CP violation and modular symmetries
International Nuclear Information System (INIS)
Dent, Thomas
2001-01-01
We reconsider the origin of CP violation in fundamental theory. Existing string models of spontaneous CP violation make ambiguous predictions, due to the arbitrariness of CP transformation and the apparent noninvariance of the results under duality. We find a modular CP invariance condition, applicable to any predictive model of spontaneous CP violation, which circumvents these problems; it strongly constrains CP violation by heterotic string moduli. The dilaton is also evaluated as a source of CP violation, but is likely experimentally excluded. We consider the prospects for explaining CP violation in strongly coupled strings and brane worlds
CP violation and modular symmetries
Dent, Thomas
2001-01-01
We reconsider the origin of CP violation in fundamental theory. Existing string models of spontaneous CP violation make ambiguous predictions, due to the arbitrariness of CP transformation and the apparent non-invariance of the results under duality. We find an unambiguous modular CP invariance condition, applicable to predictive models of spontaneous CP violation, which circumvents these problems; it strongly constrains CP violation by heterotic string moduli. The dilaton is also evaluated a...
Symmetry-violating kaon decays
International Nuclear Information System (INIS)
Herczeg, P.
1979-01-01
The content of this talk comprises two parts. In the first, an analysis of the muon number violating decay modes of the K-mesons is given. Subsequently, some new developments in the field of CP-violation are reviewed and the question of time-reversal invariance and the status of CPT-invariance are briefly considered. (auth)
Symmetry violation in weak decays
Vos, Kimberley Keri
2016-01-01
Our current knowledge of particle physics is described by the Standard Model (SM). This model, however, leaves important observations unexplained. To answer these outstanding questions, as of yet, unknown physics is required. In the search for new physics, symmetries and their breaking play a
Violation of Particle Anti-particle Symmetry
CERN. Geneva
2001-01-01
Symmetry is a fundamental concept which can be found in the whole range of human activities e. g. from arts to science. The beauty of a statues is often related to its symmetric form. In physics, all the laws are related to some sort of symmetry. Equally important is a small breakdown ofsymmetry. Even for the case of a statue, its beauty might be enhanced by introducing small distortions. In this course, we investigate the role symmetry in the world of elementary particles. Some symmetries found there are very similar to those which can be seen in our daily life, while others are more exotic and related to the quantum nature of the elementary particles. Our particular focus ismade on symmetry and its violation between the matter and anti-matter, known as CP violation. It is experimentally well established that particleand anti-particle behave a tiny bit differently in the world of elementary particles. We discuss how this would be explained and how we can extendour knowledge. Evolution of our universe is stro...
Radiative violation of CP-symmetry
International Nuclear Information System (INIS)
Galvan Herrera, J.B.
1990-01-01
The left-right quiral symmetry is not conserved by the Standard model. A subgroup of the standard gauge group (SU(2) L ) breaks this symmetry in a explicit way. Moreover, the standard model, if there are theree or more matter generations, violates the CP discrete symmetry. This prediction has been experimentally demonstrated correct in the Kaon anti Kaon system. In this work some possible explanations to the CP violation parameter magnitude are researched. We have studied the variation of the Kobayashi-Maskawa matrix with the energy scale. To realize this work we have developed a general method to calculate the renormalization group equations of the Kobayashi-Maskawa matrix parameters. From these equations we could also calculate the renormalization group equation of the J parameter that characterizes the CP violation. This calculus has been applied in a concrete example: a typical supersymmetric model from superstring theories. This model can be seen like a natural extension of the supersymmetric standard model. This kind of models have a gauge group bigger that the standard one more particles and new terms of the Lagrangian. We have verified that such model provides us of a correct low energy fenomenology and, moreover other results, some particle spectrums have been developed. In the elaboration of this model some conditions, that the model has to respected to be compatible with the actual fenomenology, have been studied. The most interesting results of this thesis are the develop of a general method to calculate the renormalization group equations of the Kobayashi-Maskawa matrix parameters and the develop of a new mechanism of the radiative violation. This mechanism is related with the new terms of the Lagrangian. (Author)
Experimental tests of charge symmetry violation in parton distributions
International Nuclear Information System (INIS)
Londergan, J.T.; Murdock, D.P.; Thomas, A.W.
2005-01-01
Recently, a global phenomenological fit to high energy data has included charge symmetry breaking terms, leading to limits on the allowed magnitude of such effects. We discuss two possible experiments that could search for isospin violation in valence parton distributions. We show that, given the magnitude of charge symmetry violation consistent with existing global data, such experiments might expect to see effects at a level of several percent. Alternatively, such experiments could significantly decrease the upper limits on isospin violation in parton distributions
Isospin symmetry violation, meson production and η-nucleus ...
Indian Academy of Sciences (India)
Meson production; meson–nucleus interaction; charge symmetry. PACS Nos 13.60.Le; 13.75.-n. 1. Introduction ... sibility to investigate isospin symmetry violation in the pseudoscalar meson sector is by comparing the cross-section of the .... A test measurement was performed with this set-up and more measurements are in ...
Origin of constrained maximal CP violation in flavor symmetry
He, Hong-Jian; Rodejohann, Werner; Xu, Xun-Jie
2015-12-01
Current data from neutrino oscillation experiments are in good agreement with δ = -π/2 and θ23 =π/4 under the standard parametrization of the mixing matrix. We define the notion of ;constrained maximal CP violation; (CMCPV) for predicting these features and study their origin in flavor symmetry. We derive the parametrization-independent solution of CMCPV and give a set of equivalent definitions for it. We further present a theorem on how the CMCPV can be realized. This theorem takes the advantage of residual symmetries in neutrino and charged lepton mass matrices, and states that, up to a few minor exceptions, (| δ | ,θ23) = (π/2 ,π/4) is generated when those symmetries are real. The often considered μ- τ reflection symmetry, as well as specific discrete subgroups of O(3), is a special case of our theorem.
Parity violating NN forcES in the quark compound bag model
International Nuclear Information System (INIS)
Simonov, Yu.A.
1982-01-01
Parity violation (PV) in the interaction is considered as due to the Weinberg-Salam quark-quark interaction inside the six-quark bag. The initial and final strong interaction is described within the same quark compound bag (QCB) model, where the NN coupling to the six quark QCB is defined from the NN experimental data. The resulting PV amplitude contains no free parameters and allows therefore an unambiguous test of the QCB model. An estimate of the 1 S 0 → 3 P 0 contribution to the proton-proton asymmetry is in a rough agreement with experimental data [ru
Hierarchies of R-violating interactions from Family Symmetries
Ellis, Jonathan Richard; Ross, Graham G; Ellis, John; Lola, Smaragda; Ross, Graham G.
1998-01-01
We investigate the possibility of constructing models of R-violating LQD Yukawa couplings using a single U(1) flavour-symmetry group and supermultiplet charge assignments that are compatible with the known hierarchies of quark and lepton masses. The mismatch of mass and current eigenstates inferred from the known charged-current mixing induces the propagation of strong phenomenological constraints on some R-violating couplings to many others. Applying these constraints, we look for flavour-symmetry models that are consistent with different squark-production hypotheses devised to explain the possible HERA large-Q^2 anomaly. The e^+ d -> stop interpretation of the HERA data is accommodated relatively easily, at the price of postulating an extra parity. The e^+ s -> stop interpretation of the events requires models to have only small (2,3) mixing in the down quark sector. The e^+ d -> scharm mechanism cannot be accommodated without large violations of squark-mass universality, due to the very strong experimental...
The Search for Fundamental Symmetry Violation in Radium Nuclei
Dietrich, Matthew; Bishof, Michael; Bailey, Kevin; Greene, John; Mueller, Peter; O'Connor, Thomas; Lu, Zheng-Tian; Rabga, Tenzin; Ready, Roy; Singh, Jaideep
2017-09-01
Electric dipole moments (EDMs) are signatures of time-reversal, parity, and charge-parity (CP) violation, which makes them a sensitive probe of expected new physics beyond the Standard Model. Due to its large nuclear octupole deformation and high atomic mass, the radioactive Ra-225 isotope is a favorable EDM case; it is particularly sensitive to CP-violating interactions in the nuclear medium. We have developed a cold-atom approach of measuring the atomic EDM of atoms held stationary in an optical dipole trap, which we have used to place the only upper limit on the EDM of radium, |d(225Ra)|EDM, but also the first time the EDM of any octupole deformed species has been measured. We will present results on a new approach to spin detection that we expect to improve our EDM sensitivity by a factor of 20. Combined with upcoming improvements to our electric field generation, the next measurement should be competitive with the best neutron EDM result, in terms of sensitivity to CP-violating interactions. The Search for Fudamental Symmetry Violation in Radium Nuclei. This work is supported by the U.S. DOE, Office of Science, Office of Nuclear Physics, under Contract DE-AC02-06CH11357.
Search for charge symmetry violation in np elastic scattering
Energy Technology Data Exchange (ETDEWEB)
Abegg, R. (TRIUMF, Vancouver, BC (Canada)); Davis, C.A. (TRIUMF, Vancouver, BC (Canada)); Delheij, P.P.J. (TRIUMF, Vancouver, BC (Canada)); Helmer, R. (TRIUMF, Vancouver, BC (Canada)); Miller, C.A. (TRIUMF, Vancouver, BC (Canada)); Berdoz, A.R. (Univ. of Manitoba, Winnipeg (Canada)); Birchall, J. (Univ. of Manitoba, Winnipeg (Canada)); Campbell, J.R. (Univ. of Manitoba, Winnipeg (Canada)); Page, S.A. (Univ. of Manitoba, Winnipeg (Canada)); Ramsay, W.D. (Univ. of Manitoba, Winnipeg (Canada)); Van Oers, W.T.H. (Univ. of Manitoba, Winnipeg (Canada)); Zhao, J. (Univ. of Manitoba, Winnipeg (Canada)); Green, P.W. (Univ. of Alberta, Edmonton (Canada)); Greeniaus, L.G. (Univ. of Alberta, Edmonton (Canada)); Kolb, N. (Univ. of Alberta, Edmonton (Canada)); Korkmaz, E. (Univ. of Alberta, Edmonton (Canada)); Li, J. (Univ. of Alberta, Edmonton (Canada)); Opper, A. (Univ. of Alberta, Edmonton (Canada))
1993-06-01
At TRIUMF we are measuring charge symmetry violation in np elastic scattering. If charge symmetry holds the analyzing powers A[sub n] and A[sub p] are equal. The measurements will therefore determine the difference from zero of [Delta]A triple bond A[sub n] - A[sub p]. The measurements are carried out in the vicinity where the analyzing powers cross zero in order to minimize systematic errors. A 350 MeV polarized (P[sub n] [approx equal] 0.5) or unpolarized neutron beam is incident onto respectively an unpolarized or polarized (P[sub p] [approx equal] 0.65) target of the butanol frozen spin type. A symmetric (about the beam axis and in the scattering plane) system of proton detectors and neutron arrays records neutron-proton coincidence events. The detection system allows measurements in the centre-of-mass angular range of 50 -90 . (orig.)
The nucleon-nucleon interaction and violation of fundamental symmetries
International Nuclear Information System (INIS)
VanOers, W.T.H.
1993-11-01
The interplay of the nucleon-nucleon interaction and its observables with the fundamental symmetries of isospin conservation, parity conservation, time-reversal invariance or CP conservation was realized early on. Many tests of these symmetries through measurements of particular observables of the nucleon-nucleon interaction have been made over a time frame spanning some five decades. It is only in the last decade or so that levels of experimental accuracy have been reached that allow for the deduction of quantitative results of significance. Precision measurements have been made of charge symmetry breaking in n-p elastic scattering (which is the result of isospin non-conservation) and of parity violation in pp scattering (which is a manifestation of the flavour conserving hadronic weak interaction). Time reversal invariance is much more difficult to study since in this case a null measurement, excluding transmission measurements, does not exist. In the nucleon-antinucleon system the potential exists of studying CP non-conservation in a system other than the kaon system. Unfortunately antiproton beams are at present of insufficient intensity. (author). 52 refs., 3 tabs., 5 figs
Electromagnetic contribution to charge symmetry violation in parton distributions
Directory of Open Access Journals (Sweden)
X.G. Wang
2016-02-01
Full Text Available We report a calculation of the combined effect of photon radiation and quark mass differences on charge symmetry violation (CSV in the parton distribution functions of the nucleon. Following a recent suggestion of Martin and Ryskin, the initial photon distribution is calculated in terms of coherent radiation from the proton as a whole, while the effect of the quark mass difference is based on a recent lattice QCD simulation. The distributions are then evolved to a scale at which they can be compared with experiment by including both QCD and QED radiation. Overall, at a scale of 5 GeV2, the total CSV effect on the phenomenologically important difference between the d and u-quark distributions is some 20% larger than the value based on quark mass differences alone. In total these sources of CSV account for approximately 40% of the NuTeV anomaly.
Charged tensor matter fields and Lorentz symmetry violation via spontaneous symmetry breaking
International Nuclear Information System (INIS)
Colatto, L.P.; Penna, A.L.A.; Santos, W.C.
2003-10-01
We consider a model with a charged vector field along with a Cremmer-Scherk-Kalb-Ramond (CSKR) matter field coupled to a U(1) gauge potential. We obtain a natural Lorentz symmetry violation due to the local U(1) spontaneous symmetry breaking mechanism triggered by the imaginary part of the vector matter. The choice of the unitary gauge leads to the decoupling of the gauge-Kr sector from the Higgs-Kr sector. The excitation spectrum is carefully analyzed and the physical modes are identified. We propose an identification of the neutral massive spin-1 Higgs-like field with the massive Z' boson of the so-called mirror matter models. (author)
P-odd component of time-reversal symmetry violation. Manifestation in nuclear processes
International Nuclear Information System (INIS)
Tchuvil'sky, Yu.M.
2004-01-01
Full text: The problem of fundamental symmetries and the effects breaking them is one of the basic challenges of modern physics. There are grounds to assume that the major contributor to these effects is placed beyond the standard model. Nuclear processes are usable tests on T-even P-odd, T-odd P-even, and T-odd P-odd effects. The first type of them is rather well-studied. The possibilities to measure an effect of the second type seem to be poor in the discussed processes. At the same time search for time-reversal P-odd (PT-) symmetry violation offers promise for experimental investigation due to existence of nuclear enhancement effects analogous to T-even P-odd ones. An investigation of the effect in nuclear processes is considered as a promising source of the information which is complementary to that obtained in the framework of K- and B-meson experiments and measurements of the electric dipole moments of elementary particles and atoms. The matter is that the amplitudes specific for PT-symmetry violation in NN-interaction (isovector meson exchange amplitude for example) turn out to be essential or even dominating in the discussed case. In the present talk the results of the analysis of capability of the wide range of experimental schemes are presented. This analysis demonstrates the significant advantage of the scheme based on the measurement of linear polarization of gamma radiation of oriented (by an incident particle, or by a preceding alpha-decay, or by cryogenic means) sample. Indeed, the discussed approach, on the one hand, allows one to remove cumbersome coincident schemes and, on the other hand, the formalism of the approach is usually characterized by a relatively large spin factor in the relation connecting the correlation effect in a nucleus with the elementary amplitude. The estimations demonstrate that in appropriate cases the upper limit to the PT-violation effect of about 10 -3 of the observed P-odd effect in the same nucleus may be obtained. This
Soft CP violation and the global matter-antimatter symmetry of the universe
Senjanovic, G.; Stecker, F. W.
1980-01-01
Scenarios for baryon production are considered within the context of SU(5) and SO(10) grand unified theories where CP violation arises spontaneously. The spontaneous CP symmetry breaking then results in a matter-antimatter domain structure in the universe. Two possible, distinct types of theories of soft CP violation are defined. In the first type the CP nonconservation originates only from the breaking of SU(2) sub L X U(1) symmetry, and in the second type, even at the unification temperature scale, CP violation can emerge as a result of symmetry breaking by the vacuum expectation values of the superheavy Higgs sector scalars.
Zhang, Yingxun; Coupland, D. D. S.; Danielewicz, P.; Li, Zhuxia; Liu, Hang; Lu, Fei; Lynch, W. G.; Tsang, M. B.
2012-02-01
We explore the influence of the in-medium nucleon-nucleon cross section, symmetry potential, and impact parameter on isospin sensitive observables in intermediate-energy heavy-ion collisions with the ImQMD05 code, a modified version of the quantum molecular dynamics model. At incident velocities above the Fermi velocity, we find that the density dependence of the symmetry potential plays a more important role on the double neutron-to-proton ratio DR(n/p) and the isospin transport ratio Ri than the in-medium nucleon-nucleon cross sections, provided that the latter are constrained to a fixed total NN collision rate. We also explore both DR(n/p) and Ri as a function of the impact parameter. Since the copious production of intermediate mass fragments is a distinguishing feature of intermediate-energy heavy-ion collisions, we examine the isospin transport ratios constructed from different groups of fragments. We find that the values of the isospin transport ratios for projectile rapidity fragments with Z⩾20 are greater than those constructed from the entire projectile rapidity source. We believe experimental investigations of this phenomenon can be performed. These may provide significant tests of fragmentation time scales predicted by ImQMD calculations.
Discrete Symmetries in Particle Physics and their Violation
Indian Academy of Sciences (India)
Indian Institute of Science in the field of elementary particle physics. This two-part article considers certain fundamen- tal symmetries of nature, namely the discrete symmetries of parity (P), charge conjugation (C) and time reversal (T), and their possible viola- tion. Recent experimental results are discussed in some depth.
Violation of time reversal symmetry in compound nucleus reactions
International Nuclear Information System (INIS)
Lanza, E.G.
1989-01-01
In this thesis the author presents a general formulation for the description of time-reversal violation in compound-nucleus reactions on the base of the S matrix and calculates an expression describing this violation by means of the statistical model of Bose, Harney, and Weidenmueller (1986). The result is applied to the compound-nucleus 28 Si for which a time-reversal parameter has been explicitely calculated. (HSI)
Leptonic Dirac CP violation predictions from residual discrete symmetries
Directory of Open Access Journals (Sweden)
I. Girardi
2016-01-01
Full Text Available Assuming that the observed pattern of 3-neutrino mixing is related to the existence of a (lepton flavour symmetry, corresponding to a non-Abelian discrete symmetry group Gf, and that Gf is broken to specific residual symmetries Ge and Gν of the charged lepton and neutrino mass terms, we derive sum rules for the cosine of the Dirac phase δ of the neutrino mixing matrix U. The residual symmetries considered are: i Ge=Z2 and Gν=Zn, n>2 or Zn×Zm, n,m≥2; ii Ge=Zn, n>2 or Zn×Zm, n,m≥2 and Gν=Z2; iii Ge=Z2 and Gν=Z2; iv Ge is fully broken and Gν=Zn, n>2 or Zn×Zm, n,m≥2; and v Ge=Zn, n>2 or Zn×Zm, n,m≥2 and Gν is fully broken. For given Ge and Gν, the sum rules for cosδ thus derived are exact, within the approach employed, and are valid, in particular, for any Gf containing Ge and Gν as subgroups. We identify the cases when the value of cosδ cannot be determined, or cannot be uniquely determined, without making additional assumptions on unconstrained parameters. In a large class of cases considered the value of cosδ can be unambiguously predicted once the flavour symmetry Gf is fixed. We present predictions for cosδ in these cases for the flavour symmetry groups Gf=S4, A4, T′ and A5, requiring that the measured values of the 3-neutrino mixing parameters sin2θ12, sin2θ13 and sin2θ23, taking into account their respective 3σ uncertainties, are successfully reproduced.
International Nuclear Information System (INIS)
Masuda, Yasuhiro
1993-01-01
In this report, the papers on symmetry violation under space reflection and time reversal and neutron spin, neutron spin rotation and P-violation, parity nonconservation in neutron capture reaction, some advantage of the search for CP-violation in neutron scattering, dynamic polarization of 139 La target, alexandrite laser for optical pumping, polarized 3 He system for T- and P-violation neutron experiments, control of neutron spin in T-violation neutron experiment, symmetry regarding time and space and angular distribution and angular correlation of radiation and particle beams, T-violation due to low temperature nuclear polarization and axion exploration using nuclear transition are collected. (K.I.)
A model of spontaneous CP violation and neutrino phenomenology with approximate LμLτ symmetry
International Nuclear Information System (INIS)
Adhikary, Biswajit
2013-01-01
We introduce a model where CP and Z 2 symmetry violate spontaneously. CP and Z 2 violate spontaneously through a singlet complex scalar S which obtains vacuum expectation value with phase S = Ve iα /2 and this is the only source of CP violation in this model. Low energy CP violation in the leptonic sector is connected to the large scale phase by three generations of left and right handed singlet fermions in the inverse see-saw like structure of model. We have considered approximate LμL τ symmetry to study neutrino phenomenology. Considering two mass square differences and three mixing angles including non zero θ 13 to their experimental 3σ limit, we have restricted the Lagrangian parameters for reasonably small value of L μ L τ symmetry breaking parameters. We have predicted the three masses, Dirac phase and two Majorana phases. We also evaluate CP violating parameter J CP , sum-mass and effective mass parameter involved in neutrino less double beta decay. (author)
A violation of CP symmetry in B meson decays
International Nuclear Information System (INIS)
Karyotakis, Y.; Monchenault, G.H. de
2002-01-01
This article reviews the issue of CP-violation and reports the most recent results about the observation of large CP asymmetries in the decay of neutral B-mesons. Some of the CP asymmetries in the neutral B-meson decay are expected to be large. CP-violation always involves quantum mechanical interference. This occurs for instance when there are 2 paths for a particle to decay into a given final state. The interference between the mixing-induced amplitude (B 0 → B-bar 0 → f) and the decay amplitude (B 0 → f) to a CP eigenstate f leads to a time dependent CP asymmetry that can be interpreted in terms of the angles of the unitary triangle (sin(2β)). The experimental challenge comes from the fact that B decays to some CP eigenstates have very small branching ratios and low efficiencies for complete reconstruction of the final state. It is therefore necessary to produce a very large number of B-mesons to perform a CP-measurement. To make the measurement possible, a new type of e + e - collider, called asymmetric B-factory has been designed. 2 asymmetric B-factories are operating in the world: PEP2 (Stanford, Usa) fitted with the Babar detector and KEK-B (Japan) which hosts Belle detector. The measurements given by Babar and Belle are in good agreement and can be combined. The average value is sin(2β) = 0.78 ± 0.08 and this value is in excellent agreement with the standard model predictions based on available experimental data. (A.C.)
BOOK REVIEW: Discrete Symmetries and CP Violation: From Experiment to Theory (Oxford Graduate Texts)
Fösel, A.
2009-03-01
Discrete Symmetries and CP Violation: From Experiment to Theory by Marco Sozzi discusses C(harge conjugation), P(arity) and T(ime reversal) discrete symmetries and of course CP symmetry in microscopic (atomic, nuclear and particle) physics. It includes a detailed description of key or representative experiments, and major achievements and recent developments are also mentioned. Though lots of excellent textbooks already exist which cover the basics of discrete symmetries and CP violation in theory and experiment, Sozzi has fully achieved the goal of presenting a book that describes the basics of this subject in detail, from an experimental point of view as well as from theory. He also succeeds in finding links between experiments and theory, leading to a better understanding of the subject. Besides, as an experimentalist, discrete symmetries and CP violation appear to the author as ideal subjects to convey the depth and excitement of experimental `beautiful' physics, which Marco S Sozzi - in my opinion - has managed to do brilliantly. Though mainly addressed to graduate students, the book may also be useful to undergraduates (by skipping some of the more advanced sections and utilizing the brief introduction to some topics in the appendices) and to young researchers looking for a wider modern overview of the issues related to CP symmetry. At the end of each chapter, further reading sections are conveniently provided for the reader to find relevant literature for further studies. Problems to solve at the end of each chapter act as 'little tests'. Unfortunately, their solutions are currently absent: perhaps a publication that includes them is planned in the near future. To conclude, the book succeeds in being a complete and self-consistent text describing in up-to-date detail the investigation of discrete symmetries in sub-atomic physics. It also emphasizes the concepts and ingenuity behind many delicate, careful, and by all means 'beautiful' experiments.
Recent results on charge-parity symmetry violation at the Belle experiment
International Nuclear Information System (INIS)
Moloney, G.R.; Sevior, M.E.; Taylor, G.N.; Tovey, S.N.; Varvell, K.; Bakich, A.; Peak, L.
2002-01-01
Full text: The observation of large Charge-Parity, CP, symmetry violation in the decay of B mesons has recently been reported by the Belle collaboration. Belle is an international collaboration of 54 institutes from 13 countries. The Belle experiment studies the decay of B B meson pairs produced at the KEKB B factory in Tsukuba, Japan. This presentation will include a survey of recent measurements by Belle, including the latest measurement of the CP violation parameter, sin2φ 1 . The Australian contribution to the construction and maintenance of the Belle detector will also be presented - including the assembly of detector modules for the recent upgrade of the Belle Silicon Vertex Detector
Aspects of CPT-even Lorentz-symmetry violating physics in a supersymmetric scenario
Energy Technology Data Exchange (ETDEWEB)
Belich, H. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil); Universidade Federal do Para, Faculdade de Fisica, Belem, Para (Brazil); Bernald, L.D.; Helayel-Neto, J.A. [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil); Gaete, Patricio [Universidad Tecnica Federico Santa Maria, Departmento de Fisica and Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile); Leal, F.J.L. [Ciencia e Tecnologia do Espirito Santo, Instituto Federal de Educacao, Vitoria, ES (Brazil)
2015-06-15
Background fermion condensates in a landscape dominated by global supersymmetry are reassessed in connection with a scenario where Lorentz symmetry is violated in the bosonic sector (actually, the photon sector) by a CPT-even k{sub F} term. An effective photonic action is discussed that originates from the supersymmetric background fermion condensates. Also, the photino mass emerges in terms of a particular condensate contrary to what happens in the case of k{sub AF}-violation. Finally, the interparticle potential induced by the effective photonic action is investigated and a confining profile is identified. (orig.)
