetic nervous system activity.

  3. Sympathetic Response and Outcomes Following Renal Denervation in Patients With Chronic Heart Failure: 12-Month Outcomes From the Symplicity HF Feasibility Study.

    Science.gov (United States)

    Hopper, Ingrid; Gronda, Edoardo; Hoppe, Uta C; Rundqvist, Bengt; Marwick, Thomas H; Shetty, Sharad; Hayward, Christopher; Lambert, Thomas; Hering, Dagmara; Esler, Murray; Schlaich, Markus; Walton, Antony; Airoldi, Flavio; Brandt, Mathias C; Cohen, Sidney A; Reiters, Pascalle; Krum, Henry

    2017-09-01

    Heart failure (HF) is associated with chronic sympathetic activation. Renal denervation (RDN) aims to reduce sympathetic activity by ablating the renal sympathetic nerves. We investigated the effect of RDN in patients with chronic HF and concurrent renal dysfunction in a prospective, multicenter, single-arm feasibility study. Thirty-nine patients with chronic systolic HF (left ventricular ejection fraction [LVEF] renal impairment (estimated glomerular filtration rate [eGFR; assessed with the use of the Modification of Diet in Renal Disease equation] renal artery occlusion that was possibly related to the denervation procedure. Statistically significant reductions in N-terminal pro-B-type natriuretic peptide (NT-proBNP; 1530 ± 1228 vs 1428 ± 1844 ng/mL; P = .006) and 120-minute glucose tolerance test (11.2 ± 5.1 vs 9.9 ± 3.6; P = .026) were seen at 12 months, but there was no significant change in LVEF (28 ± 9% vs 29 ± 11%; P= .536), 6-minute walk test (384 ± 96 vs 391 ± 97 m; P= .584), or eGFR (52.6 ± 15.3 vs 52.3 ± 18.5 mL • min -1  • 1.73 m -2 ; P= .700). RDN was associated with reductions in NT-proBNP and 120-minute glucose tolerance test in HF patients 12 months after RDN treatment. There was no deterioration in other indices of cardiac and renal function in this small feasibility study. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A case of Vogt-Koyanagi-Harada disease mimicking sympathetic ophthalmia

    Directory of Open Access Journals (Sweden)

    Syed Shoeb Ahmad

    2015-07-01

    Full Text Available A 34 years old male patient presented to us on 15th February 2015, with complaints of mild pain in right eye and a foreign body sensation to the left eye, associated with redness, discomfort and blurring of vision with 4 days duration. There was history of a penetrating eye injury to his right eye 20 years ago. Examination showed bilaterally inflamed eyes. The right eye was going into phthisis bulbi. Fundus examination of the left eye showed blurred optic disc with hemorrhagic areas, macular edema and exudative retinal detachments. Systemic review did not show any gross skin changes, neurological signs or dysmorphism. He was initially treated as sympathetic ophthalmitis, but the history and examination noted that he had bilateral sensory neural hearing loss. Fundus fluorescein angiography showed that he had hyperfluorescent spots in the fundus. Thus, the diagnosis was changed to Vogt-Koyanagi- Harada disease. The patient was treated with oral steroids (1 mg/kg per day and subsequent follow up showed a marked improvement in the ocular findings.

  5. Transmission eigenvalues

    Science.gov (United States)

    Cakoni, Fioralba; Haddar, Houssem

    2013-10-01

    In inverse scattering theory, transmission eigenvalues can be seen as the extension of the notion of resonant frequencies for impenetrable objects to the case of penetrable dielectrics. The transmission eigenvalue problem is a relatively late arrival to the spectral theory of partial differential equations. Its first appearance was in 1986 in a paper by Kirsch who was investigating the denseness of far-field patterns for scattering solutions of the Helmholtz equation or, in more modern terminology, the injectivity of the far-field operator [1]. The paper of Kirsch was soon followed by a more systematic study by Colton and Monk in the context of developing the dual space method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium [2]. In this paper they showed that for a spherically stratified media transmission eigenvalues existed and formed a discrete set. Numerical examples were also given showing that in principle transmission eigenvalues could be determined from the far-field data. This first period of interest in transmission eigenvalues was concluded with papers by Colton et al in 1989 [3] and Rynne and Sleeman in 1991 [4] showing that for an inhomogeneous medium (not necessarily spherically stratified) transmission eigenvalues, if they existed, formed a discrete set. For the next seventeen years transmission eigenvalues were ignored. This was mainly due to the fact that, with the introduction of various sampling methods to determine the shape of an inhomogeneous medium from far-field data, transmission eigenvalues were something to be avoided and hence the fact that transmission eigenvalues formed at most a discrete set was deemed to be sufficient. In addition, questions related to the existence of transmission eigenvalues or the structure of associated eigenvectors were recognized as being particularly difficult due to the nonlinearity of the eigenvalue problem and the special structure of the associated transmission

  6. REFRACTORY HYPERTENSION: EVIDENCE OF HEIGHTENED SYMPATHETIC ACTIVITY AS A CAUSE OF ANTIHYPERTENSIVE TREATMENT FAILURE

    Science.gov (United States)

    Dudenbostel, Tanja; Acelajado, Maria C.; Pisoni, Roberto; Li, Peng; Oparil, Suzanne; Calhoun, David A.

    2015-01-01

    Refractory hypertension is an extreme phenotype of treatment failure defined as uncontrolled blood pressure (BP) in spite of ≥5 classes of antihypertensive agents, including chlorthalidone and a mineralocorticoid receptor antagonist. A prospective evaluation of possible mechanisms of refractory hypertension has not been done. The goal of this study was to test for evidence of heightened sympathetic tone as indicated by 24-hr urinary (U-) normetanephrine levels, clinic and ambulatory heart rate (HR), HR variability (HRV), arterial stiffness as indexed by pulse wave velocity (PWV), and systemic vascular resistance (SVR) compared to patients with controlled resistant hypertension. Forty-four consecutive patients, 15 with refractory and 29 with controlled resistant hypertension, were evaluated prospectively. Refractory hypertensive patients were younger (48±13.3 vs. 56.5±14.1 years, p=0.038) and more likely female (80.0 vs 51.9 %, p=0.047) compared to patients with controlled resistant hypertension. They also had higher U-normetanephrine levels (464.4±250.2 vs. 309.8±147.6 μg/24h, p=0.03), higher clinic HR (77.8±7.7 vs. 68.8±7.6 bpm, p=0.001) and 24-hr ambulatory HR (77.8±7.7 vs 68.8±7.6, p=0.0018), higher PWV (11.8±2.2 vs. 9.4±1.5 m/s, p=0.009), reduced HRV (4.48 vs. 6.11, p=0.03), and higher SVR (3795±1753 vs. 2382±349 dyne·sec·cm5·m2, p=0.008). These findings are consistent with heightened sympathetic tone being a major contributor to antihypertensive treatment failure and highlight the need for effective sympatholytic therapies in patients with refractory hypertension. PMID:25987662

  7. Small passenger car transmission test; Chevrolet LUV transmission

    Science.gov (United States)

    Bujold, M. P.

    1980-01-01

    A 1978 Chevrolet LUV manual transmission tested per the applicable portions of a passenger car automatic transmission test code (SAE J65lb) which required drive performance, coast performance, and no load test conditions. Under these test conditions, the transmission attained maximum efficiencies in the upper ninety percent range for both drive performance tests and coast performance tests. The major results of this test (torque, speed, and efficiency curves) are presented. Graphs map the complete performance characteristics for the Chevrolet LUV transmission.

  8. Role of renal sympathetic nerve activity in prenatal programming of hypertension.

    Science.gov (United States)

    Baum, Michel

    2018-03-01

    Prenatal insults, such as maternal dietary protein deprivation and uteroplacental insufficiency, lead to small for gestational age (SGA) neonates. Epidemiological studies from many different parts of the world have shown that SGA neonates are at increased risk for hypertension and early death from cardiovascular disease as adults. Animal models, including prenatal administration of dexamethasone, uterine artery ligation and maternal dietary protein restriction, result in SGA neonates with fewer nephrons than controls. These models are discussed in this educational review, which provides evidence that prenatal insults lead to altered sodium transport in multiple nephron segments. The factors that could result in increased sodium transport are discussed, focusing on new information that there is increased renal sympathetic nerve activity that may be responsible for augmented renal tubular sodium transport. Renal denervation abrogates the hypertension in programmed rats but has no effect on control rats. Other potential factors that could cause hypertension in programmed rats, such as the renin-angiotensin system, are also discussed.

  9. Transmission issues

    International Nuclear Information System (INIS)

    Bradford, J.; Wilson, L.; Thon, S.; Millar, N.

    2005-01-01

    This session on transmission issues focused on the role that transmission plays in electricity markets and the importance of getting the market structure right in terms of generation divestiture with buy back contracts, demand side responsive programs, transmission upgrades and long term contracts. The difficulties of distinguishing between market power and scarcity were examined along with some of the complications that ensue if transmission experiences congestion, as exemplified by the August 2003 blackout in eastern North America. The presentations described the best ways to handle transmission issues, and debated whether transmission should be deregulated or follow market forces. Issues of interconnections and reliability of connections were also debated along with the attempt to integrate renewables into the grid. Some presentations identified what new transmission must be built and what must be done to ensure that transmission gets built. The challenges and business opportunities for transmission in Alberta were discussed with reference to plans to invest in new infrastructure, where it is going outside of the province and how it works with other jurisdictions. Manitoba's Conawapa Hydro Project and its 2000 MW tie line to Ontario was also discussed. Some examples of non-optimal use of interconnections in Europe were also discussed in an effort to learn from these mistakes and avoid them in Canada. tabs., figs

  10. [Magnetotherapy designed to affect cervical sympathetic ganglia for the treatment of patients with primary open-angle glaucoma].

    Science.gov (United States)

    Veselova, E V; Kamenskikh, T G; Raĭgorodkiĭ, Iu M; Kolbenev, I O; Myshkina, E S

    2010-01-01

    The traveling magnetic field was used to treat primary open-angle glaucoma. The field was applied to the projection of cervical sympathetic ganglia of the patients. Hemodynamic parameters of posterior short ciliary arteries and central retinal artery were analysed along with visual evoked potentials, visual field limits, and visual acuity. It was shown that magnetotherapy with the use of an AMO-ATOS apparatus produces better clinical results in patients with stage I and II primary open-angle glaucoma compared with medicamentous therapy (intake of trental tablets).

  11. Role of the rostral ventrolateral medulla (RVLM) in the patterning of vestibular system influences on sympathetic nervous system outflow to the upper and lower body.

    Science.gov (United States)

    Sugiyama, Yoichiro; Suzuki, Takeshi; Yates, Bill J

    2011-05-01

    Research on animal models as well as human subjects has demonstrated that the vestibular system contributes to regulating the distribution of blood in the body through effects on the sympathetic nervous system. Elimination of vestibular inputs results in increased blood flow to the hindlimbs during vestibular stimulation, because it attenuates the increase in vascular resistance that ordinarily occurs in the lower body during head-up tilts. Additionally, the changes in vascular resistance produced by vestibular stimulation differ between body regions. Electrical stimulation of vestibular afferents produces an inhibition of most hindlimb vasoconstrictor fibers and a decrease in hindlimb vascular resistance, but an initial excitation of most upper body vasoconstrictor fibers accompanied by an increase in upper body vascular resistance. The present study tested the hypothesis that neurons in the principal vasomotor region of the brainstem, the rostral ventrolateral medulla (RVLM), whose projections extended past the T10 segment, to spinal levels containing sympathetic preganglionic neurons regulating lower body blood flow, respond differently to electrical stimulation of the vestibular nerve than RVLM neurons whose axons terminate rostral to T10. Contrary to our hypothesis, the majority of RVLM neurons were excited by vestibular stimulation, despite their level of projection in the spinal cord. These findings indicate that the RVLM is not solely responsible for establishing the patterning of vestibular-sympathetic responses. This patterning apparently requires the integration by spinal circuitry of labyrinthine signals transmitted from the brainstem, likely from regions in addition to the RVLM.

  12. Strength training reduces arterial blood pressure but not sympathetic neural activity in young normotensive subjects

    Science.gov (United States)

    Carter, Jason R.; Ray, Chester A.; Downs, Emily M.; Cooke, William H.

    2003-01-01

    The effects of resistance training on arterial blood pressure and muscle sympathetic nerve activity (MSNA) at rest have not been established. Although endurance training is commonly recommended to lower arterial blood pressure, it is not known whether similar adaptations occur with resistance training. Therefore, we tested the hypothesis that whole body resistance training reduces arterial blood pressure at rest, with concomitant reductions in MSNA. Twelve young [21 +/- 0.3 (SE) yr] subjects underwent a program of whole body resistance training 3 days/wk for 8 wk. Resting arterial blood pressure (n = 12; automated sphygmomanometer) and MSNA (n = 8; peroneal nerve microneurography) were measured during a 5-min period of supine rest before and after exercise training. Thirteen additional young (21 +/- 0.8 yr) subjects served as controls. Resistance training significantly increased one-repetition maximum values in all trained muscle groups (P < 0.001), and it significantly decreased systolic (130 +/- 3 to 121 +/- 2 mmHg; P = 0.01), diastolic (69 +/- 3 to 61 +/- 2 mmHg; P = 0.04), and mean (89 +/- 2 to 81 +/- 2 mmHg; P = 0.01) arterial blood pressures at rest. Resistance training did not affect MSNA or heart rate. Arterial blood pressures and MSNA were unchanged, but heart rate increased after 8 wk of relative inactivity for subjects in the control group (61 +/- 2 to 67 +/- 3 beats/min; P = 0.01). These results indicate that whole body resistance exercise training might decrease the risk for development of cardiovascular disease by lowering arterial blood pressure but that reductions of pressure are not coupled to resistance exercise-induced decreases of sympathetic tone.

  13. Potential lifetime cost-effectiveness of catheter-based renal sympathetic denervation in patients with resistant hypertension.

    Science.gov (United States)

    Dorenkamp, Marc; Bonaventura, Klaus; Leber, Alexander W; Boldt, Julia; Sohns, Christian; Boldt, Leif-Hendrik; Haverkamp, Wilhelm; Frei, Ulrich; Roser, Mattias

    2013-02-01

    Recent studies have demonstrated the safety and efficacy of catheter-based renal sympathetic denervation (RDN) for the treatment of resistant hypertension. We aimed to determine the cost-effectiveness of this approach separately for men and women of different ages. A Markov state-transition model accounting for costs, life-years, quality-adjusted life-years (QALYs), and incremental cost-effectiveness was developed to compare RDN with best medical therapy (BMT) in patients with resistant hypertension. The model ran from age 30 to 100 years or death, with a cycle length of 1 year. The efficacy of RDN was modelled as a reduction in the risk of hypertension-related disease events and death. Analyses were conducted from a payer's perspective. Costs and QALYs were discounted at 3% annually. Both deterministic and probabilistic sensitivity analyses were performed. When compared with BMT, RDN gained 0.98 QALYs in men and 0.88 QALYs in women 60 years of age at an additional cost of €2589 and €2044, respectively. As the incremental cost-effectiveness ratios increased with patient age, RDN consistently yielded more QALYs at lower costs in lower age groups. Considering a willingness-to-pay threshold of €35 000/QALY, there was a 95% probability that RDN would remain cost-effective up to an age of 78 and 76 years in men and women, respectively. Cost-effectiveness was influenced mostly by the magnitude of effect of RDN on systolic blood pressure, the rate of RDN non-responders, and the procedure costs of RDN. Renal sympathetic denervation is a cost-effective intervention for patients with resistant hypertension. Earlier treatment produces better cost-effectiveness ratios.

  14. Alternating myocardial sympathetic neural function of athlete's heart in professional cycle racers examined with iodine-123-MIBG myocardial scintigraphy

    International Nuclear Information System (INIS)

    Koyama, Keiko; Inoue, Tomio; Hasegawa, Akira; Oriuchi, Noboru; Okamoto, Eiichi; Tomaru, Yumi; Endo, Keigo

    2001-01-01

    Myocardial sympathetic neural function in professional athletes who had the long-term tremendous cardiac load has not been fully investigated by myocardial iodine-123-metaiodobenzylguanidine (MIBG) uptake in comparison with power spectral analysis (PSA) in electrocardiography. Eleven male professional cycle racers and age-matched 11 male healthy volunteers were enrolled in this study. The low frequency components in the power spectral density (LF), the high frequency components in the power spectral density (HF), the LF/HF ratio and mean R-R interval were derived from PSA and time-domain analysis of heart rate variability in electrocardiography. The mean heart-to-mediastinum uptake ratio (H/M ratio) of the MIBG uptake, in professional cycle racers was significantly lower than that in healthy volunteers (p<0.01) and HF power in professional cycle racers was significantly higher than that in healthy volunteers (p<0.05). In the group of professional cycle racers, the H/M ratio showed a significant correlation with the R-R interval, as indices of parasympathetic nerve activity (r=0.80, p<0.01), but not with the LF/HF ratio as an index of sympathetic nerve activity. These results may indicate that parasympathetic nerve activity has an effect on MIBG uptake in a cyclist's heart. (author)

  15. Diagnosis and Management of Patients with Paroxysmal Sympathetic Hyperactivity following Acute Brain Injuries Using a Consensus-Based Diagnostic Tool: A Single Institutional Case Series.