The photino sector and a confining potential in a supersymmetric Lorentz-symmetry-violating model
Energy Technology Data Exchange (ETDEWEB)
Belich, H. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil); Bernald, L.D.; Helayel-Neto, J.A. [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil); Gaete, Patricio [Universidad Tecnica Federico Santa Maria, Departmento de Fisica and Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile)
2013-11-15
We study the spectrum of the minimal supersymmetric extension of the Carroll-Field-Jackiw model for Electrodynamics with a topological Chern-Simons-like Lorentz-symmetry violating term. We identify a number of independent background fermion condensates, work out the gaugino dispersion relation and propose a photonic effective action to consider aspects of confinement induced by the SUSY background fermion condensates, which also appear to signal Lorentz-symmetry violation in the photino sector of the action. Our calculations of the static potential are carried out within the framework of the gauge-invariant but path-dependent variables formalism which are alternative to the Wilson loop approach. Our results show that the interaction energy contains a linear term leading to the confinement of static probe charges. (orig.)
Search for Violations of Lorentz Invariance and CPT Symmetry in B-(s)(0) Mixing
Aaij, R.; Beteta, C. Abellan; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Betti, F.; Bettler, M. -O.; van Beuzekom, M.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Perez, D. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Cheung, S. -F.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Torres, M. Cruz; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C. -T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farber, C.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frei, C.; Frosini, M.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Garcia Pardinas, J.; Tico, J. Garra; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Giani, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Gobel, C.; Golubkov, D.; Golutvin, A.; Gotti, C.; Gandara, M. Grabalosa; Graciani Diaz, R.; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Griffith, P.; Grillo, L.; Gruenberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hongming, L.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Kolpin, M.; Komarov, I.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. -P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Cid, E. Lemos; Leroy, O.; Lesiak, T.; Leverington, B.; Likhomanenko, T.; Lindner, R.; Linn, C.; Lionetto, F.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusardi, N.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; Mcnab, A.; McNulty, R.; Meadows, B.; Meier, F.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Minard, M. -N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mueller, J.; Mueller, K.; Mueller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Niess, V.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Perez, P. Rodriguez; Rogozhnikov, A.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Valls, P. Ruiz; Saborido Silva, J. J.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M. -H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Coutinho, R. Silva; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, I. T.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valat, S.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Vazquez Regueiro, P.; Vazquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; Waldi, R.; Wallace, C.; Wallace, R.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhelezov, A.; Zheng, Y.; Zhokhov, A.; Zhong, L.; Zhukov, V.; Zucchelli, S.
2016-01-01
Violations of CPT symmetry and Lorentz invariance are searched for by studying interference effects in B-0 mixing and in B-s(0) mixing. Samples of B-0 -> J/psi K-S(0) and B-0(s) -> J/psi K+K- decays are recorded by the LHCb detector in proton-proton collisions at center-of-mass energies of 7 and 8
A phenomenological study of violation of CP and CPT symmetries in the neutral kaon system
International Nuclear Information System (INIS)
Kojima, Kazushi; Sugiyama, Wataru; Tsai, S.Y.
1996-01-01
A phenomenological study is given of the (possible) violation of CP and CPT symmetries in the K 0 -K-bar 0 system. Special attention is paid to the problem of phase ambiguity and phase convention. Mixing parameters and decay amplitudes are parametrized in a rephasing invariant way, and the well-known parameters η +- and η 00 describing 2π modes as well as various leptonic asymmetries are expressed in terms of these parameters. The parameters ε and Δ characterizing mixing between |K 0 > and |K-bar 0 > are treated with as little theoretical prejudice as possible. (author)
Search for violations of Lorentz invariance and $CPT$ symmetry in $B^0_{(s)}$ mixing
Aaij, Roel; Adeva, Bernardo; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farley, Nathanael; Farry, Stephen; Fay, Robert; Fazzini, Davide; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hongming, Li; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hussain, Nazim; Hutchcroft, David; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusardi, Nicola; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen-Mau, Chung; Niess, Valentin; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Rogozhnikov, Alexey; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefkova, Slavomira; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valat, Sebastien; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Volkov, Vladimir; Vollhardt, Achim; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zheng, Yangheng; Zhokhov, Anatoly; Zhong, Liang; Zhukov, Valery; Zucchelli, Stefano
2016-06-15
Violations of $ CPT$ symmetry and Lorentz invariance are searched for by studying interference effects in $ B^0$ mixing and in $ B^0_s$ mixing. Samples of $ B^0\\to J/\\psi K^0_{\\mathrm{S}}$ and $ B^0_s\\to J/\\psi K^+ K^-$ decays are recorded by the LHCb detector in proton--proton collisions at centre-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb$^{-1}$. No periodic variations of the particle-antiparticle mass differences are found, consistent with Lorentz invariance and $ CPT$ symmetry. Results are expressed in terms of the Standard Model Extension parameter $\\Delta a_{\\mu}$ with precisions of $ \\mathcal{O}(10^{-15})$ and $ \\mathcal{O}(10^{-14})$ GeV for the $ B^0$ and $ B^0_s$ systems, respectively. With no assumption on Lorentz (non-)invariance, the $ CPT$-violating parameter $z$ in the $ B^0_s$ system is measured for the first time and found to be $ \\mathcal{R}e(z) = -0.022 \\pm 0.033 \\pm 0.005$ and $ \\mathcal{I}m(z) = 0.004 \\pm 0.011\\pm 0.002$, where the first uncertainti...
Nuclear probes of fundamental symmetries
International Nuclear Information System (INIS)
Adelberger, E.G.
1983-01-01
Nuclear experiments which probe the parity (P) and time-reversal (T) symmetries and lepton-number conservation are reviewed. The P-violating NN interaction, studied in the NN system and in light nuclei, provides an unique window on ΔS=0 hadronic weak processes. Results are in accord with expectations. Sensitive searches for T-violation via detailed balance, T-odd correlations in γ and β-decay, and a possible neutron electric dipole moment (EDM) are discussed. No T-violation is observed. The EDM limit is almost good enough to eliminate one of the leading theoretical explanations for CP violation. Experimental studies of double β-decay are reviewed. Although ββ nu nu decay has been convincingly detected in geochemical experiments there is no evidence for the lepton number violating ββ decay mode
Generalized μ–τ reflection symmetry and leptonic CP violation
Directory of Open Access Journals (Sweden)
Peng Chen
2016-02-01
Full Text Available We propose a generalized μ–τ reflection symmetry to constrain the lepton flavor mixing parameters. We obtain a new correlation between the atmospheric mixing angle θ23 and the “Dirac” CP violation phase δCP. Only in a specific limit our proposed CP transformation reduces to standard μ–τ reflection, for which θ23 and δCP are both maximal. The “Majorana” phases are predicted to lie at their CP-conserving values with important implications for the neutrinoless double beta decay rates. We also study the phenomenological implications of our scheme for present and future neutrino oscillation experiments including T2K, NOνA and DUNE.
Measurements of Direct CP Violation, CPT Symmetry, and Other Parameters in the Neutral Kaon System
Energy Technology Data Exchange (ETDEWEB)
Worcester, Elizabeth Turner [Univ. of Chicago, IL (United States)
2007-12-01
The authors present precision measurements of the direct CP violation parameter, Re(ϵ'/ϵ), the kaon parameters, Δm and τ_{S}, and the CPT tests, Φ_{±} and ΔΦ, in neutral kaon decays. These results are based on the full dataset collected by the KTeV experiment at Fermi National Accelerator Laboratory during 1996, 1997, and 1999. This dataset contains ~ 15 million K → π^{0}π^{0} decays and ~ 69 million K → π^{+}π^{-} decays. They describe significant improvements to the precision of these measurements relative to previous KTeV analyses. They find Re(ϵ'/ϵ = [19.2 ± 1.1(stat) ± 1.8(syst)] x 10^{-4}, Δm = (5265 ± 10) x 10^{6} hs^{-1}, and τ_{S} = (89.62 ± 0.05) x 10^{-12} s. They measure Φ_{±} = (44.09 ± 1.00)° and ΔΦ = (0.29 ± 0.31)°; these results are consistent with CPT symmetry.
Sobków, W.; Błaut, A.
2018-03-01
In this paper we indicate a possibility of utilizing the elastic scattering of Dirac low-energy (˜ 1 MeV) electron neutrinos (ν _es) on a polarized electron target (PET) in testing the time reversal symmetry violation (TRSV). We consider a scenario in which the incoming ν _e beam is a superposition of left chiral (LC) and right chiral (RC) states. LC ν _e interact mainly by the standard V-A and small admixture of non-standard scalar S_L, pseudoscalar P_L, tensor T_L interactions, while RC ones are only detected by the exotic V + A and S_R, P_R, T_R interactions. As a result of the superposition of the two chiralities the transverse components of ν e spin polarization (T-even and T-odd) may appear. We compute the differential cross section as a function of the recoil electron azimuthal angle and scattered electron energy, and show how the interference terms between standard V-A and exotic S_R, P_R, T_R couplings depend on the various angular correlations among the transversal ν _e spin polarization, the polarization of the electron target, the incoming neutrino momentum and the outgoing electron momentum in the limit of relativistic ν _e. We illustrate how the maximal value of recoil electrons azimuthal asymmetry and the asymmetry axis location of outgoing electrons depend on the azimuthal angle of the transversal component of the ν _e spin polarization, both for the time reversal symmetry conservation (TRSC) and TRSV. Next, we display that the electron energy spectrum and polar angle distribution of the recoil electrons are also sensitive to the interference terms between V-A and S_R, P_R, T_R couplings, proportional to the T-even and T-odd angular correlations among the transversal ν _e polarization, the electron polarization of the target, and the incoming ν _e momentum, respectively. We also discuss the possibility of testing the TRSV by observing the azimuthal asymmetry of outgoing electrons, using the PET without the impact of the transversal
Closeout Report - Search for Time Reversal Symmetry Violation with TREK at J-PARC
Energy Technology Data Exchange (ETDEWEB)
Kohl, Michael [Hampton Univ., VA (United States)
2015-04-15
academic positions. Two former graduate students of the group have graduated and received their PhD degrees in nuclear physics (Dr. Anusha Liyanage and Dr. Ozgur Ates). In particular, this award has enabled Dr. Kohl to pursue the TREK project (Time Reversal Experiment with Kaons) at J-PARC, which he has been leading and advancing as International Spokesperson. Originally proposed as a search for time reversal symmetry violation [6], the project has evolved into a precision test of lepton flavor universality in the Standard Model along with sensitive searches for physics beyond the Standard Model through a possible discovery of new particles such as a sterile neutrino or a neutral gauge boson from the hidden sector in the mass region up to 300 MeV/c2 [7]. Experiment TREK/E36, first proposed in 2010, has been mounted between November 2014 and April 2015, and commissioning with beam has been started in April 2015, with production running anticipated in early summer and late fall 2015. It uses the apparatus from the previous KEK/E-246 experiment with partial upgrades to measure the ratio of decay widths of leptonic two-body decays of the charged kaon to µν and eν, respectively, which is highly sensitive to the ratio of electromagnetic charged lepton couplings and possible new physics processes that could differentiate between μ and e, hence breaking lepton flavor universality of the Standard Model. Through the searches for neutral massive particles, TREK/E36 can severely constrain any new physics scenarios designed to explain the proton radius puzzle [12, 13].
Parity and time-reversal violation in nuclei and atoms
International Nuclear Information System (INIS)
Adelberger, E.G.
1986-01-01
Two topics are briefly reviewed: the parity (P)-violating NN interaction and the time-reversal (T) and P-violating electric moments (EDM's) of atoms. The ΔI = 1 P-violating NN amplitude dominated by weak π +- exchange is found to be appreciably smaller than bag-model predictions. This may be a dynamical symmetry of flavor-conserving hadronic weak processes reminiscent of the ΔI = 1/2 rule in flavor-changing decays. General principles of experimental searches for atomic EDM's are discussed. Atomic EDM's are sensitive to electronic or nuclear EDM's and to a P-and-T-violating electron-quark interaction. Even though the experimental precision is still ∼10 4 times worse than counting statistics, the recent results have reached a sensitivity to nuclear EDM's which rivals that of the neutron EDM data. Further significant improvements can be expected
Fermion-number violation in regularizations that preserve fermion-number symmetry
International Nuclear Information System (INIS)
Golterman, Maarten; Shamir, Yigal
2003-01-01
There exist both continuum and lattice regularizations of gauge theories with fermions which preserve chiral U(1) invariance ('fermion number'). Such regularizations necessarily break gauge invariance but, in a covariant gauge, one recovers gauge invariance to all orders in perturbation theory by including suitable counterterms. At the nonperturbative level, an apparent conflict then arises between the chiral U(1) symmetry of the regularized theory and the existence of 't Hooft vertices in the renormalized theory. The only possible resolution of the paradox is that the chiral U(1) symmetry is broken spontaneously in the enlarged Hilbert space of the covariantly gauge-fixed theory. The corresponding Goldstone pole is unphysical. The theory must therefore be defined by introducing a small fermion-mass term that breaks explicitly the chiral U(1) invariance and is sent to zero after the infinite-volume limit has been taken. Using this careful definition (and a lattice regularization) for the calculation of correlation functions in the one-instanton sector, we show that the 't Hooft vertices are recovered as expected
Apparent violation of isospin symmetry in the 3H(3He,2H)4He reaction
International Nuclear Information System (INIS)
Rai, G.; Blyth, C.O.; England, J.B.A.; Farooq, A.; Karban, O.; Rawas, E.; Roman, S.; Vlastou, R.
1988-01-01
Angular distributions of the vector analyzing powers for the 3 H( 3 He, 2 H) 4 He reaction have been measured over the incident energy range 18--33 MeV. The measurements centered about 18 MeV display a deviation from the antisymmetric shape expected from isospin symmetry. Concentrating on the explanation of the 90 0 analyzing powers, we report the results of a distorted-wave Born approximation (DWBA) analysis which includes the direct and exchange processes and the spin-orbit potential. It is shown that the anomalous behavior of the 90 0 vector analyzing powers can be largely explained by the effect of a single F-wave potential resonance which leads to the magnification of the short-range differences between the 3 He and 3 H wave functions
Energy Technology Data Exchange (ETDEWEB)
Weiler, A.
2007-01-16
We study flavor-changing decays of hadrons and leptons and an extra-dimensional approach to electroweak symmetry breaking. Specifically we study the framework of Minimal Flavour Violation (MFV) as an explanation of the flavour problem. We discuss the impact of a specific extra-dimensional model of the MFV class on flavour changing neutral currents. We derive model-independent upper bounds on rare decays. -We discuss the extension of the MFV framework from the quark to the lepton sector and show how baryogenesis through leptogenesis can be achieved and examine if possible correlations with charged lepton flavour violation exist. We discuss the dynamical breaking of the electroweak symmetry in extra dimensions by unifying gauge and Higgs fields and we show that realistic models are possible once the extra dimension is strongly curved. (orig.)
International Nuclear Information System (INIS)
Weiler, A.
2007-01-01
We study flavor-changing decays of hadrons and leptons and an extra-dimensional approach to electroweak symmetry breaking. Specifically we study the framework of Minimal Flavour Violation (MFV) as an explanation of the flavour problem. We discuss the impact of a specific extra-dimensional model of the MFV class on flavour changing neutral currents. We derive model-independent upper bounds on rare decays. -We discuss the extension of the MFV framework from the quark to the lepton sector and show how baryogenesis through leptogenesis can be achieved and examine if possible correlations with charged lepton flavour violation exist. We discuss the dynamical breaking of the electroweak symmetry in extra dimensions by unifying gauge and Higgs fields and we show that realistic models are possible once the extra dimension is strongly curved. (orig.)
CERN. Geneva HR-RFA
2006-01-01
The lecture introduces the concepts and phenomena of matter-antimatter symmetry violation, so-called "CP" violation. The lecture is organized in four courses, the first being devoted to a historical overview and an introduction into fundamental discrete symmetries. The second course introduces the most compelling CP-violating phenomena, and presents the first experimental discovery of CP violation in the neutral kaon system. The third course discusses how CP violation is beautifully incorporated into the Standard Model of particle interactions, and how modern B-meson "factories" provide precise tests of this picture. Finally, the fourth and last course introduces CP violation and the genesis of our matter world.
Hohensee, M A; Leefer, N; Budker, D; Harabati, C; Dzuba, V A; Flambaum, V V
2013-08-02
We report a joint test of local Lorentz invariance and the Einstein equivalence principle for electrons, using long-term measurements of the transition frequency between two nearly degenerate states of atomic dysprosium. We present many-body calculations which demonstrate that the energy splitting of these states is particularly sensitive to violations of both special and general relativity. We limit Lorentz violation for electrons at the level of 10(-17), matching or improving the best laboratory and astrophysical limits by up to a factor of 10, and improve bounds on gravitational redshift anomalies for electrons by 2 orders of magnitude, to 10(-8). With some enhancements, our experiment may be sensitive to Lorentz violation at the level of 9 × 10(-20).
International Nuclear Information System (INIS)
Adler, S.L.
1999-01-01
We construct extensions of the standard model based on the hypothesis that Higgs bosons also exhibit a family structure and that the flavor weak eigenstates in the three families are distinguished by a discrete Z 6 chiral symmetry that is spontaneously broken by the Higgs sector. We study in detail at the tree level models with three Higgs doublets and with six Higgs doublets comprising two weakly coupled sets of three. In a leading approximation of S 3 cyclic permutation symmetry the three-Higgs-doublet model gives a open-quotes democraticclose quotes mass matrix of rank 1, while the six-Higgs-doublet model gives either a rank-1 mass matrix or, in the case when it spontaneously violates CP, a rank-2 mass matrix corresponding to nonzero second family masses. In both models, the CKM matrix is exactly unity in the leading approximation. Allowing small explicit violations of cyclic permutation symmetry generates small first family masses in the six-Higgs-doublet model, and first and second family masses in the three-Higgs-doublet model, and gives a nontrivial CKM matrix in which the mixings of the first and second family quarks are naturally larger than mixings involving the third family. Complete numerical fits are given for both models, flavor-changing neutral current constraints are discussed in detail, and the issues of unification of couplings and neutrino masses are addressed. On a technical level, our analysis uses the theory of circulant and retrocirculant matrices, the relevant parts of which are reviewed. copyright 1998 The American Physical Society
International Nuclear Information System (INIS)
Aleksan, R.
1993-06-01
The violation of the CP symmetry is a phenomenon, the origin of which is not yet well established and deserves a particular attention since it may be a fundamental property of Nature with very important consequences for the evolution of the universe. We propose in these lectures to have an overview of this phenomenon as we understand it so far. To this end, and after introducing the discrete space-time symmetries, we discuss the observation of the violation of the CP symmetry in the neutral kaon decays. We then derive the general formalism for any neutral system made of a particle and its antiparticle and discuss how CP violation is introduced. We show how this phenomenon is generated in the Standard Model of the electroweak interactions and what are the predictions that can be made. In particular we shall concentrate on the expected effects in the decays of mesons involving the b quark. We review the various possibilities for observing these effects, calculate their magnitudes and show how the consistency of the theory can be tested. Finally, we outline the experimental prospects for studying CP non conservation at an asymmetric B Factory to either verify the Standard Model mechanism or provide evidence for new physics. (author)
He, Xiao-Gang; Li, Guan-Nan
2015-11-01
Several baryons containing a heavy b-quark have been discovered. The decays of these states provide new platform for testing the standard model (SM). We study CP violation in SM for charmless two-body decays of the flavor SU (3) anti-triplet beauty baryon (b-baryon) B = (Ξb-, Ξb0, Λb0) in a model independent way. We found, in the flavor SU (3) symmetry limit, a set of new predictive relations among the branching ratio Br and CP asymmetry ACP for B decays, such as ACP (Ξb- →K0Ξ-) /ACP (Ξb- →Kbar0Σ-) = - Br (Ξb- →Kbar0Σ-) / Br (Ξb- →K0Σ-), ACP (Λb0 →π- p) /ACP (Ξb0 →K-Σ+) = - Br (ΞbwSUP>0 →K-Σ+)τ Λb0 / Br (Λb0 →π- p)τ Ξb0, and ACP (Λb0 →K- p) /ACP (Ξb0 →π-Σ+) = - Br (Ξb0 →π-Σ+)τ Λb0 / Br (Λb0 →K- p)τ Ξb0. Future data from LHCb can test these relations and also other relations found.
Effective field theory for NN interactions
International Nuclear Information System (INIS)
Tran Duy Khuong; Vo Hanh Phuc
2003-01-01
The effective field theory of NN interactions is formulated and the power counting appropriate to this case is reviewed. It is more subtle than in most effective field theories since in the limit that the S-wave NN scattering lengths go to infinity. It is governed by nontrivial fixed point. The leading two body terms in the effective field theory for nucleon self interactions are scale invariant and invariant under Wigner SU(4) spin-isospin symmetry in this limit. Higher body terms with no derivatives (i.e. three and four body terms) are automatically invariant under Wigner symmetry. (author)
Indian Academy of Sciences (India)
right symmetry was violated in weak interactions. It became then absolutely essential to gather independent experimental evidence for establishing the breakdown of parity symmetry. They proposed experimental tests for this principle in weak- interaction processes like beta-decay of nuclei, 7t-}l (mu) meson decays and ...
Charge symmetry at the partonic level
Energy Technology Data Exchange (ETDEWEB)
Londergan, J. T.; Peng, J. C.; Thomas, A. W.
2010-07-01
This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.
International Nuclear Information System (INIS)
Conte, E.
2007-11-01
This thesis probes the beauty baryon physics in the framework of the LHCb experiment. The present study deals with the Λ b 0 → Λ 0 V decays where V is a vector meson such as J/Ψ(μ + μ - ), φ(K + K - ), ω(π + π - π0) or the ρ 0 - ω 0 (π + π - ) mixing. These processes allow to test independently the CP symmetry, which violation has not been observed yet in the baryonic sector, and the T symmetry, which experimental proofs are limited. Among the possible perspectives, a precise measurement of the Λ b 0 lifetime could contribute to the resolution of the raising theoretical-experimental puzzle. A phenomenological model of the Λ b 0 → Λ 0 V decays has been performed, from which branching ratios and angular distributions have been estimated. An advanced study of the reconstruction and the selection of these reactions by the LHCb apparatus shows that the channel Λ b 0 → Λ 0 J/Ψ is the dominant channel on both statistics and purity aspects. The Λ b 0 lifetime measure is the most imminent result; the constrains on asymmetries due to CP and T violation require several data taking years. Besides, an instrumental work has been achieved on the read-out electronics, called Front-End, of the experiment pre-shower. This contribution takes into account the validation of the prototype boards and the development of tools required by the qualification of the 100 production boards. (author)
Energy Technology Data Exchange (ETDEWEB)
Ganjour, S
2007-09-15
This report summarizes my scientific activities from 1995 to 2007. During this period of time, my research work was related to the particle physics experiment BABAR. The BABAR experiment has been running since 1999 at the PEP-II e{sup +}e{sup -} asymmetric B-factory located at SLAC. This experiment searches for CP violation in the system of B mesons and tests the Standard Model through the measurements of the angles and the sides of the Unitarity Triangle. My research work is divided in five main topics: study of the BABAR magnet system and measurement of the magnetic field in the central tracking volume; project of the particle identification system based on aerogel counters for the forward region of the detector; conception of the magnetic shield and measurements of the fringe field in the region of photomultipliers of the DIRC (Detector of Internally Reflected Cherenkov light) system, the principal particle identification system of BABAR; development of the partial reconstruction technique of B mesons and study of the B{sup 0} {yields} D{sub s}{sup *} + D{sup *-} decays; measurement of CP violation in the B{sup 0} {yields} D{sup *{+-}}{pi}{sup {+-}} decays and constraint on the Unitary Triangle parameter sin(2{beta} + {gamma}) using these decays. (author)
Energy Technology Data Exchange (ETDEWEB)
T' Jampens, Stephane; /Orsay
2006-09-18
This thesis presents the full-angular time-dependent analysis of the vector-vector channel B{sub d}{sup 0} {yields} J/{psi}(K{sub S}{sup 0}{pi}{sup 0})*{sup 0}. After a review of the CP violation in the B meson system, the phenomenology of the charmonium-K*(892) channels is exposed. The method for the measurement of the transversity amplitudes of the B {yields} J/{psi}K*(892), based on a pseudo-likelihood method, is then exposed. The results from a 81.9 fb{sup -1} of collected data by the BABAR detector at the {Upsilon}(4S) resonance peak are |A{sub 0}|{sup 2} = 0.565 {+-} 0.011 {+-} 0.004, |A{sub {parallel}}|{sup 2} = 0.206 {+-} 0.016 {+-} 0.007, |A{sub {perpendicular}}|{sup 2} = 0.228 {+-} 0.016 {+-} 0.007, {delta}{sub {parallel}} = -2.766 {+-} 0.105 {+-} 0.040 and {delta}{sub {perpendicular}} = 2.935 {+-} 0.067 {+-} 0.040. Note that ({delta}{sub {parallel}}, {delta}{sub {perpendicular}}) {yields} (-{delta}{sub {parallel}}, {pi} - {delta}{sub {perpendicular}}) is also a solution. The strong phases {delta}{sub {parallel}} and {delta}{sub {perpendicular}} are at {approx}> 3{sigma} from {+-}{pi}, signing the presence of final state interactions and the breakdown of the factorization hypothesis. The forward-backward analysis of the K{pi} mass spectrum revealed the presence of a coherent S-wave interfering with the K*(892). It is the first evidence of this wave in the K{pi} system coming from a B meson. The particularity of the B{sub d}{sup 0} {yields} J/{psi}(K{sub S}{sup 0}{pi}{sup 0})*{sup 0} channel is to have a time-dependent but also an angular distribution which allows to measure sin 2{beta} but also cos2{beta}. The results from an unbinned maximum likelihood fit are sin 2{beta} = -0.10 {+-} 0.57 {+-} 0.14 and cos 2{beta} = 3.32{sub -0.96}{sup +0.76} {+-} 0.27 with the transversity amplitudes fixed to the values given above. The other solution for the strong phases flips the sign of cos 2{beta}. Theoretical considerations based on the s-quark helicity
Supersymmetric defect models and mirror symmetry
Energy Technology Data Exchange (ETDEWEB)
Hook, Anson; Kachru, Shamit; Torroba, Gonzalo
2013-11-01
We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d NN = 4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d NN = 2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of NN = 4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.
Constraints on relativity violations from gamma-ray bursts.
Kostelecký, V Alan; Mewes, Matthew
2013-05-17
Tiny violations of the Lorentz symmetry of relativity and the associated discrete CPT symmetry could emerge in a consistent theory of quantum gravity such as string theory. Recent evidence for linear polarization in gamma-ray bursts improves existing sensitivities to Lorentz and CPT violation involving photons by factors ranging from ten to a million.
Indian Academy of Sciences (India)
We have just entered a period during which we expect considerable progress toward understanding CP violation. Here we review what we have learnt so far, and what is to be expected in the near future. To do this we cover the foundation of CP violation at a level which can be understood by physicists who are not working ...
CERN. Geneva
1999-01-01
In the first two lectures, CP violation in the K system is pedagogically reviewed: its manifestations in the neutral K meson systems, in rare K meson decays and in decays of charged K mesons, and results from classical and current experiments, are discussed. In the third lecture, CP Violation in the B system and the forthcoming experimental tests will be discussed.
Constrained Gauge Fields from Spontaneous Lorentz Violation
Chkareuli, J L; Jejelava, J G; Nielsen, H B
2008-01-01
Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type $A_{\\mu}^{2}=M^{2}$ ($M$ is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory proves to be QED with a massless vector Goldstone boson naturally associated with the photon, while the non-Abelian symmetry case results in a conventional Yang-Mills theory. These theories, both Abelian and non-Abelian, look essentially nonlinear and contain particular Lorentz (and $CPT$) violating couplings when expressed in terms of the pure Goldstone vector modes. However, they do not lead to physical ...
CP violating scalar Dark Matter
Energy Technology Data Exchange (ETDEWEB)
Cordero-Cid, A.; Hernández-Sánchez, J. [Instituto de Física and Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, C.P. 72570 Puebla (Mexico); Keus, V. [Department of Physics and Helsinki Institute of Physics, University of Helsinki, Gustaf Hallstromin katu 2, Helsinki, FIN-00014 (Finland); School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); King, S.F. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Moretti, S. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX (United Kingdom); Rojas, D. [Instituto de Física and Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 542, C.P. 72570 Puebla (Mexico); Sokołowska, D. [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland)
2016-12-05
We study an extension of the Standard Model (SM) in which two copies of the SM scalar SU(2) doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are inert, are added to the scalar sector. We allow for CP-violation in the inert sector, where the lightest inert state is protected from decaying to SM particles through the conservation of a Z{sub 2} symmetry. The lightest neutral particle from the inert sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.
Cosmology and CPT violating neutrinos
Energy Technology Data Exchange (ETDEWEB)
Barenboim, Gabriela; Salvado, Jordi [Universitat de Valencia-CSIC, Departament de Fisica Teorica y Instituto de Fisica Corpuscular, Burjassot (Spain)
2017-11-15
The combination charge conjugation-parity-time reversal (CPT) is a fundamental symmetry in our current understanding of nature. As such, testing CPT violation is a strongly motivated path to explore new physics. In this paper we study CPT violation in the neutrino sector, giving for the first time a bound, for a fundamental particle, in the CPT violating particle-antiparticle gravitational mass difference. We argue that cosmology is nowadays the only data sensitive to CPT violation for the neutrino-antineutrino mass splitting and we use the latest data release from Planck combined with the current baryonic-acoustic-oscillation measurement to perform a full cosmological analysis. To show the potential of the future experiments we also show the results for Euclid, a next generation large scale structure experiment. (orig.)
This site provides information on EPA's issued notice of violation (NOV) of the Clean Air Act (CAA) to Volkswagen. The NOV alleges software that circumvents EPA emissions standards for certain air pollutants.
International Nuclear Information System (INIS)
Gilman, F.J.
1989-12-01
Predictions for CP violation in the three generation Standard Model are reviewed based on what is known about the Cabibbo-Kobayashi-Maskawa matrix. Application to the K and B meson systems are emphasized. 43 refs., 13 figs
Discrete symmetries in the MSSM
Energy Technology Data Exchange (ETDEWEB)
Schieren, Roland
2010-12-02
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)
International Nuclear Information System (INIS)
Gronau, M.
1995-01-01
We review the present status of the Standard Model of CP violation, which is based on a complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix. So far CP violation has been observed only in K 0 -K 0 mixing, consistent with a sizable phase. The implications of future CP nonconserving measusrements in K and B decays are discussed within the model. Direct CP violation in K→2π may be observed in the near future, however this would not be a powerful test of the model. B decays provide a wide variety of CP asymmetry measurements, which can serve as precise tests of the Standard Model in cases where the asymmetry is cleanly related to phases of CKM matrix elements. Some of the most promising cases are discussed. ((orig.))
Constrained gauge fields from spontaneous Lorentz violation
DEFF Research Database (Denmark)
Chkareuli, J. L.; Froggatt, C. D.; Jejelava, J. G.
2008-01-01
Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type AµAµ=M2 (M is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant...... theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory...... couplings when expressed in terms of the pure Goldstone vector modes. However, they do not lead to physical Lorentz violation due to the simultaneously generated gauge invariance. Udgivelsesdato: June 11...
High Temperature Dimensional Reduction and Parity Violation
Kajantie, Keijo; Rummukainen, K; Shaposhnikov, Mikhail E
1998-01-01
The effective super-renormalizable 3-dimensional Lagrangian, describing the high temperature limit of chiral gauge theories, has more symmetry than the original 4d Lagrangian: parity violation is absent. Parity violation appears in the 3d theory only through higher-dimensional operators. We compute the coefficients of dominant P-odd operators in the Standard Electroweak theory and discuss their implications. We also clarify the parametric accuracy obtained with dimensional reduction.
Parity violation in the nucleon-nucleon interaction
International Nuclear Information System (INIS)
Haxton, W.C.
1989-01-01
I discuss the present status of our understanding of parity nonconservation (PNC) in the nucleon-nucleon interaction, and some of the difficulties inherent in nuclear tests of PNC. I also discuss the nucleon/nuclear anapole moment, the parity violating coupling of the photon, and its relation to the PNC NN interaction. 13 refs., 1 fig., 2 tabs
Parity violation in the compound nucleus
International Nuclear Information System (INIS)
Mitchell, G. E.; Crawford, B. E.; Grossmann, C. A.; Lowie, L. Y.; Bowman, J. D.; Knudson, J.; Penttilae, S.; Seestrom, S. J.; Smith, D. A.; Yen, Yi-Fen; Yuan, V. W.; Delheij, P. P. J.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Postma, H.; Roberson, N. R.; Sharapov, E. I.; Stephenson, S. L.
1999-01-01
Measurements have been performed on the helicity dependence of the neutron resonance cross section for many nuclei by our TRIPLE Collaboration. A large number of parity violations are observed. Generic enhancements amplify the signal for symmetry breaking and the stochastic properties of the compound nucleus permit the strength of the symmetry-breaking interaction to be determined without knowledge of the wave functions of individual states. A total of 15 nuclei have been analyzed with this statistical approach. The results are summarized
Aniello, Paolo; Chruściński, Dariusz
2017-07-01
A symmetry witness is a suitable subset of the space of selfadjoint trace class operators that allows one to determine whether a linear map is a symmetry transformation, in the sense of Wigner. More precisely, such a set is invariant with respect to an injective densely defined linear operator in the Banach space of selfadjoint trace class operators (if and) only if this operator is a symmetry transformation. According to a linear version of Wigner’s theorem, the set of pure states—the rank-one projections—is a symmetry witness. We show that an analogous result holds for the set of projections with a fixed rank (with some mild constraint on this rank, in the finite-dimensional case). It turns out that this result provides a complete classification of the sets of projections with a fixed rank that are symmetry witnesses. These particular symmetry witnesses are projectable; i.e. reasoning in terms of quantum states, the sets of ‘uniform’ density operators of corresponding fixed rank are symmetry witnesses too.
CP violation in the lepton sector and implications for leptogenesis
DEFF Research Database (Denmark)
Hagedorn, C.; Mohapatra, R. N.; Molinaro, E.
2018-01-01
We review the current status of the data on neutrino masses and lepton mixing and the prospects for measuring the CP-violating phases in the lepton sector. The possible connection between low energy CP violation encoded in the Dirac and Majorana phases of the Pontecorvo-Maki-Nakagawa-Sakata mixing...... matrix and successful leptogenesis is emphasized in the context of seesaw extensions of the Standard Model with a flavor symmetry Gf (and CP symmetry)....
Theory prospective on leptonic CP violation
International Nuclear Information System (INIS)
Petcov, S.T.
2016-01-01
The phenomenology of 3-neutrino mixing, the current status of our knowledge about the 3-neutrino mixing parameters, including the absolute neutrino mass scale, and of the Dirac and Majorana CP violation in the lepton sector are reviewed. The problems of CP violation in neutrino oscillations and of determining the nature – Dirac or Majorana – of massive neutrinos are discussed. The seesaw mechanism of neutrino mass generation and the related leptogenesis scenario of generation of the baryon asymmetry of the Universe are considered. The results showing that the CP violation necessary for the generation of the baryon asymmetry of the Universe in leptogenesis can be due exclusively to the Dirac and/or Majorana CP-violating phase(s) in the neutrino mixing matrix U are briefly reviewed. The discrete symmetry approach to understanding the observed pattern of neutrino mixing and the related predictions for the leptonic Dirac CP violation are also reviewed.
Voisin, Claire
1999-01-01
This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...
Introduction to symmetry breaking and spin
International Nuclear Information System (INIS)
Ng, J.N.
1992-05-01
These lectures form an elementary introduction to the physics of symmetry breaking and the role polarization experiments play in the study of gauge symmetry breaking. Included here is an introduction to testing the electroweak sector of the standard model to one-loop and the use of oblique corrections as a probe of new physics. The second part of the lectures consists of an introduction to multiple Higgs models as sources of spontaneous CP violation. A brief discussion of using spin measurements in meson decays to study these sources of CP violation is also included. (author)
2004-01-01
Aradigm Corporation has developed an inhaled form of insulin using its proprietary AERx drug delivery system. The system uses liquid insulin that is converted into an aerosol containing very small particles (1-3 micro in diameter), and an electronic device suitable for either the rapid transfer of molecules of insulin into the bloodstream or localised delivery within the lung. The AERx insulin Diabetes Management System (iDMS), AERx iDMS, instructs the user on breathing technique to achieve the best results. Aradigm Corporation and Novo Nordisk have signed an agreement to jointly develop a pulmonary delivery system for insulin [AERx iDMS, NN 1998]. Under the terms of the agreement, Novo Nordisk has exclusive rights for worldwide marketing of any products resulting from the development programme. Aradigm Corporation will initially manufacture the product covered by the agreement, and in return will receive a share of the overall gross profits from Novo Nordisk's sales. Novo Nordisk will cover all development costs incurred by Aradigm Corporation while both parties will co-fund final development of the AERx device. Both companies will explore the possibilities of the AERx platform to deliver other compounds for the regulation of blood glucose levels. Additionally, the agreement gives Novo Nordisk an option to develop the technology for delivery of agents outside the diabetes area. In April 2001, Aradigm Corporation received a milestone payment from Novo Nordisk related to the completion of certain clinical and product development stages of the AERx drug delivery system. Profil, a CRO in Germany, is cooperating with Aradigm and Novo Nordisk in the development of inhaled insulin. Aradigm and Novo Nordisk initiated a pivotal phase III study with inhaled insulin formulation in September 2002. This 24-month, 300-patient trial is evaluating inhaled insulin in comparison with insulin aspart. Both medications will be given three times daily before meals in addition to basal
International Nuclear Information System (INIS)
Quinn, H.
2002-01-01
These lectures provide a basic overview of topics related to the study of CP Violation in B decays. In the first lecture, I review the basics of discrete symmetries in field theories, the quantum mechanics of neutral but flavor-non-trivial mesons, and the classification of three types of CP violation. The actual second lecture which I gave will be separately published as it is my Dirac award lecture and is focussed on the separate topic of strong CP Violation. In Lecture 2 here, I cover the Standard Model predictions for neutral B decays, and in particular discuss some channels of interest for CP Violation studies. Lecture 3 reviews the various tools and techniques used to deal with the hadronic physics effects. In Lecture 4, I briefly review the present and planned experiments that can study B decays. I cannot teach all the details of this subject in this short course, so my approach is instead to try to give students a grasp of the relevant concepts and an overview of the available tools. The level of these lectures is introductory. I will provide some references to more detailed treatments and current literature, but this is not a review article so I do not attempt to give complete references to all related literature. By now there are some excellent textbooks that cover this subject in great detail. I refer students to these for more details and for more complete references to the original literature. (author)
International Nuclear Information System (INIS)
Quinn, Helen R
2001-01-01
These lectures provide a basic overview of topics related to the study of CP Violation in B decays. In the first lecture, I review the basics of discrete symmetries in field theories, the quantum mechanics of neutral but flavor-non-trivial mesons, and the classification of three types of CP violation [1]. The actual second lecture which I gave will be separately published as it is my Dirac award lecture and is focused on the separate topic of strong CP Violation. In Lecture 2 here, I cover the Standard Model predictions for neutral B decays, and in particular discuss some channels of interest for CP Violation studies. Lecture 3 reviews the various tools and techniques used to deal with the hadronic physics effects. In Lecture 4, I briefly review the present and planned experiments that can study B decays. I cannot teach all the details of this subject in this short course, so my approach is instead to try to give students a grasp of the relevant concepts and an overview of the available tools. The level of these lectures is introductory. I will provide some references to more detailed treatments and current literature, but this is not a review article so I do not attempt to give complete references to all related literature. By now there are some excellent textbooks that cover this subject in great detail [1]. I refer students to these for more details and for more complete references to the original literature
Flavour violation in general supergravity
Chankowski, P H; Pokorski, Stefan; Chankowski, Piotr H.; Lebedev, Oleg; Pokorski, Stefan
2005-01-01
We reappraise the flavour changing neutral currents (FCNC) problem in string--derived supergravity models. We overview and classify possible sources of flavour violation and find that the problem often does not arise in classes of models which generate hierarchical Yukawa matrices. In such models, constraints from the K- and D-meson systems leave room for substantial flavour non-universality of the soft terms. The current B-physics experiments only begin to probe its natural range. Correlations among different observables can allow one to read off the chirality structure of flavour violating sources. We briefly discuss the lepton sector where the problem of FCNC is indeed serious and perhaps points at an additional symmetry or flavour universality.
CP and other gauge symmetries in string theory
International Nuclear Information System (INIS)
Dine, M.; Leigh, R.G.; MacIntire, D.A.
1992-01-01
We argue that CP is a gauge symmetry in string theory. As a consequence, CP cannot be explicitly broken either perturbatively or nonperturbatively; there can be no nonperturbative CP-violating parameters. String theory is thus an example of a theory where all θ angles arise due to spontaneous CP violation, and are in principle calculable
International Nuclear Information System (INIS)
Rajpoot, S.
1981-07-01
The SU(2)sub(L) x SU(2)sub(R) x U(1)sub(L+R) model of electroweak interactions is described with the most general gauge couplings gsub(L), gsub(R) and gsub(L+R). The case in which neutrino neutral current interactions are identical to the standard SU(2)sub(L) x U(1)sub(L+R) model is discussed in detail. It is shown that with the weak angle lying in the experimental range sin 2 thetaSUB(w)=0.23+-0.015 and 1 2 /gsub(R) 2 <3 it is possible to explain the amount of parity violation observed at SLAC and at the same time predict values of the ''weak charge'' in bismuth to lie in the range admitted by the controversal data from different experiments. (author)
Lorentz- and CPT-symmetry studies in subatomic physics
Energy Technology Data Exchange (ETDEWEB)
Lehnert, Ralf, E-mail: ralehner@indiana.edu [Leibniz Universität Hannover (Germany)
2016-12-15
Subatomic systems provide an exquisite test bench for spacetime symmetries. This work motivates such measurements, reviews the effective field theory test framework for the description of Lorentz and CPT violation, and employs this framework to study the phenomenology of spacetime-symmetry breaking in various subatomic systems.
Test of time reversal symmetry with resonance neutron scattering
International Nuclear Information System (INIS)
Bowman, J.D.
1986-01-01
The possibility of searching for time-reversal symmetry violation in the scattering of epithermal neutrons from nuclei is discussed. Sources of both statistical and systematic errors are reviewed. A qualitative assessment of the size of the time reversal is made and a schematic design of an experiment to test time reversal symmetry is presented. (DWL) 10 refs., 1 fig
Anomalous transport effects and possible environmental symmetry ...
Indian Academy of Sciences (India)
2015-05-06
May 6, 2015 ... The heavy-ion collision provides a unique many-body environment where local domains of strongly interacting chiral medium may occur and in a sense allow environmental symmetry 'violation' phenomena. For example, certain anomalous transport processes, forbidden in usual medium, become possible ...
Lepton flavour violation in composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Feruglio, Ferruccio, E-mail: feruglio@pd.infn.it; Paradisi, Paride, E-mail: paride.paradisi@pd.infn.it [Sezione di Padova, Dipartimento di Fisica e Astronomia ‘G. Galilei’, INFN, Università di Padova, Via Marzolo 8, 35131, Padua (Italy); Pattori, Andrea, E-mail: pattori@physik.uzh.ch [Physik-Institut, Universität Zürich, 8057, Zurich (Switzerland)
2015-12-08
We discuss in detail the constraints on the partial compositeness coming from flavour and CP violation in the leptonic sector. In the first part we present a formulation of partial compositeness in terms of a flavour symmetry group and a set of spurions, whose background values specify the symmetry breaking pattern. In such a framework we construct the complete set of dimension-six operators describing lepton flavour violation and CP violation. By exploiting the existing bounds, we derive limits on the compositeness scale in different scenarios, characterised by increasing restrictions on the spurion properties. We confirm that in the most general case the compositeness scale should lie well above 10 TeV. However, if in the composite sector the mass parameters and Yukawa couplings are universal, such a bound can be significantly lowered, without necessarily reproducing the case of minimal flavour violation. The most sensitive processes are decays of charged leptons either of radiative type or into three charged leptons, μ→e conversion in nuclei and the electric dipole moment of the electron. In the second part we explicitly compute the Wilson coefficients of the relevant dimension-six operators in the so-called two-site model, embodying the symmetry breaking pattern discussed in our first part, and we compare the results with those of the general spurion analysis.
Lepton flavour violation in composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Feruglio, Ferruccio; Paradisi, Paride [Universita di Padova, Dipartimento di Fisica e Astronomia ' G. Galilei' , Padua (Italy); INFN, Padua (Italy); Pattori, Andrea [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland)
2015-12-15
We discuss in detail the constraints on the partial compositeness coming from flavour and CP violation in the leptonic sector. In the first part we present a formulation of partial compositeness in terms of a flavour symmetry group and a set of spurions, whose background values specify the symmetry breaking pattern. In such a framework we construct the complete set of dimension-six operators describing lepton flavour violation and CP violation. By exploiting the existing bounds, we derive limits on the compositeness scale in different scenarios, characterised by increasing restrictions on the spurion properties. We confirm that in the most general case the compositeness scale should lie well above 10 TeV. However, if in the composite sector the mass parameters and Yukawa couplings are universal, such a bound can be significantly lowered, without necessarily reproducing the case of minimal flavour violation. The most sensitive processes are decays of charged leptons either of radiative type or into three charged leptons, μ → e conversion in nuclei and the electric dipole moment of the electron. In the second part we explicitly compute the Wilson coefficients of the relevant dimension-six operators in the so-called two-site model, embodying the symmetry breaking pattern discussed in our first part, and we compare the results with those of the general spurion analysis. (orig.) 7.
Testing B-violating signatures from exotic instantons in future colliders
Addazi, Andrea; Kang, Xian-Wei; Khlopov, Maxim Yu.
2017-09-01
We discuss possible implications of exotic stringy instantons for baryon-violating signatures in future colliders. In particular, we discuss high-energy quark collisions and transitions. In principle, the process can be probed by high-luminosity electron-positron colliders. However, we find that an extremely high luminosity is needed in order to provide a (somewhat) stringent bound compared to the current data on NN → ππ,KK. On the other hand, (exotic) instanton-induced six-quark interactions can be tested in near future high-energy colliders beyond LHC, at energies around 20–100 TeV. The Super proton-proton Collider (SppC) would be capable of such measurement given the proposed energy level of 50–90 TeV. Comparison with other channels is made. In particular, we show the compatibility of our model with neutron-antineutron and NN → ππ,KK bounds. A. A.’s work was Supported in part by the MIUR research grant “Theoretical Astroparticle Physics" PRIN 2012CPPYP7. XWK's work is partly Supported by the DFG and the NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” when he was in Jülich, and by MOST, Taiwan, (104-2112-M-001-022) from April 2017. The work by MK was performed within the framework of the Center FRPP Supported by MEPhI Academic Excellence Project (contract 02.03.21.0005, 27.08.2013), Supported by the Ministry of Education and Science of Russian Federation, project 3.472.2014/K and grant RFBR 14-22-03048
Directory of Open Access Journals (Sweden)
Kirstin Peters
2010-11-01
Full Text Available A well-known result by Palamidessi tells us that πmix (the π-calculus with mixed choice is more expressive than πsep (its subset with only separate choice. The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla offered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of incestual processes (mixed choices that include both enabled senders and receivers for the same channel when running two copies in parallel. In both proofs, the role of breaking (initial symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result - based on a proper formalization of what it means to break symmetries without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reasonable encoding from πmix into πsep. We indicate how the respective proofs can be adapted and exhibit the consequences of varying notions of uniformity and reasonableness. In each case, the ability to break initial symmetries turns out to be essential.
Testing spatial symmetry using contingency tables based on nearest neighbor relations.
Ceyhan, Elvan
2014-01-01
We consider two types of spatial symmetry, namely, symmetry in the mixed or shared nearest neighbor (NN) structures. We use Pielou's and Dixon's symmetry tests which are defined using contingency tables based on the NN relationships between the data points. We generalize these tests to multiple classes and demonstrate that both the asymptotic and exact versions of Pielou's first type of symmetry test are extremely conservative in rejecting symmetry in the mixed NN structure and hence should be avoided or only the Monte Carlo randomized version should be used. Under RL, we derive the asymptotic distribution for Dixon's symmetry test and also observe that the usual independence test seems to be appropriate for Pielou's second type of test. Moreover, we apply variants of Fisher's exact test on the shared NN contingency table for Pielou's second test and determine the most appropriate version for our setting. We also consider pairwise and one-versus-rest type tests in post hoc analysis after a significant overall symmetry test. We investigate the asymptotic properties of the tests, prove their consistency under appropriate null hypotheses, and investigate finite sample performance of them by extensive Monte Carlo simulations. The methods are illustrated on a real-life ecological data set.
Lorentz symmetry breaking effects on relativistic EPR correlations
Energy Technology Data Exchange (ETDEWEB)
Belich, H. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil); Furtado, C.; Bakke, K. [Universidade Federal da Paraiba, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, PB (Brazil)
2015-09-15
Lorentz symmetry breaking effects on relativistic EPR (Einstein-Podolsky-Rosen) correlations are discussed. From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the Lorentz symmetry violation and write an effective metric for the Minkowski spacetime. Then we obtain the Wigner rotation angle via the Fermi-Walker transport of spinors and consider the WKB (Wentzel-Kramers-Brillouin) approximation in order to study the influence of Lorentz symmetry breaking effects on the relativistic EPR correlations. (orig.)