    Science.gov (United States)

    Godo, Shigeo; Irino, Shigemi; Nakagawa, Atsuhiro; Kawazoe, Yu; Fujita, Motoo; Kudo, Daisuke; Nomura, Ryosuke; Shimokawa, Hiroaki; Kushimoto, Shigeki

    2017-09-01

    Paroxysmal sympathetic hyperactivity (PSH) is a distinct syndrome of episodic sympathetic hyperactivities following severe acquired brain injury, characterized by paroxysmal transient fever, tachycardia, hypertension, tachypnea, excessive diaphoresis and specific posturing. PSH remains to be an under-recognized condition with a diagnostic pitfall especially in the intensive care unit (ICU) settings due to the high prevalence of concomitant diseases that mimic PSH. A consensus set of diagnostic criteria named PSH-Assessment Measure (PSH-AM) has been developed recently, which is consisted of two components: a diagnosis likelihood tool derived from clinical characteristics of PSH, and a clinical feature scale assigned to the severity of each sympathetic hyperactivity. We herein present a case series of patients with PSH who were diagnosed and followed by using PSH-AM in our tertiary institutional medical and surgical ICU between April 2015 and March 2017 in order to evaluate the clinical efficacy of PSH-AM. Among 394 survivors of 521 patients admitted with acquired brain injury defined as acute brain injury at all levels of severity regardless of the presence of altered consciousness, including traumatic brain injury, stroke, infectious disease, and encephalopathy, 6 patients (1.5%) were diagnosed as PSH by using PSH-AM. PSH-AM served as a useful scoring system for early objective diagnosis, assessment of severity, and serial evaluation of treatment efficacy in the management of PSH in the ICU settings. In conclusion, critical care clinicians should consider the possibility of PSH and can use PSH-AM as a useful diagnostic and guiding tool in the management of PSH.

  16. [Increased sympathetic activity assessed by spectral analysis of heart rate variability in patients with CRPS I].

    Science.gov (United States)

    Schulze, J; Troeger, C

    2010-02-01

    The complex regional pain syndrome type I (CRPS I) is a painful neuropathic disorder with an antecedent disproportionate trauma leading to spontaneous pain, hyperalgesia, impaired motor function, swelling, changes in sweating and vascular abnormalities without nerve injury. Whether this syndrome is the result of central or peripheral autonomic dysfunction is still a matter of debate. The purpose of this study was to determine the activity of the sympathetic nervous system in patients with CRPS I by power spectral analysis of heart rate variability. This is a pilot study on 6 patients (mean age 50 years; 4 female, 2 male) diagnosed as suffering from CRPS I and 6 age-matched healthy controls. In the pain-free interval and after taking rest for 5 min, 512 subsequent heart beats were obtained with an ECG standard lead II in the supine and then sitting position. Using an autoregressive model, power spectral densities were calculated for the following frequency bands: CRPS I compared to the healthy controls in the supine position (LF/HF=4.01 vs. LF/HF=1.27; p=0.041). The application of stress by changing to the sitting position even increased that difference (6.72 vs. 1.93). Our results support the hypothesis that the pathogenesis of the early stage CRPS I might be related to an increased sympathetic activity. By assessing the autonomic influence on the heart rate variability in CRPS I patients we could also conclude that this disturbance occurs rather at a central level. Georg Thieme Verlag KG Stuttgart, New York.

  17. Losartan reduces the immediate and sustained increases in muscle sympathetic nerve activity after hyperacute intermittent hypoxia.

    Science.gov (United States)

    Jouett, Noah P; Moralez, Gilbert; Raven, Peter B; Smith, Michael L

    2017-04-01

    Obstructive sleep apnea (OSA) is characterized by intermittent hypoxemia, which produces elevations in sympathetic nerve activity (SNA) and associated hypertension in experimental models that persist beyond the initial exposure. We tested the hypotheses that angiotensin receptor blockade in humans using losartan attenuates the immediate and immediately persistent increases in 1 ) SNA discharge and 2 ) mean arterial pressure (MAP) after hyperacute intermittent hypoxia training (IHT) using a randomized, placebo-controlled, repeated-measures experimental design. We measured ECG and photoplethysmographic arterial pressure in nine healthy human subjects, while muscle SNA (MSNA) was recorded in seven subjects using microneurography. Subjects were exposed to a series of hypoxic apneas in which they inhaled two to three breaths of nitrogen, followed by a 20-s apnea and 40 s of room air breathing every minute for 20 min. Hyperacute IHT produced substantial and persistent elevations in MSNA burst frequency (baseline: 15.3 ± 1.8, IHT: 24 ± 1.5, post-IHT 20.0 ± 1.3 bursts/min, all P 0.70). This investigation confirms the role of angiotensin II type 1a receptors in the immediate and persistent sympathoexcitatory and pressor responses to IHT. NEW & NOTEWORTHY This study demonstrates for the first time in humans that losartan, an angiotensin receptor blocker (ARB), abrogates the acute and immediately persistent increases in muscle sympathetic nerve activity and arterial pressure in response to acute intermittent hypoxia. This investigation, along with others, provides important beginning translational evidence for using ARBs in treatment of the intermittent hypoxia observed in obstructive sleep apnea patients. Copyright © 2017 the American Physiological Society.

  18. Influence of acute treatment with sibutramine on the sympathetic neurotransmission of the young rat vas deferens.

    Science.gov (United States)

    de Souza, Bruno Palmieri; da Silva, Edilson Dantas; Jurkiewicz, Aron; Jurkiewicz, Neide Hyppolito

    2014-09-05

    The effects of acute treatment with sibutramine on the peripheral sympathetic neurotransmission in vas deferens of young rats were still not evaluated. Therefore, we carried out this study in order to verify the effects of acute sibutramine treatment on the neuronal- and exogenous agonist-induced contractions of the young rat vas deferens. Young 45-day-old male Wistar rats were pretreated with sibutramine 6 mg/kg and after 4h the vas deferens was used for experiment. The acute treatment with sibutramine was able to increase the potency (pD2) of noradrenaline and phenylephrine. Moreover, the efficacy (Emax) of noradrenaline was increased while the efficacy of serotonin and nicotine were decreased. The maximum effect induced by a single concentration of tyramine was diminished in the vas deferens from treated group. Moreover, the leftward shift of the noradrenaline curves promoted by uptake blockers (cocaine and corticosterone) and β-adrenoceptor antagonist (propranolol) was reduced in the vas deferens of treated group. The initial phasic and secondary tonic components of the neuronal-evoked contractions of vas deferens from treated group at the frequencies of 2 Hz were decreased. Moreover, only the initial phasic component at 5 Hz was diminished by the acute treatment with sibutramine. In conclusion, we showed that the acute treatment with sibutramine in young rats was able to affect the peripheral sympathetic nervous system by inhibition of noradrenaline uptake and reduction of the neuronal content of this neurotransmitter, leading to an enhancement of vas deferens sensitivity to noradrenaline. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Endovascular ultrasound for renal sympathetic denervation in patients with therapy-resistant hypertension not responding to radiofrequency renal sympathetic denervation.

    Science.gov (United States)

    Stiermaier, Thomas; Okon, Thomas; Fengler, Karl; Mueller, Ulrike; Hoellriegel, Robert; Schuler, Gerhard; Desch, Steffen; Lurz, Philipp

    2016-06-12

    Recent studies have reported a considerable number of non-responders after renal sympathetic de-nervation (RSD) with radiofrequency technology. Here we report our results of repeat RSD using ultrasound in these patients. A cohort study was performed in patients who underwent ultrasound RSD after non-response to RSD with radiofrequency. Non-response was defined as mean daytime systolic blood pressure ≥140 mmHg and/or a reduction of ≤10 mmHg in ambulatory blood pressure measurement (ABPM) ≥6 months after radiofrequency denervation. ABPM was recorded at baseline, post radiofrequency RSD as well as at three and six months post ultrasound RSD. A total of 24 non-responders underwent retreatment with the ultrasound device at a mean 15.3±8.2 months after radiofrequency RSD. Ultrasound RSD was performed successfully in all patients without severe adverse events. Mean daytime systolic blood pressure changed from 161.7±14.6 mmHg at baseline to 158.5±9.5 mmHg post radiofrequency RSD and to 150.5±10.4 mmHg and 151.6±11.0 mmHg at three and six months, respectively, post ultrasound RSD (pmeasures analysis of variance). The main results of post hoc testing were as follows: baseline versus post radiofrequency RSD, p=0.83; baseline versus three months post ultrasound RSD, p=0.01; and baseline versus six months post ultrasound RSD, p=0.04. Ultrasound RSD appears to be safe and an effective therapeutic approach in patients not responding to previous RSD with radiofrequency technology.

  20. Simultaneous storage of lithium and cesium in a quasi-electrostatic dipole trap. Spinchanging collisions and sympathetic evaporation

    International Nuclear Information System (INIS)

    Wohlleben, W.

    2000-01-01

    This work reports on both inelastic and elastic cold ground state collisions of cesium (Cs) and lithium (Li) in the conservative potential of a quasi-electrostatic optical dipole trap. We make for the first time dedicated measurements of the ground state interaction between atoms of different elements. We study the process of thermalisation by sympathetic cooling in a finite potential. We determine the rate coefficients of hyperfine-changing collisions with regard to three different processes: homonuclear collisions of Cs with Cs, with both of them being in the upper hyperfine ground state; equally for collisions of Li with Li, with both of them being in the upper hyperfine state. For the first time an estimate of the heteronuclear rate coefficient could be given for the collision of Cs in the (F = 4) state with Li in the (F = 1) ground state. We find that elastic interaction in the atomic ground state leads to fast particle losses of Li, which is initially the less abundant in the trap. After transfer into the trap, the Li athermically occupies high energy states just beneath the trap edge. With the well known small LiLi scattering rate alone the distribution cannot thermalize. We believe that LiCs collisions mediate Li thermalisation and subsequent evaporation. The sympathetic evaporation of Li carries away part of the energy of the combined ensemble. We have first experimental indication that this process can cool further down the initially colder of the two gases. (orig.)

  1. Concurrent sympathetic activation and vagal withdrawal in hyperthyroidism: Evidence from detrended fluctuation analysis of heart rate variability

    Science.gov (United States)

    Chen, Jin-Long; Shiau, Yuo-Hsien; Tseng, Yin-Jiun; Chiu, Hung-Wen; Hsiao, Tzu-Chien; Wessel, Niels; Kurths, Jürgen; Chu, Woei-Chyn

    2010-05-01

    Despite many previous studies on the association between hyperthyroidism and the hyperadrenergic state, controversies still exist. Detrended fluctuation analysis (DFA) is a well recognized method in the nonlinear analysis of heart rate variability (HRV), and it has physiological significance related to the autonomic nervous system. In particular, an increased short-term scaling exponent α1 calculated from DFA is associated with both increased sympathetic activity and decreased vagal activity. No study has investigated the DFA of HRV in hyperthyroidism. This study was designed to assess the sympathovagal balance in hyperthyroidism. We performed the DFA along with the linear analysis of HRV in 36 hyperthyroid Graves’ disease patients (32 females and 4 males; age 30 ± 1 years, means ± SE) and 36 normal controls matched by sex, age and body mass index. Compared with the normal controls, the hyperthyroid patients revealed a significant increase ( Phyperthyroid 1.28±0.04 versus control 0.91±0.02), long-term scaling exponent α2 (1.05±0.02 versus 0.90±0.01), overall scaling exponent α (1.11±0.02 versus 0.89±0.01), low frequency power in normalized units (LF%) and the ratio of low frequency power to high frequency power (LF/HF); and a significant decrease ( Phyperthyroidism is characterized by concurrent sympathetic activation and vagal withdrawal. This sympathovagal imbalance state in hyperthyroidism helps to explain the higher prevalence of atrial fibrillation and exercise intolerance among hyperthyroid patients.

  2. Reflex sympathetic dystrophy/complex regional pain syndrome, type 1

    Directory of Open Access Journals (Sweden)

    S.H. Botha

    2004-06-01

    Full Text Available Complex regional pain syndrome (CPRS, type 1 is a pain disorder that develops unpredictably and can follow a minor injury. A 12-year-old boy presented with severe pain in the feet and could not walk or stand weight bearing. Normal X-rays showed osteopenic changes and radiolucent lines, which appeared to be stress fractures. Three-phase bone scintigraphy showed no uptake in the left lower leg on the blood pool phase or on the immediate or delayed images. This indicated typical CPRS type 1 in children. The uptake in the right foot was increased and the stress fracture and other illness could not be differentiated. Computed tomography was done to exclude stress fractures. Only osteopenic changes in both calcaneus bones were found and there was no evidence of cortical stress fractures. Magnetic resonance images revealed oedema in the calcaneus and talus bones of both feet. The patient received epidural narcotic infusion with sympathetic blockage for 1 week combined with extensive physiotherapy. The blood pool phase of the bone scan became normal within 2 weeks, and increased uptake in both feet was noticed. The patient was followed up with MRI every 3 months and the bone marrow oedema disappeared after 6 months.

  3. Sympathetic and Catecholaminergic Alterations in Sleep Apnea with Particular Emphasis on Children.

    Directory of Open Access Journals (Sweden)

    Fahed eHakim

    2012-01-01

    Full Text Available Sleep is involved in the regulation of major organ functions in the human body, and disruption of sleep potentially can elicit organ dysfunction. Obstructive sleep apnea (OSA is the most prevalent sleep disorder of breathing in adults and children, and its manifestations reflect the interactions between intermittent hypoxia (IH, intermittent hypercapnia, increased intra-thoracic pressure swings, and sleep fragmentation, as elicited by the episodic changes in upper airway resistance during sleep. The sympathetic nervous system is an important modulator of the cardiovascular, immune, endocrine and metabolic systems, and alterations in autonomic activity may lead to metabolic imbalance and organ dysfunction. Here we review how OSA and its constitutive components can lead to perturbation of the autonomic nervous system in general, and to altered regulation of catecholamines, both of which then playing an important role in some of the mechanisms underlying OSA-induced morbidities.

  4. Neuroglial Transmission

    DEFF Research Database (Denmark)

    Gundersen, Vidar; Storm-Mathisen, Jon; Bergersen, Linda Hildegard

    2015-01-01

    as a signaling substance recently shown to act on specific lactate receptors in the brain. Complementing neurotransmission at a synapse, neuroglial transmission often implies diffusion of the transmitter over a longer distance and concurs with the concept of volume transmission. Transmission from glia modulates...... synaptic neurotransmission based on energetic and other local conditions in a volume of tissue surrounding the individual synapse. Neuroglial transmission appears to contribute significantly to brain functions such as memory, as well as to prevalent neuropathologies....

  5. 47 CFR 25.212 - Narrowband analog transmissions, digital transmissions, and video transmissions in the GSO Fixed...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Narrowband analog transmissions, digital transmissions, and video transmissions in the GSO Fixed-Satellite Service. 25.212 Section 25.212 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS...

  6. Sympathetic overactivity and arrhythmias in tetanus: electrocardiographic analysis Hiperatividade simpática e arritmias no tétano: análise eletrocardiográfica

    Directory of Open Access Journals (Sweden)

    Gustavo Trindade Henriques Filho

    2007-02-01

    Full Text Available As a result of the advances in the control of pulmonary insufficiency in tetanus, the cardiovascular system has increasingly been shown to be a determining factor in morbidity and mortality but detailed knowledge of the cardiovascular complications in tetanus is scanty. The 24h-Holter was carried out in order to detect arrhythmias and sympathetic overactivity in 38 tetanus patients admitted to an ICU. The SDNN Index (standard deviation from the normal R-to-R intervals, was useful in detecting adrenergic tonus, and ranged from 64.1 ± 27 in the more severe forms of tetanus to 125 ± 69 in the milder ones. Sympathetic overactivity occurred in 86.2% of the more severe forms of the disease, but was also detected in 33% of the milder forms. Half the patients had their sympathetic overactivity detected only by the Holter. The most frequent arrhythmias were isolated supraventricular (55.2% and ventricular (39.4% extrasystoles. There was no association of the arrhythmias with the clinical form of tetanus or with the presence of sympathetic overactivity. The present study demonstrated that major cardiovascular dysfunction, particularly sympathetic overactivity, occurs in all forms of tetanus, even in the milder ones. This has not been effectively detected with traditional monitoring in ICU and may not be properly treated.Com os avanços no controle da insuficiência respiratória no tétano, o sistema cardiovascular tem participado de forma crescente na morbidade e mortalidade da doença, mas o conhecimento dessas complicações é escasso. No intuito de detectar arritmias e hiperatividade simpática, o holter de 24 h foi utilizado em 38 pacientes com tétano admitidos numa UTI de doenças infecciosas. O índice SDNN (desvio standard dos intervalos normais R-a-R, foi útil na detecção do tônus adrenérgico, e variou de 64,1 ± 27 nas formas mais severas de tétano a 125 ± 69 nas formas mais leves. Hiperatividade simpática ocorreu em 86,2% das formas

  7. The importance of the selection of appropriate reference genes for gene expression profiling in adrenal medulla or sympathetic ganglia of spontaneously hypertensive rat

    Czech Academy of Sciences Publication Activity Database

    Vavřínová, Anna; Behuliak, Michal; Zicha, Josef

    2016-01-01

    Roč. 65, č. 3 (2016), s. 401-411 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GP14-16225P Institutional support: RVO:67985823 Keywords : adrenal medulla * gene expression profiling * reference gene selection * sympathetic nervous system Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.461, year: 2016

  8. Quantifying Transmission.

    Science.gov (United States)

    Woolhouse, Mark

    2017-07-01

    Transmissibility is the defining characteristic of infectious diseases. Quantifying transmission matters for understanding infectious disease epidemiology and designing evidence-based disease control programs. Tracing individual transmission events can be achieved by epidemiological investigation coupled with pathogen typing or genome sequencing. Individual infectiousness can be estimated by measuring pathogen loads, but few studies have directly estimated the ability of infected hosts to transmit to uninfected hosts. Individuals' opportunities to transmit infection are dependent on behavioral and other risk factors relevant given the transmission route of the pathogen concerned. Transmission at the population level can be quantified through knowledge of risk factors in the population or phylogeographic analysis of pathogen sequence data. Mathematical model-based approaches require estimation of the per capita transmission rate and basic reproduction number, obtained by fitting models to case data and/or analysis of pathogen sequence data. Heterogeneities in infectiousness, contact behavior, and susceptibility can have substantial effects on the epidemiology of an infectious disease, so estimates of only mean values may be insufficient. For some pathogens, super-shedders (infected individuals who are highly infectious) and super-spreaders (individuals with more opportunities to transmit infection) may be important. Future work on quantifying transmission should involve integrated analyses of multiple data sources.

  9. The altered balance between sympathetic nervous system and nitric oxide in salt hypertensive Dahl rats: ontogenetic and F2 hybrid studies

    Czech Academy of Sciences Publication Activity Database

    Dobešová, Zdenka; Kuneš, Jaroslav; Zicha, Josef

    2002-01-01

    Roč. 20, č. 5 (2002), s. 945-955 ISSN 0263-6352 R&D Projects: GA AV ČR IAA7011805; GA AV ČR IAA7011711; GA MŠk LN00A069 Institutional research plan: CEZ:AV0Z5011922 Keywords : salt hypertension * sympathetic nervous system * Dahl rats Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 3.534, year: 2002

  10. Transmission Line Series Compensation for Wind Energy Transmission

    International Nuclear Information System (INIS)

    Palanichamy, C; Wong, Y C

    2015-01-01

    Wind energy has demonstrated to be a clean, copious and absolutely renewable source of energy, and the large penetration of it into the power grid indicates that wind energy is considered an effective means of power generation, Transmission of wind energy from remote locations to load centers necessitates long transmission lines. Series compensation is a proven and economical transmission solution to address system power transfer strength, grid stability, and voltage profile issues of long transmission lines. In this paper, a programmable approach to determine the capacitive reactance of series capacitor and optimum location for its placement to achieve maximum power transfer gas been presented. The respective program with sample solutions has been provided for real-time applications. (paper)

  11. Space power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Kuribayashi, Shizuma [Mitsubishi Heavy Industries, Ltd., Tokyo, (Japan)

    1989-10-05

    There being a conception to utilize solar energy by use of a space power station (SPS), a method to bring that universal grace to mankind is wireless energy transmission. The wireless energy transmission is regarded to be microwave transmission or laser beam transmission. The microwave transmission is to transmit 2.45GHz band microwave from the SPS to a receiving station on the ground to meet power demand on earth. The microwave, as small in attenuation in atmosphere and resistant against rain and cloud, is made candidate and, however, problematic in influence on organism, necessary large area of receiving antenna and many other points to be studied. While the laser transmission, as more convergent of beam than the microwave transmission, is advantageous with enabling the receiving area to be small and, however, disadvantageous with being not resistant against dust, rain and cloud, if used for the energy transmission between the space and earth. 2 refs., 2 figs.

  12. Central nervous system neuropeptide Y regulates mediators of hepatic phospholipid remodeling and very low-density lipoprotein triglyceride secretion via sympathetic innervation

    Science.gov (United States)

    Rojas, Jennifer M.; Bruinstroop, Eveline; Printz, Richard L.; Alijagic-Boers, Aldijana; Foppen, Ewout; Turney, Maxine K.; George, Leena; Beck-Sickinger, Annette G.; Kalsbeek, Andries; Niswender, Kevin D.

    2015-01-01

    Objective Elevated very low-density lipoprotein (VLDL)-triglyceride (TG) secretion from the liver contributes to an atherogenic dyslipidemia that is associated with obesity, diabetes and the metabolic syndrome. Numerous models of obesity and diabetes are characterized by increased central nervous system (CNS) neuropeptide Y (NPY); in fact, a single intracerebroventricular (icv) administration of NPY in lean fasted rats elevates hepatic VLDL-TG secretion and does so, in large part, via signaling through the CNS NPY Y1 receptor. Thus, our overarching hypothesis is that elevated CNS NPY action contributes to dyslipidemia by activating central circuits that modulate liver lipid metabolism. Methods Chow-fed Zucker fatty (ZF) rats were pair-fed by matching their caloric intake to that of lean controls and effects on body weight, plasma TG, and liver content of TG and phospholipid (PL) were compared to ad-libitum (ad-lib) fed ZF rats. Additionally, lean 4-h fasted rats with intact or disrupted hepatic sympathetic innervation were treated with icv NPY or NPY Y1 receptor agonist to identify novel hepatic mechanisms by which NPY promotes VLDL particle maturation and secretion. Results Manipulation of plasma TG levels in obese ZF rats, through pair-feeding had no effect on liver TG content; however, hepatic PL content was substantially reduced and was tightly correlated with plasma TG levels. Treatment with icv NPY or a selective NPY Y1 receptor agonist in lean fasted rats robustly activated key hepatic regulatory proteins, stearoyl-CoA desaturase-1 (SCD-1), ADP-ribosylation factor-1 (ARF-1), and lipin-1, known to be involved in remodeling liver PL into TG for VLDL maturation and secretion. Lastly, we show that the effects of CNS NPY on key liporegulatory proteins are attenuated by hepatic sympathetic denervation. Conclusions These data support a model in which CNS NPY modulates mediators of hepatic PL remodeling and VLDL maturation to stimulate VLDL-TG secretion that is

  13. Wireless Transmission of Big Data: A Transmission Time Analysis over Fading Channel

    KAUST Repository

    Wang, Wen-Jing; Yang, Hong-Chuan; Alouini, Mohamed-Slim

    2018-01-01

    In this paper, we investigate the transmission time of a large amount of data over fading wireless channel with adaptive modulation and coding (AMC). Unlike traditional transmission systems, where the transmission time of a fixed amount of data is typically regarded as a constant, the transmission time with AMC becomes a random variable, as the transmission rate varies with the fading channel condition. To facilitate the design and optimization of wireless transmission schemes for big data applications, we present an analytical framework to determine statistical characterizations for the transmission time of big data with AMC. In particular, we derive the exact statistics of transmission time over block fading channels. The probability mass function (PMF) and cumulative distribution function (CDF) of transmission time are obtained for both slow and fast fading scenarios. We further extend our analysis to Markov channel, where transmission time becomes the sum of a sequence of exponentially distributed time slots. Analytical expression for the probability density function (PDF) of transmission time is derived for both fast fading and slow fading scenarios. These analytical results are essential to the optimal design and performance analysis of future wireless transmission systems for big data applications.

  14. Wireless Transmission of Big Data: A Transmission Time Analysis over Fading Channel

    KAUST Repository

    Wang, Wen-Jing

    2018-04-10

    In this paper, we investigate the transmission time of a large amount of data over fading wireless channel with adaptive modulation and coding (AMC). Unlike traditional transmission systems, where the transmission time of a fixed amount of data is typically regarded as a constant, the transmission time with AMC becomes a random variable, as the transmission rate varies with the fading channel condition. To facilitate the design and optimization of wireless transmission schemes for big data applications, we present an analytical framework to determine statistical characterizations for the transmission time of big data with AMC. In particular, we derive the exact statistics of transmission time over block fading channels. The probability mass function (PMF) and cumulative distribution function (CDF) of transmission time are obtained for both slow and fast fading scenarios. We further extend our analysis to Markov channel, where transmission time becomes the sum of a sequence of exponentially distributed time slots. Analytical expression for the probability density function (PDF) of transmission time is derived for both fast fading and slow fading scenarios. These analytical results are essential to the optimal design and performance analysis of future wireless transmission systems for big data applications.

  15. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans.

    Science.gov (United States)

    Kox, Matthijs; van Eijk, Lucas T; Zwaag, Jelle; van den Wildenberg, Joanne; Sweep, Fred C G J; van der Hoeven, Johannes G; Pickkers, Peter

    2014-05-20

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot be voluntarily influenced. Herein, we evaluated the effects of a training program on the autonomic nervous system and innate immune response. Healthy volunteers were randomized to either the intervention (n = 12) or control group (n = 12). Subjects in the intervention group were trained for 10 d in meditation (third eye meditation), breathing techniques (i.a., cyclic hyperventilation followed by breath retention), and exposure to cold (i.a., immersions in ice cold water). The control group was not trained. Subsequently, all subjects underwent experimental endotoxemia (i.v. administration of 2 ng/kg Escherichia coli endotoxin). In the intervention group, practicing the learned techniques resulted in intermittent respiratory alkalosis and hypoxia resulting in profoundly increased plasma epinephrine levels. In the intervention group, plasma levels of the anti-inflammatory cytokine IL-10 increased more rapidly after endotoxin administration, correlated strongly with preceding epinephrine levels, and were higher. Levels of proinflammatory mediators TNF-α, IL-6, and IL-8 were lower in the intervention group and correlated negatively with IL-10 levels. Finally, flu-like symptoms were lower in the intervention group. In conclusion, we demonstrate that voluntary activation of the sympathetic nervous system results in epinephrine release and subsequent suppression of the innate immune response in humans in vivo. These results could have important implications for the treatment of conditions associated with excessive or persistent inflammation, such as autoimmune diseases.

  16. Vascular origin of vildagliptin-induced skin effects in Cynomolgus monkeys: pathomechanistic role of peripheral sympathetic system and neuropeptide Y.

    Science.gov (United States)

    Hoffmann, Peter; Bentley, Phil; Sahota, Pritam; Schoenfeld, Heidi; Martin, Lori; Longo, Linda; Spaet, Robert; Moulin, Pierre; Pantano, Serafino; Dubost, Valerie; Lapadula, Dan; Burkey, Bryan; Kaushik, Virendar; Zhou, Wei; Hayes, Michael; Flavahan, Nick; Chibout, Salah-Dine; Busch, Steve

    2014-06-01

    The purpose of this article is to characterize skin lesions in cynomolgus monkeys following vildagliptin (dipeptidyl peptidase-4 inhibitor) treatment. Oral vildagliptin administration caused dose-dependent and reversible blister formation, peeling and flaking skin, erosions, ulcerations, scabs, and sores involving the extremities at ≥5 mg/kg/day and necrosis of the tail and the pinnae at ≥80 mg/kg/day after 3 weeks of treatment. At the affected sites, the media and the endothelium of dermal arterioles showed hypertrophy/hyperplasia. Skin lesion formation was prevented by elevating ambient temperature. Vildagliptin treatment also produced an increase in blood pressure and heart rate likely via increased sympathetic tone. Following treatment with vildagliptin at 80 mg/kg/day, the recovery time after lowering the temperature in the feet of monkeys and inducing cold stress was prolonged. Ex vivo investigations showed that small digital arteries from skin biopsies of vildagliptin-treated monkeys exhibited an increase in neuropeptide Y-induced vasoconstriction. This finding correlated with a specific increase in NPY and in NPY1 receptors observed in the skin of vildagliptin-treated monkeys. Present data provide evidence that skin effects in monkeys are of vascular origin and that the effects on the NPY system in combination with increased peripheral sympathetic tone play an important pathomechanistic role in the pathogenesis of cutaneous toxicity. © 2014 by The Author(s).

  17. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice.

    Directory of Open Access Journals (Sweden)

    J Preston Campbell

    2012-07-01

    Full Text Available Bone and lung metastases are responsible for the majority of deaths in patients with breast cancer. Following treatment of the primary cancer, emotional and psychosocial factors within this population precipitate time to recurrence and death, however the underlying mechanism(s remain unclear. Using a mouse model of bone metastasis, we provide experimental evidence that activation of the sympathetic nervous system, which is one of many pathophysiological consequences of severe stress and depression, promotes MDA-231 breast cancer cell colonization of bone via a neurohormonal effect on the host bone marrow stroma. We demonstrate that induction of RANKL expression in bone marrow osteoblasts, following β2AR stimulation, increases the migration of metastatic MDA-231 cells in vitro, independently of SDF1-CXCR4 signaling. We also show that the stimulatory effect of endogenous (chronic stress or pharmacologic sympathetic activation on breast cancer bone metastasis in vivo can be blocked with the β-blocker propranolol, and by knockdown of RANK expression in MDA-231 cells. These findings indicate that RANKL promotes breast cancer cell metastasis to bone via its pro-migratory effect on breast cancer cells, independently of its effect on bone turnover. The emerging clinical implication, supported by recent epidemiological studies, is that βAR-blockers and drugs interfering with RANKL signaling, such as Denosumab, could increase patient survival if used as adjuvant therapy to inhibit both the early colonization of bone by metastatic breast cancer cells and the initiation of the "vicious cycle" of bone destruction induced by these cells.

  18. Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice.

    Science.gov (United States)

    Campbell, J Preston; Karolak, Matthew R; Ma, Yun; Perrien, Daniel S; Masood-Campbell, S Kathryn; Penner, Niki L; Munoz, Steve A; Zijlstra, Andries; Yang, Xiangli; Sterling, Julie A; Elefteriou, Florent

    2012-07-01

    Bone and lung metastases are responsible for the majority of deaths in patients with breast cancer. Following treatment of the primary cancer, emotional and psychosocial factors within this population precipitate time to recurrence and death, however the underlying mechanism(s) remain unclear. Using a mouse model of bone metastasis, we provide experimental evidence that activation of the sympathetic nervous system, which is one of many pathophysiological consequences of severe stress and depression, promotes MDA-231 breast cancer cell colonization of bone via a neurohormonal effect on the host bone marrow stroma. We demonstrate that induction of RANKL expression in bone marrow osteoblasts, following β2AR stimulation, increases the migration of metastatic MDA-231 cells in vitro, independently of SDF1-CXCR4 signaling. We also show that the stimulatory effect of endogenous (chronic stress) or pharmacologic sympathetic activation on breast cancer bone metastasis in vivo can be blocked with the β-blocker propranolol, and by knockdown of RANK expression in MDA-231 cells. These findings indicate that RANKL promotes breast cancer cell metastasis to bone via its pro-migratory effect on breast cancer cells, independently of its effect on bone turnover. The emerging clinical implication, supported by recent epidemiological studies, is that βAR-blockers and drugs interfering with RANKL signaling, such as Denosumab, could increase patient survival if used as adjuvant therapy to inhibit both the early colonization of bone by metastatic breast cancer cells and the initiation of the "vicious cycle" of bone destruction induced by these cells.

  19. α-Amylase as a reliable and convenient measure of sympathetic activity: don't start salivating just yet!

    Science.gov (United States)

    Bosch, Jos A; Veerman, Enno C I; de Geus, Eco J; Proctor, Gordon B

    2011-05-01

    Recent years have seen a growing interest in salivary α-amylase (sAA) as a non-invasive marker for sympathetic nervous system (SNS) activity. Saliva offers many advantages as a biomarker fluid and sAA is one of its most plentiful components. sAA is a digestive enzyme that breaks down starch, which provides a simple means of quantification by measuring its enzymatic activity. This commentary will address a number of common misconceptions and methodological issues that surround the use of sAA as a marker of SNS activity and limit its utility in biobehavioral research. The usefulness of sAA as an SNS marker is undermined by the fact that the parasympathetic nerves also play a significant role in sAA release. Local parasympathetic nerves regulate sAA activity via: (1) α-amylase release from glands that are solely or mainly parasympathetically innervated; (2) via synergistic sympathetic-parasympathetic effects on protein secretion (known as 'augmented secretion'); and (3) via effects on salivary flow rate. Regarding methodology, we discuss why it is problematic: (1) to ignore the contribution of salivary flow rate; (2) to use absorbent materials for saliva collection, and; (3) to stimulate saliva secretion by chewing. While these methodological problems can be addressed by using standardized and timed collection of unstimulated saliva, the physiological regulation of sAA secretion presents less resolvable issues. We conclude that at present there is insufficient support for the use and interpretation of sAA activity as a valid and reliable measure of SNS activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Endothelial and Neuronal Nitric Oxide Activate Distinct Pathways on Sympathetic Neurotransmission in Rat Tail and Mesenteric Arteries.

    Directory of Open Access Journals (Sweden)

    Joana Beatriz Sousa

    Full Text Available Nitric oxide (NO seems to contribute to vascular homeostasis regulating neurotransmission. This work aimed at assessing the influence of NO from different sources and respective intracellular pathways on sympathetic neurotransmission, in two vascular beds. Electrically-evoked [3H]-noradrenaline release was assessed in rat mesenteric and tail arteries in the presence of NO donors or endothelial/neuronal nitric oxide synthase (NOS inhibitors. The influence of NO on adenosine-mediated effects was also studied using selective antagonists for adenosine receptors subtypes. Location of neuronal NOS (nNOS was investigated by immunohistochemistry (with specific antibodies for nNOS and for Schwann cells and Confocal Microscopy. Results indicated that: 1 in mesenteric arteries, noradrenaline release was reduced by NO donors and it was increased by nNOS inhibitors; the effect of NO donors was only abolished by the adenosine A1 receptors antagonist; 2 in tail arteries, noradrenaline release was increased by NO donors and it was reduced by eNOS inhibitors; adenosine receptors antagonists were devoid of effect; 3 confocal microscopy showed nNOS staining in adventitial cells, some co-localized with Schwann cells. nNOS staining and its co-localization with Schwann cells were significantly lower in tail compared to mesenteric arteries. In conclusion, in mesenteric arteries, nNOS, mainly located in Schwann cells, seems to be the main source of NO influencing perivascular sympathetic neurotransmission with an inhibitory effect, mediated by adenosine A1 receptors activation. Instead, in tail arteries endothelial NO seems to play a more relevant role and has a facilitatory effect, independent of adenosine receptors activation.