Secure kNN Computation and Integrity Assurance of Data Outsourcing in the Cloud
Directory of Open Access Journals (Sweden)
Jun Hong
2017-01-01
Full Text Available As cloud computing has been popularized massively and rapidly, individuals and enterprises prefer outsourcing their databases to the cloud service provider (CSP to save the expenditure for managing and maintaining the data. The outsourced databases are hosted, and query services are offered to clients by the CSP, whereas the CSP is not fully trusted. Consequently, the security shall be violated by multiple factors. Data privacy and query integrity are perceived as two major factors obstructing enterprises from outsourcing their databases. A novel scheme is proposed in this paper to effectuate k-nearest neighbors (kNN query and kNN query authentication on an encrypted outsourced spatial database. An asymmetric scalar-product-preserving encryption scheme is elucidated, in which data points and query points are encrypted with diverse encryption keys, and the CSP can determine the distance relation between encrypted data points and query points. Furthermore, the similarity search tree is extended to build a novel verifiable SS-tree that supports efficient kNN query and kNN query verification. It is indicated from the security analysis and experiment results that our scheme not only maintains the confidentiality of outsourced confidential data and query points but also has a lower kNN query processing and verification overhead than the MR-tree.
Measurements of CPT Violation at LHCb
INSPIRE-00260865
2017-01-01
Recent measurements of CPT violation and Lorentz symmetry breaking in $B^0-\\bar{B}^0$ mixing and $B^0_s-\\bar{B}^0_s$ mixing, obtained from data taken by the LHCb experiment, are highlighted. The results are expressed in terms of the Standard-Model Extension (SME) coefficients, which incorporate both CPT and Lorentz violation. Due to the large boost of the $B$ mesons at LHCb, the SME coefficients can be determined with high precision. The bounds on these coefficients are improved significantly compared to previous measurements.
Parity violation in the compound nucleus
International Nuclear Information System (INIS)
Mitchell, G.E.; Crawford, B.E.; Grossmann, C.A.; Lowie, L.Y.; Bowman, J.D.; Knudson, J.; Penttilae, S.; Seestrom, S.J.; Smith, D.A.; Yen, Y.; Yuan, V.W.; Delheij, P.P.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Postma, H.; Roberson, N.R.; Sharapov, E.I.; Stephenson, S.L.
1999-01-01
Measurements have been performed on the helicity dependence of the neutron resonance cross section for many nuclei by our TRIPLE Collaboration. A large number of parity violations are observed. Generic enhancements amplify the signal for symmetry breaking and the stochastic properties of the compound nucleus permit the strength of the symmetry-breaking interaction to be determined without knowledge of the wave functions of individual states. A total of 15 nuclei have been analyzed with this statistical approach. The results are summarized. copyright 1999 American Institute of Physics
A model for the origin and mechanisms of CP violation
International Nuclear Information System (INIS)
Wu, Y.
1995-01-01
In this talk I will show that the two-Higgs doublet model with vacuum CP violation and approximate global U(1) family symmetries may provide one of the simplest and attractive models for understanding the origin and mechanisms of CP violation. It is shown that the mechanism of spontaneous symmetry breaking provides not only a mechanism for generating masses of the bosons and fermions, but also a mechanism for creating CP-phases of the bosons and fermions, so that CP violation occurs, after spontaneous symmetry breaking, in all possible ways from a single CP phase of the vacuum and is generally classified into four types of CP-violating mechanism. A new type of CP-violating mechanism in the charged Higgs boson interactions of the fermions is emphasized and can provide a consistent description for both established and reported CP-, P-, and T-violating phenomena. Of particular importance is the new source of CP violation for charged Higgs boson interactions that lead to the value of ε'/ε as large as 10 -3 independent of the CKM phase. copyright 1995 American Institute of Physics
Neutrino properties and fundamental symmetries
International Nuclear Information System (INIS)
Bowles, T.J.
1996-01-01
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). There are two components to this work. The first is a development of a new detection scheme for neutrinos. The observed deficit of neutrinos from the Sun may be due to either a lack of understanding of physical processes in the Sun or may be due to neutrinos oscillating from one type to another during their transit from the Sun to the Earth. The Sudbury Neutrino Observatory (SNO) is designed to use a water Cerenkov detector employing one thousand tonnes of heavy water to resolve this question. The ability to distinguish muon and tau neutrinos from electron neutrinos is crucial in order to carry out a model-independent test of neutrino oscillations. We describe a developmental exploration of a novel technique to do this using 3 He proportional counters. Such a method offers considerable advantages over the initially proposed method of using Cerenkov light from capture on NaCl in the SNO. The second component of this work is an exploration of optimal detector geometry for a time-reversal invariance experiment. The question of why time moves only in the forward direction is one of the most puzzling problems in modern physics. We know from particle physics measurements of the decay of kaons that there is a charge-parity symmetry that is violated in nature, implying time-reversal invariance violation. Yet, we do not understand the origin of the violation of this symmetry. To promote such an understanding, we are developing concepts and prototype apparatus for a new, highly sensitive technique to search for time-reversal-invariance violation in the beta decay of the free neutron. The optimized detector geometry is seven times more sensitive than that in previous experiments. 15 refs
New paradigm for baryon and lepton number violation
International Nuclear Information System (INIS)
Fileviez Pérez, Pavel
2015-01-01
The possible discovery of proton decay, neutron–antineutron oscillation, neutrinoless double beta decay in low energy experiments, and exotic signals related to the violation of the baryon and lepton numbers at collider experiments will change our understanding of the conservation of fundamental symmetries in nature. In this review we discuss the rare processes due to the existence of baryon and lepton number violating interactions. The simplest grand unified theories and the neutrino mass generation mechanisms are discussed. The theories where the baryon and lepton numbers are defined as local gauge symmetries spontaneously broken at the low scale are discussed in detail. The simplest supersymmetric gauge theory which predicts the existence of lepton number violating processes at the low scale is investigated. The main goal of this review is to discuss the main implications of baryon and lepton number violation in physics beyond the Standard Model.
Vacuum stability with spontaneous violation of lepton number
Directory of Open Access Journals (Sweden)
Cesar Bonilla
2016-05-01
Full Text Available The vacuum of the Standard Model is known to be unstable for the measured values of the top and Higgs masses. Here we show how vacuum stability can be achieved naturally if lepton number is violated spontaneously at the TeV scale. More precise Higgs measurements in the next LHC run should provide a crucial test of our symmetry breaking scenario. In addition, these schemes typically lead to enhanced rates for processes involving lepton flavor violation.
Strong binary pulsar constraints on Lorentz violation in gravity.
Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico
2014-04-25
Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.
Graviton excitations and Lorentz-Violating gravity with cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Boldo, J.L.; Helayel-Neto, J.A.; Moraes, L.M. de [CBPF, Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud 150, 22290-180, Urca, Rio de Janeiro (Brazil); Sasaki, C.A.G. [UERJ, Universidade Estadual do Rio de Janeiro, Departamento de Estruturas Matematicas, Instituto de Matematica e Estatistica, Rua Sao Francisco Xavier, 524, 20550-013, Maracana, Rio de Janeiro (Brazil); Vasquez Otoya, V.J., E-mail: victor@if.uff.b [UFF, Universidade Federal Fluminense, Campus da Praia Vermelha, Gragoata, 24210-310, Niteroi, Rio de Janeiro (Brazil)
2010-05-24
Motivated by the interest raised by the problem of Lorenz-symmetry violating gauge theories in connection with gravity models, this contribution sets out to provide a general method to systematically study the excitation spectrum of gravity actions which include a Lorentz-symmetry breaking Chern-Simons-type action term for the spin connection. A complete set of spin-type operators is found which accounts for the (Lorentz) violation parameter to all orders and graviton propagators are worked out in a number of different situations.
Strong Binary Pulsar Constraints on Lorentz Violation in Gravity
Yagi, Kent; Yunes, Nicolas; Barausse, Enrico
2014-01-01
Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of General Relativity. One of these is Lorentz symmetry which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.
Minimal flavour violation and neutrino masses without R-parity
DEFF Research Database (Denmark)
Arcadi, G.; Di Luzio, L.; Nardecchia, M.
2012-01-01
symmetry breaking all the couplings of the superpotential including the R-parity violating ones. If R-parity violation is responsible for neutrino masses, our setup can be seen as an extension of MFV to the lepton sector. We analyze two patterns based on the non-abelian flavour symmetries SU(3)(4) circle...... times SU(4) and SU(3)(5). In the former case the total lepton number and the lepton flavour number are broken together, while in the latter the lepton number can be broken independently by an abelian spurion, so that visible effects and peculiar correlations can be envisaged in flavour changing charged...
Yamamoto, Hitoshi
2001-01-01
We review the physics of CP violation in B decays. After introducing the CKM matrix and how it causes CP violation, we cover three types of CP violation that can occur in B decays: CP violation in mixing, CP violation by mixing-decay interference, and CP violation in decay.
Energy Technology Data Exchange (ETDEWEB)
Conte, E
2007-11-15
This thesis probes the beauty baryon physics in the framework of the LHCb experiment. The present study deals with the {lambda}{sub b}{sup 0} {yields} {lambda}{sup 0}V decays where V is a vector meson such as J/{psi}({mu}{sup +}{mu}{sup -}), {phi}(K{sup +}K{sup -}), {omega}({pi}{sup +}{pi}{sup -}{pi}0) or the {rho}{sup 0} - {omega}{sup 0}({pi}{sup +}{pi}{sup -}) mixing. These processes allow to test independently the CP symmetry, which violation has not been observed yet in the baryonic sector, and the T symmetry, which experimental proofs are limited. Among the possible perspectives, a precise measurement of the {lambda}{sub b}{sup 0} lifetime could contribute to the resolution of the raising theoretical-experimental puzzle. A phenomenological model of the {lambda}{sub b}{sup 0} {yields} {lambda}{sup 0}V decays has been performed, from which branching ratios and angular distributions have been estimated. An advanced study of the reconstruction and the selection of these reactions by the LHCb apparatus shows that the channel {lambda}{sub b}{sup 0} {yields} {lambda}{sup 0}J/{psi} is the dominant channel on both statistics and purity aspects. The {lambda}{sub b}{sup 0} lifetime measure is the most imminent result; the constrains on asymmetries due to CP and T violation require several data taking years. Besides, an instrumental work has been achieved on the read-out electronics, called Front-End, of the experiment pre-shower. This contribution takes into account the validation of the prototype boards and the development of tools required by the qualification of the 100 production boards. (author)
A maximal atmospheric mixing from a maximal CP violating phase
Energy Technology Data Exchange (ETDEWEB)
Masina, Isabella [Centro Studi e Ricerche ' E. Fermi' , Via Panisperna 89/A, Rome (Italy) and INFN, Sezione di Roma, P.le A. Moro 2, Rome (Italy)]. E-mail: isabella.masina@roma1.infn.it
2006-02-02
We point out an elegant mechanism to predict a maximal atmospheric angle, which is based on a maximal CP violating phase difference between second and third lepton families in the flavour symmetry basis. In this framework, a discussion of the general formulas for {theta}{sub 12}, vertical bar U{sub e3} vertical bar, {delta} and their possible correlations in some limiting cases is provided. We also present an explicit realisation in terms of an SO(3) flavour symmetry model.
Discrete symmetries with neutral mesons
Bernabéu, José
2018-01-01
Symmetries, and Symmetry Breakings, in the Laws of Physics play a crucial role in Fundamental Science. Parity and Charge Conjugation Violations prompted the consideration of Chiral Fields in the construction of the Standard Model, whereas CP-Violation needed at least three families of Quarks leading to Flavour Physics. In this Lecture I discuss the Conceptual Basis and the present experimental results for a Direct Evidence of Separate Reversal-in-Time T, CP and CPT Genuine Asymmetries in Decaying Particles like Neutral Meson Transitions, using Quantum Entanglement and the Decay as a Filtering Measurement. The eight transitions associated to the Flavour-CP eigenstate decay products of entangled neutral mesons have demonstrated with impressive significance a separate evidence of TRV and CPV in Bd-physics, whereas a CPTV asymmetry shows a 2σ effect interpreted as an upper limit. Novel CPTV observables are discussed for K physics at KLOE-2, including the difference between the semileptonic asymmetries from KL and KS, the ratios of double decay rate Intensities to Flavour-CP eigenstate decay products and the ω-effect. Their observation would lead to a change of paradigm beyond Quantum Field Theory, however there is nothing in Quantum Mechanics forbidding CPTV.
Search for Charged Lepton Flavour Violation at CMS
Mukherjee, Swagata
2017-01-01
Lepton flavour is a conserved quantity in the standard model of particle physics, but it does not follow from an underlying gauge symmetry. After the discovery of neutrino oscillation, it has been established that lepton flavour is not conserved in the neutral sector. Thus the lepton sector is an excellent place to look for New Physics, and in this perspective the Charged Lepton Flavour Violation is interesting. Various extensions of the standard model predict lepton flavour violating decays that can be observed at LHC. This talk presents several searches for lepton flavour violation with data collected by the CMS detector.
Models of dynamical R-parity violation
Energy Technology Data Exchange (ETDEWEB)
Csáki, Csaba; Kuflik, Eric [Department of Physics, LEPP, Cornell University, Ithaca, NY 14853 (United States); Slone, Oren; Volansky, Tomer [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel)
2015-06-08
The presence of R-parity violating interactions may relieve the tension between existing LHC constraints and natural supersymmetry. In this paper we lay down the theoretical framework and explore models of dynamical R-parity violation in which the breaking of R-parity is communicated to the visible sector by heavy messenger fields. We find that R-parity violation is often dominated by non-holomorphic operators that have so far been largely ignored, and might require a modification of the existing searches at the LHC. The dynamical origin implies that the effects of such operators are suppressed by the ratio of either the light fermion masses or the supersymmetry breaking scale to the mediation scale, thereby providing a natural explanation for the smallness of R-parity violation. We consider various scenarios, classified by whether R-parity violation, flavor breaking and/or supersymmetry breaking are mediated by the same messenger fields. The most compact case, corresponding to a deformation of the so called flavor mediation scenario, allows for the mediation of supersymmetry breaking, R-parity breaking, and flavor symmetry breaking in a unified manner.
Models of dynamical R-parity violation
International Nuclear Information System (INIS)
Csáki, Csaba; Kuflik, Eric; Slone, Oren; Volansky, Tomer
2015-01-01
The presence of R-parity violating interactions may relieve the tension between existing LHC constraints and natural supersymmetry. In this paper we lay down the theoretical framework and explore models of dynamical R-parity violation in which the breaking of R-parity is communicated to the visible sector by heavy messenger fields. We find that R-parity violation is often dominated by non-holomorphic operators that have so far been largely ignored, and might require a modification of the existing searches at the LHC. The dynamical origin implies that the effects of such operators are suppressed by the ratio of either the light fermion masses or the supersymmetry breaking scale to the mediation scale, thereby providing a natural explanation for the smallness of R-parity violation. We consider various scenarios, classified by whether R-parity violation, flavor breaking and/or supersymmetry breaking are mediated by the same messenger fields. The most compact case, corresponding to a deformation of the so called flavor mediation scenario, allows for the mediation of supersymmetry breaking, R-parity breaking, and flavor symmetry breaking in a unified manner.
Chiral symmetry and chiral-symmetry breaking
International Nuclear Information System (INIS)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed
Lorentz violation, gravitoelectromagnetism and Bhabha scattering at finite temperature
Santos, A. F.; Khanna, Faqir C.
2018-04-01
Gravitoelectromagnetism (GEM) is an approach for the gravitation field that is described using the formulation and terminology similar to that of electromagnetism. The Lorentz violation is considered in the formulation of GEM that is covariant in its form. In practice, such a small violation of the Lorentz symmetry may be expected in a unified theory at very high energy. In this paper, a non-minimal coupling term, which exhibits Lorentz violation, is added as a new term in the covariant form. The differential cross-section for Bhabha scattering in the GEM framework at finite temperature is calculated that includes Lorentz violation. The Thermo Field Dynamics (TFD) formalism is used to calculate the total differential cross-section at finite temperature. The contribution due to Lorentz violation is isolated from the total cross-section. It is found to be small in magnitude.
CP violation outside the standard model phenomenology for pedestrians
International Nuclear Information System (INIS)
Lipkin, H.J.
1993-01-01
So far the only experimental evidence for CP violation is the 1964 discovery of K L →2π where the two mass eigenstates produced by neutral meson mixing both decay into the same CP eigenstate. This result is described by two parameters ε and ε'. Today ε ∼ its 1964 value, ε' data are still inconclusive and there is no new evidence for CP violation. One might expect to observe similar phenomena in other systems and also direct CP violation as charge asymmetries between decays of charge conjugate hadrons H ± → f ± . Why is it so hard to find CP violation? How can B Physics help? Does CP lead beyond the standard model? The author presents a pedestrian symmetry approach which exhibits the difficulties and future possibilities of these two types of CP-violation experiments, neutral meson mixing and direct charge asymmetry: what may work, what doesn't work and why
Sixth Meeting on CPT and Lorentz Symmetry
CPT and Lorentz Symmetry
2014-01-01
This book contains the Proceedings of the Sixth Meeting on CPT and Lorentz Symmetry, held at Indiana University in Bloomington on June 17–21, 2013. The Meeting focused on tests of these fundamental symmetries and on related theoretical issues, including scenarios for possible violations. Topics covered at the meeting include searches for CPT and Lorentz violations involving: accelerator and collider experiments; atomic, nuclear, and particle decays; birefringence, dispersion, and anisotropy in cosmological sources; clock-comparison measurements; electromagnetic resonant cavities and lasers; tests of the equivalence principle; gauge and Higgs particles; high-energy astrophysical observations; laboratory tests of gravity; matter interferometry; neutrino oscillations and propagation; oscillations and decays of neutral mesons; particle–antiparticle comparisons; post-newtonian gravity in the solar system and beyond; second- and third-generation particles; space-based missions; spectroscopy of hydrogen and ant...
Jaffé, Hans H
1977-01-01
This book, devoted exclusively to symmetry in chemistry and developed in an essentially nonmathematical way, is a must for students and researchers. Topics include symmetry elements and operations, multiple symmetry operations, multiplication tables and point groups, group theory applications, and crystal symmetry. Extensive appendices provide useful tables.
Branco, G C; Joaquim, F R
2012-01-01
Several topics on CP violation in the lepton sector are reviewed. A few theoretical aspects concerning neutrino masses, leptonic mixing, and CP violation will be covered, with special emphasis on seesaw models. A discussion is provided on observable effects which are manifest in the presence of CP violation, particularly, in neutrino oscillations and neutrinoless double beta decay processes, and their possible implications in collider experiments such as the LHC. The role that leptonic CP violation may have played in the generation of the baryon asymmetry of the Universe through the mechanism of leptogenesis is also discussed.
International Nuclear Information System (INIS)
Gronau, M.
1984-01-01
Two ambiguities are noted in the definition of the concept of maximal CP violation. The phase convention ambiguity is overcome by introducing a CP violating phase in the quark mixing matrix U which is invariant under rephasing transformations. The second ambiguity, related to the parametrization of U, is resolved by finding a single empirically viable definition of maximal CP violation when assuming that U does not single out one generation. Considerable improvement in the calculation of nonleptonic weak amplitudes is required to test the conjecture of maximal CP violation. 21 references
Relativistic three-body approach to NN scattering at intermediate energies
International Nuclear Information System (INIS)
The Bethe-Salpeter equation for coupled-channel N-Δ scattering is extended to satisfy unitarity in the NN and NNπ sectors. The procedure eliminates the unitarity violations characteristic of the standard ladder Bethe-Salpeter equation in the inelastic region, and improves the description of pion production near threshold. Results are presented for the NN phase shift and a number of observables up to 1 GeV. In particular, the 1D 2 inelasticity is found to be considerably smaller than found from phase shift analysis. In this context, the importance of the pion deuteron channel for the inelasticity parameter of is pointed out. 33 refs., 16 figs., 4 tabs
Nonlinear approach to NN interactions using self-interacting meson fields
International Nuclear Information System (INIS)
Jaede, L.; von Geramb, H.V.
1997-01-01
Motivated by the success of models based on chiral symmetry in NN interactions, we investigate self-interacting scalar, pseudoscalar, and vector meson fields and their impact for NN forces. We parametrize the corresponding nonlinear field equations and get analytic wavelike solutions. A probability amplitude for the propagation of particle states is calculated and applied in the framework of a boson-exchange NN potential. Using a proper normalization of the meson fields makes all self-scattering amplitudes finite. The same normalization is able to substitute for the phenomenological form factors used in conventional boson-exchange potentials and thus yields a phenomenological understanding of this part of the NN interaction. We find an empirical scaling law which relates the meson self-interaction couplings to the pion mass and self-interaction coupling constant. Our model yields np phase shifts comparable to the Bonn B potential results and deuteron properties, in excellent agreement with experimental data. copyright 1997 The American Physical Society
Horizontal symmetries for the supersymmetric flavor problem
Pomarol, A; Pomarol, Alex; Tommasini, Daniele
1996-01-01
The heaviness of the third family fermions and the experimental absence of large flavor violating processes suggest, in supersymmetric theories, that the three families belong to a 2+1 representation of a horizontal symmetry G_H. In this framework, we discuss a class of models based on the group U(2) that describe the fermion flavor structure and are compatible with an underlying GUT. We study the phenomenology of these models and focus on two interesting scenarios: In the first one, the first and second family scalars are assumed to be heavier than the weak scale allowing for complex soft supersymmetry breaking terms. In the second one, all the CP-violating phases are assumed to be small. Both scenarios present a rich phenomenology in agreement with constraints from flavor violating processes and electric dipole moments.
Discrete symmetries: A broken look at QCD
International Nuclear Information System (INIS)
Goldman, T.
1996-01-01
The alphabet soup of discrete symmetries is briefly surveyed with a view towards those which can be tested at LISS and two particularly interesting cases are called out. A LISS experiment may be able to distinguish CP violation that is not due to the QCD θ term. The elements of a model of parity violation in proton-nucleon scattering, which is consistent with lower energy LAMPF and ANL results, are reviewed in the light of new information on diquarks and the proton spin fraction carried by quarks. The prediction that the parity violating total cross section asymmetry should be large at LISS energies is confirmed. The results of such an experiment can be used both to obtain new information about the diquark substructure of the nucleon and to provide bounds on new right-chiral weak interactions
Kootstra, Gert; Nederveen, Arco; de Boer, Bart
2008-01-01
Humans are very sensitive to symmetry in visual patterns. Symmetry is detected and recognized very rapidly. While viewing symmetrical patterns eye fixations are concentrated along the axis of symmetry or the symmetrical center of the patterns. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of saliency. These models do not take symmetry into account. In this paper, we discuss local symmet...
Renormalisation group improved leptogenesis in family symmetry models
International Nuclear Information System (INIS)
Cooper, Iain K.; King, Stephen F.; Luhn, Christoph
2012-01-01
We study renormalisation group (RG) corrections relevant for leptogenesis in the case of family symmetry models such as the Altarelli-Feruglio A 4 model of tri-bimaximal lepton mixing or its extension to tri-maximal mixing. Such corrections are particularly relevant since in large classes of family symmetry models, to leading order, the CP violating parameters of leptogenesis would be identically zero at the family symmetry breaking scale, due to the form dominance property. We find that RG corrections violate form dominance and enable such models to yield viable leptogenesis at the scale of right-handed neutrino masses. More generally, the results of this paper show that RG corrections to leptogenesis cannot be ignored for any family symmetry model involving sizeable neutrino and τ Yukawa couplings.
Tests of Lorentz Symmetry in the Gravitational Sector
Directory of Open Access Journals (Sweden)
Aurélien Hees
2016-12-01
Full Text Available Lorentz symmetry is one of the pillars of both General Relativity and the Standard Model of particle physics. Motivated by ideas about quantum gravity, unification theories and violations of CPT symmetry, a significant effort has been put the last decades into testing Lorentz symmetry. This review focuses on Lorentz symmetry tests performed in the gravitational sector. We briefly review the basics of the pure gravitational sector of the Standard-Model Extension (SME framework, a formalism developed in order to systematically parametrize hypothetical violations of the Lorentz invariance. Furthermore, we discuss the latest constraints obtained within this formalism including analyses of the following measurements: atomic gravimetry, Lunar Laser Ranging, Very Long Baseline Interferometry, planetary ephemerides, Gravity Probe B, binary pulsars, high energy cosmic rays, … In addition, we propose a combined analysis of all these results. We also discuss possible improvements on current analyses and present some sensitivity analyses for future observations.
A unique $Z_4^R$ symmetry for the MSSM
Lee, Hyun Min; Ratz, Michael; Ross, Graham G; Schieren, Roland; Schmidt-Hoberg, Kai; Vaudrevange, Patrick K S
2011-01-01
We consider the possible anomaly free Abelian discrete symmetries of the MSSM that forbid the mu-term at perturbative order. Allowing for anomaly cancellation via the Green-Schwarz mechanism we identify discrete R-symmetries as the only possibility and prove that there is a unique Z_4^R symmetry that commutes with SO(10). We argue that non-perturbative effects will generate a mu-term of electroweak order thus solving the mu-problem. The non-perturbative effects break the Z_4^R symmetry leaving an exact Z_2 matter parity. As a result dimension four baryon- and lepton-number violating operators are absent while, at the non-perturbative level, dimension five baryon- and lepton-number violating operators get induced but are highly suppressed so that the nucleon decay rate is well within present bounds.