  1. Superoxide Anions and NO in the Paraventricular Nucleus Modulate the Cardiac Sympathetic Afferent Reflex in Obese Rats

    Directory of Open Access Journals (Sweden)

    Qing-Bo Lu

    2017-12-01

    Full Text Available This study was conducted to explore the hypothesis that the endogenous superoxide anions (O2− and nitric oxide (NO system of the paraventricular nucleus (PVN regulates the cardiac sympathetic afferent reflex (CSAR contributing to sympathoexcitation in obese rats induced by a high-fat diet (42% kcal as fat for 12 weeks. CSAR was evaluated by monitoring the changes of renal sympathetic nerve activity (RSNA and the mean arterial pressure (MAP responses to the epicardial application of capsaicin (CAP in anaesthetized rats. In obese rats with hypertension (OH group or without hypertension (OB group, the levels of PVN O2−, angiotensinII (Ang II, Ang II type 1 receptor (AT1R, and nicotinamide adenine dinucleotide phosphate (NADPH oxidase were elevated, whereas neural NO synthase (nNOS and NO were significantly reduced. Moreover, CSAR was markedly enhanced, which promoted the elevation of plasma norepinephrine levels. The enhanced CSAR was attenuated by PVN application of the superoxide scavenger polyethylene glycol-superoxide dismutase (PEG-SOD and the NO donor sodium nitroprusside (SNP, and was strengthened by the superoxide dismutase inhibitor diethyldithiocarbamic acid (DETC and the nNOS inhibitor N(ω-propyl-l-arginine hydrochloride (PLA; conversely, there was a smaller CSAR response to PLA or SNP in rats that received a low-fat (12% kcal diet. Furthermore, PVN pretreatment with the AT1R antagonist losartan or with PEG-SOD, but not SNP, abolished Ang II-induced CSAR enhancement. These findings suggest that obesity alters the PVN O2− and NO system that modulates CSAR and promotes sympathoexcitation.

  2. Developmental neurotoxicity targeting hepatic and cardiac sympathetic innervation: effects of organophosphates are distinct from those of glucocorticoids.

    Science.gov (United States)

    Seidler, Frederic J; Slotkin, Theodore A

    2011-05-30

    Early-life exposure to organophosphate pesticides leads to subsequent hyperresponsiveness of β-adrenergic receptor-mediated cell signaling that regulates hepatic gluconeogenesis, culminating in metabolic abnormalities resembling prediabetes. In the current study, we evaluated the effects of chlorpyrifos or parathion on presynaptic sympathetic innervation to determine whether the postsynaptic signaling effects are accompanied by defects in neuronal input. We administered either chlorpyrifos or parathion to newborn rats using exposure paradigms known to elicit the later metabolic changes but found no alterations in either hepatic or cardiac norepinephrine levels in adolescence or adulthood. However, shifting chlorpyrifos exposure to the prenatal period did evoke changes: exposure early in gestation produced subsequent elevations in norepinephrine, whereas later gestational exposure produced significant deficits. We also distinguished the organophosphate effects from those of the glucocorticoid, dexamethasone, a known endocrine disruptor that leads to later-life metabolic and cardiovascular disruption. Postnatal exposure to dexamethasone elicited deficits in peripheral norepinephrine levels but prenatal exposure did not. Our results indicate that early-life exposure to organophosphates leads to subsequent abnormalities of peripheral sympathetic innervation through mechanisms entirely distinct from those of glucocorticoids, ruling out the possibility that the organophosphate effects are secondary to stress or disruption of the HPA axis. Further, the effects on innervation were separable from those on postsynaptic signaling, differing in critical period as well as tissue- and sex-selectivity. Organophosphate targeting of both presynaptic and postsynaptic β-adrenergic sites, each with different critical periods of vulnerability, thus sets the stage for compounding of hepatic and cardiac functional abnormalities. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. [Neurolitic block of the lumbar sympathetic chain improves chronic pain in a patient with critical lower limb ischemia].

    Science.gov (United States)

    Barreto Junior, Elton Pereira de Sá; Nascimento, Jedson Dos Santos; de Castro, Anita Perpetua Carvalho Rocha

    Sympathectomy is one of the therapies used in the treatment of chronic obstructive arterial disease (COAD). Although not considered as first-line strategy, it should be considered in the management of pain difficult to control. This clinical case describes the evolution of a patient with inoperable COAD who responded properly to the lumbar sympathetic block. A female patient, afro-descendant, 69 years old, ASA II, admitted to the algology service due to refractory ischemic pain in the lower limbs. The patient had undergone several surgical procedures and conservative treatments without success. Vascular surgery considered the case as out of therapeutic possibility, unless limb amputation. At that time, sympathectomy was indicated. After admission to the operating room, the patient was monitored, positioned and sedated. The blockade was performed with the aid of radioscopy, bilaterally, at L2-L3-L4 right and L3 left levels. On the right side, at each level cited, 3mL of absolute alcohol with 0.25% bupivacaine were injected without vasoconstrictor, and on the left side only local anesthetic. The procedure was performed uneventfully. The patient was discharged with complete remission of the pain. Neurolitic block of the lumbar sympathetic chain is an effective and safe treatment option for pain control in patients with critical limb ischemia patients in whom the only possible intervention would be limb amputation. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  4. Sympathetic Vasoconstrictor Responsiveness of the Leg Vasculature During Experimental Endotoxemia and Hypoxia in Humans

    DEFF Research Database (Denmark)

    Brassard, Patrice; Zaar, Morten; Thaning, Pia

    2016-01-01

    . DESIGN: Prospective descriptive study. SETTING: Hospital research laboratory. SUBJECTS: Ten healthy young men (age [mean ± SD], 31 ± 8 yr; body weight, 83 ± 10 kg) participated in the study. INTERVENTIONS: Leg blood flow and mean arterial pressure were determined, whereas leg vascular conductance...... was calculated during 1) adenosine infusion (vasodilator control), 2) hypoxia (FIO2 = 10%), 3) endotoxemia, and 4) endotoxemia + hypoxia. Leg sympathetic vasoconstrictor responsiveness (reduction in leg vascular conductance) was evaluated by femoral artery tyramine infusion. MEASUREMENTS AND MAIN RESULTS......: Endotoxemia increased body temperature from 36.9 ± 0.4°C to 38.6 ± 0.5°C (p necrosis factor-α from 6 pg/mL (3-8 pg/mL) to 391 pg/mL (128-2258 pg/mL) (p

  5. Planning Electric Transmission Lines: A Review of Recent Regional Transmission Plans

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-13

    The first Quadrennial Energy Review (QER) recommends that the U.S. Department of Energy (DOE) conduct a national review of transmission plans and assess the barriers and incentives to their implementation. DOE tasked Lawrence Berkeley National Laboratory (LBNL) to prepare two reports to support the agency’s response to this recommendation. This report reviews regional transmission plans and regional transmission planning processes that have been directed by Federal Energy Regulatory Commission (FERC) Order Nos. 890 and 1000. We focus on the most recent regional transmission plans (those issued in 2015 and through approximately mid-year 2016) and current regional transmission planning processes. A companion report focuses on non-plan-related factors that affect transmission projects.

  6. A new organellar complex in rat sympathetic neurons.

    Directory of Open Access Journals (Sweden)

    Matt S Ramer

    Full Text Available Membranous compartments of neurons such as axons, dendrites and modified primary cilia are defining features of neuronal phenotype. This is unlike organelles deep to the plasma membrane, which are for the most part generic and not related directly to morphological, neurochemical or functional specializations. However, here we use multi-label immunohistochemistry combined with confocal and electron microscopy to identify a very large (approximately 6 microns in diameter, entirely intracellular neuronal organelle which occurs singly in a ubiquitous but neurochemically distinct and morphologically simple subset of sympathetic ganglion neurons. Although usually toroidal, it also occurs as twists or rods depending on its intracellular position: tori are most often perinuclear whereas rods are often found in axons. These 'loukoumasomes' (doughnut-like bodies bind a monoclonal antibody raised against beta-III-tubulin (SDL.3D10, although their inability to bind other beta-III-tubulin monoclonal antibodies indicate that the responsible antigen is not known. Position-morphology relationships within neurons and their expression of non-muscle heavy chain myosin suggest a dynamic structure. They associate with nematosomes, enigmatic nucleolus-like organelles present in many neural and non-neural tissues, which we now show to be composed of filamentous actin. Loukoumasomes also separately interact with mother centrioles forming the basal body of primary cilia. They express gamma tubulin, a microtubule nucleator which localizes to non-neuronal centrosomes, and cenexin, a mother centriole-associated protein required for ciliogenesis. These data reveal a hitherto undescribed organelle, and depict it as an intracellular transport machine, shuttling material between the primary cilium, the nematosome, and the axon.

  7. Prediction of cardiac sympathetic nerve activity and cardiac functional outcome after treatment in patients with dilated cardiomyopathy. Examination using dobutamine gated blood pool scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu; Toyama, Takuji; Iwasaki, Tsutomu; Suzuki, Tadashi [Gunma Univ., Maebashi (Japan). School of Medicine; Hoshizaki, Hiroshi; Oshima, Shigeru; Taniguchi, Koichi; Nagai, Ryozo

    2000-07-01

    This study evaluated whether dobutamine gated blood pool scintigraphy can predict improvement of cardiac sympathetic nerve activity and cardiac function. Sixteen patients (10 men and 6 women, mean age 59{+-}13 years) with dilated cardiomyopathy underwent dobutamine gated blood pool scintigraphy to measure left ventricular ejection fraction (LVEF) using tracer at 0, 5, 10 and 15 {mu}g/kg/min before treatment. Patients were divided into good responders (LVEF increase {>=}15%) 8 patients (GR Group) and poor responders (LVEF increase <15%) 8 patients (PR Group) after treatment with {beta}-blocker or amiodarone with a background treatment of digitalis, diuretics and angiotensin converting enzyme inhibitor. I-123 metaiodobenzylguanidine (MIBG) imaging to evaluate cardiac sympathetic nerve activity and echocardiography were performed before and at one year after treatment. MIBG imaging was obtained 4 hours after tracer injection, and the heart/mediastinum count ratio (H/M ratio) calculated from the anterior planar image and the total defect score (TDS) from the single photon emission computed tomography image. LVEF and left ventricular endo-diastolic dimension (LVDd) were measured by echocardiography and New York Heart Association (NYHA) functional class was evaluated. The GR Group showed TDS decreased from 28{+-}6 to 17{+-}12 (p<0.05), H/M ratio increased from 1.79{+-}0.26 to 2.07{+-}0.32 (p<0.05), LVEF increased from 29{+-}8% to 48{+-}10% (p<0.01), and LVDd decreased from 65{+-}4 mm to 58{+-}5 mm (p<0.05). In contrast, the PR group showed no significant changes in TDS. H/M ratio, LVEF and LVDd. NYHA functional class improved in both groups. The improvement was better in the GR Group than in the PR group. Dobutamine gated blood pool scintigraphy is useful to predict the improvement of the cardiac sympathetic nerve activity and cardiac function, and symptoms after treatment in patients with dilated cardiomyopathy. (author)

  8. Cardiac sympathetic afferent reflex response to intermedin microinjection into paraventricular nucleus is mediated by nitric oxide and γ-amino butyric acid in hypertensive rats.

    Science.gov (United States)

    Zhou, Hong; Sun, Hai-jian; Chang, Jin-rui; Ding, Lei; Gao, Qing; Tang, Chao-shu; Zhu, Guo-qing; Zhou, Ye-bo

    2014-10-01

    Intermedin (IMD) is a member of calcitonin/calcitonin gene-related peptide (CGRP) and involves in the regulation of cardiovascular function in both peripheral tissues and central nervous system (CNS). Paraventricular nucleus (PVN) of hypothalamus is an important site in the control of cardiac sympathetic afferent reflex (CSAR) which participates in sympathetic over-excitation of hypertension. The aim of this study is to investigate whether IMD in the PVN is involved in the inhibition of CSAR and its related mechanism in hypertension. Rats were subjected to two-kidney one-clip (2K1C) surgery to induce renovascular hypertension or sham-operation (Sham). Acute experiments were carried out four weeks later under anesthesia. The CSAR was evaluated with the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to the epicardial application of capsaicin. The RSNA and MAP were recorded in sinoaortic-denervated, cervical-vagotomized and anesthetized rats. Bilateral PVN microinjection of IMD (25 pmol) caused greater decrease in the CSAR in 2K1C rats than in Sham rats, which was prevented by pretreatment with adrenomedullin (AM) receptor antagonist AM22-52, non-selective nitric oxide (NO) synthase (NOS) inhibitor L-NAME or γ-amino butyric acid (GABA)B receptor blocker CGP-35348. PVN pretreatment with CGRP receptor antagonist CGRP8-37 or GABA(A) receptor blocker gabazine had no significant effect on the CSAR response to IMD. AM22-52, L-NAME and CGP-35348 in the PVN could increase CSAR in Sham and 2K1C rats. These data indicate that IMD in the PVN inhibits CSAR via AM receptor, and both NO and GABA in the PVN involve in the effect of IMD on CSAR in Sham and renovascular hypertensive rats. © 2014 by the Society for Experimental Biology and Medicine.

  9. Decreasing adrenergic or sympathetic hyperactivity after severe traumatic brain injury using propranolol and clonidine (DASH After TBI Study: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Patel Mayur B

    2012-09-01

    Full Text Available Abstract Background Severe TBI, defined as a Glasgow Coma Scale ≤ 8, increases intracranial pressure and activates the sympathetic nervous system. Sympathetic hyperactivity after TBI manifests as catecholamine excess, hypertension, abnormal heart rate variability, and agitation, and is associated with poor neuropsychological outcome. Propranolol and clonidine are centrally acting drugs that may decrease sympathetic outflow, brain edema, and agitation. However, there is no prospective randomized evidence available demonstrating the feasibility, outcome benefits, and safety for adrenergic blockade after TBI. Methods/Design The DASH after TBI study is an actively accruing, single-center, randomized, double-blinded, placebo-controlled, two-arm trial, where one group receives centrally acting sympatholytic drugs, propranolol (1 mg intravenously every 6 h for 7 days and clonidine (0.1 mg per tube every 12 h for 7 days, and the other group, double placebo, within 48 h of severe TBI. The study uses a weighted adaptive minimization randomization with categories of age and Marshall head CT classification. Feasibility will be assessed by ability to provide a neuroradiology read for randomization, by treatment contamination, and by treatment compliance. The primary endpoint is reduction in plasma norepinephrine level as measured on day 8. Secondary endpoints include comprehensive plasma and urine catecholamine levels, heart rate variability, arrhythmia occurrence, infections, agitation measures using the Richmond Agitation-Sedation Scale and Agitated Behavior scale, medication use (anti-hypertensive, sedative, analgesic, and antipsychotic, coma-free days, ventilator-free days, length of stay, and mortality. Neuropsychological outcomes will be measured at hospital discharge and at 3 and 12 months. The domains tested will include global executive function, memory, processing speed, visual-spatial, and behavior. Other assessments include

  10. Gender Differences in Vogt-Koyanagi-Harada Disease and Sympathetic Ophthalmia

    Directory of Open Access Journals (Sweden)

    Yujuan Wang

    2014-01-01

    Full Text Available Vogt-Koyanagi-Harada disease (VKH and sympathetic ophthalmia (SO are types of T-cell mediated autoimmune granulomatous uveitis. Although the two diseases share common clinical features, they have certain differences in gender predilections. VKH classically has been reported as more prevalent in females than males, yet some studies in Japan and China have not found differences in gender prevalence. Male patients have a higher risk of chorioretinal degeneration, vitiligo, and worse prognosis. Conversely, the changing levels of estrogen/progesterone during pregnancy and the menstrual cycle as well as higher levels of TGF-β show a protective role in females. Potential causes of female predilection for VKH are associated with HLA-DR and HLA-DQ alleles. SO, a bilateral granulomatous uveitis, occurs in the context of one eye after a penetrating injury due to trauma or surgery. In contrast to the female dominance in VKH, males are more frequently affected by SO due to a higher incidence of ocular injury, especially during wartime. However, no gender predilection of SO has been reported in postsurgical cases. No clinically different manifestations are revealed between males and females in SO secondary to either ocular trauma or surgery. The potential causes of the gender difference may provide hints on future treatment and disease evaluation.