Can we Relate Time-Reversal Violation to New Physics Processes in Weak Hadronic Decays?
Ajaltouni, Z. J.; di Salvo, E.
2013-03-01
This review paper stresses the possible connection between time-reversal violation and new physics processes beyond the standard model. In particular, this violation is proposed as an alternative to CP violation in the search for such unkown processes. Emphasis is put on the weak decays of heavy hadrons, especially beauty ones. Specific methods for extracting useful parameters from experimental data are elaborated in order to test TR symmetry. These methods could be used successfully in the analysis of the LHC data.
Up sector of minimal flavor violation: top quark properties and direct D meson CP violation
Energy Technology Data Exchange (ETDEWEB)
Bai, Yang; Berger, Joshua; Hewett, JoAnne L.; Li, Ye
2013-07-01
Minimal Flavor Violation in the up-type quark sector leads to particularly interesting phenomenology due to the interplay of flavor physics in the charm sector and collider physics from flavor changing processes in the top sector. We study the most general operators that can affect top quark properties and D meson decays in this scenario, concentrating on two CP violating operators for detailed studies. The consequences of these effective operators on charm and top flavor changing processes are generically small, but can be enhanced if there exists a light flavor mediator that is a Standard Model gauge singlet scalar and transforms under the flavor symmetry group. This flavor mediator can satisfy the current experimental bounds with a mass as low as tens of GeV and explain observed D-meson direct CP violation. Additionally, the model predicts a non-trivial branching fraction for a top quark decay that would mimic a dijet resonance.
Flavored dark matter beyond Minimal Flavor Violation
Agrawal, Prateek; Gemmler, Katrin
2014-10-13
We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a $U(3)_\\chi$ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter $\\chi$ which transforms as triplet under $U(3)_\\chi$, and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator $\\phi$ with a coupling $\\lambda$. We identify a number of "flavor-safe" scenarios for the structure of $\\lambda$ which are beyond Minimal Flavor Violation. For dark matter and collider phenomenology we focus on the well-motivated case of $b$-...
Flavored dark matter beyond Minimal Flavor Violation
International Nuclear Information System (INIS)
Agrawal, Prateek; Blanke, Monika; Gemmler, Katrin
2014-01-01
We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a U(3) χ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter χ which transforms as triplet under U(3) χ , and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator with a coupling. We identify a number of ''flavor-safe'' scenarios for the structure of which are beyond Minimal Flavor Violation. Also, for dark matter and collider phenomenology we focus on the well-motivated case of b-flavored dark matter. Furthermore, the combined flavor and dark matter constraints on the parameter space of turn out to be interesting intersections of the individual ones. LHC constraints on simplified models of squarks and sbottoms can be adapted to our case, and monojet searches can be relevant if the spectrum is compressed
Higgsless approach to electroweak symmetry breaking
Grojean, Christophe
2007-01-01
Higgsless models are an attempt to achieve a breaking of the electroweak symmetry via boundary conditions at the end-points of a fifth dimension compactified on an interval, as an alternative to the usual Higgs mechanism. There is no physical Higgs scalar in the spectrum and the perturbative unitarity violation scale is delayed via the exchange of massive spin-1 KK resonances. The correct mass spectrum is reproduced in a model in warped space, which inherits a custodial symmetry from a left–right gauge symmetry in the bulk. Phenomenological challenges as well as collider signatures are presented. From the AdS/CFT perspective, this model appears as a weakly coupled dual to walking technicolour models.
Nuclear Parity-Violation in Effective Field Theory
Energy Technology Data Exchange (ETDEWEB)
Shi-Lin Zhu; C.M. Maekawa; B.R. Holstein; M.J. Ramsey-Musolf; U van Kolck
2005-02-21
We reformulate the analysis of nuclear parity-violation (PV) within the framework of effective field theory (EFT). To order Q, the PV nucleon-nucleon (NN) interaction depends on five a priori unknown constants that parameterize the leading-order, short-range four-nucleon operators. When pions are included as explicit degrees of freedom, the potential contains additional medium- and long-range components parameterized by PV piNN couplings. We derive the form of the corresponding one- and two-pion-exchange potentials. We apply these considerations to a set of existing and prospective PV few-body measurements that may be used to determine the five independent low-energy constants relevant to the pionless EFT and the additional constants associated with dynamical pions. We also discuss the relationship between the conventional meson-exchange framework and the EFT formulation, and argue that the latter provides a more general and systematic basis for analyzing nuclear PV.
Linear flavour violation and anomalies in B physics
Energy Technology Data Exchange (ETDEWEB)
Gripaios, Ben [Cavendish Laboratory, University of Cambridge,J.J. Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Nardecchia, Marco [Cavendish Laboratory, University of Cambridge,J.J. Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); DAMTP, University of Cambridge,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Renner, Sophie [DAMTP, University of Cambridge,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2016-06-14
We propose renormalizable models of new physics that can explain various anomalies observed in decays of B-mesons to electron and muon pairs. The new physics states couple to linear combinations of Standard Model fermions, yielding a pattern of flavour violation that gives a consistent fit to the gamut of flavour data. Accidental symmetries prevent contributions to baryon- and lepton-number-violating processes, as well as enforcing a loop suppression of new physics contributions to flavour violating processes. Data require that the new flavour-breaking couplings are largely aligned with the Yukawa couplings of the SM and so we also explore patterns of flavour symmetry breaking giving rise to this structure.
Symmetry violations in nuclear and neutron beta decay
Vos, K. K.; Wilschut, H. W.; Timmermans, R. G. E.
2015-01-01
The role of beta decay as a low-energy probe of physics beyond the standard model is reviewed. Traditional searches for deviations from the standard model structure of the weak interaction in beta decay are discussed in light of constraints from the Large Hadron Collider and the neutrino mass.
Isospin symmetry violation, meson production and η-nucleus ...
Indian Academy of Sciences (India)
reactions where they appear as final state particles. In this contribution an overview of some of the GEM experiments are presented. More details of the subject presented here can be found in the contributions of H. Machner in this proceedings. 2. Experimental set-up. The cooler synchrotron accelerator (COSY) at Jülich ...
Isospin symmetry violation, meson production and η-nucleus ...
Indian Academy of Sciences (India)
The experiment was perfomed at the cooler synchrotron accelerator. COSY, Jülich at several beam energies close to the corresponding production threshold. We also have ongoing programmes on -nucleus final-state interaction studies via + 6Li → 7Be + reactions, high resolution search for dibaryonic resonances ...
Indian Academy of Sciences (India)
and energy, respectively. Invariance under rotation leads to the law of conservation of angular momentum and invariance under mirror reflection, i.e. symmetry between left and right, leads to conservation of parity (see Box 1). The question of symmetry between left and right belongs to a category, which is not apparent from ...
Witten, Edward
2018-02-01
In a modern understanding of particle physics, global symmetries are approximate and gauge symmetries may be emergent. This view, which has echoes in condensed-matter physics, is supported by a variety of arguments from experiment and theory.
The Symmetry behind Extended Flavour Democracy and Large Leptonic Mixing
Silva-Marcos, Joaquim I
2002-01-01
We show that there is a minimal discrete symmetry which leads to the extended flavour democracy scenario constraining the Dirac neutrino, the charged lepton and the Majorana neutrino mass term ($M_R$) to be all proportional to the democratic matrix, with all elements equal. In particular, this discrete symmetry forbids other large contributions to $M_R$, such as a term proportional to the unit matrix, which would normally be allowed by a $S_{3L}\\times S_{3R}$ permutation symmetry. This feature is crucial in order to obtain large leptonic mixing, without violating 't Hooft's, naturalness principle.
International Nuclear Information System (INIS)
Nilles, Hans Peter
2012-04-01
Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.
Energy Technology Data Exchange (ETDEWEB)
Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-04-15
Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.
Comments on s-rule violating configurations in field theory
Directory of Open Access Journals (Sweden)
William Cottrell
2015-06-01
Full Text Available We explicitly construct a configuration of N=4 supersymmetry Yang–Mills theory with gauge group U(N on an interval on length L with a D5-like boundary condition on one end and an NS5-like boundary condition on the other. For N>1, such a configuration violates the s-rule and is non-supersymmetric. We compute the energy relative to the BPS bound of these configurations and find that it is proportional to N(N2−1gYM4−2L−3.
Wigner's Symmetry Representation Theorem
Indian Academy of Sciences (India)
IAS Admin
This article elucidates the important role the no- tion of symmetry has played in physics. It dis- cusses the proof of one of the important theorems of quantum mechanics, viz., Wigner's Symmetry. Representation Theorem. It also shows how the representations of various continuous and dis- crete symmetries follow from the ...
Rehren, K. -H.
1996-01-01
Weak C* Hopf algebras can act as global symmetries in low-dimensional quantum field theories, when braid group statistics prevents group symmetries. Possibilities to construct field algebras with weak C* Hopf symmetry from a given theory of local observables are discussed.
Symmetry, asymmetry and dissymmetry
International Nuclear Information System (INIS)
Wackenheim, A.; Zollner, G.
1987-01-01
The authors discuss the concept of symmetry and defect of symmetry in radiological imaging and recall the definition of asymmetry (congenital or constitutional) and dissymmetry (acquired). They then describe a rule designed for the cognitive method of automatic evaluation of shape recognition data and propose the use of reversal symmetry [fr
Polynomial Graphs and Symmetry
Goehle, Geoff; Kobayashi, Mitsuo
2013-01-01
Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…
Unitary null energy condition violation in P (X ) cosmologies
de Rham, Claudia; Melville, Scott
2017-06-01
A non singular cosmological bounce in the Einstein frame can only take place if the null energy condition (NEC) is violated. We explore situations where a single scalar field drives the NEC violation and derive the constraints imposed by demanding tree level unitarity on a cosmological background. We then focus on the explicit constraints that arise in P (X ) theories and show that constraints from perturbative unitarity make it impossible for the NEC violation to occur within the region of validity of the effective field theory without also involving irrelevant operators that arise at a higher scale that would enter from integrating out more massive degrees of freedom. Within the context of P (X ) theories we show that including such operators allows for a bounce that does not manifestly violate tree level unitarity, but at the price of either imposing a shift symmetry or involving technically unnatural small operator coefficients within the low-energy effective field theory.
CP violation and B0-(B0)-bar mixing
International Nuclear Information System (INIS)
Aleksan, R.
1996-01-01
The status of CP violation and B 0 -(B 0 )-bar mixing is given and the subsequent constraints in the framework of the Standard Model are discussed. Recent result on CP violation in the kaon system and related topics are reviewed, including the status of T violation and the tests of the CPT symmetry. The results on B 0 -(B 0 )-bar mixing are presented followed by the studies on B d 0 -(B d 0 )-bar and B s 0 -(B s 0 )-bar oscillations. Finally, the prospects of progress on understanding CP violation are discussed in framework of the new projects expected to produce results at the turn of the century. (author)
Chiral symmetry and chiral-symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)
Vanasse, Jared
2011-11-01
For 50 years the field of hadronic parity violation has been unresolved. Since the 1980's the standard theoretical framework for hadronic parity violation has been the DDH model. However, discrepancies between the DDH model and experiment have called the use of this model into question. At low energies a new model independent analysis of hadronic parity violation can be carried out via pionless effective field theory. With the use of pionless effective field theory and new precision experiments, focusing on systems with A<=4 in order to eliminate nuclear physics uncertainties, the field of hadronic parity violation at low energies will finally be understood. This talk will give an overview of the theory and possible future experiments in this old yet still exciting field.
Pittsburgh PLI Violations Report
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Report containing Department of Permits, Licenses, and Inspections violation notices that have been issued by the City after October 15, 2015
Electron correlation effects in the presence of non-symmetry dictated ...
Indian Academy of Sciences (India)
To explain this phase shift and the violation of parity effect, we first explain what are symmetry dictated nodes (SDN) and non-symmetry dictated nodes (NSDN) that can arise in a Q1D system. For example let us consider a rectangular quantum billiard or dot connected to leads by quantum mechanical tunneling as shown in ...
Complex scaling and residual flavour symmetry in the neutrino mass ...
Indian Academy of Sciences (India)
2017-10-09
Oct 9, 2017 ... Using the residual symmetry approach, we propose a complex extension of the scaling ansatz on the neutrino Majorana mass matrix M ν which allows a nonzero mass for each of the three light neutrinos as well as a nonvanishing θ 13 . Leptonic Dirac CP violation must be maximal while atmospheric ...
Bloch Oscillations in Complex Crystals with PT Symmetry
International Nuclear Information System (INIS)
Longhi, S.
2009-01-01
Bloch oscillations in complex lattices with PT symmetry are theoretically investigated with specific reference to optical Bloch oscillations in photonic lattices with gain or loss regions. Novel dynamical phenomena with no counterpart in ordinary lattices, such as nonreciprocal Bloch oscillations related to violation of the Friedel's law of Bragg scattering in complex potentials, are highlighted.
Broken CP Symmetry and the Physics Nobel Prize–2008
Indian Academy of Sciences (India)
Admin
physics, CP violation and other topics which go beyond the standard model of elementary particle physics. akoto Kobayashi and Toshihide askawa (see ox 1) shared the physics Nobel Prize for 2008 with Yoichiro. Nambu “for the discovery of the origin of the broken symmetry which predicts the existence of at least three.
Asymmetry in Nature-Discrete Symmetries in Particle Physics and ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Asymmetry in Nature - Discrete Symmetries in Particle Physics and their Violation - Background and ... Theoretical Studies, Indian Institute of Science, Bangalore 560012, India. Indian Institute of Technology, Chennai. Aligarh Muslim University.
String constraints on discrete symmetries in MSSM type II quivers
Energy Technology Data Exchange (ETDEWEB)
Anastasopoulos, Pascal [Technische Univ. Wien (Austria). Inst. fur Theor. Phys.; Cvetic, Mirjam [Univ. of Pennsylvania, Philadelphia PA (United States). Dept. of Physics and Astronomy; Univ. of Maribor (Slovenia). Center for Applied Mathematics and Theoretical Physics; Richter, Robert [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-11-15
We study the presence of discrete gauge symmetries in D-brane semirealistic compactifications. After establishing the constraints on the transformation behaviour of the chiral matter for the presence of a discrete gauge symmetry we perform a systematic search for discrete gauge symmetries within semi-realistic D-brane realizations, based on four D-brane stacks, of the MSSM and the MSSM with three right-handed neutrinos. The systematic search reveals that Proton hexality, a discrete symmetry which ensures the absence of R-parity violating terms as well as the absence of dangerous dimension 5 proton decay operators, is only rarely realized. Moreover, none of the semi-realistic local D-brane configurations exhibit any family dependent discrete gauge symmetry.
Family symmetries in F-theory GUTs
King, S F; Ross, G G
2010-01-01
We discuss F-theory SU(5) GUTs in which some or all of the quark and lepton families are assigned to different curves and family symmetry enforces a leading order rank one structure of the Yukawa matrices. We consider two possibilities for the suppression of baryon and lepton number violation. The first is based on Flipped SU(5) with gauge group SU(5)\\times U(1)_\\chi \\times SU(4)_{\\perp} in which U(1)_{\\chi} plays the role of a generalised matter parity. We present an example which, after imposing a Z_2 monodromy, has a U(1)_{\\perp}^2 family symmetry. Even in the absence of flux, spontaneous breaking of the family symmetry leads to viable quark, charged lepton and neutrino masses and mixing. The second possibility has an R-parity associated with the symmetry of the underlying compactification manifold and the flux. We construct an example of a model with viable masses and mixing angles based on the gauge group SU(5)\\times SU(5)_{\\perp} with a U(1)_{\\perp}^3 family symmetry after imposing a Z_2 monodromy.
Parastatistics and gauge symmetries
International Nuclear Information System (INIS)
Govorkov, A.B.
1982-01-01
A possible formulation of gauge symmetries in the Green parafield theory is analysed and the SO(3) gauge symmetry is shown to be on a distinct status. The Greenberg paraquark hypothesis turns out to be not equivalent to the hypothesis of quark colour SU(3)sub(c) symmetry. Specific features of the gauge SO(3) symmetry are discussed, and a possible scheme where it is an exact subgroup of the broken SU(3)sub(c) symmetry is proposed. The direct formulation of the gauge principle for the parafield represented by quaternions is also discussed
Structural aspects of Lorentz-violating quantum field theory
Cambiaso, M.; Lehnert, R.; Potting, R.
2018-01-01
In the last couple of decades the Standard Model Extension has emerged as a fruitful framework to analyze the empirical and theoretical extent of the validity of cornerstones of modern particle physics, namely, of Special Relativity and of the discrete symmetries C, P and T (or some combinations of these). The Standard Model Extension allows to contrast high-precision experimental tests with posited alterations representing minute Lorentz and/or CPT violations. To date no violation of these symmetry principles has been observed in experiments, mostly prompted by the Standard-Model Extension. From the latter, bounds on the extent of departures from Lorentz and CPT symmetries can be obtained with ever increasing accuracy. These analyses have been mostly focused on tree-level processes. In this presentation I would like to comment on structural aspects of perturbative Lorentz violating quantum field theory. I will show that some insight coming from radiative corrections demands a careful reassessment of perturbation theory. Specifically I will argue that both the standard renormalization procedure as well as the Lehmann-Symanzik-Zimmermann reduction formalism need to be adapted given that the asymptotic single-particle states can receive quantum corrections from Lorentz-violating operators that are not present in the original Lagrangian.
Symmetries of nonlinear ordinary differential equations: The ...
Indian Academy of Sciences (India)
2015-10-21
Oct 21, 2015 ... Lie point symmetries; -symmetries; Noether symmetries; contact symmetries; adjoint symmetries; nonlocal symmetries; hidden symmetries; ... 620 024, India; Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, India ...
Witten, Edward
2016-03-01
In this talk, I will describe global and gauge symmetries and the interplay between them. The meaning of global symmetries is clear: they act on physical observables. Gauge symmetries are more elusive as they typically do not act on physical observables. Gauge symmetries are redundancies in the mathematical description of a physical system rather than properties of the system itself. The existence of nonperturbative dualities makes it clear that this distinction is unavoidable. Yet in our best understanding the gauge symmetries are deeper. The lepton number symmetries that are probed by the wonderful experimental results that will be reported in this session give an excellent illustration. They are regarded in the Standard Model as indirect consequences of gauge symmetries and they are expected to be only approximate. This expectation is supported by the observation of neutrino oscillations.
International Nuclear Information System (INIS)
Gaiotto, Davide; Kapustin, Anton; Seiberg, Nathan; Willett, Brian
2015-01-01
A q-form global symmetry is a global symmetry for which the charged operators are of space-time dimension q; e.g. Wilson lines, surface defects, etc., and the charged excitations have q spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (q=0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a subgroup). They can also have ’t Hooft anomalies, which prevent us from gauging them, but lead to ’t Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. Our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.
Evidence for chiral symmetry restoration in heavy-ion collisions
Moreau, P.; Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.; Bratkovskaya, E. L.
2017-11-01
We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy range √{sNN} = 3- 20GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for particle production. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at √{sNN} = 3- 20GeV, realizing an increase of the hadronic particle production in the strangeness sector with respect to the non-strange one. Our results provide a microscopic explanation for the horn structure in the excitation function of the K+ /π+ ratio: the CSR in the hadronic phase produces the steep increase of this particle ratio up to √{sNN} ≈ 7GeV, while the drop at higher energies is associated to the appearance of a deconfined partonic medium. Furthermore, the appearance/disappearance of the horn structure is investigated as a function of the system size. We additionally present an analysis of strangeness production in the (T ,μB)-plane (as extracted from the PHSD for central Au+Au collisions) and discuss the perspectives to identify a possible critical point in the phase diagram.
Symmetry and symmetry breaking in quantum mechanics
International Nuclear Information System (INIS)
Chomaz, Philippe
1998-01-01
In the world of infinitely small, the world of atoms, nuclei and particles, the quantum mechanics enforces its laws. The discovery of Quanta, this unbelievable castration of the Possible in grains of matter and radiation, in discrete energy levels compels us of thinking the Single to comprehend the Universal. Quantum Numbers, magic Numbers and Numbers sign the wave. The matter is vibration. To describe the music of the world one needs keys, measures, notes, rules and partition: one needs quantum mechanics. The particles reduce themselves not in material points as the scholars of the past centuries thought, but they must be conceived throughout the space, in the accomplishment of shapes of volumes. When Einstein asked himself whether God plays dice, there was no doubt among its contemporaries that if He exists He is a geometer. In a Nature reduced to Geometry, the symmetries assume their role in servicing the Harmony. The symmetries allow ordering the energy levels to make them understandable. They impose there geometrical rules to the matter waves, giving them properties which sometimes astonish us. Hidden symmetries, internal symmetries and newly conceived symmetries have to be adopted subsequently to the observation of some order in this world of Quanta. In turn, the symmetries provide new observables which open new spaces of observation
International Nuclear Information System (INIS)
Mainzer, K.
1988-01-01
Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs
International Nuclear Information System (INIS)
Barr, S.M.
1992-01-01
Electric dipole moments of large atoms are an excellent tool to search for CP violation beyond the Standard Model. These tell us about the electron EDM but also about CP-violating electron-nucleon dimension-6 operators that arise from Higgs-exchange. Rapid strides are being made in searches for atomic EDMs. Limits on the electron EDM approaching the values which would be expected from Higgs-exchange mediated CP violation have been achieved. It is pointed out that in this same kind of model if tan β is large the effects in atoms of the dimension-6 e - n operators may outweigh the effect of the electron EDM. (author) 21 refs
International Nuclear Information System (INIS)
Alhassid, Y.; Leviatan, A.
1993-01-01
A novel symmetry structure, partial dynamical symmetry is introduced. The Hamiltonian is not invariant under the transformations of a group G and irreps of G are mixed in its eigenstates. it possesses, however, a partial set of eigenstates which do have good symmetry and can be labeled by irreps of G. A general algorithm to construct such Hamiltonians for a semi-simple group G is presented. (Author) 6 refs
Energy Technology Data Exchange (ETDEWEB)
Quinn, H.R.
1993-02-01
Given the varied backgrounds of the members of this audience this talk will be a grab bag of topics related to the general theme of CP Violation. I do not have time to dwell in detail on any of them. First, for the astronomers and astrophysicists among you, I want to begin by reviewing the experimental status of evidence for CP violation in particle processes. There is only one system where this has been observed, and that is in the decays of neutral K mesons.
Systematic model building with flavor symmetries
Energy Technology Data Exchange (ETDEWEB)
Plentinger, Florian
2009-12-19
The observation of neutrino masses and lepton mixing has highlighted the incompleteness of the Standard Model of particle physics. In conjunction with this discovery, new questions arise: why are the neutrino masses so small, which form has their mass hierarchy, why is the mixing in the quark and lepton sectors so different or what is the structure of the Higgs sector. In order to address these issues and to predict future experimental results, different approaches are considered. One particularly interesting possibility, are Grand Unified Theories such as SU(5) or SO(10). GUTs are vertical symmetries since they unify the SM particles into multiplets and usually predict new particles which can naturally explain the smallness of the neutrino masses via the seesaw mechanism. On the other hand, also horizontal symmetries, i.e., flavor symmetries, acting on the generation space of the SM particles, are promising. They can serve as an explanation for the quark and lepton mass hierarchies as well as for the different mixings in the quark and lepton sectors. In addition, flavor symmetries are significantly involved in the Higgs sector and predict certain forms of mass matrices. This high predictivity makes GUTs and flavor symmetries interesting for both, theorists and experimentalists. These extensions of the SM can be also combined with theories such as supersymmetry or extra dimensions. In addition, they usually have implications on the observed matter-antimatter asymmetry of the universe or can provide a dark matter candidate. In general, they also predict the lepton flavor violating rare decays {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, and {tau} {yields} e{gamma} which are strongly bounded by experiments but might be observed in the future. In this thesis, we combine all of these approaches, i.e., GUTs, the seesaw mechanism and flavor symmetries. Moreover, our request is to develop and perform a systematic model building approach with flavor symmetries and
Sterile neutrinos and B-L symmetry
Fileviez Pérez, Pavel; Murgui, Clara
2018-02-01
We revisit the relation between the neutrino masses and the spontaneous breaking of the B-L gauge symmetry. We discuss the main scenarios for Dirac and Majorana neutrinos and point out two simple mechanisms for neutrino masses. In this context the neutrino masses can be generated either at tree level or at quantum level and one predicts the existence of very light sterile neutrinos with masses below the eV scale. The predictions for lepton number violating processes such as μ → e and μ → eγ are discussed in detail. The impact from the cosmological constraints on the effective number of relativistic degree of freedom is investigated.
International Nuclear Information System (INIS)
Furmanski, W.
1981-08-01
The effects of scaling violation in QCD are discussed in the perturbative scheme, based on the factorization of mass singularities in the light-like gauge. Some recent applications including the next-to-leading corrections are presented (large psub(T) scattering, numerical analysis of the leptoproduction data). A proposal is made for extending the method on the higher twist sector. (author)
Electron scattering violates parity
2004-01-01
Parity violation has been observed in collisions between electrons at the Stanford Linear Accelerator Center (SLAC) in the US. The resuls, which are in agreement with the Stanford Model of particle physics, also provide a new measurement of the weak charge of the electron (½ page)
Superweak CP-violation and right-handed horizontal interactions
International Nuclear Information System (INIS)
Joshipura, A.S.; Montvay, I.
1981-07-01
A horizontal extension of the Weinberg-Salam electroweak theory by a right-handed 0(3)sub(R)sub(H) gauge symmetry for the three fermion families is studied. By an appropriate choice of the Higgs-scalar fields the CP-symmetry of the Lagrangean is spontaneously broken, but the mixing of the left-handed fermion states, and hence the Kobayashi-Maskawa mixing matrix, remains real. The CP-violation is manifested in the superweak horizontal gauge interactions, which are suppressed by the large mass of the corresponding gauge bosons. It is, however, possible that the horizontal boson acting on the second and third families can be considerably lighter than the other two, implying an interesting phenomenology of the related CP-violation effects and flavour-changing neutral currents. (orig.)
International Nuclear Information System (INIS)
Yokosawa, A.
1980-01-01
Structures appearing in various experimental data (particularly those with polarized beams) in nucleon-nucleon systems are reviewed. A number of candidates are presented for dibaryon resonances which can couple to nucleon-nucleon systems. The present status of experimental data in the nucleon-nucleon system is discussed. Details of N-N scattering are written elsewhere, and here relatively new aspects are presented
DEFF Research Database (Denmark)
Hagedorn, C.
2017-01-01
I summarize the status of theoretical predictions for the yet to be measured leptonic CP phases, the Dirac phase δ and the two Majorana phases α and β. I discuss different approaches based on: (a) a flavor symmetry without and with corrections, (b) different types of sum rules and (c) flavor and CP...... symmetries. I show their predictive power with examples. In addition, I present scenarios in which low and high energy CP phases are connected so that predictions for the CP phases α, β and δ become correlated to the sign of the baryon asymmetry YB of the Universe that is generated via leptogenesis....
International Nuclear Information System (INIS)
Gilman, F.J.
1989-05-01
Recent theoretical and experimental progress on the manifestation of CP violation in K decays, and toward understanding whether CP violation originates in a phase, or phases, in the weak mixing matrix of quarks is reviewed. 23 refs., 10 figs
Marchis, Iuliana
2009-01-01
Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.
Quantum symmetry for pedestrians
International Nuclear Information System (INIS)
Mack, G.; Schomerus, V.
1992-03-01
Symmetries more general than groups are possible in quantum therory. Quantum symmetries in the narrow sense are compatible with braid statistics. They are theoretically consistent much as supersymmetry is, and they could lead to degenerate multiplets of excitations with fractional spin in thin films. (orig.)
Schaft, A.J. van der
1987-01-01
It is argued that the existence of symmetries may simplify, as in classical mechanics, the solution of optimal control problems. A procedure for obtaining symmetries for the optimal Hamiltonian resulting from the Maximum Principle is given; this avoids the actual calculation of the optimal
2016-01-01
The Symmetry Festival is a science and art program series, the most important periodic event (see its history) to bring together scientists, artists, educators and practitioners interested in symmetry (its roots, what is behind, applications, etc.), or in the consequences of its absence.
Charged fluids with symmetries
Indian Academy of Sciences (India)
metric tensor field and generate constants of the motion along null geodesics for massless particles. Conformal symmetries arise in various physical applications. The existence of conformal symmetries in relativistic cosmological models, with restrictions on the matter content and fluid four-velocity, have been extensively ...
A strong astrophysical constraint on the violation of special relativity by quantum gravity.
Jacobson, T; Liberati, S; Mattingly, D
2003-08-28
Special relativity asserts that physical phenomena appear the same to all unaccelerated observers. This is called Lorentz symmetry and relates long wavelengths to short ones: if the symmetry is exact it implies that space-time must look the same at all length scales. Several approaches to quantum gravity, however, suggest that there may be a microscopic structure of space-time that leads to a violation of Lorentz symmetry. This might arise because of the discreteness or non-commutivity of space-time, or through the action of extra dimensions. Here we determine a very strong constraint on a type of Lorentz violation that produces a maximum electron speed less than the speed of light. We use the observation of 100-MeV synchrotron radiation from the Crab nebula to improve the previous limit by a factor of 40 million, ruling out this type of Lorentz violation, and thereby providing an important constraint on theories of quantum gravity.
CP -symmetry of order 4 and its consequences
International Nuclear Information System (INIS)
Ivanov, Igor P.
2017-01-01
Extended Higgs sectors offer rich opportunities for various forms of CP -violation. Here, we describe a new form of CP-conservation and discuss its consequences. We give a concrete example of a three-Higgs-doublet model dubbed CP4-3HDM with a CP -symmetry of order 4 and no other other accidental symmetries. If the vacuum conserves this symmetry, the model is CP -conserving with pairwise mass-degenerate extra neutral Higgs bosons. These fields cannot be classified as CP -even or CP -odd but they can be combined into complex physical fields which are CP -half-odd, that is, they pick up the i factor upon CP transformation. These CP -half-odd scalars can be Yukawa-coupled to the fermion bilinears in a CP -conserving way. We discuss fundamental and phenomenological features of the model, and stress a peculiar clash between the CP -symmetry and any convention for the particle-antiparticle assignment. (paper)
Parity violation in elastic N-N scattering at high energies
International Nuclear Information System (INIS)
Chiappetta, P.; Soffer, J.; Wu, Tai Tsun; Harvard Univ., Cambridge, MA
1981-09-01
We calculate the asymmetry in nucleon-nucleon elastic scattering at high energies arising from heavy boson exchange in the standard Weinberg-Salam model. By neglecting the strong interaction enhancement effects, our result for p-n scattering is one order of magnitude higher than for p-p scattering. Enhancement effects increase the p-p asymmetry which may become comparable to the p-n asymmetry. They are however too small if compared with the total cross section asymmetry measured at Argonne at 6 GeV/c on a water target
International Nuclear Information System (INIS)
Fayard, L.
1989-11-01
Twenty-five years after the discovery of CP violation in the neutral Kaon system, we still dont know exactly the origin and the components of that weak non invariance. The two more precise experiments give slightly different answers concerning the direct way of CP violation NA 31 gives ε prime/ε incompatible with the Superweak Model (for which ε prime=0) and in agreement with Standard Model predictions compatible with both. Again, one needs new and precise results in order to conclude about ε prime. E731 and NA31 are actually working on their new data samples. Longer term ideas are also being discussed, looking for new experiments able to give ε prime/ε with a precision. Concerning CPT invariance the situation seems to be more clear
Searching for photon-sector Lorentz violation using gravitational-wave detectors
Kostelecký, V. Alan; Melissinos, Adrian C.; Mewes, Matthew
2016-10-01
We study the prospects for using interferometers in gravitational-wave detectors as tools to search for photon-sector violations of Lorentz symmetry. Existing interferometers are shown to be exquisitely sensitive to tiny changes in the effective refractive index of light occurring at frequencies around and below the microhertz range, including at the harmonics of the frequencies of the Earth's sidereal rotation and annual revolution relevant for tests of Lorentz symmetry. We use preliminary data obtained by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2006-2007 to place constraints on coefficients for Lorentz violation in the photon sector exceeding current limits by about four orders of magnitude.
Vesterinen, Mika
2016-01-01
The study of $CP$ violation in the beauty hadron sector is a promising approach to search for the effects of physics beyond the Standard Model. Several recent measurements in this area from the LHCb experiment are reported in these proceedings. These are based on the Run-I dataset of 3~fb$^{-1}$ of data collected at proton-proton centre of mass energies of 7 and 8~TeV.
Maiezza, Alessio; Nesti, Fabrizio; Senjanovic, Goran
2010-01-01
We revisit the issue of the limit on the scale of Left-Right symmetry breaking. We focus on the minimal SU(2)_L x SU(2)_R x U(1)_B-L gauge theory with the seesaw mechanism and discuss the two possibilities of defining Left-Right symmetry as parity or charge conjugation. In the commonly adopted case of parity, we perform a complete numerical study of the quark mass matrices and the associated left and right mixing matrices without any assumptions usually made in the literature about the ratio of vacuum expectation values. We find that the usual lower limit on the mass of the right-handed gauge boson from the K mass difference, M_WR>2.5TeV, is subject to a possible small reduction due to the difference between right and left Cabibbo angles. In the case of charge conjugation the limit on M_WR is somewhat more robust. However, the more severe bounds from CP-violating observables are absent in this case. In fact, the free phases can also resolve the present mild discrepancy between the Standard Model and CP-violat...
Prediction of the electron redundant SinNn fullerenes
Yang, Huihui; Song, Yan; Zhang, Yan; Chen, Hongshan
2018-05-01
The stabilities and electronic structures of SimAln-mNn and SinNn (n = 16, 20, m = 12 and n = 24, m = 16) fullerene-like cages have been investigated using density functional method B3LYP and the second-order perturbation theory MP2. The results show that the SimAln-mNn and SinNn fullerenes are more stable than the AlN counterparts. Comparing with the corresponding AlnNn cages, one silicon atom in each Si2N2 square protrudes and the excess electrons reside as lone pair electrons at the outside of the protrudent Si atoms. Analyses on the electronic structures suggest that the Sisbnd N bonds are covalent bonding with strong polarity. The ELF (electron localization function) shows large electron pair probability between Si and N atoms. The orbital interactions between Si and N are stronger than that between Al and N atoms; the overlap integral is 0.40 per Sisbnd N bond in SinNn and 0.34 per Alsbnd N bond in AlnNn. The AIM (atoms in molecule) charges on the Al atoms in AlnNn and SimAln-mNn are 2.37 and 2.40. The charges on the in-plane and protrudent Si atoms are about 2.88 and 1.50 respectively. Considering the large local dipole moments around the protrudent Si atoms, the electrostatic interactions are also favorable to the SiN cages.
Schwichtenberg, Jakob
2015-01-01
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.
DEFF Research Database (Denmark)
Avery, John Scales; Rettrup, Sten; Avery, James Emil
In theoretical physics, theoretical chemistry and engineering, one often wishes to solve partial differential equations subject to a set of boundary conditions. This gives rise to eigenvalue problems of which some solutions may be very difficult to find. For example, the problem of finding...... in such problems can be much reduced by making use of symmetry-adapted basis functions. The conventional method for generating symmetry-adapted basis sets is through the application of group theory, but this can be difficult. This book describes an easier method for generating symmetry-adapted basis sets...
Leptonic CP violation induced by approximately μ-τ symmetric seesaw mechanism
International Nuclear Information System (INIS)
Baba, Teppei; Yasue, Masaki
2008-01-01
Assuming a minimal seesaw model with two heavy neutrinos (N), we examine effects of leptonic CP violation induced by approximate μ-τ symmetric interactions. As long as N is subject to the μ-τ symmetry, we can choose CP phases of Dirac mass terms without loss of generality in such a way that these phases arise from μ-τ symmetry breaking interactions. In the case that no phase is present in heavy neutrino mass terms, leptonic CP phases are controlled by two phases α and β. The similar consideration is extended to N blind to the μ-τ symmetry. It is argued that N subject (blind) to the μ-τ symmetry necessarily describes the normal (inverted) mass hierarchy. We restrict ourselves to μ-τ symmetric textures giving the tribimaximal mixing and calculate flavor neutrino masses to estimate CP-violating Dirac and Majorana phases as well as neutrino mixing angles as functions of α and β. Since α and β are generated by μ-τ symmetry breaking interactions, the CP-violating Majorana phase tends to be suppressed and is found to be at most O(0.1) radian. On the other hand, the CP-violating Dirac phase tends to show a proportionality to α or to β.
Flavor physics and CP violation
Chang, Paoti; Chen, Kai-Feng; Hou, Wei-Shu
2017-11-01
We currently live in the age of the CKM paradigm. The 3 × 3 matrix that links (d , s , b) quarks to (u , c , t) in the charged current weak interaction, being complex and nominally with 18 parameters, can be accounted for by just 3 rotation angles and one CP violating (CPV) phase, with unitarity and the CKM phases triumphantly tested at the B factories. But the CKM picture is unsatisfactory and has too many parameters. The main aim of Flavor Physics and CP violation (FPCP) studies is the pursuit to uncover New Physics beyond the Standard Model (SM). Two highlights of LHC Run 1 period are the CPV phase ϕs of Bs mixing and Bs →μ+μ- decay, which were found to be again consistent with SM, though the saga is yet unfinished. We also saw the emergence of the P5‧ angular variable anomaly in B0 →K∗0μ+μ- decay and R K (∗) anomaly in B →K (∗)μ+μ- to B →K (∗)e+e- rate ratios, and the BaBar anomaly in B →D (∗) τν decays, which suggest possible New Physics in these flavor processes, pointing to extra Z‧, charged Higgs, or leptoquarks. Charmless hadronic, semileptonic, purely leptonic and radiative B decays continue to offer various further windows on New Physics. Away from B physics, the rare K → πνν decays and ε‧ / ε in the kaon sector, μ → e transitions, muon g - 2 and electric dipole moments of the neutron and electron, τ → μγ , μμμ , eee, and a few charm physics probes, offer broadband frontier windows on New Physics. Lastly, flavor changing neutral transitions involving the top quark t and the 125 GeV Higgs boson h, such as t → ch and h → μτ, offer a new window into FPCP, while a new Z‧ related or inspired by the P5‧ anomaly, could show up in analogous top quark processes, perhaps even link with low energy phenomena such as muon g - 2 or rare kaon processes. In particular, we advocate the potential new SM, the two Higgs doublet model without discrete symmetries to control flavor violation, as SM2. As we are
Moral Violations Reduce Oral Consumption
Chan, Cindy; Van Boven, Leaf; Andrade, Eduardo B.; Ariely, Dan
2014-01-01
Consumers frequently encounter moral violations in everyday life. They watch movies and television shows about crime and deception, hear news reports of corporate fraud and tax evasion, and hear gossip about cheaters and thieves. How does exposure to moral violations influence consumption? Because moral violations arouse disgust and because disgust is an evolutionarily important signal of contamination that should provoke a multi-modal response, we hypothesize that moral violations affect a key behavioral response to disgust: reduced oral consumption. In three experiments, compared with those in control conditions, people drank less water and chocolate milk while (a) watching a film portraying the moral violations of incest, (b) writing about moral violations of cheating or theft, and (c) listening to a report about fraud and manipulation. These findings imply that “moral disgust” influences consumption in ways similar to core disgust, and thus provide evidence for the associations between moral violations, emotions, and consumer behavior. PMID:25125931
Moral Violations Reduce Oral Consumption.
Chan, Cindy; Van Boven, Leaf; Andrade, Eduardo B; Ariely, Dan
2014-07-01
Consumers frequently encounter moral violations in everyday life. They watch movies and television shows about crime and deception, hear news reports of corporate fraud and tax evasion, and hear gossip about cheaters and thieves. How does exposure to moral violations influence consumption? Because moral violations arouse disgust and because disgust is an evolutionarily important signal of contamination that should provoke a multi-modal response, we hypothesize that moral violations affect a key behavioral response to disgust: reduced oral consumption. In three experiments, compared with those in control conditions, people drank less water and chocolate milk while (a) watching a film portraying the moral violations of incest, (b) writing about moral violations of cheating or theft, and (c) listening to a report about fraud and manipulation. These findings imply that "moral disgust" influences consumption in ways similar to core disgust, and thus provide evidence for the associations between moral violations, emotions, and consumer behavior.
Neutrino masses and mixing: a flavour symmetry roadmap
Energy Technology Data Exchange (ETDEWEB)
Morisi, S.; Valle, J.W.F. [AHEP Group, Instituto de Fisica Corpuscular - C.S.I.C./Universitat de Valencia, Edificio de Institutos de Paterna, Apartado 22085, 46071 Valencia (Spain)
2013-04-02
Over the last ten years tri-bimaximal mixing has played an important role in modeling the flavour problem. We give a short review of the status of flavour symmetry models of neutrino mixing. We concentrate on non-Abelian discrete symmetries, which provide a simple way to account for the TBM pattern. We discuss phenomenological implications such as neutrinoless double beta decay, lepton flavour violation as well as theoretical aspects such as the possibility to explain quarks and leptons within a common framework, such as grand unified models. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Creation and development of the universe (symmetry approach)
International Nuclear Information System (INIS)
Zheludev, I.S.
1993-09-01
The model according to which space subreality and time subreality are created during Big Bang is introduced. The first one is centrosymmetrical, the second anticentrosymmetrical. One to another they are transformed by mutual ''replacement'' space and time. Such subrealities are not antisubrealities and their elementary particles (appeared through Big Bang) are not able to annihilate completely because of symmetry conditions. This leads to the appearance of condensed matter. The model of two subrealities gives the possibility to explain without ''parity violation'' any physical phenomena. Four macroscopic rules of symmetry [scale, corkscrew, gyroscope and right (left) hand] reflect four fundamental interactions of our reality. (author). 10 refs, 16 figs
Multiparticle Correlations in Pb–Pb Collisions at \\sqrt{s_{NN}}=2.76 TeV
Mlynarz, Jocelyn
Quantum Chromodynamics, which describes the interactions of quarks and gluons, has been found not to violate global parity symmetry. However, the possibility of local parity violations due to quark interactions with topologically non-trivial gluonic fields is not excluded. The effects of these parity violations could be measured in the hot and dense medium created in the ultrarelativistic heavy ion collisions experiment conducted at the Large Hadron Collider, called a Quark-Gluon Plasma, in which the quarks that compose most of ordinary matter are deconfined. In the strong magnetic fields which permeate the QGP in non-central collisions, parity violation would express itself as a charge asymmetry with respect to the reaction plane, a phenomenon called the Chiral Magnetic Effect. The measurements of the charge-dependent correlations in a heavy- ion collisions allow to experimentally probe effects of the CME. These measurements are conducted via the use of the second harmonic two-particle correlator with respec...
Dynamical symmetries for fermions
International Nuclear Information System (INIS)
Guidry, M.
1989-01-01
An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E 2 ) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and ''exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs
Gauge symmetry from decoupling
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-02-01
Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
Wigner's Symmetry Representation Theorem
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...
Frameworks with crystallographic symmetry.
Borcea, Ciprian S; Streinu, Ileana
2014-02-13
Periodic frameworks with crystallographic symmetry are investigated from the perspective of a general deformation theory of periodic bar-and-joint structures in Euclidean spaces of arbitrary dimension. It is shown that natural parametrizations provide affine section descriptions for families of frameworks with a specified graph and symmetry. A simple geometrical setting for displacive phase transitions is obtained. Upper bounds are derived for the number of realizations of minimally rigid periodic graphs.
Interactions between constituent single symmetries in multiple symmetry
Treder, M.S.; Vloed, G. van der; Helm, P.A. van der
2011-01-01
As a rule, the discriminability of multiple symmetries from random patterns increases with the number of symmetry axes, but this number does not seem to be the only determinant. In particular, multiple symmetries with orthogonal axes seem better discriminable than multiple symmetries with
International Nuclear Information System (INIS)
Blum, Alexander Simon
2009-01-01
This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D 4 , the other describing quarks and employing the symmetry D 14 . In the latter model it is the quark mixing matrix element V ud - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Blum, Alexander Simon
2009-06-10
This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB (Brazil); Furtado, C., E-mail: furtado@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB (Brazil); Belich, H., E-mail: belichjr@gmail.com [Departamento de Física e Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, 29060-900, Vitória, ES (Brazil)
2016-09-15
From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the violation of the Lorentz symmetry and write an effective metric for the cosmic string spacetime. Then, we investigate the arising of an analogue of the Anandan quantum phase for a relativistic Dirac neutral particle with a permanent magnetic dipole moment in the cosmic string spacetime under Lorentz symmetry breaking effects. Besides, we analyse the influence of the effects of the Lorentz symmetry violation and the topology of the defect on the Aharonov–Casher geometric quantum phase in the nonrelativistic limit.
Phenomenology of muon number violation in spontaneously broken gauge theories
International Nuclear Information System (INIS)
Shanker, O.U.
1980-01-01
The phenomenology of muon number violation in gauge theories of weak and electromagnetic interactions is studied. In the first chapter a brief introduction to the concept of muon number and to spontaneously broken gauge theories is given. A review of the phenomenology and experimental situation regarding different muon number violating processes is made in the second chapter. A detailed phenomenological study of the μe conversion process μ - + (A,Z) → e - + (A,Z) is given in the third chapter. In the fourth chapter some specific gauge theories incorporating spontaneously broken horizontal gauge symmetries between different fermion generations are discussed with special reference to muon number violation in the theories. The μe conversion process seems to be a good process to search for muon number violation if it occurs. The K/sub L/-K/sub S/ mass difference is likely to constrain muon number violating rates to lie far below present experimental limits unless strangeness changing neutral currents changing strangeness by two units are suppressed
Group-theoretic condition for spontaneous CP violation
Haber, Howard E.; Surujon, Ze'ev
2012-10-01
We formulate the necessary conditions for a scalar potential to exhibit spontaneous CP violation. Associated with each complex scalar field is a U(1) symmetry that may be explicitly broken by terms in the scalar potential (called spurions). In order for CP-odd phases in the vacuum to be physical, these phases must be related to spontaneously broken U(1) generators that are also explicitly broken by a sufficient number of inequivalent spurions. In the case where the vacuum is characterized by a single complex phase, our result implies that the phase must be associated with a U(1) generator that is broken explicitly by at least two inequivalent spurions. A suitable generalization of this result to the case of multiple complex phases has also been obtained. These conditions may be used both to distinguish models capable of spontaneous CP violation and as a model building technique for obtaining spontaneously CP-violating deformations of CP-conserving models. As an example, we analyze the generic two Higgs doublet model, where we also carry out a complete spurion analysis. We also comment on other models with spontaneous CP violation, including the chiral Lagrangian, a minimal version of the Nelson-Barr model, and little Higgs models with spontaneous CP violation.
From hadronic parity violation to electron parity-violating experiments
International Nuclear Information System (INIS)
Oers, Willem T.H. van
2010-01-01
The weak interaction is manifested in parity-violating observables. With the weak interaction extremely well known parity-violating measurements in hadronic systems can be used to deduce strong interaction effects in those systems. Parity-violating analyzing powers in electron-proton scattering have led to determining the strange quark contributions to the charge and magnetization distributions of the nucleon. Parity-violating electron-proton and electron-electron scattering can also be performed to test the predictions of the Standard Model in the 'running' of the electroweak mixing angle or sin 2 θ W .
International Nuclear Information System (INIS)
Saavedra, A.F.
1995-01-01
Full text: In the standard model CP violation is generated by a non trivial complex phase in the CKM matrix. The Standard Model does not predict the elements of the CKM matrix, they need to be experimentally measured. This will show if all the CP violation phenomena can be accounted by the complex phase or there are other contributing mechanisms which lie beyond the scope of Standard Model. It is of interest to overconstraint the so called unitary triangle by measuring each angle (α, β and γ) from the CP asymmetry that occurs in different decay modes. During the initial low luminosity period of the LHC a large effort will be concentrated in studying B physics, especially CP violation in the B 0 - B-bar 0 system, with the ATLAS detector. The features of the detector which are important for CP studies are: sharp trigger from the muon spectrometer (muons will be identify down to p T ≅ 5GeV, be able to distinguish electrons from hadrons (down to p T ≅ 1 GeV) with the Straw Tracker and Transition detector and high resolution of tracks, secondary vertices with the Semiconductor Tracker (resolution of 10-90 μm. For some decays modes ATLAS is expected to obtain larger sample of events than the B-factories that are being proposed. It has been calculated that the systematic error σ sin (2 α) = 0.06 and σ sin ( 2 β) = 0.027 which is comparable with other future experiments
A Test for Tensor Lorentz Violating Fields Using a Rotating Comagnetometer
Smiciklas, Marc; Brown, Justin; Romalis, Michael
2011-05-01
The effective low-energy model of Lorentz violation described by the Standard Model Extension (SME) includes a number of tensor spin interactions that violate Lorentz symmetry but not CPT. Such interactions could be induced in popular Lorentz-violating theories, such as Horava theory of gravity and doubly-special relativity. We are performing a search for Lorentz-violating tensor spin interactions using a K-Rb-21Ne comagnetometer. Compared to our previous work with a K-3He comagnetometer, we expect to achieve significant improvements in energy sensitivity due to the smaller magnetic moment of 21Ne and use of hybrid optical pumping. Preliminary results searching for semisidereal modulations of the comagnetometer signal indicate that limits on tensor Lorentz violation can be improved by more than an order of magnitude. This research funded by NSF grant PHY-0969862
On the Universality of CP Violation in Delta F = 1 Processes
Gedalia, Oram; Ligeti, Zoltan; Perez, Gilad
2012-01-01
We show that new physics that breaks the left-handed SU(3)_Q quark flavor symmetry induces contributions to CP violation in Delta F = 1 processes which are approximately universal, in that they are not affected by flavor rotations between the up and the down mass bases. Therefore, such flavor violation cannot be aligned, and is constrained by the strongest bound from either the up or the down sectors. We use this result to show that the bound from eps'/eps prohibits an SU(3)_Q breaking explanation of the recent LHCb evidence for CP violation in D meson decays. Another consequence of this universality is that supersymmetric alignment models with a moderate mediation scale are consistent with the data, and are harder to probe via CP violating observables. With current constraints, therefore, squarks need not be degenerate. However, future improvements in the measurement of CP violation in D-Dbar mixing will start to probe alignment models.