  11. Effects of short-term carvedilol on the cardiac sympathetic activity assessed by {sup 123}I-MIBG scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Sandra Marina Ribeiro de; Mesquita, Evandro Tinoco; Freire, Fabiano de Lima; Ribeiro, Mario Luiz; Nobrega, Antonio Claudio Lucas da; Mesquita, Claudio Tinoco, E-mail: sandramarina@cardiol.b [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Azevedo, Jader Cunha; Barbirato, Gustavo Borges; Coimbra, Alexandro [Hospital Pro-Cardiaco, Rio de Janeiro, RJ (Brazil); Dohmann, Hans Fernando da Rocha [Centro de Ensino e Pesquisa do Pro-Cardiaco (PROCEP), Rio de Janeiro, RJ (Brazil)

    2010-03-15

    Background: autonomic alterations in heart failure are associated with an increase in morbimortality. Several noninvasive methods have been employed to evaluate the sympathetic function, including the Meta-Iodobenzylguanidine ({sup 123}I-MIBG) scintigraphy imaging of the heart. Objective: to evaluate the cardiac sympathetic activity through {sup 123}I-MIBG scintigraphy, before and after three months of carvedilol therapy in patients with heart failure and left ventricular ejection fraction (LVEF) < 45%. Patients and methods: sixteen patients, aged 56.3 +- 12.6 years (11 males), with a mean LVEF of 28% +- 8% and no previous use of beta-blockers were recruited for the study. Images of the heart innervation were acquired with {sup 123}I-MIBG, and the serum levels of catecholamines (epinephrine, dopamine and norepinephrine) were measured; the radioisotope ventriculography (RIV) was performed before and after a three-month therapy with carvedilol. Results: patients' functional class showed improvement: before the treatment, 50% of the patients were FC II and 50% were FC III. After 3 months, 7 patients were FC I (43.8%) and 9 were FC II (56.2%), (rho = 0.0001). The mean LVEF assessed by RIV increased from 29% to 33% (rho = 0.017). There was no significant variation in cardiac adrenergic activity assessed by {sup 123}I-MIBG (early and late resting images and washout rate). No significant variation was observed regarding the measurement of catecholamines. Conclusion: the short-term treatment with carvedilol promoted the clinical and LVEF improvement. However, this was not associated to an improvement in the cardiac adrenergic activity, assessed by {sup 123}I-MIBG scintigraphy, as well as the measurement of circulating catecholamines. (author)

  12. Impact of sympathetic innervation on recurrent life-threatening arrhythmias in the follow-up of patients with idiopathic ventricular fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Matthias; Acil, Tayfun; Breithardt, Guenter; Wichter, Thomas [Hospital of the University of Muenster, Department of Cardiology and Angiology, Muenster (Germany); Schaefers, Michael; Kies, Peter; Schaefers, Klaus; Schober, Otmar [Hospital of the University of Muenster, Department of Nuclear Medicine, Muenster (Germany)

    2006-08-15

    Idiopathic ventricular fibrillation (IVF) is defined as VF in the absence of any identifiable structural or functional cardiac disease. The underlying pathophysiological mechanisms are unknown. This study was performed to investigate the potential impact of sympathetic dysfunction, assessed by {sup 123}I-meta-iodo-benzylguanidine scintigraphy ({sup 123}I-MIBG SPECT), on the long-term prognosis of patients with IVF. {sup 123}I-MIBG SPECT was performed in 20 patients (mean age 37{+-}13 years) with IVF. Mean follow-up of patients after study entry was 7.2{+-}1.5 years (range 4.9-10.5 years). Ten patients (five men, five women; mean age 43{+-}12 years; p=NS versus study group) with medullary carcinoma of the thyroid gland served as an age-matched control group. Abnormal {sup 123}I-MIBG uptake was observed in 13 patients (65%). During follow-up, 18 episodes of VF/fast polymorphic ventricular tachycardias occurred in four IVF patients with abnormal {sup 123}I-MIBG uptake whereas only two episodes of monomorphic ventricular tachycardia (and no VF) occurred in a single IVF patient with normal {sup 123}I-MIBG uptake. Impairment of sympathetic innervation may indicate a higher risk of future recurrent episodes of life-threatening ventricular tachyarrhythmias in patients with IVF. Studies in larger cohorts are required to validate the significance of {sup 123}I-MIBG SPECT during the long-term follow-up of these patients. (orig.)

  13. Relation between myocardial response to dobutamine stress and sympathetic nerve activation in patients with idiopathic dilated cardiomyopathy. A comparison of 123I-MIBG scintigraphic and echocardiographic data

    International Nuclear Information System (INIS)

    Naruse, Hitoshi; Arii, Tohru; Kondo, Tomohiro

    2000-01-01

    It is likely that a close association exists between findings obtained by two methods: dobutamine stress echocardiography and 123 I-MIBG scintigraphy. Both of these methods are associated with β-adrenergic receptor mechanisms. This study was conducted to demonstrate the relation between myocardial response to dobutamine stress and sympathetic nerve release of norepinephrine in the failing heart. In 12 patents with heart failure due to idiopathic dilated cardiomyopathy, the myocardial effects of dobutamine stress were evaluated by low-dose dobutamine stress echocardiography; and sympathetic nerve function was evaluated by scintigraphic imaging with iodine-123[ 123 I]meta-iodobenzylguanidine (MIBG), an analogue of norepinephrine. Echocardiography provided quantitative assessment of wall motion and left ventricular dilation; radiotracer studies with 123 I-MIBG provided quantitative assessment of the heart-to-mediastinum (H/M) uptake ratio and washout rate. Results showed that H/M correlated with baseline wall motion (r=0.682, p=0.0146), wall motion after dobutamine stress (r=0.758, p=0.0043), the change in wall motion (r=0.667, p=0.0178), and with left ventricular diastolic diameter (r=0.837, p=0.0007). In addition, the 123 I-MIBG washout rate correlated with baseline wall motion (r=0.608, p=0.0360), wall motion after dobutamine stress (r=0.703, p=0.0107), and with the change in wall motion (r=0.664, p=0.0185). Wall motion, especially in the myocardial response to dobutamine stress, is related to sympathetic nerve activity in heart failure. (author)

  14. Presynaptic beta-adrenoceptors in guinea pig papillary muscle: evidence for adrenaline-mediated positive feedback on noradrenergic transmission

    International Nuclear Information System (INIS)

    Valenta, B.; Singer, E.A.

    1991-01-01

    Guinea pig papillary muscles were preincubated in the presence of 5 x 10 - 9 mol/L unlabeled noradrenaline or adrenaline then incubated with ( 3 H)-noradrenaline and superfused. Electrical field stimulation with 180 pulses delivered at 1 or 3 Hz was used to induce overflow of radioactivity. Comparison of the effects of preexposure of the tissue to adrenaline or noradrenaline revealed that adrenaline incubation caused an enhancement of stimulation-evoked overflow of ( 3 H)noradrenaline and a reduction of the effect of exogenously added isoprenaline. Furthermore, the selective beta 2-adrenoceptor antagonist ICI 118,551 (10 - 7 mol/L), but not the selective beta 1-adrenoceptor antagonist ICI 89,406 (10 - 7 mol/L), reduced electrically evoked overflow of ( 3 H)noradrenaline in tissue preincubated with adrenaline but not in tissue preincubated with noradrenaline. The overflow-reducing effect of ICI 118.551 occurred at stimulation with 3 Hz but not at stimulation with 1 Hz. The present results support the hypothesis that noradrenergic transmission in guinea pig papillary muscle is facilitated via beta 2-adrenoceptors, and that adrenaline may serve as transmitter in this positive feedback mechanism after its incorporation into sympathetic nerves

  15. A Study of Sympathetic Flaring Using a Full-Sun Event Catalog

    Science.gov (United States)

    Higgins, P. A.; Schrijver, C. J.; Title, A. M.; Bloomfield, D.; Gallagher, P.

    2013-12-01

    There has been a trove of papers published on the statistics of flare occurrence. These studies are trying to answer the question of whether or not subsequent solar flares are related. The majority of these works have not included both flare location information and the physical properties of the regions responsible for the eruptions, and none have taken advantage of full-Sun event coverage. Now that SDO/AIA is available and the STEREO spacecraft have progressed past 90 degrees from Earth's heliographic longitude, this new information is available to us. This work aims to quantify how common sympathetic events are, and how important they are in the forecasting of solar flares. A 3D plot of detected and clustered flare events for a full solar rotation, including the Valentine's Day Event of 2011. A full-Sun image in the EUV (304A) including both STEREO view points and AIA. The GOES X-ray light curves during the February period of 2011 are shown in the bottom panel. Detected flare events are indicated by the green dashed lines and the time stamp of this image is denoted by the red line.

  16. Sympathetic nervous activity and renal and systemic hemodynamics in cirrhosis: plasma norepinephrine concentration, hepatic extraction, and renal release

    DEFF Research Database (Denmark)

    Ring-Larsen, H; Hesse, B; Henriksen, Jens Henrik Sahl

    1982-01-01

    as previously reported in healthy controls. The right kidney released NE into the systemic circulation. Renal venous plasma NE exceeded arterial concentration by 34% (p less than 0.01). It is concluded that sympathetic nervous activity is enhanced in patients with cirrhosis, and that this hyperactivity may...... in patients than controls (82 vs. 95 mm Hg, p less than 0.05) but did not change during the tilt. Plasma norepinephrine (NE) concentration was significantly higher in another eight patients with cirrhosis than in eight healthy controls (mean: 0.45 vs. 0.21 ng per ml in recumbency, p less than 0.02). Following...

  17. Shoulder complaints in patients with reflex sympathetic dystrophy of the upper extremity.

    Science.gov (United States)

    Veldman, P H; Goris, R J

    1995-03-01

    Five hundred forty-one patients with reflex sympathetic dystrophy (RSD) of the upper extremity were prospectively studied. One hundred fifteen patients complained of pain and/or limited range of motion in the shoulder. Shoulder complaints more often occurred in women (p = .01); age and etiology were not different from patients with RSD without shoulder complaints. Physical examination showed a tendinitis of one or both tendons of the biceps muscle in 109 patients. Seventy one patients were treated with local injection of bupivacaine followed by methylprednisolone. This resulted in permanent relief of complaints in 34 patients, temporary or moderate relief in 31, no difference in 3, increase of complaints in 1 patient, and in 2 patients results were not documented. We conclude that shoulder complaints in RSD occur in a minority of patients and more often in female patients. There are no predisposing factors. The pathophysiologic mechanism for developing shoulder complaints remains unknown. In most cases complaints can be attributed to a bicipital tendinitis for which local injection of bupivacaine followed by prednisolone are both diagnostic and therapeutic.

  18. Cardiorespiratory adaptations induced by aerobic training in middle-aged men: the importance of a decrease in sympathetic stimulation for the contribution of dynamic exercise tachycardia

    Directory of Open Access Journals (Sweden)

    Chacon-Mikahil M.P.T.

    1998-01-01

    Full Text Available We investigated the effects of aerobic training on the efferent autonomic control of heart rate (HR during dynamic exercise in middle-aged men, eight of whom underwent exercise training (T while the other seven continued their sedentary (S life style. The training was conducted over 10 months (three 1-h sessions/week on a field track at 70-85% of the peak HR. The contribution of sympathetic and parasympathetic exercise tachycardia was determined in terms of differences in the time constant effects on the HR response obtained using a discontinuous protocol (4-min tests at 25, 50, 100 and 125 watts on a cycle ergometer, and a continuous protocol (25 watts/min until exhaustion allowed the quantification of the parameters (anaerobic threshold, VO2 AT; peak O2 uptake, VO2 peak; power peak that reflect oxygen transport. The results obtained for the S and the T groups were: 1 a smaller resting HR in T (66 beats/min when compared to S (84 beats/min; 2 during exercise, a small increase in the fast tachycardia (D0-10 s related to vagal withdrawal (P<0.05, only at 25 watts was observed in T at all powers; at middle and higher powers a significant decrease (P<0.05 at 50, 100 and 125 watts in the slow tachycardia (D1-4 min related to a sympathetic-dependent mechanism was observed in T; 3 the VO2 AT (S = 1.06 and T = 1.33 l/min and VO2 peak (S = 1.97 and T = 2.47 l/min were higher in T (P<0.05. These results demonstrate that aerobic training can induce significant physiological adaptations in middle-aged men, mainly expressed as a decrease in the sympathetic effects on heart rate associated with an increase in oxygen transport during dynamic exercise.

  19. The pedunculopontine tegmentum controls renal sympathetic nerve activity and cardiorespiratory activities in nembutal-anesthetized rats.

    Directory of Open Access Journals (Sweden)

    Anne M Fink

    Full Text Available Elevated renal sympathetic nerve activity (RSNA accompanies a variety of complex disorders, including obstructive sleep apnea, heart failure, and chronic kidney disease. Understanding pathophysiologic renal mechanisms is important for determining why hypertension is both a common sequelae and a predisposing factor of these disorders. The role of the brainstem in regulating RSNA remains incompletely understood. The pedunculopontine tegmentum (PPT is known for regulating behaviors including alertness, locomotion, and rapid eye movement sleep. Activation of PPT neurons in anesthetized rats was previously found to increase splanchnic sympathetic nerve activity and blood pressure, in addition to altering breathing. The present study is the first investigation of the PPT and its potential role in regulating RSNA. Microinjections of DL-homocysteic acid (DLH were used to probe the PPT in 100-μm increments in Nembutal-anesthetized rats to identify effective sites, defined as locations where changes in RSNA could be evoked. A total of 239 DLH microinjections were made in 18 rats, which identified 20 effective sites (each confirmed by the ability to evoke a repeatable sympathoexcitatory response. Peak increases in RSNA occurred within 10-20 seconds of PPT activation, with RSNA increasing by 104.5 ± 68.4% (mean ± standard deviation from baseline. Mean arterial pressure remained significantly elevated for 30 seconds, increasing from 101.6 ± 18.6 mmHg to 135.9 ± 36.4 mmHg. DLH microinjections also increased respiratory rate and minute ventilation. The effective sites were found throughout the rostal-caudal extent of the PPT with most located in the dorsal regions of the nucleus. The majority of PPT locations tested with DLH microinjections did not alter RSNA (179 sites, suggesting that the neurons that confer renal sympathoexcitatory functions comprise a small component of the PPT. The study also underscores the importance of further investigation to

  20. Sympathetic and parasympathetic regulation of rectal motility in rats.

    Science.gov (United States)

    Ridolfi, Timothy J; Tong, Wei-Dong; Takahashi, Toku; Kosinski, Lauren; Ludwig, Kirk A

    2009-11-01

    The colon and rectum are regulated by the autonomic nervous system (ANS). Abnormalities of the ANS are associated with diseases of the colon and rectum while its modulation is a putative mechanism for sacral nerve stimulation. The purpose of this study is to establish a rat model elucidating the role of the efferent ANS on rectal motility. Rectal motility following transection or stimulation of parasympathetic pelvic nerves (PN) or sympathetic hypogastric nerves (HGN) was measured with rectal strain gauge transducers and quantified as a motility index (MI). Colonic transit was measured 24 hours after transection by calculating the geometric center (GC) of distribution of (51)Cr Transection of PN and HGN decreased MI to 518 +/- 185 g*s (p < 0.05) and increased MI to 5,029 +/- 1,954 g*s (p < 0.05), respectively, compared to sham (975 +/- 243 g*s). Sectioning of PN and HGN decreased transit with GC = 4.9 +/- 0.2 (p < 0.05) and increased transit with GC = 8.1 +/- 0.7 (p < 0.02), respectively, compared to sham (GC = 5.8 +/- 0.3). Stimulation of PN and HGN increased MI to 831 +/- 157% (p < 0.01) and decreased MI to 251 +/- 24% (p < 0.05), respectively. Rectal motility is significantly altered by sectioning or stimulating either HGN or PN. This model may be useful in studying how sacral nerve stimulation exerts its effects and provide insight into the maladies of colonic motility.

  1. Acute and chronic role of nitric oxide, renin-angiotensin system and sympathetic nervous system in the modulation of calcium sensitization in Wistar Rats

    Czech Academy of Sciences Publication Activity Database

    Brunová, Aneta; Bencze, Michal; Behuliak, Michal; Zicha, Josef

    2015-01-01

    Roč. 64, č. 4 (2015), s. 447-457 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP304/12/0259; GA MZd(CZ) NV15-25396A Institutional support: RVO:67985823 Keywords : blood pressure * kalcium sensitization * Rho kinase * nitric oxide * renin-angiotensin system * sympathetic nervous system * fasudil Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.643, year: 2015

  2. Nifedipine-sensitive blood pressure component in hypertensive models characterized by high activity of either sympathetic nervous system or renin-angiotensin system

    Czech Academy of Sciences Publication Activity Database

    Zicha, Josef; Dobešová, Zdenka; Behuliak, Michal; Pintérová, Mária; Kuneš, Jaroslav; Vaněčková, Ivana

    2014-01-01

    Roč. 63, č. 1 (2014), s. 13-26 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) 1M0510; GA ČR(CZ) GA305/09/0336; GA ČR(CZ) GAP304/12/0259 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : voltage-gated caclium channels * sympathetic nervous system * renin-angiotensin system * nitric oxide Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.293, year: 2014

  3. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis

    Directory of Open Access Journals (Sweden)

    Jessica M. F. Hall

    2012-01-01

    Full Text Available Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity and alters antigen presentation by epidermal Langerhans cells (adaptive immunity. Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis.