Present status of CP violation
International Nuclear Information System (INIS)
Ng, J.N.
1989-06-01
A review of the status of CP violation in kaons is given. Status of our knowledge of quark mixing angles in the standard six quark model is presented. The role Β d o - Βd o transition plays in this study is examined. A comparison of the estimates of CP violation effects from models beyond the standard one is given. Other experiments that have the capability of testing different CP violation models are also discussed. (Author) 35 refs., 6 figs., tab
International Nuclear Information System (INIS)
Stoks, V.G.J.
1997-01-01
We present a chiral-invariant meson-baryon Lagrangian which describes the interactions of the baryon octet with the lowest-mass meson nonets. The nonlinear realization of the chiral symmetry generates pair-meson interaction vertices. The corresponding pair-meson coupling constants can all be expressed in terms of the meson-nucleon-nucleon pseudovector, scalar, and vector coupling constants, and their corresponding F/(F+D) ratios, and for which empirical estimates are given. We show that it is possible to construct an NN potential of reasonable quality satisfying these theoretical and empirical constraints. (orig.)
International Nuclear Information System (INIS)
Grossman, Y.; Pelaez, J.R.; Worah, M.P.
1998-01-01
B flavor tagging will be extensively studied at the asymmetric B factories due to its importance in CP asymmetry measurements. The primary tagging modes are the semileptonic decays of the b (lepton tag), or the hadronic b→c(→s) decays (kaon tag). We suggest that looking for time dependent CP asymmetries in events where one B is tagged leptonically and the other one is tagged with a kaon could result in an early detection of CP violation. Although in the standard model these asymmetries are expected to be small, ∼1%, they could be measured with about the same amount of data as in the 'gold-plated' decay B d →ψK S . In the presence of physics beyond the standard model, these asymmetries could be as large as ∼5%, and the first CP violation signal in the B system may show up in these events. We give explicit examples of new physics scenarios where this occurs. copyright 1998 The American Physical Society
U(1) textures and Lepton Flavor Violation
Gómez, M E; Lola, S; Vergados, J D
1999-01-01
U(1) family symmetries have led to successful predictions of the fermion mass spectrum and the mixing angles of the hadronic sector. In the context of the supersymmetric unified theories, they further imply a non-trivial mass structure for the scalar partners, giving rise to new sources of flavour violation. In the present work, lepton flavour non-conserving processes are examined in the context of the MSSM augmented by a U(1) family symmetry. We calculate the mixing effects on the mu -> e gamma and tau-> mu gamma rare decays. All supersymmetric scalar masses involved in the processes are determined at low energies using two loop renormalisation group analysis and threshold corrections. Further, various novel effects are considered and found to have important impact on the branching ratios. Thus, a rather interesting result is that when the see-saw mechanism is applied in the (12X12)-sneutrino mass matrix, the mixing effects of the Dirac matrix in the effective light sneutrino sector are canceled at first ord...
Anomaly-free discrete gauge symmetries in Froggatt-Nielsen models
Energy Technology Data Exchange (ETDEWEB)
Luhn, C.
2006-05-15
Discrete symmetries (DS) can forbid dangerous B- and L-violating operators in the supersymmetric Lagrangian. Due to the violation of global DSs by quantum gravity effects, the introduced DS should be a remnant of a spontaneously broken local gauge symmetry. Demanding anomaly freedom of the high-energy gauge theory, we determine all family-independent anomaly-free Z{sub N} symmetries which are consistent with the trilinear MSSM superpotential terms in Part I. We find one outstanding Z{sub 6} symmetry, proton hexality P{sub 6}, which prohibits all B- and L-violating operators up to dimension five, except for the Majorana neutrino mass terms LH{sub u}LH{sub u}. In Part II, we combine the idea that a DS should have a gauge origin with the scenario of Froggatt and Nielsen (FN). We construct concise U(1){sub X} FN models in which the Z{sub 3} symmetry baryon triality, B{sub 3}, arises from U(1){sub X} breaking. We choose this specific DGS because it allows for R-parity violating interactions; thus neutrino masses can be explained without introducing right-handed neutrinos. We find six phenomenologically viable B{sub 3}-conserving FN models. (orig.)
Anomaly-free discrete gauge symmetries in Froggatt-Nielsen models
International Nuclear Information System (INIS)
Luhn, C.
2006-05-01
Discrete symmetries (DS) can forbid dangerous B- and L-violating operators in the supersymmetric Lagrangian. Due to the violation of global DSs by quantum gravity effects, the introduced DS should be a remnant of a spontaneously broken local gauge symmetry. Demanding anomaly freedom of the high-energy gauge theory, we determine all family-independent anomaly-free Z N symmetries which are consistent with the trilinear MSSM superpotential terms in Part I. We find one outstanding Z 6 symmetry, proton hexality P 6 , which prohibits all B- and L-violating operators up to dimension five, except for the Majorana neutrino mass terms LH u LH u . In Part II, we combine the idea that a DS should have a gauge origin with the scenario of Froggatt and Nielsen (FN). We construct concise U(1) X FN models in which the Z 3 symmetry baryon triality, B 3 , arises from U(1) X breaking. We choose this specific DGS because it allows for R-parity violating interactions; thus neutrino masses can be explained without introducing right-handed neutrinos. We find six phenomenologically viable B 3 -conserving FN models. (orig.)
Quantum Space-Time Deformed Symmetries Versus Broken Symmetries
Amelino-Camelia, G
2002-01-01
Several recent studies have concerned the faith of classical symmetries in quantum space-time. In particular, it appears likely that quantum (discretized, noncommutative,...) versions of Minkowski space-time would not enjoy the classical Lorentz symmetries. I compare two interesting cases: the case in which the classical symmetries are "broken", i.e. at the quantum level some classical symmetries are lost, and the case in which the classical symmetries are "deformed", i.e. the quantum space-time has as many symmetries as its classical counterpart but the nature of these symmetries is affected by the space-time quantization procedure. While some general features, such as the emergence of deformed dispersion relations, characterize both the symmetry-breaking case and the symmetry-deformation case, the two scenarios are also characterized by sharp differences, even concerning the nature of the new effects predicted. I illustrate this point within an illustrative calculation concerning the role of space-time symm...
Schwichtenberg, Jakob
2018-01-01
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations. .
Energy Technology Data Exchange (ETDEWEB)
Chanowitz, M.S.
1990-09-01
The Higgs mechanism is reviewed in its most general form, requiring the existence of a new symmetry-breaking force and associated particles, which need not however be Higgs bosons. The first lecture reviews the essential elements of the Higgs mechanism, which suffice to establish low energy theorems for the scattering of longitudinally polarized W and Z gauge bosons. An upper bound on the scale of the symmetry-breaking physics then follows from the low energy theorems and partial wave unitarity. The second lecture reviews particular models, with and without Higgs bosons, paying special attention to how the general features discussed in lecture 1 are realized in each model. The third lecture focuses on the experimental signals of strong WW scattering that can be observed at the SSC above 1 TeV in the WW subenergy, which will allow direct measurement of the strength of the symmetry-breaking force. 52 refs., 10 figs.
Weiss, Asia; Whiteley, Walter
2014-01-01
This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme. Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology. The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...
Phenomenological aspects of theories for baryon and lepton number violation
International Nuclear Information System (INIS)
Duerr, Michael
2013-01-01
The renormalizable couplings of the Standard Model are invariant under two accidental global symmetries, which correspond to conserved baryon and lepton numbers. In this thesis, we discuss possible roles of these symmetries in extension of the Standard Model. Two approaches are considered: explicit violation of lepton number by two units in the renormalizable couplings of the Lagrangian, and promotion of the global symmetries to local gauge symmetries that are spontaneously broken. The former approach directly leads to Majorana neutrino masses and neutrinoless double beta decay. We discuss the interplay of the contributions to this decay in a one-loop neutrino mass model, the colored seesaw mechanism. We find that, depending on the parameters of the model, both the light Majorana neutrino exchange and the contribution of the new colored particles may be dominant. Additionally, an experimental test is presented, which allows for a discrimination of neutrinoless double beta decay from unknown nuclear background using only one isotope. In the latter approach, fascinating implications originate from the attempt to write down an anomaly-free and spontaneously broken gauge theory for baryon and lepton numbers, such as an automatically stable dark matter candidate. When gauging the symmetries in a left-right symmetric setup, the same fields that allow for an anomaly-free theory generate neutrino masses via the type III seesaw mechanism.
Folded Sheet Versus Transparent Sheet Models for Human Symmetry Judgments
Directory of Open Access Journals (Sweden)
Jacques Ninio
2011-07-01
Full Text Available As a contribution to the mysteries of human symmetry perception, reaction time data were collected on the detection of symmetry or repetition violations, in the context of short term visual memory studies. The histograms for reaction time distributions are rather narrow in the case of symmetry judgments. Their analysis was performed in terms of a simple kinetic model of a mental process in two steps, a slow one for the construction of the representation of the images to be compared, and a fast one, in the 50 ms range, for the decision. There was no need for an additional ‘mental rotation’ step. Symmetry seems to facilitate the construction step. I also present here original stimuli showing a color equalization effect across a symmetry axis, and its counterpart in periodic patterns. According to a “folded sheet model”, when a shape is perceived, the brain automatically constructs a mirror-image representation of the shape. Based in part on the reaction time analysis, I present here an alternative “transparent sheet” model in which the brain constructs a single representation, which can be accessed from two sides, thus generating simultaneously a pattern and its mirror-symmetric partner. Filtering processes, implied by current models of symmetry perception could intervene at an early stage, by nucleating the propagation of similar perceptual groupings in the two symmetric images.
Charge Asymmetric Cosmic Rays as a probe of Flavor Violating Asymmetric Dark Matter
DEFF Research Database (Denmark)
Masina, Isabella; Sannino, Francesco
2011-01-01
The recently introduced cosmic sum rules combine the data from PAMELA and Fermi-LAT cosmic ray experiments in a way that permits to neatly investigate whether the experimentally observed lepton excesses violate charge symmetry. One can in a simple way determine universal properties of the unknown...
Measures with symmetry properties
Schindler, Werner
2003-01-01
Symmetries and invariance principles play an important role in various branches of mathematics. This book deals with measures having weak symmetry properties. Even mild conditions ensure that all invariant Borel measures on a second countable locally compact space can be expressed as images of specific product measures under a fixed mapping. The results derived in this book are interesting for their own and, moreover, a number of carefully investigated examples underline and illustrate their usefulness and applicability for integration problems, stochastic simulations and statistical applications.
International Nuclear Information System (INIS)
Chimento, Luis P.
2002-01-01
We find the group of symmetry transformations under which the Einstein equations for the spatially flat Friedmann-Robertson-Walker universe are form invariant. They relate the energy density and the pressure of the fluid to the expansion rate. We show that inflation can be obtained from nonaccelerated scenarios by a symmetry transformation. We derive the transformation rule for the spectrum and spectral index of the curvature perturbations. Finally, the group is extended to investigate inflation in the anisotropic Bianchi type-I spacetime and the brane-world cosmology
Symmetry, structure, and spacetime
Rickles, Dean
2007-01-01
In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational
Black holes in Lorentz-violating gravity theories
International Nuclear Information System (INIS)
Barausse, Enrico; Sotiriou, Thomas P
2013-01-01
Lorentz symmetry and the notion of light cones play a central role in the definition of horizons and the existence of black holes. Current observations provide strong indications that astrophysical black holes do exist in Nature. Here we explore what happens to the notion of a black hole in gravity theories where local Lorentz symmetry is violated, and discuss the relevant astrophysical implications. Einstein-aether theory and Hořava gravity are used as the theoretical background for addressing this question. We review earlier results about static, spherically symmetric black holes, which demonstrate that in Lorentz-violating theories there can be a new type of horizon and, hence, a new notion of black hole. We also present both known and new results on slowly rotating black holes in these theories, which provide insights on how generic these new horizons are. Finally, we discuss the differences between black holes in Lorentz-violating theories and in General Relativity, and assess to what extent they can be probed with present and future observations. (paper)
FDI and Accommodation Using NN Based Techniques
Garcia, Ramon Ferreiro; de Miguel Catoira, Alberto; Sanz, Beatriz Ferreiro
Massive application of dynamic backpropagation neural networks is used on closed loop control FDI (fault detection and isolation) tasks. The process dynamics is mapped by means of a trained backpropagation NN to be applied on residual generation. Process supervision is then applied to discriminate faults on process sensors, and process plant parameters. A rule based expert system is used to implement the decision making task and the corresponding solution in terms of faults accommodation and/or reconfiguration. Results show an efficient and robust FDI system which could be used as the core of an SCADA or alternatively as a complement supervision tool operating in parallel with the SCADA when applied on a heat exchanger.
Flavour physics and CP violation
Indian Academy of Sciences (India)
It is well known that the study of flavour physics and CP violation is very important to critically test the Standard Model and to look for possible signature of new physics beyond it. The observation of CP violation in kaon system in 1964 has ignited a lot of experimental and theoretical efforts to understand its origin and to look ...
Flavour physics and CP violation
Indian Academy of Sciences (India)
Abstract. It is well known that the study of flavour physics and CP violation is very important to critically test the Standard Model and to look for possible signature of new physics beyond it. The observation of CP violation in kaon system in 1964 has ignited a lot of experimental and theoretical efforts to understand its origin ...
International Nuclear Information System (INIS)
Kayser, B.
1990-01-01
The study of CP-violating effects in B decays will be a good test of whether CP violation is caused by the known weak interaction. If this is its origin, then large, cleanly-predicted CP-violating effects are expected in certain neutral B decays to hadronic CP eigenstates. The phenomenology of CP violation in the B system is reviewed, and the genesis of these large effects is explained. In this it is shown that large, cleanly-predicted effects are also expected in some decays to states which are not CP eigenstates. The combined study of the latter decays and those to CP eigenstates may make it possible to obtain a statistically-significant CP-violating signal with fewer B mesons that would otherwise be required
Observation of Direct CP Violation in $K_{S,L} \\to \\pi \\pi$ Decays
Energy Technology Data Exchange (ETDEWEB)
Shawhan, Peter Sven [Chicago U., Astron. Astrophys. Ctr.
1999-12-01
This thesis concerns the fundamental symmetry properties of elementary particle interactions. Specifically, it is an experimental investigation of the slight violation of CP symmetry (the combination of charge conjugation and parity inversion) by the weak force. We have used data from the KTeV experiment, located at the Fermi National Accelerator Laboratory (Fermilab), to compare the decay rates of the short- and long-lived neutral K mesons ($K_S$ and $K_L$) to $\\pi^+\\pi^-$ and $\\pi^0\\pi^0$ final states. From this comparison, we find that the \\direct" CP-violation parameter Re($\\epsilon^{\\prime}$/$\\epsilon$) is equal to (28.0 $\\pm$ 3.0 $\\pm$ 2.8)$\\pm$ $10^{-4}$, where the first error is statistical and the second is systematic. This nonzero result definitively establishes the existence of CP violation in a decay process
Interactions between constituent single symmetries in multiple symmetry.
Treder, Matthias Sebastian; van der Vloed, Gert; van der Helm, Peter A
2011-07-01
As a rule, the discriminability of multiple symmetries from random patterns increases with the number of symmetry axes, but this number does not seem to be the only determinant. In particular, multiple symmetries with orthogonal axes seem better discriminable than multiple symmetries with nonorthogonal axes. In six experiments on imperfect two-fold symmetry, we investigated whether this is due to extra structure in the form of so-called correlation rectangles, which arise only in the case of orthogonal axes, or to the relative orientation of the axes as such. The results suggest that correlation rectangles are not perceptually relevant and that the percept of a multiple symmetry results from an orientation-dependent interaction between the constituent single symmetries. The results can be accounted for by a model involving the analysis of symmetry at all orientations, smoothing (averaging over neighboring orientations), and extraction of peaks.
Molecular symmetry and spectroscopy
Bunker, Philip; Jensen, Per
2006-01-01
The first edition, by P.R. Bunker, published in 1979, remains the sole textbook that explains the use of the molecular symmetry group in understanding high resolution molecular spectra. Since 1979 there has been considerable progress in the field and a second edition is required; the original author has been joined in its writing by Per Jensen. The Material of the first edition has been reorganized and much has been added. The molecular symmetry group is now introduced early on, and the explanation of how to determine nuclear spin statistical weights has been consolidated in one chapter, after groups, symmetry groups, character tables and the Hamiltonian have been introduced. A description of the symmetry in the three-dimensional rotation group K(spatial), irreducible spherical tensor operators, and vector coupling coefficients is now included. The chapters on energy levels and selection rules contain a great deal of material that was not in the first edition (much of it was undiscovered in 1979), concerning ...
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 10. Groups and Symmetry: A Guide to Discovering Mathematics. Geetha Venkataraman. Book Review Volume 4 Issue 10 October 1999 pp 91-92. Fulltext. Click here to view fulltext PDF. Permanent link:
Einmahl, John; Gan, Zhuojiong
Omnibus tests for central symmetry of a bivariate probability distribution are proposed. The test statistics compare empirical measures of opposite regions. Under rather weak conditions, we establish the asymptotic distribution of the test statistics under the null hypothesis; it follows that they
Symmetries in fundamental physics
Sundermeyer, Kurt
2014-01-01
Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P.Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also underst...
Introduction to Chiral Symmetry
Energy Technology Data Exchange (ETDEWEB)
Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-05-09
These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.
Charged fluids with symmetries
Indian Academy of Sciences (India)
conformal Killing vector on the electromagnetic field tensor and the role of Maxwell's equations. 2. Conformal symmetries. Manifolds with structure may admit groups of transformations which preserve this struc- ture. A conformal motion preserves the metric up to a factor and maps null geodesics conformally. A conformal ...
Crumpecker, Cheryl
2003-01-01
Describes an art lesson used with children in the third grade to help them learn about symmetry, as well as encouraging them to draw larger than usual. Explains that students learn about the belief called "Horror Vacui" of the Northwest American Indian tribes and create their interpretation of this belief. (CMK)
Symmetries in fundamental physics
Sundermeyer, Kurt
2014-01-01
Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also unders...
Jinzenji, Masao
2018-01-01
This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construct...
SYMMETRY OF COMPOSITE CRYSTALS
VANSMAALEN, S
1991-01-01
Composite crystals are crystals that consist of two or more subsystems, in first approximation each one having its own three-dimensional periodicity. The symmetry of these subsystems is then characterized by an ordinary space group. Due to their mutual interaction the true structure consists of a
Insights from three flavors for three families based on compositeness and symmetry
International Nuclear Information System (INIS)
Wu Yueliang
2012-01-01
The concepts of compositeness and symmetry on the microstructure of matter have had a significant influence on the quest for the origin of particles and the universe. The studies on the property and phenomenology of hadrons as composite particles have led many insights and discoveries in particle physics, such as flavor symmetry, chiral symmetry, PCAC, strong interaction, dynamical symmetry breaking, indirect and direct CP violations, quark model from three flavors to three families, chiral dynamical model, quantum chromodynamics, quark confinement. I briefly present some interesting progresses and insights made in our group based on compositeness and symmetry. It can be seen that both the indirect and direct CP symmetry violation in kaon decays as well as the isospin ΔI=1/2 selection rule can simultaneously be explained in the standard model with the Kobayashi-Maskawa CP-violating phase and the chiral dynamic loop effect. We present a brief description on the symmetry-preserving loop regularization (LORE) method which is realized in four dimensional space-time. The LORE method introduces two energy scales and maintains the initial divergence behavior, which overcomes some shortages in other regularization schemes. A chiral dynamical model of QCD can be derived by using the LORE method to understand the spontaneous chiral symmetry breaking via the dynamically generated composite Higgs potential, which can provide a consistent prediction for the mass spectra of both the nonet scalar and pseudoscalar ground state mesons. By extending such a model to a chiral thermodynamic model with the closed-time-path Green function approach, it enables us to characterize the critical behavior of QCD and the restoration of chiral symmetry breaking. (author)
Chiral Symmetry, Heavy Quark Symmetry and Bound States
Yoshida, Yuhsuke
1995-01-01
I investigate the bound state problems of lowest-lying mesons and heavy mesons. Chiral symmetry is essential when one consider lowest-lying mesons. Heavy quark symmetry plays an central role in considering the semi-leptonic form factors of heavy mesons. Various properties based on the symmetries are revealed using Bethe-Salpeter equations.
Sterile neutrinos and B–L symmetry
Directory of Open Access Journals (Sweden)
Pavel Fileviez Pérez
2018-02-01
Full Text Available We revisit the relation between the neutrino masses and the spontaneous breaking of the B–L gauge symmetry. We discuss the main scenarios for Dirac and Majorana neutrinos and point out two simple mechanisms for neutrino masses. In this context the neutrino masses can be generated either at tree level or at quantum level and one predicts the existence of very light sterile neutrinos with masses below the eV scale. The predictions for lepton number violating processes such as μ→e and μ→eγ are discussed in detail. The impact from the cosmological constraints on the effective number of relativistic degree of freedom is investigated.
Leptogenesis and low energy CP-violation in neutrino physics
International Nuclear Information System (INIS)
Pascoli, S.; Petcov, S.T.; Riotto, A.
2007-01-01
Taking into account the recent progress in the understanding of the lepton flavor effects in leptogenesis, we investigate in detail the possibility that the CP-violation necessary for the generation of the baryon asymmetry of the Universe is due exclusively to the Dirac and/or Majorana CP-violating phases in the PMNS neutrino mixing matrix U, and thus is directly related to the low energy CP-violation in the lepton sector (e.g., in neutrino oscillations, etc.). We first derive the conditions of CP-invariance of the neutrino Yukawa couplings λ in the see-saw Lagrangian, and of the complex orthogonal matrix R in the 'orthogonal' parametrization of λ. We show, e.g. that under certain conditions (i) real R and specific CP-conserving values of the Majorana and Dirac phases can imply CP-violation, and (ii) purely imaginary R does not necessarily imply breaking of CP-symmetry. We study in detail the case of hierarchical heavy Majorana neutrino mass spectrum, presenting results for three possible types of light neutrino mass spectrum: (i) normal hierarchical, (ii) inverted hierarchical, and (iii) quasi-degenerate. Results in the alternative case of quasi-degenerate in mass heavy Majorana neutrinos, are also derived. The minimal supersymmetric extension of the standard theory with right-handed Majorana neutrinos and see-saw mechanism of neutrino mass generation is discussed as well. We illustrate the possible correlations between the baryon asymmetry of the Universe and (i) the rephasing invariant J CP controlling the magnitude of CP-violation in neutrino oscillations, or (ii) the effective Majorana mass in neutrinoless double beta decay, in the cases when the only source of CP-violation is respectively the Dirac or the Majorana phases in the neutrino mixing matrix
On Symmetries in Optimal Control
Schaft, A.J. van der
1986-01-01
We discuss the use of symmetries in solving optimal control problems. In particular a procedure for obtaining symmetries is given which can be performed before the actual calculation of the optimal control and optimal Hamiltonian.
Gauging MSSM global symmetries and SUSY breaking in de Sitter vacuum
Antoniadis, Ignatios
2016-01-01
We elaborate on a recent study of a model of supersymmetry breaking we proposed recently, in the presence of a tunable positive cosmological constant, based on a gauged shift symmetry of a string modulus, external to the Standard Model (SM) sector. Here, we identify this symmetry with a global symmetry of the SM and work out the corresponding phenomenology. A particularly attracting possibility is to use a combination of Baryon and Lepton number that contains the known matter parity and guarantees absence of dimension-four and five operators that violate B and L.
Enhanced CMBR non-Gaussianities from Lorentz violation
Energy Technology Data Exchange (ETDEWEB)
Chialva, Diego, E-mail: diego.chialva@umons.ac.be [Service de Mécanique et gravitation, Université de Mons, Place du Parc 20, 7000 Mons (Belgium)
2012-01-01
We study the effects of Lorentz symmetry violation on the scalar CMBR bispectrum. We deal with dispersion relations modified by higher derivative terms in a Lorentz breaking effective action and solve the equations via approximation techniques, in particular the WKB method. We quantify the degree of approximation in the computation of the bispectrum and show how the absolute and relative errors can be made small at will, making the results robust. Our results show that there can be enhancements in the bispectrum for specific configurations in momentum space, when the modified dispersion relations violate the adiabatic condition for a short period of time in the early Universe. The kind of configurations that are enhanced and the pattern of oscillations in wavenumbers that generically appear in the bispectrum strictly depend on the form of the modified dispersion relation, and therefore on the pattern of Lorentz violation. These effects are found to be distinct from those that appear when modelling very high-energy (transplanckian) physics via modified boundary conditions (modified vacuum). In fact, under certain conditions, the enhancements can be even stronger, given equal interactions, and possibly open a door to the experimental study of Lorentz violation through these phenomena. After providing the general analysis, we also discuss briefly a specific example based on a healthy modification of the Corley-Jacobson dispersion relation with negative coefficient, and plot the shape of the bispectrum in that case.