  4. Beneficial effect of perindopril on cardiac sympathetic nerve activity and brain natriuretic peptide in patients with chronic heart failure. Comparison with enalapril

    International Nuclear Information System (INIS)

    Tsutamoto, Takayoshi; Tanaka, Toshinari; Sakai, Hiroshi

    2008-01-01

    In patients with chronic heart failure (CHF), it remains unclear whether perindopril is more cardioprotective than enalapril. Forty-five stable CHF outpatients undergoing conventional therapy including enalapril therapy were randomized to 2 groups [group I (n=24): continuous enalapril treatment; group II (n=21): enalapril was changed to perindopril]. Cardiac sympathetic nerve activity was evaluated using cardiac 123 I-metaiodobenzylguanidine (MIBG) scintigraphy, hemodynamic parameters and neurohumoral factors before and 6 months after treatment. There was no difference in baseline characteristics between the 2 groups. In group I, there were no changes in MIBG parameters, left ventricular ejection fraction (LVEF) or plasma level of brain natriuretic peptide (BNP). In contrast, in group II delayed heart/mediastinum count ratio was significantly increased (2.0±0.07 vs 2.15±0.07, p=0.013) and the washout rate was significantly decreased (33.0±1.4 vs 30.5±1.2, p=0.030) after 6 months compared with the baseline value. In addition, LVEF was significantly increased and the plasma BNP level was significantly decreased. These findings suggest that for the treatment of CHF, perindopril is superior to enalapril with respect of cardiac sympathetic nerve activity and BNP. (author)

  5. Three-phase bone scanning in reflex sympathetic dystrophy of the extremities: a semi-quantitative analysis

    International Nuclear Information System (INIS)

    Granier, P.; Manicourt, D.H.; Pauwels, S.; Nagant de Deuxchaisnes, C.; Beckers, C.

    1994-01-01

    Three-phase bone scanning of the extremities (foot or hand) was performed in 40 normal subjects and in 56 patients with an unequivocal clinical diagnosis of reflex sympathetic dystrophy. The scintigraphic parameters studied were the ratios of tracer (SUPD SUPG Tc) activity in the affected side over the healthy side established for blood flow, blood pool, early vasculo-tissular fixation, and late bone fixation. In the controls, blood flow, blood pool, and early fixation showed considerable interindividual variation and only the variation of late fixation remained within narrow limits. Statistical analysis revealed that late fixation was most closely correlated with early fixation, which in turn was most close correlated with blood pool. The clinical and pathophysiological significance of these data is discussed. (authors). 33 refs., 2 figs., 5 tabs

  6. Essays on electricity transmission investment and financial transmission rights

    Science.gov (United States)

    Shang, Wenzhuo

    The U.S. electric power industry has been going through fundamental restructuring and realignment since the 1990's. Many issues and problems have emerged during the transition, and both economists and engineers have been looking for the solutions fervently. In this dissertation, which consists primarily of three essays, we apply economics theory and techniques to the power industry and address two related issues, transmission investment and financial transmission rights (FTRs). The first essay takes the decentralized perspective and investigates the efficiency attribute of market-based transmission investment under perfect competition. We clarify, for the first time, the nature of the externality created by loop flows that causes transmission investment to be inefficient. Our findings have important implications for better understanding of transmission market design and creating incentives for efficient transmission investment. In the second essay, we define several rules for allocating transmission investment cost within the framework of cooperative game theory. These rules provide fair, stable or efficient cost allocations in theory and are good benchmarks against which the allocation mechanism in practice can be compared and improved upon. In the last essay, we make exploratory efforts in analyzing and assessing empirically the performance of the Midwest independent system operator (MISO) FTR auction market. We reveal some stylized facts about this young market and find that it is not efficient under the risk-neutrality assumption. We also point out and correct the drawbacks in previous related work and suggest about more complete empirical work in future. In all, this dissertation makes both theoretic and empirical analysis of the two hot issues related to the power industry and comes up with findings that have important implications for the development of this industry.

  7. Sexual transmission of hepatitis C Transmissão sexual da hepatite C

    Directory of Open Access Journals (Sweden)

    Norma de Paula Cavalheiro

    2007-10-01

    Full Text Available It is generally agreed that the hepatitis C virus (HCV can be efficiently transmitted parenterally, although data on viral transmission by sexual or non-sexual intrafamilial contact are conflicting. Since data collection began in 1989, the first study dealt with the risk of sexual transmission among multiple sex partners. Other investigations followed, emphasizing that risk increases in specific groups such as patients co-infected with HIV and HBV, sex workers, homosexuals, illicit drug users and patients attended at sexually transmittable disease clinics. The question arises as to what might be the risk for monogamous heterosexuals in the general population, in which one of the partners has HCV? The literature provides overall rates that vary from zero to 27%; however, most studies affirm that the chances of sexual transmission are low or almost null, with rates for this mode fluctuating from zero to 3%. Intrafamilial transmission is strongly considered but inconclusive, since when mentioning transmission between sex partners within the same household, specific situations also should be considered, such as the sharing of personal hygiene items, like razorblades, toothbrushes, nail clippers and manicure pliers, which are important risk factors in HCV transmission. In this review, we discuss the hypotheses of sexual and/or intrafamilial transmission.A eficiência da transmissão parenteral da hepatite C é consenso, porém dados na literatura sobre transmissão sexual e intrafamiliar são conflitantes. Data de 1989 o primeiro trabalho que relaciona o risco de transmissão sexual a múltiplos parceiros sexuais, na seqüência, outros estudos também reforçam que os riscos aumentam em populações específicas como co-infectados HIV, HBV, profissionais do sexo, homossexuais, usuários de drogas ilícitas e populações de clínicas de doenças sexualmente transmissíveis. Agora, na população geral qual seria o risco para casais monog

  8. Increased sympathetic activity during sleep and nocturnal hypertension in Type 2 diabetic patients with diabetic nephropathy

    DEFF Research Database (Denmark)

    Nielsen, F S; Hansen, H P; Jacobsen, P

    1999-01-01

    AIMS: To elucidate the putative factors involved in the blunted nocturnal blood pressure reduction in hypertensive Type 2 diabetic patients with diabetic nephropathy. METHODS: Extracellular fluid volume and fluid shift from interstitial to plasma volume (haematocrit), sympathetic nervous activity...... (plasma noradrenaline and adrenaline) and the internal 'body clock' (serum melatonin) were investigated in 31 hypertensive Type 2 diabetes mellitus (DM) patients with diabetic nephropathy (24 males, age 60 (45-73) years). All variables, except extracellular volume, were measured repeatedly...... constant in both groups. Extracellular fluid volume and plasma melatonin levels were comparable in the two groups. CONCLUSION: Sustained adrenergic activity during sleep is associated with blunted nocturnal blood pressure reduction in hypertensive Type 2DM patients with diabetic nephropathy, probably...

  9. Association between left ventricular regional sympathetic denervation and mechanical dyssynchrony in phase analysis: a cardiac CZT study

    Energy Technology Data Exchange (ETDEWEB)

    Gimelli, Alessia; Genovesi, Dario; Giorgetti, Assuero; Kusch, Annette [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Liga, Riccardo [Scuola Superiore Sant' Anna, Pisa (Italy); Marzullo, Paolo [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); CNR, Institute of Clinical Physiology, Pisa (Italy)

    2014-05-15

    To evaluate the relationships among myocardial sympathetic innervation, perfusion and mechanical synchronicity assessed with cardiac cadmium-zinc-telluride (CZT) scintigraphy. A group of 29 patients underwent an evaluation of myocardial perfusion with {sup 99m}Tc-tetrofosmin CZT scintigraphy and adrenergic innervation with {sup 123}I-metaiodobenzylguanidine (MIBG) CZT scintigraphy. The summed rest score (SRS), motion score (SMS) and thickening score (STS), as well as the summed {sup 123}I-MIBG defect score (SS-MIBG), were determined. Regional tracer uptake for both {sup 99m}Tc-tetrofosmin and {sup 123}I-MIBG was also calculated. Finally, the presence of significant myocardial mechanical dyssynchrony was evaluated in phase analysis on gated CZT images and the region of latest mechanical activation identified. Significant mechanical dyssynchrony was present in 17 patients (59 %) and associated with higher SRS (P = 0.030), SMS (P < 0.001), STS (P = 0.003) and early SS-MIBG (P = 0.037) as well as greater impairments in left ventricular ejection fraction (P < 0.001) and end-diastolic volume (P < 0.001). In multivariate analysis a higher end-diastolic volume remained the only predictor of mechanical dyssynchrony (P = 0.047). Interestingly, while in the whole population regional myocardial perfusion and adrenergic activity were strongly correlated (R = 0.68), in patients with mechanical dyssynchrony the region of latest mechanical activation was predicted only by greater impairment in regional {sup 123}I-MIBG uptake (P = 0.012) that overwhelmed the effect of depressed regional perfusion. Left ventricular mechanical dyssynchrony is associated with greater depression in contractile function and greater impairments in regional myocardial perfusion and sympathetic activity. In patients with dyssynchrony, the region of latest mechanical activation is characterized by a significantly altered adrenergic tone. (orig.)

  10. Localization and neurochemical characteristics of the extrinsic sympathetic neurons projecting to the pylorus in the domestic pig.

    Science.gov (United States)

    Zalecki, Michal

    2012-01-01

    The pylorus, an important part of the digestive tract controlling the flow of chyme between the stomach and the duodenum, is widely innervated by intrinsic and extrinsic nerves. To determine the locations of postganglionic sympathetic perikarya that innervate the pylorus of the domestic pig, a retrograde tracing method with application of Fast Blue tracer was used. All positive neuronal cell bodies (ca. 1750) were found in the celiac-cranial mesenteric ganglion complex (CSMG), however, the coeliac poles of this complex provided the major input to the pylorus. Afterwards, the immunohistochemical staining procedure was applied to determine biologically active substances expressed in the FB-labeled perikarya. Approximately 77% of the FB-positive cell bodies contained tyrosine hydroxylase (TH), 87% dopamine β-hydroxylase (DβH), 40% neuropeptide Y (NPY), 12% somatostatin (SOM) and 7% galanin (GAL). The presence of all these substances in the ganglion tissue was confirmed by RT-PCR technique. Double immunocytochemistry revealed that all of the TH-positive perikarya contained DβH, about 40% NPY, 12% SOM and 8% GAL. Additionally, all above-cited immunohistochemical markers as well as VIP, PACAP, ChAT, LEU, MET, SP and nNOS were observed within nerve fibers associated with the FB-positive perikarya. Immunocytochemical labeling of the pyloric wall tissue disclosed that TH+, DβH+ and NPY+ nerve fibers innervated ganglia of the myenteric and submucosal plexuses, blood vessels, both muscular layers and the muscularis mucosae; nerve fibers immunoreactive to GAL mostly innervated both muscular layers, while SOM+ nerve fibers were observed within the myenteric plexus. Presented study revealed sources of origin and immunohistochemical characteristics of the sympathetic postganglionic perikarya innervating the porcine pylorus. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Evaluation of Chronic Physical and Psychological Stress Induction on Cardiac Ischemia / Reperfusion Injuries in Isolated Male Rat Heart: The Role of Sympathetic Nervous System

    Directory of Open Access Journals (Sweden)

    Kamran Rakhshan

    2015-10-01

    Full Text Available Exposure to stress leads to physiological changes called “stress response” which are the result ofthe changes in the adrenomedullary hormone system, hypothalamus-pituitary-adrenal (HPA and sympatheticnervous system (SNS activity. In the present study, the effects of chronic physical and psychological stressand also the role of sympathetic system effects in stress on ischemia/reperfusion (I/R injuries have beenstudied in isolated rat heart. Rat heart was isolated and subjected to 30 min regional ischemia and 120 minreperfusion. The daily stress was induced for one week prior to I/R induction. Sympathectomy was donechemically by injection of hydroxyl-dopamine prior to stress induction. There were no significant changes inheart rate and Coronary Flow between groups. Left ventricular developed pressure (LVDP and rate productpressure (RPP in both physical and psychological stress groups decreased significantly compared to those incontrol group (Pgroups. Infarct size significantly increased in both physical and psychological stress groups and control group(Pas compared with stress groups (Ppsychological stress prior to ischemia/reperfusion causes enhancement of myocardial injuries and it seemsthat increased sympathetic activity in response to stress is responsible for these adverse effects of stress onischemic/reperfused heart.

  12. Neuronal uptake and metabolism of 2- and 6-fluorodopamine: false neurotransmitters for positron emission tomographic imaging of sympathetically innervated tissues

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhofer, G.; Hovevey-Sion, D.; Kopin, I.J.; Miletich, R.; Kirk, K.L.; Finn, R.; Goldstein, D.S.

    1989-01-01

    The neuronal uptake and metabolism of 2-fluorodopamine (2F-dopamine), 6-fluorodopamine (6F-dopamine) and tritium-labeled dopamine were compared in heart, submaxillary gland and spleen of rats to assess the utility of 18F-labeled 2F- or 6F-dopamine for positron emission tomographic imaging of sympathetically innervated tissues. Tritiated dopamine with and without 2F- or 6F-dopamine, or tritiated 2F-dopamine alone, were injected i.v. into rats that were or were not pretreated with desipramine to block catecholamine neuronal uptake or with reserpine to block vesicular translocation of catecholamines. Tissue and plasma samples were obtained at intervals up to 1 hr after injections. At 1 hr after injection of tritiated dopamine, tritium-labeled norepinephrine, dopamine, dihydroxyphenylacetic acid and dihydroxyphenylglucol accounted for less than 2% of the tritium in plasma but up to 92% of that in tissues; tritiated norepinephrine accounted for 70% or more of the tritium in tissues. In contrast, at 1 hr after injection of tritiated 2F-dopamine, tritiated 2F-norepinephrine accounted for 30 to 46% of the tritium in tissues. Desipramine and reserpine pretreatment blocked the tissue accumulation of tritiated and fluorinated dopamine as well as their dihydroxy-metabolites, indicating that accumulation of exogenous norepinephrine and dopamine analogs was within sympathetic storage vesicles. Relative to the doses of dopamine precursors, less 2F- and 6F-norepinephrine accumulated in tissues than tritiated norepinephrine, due largely to inefficient beta-hydroxylation of fluorinated dopamine.

  13. Neuronal uptake and metabolism of 2- and 6-fluorodopamine: false neurotransmitters for positron emission tomographic imaging of sympathetically innervated tissues

    International Nuclear Information System (INIS)

    Eisenhofer, G.; Hovevey-Sion, D.; Kopin, I.J.; Miletich, R.; Kirk, K.L.; Finn, R.; Goldstein, D.S.

    1989-01-01

    The neuronal uptake and metabolism of 2-fluorodopamine (2F-dopamine), 6-fluorodopamine (6F-dopamine) and tritium-labeled dopamine were compared in heart, submaxillary gland and spleen of rats to assess the utility of 18F-labeled 2F- or 6F-dopamine for positron emission tomographic imaging of sympathetically innervated tissues. Tritiated dopamine with and without 2F- or 6F-dopamine, or tritiated 2F-dopamine alone, were injected i.v. into rats that were or were not pretreated with desipramine to block catecholamine neuronal uptake or with reserpine to block vesicular translocation of catecholamines. Tissue and plasma samples were obtained at intervals up to 1 hr after injections. At 1 hr after injection of tritiated dopamine, tritium-labeled norepinephrine, dopamine, dihydroxyphenylacetic acid and dihydroxyphenylglucol accounted for less than 2% of the tritium in plasma but up to 92% of that in tissues; tritiated norepinephrine accounted for 70% or more of the tritium in tissues. In contrast, at 1 hr after injection of tritiated 2F-dopamine, tritiated 2F-norepinephrine accounted for 30 to 46% of the tritium in tissues. Desipramine and reserpine pretreatment blocked the tissue accumulation of tritiated and fluorinated dopamine as well as their dihydroxy-metabolites, indicating that accumulation of exogenous norepinephrine and dopamine analogs was within sympathetic storage vesicles. Relative to the doses of dopamine precursors, less 2F- and 6F-norepinephrine accumulated in tissues than tritiated norepinephrine, due largely to inefficient beta-hydroxylation of fluorinated dopamine

  14. 6-sulfatoxymelatonin levels in pregnant women during workplace and nonworkplace stresses: a potential biologic marker of sympathetic activity.

    Science.gov (United States)

    Katz, V L; Ekstrom, R D; Mason, G A; Golden, R N

    1995-07-01

    Melatonin production is regulated by both catecholamines and sympathetic activity. Urine levels of the major metabolite of melatonin, 6-sulfatoxymelatonin, correlate well with serum melatonin levels and have been used to evaluate sympathetic output. We tested the hypothesis that urinary levels of 6-sulfatoxymelatonin would reflect the change in adrenergic activity on working days compared with nonworking days during pregnancy. Twenty-three healthy pregnant women, employed in a variety of occupations, including physicians, nurses, secretaries, salespeople, and laboratory workers were recruited from the clinics of the University of North Carolina School of Medicine. We measured 6-sulfatoxymelatonin levels in first morning voids and for the subsequent 10 hours at 24, 28, 32, and 36 weeks' gestation. Urine was collected in sets during working days and during nonworking days. 6-Sulfatoxymelatonin was measured by radioimmunoassay. In 11 women we also measured urine catecholamines by high-performance liquid chromatography. Levels of 6-sulfatoxymelatonin output did not change across gestation, although they tended to drift down as pregnancy progressed. Median levels at first morning void were 6.3 micrograms on workdays and 4.6 micrograms on nonworkdays. Although all values were skewed toward work being greater than nonwork, there were large interindividual variations. We therefore compared subjects against themselves and compared work levels for each subject to the corresponding gestational age-matched nonwork value. Among the 23 women, median 6-sulfatoxymelatonin levels were 81% greater during work than nonwork (p < 0.0002) when first morning collections were compared. Daytime urinary excretion of 6-sulfatoxymelatonin on workdays was 38% (p < 0.005) greater than during nonworkdays.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. True or false? Memory is differentially affected by stress-induced cortisol elevations and sympathetic activity at consolidation and retrieval.

    Science.gov (United States)

    Smeets, Tom; Otgaar, Henry; Candel, Ingrid; Wolf, Oliver T

    2008-11-01

    Adrenal stress hormones released in response to acute stress may yield memory-enhancing effects when released post-learning and impairing effects at memory retrieval, especially for emotional memory material. However, so far these differential effects of stress hormones on the various memory phases for neutral and emotional memory material have not been demonstrated within one experiment. This study investigated whether, in line with their effects on true memory, stress and stress-induced adrenal stress hormones affect the encoding, consolidation, and retrieval of emotional and neutral false memories. Participants (N=90) were exposed to a stressor before encoding, during consolidation, before retrieval, or were not stressed and then were subjected to neutral and emotional versions of the Deese-Roediger-McDermott word list learning paradigm. Twenty-four hours later, recall of presented words (true recall) and non-presented critical lure words (false recall) was assessed. Results show that stress exposure resulted in superior true memory performance in the consolidation stress group and reduced true memory performance in the retrieval stress group compared to the other groups, predominantly for emotional words. These memory-enhancing and memory-impairing effects were strongly related to stress-induced cortisol and sympathetic activity measured via salivary alpha-amylase levels. Neutral and emotional false recall, on the other hand, was neither affected by stress exposure, nor related to cortisol and sympathetic activity following stress. These results demonstrate the importance of stress-induced hormone-related activity in enhancing memory consolidation and in impairing memory retrieval, in particular for emotional memory material.

  16. The automotive transmission book

    CERN Document Server

    Fischer, Robert; Jürgens, Gunter; Najork, Rolf; Pollak, Burkhard

    2015-01-01

    This book presents essential information on systems and interactions in automotive transmission technology and outlines the methodologies used to analyze and develop transmission concepts and designs. Functions of and interactions between components and subassemblies of transmissions are introduced, providing a basis for designing transmission systems and for determining their potentials and properties in vehicle-specific applications: passenger cars, trucks, buses, tractors, and motorcycles. With these fundamentals the presentation provides universal resources for both state-of-the-art and future transmission technologies, including systems for electric and hybrid electric vehicles.

  17. Pellicle transmission uniformity requirements

    Science.gov (United States)

    Brown, Thomas L.; Ito, Kunihiro

    1998-12-01

    Controlling critical dimensions of devices is a constant battle for the photolithography engineer. Current DUV lithographic process exposure latitude is typically 12 to 15% of the total dose. A third of this exposure latitude budget may be used up by a variable related to masking that has not previously received much attention. The emphasis on pellicle transmission has been focused on increasing the average transmission. Much less, attention has been paid to transmission uniformity. This paper explores the total demand on the photospeed latitude budget, the causes of pellicle transmission nonuniformity and examines reasonable expectations for pellicle performance. Modeling is used to examine how the two primary errors in pellicle manufacturing contribute to nonuniformity in transmission. World-class pellicle transmission uniformity standards are discussed and a comparison made between specifications of other components in the photolithographic process. Specifications for other materials or parameters are used as benchmarks to develop a proposed industry standard for pellicle transmission uniformity.

  18. Towards an optimal transmission system

    International Nuclear Information System (INIS)

    Calviou, M.

    2005-01-01

    This presentation provided background on National Grid USA and discussed transmission investment in the United States (US) and United Kingdom. It also discussed barriers to transmission investments and improvements, thoughts on solutions and a long-term vision. The presentation identified that transmission investment should follow from clear reliability rules designed to promote better operation and management; investment does not necessarily mean new rights-of-way; and transmission investment should target benefits to customers. It was stated that US transmission investment levels have decreased. A comparison between US and UK transmission investment was presented along with a chart of increasing US congestion costs. Barriers to investment in US transmission include vertical integration; misperception of transmission as a market product; federal and state jurisdiction issues; fragmentation in transmission ownership and operation; rate cap based plans that impact transmission; lack of clarity in cost allocation; and the site selection process. Possible solutions include policy and incentives, promoting independence and resolving structural issues. tabs., figs

  19. Microwave energy transmission

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hiroshi [Kyoto Univ. (Japan)

    1989-03-05

    Laying stress on the technological problems and effect on the environment of microwave energy transmission, recent scientific and engineering problems and related subjects are described. Because no fuel is required for the solar power generation, the power generation system can not be considered as an expensive one when the unit cost of energy is taken into consideration. Some of the important technological problems in the microwave energy transmission are accurate microwave beam control technology to receiving stations and improvement in the efficiency of transmission system. Microwave energy beam has effects on living bodies, communication, and plasma atmosphere of the earth. Microwave energy transmission using a space flyer unit is scheduled. Its objective is the development of microwave wireless transmission technology and the study of the correlation between high power microwave and ionosphere plasma. Experiments on such a small scale application as a microwave driven space ship to bring results seem also important. 12 refs., 13 figs.

  20. Electric transmission technology

    International Nuclear Information System (INIS)

    Shah, K.R.

    1990-01-01

    Electric transmission technology has matured and can transmit bulk power more reliably and economically than the technology 10 years ago.In 1882, Marcel Depres transmitted 15 kW electric power at 2 kV, using a constant direct current; present transmission voltages have risen to ± 600 kV direct current (DC) and 765 kV alternating current (AC), and it is now possible to transmit bulk electric power at voltages as high as ± 1000 kV DC and 1500 kV AC. Affordable computer systems are now available to optimize transmission reliably. New materials have reduced the bulk of insulation for lines and equipment. New conducting materials and configurations have reduced losses in transmission. Advances in line structures and conductor motion, understanding of flashover characteristics of insulators and air-gaps and electrical performance of lines have resulted in more compact urban transmission lines. (author). 15 refs., 7 tabs., 11 figs

  1. {sup 123}I-Labelled metaiodobenzylguanidine for the evaluation of cardiac sympathetic denervation in early stage amyloidosis

    Energy Technology Data Exchange (ETDEWEB)

    Noordzij, Walter; Glaudemans, Andor W.J.M.; Rheenen, Ronald W.J. van; Dierckx, Rudi A.J.O.; Slart, Riemer H.J.A. [University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, PO Box 30.001, Groningen (Netherlands); Hazenberg, Bouke P.C. [University of Groningen, Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [University of Groningen, Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands)

    2012-10-15

    Cardiac amyloidosis is a rare disorder, but it may lead to potentially life-threatening restrictive cardiomyopathy. Cardiac manifestations frequently occur in primary amyloidosis (AL) and familial amyloidosis (ATTR), but are uncommon in secondary amyloidosis (AA). Echocardiography is the method of choice for assessing cardiac amyloidosis. Amyloid deposits impair the function of sympathetic nerve endings. Disturbance of myocardial sympathetic innervations may play an important role in the remodelling process. {sup 123}I-MIBG can detect these innervation changes. Patients with biopsy-proven amyloidosis underwent general work-up, echocardiography and {sup 123}I-MIBG scintigraphy. Left ventricular internal dimensions and wall thickness were measured, and highly refractile cardiac echoes (sparkling) were analysed. Early (15 min) and late (4 h) heart-to-mediastinum ratio (HMR) and wash-out rate were determined after administration of MIBG. Included in the study were 61 patients (30 women and 31 men; mean age 62 years; 39 AL, 11 AA, 11 ATTR). Echocardiographic parameters were not significantly different between the groups. Sparkling was present in 72 % of ATTR patients, in 54 % of AL patients and in 45 % of AA patients. Mean late HMR in all patients was 2.3 {+-} 0.75, and the mean wash-out rate was 8.6 {+-} 14 % (the latter not significantly different between the patient groups). Late HMR was significantly lower in patients with echocardiographic signs of amyloidosis than in patients without (2.0 {+-} 0.70 versus 2.8 {+-} 0.58, p < 0.001). Wash-out rates were significantly higher in these patients (-3.3 {+-} 9.9 % vs. 17 {+-} 10 %, p < 0.001). In ATTR patients without echocardiographic signs of amyloidosis, HMR was lower than in patients with the other types (2.0 {+-} 0.59 vs. 2.9 {+-} 0.50, p = 0.007). MIBG HMR is lower and wash-out rate is higher in patients with echocardiographic signs of amyloidosis. Also, {sup 123}I-MIBG scintigraphy can detect cardiac denervation in

  2. Wireless data signal transmission system

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a method for providing a radio frequency signal for transmission, a system for providing a radio frequency signal for transmission and a method for wireless data transmission between a transmitter and a receiver.......The present invention relates to a method for providing a radio frequency signal for transmission, a system for providing a radio frequency signal for transmission and a method for wireless data transmission between a transmitter and a receiver....

  3. Drivers of Tuberculosis Transmission.

    Science.gov (United States)

    Mathema, Barun; Andrews, Jason R; Cohen, Ted; Borgdorff, Martien W; Behr, Marcel; Glynn, Judith R; Rustomjee, Roxana; Silk, Benjamin J; Wood, Robin

    2017-11-03

    Measuring tuberculosis transmission is exceedingly difficult, given the remarkable variability in the timing of clinical disease after Mycobacterium tuberculosis infection; incident disease can result from either a recent (ie, weeks to months) or a remote (ie, several years to decades) infection event. Although we cannot identify with certainty the timing and location of tuberculosis transmission for individuals, approaches for estimating the individual probability of recent transmission and for estimating the fraction of tuberculosis cases due to recent transmission in populations have been developed. Data used to estimate the probable burden of recent transmission include tuberculosis case notifications in young children and trends in tuberculin skin test and interferon γ-release assays. More recently, M. tuberculosis whole-genome sequencing has been used to estimate population levels of recent transmission, identify the distribution of specific strains within communities, and decipher chains of transmission among culture-positive tuberculosis cases. The factors that drive the transmission of tuberculosis in communities depend on the burden of prevalent tuberculosis; the ways in which individuals live, work, and interact (eg, congregate settings); and the capacity of healthcare and public health systems to identify and effectively treat individuals with infectious forms of tuberculosis. Here we provide an overview of these factors, describe tools for measurement of ongoing transmission, and highlight knowledge gaps that must be addressed. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  4. Evaluation of the sympathetic nervous system in silent ischemia with 123I-metaiodobenzylguanidine (MIBG)

    International Nuclear Information System (INIS)

    Guertner, C.; Schacherer, C.; Krause, B.J.; Zickmann, J.; Klepzig, H. Jr.; Hoer, G.

    1996-01-01

    Stress and rest myocardial perfusion scintigraphy using either Thallium-201 or 99m Tc-isonitrile was performed in SPECT technique in order to localize ischemia or scar associated perfusion defects. 15 min and 4 h p.i. static anterior 123 I-MIBG uptake was acquired. In order to localize norepinephrine depletion 4 h p.i. additional 123 I-MIBG SPECT acquistion was performed. Incidence of arrhythmias was investigated by Holter ECG. Patients with diabetes mellitus were excluded. SPECT images showed in all patients regional 123 I-MIBG depletion which corresponded with scintigraphically infarcted or ischemic regions. Well perfused myocardial regions matched with regular 123 I-MIBG utpake. There was no evidence of increased arrhythmias in long-term ECG. The finding of regular 123 I-MIBG uptake in well-perfused myocardium and infarction- or ischemia-associated regional 123 I-MIBG depletion confirms that silent ischemia is not caused by a global sympathetic nervous dysfunction in a sense of cardiac polyneuropathy. (orig.) [de

  5. Possibilities for Advanced Encoding Techniques at Signal Transmission in the Optical Transmission Medium

    Directory of Open Access Journals (Sweden)

    Filip Čertík

    2016-01-01

    Full Text Available This paper presents a possible simulation of negative effects in the optical transmission medium and an analysis for the utilization of different signal processing techniques at the optical signal transmission. An attention is focused on the high data rate signal transmission in the optical fiber influenced by linear and nonlinear environmental effects presented by the prepared simulation model. The analysis includes possible utilization of OOK, BPSK, DBPSK, BFSK, QPSK, DQPSK, 8PSK, and 16QAM modulation techniques together with RS, BCH, and LDPC encoding techniques for the signal transmission in the optical fiber. Moreover, the prepared simulation model is compared with real optical transmission systems. In the final part, a comparison of the selected modulation techniques with different encoding techniques and their implementation in real transmission systems is shown.

  6. Transmissions in vehicles 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the international VDI congress 'Gears in vehicles 2010' of the VDI Wissensforum GmbH (Duesseldorf, Federal Republic of Germany) between 22nd and 23rd June, 2010, in Friedrichshafen (Federal Republic of Germany), the following lectures were held: (1) 8HP70H - The moldhybrid transmission from ZF - Cjallenges and achievements (P. Gutmann); (2) GETRAG boosted range extender - A highly flexible electric powertrain for maximum CO{sub 2} reduction (S. Huepkes); (3) E-Transmission between full-hybrid and E-drive (P. Tenberge); (4) Reducing NO{sub x} and particulate emissions in electrified drivelines (R. Kuberczyk); (5) Simulation aided HEV and EV development: from the component to the whole powertrain (A. Gacometti); (6) Investigations on operating behaviour of the optimized CVT hybrid driveline (B.-R. Hoehn); (7) Customer-oriented dimensioning of electrified drivetrains (M. Eghtessad); (8) Decentralized optimal control strategy for parallel hybrid electric vehicles (A. Frenkel); (9) The new generation 6-speed automatic transmission AF40 (G. Bednarek); (10) Customized mechatronic solutions for integrated transmission control units (M. Wieczorek); (11) The optimal automatic transmission for front-transverse applications - Planetary transmissions or dual clutch transmissions? (G. Gumpoltsberger); (12) The new shift-by-wire gearshift lever for the Audi A8 - Requirements and concept (T. Guttenbergere); (13) The new shift-by-wire gearshift lever for the Audi A8 - Realization (A. Giefer); (14) Fuel-efficient transmissions of the future: Calculation of the efficiency factor for vehicle transmissions (B. Volpert); (15) HT-ACM: A new polymer generation for static and dynamic gearbox sealing solutions (E. Osen); (16) 'Energy efficiency equipped solutions by SKF' for power train applications - A contribution to CO{sub 2} - emission reduction and sustainability (T. Bobke); (17) 6-Ratio planetary shift transmission controlled by 4 external brakes, and design

  7. Sympathetic skin response and R-R interval variation in cases with rheumatoid arthritis.

    Science.gov (United States)

    Gozke, E; Erdogan, N; Akyuz, G; Turan, B; Akyuz, E; Us, O

    2003-03-01

    To investigate the autonomic nervus system involvement in cases with rheumatoid arthritis (RA) by assesing sympathetic skin response (SSR) and R-R interval variation (RRIV), 14 healthy women and 10 women with RA, all of them without clinic dysautonomies were examined. SSR's were recorded palmar surface of both hands and soles of both feet, after stimulating median and tibial nerves individually. RRIV's were assessed at rest and during six deep breathing in one minute with electrodes placed on dorsal surfaces of both hands. SSR could not be obtained from lower extremities of one case with RA. We could not find any significant difference between two groups in terms of SSR latencies. RRIV values obtained during deep breathing to those recorded at rest (D%/R%) was found to be significantly lower in RA cases than healthy controls. RRIV values increased with deep breathing in healthy subjects, while they decreased in 50% of the RA cases. We conclude that assessment of SSR and RRIV are valuble methods for revelation of subclinical autonomic involvement in cases with RA.

  8. Role of adrenal hormones in the synthesis of noradrenaline in cardiac sympathetic neurones

    Science.gov (United States)

    Bhagat, B.

    1969-01-01

    1. Adrenalectomy or adrenal demedullation affected neither the levels of endogenous catecholamines in the rat heart nor the accumulation of 3H-noradrenaline 1 hr after its intravenous administration. 2. Twenty-four hours after intravenous administration of labelled amine, however, its retention was markedly reduced in the heart of adrenalectomized or demedullated rats. Ganglionic blockade prevented this reduction. 3. Rate calculations from the decline of catecholamine levels after blockade of synthesis with α-methyl-tyrosine showed that cardiac synthesis of noradrenaline increased about four-fold after demedullation and about three-fold after adrenalectomy. This increase in synthesis may compensate for the loss of circulating catecholamines. 4. There was no change in catechol-o-methyl-transferase activity, but monoamine oxidase activity was increased in the homogenates of the heart of adrenalectomized and demedullated rats. The increase in the cardiac monoamine oxidase activity was markedly greater in the adrenalectomized rats than in the demedullated rats. 5. It is suggested that adrenal cortex insufficiency may modulate the rate of synthesis of noradrenaline and monoamine oxidase activity in cardiac sympathetic neurones. PMID:5360339

  9. Effect of amine uptake inhibitors on the uptake of 14C-bretylium in intact and degenerating sympathetic nerves of the rat

    International Nuclear Information System (INIS)

    Almgren, O.

    1981-01-01

    The effect of different amine uptake inhibitors on the accumulation of 14 C-bretylium in sympathetically denervated or decentralized salivary glands were studied in vivo in rats 11-14 hours after the surgical intervention. The time period chosen is known to be critical for the delaying effect of bretylium on the degeneration transmitter release in sympathetically innervated organs. Cocaine, desmethylimipramine (DMI), protriptyline or reserpine all depressed the uptake of 14 C-bretylium in both denervated and decentralized salivary glands, cocaine being the most efficient one. DMI and protriptyline, but not cocaine inhibit the degeneration delaying effect of bretylium, while all three agents inhibit amine uptake at level of the nerve cell membrane. Apparently, bretylium reaches the critical sites of its degeneration delaying action by the axonal amine pump but only a small fraction of the drug entering the degenerating adrenergic nerve terminal is needed at the critical sites to interact with the degeneration processes. The difference between the tricyclic antidepressants on one hand and cocaine on the other with respect to the effect on the degeneration delaying action of bretylium, must depend on some action different from the axonal membrane uptake inhibition. Reserpine which is known not to interfere with the delaying effect of bretylium on the denervation degeneration did reduce the uptake of 14 C-bretylium. This fact seems to indicate that the site of action of bretylium is located outside the adrenergic nerve granules. (author)

  10. Transmission Integration | Grid Modernization | NREL

    Science.gov (United States)

    Transmission Integration Transmission Integration The goal of NREL's transmission integration integration issues and provide data, analysis, and models to enable the electric power system to more and finding solutions to address them to enable transmission grid integration. Capabilities Power

  11. Thyroid hormone interacts with the sympathetic nervous system to modulate bone mass and structure in young adult mice.

    Science.gov (United States)

    Fonseca, Tatiana L; Teixeira, Marilia B C G; Miranda-Rodrigues, Manuela; Rodrigues-Miranda, Manuela; Silva, Marcos V; Martins, Gisele M; Costa, Cristiane C; Arita, Danielle Y; Perez, Juliana D; Casarini, Dulce E; Brum, Patricia C; Gouveia, Cecilia H A

    2014-08-15

    To investigate whether thyroid hormone (TH) interacts with the sympathetic nervous system (SNS) to modulate bone mass and structure, we studied the effects of daily T3 treatment in a supraphysiological dose for 12 wk on the bone of young adult mice with chronic sympathetic hyperactivity owing to double-gene disruption of adrenoceptors that negatively regulate norepinephrine release, α(2A)-AR, and α(2C)-AR (α(2A/2C)-AR(-/-) mice). As expected, T3 treatment caused a generalized decrease in the areal bone mineral density (aBMD) of WT mice (determined by DEXA), followed by deleterious effects on the trabecular and cortical bone microstructural parameters (determined by μCT) of the femur and vertebra and on the biomechanical properties (maximum load, ultimate load, and stiffness) of the femur. Surprisingly, α(2A/2C)-AR(-/-) mice were resistant to most of these T3-induced negative effects. Interestingly, the mRNA expression of osteoprotegerin, a protein that limits osteoclast activity, was upregulated and downregulated by T3 in the bone of α(2A/2C)-AR(-/-) and WT mice, respectively. β1-AR mRNA expression and IGF-I serum levels, which exert bone anabolic effects, were increased by T3 treatment only in α(2A/2C)-AR(-/-) mice. As expected, T3 inhibited the cell growth of calvaria-derived osteoblasts isolated from WT mice, but this effect was abolished or reverted in cells isolated from KO mice. Collectively, these findings support the hypothesis of a TH-SNS interaction to control bone mass and structure of young adult mice and suggests that this interaction may involve α2-AR signaling. Finally, the present findings offer new insights into the mechanisms through which TH regulates bone mass, structure, and physiology. Copyright © 2014 the American Physiological Society.

  12. Deferoxamine improves coronary vascular responses to sympathetic stimulation in patients with type 1 diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Naoya; Bengel, Frank M.; Nekolla, Stephan G.; Drzezga, Alexander E.; Schwaiger, Markus [Nuklearmedizinische Klinik und Poliklinik, Klinikum Rechts der Isar, Technischen Universitaet Muenchen (Germany); Schnell, Oliver; Rihl, Julian; Standl, Eberhard [Diabetes Research Center, Schwabing City Hospital, Munich (Germany)

    2002-07-01

    Effects of oxygen-derived free radicals are suggested to be a potential pathogenic factor for endothelial dysfunction. In this study we sought to evaluate the effect of hydroxyl radicals on the human coronary vascular bed in type I diabetes mellitus using positron emission tomography (PET). Thirteen patients with type 1 diabetes underwent PET using nitrogen-13 ammonia at rest and during sympathetic stimulation with the cold pressor test (CPT). The rest-stress study protocol was repeated twice (on different days) using pre-stress infusion of either saline as placebo or deferoxamine, an iron chelator which inhibits generation of hydroxyl radicals. At rest, global MBF was higher in diabetics than in normal controls (78.1{+-}17.5 vs 63.2{+-}14.9 mg 100 g{sup -1} min{sup -1}, P<0.05) and myocardial vascular resistance (MVR) showed a trend towards lower values (patients, 1.28{+-}0.35; controls, 1.55{+-}0.32, P=NS). CPT increased MBF in all controls while 7/13 diabetics responded normally. CPT decreased MVR in 10/13 controls but in only 4/13 diabetics. There was no significant difference in the duration of diabetes, HbA1c, daily insulin dose, body mass index, or lipid profiles between patients with and patients without abnormal MBF or MVR responses. Pre-stress infusion of deferoxamine normalized MBF response in all six patients, and MVR response in six of the nine patients. Another group consisting of seven patients underwent a rest-rest protocol after infusion of deferoxamine and saline to investigate the effect of deferoxamine on resting MBF. Deferoxamine did not change the resting MBF (deferoxamine, 81{+-}17 ml 100 g{sup -1} min{sup -1}; saline, 75{+-}19 ml 100 g{sup -1} min{sup -1}, P=NS) or MVR (deferoxamine, 1.0{+-}0.5 mmHg ml{sup -1} 100 g{sup -1} min{sup -1}; saline, 1.2{+-}0.6 mmHg ml{sup -1} 100 g{sup -1} min{sup -1}, P=NS). In conclusion, inhibition of hydroxyl radical formation using deferoxamine significantly improved the responses of coronary

  13. Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial.

    Science.gov (United States)

    Worthley, Stephen G; Tsioufis, Costas P; Worthley, Matthew I; Sinhal, Ajay; Chew, Derek P; Meredith, Ian T; Malaiapan, Yuvi; Papademetriou, Vasilios

    2013-07-01

    Catheter-based renal artery sympathetic denervation has emerged as a novel therapy for treatment of patients with drug-resistant hypertension. Initial studies were performed using a single electrode radiofrequency catheter, but recent advances in catheter design have allowed the development of multi-electrode systems that can deliver lesions with a pre-determined pattern. This study was designed to evaluate the safety and efficacy of the EnligHTN(™) multi-electrode system. We conducted the first-in-human, prospective, multi-centre, non-randomized study in 46 patients (67% male, mean age 60 years, and mean baseline office blood pressure 176/96 mmHg) with drug-resistant hypertension. The primary efficacy objective was change in office blood pressure from baseline to 6 months. Safety measures included all adverse events with a focus on the renal artery and other vascular complications and changes in renal function. Renal artery denervation, using the EnligHTN system significantly reduced the office blood pressure from baseline to 1, 3, and 6 months by -28/10, -27/10 and -26/10 mmHg, respectively (P renal artery injury or other serious vascular complications occurred. Small, non-clinically relevant, changes in average estimated glomerular filtration rate were reported from baseline (87 ± 19 mL/min/1.73 m2) to 6 months post-procedure (82 ± 20 mL/min/1.73 m2). Renal sympathetic denervation, using the EnligHTN multi-electrode catheter results in a rapid and significant office blood pressure reduction that was sustained through 6 months. The EnligHTN system delivers a promising therapy for the treatment of drug-resistant hypertension.

  14. The Influence of Prolonged Acetylsalicylic Acid Supplementation-Induced Gastritis on the Neurochemistry of the Sympathetic Neurons Supplying Prepyloric Region of the Porcine Stomach.

    Directory of Open Access Journals (Sweden)

    Katarzyna Palus

    Full Text Available This experiment was designed to establish the localization and neurochemical phenotyping of sympathetic neurons supplying prepyloric area of the porcine stomach in a physiological state and during acetylsalicylic acid (ASA induced gastritis. In order to localize the sympathetic perikarya the stomachs of both control and acetylsalicylic acid treated (ASA group animals were injected with neuronal retrograde tracer Fast Blue (FB. Seven days post FB injection, animals were divided into a control and ASA supplementation group. The ASA group was given 100 mg/kg of b.w. ASA orally for 21 days. On the 28th day all pigs were euthanized with gradual overdose of anesthetic. Then fourteen-micrometer-thick cryostat sections were processed for routine double-labeling immunofluorescence, using primary antisera directed towards tyrosine hydroxylase (TH, dopamine β-hydroxylase (DβH, neuropeptide Y (NPY, galanin (GAL, neuronal nitric oxide synthase (nNOS, leu 5-enkephalin (LENK, cocaine- and amphetamine- regulated transcript peptide (CART, calcitonin gene-related peptide (CGRP, substance P (SP and vasoactive intestinal peptide (VIP. The data obtained in this study indicate that postganglionic sympathetic nerve fibers supplying prepyloric area of the porcine stomach originate from the coeliac-cranial mesenteric ganglion complex (CCMG. In control animals, the FB-labelled neurons expressed TH (94.85 ± 1.01%, DβH (97.10 ± 0.97%, NPY (46.88 ± 2.53% and GAL (8.40 ± 0.53%. In ASA group, TH- and DβH- positive nerve cells were reduced (85.78 ± 2.65% and 88.82 ± 1.63% respectively. Moreover, ASA- induced gastritis resulted in increased expression of NPY (76.59 ± 3.02% and GAL (26.45 ± 2.75% as well as the novo-synthesis of nNOS (6.13 ± 1.11% and LENK (4.77 ± 0.42% in traced CCMG neurons. Additionally, a network of CART-, CGRP-, SP-, VIP-, LENK-, nNOS- immunoreactive (IR nerve fibers encircling the FB-positive perikarya were observed in both intact and ASA

  15. Sympathetic Tone Induced by High Acoustic Tempo Requires Fast Respiration.

    Directory of Open Access Journals (Sweden)

    Ken Watanabe

    Full Text Available Many studies have revealed the influences of music, and particularly its tempo, on the autonomic nervous system (ANS and respiration patterns. Since there is the interaction between the ANS and the respiratory system, namely sympatho-respiratory coupling, it is possible that the effect of musical tempo on the ANS is modulated by the respiratory system. Therefore, we investigated the effects of the relationship between musical tempo and respiratory rate on the ANS. Fifty-two healthy people aged 18-35 years participated in this study. Their respiratory rates were controlled by using a silent electronic metronome and they listened to simple drum sounds with a constant tempo. We varied the respiratory rate-acoustic tempo combination. The respiratory rate was controlled at 15 or 20 cycles per minute (CPM and the acoustic tempo was 60 or 80 beats per minute (BPM or the environment was silent. Electrocardiograms and an elastic chest band were used to measure the heart rate and respiratory rate, respectively. The mean heart rate and heart rate variability (HRV were regarded as indices of ANS activity. We observed a significant increase in the mean heart rate and the low (0.04-0.15 Hz to high (0.15-0.40 Hz frequency ratio of HRV, only when the respiratory rate was controlled at 20 CPM and the acoustic tempo was 80 BPM. We suggest that the effect of acoustic tempo on the sympathetic tone is modulated by the respiratory system.

  16. Sympathetic Tone Induced by High Acoustic Tempo Requires Fast Respiration.

    Science.gov (United States)

    Watanabe, Ken; Ooishi, Yuuki; Kashino, Makio

    2015-01-01

    Many studies have revealed the influences of music, and particularly its tempo, on the autonomic nervous system (ANS) and respiration patterns. Since there is the interaction between the ANS and the respiratory system, namely sympatho-respiratory coupling, it is possible that the effect of musical tempo on the ANS is modulated by the respiratory system. Therefore, we investigated the effects of the relationship between musical tempo and respiratory rate on the ANS. Fifty-two healthy people aged 18-35 years participated in this study. Their respiratory rates were controlled by using a silent electronic metronome and they listened to simple drum sounds with a constant tempo. We varied the respiratory rate-acoustic tempo combination. The respiratory rate was controlled at 15 or 20 cycles per minute (CPM) and the acoustic tempo was 60 or 80 beats per minute (BPM) or the environment was silent. Electrocardiograms and an elastic chest band were used to measure the heart rate and respiratory rate, respectively. The mean heart rate and heart rate variability (HRV) were regarded as indices of ANS activity. We observed a significant increase in the mean heart rate and the low (0.04-0.15 Hz) to high (0.15-0.40 Hz) frequency ratio of HRV, only when the respiratory rate was controlled at 20 CPM and the acoustic tempo was 80 BPM. We suggest that the effect of acoustic tempo on the sympathetic tone is modulated by the respiratory system.

  17. Usefulness of severe cardiac sympathetic dysfunction to predict the occurrence of rapid atrial fibrillation in patients with Wolff-Parkinson-White syndrome.

    Science.gov (United States)

    Akutsu, Yasushi; Kaneko, Kyouichi; Kodama, Yusuke; Li, Hui-Ling; Asano, Taku; Suyama, Jumpei; Tanno, Kaoru; Namiki, Atsuo; Shinozuka, Akira; Gokan, Takehiko; Kobayashi, Youichi

    2013-09-01

    Atrial fibrillation (AF) can be a potentially life-threatening arrhythmia when it conducts rapidly through the accessory pathway, which was not predicted by the noninvasive method. We evaluated the cardiac sympathetic activity for predicting the occurrence of AF in patients with Wolff-Parkinson-White (WPW) syndrome. Iodine-123 metaiodobenzylguanidine scintigraphy was performed under stable sinus rhythm conditions at rest syndrome than in the normal control group, and in the 15 patients with AF induced during EPS than in the 30 patients without AF (p syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Sympathetic cooling in a rubidium cesium mixture: Production of ultracold cesium atoms

    International Nuclear Information System (INIS)

    Haas, M.

    2007-01-01

    This thesis presents experiments for the production of ultracold rubidium cesium mixture in a magnetic trap. The long-termed aim of the experiment is the study of the interaction of few cesium atoms with a Bose-Einstein condensate of rubidium atoms. Especially by controlled variation of the cesium atom number the transition in the description of the interaction by concepts of the one-particle physics to the description by concepts of the many-particle physics shall be studied. The rubidium atoms are trapped in a magneto-optical trap (MOT) and from there reloaded into a magnetic trap. In this the rubidium atoms are stored in the state vertical stroke f=2,m f =2 right angle of the electronic ground state and evaporatively cooled by means of microwave-induced transitions into the state vertical stroke f=1,m f =1] (microwave cooling). The cesium atoms are also trppaed in a MOT and into the same magnetic trap reloaded, in which they are stored in the state vertical stroke f=4,m f =4 right angle of the electronic ground state together with rubidium. Because of the different hyperfine splitting only rubidium is evaporatively cooled, while cesium is cooled jointly sympathetically - i.e. by theramal contact via elastic collisions with rubidium atoms. The first two chapters contain a description of interatomic interactions in ultracold gases as well as a short summary of theoretical concepts in the description of Bose-Einstein condensates. The chapters 3 and 4 contain a short presentation of the methods applied in the experiment for the production of ultracold gases as well as the experimental arrangement; especially in the framework of this thesis a new coil system has been designed, which offers in view of future experiments additionally optical access for an optical trap. Additionally the fourth chapter contains an extensive description of the experimental cycle, which is applied in order to store rubidium and cesium atoms together into the magnetic trap. The last chapter

  19. Transmission rights and market power

    International Nuclear Information System (INIS)

    Bushnell, J.

    1999-01-01

    Most of the concerns about physical transmission rights relate to the ability to implicitly or explicitly remove that transmission capacity from the market-place. Under a very strict form of physical right, owners could simply choose not to sell it if they don't want to use it. Modifications that require the release of spare capacity back into an open market could potentially alleviate this problem but there is concern that such releases would not occur far enough in advance to be of much use to schedulers. Similarly, the transmission capacity that is made available for use by non-rights holders can also be manipulated by the owners of transmission rights. The alternative form, financial transmission rights, provide to their owners congestion payments, but physical control of transmission paths. In electricity markets such as California's, even financial transmission rights could potentially be utilized to effectively withhold transmission capacity from the marketplace. However, methods for withholding transmission capacity are somewhat more convoluted, and probably more difficult, for owners of financial rights than for owners of physical rights. In this article, the author discusses some of the potential concerns over transmission rights and their use for the exercise of various forms of market power

  20. Alternative approaches to transmission investment

    Energy Technology Data Exchange (ETDEWEB)

    Welch, J.L. [International Transmission Co., Detroit, MI (United States)

    2004-07-01

    The International Transmission Company (ITC) is an independent power transmission company that owns, operates and maintains the high voltage transmission system in southeastern Michigan. The company's current focus is on investing in the transmission infrastructure to improve reliability, relieve congestion, improve access to generation and reduce energy costs for consumers. There is a need for investment in power transmission. Trends indicate that power transactions are on the rise while transmission investment is lagging because pricing protocols are inadequate and there is no regional tariff mechanism to allocate the benefits of new investment. The presentation reviewed the applicability of FTRs to transmission owners and the pitfalls of participant funding pricing. It also outlined the regional benefit allocation mechanism (RBAM) with an illustrative example. It was concluded that existing pricing policies must be improved to address the growing need for transmission investment. RBAM is needed to help investors recover costs from project beneficiaries. figs.