Lorentz-violating alternative to the Higgs mechanism?
International Nuclear Information System (INIS)
Alexandre, Jean; Mavromatos, Nick E.
2011-01-01
We consider a four-dimensional field-theory model with two massless fermions, coupled to an Abelian vector field without flavor mixing, and to another Abelian vector field with flavor mixing. Both Abelian vectors have a Lorentz-violating kinetic term, introducing a Lorentz-violation mass scale M, from which fermions and the flavor-mixing vector get their dynamical masses, whereas the vector coupled without flavor mixing remains massless. When the two coupling constants have similar values in order of magnitude, a mass hierarchy pattern emerges, in which one fermion is very light compared to the other, while the vector mass is of the order of the heavy fermion mass. The work presented here may be considered as a Lorentz-symmetry-violating alternative to the Higgs mechanism, in the sense that no scalar particle (fundamental or composite) is necessary for the generation of the vector-meson mass. However, the model is not realistic given that, as a result of Lorentz violation, the maximal (light-cone) speed seen by the fermions is smaller than that of the massless gauge boson (which equals the speed of light in vacuo) by an amount which is unacceptably large to be compatible with the current tests of Lorentz invariance, unless the gauge couplings assume unnaturally small values. Possible ways out of this phenomenological drawback are briefly discussed, postponing a detailed construction of more realistic models for future work.
Leptogenesis and Low Energy CP Violation in Neutrino Physics
Pascoli, S; Riotto, Antonio; Riotto, Antonio
2007-01-01
Taking into account the recent progress in the understanding of the lepton flavor effects in leptogenesis, we investigate in detail the possibility that the CP-violation necessary for the generation of the baryon asymmetry of the Universe is due exclusively to the Dirac and/or Majorana CP-violating phases in the PMNS neutrino mixing matrix U, and thus is directly related to the low energy CP-violation in the lepton sector (e.g., in neutrino oscillations, etc.). We first derive the conditions of CP-invariance of the neutrino Yukawa couplings λ in the see-saw Lagrangian, and of the complex orthogonal matrix R in the “orthogonal” parametrization of λ. We show, e.g. that under certain conditions (i) real R and specific CP-conserving values of the Majorana and Dirac phases can imply CP-violation, and (ii) purely imaginary R does not necessarily imply breaking of CP-symmetry. We study in detail the case of hierarchical heavy Majorana neutrino mass spectrum, presenting results for three possible types of light...
Finite-Q22 Corrections to Parity-Violating DIS
International Nuclear Information System (INIS)
T. Hobbs; W. Melnitchouk
2008-01-01
Parity-violating deep inelastic scattering (PVDIS) has been proposed as an important new tool to extract the flavor and isospin dependence of parton distributions in the nucleon. We discuss finite-Q 2 effects in PVDIS asymmetries arising from subleading kinematical corrections and longitudinal contributions to the gamma Z interference. For the proton, these need to be accounted for when extracting the d/u ratio at large x. For the deuteron, the finite-Q 2 corrections can distort the effects of charge symmetry violation in parton distributions, or signals for physics beyond the standard model. We further explore the dependence of PVDIS asymmetries for polarized targets on the u and d helicity distributions at large x
Symmetry and topology in evolution
International Nuclear Information System (INIS)
Lukacs, B.; Berczi, S.; Molnar, I.; Paal, G.
1991-10-01
This volume contains papers of an interdisciplinary symposium on evolution. The aim of this symposium, held in Budapest, Hungary, 28-29 May 1991, was to clear the role of symmetry and topology at different levels of the evolutionary processes. 21 papers were presented, their topics included evolution of the Universe, symmetry of elementary particles, asymmetry of the Earth, symmetry and asymmetry of biomolecules, symmetry and topology of lining objects, human asymmetry etc. (R.P.)
Applications of Classical Scaling Symmetry
Bludman, Sidney
2011-01-01
Any symmetry reduces a second-order differential equation to a first-order equation: variational symmetries of the action (exemplified by central field dynamics) lead to conservation laws, but symmetries of only the equations of motion (exemplified by scale-invariant hydrostatics), yield first-order {\\em non-conservation laws} between invariants. We obtain these conservation laws by extending Noether's Theorem to non-variational symmetries, and present a variational formulation of spherical a...
Quantum symmetries in particle interactions
International Nuclear Information System (INIS)
Shirkov, D.V.
1983-01-01
The concept of a quantum symmetry is introduced as a symmetry in the formulation of which quantum representations and specific quantum notions are used essentially. Three quantum symmetry principles are discussed: the principle of renormalizability (possibly super-renormalizability), the principle of local gauge symmetry, and the principle of supersymmetry. It is shown that these principles play a deterministic role in the development of quantum field theory. Historically their use has led to ever stronger restrictions on the interaction mechanism of quantum fields
Old Torreon Navajo Day School, Cuba, NM: NN0030341
NPDES Permit and Fact Sheet explaining EPA's action under the Clean Water Act to issue NPDES Permit No. NN0030341 to Bureau of Indian Affairs Old Torreon Navajo Day School Wastewater Treatment Lagoon.
BIA Wingate High School WWTF, Fort Wingate, NM: NN0020958
NPDES Permit and Fact Sheet explaining EPA's action under the Clean Water Act to issue NPDES Permit No. NN0020958 to Bureau of Indian Affairs (BIA) Wingate High School Wastewater Treatment Lagoon, Fort Wingate, NM.
48 CFR 3.104-7 - Violations or possible violations.
2010-10-01
... for anything of value; or (2) Obtaining or giving anyone a competitive advantage in the award of a... GENERAL IMPROPER BUSINESS PRACTICES AND PERSONAL CONFLICTS OF INTEREST Safeguards 3.104-7 Violations or...
Emergence of Symmetries from Entanglement
CERN. Geneva
2016-01-01
Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.
Group analysis and renormgroup symmetries
International Nuclear Information System (INIS)
Kovalev, V.F.; Pustovalov, V.V.; Shirkov, D.V.
1996-01-01
An original regular approach to constructing special type symmetries for boundary-value problems, namely renormgroup symmetries, is presented. Different methods of calculating these symmetries based on modern group analysis are described. An application of the approach to boundary value problems is demonstrated with the help of a simple mathematical model. 35 refs
Broken symmetries in field theory
Kok, Mark Okker de
2008-01-01
The thesis discusses the role of symmetries in Quantum Field Theory. Quantum Field Theory is the mathematical framework to describe the physics of elementary particles. A symmetry here means a transformation under which the model at hand is invariant. Three types of symmetry are distinguished: 1.
Partial symmetries in nuclear spectroscopy
International Nuclear Information System (INIS)
Leviatan, A.
1996-01-01
The notions of exact, dynamical and partial symmetries are discussed in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei. (Author)
Low energy fermion number violation
International Nuclear Information System (INIS)
Peccei, R.D.
1989-01-01
After a brief aside on charge quantization in the standard electroweak theory, I concentrate on various aspects of anomaly induced fermion number violation in the standard model. A critical analysis of the role of sphalerons for the universe's baryon asymmetry is presented and the importance of calculating directly fermion number violating Green's functions is stressed. A physical interpretation of the recent observation of Ringwald, that coherent effects in the electroweak theory lead to catastrophic fermion number violation at 100 TeV, is discussed. Possible quantum effects which might spoil this semi-classical picture are examined
Parity violation experiments at RHIC
International Nuclear Information System (INIS)
Tannenbaum, M.J.
1993-01-01
With longitudinally polarized protons at RHIC, even a 1 month dedicated run utilizing both approved major detectors could produce a significant search for new physics in hadron collisions via parity violation. Additionally, in the energy range of RHIC, large ''conventional'' parity violating effects are predicted due to the direct production of the weak bosons W ± and Z 0 . One can even envision measurements of the spin dependent sea-quark structure functions of nucleons using the single-spin parity violating asymmetry of W ± and Z 0
NN resonance and the corrections to Goldberger-Treiman relation
International Nuclear Information System (INIS)
Bhamathi, G.; Raghavan, S.
1977-01-01
The relevance of the recent experimental observation of possible bound and resonant states in NN scattering to the Goldberger-Treiman (GT) relation is examined. It is pointed out that an S-wave resonance in NN scattering goes a long way towards accounting for the corrections to the GT relations. Values of the mass and width of the resonance capable of giving a reasonable fit for the GT relation are presented. (author)
Color screening effect and N-N scattering
International Nuclear Information System (INIS)
Shen Xiaoyan; Shen Pengnian; Yu Youwen; Zhang Zongye
1993-01-01
The N-N interaction is studied in terms of the color confinement potential which has the color screening effect. It is shown that by substituting this confinement potential for that of the linear or quadratic type, the problem of the long-tailed color Van de Waals force is solved, and a part of the medium-range attractive force of the N-N interaction obtained
A broken symmetry ontology: Quantum mechanics as a broken symmetry
International Nuclear Information System (INIS)
Buschmann, J.E.
1988-01-01
The author proposes a new broken symmetry ontology to be used to analyze the quantum domain. This ontology is motivated and grounded in a critical epistemological analysis, and an analysis of the basic role of symmetry in physics. Concurrently, he is led to consider nonheterogeneous systems, whose logical state space contains equivalence relations not associated with the causal relation. This allows him to find a generalized principle of symmetry and a generalized symmetry-conservation formalisms. In particular, he clarifies the role of Noether's theorem in field theory. He shows how a broken symmetry ontology already operates in a description of the weak interactions. Finally, by showing how a broken symmetry ontology operates in the quantum domain, he accounts for the interpretational problem and the essential incompleteness of quantum mechanics. He proposes that the broken symmetry underlying this ontological domain is broken dilation invariance
CPLEAR et BABAR, all aspects of CP violation; CPLEAR et BABAR la violation de CP dans tous ses etats
Energy Technology Data Exchange (ETDEWEB)
Yeche, Ch
2003-06-01
This report of French 'Habilitation a diriger les recherches' summarizes my scientific activity from 1993 to 2003. During this decade, my research work was related to two particle physics experiments: CPLEAR and BABAR. The first one, CPLEAR, has recorded data from 1988 to 1995 on the low energy anti-proton ring (LEAR) at CERN. This experiment was devoted to the study of T, CPT et CP discrete symmetries. The second experiment, BABAR, has been running since 1999, on the PEP-II B factory at SLAC. This experiment searches for CP violation and tests the Standard Model through the measurements of the angles and the sides of the Unitarity Triangle. My research work is divided in five main topics: Study of CP and CPT violation in K{sup 0} {yields} {pi}{sup +} {pi}{sup -} decays; Performance optimization of the particle identification detector (DIRC) of the BABAR experiment; B meson tagging in BABAR experiment; {delta}m{sub d} measurement and Search for CP and T violation in mixing with dilepton events; Search for CP violation in B{sup 0} {yields} {rho}{sup {+-}} {pi}{sup {+-}} and B{sup 0} {yields} {pi}{sup {+-}} K{sup {+-}} decays. (author)
Spontaneous CP violation from a quaternionic Kaluza-Klein theory
International Nuclear Information System (INIS)
Hanlon, B.E.; Joshi, G.C.
1991-01-01
Motivated by the isomorphism between the universal covering group of the six dimensional Lorentz group and the special linear group over the quaternions, a locally quaternionic covariant quantum mechanics is postulated to exist in six space-time dimensions. Compactifying onto the space-time M 4 x S 2 complex theory is retrieved on the four dimensional Minkowski space with the essential quaternionic nature confined to S 2 . Quaternionic spinors are introduced and a dimensionally reduced theory recovered which exhibits a CP violating effect via spontaneous symmetry breaking. 20 refs
Aspects of semilocal BPS vortex in systems with Lorentz symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Villalobos, C.H.C.; Silva, J.M.H. da; Hott, M.B. [UNESP, Univ Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Belich, H. [Universidade Federal do Espi rito Santo (UFES), Departamento de Fisica e Quimica, Vitoria, ES (Brazil)
2014-03-15
The existence is shown of a static self-dual semilocal vortex configuration for the Maxwell-Higgs system with a Lorentz-violating CPT-even term. The dependence of the vorticity upper limit on the Lorentz-symmetry-breaking term is also investigated. (orig.)
Density dependence of the symmetry energy from neutron skin thickness in finite nuclei
International Nuclear Information System (INIS)
Viñas, X.; Centelles, M.; Roca-Maza, X.; Warda, M.
2012-01-01
The density dependence of the symmetry energy, characterized by the parameter L, is studied using information provided by the neutron skin thickness in finite nuclei. An estimate of L is obtained from experimental data of antiprotonic atoms. We also discuss the ability of parity violating electron scatering to obtain information about the neutron skin thickness in 208 Pb.
Dark discrete gauge symmetries
International Nuclear Information System (INIS)
Batell, Brian
2011-01-01
We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.
Strong Electroweak Symmetry Breaking
Grinstein, Benjamin
2011-01-01
Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...
Leadership, power and symmetry
DEFF Research Database (Denmark)
Spaten, Ole Michael
2016-01-01
Research publications concerning managers who coach their own employees are barely visible despite its wide- spread use in enterprises (McCarthy & Milner, 2013; Gregory & Levy, 2011; Crabb, 2011). This article focuses on leadership, power and moments of symmetry in the coaching relationship...... regarding managers coaching their employees and it is asked; what contributes to coaching of high quality when one reflects on the power aspect as being immanent? Fourteen middle managers coached five of their employees, and all members of each party wrote down cues and experiences immediately after each...... session. Thereafter we executed qualitative interviews with both managers and employees. Subsequently, a Thematic Analysis resulted in several themes, including power and moments of symmetry in the coaching relationship. One main conclusion is that the most fruitful coaching was obtained when the coachee...
Asymmetry, Symmetry and Beauty
Directory of Open Access Journals (Sweden)
Abbe R. Kopra
2010-07-01
Full Text Available Asymmetry and symmetry coexist in natural and human processes. The vital role of symmetry in art has been well demonstrated. This article highlights the complementary role of asymmetry. Further we show that the interaction of asymmetric action (recursion and symmetric opposition (sinusoidal waves are instrumental in generating creative features (relatively low entropy, temporal complexity, novelty (less recurrence in the data than in randomized copies and complex frequency composition. These features define Bios, a pattern found in musical compositions and in poetry, except for recurrence instead of novelty. Bios is a common pattern in many natural and human processes (quantum processes, the expansion of the universe, gravitational waves, cosmic microwave background radiation, DNA, physiological processes, animal and human populations, and economic time series. The reduction in entropy is significant, as it reveals creativity and contradicts the standard claim of unavoidable decay towards disorder. Artistic creations capture fundamental features of the world.
de Boer, Jan; Freivogel, Ben; Kabir, Laurens; Lokhande, Sagar F.
2017-07-01
In the AdS/CFT correspondence, bulk information appears to be encoded in the CFT in a redundant way. A local bulk field corresponds to many different non-local CFT operators (precursors). We recast this ambiguity in the language of BRST symmetry, and propose that in the large N limit, the difference between two precursors is a BRST exact and ghost-free term. This definition of precursor ambiguities has the advantage that it generalizes to any gauge theory. Using the BRST formalism and working in a simple model with global symmetries, we re-derive a precursor ambiguity appearing in earlier work. Finally, we show within this model that the obtained ambiguity has the right number of parameters to explain the freedom to localize precursors within different spatial regions of the boundary order by order in the large N expansion.
Violation of vector dominance in the vector manifestation
International Nuclear Information System (INIS)
Sasaki, Chihiro
2003-01-01
The vector manifestation (VM) is a new pattern for realizing the chiral symmetry in QCD. In the VM, the massless vector meson becomes the chiral partner of pion at the critical point, in contrast with the restoration based on the linear sigma model. Including the intrinsic temperature dependences of the parameters of the hidden local symmetry (HLS) Lagrangian determined from the underlying QCD through the Wilsonian matching together with the hadronic thermal corrections, we present a new prediction of the VM on the direct photon-π-π coupling which measures the validity of the vector dominance (VD) of the electromagnetic form factor of the pion. We find that the VD is largely violated at the critical temperature, which indicates that the assumption of the VD made in several analysis on the dilepton spectra in hot matter may need to be weakened for consistently including the effect of the dropping mass of the vector meson. (author)
International Nuclear Information System (INIS)
Bunakov, V.E.; Ivanov, I.B.
1999-01-01
Connections between the symmetries of Hamiltonian systems in classical and quantum mechanics, on one hand, and their regularity or chaoticity, on the other hand, are considered. The quantum-chaoticity criterion that was proposed previously and which was borrowed from the theory of compound-nucleus resonances is used to analyze the quantum diamagnetic Kepler problem - that is, the motion of a spinless charged particle in a Coulomb and a uniform magnetic field
International Nuclear Information System (INIS)
Herrero, O F
2010-01-01
Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.
Symmetry and quantum mechanics
Corry, Scott
2016-01-01
This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.
Energy Technology Data Exchange (ETDEWEB)
Herrero, O F, E-mail: o.f.herrero@hotmail.co [Conservatorio Superior de Musica ' Eduardo Martinez Torner' Corrada del Obispo s/n 33003 - Oviedo - Asturias (Spain)
2010-06-01
Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.
NN → NN π: the new frontier in nucleon-nucleon interactions
International Nuclear Information System (INIS)
Silbar, R.R.
1986-01-01
The torch in nucleon-nucleon scattering has been passed to experimental and theoretical studies of pion production. Comparing two unitary models shows that most of the structures predicted for spin observables in NN → NNπ are model independent and roughly in agreement with the data. The contribution of rho- exchange is small, indicating the reaction is largely ''peripheral''. The energy dependence of these isobar models is smooth. The largely unstudied reactions producing neutral and negatively-charged pions show richer structure than positively-charged pion production. 6 refs
Molecular Eigensolution Symmetry Analysis and Fine Structure
Directory of Open Access Journals (Sweden)
William G. Harter
2013-01-01
Full Text Available Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES. Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES used in Born-Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v, then applied to families of Oh clusters in SF6 spectra and to extreme clusters.
Test of Symmetries with Neutrons and Nuclei
International Nuclear Information System (INIS)
Paul, Stephan
2009-01-01
Precision experiments at low energies probing weak interaction are a very promising and complementary tool for investigating the structure of the electro-weak sector of the standard model, and for searching for new phenomena revealing signs for an underlaying new symmetry. With the advent of new technologies in particle trapping and production of beams for exotic nuclei as well as ultracold neutrons, we expect one or two orders of magnitude gain in precision. This corresponds to the progress expected by new high luminosity B-factories or the LHC. Domains studied are β-decays where decay correlations, partial or total decay rates may reveal the nature of the left-right structure of the interaction and the investigation of discrete symmetries. Here the search for a finite electric dipole moment which, due to its CP-violating nature were sensational by itself, could shed light on the structure of the vacuum at very small distances. Last but not least ideas of a mirror world can be extended to the sector of baryons which can be studied with neutrons.
International Nuclear Information System (INIS)
Han, C.G.
1980-01-01
Effects of Yang-Mills instantons on CP-violating strong interactions are studied. Using simplified models of CP-noninvariant weak interactions, we calculate the induced strong CP-violation. Even in the simple examples studied, the CP-violating phase of a vacuum-to-vacuum transition amplitude differs in general from the phase of the determinant of the quark mass matrix multiplied by the topological charge of the background Yang-Mills field. Then several CP-violating phenomena such as eta → 2π decay and neutron electric dipole moment induced by instantons are studied. The result of our explicit calculation of eta → 2π decay strength verifies the current algebraic method used by Crewther et al. We also present a calculation of the instanton contribution, in the dilute gas approximation for instanton gas, to the electric dipole moment of a free quark without using 't Hooft's effective Lagrangian
Rugari, Steven Louis
1992-01-01
We have carried out a search for broken reflection symmetry in the exotic nucleus ^{114 }Xe. Evidence for broken reflection symmetry has been previously observed in the actinide region, most notably Ra-Th nuclei, and more recently in the neutron rich nuclei ^{144}Ba, ^{146}Ce, and ^{146,148}Nd. This evidence has been discussed in terms of two conceptually different theoretical frameworks, namely alpha clustering and octupole deformation. The alpha clustering model makes global predictions of the relative strengths of enhanced electric dipole (E1) transitions characteristic of broken reflection symmetry, and predicts a dependence on isospin divided by nuclear mass (N-Z) ^2/A^2 of the reduced transition probability, B(E1), where A is the nuclear mass number and N and Z are, respectively, the neutron and proton number. The nuclei studied previously have approximately the same value of (N-Z)^2/A ^2 between 0.033 and 0.05. In ^ {114}Xe this parameter is much different, (N-Z)^2/A^2 =.0028, allowing for a test of the prediction. On the other hand, the octupole model description is less straightforward. Two terms contributing to the calculation of reduced transition strengths are based on the collective liquid drop model of nuclei and have a global dependence on A^2 Z^2. A third term, however, depends explicitly on the shell model description of the valence nucleons and can be large enough to remove this global dependence. The nucleus ^{114}Xe was produced in the heavy ion fusion evaporation reaction ^{60}Ni(^ {58}Ni,2p2n)^{114 }Xe in two separate measurements at Daresbury Laboratory and at Yale University. The nucleus was identified by means of a recoil mass spectrometer in the first reaction and by detection of evaporated neutrons in the second. Gamma ray spectra were collected in coincidence with these triggers using similar gamma detector setups. Information on the angular distributions of the gamma rays was collected for at least three separate angles in each
Low Scale Flavor Gauge Symmetries
Grinstein, Benjamín; Villadoro, Giovanni
2010-01-01
We study the possibility of gauging the Standard Model flavor group. Anomaly cancellation leads to the addition of fermions whose mass is inversely proportional to the known fermion masses. In this case all flavor violating effects turn out to be controlled roughly by the Standard Model Yukawa, suppressing transitions for the light generations. Due to the inverted hierarchy the scale of new gauge flavor bosons could be as low as the electroweak scale without violating any existing bound but accessible at the Tevatron and the LHC. The mechanism of flavor protection potentially provides an alternative to Minimal Flavor Violation, with flavor violating effects suppressed by hierarchy of scales rather than couplings.
Symmetries of nonlinear ordinary differential equations: The ...
Indian Academy of Sciences (India)
2015-10-21
Oct 21, 2015 ... Abstract. Lie symmetry analysis is one of the powerful tools to analyse nonlinear ordinary dif- ferential equations. We review the effectiveness of this method in terms of various symmetries. We present the method of deriving Lie point symmetries, contact symmetries, hidden symmetries, nonlocal symmetries ...
Symmetry and perturbation theory
Gaeta, Giuseppe
A co-chain map for the G invariant De Rham complex -- New examples of trihamiltonian structures linking different Lenard chains -- Wave propagation in an elastic medium: GDS equations -- Parametric excitation in nonlinear dynamics -- Collisionless action-minimizing trajectories for the equivariant 3-body problem in R2 -- The Lagrangian and Hamiltonian formulations for a special class of non-conservative systems -- Shadowing chains of collision orbits for the elliptic 3-body problem -- Similarity reductions of an optical model -- Fold, transcritical and pitchfork singularities for time-reversible systems -- Homographic three-body motions with positive and negative masses -- Remarks on conformal Killing tensors and separation of variables -- A regularity theory for optimal partition problems -- Lambda and mu-symmetries -- Potential symmetries and linearization of some evolution equations -- Periodic solutions for zero mass nonlinear wave equations -- Fundamental covariants in the invariant theory of Killing tensors -- Global geometry of 3-body trajectories with vanishing angular momentum -- The relation between the topological structure of the set of controllable affine systems and topological structures of the set of controllable homogenuous systems in low dimension -- On preservation of action variables for satellite librations in elliptic orbits with account of solar light pressure -- An explicit solution of the (quantum) elliptic Calogero-Sutherland model -- An application of the Melnikov integral to a restricted three body problem -- Reductions of integrable equations and automorphic Lie algebras -- Geometric reduction of Poisson operators -- Closed manifolds admitting metrics with the same geodesics -- A transcritical-flip bifurcation in a model for a robot-arm -- Alignment and the classification of Lorentz-signature tensors -- Renormalization group symmetry and gas dynamics -- Refined computation of hypernormal forms -- New order reductions for Euler
Yale, Paul B
2012-01-01
This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi
Symmetries leading to inflation
International Nuclear Information System (INIS)
Aguirregabiria, Juan M.; Lazkoz, Ruth; Chimento, Luis P.; Jakubi, Alejandro S.
2003-01-01
We present here the general transformation that leaves unchanged the form of the field equations for perfect fluid Friedmann-Robertson-Walker and Bianchi type V cosmologies. The symmetries found can be used as algorithms for generating new cosmological models from existing ones. A particular case of the general transformation is used to illustrate the crucial role played by the number of scalar fields in the occurrence of inflation. Related to this, we also study the existence and stability of Bianchi type V power law solutions
Farmer, David W
1995-01-01
In most mathematics textbooks, the most exciting part of mathematics-the process of invention and discovery-is completely hidden from the reader. The aim of Groups and Symmetry is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: Its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequ
Applications of chiral symmetry
International Nuclear Information System (INIS)
Pisarski, R.D.
1995-03-01
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T χ implies that the ρ and a 1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, m ρ (T χ ) > m ρ (0). The author conjectures that at T χ the thermal ρ - a 1 , peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by T χ . The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates
Directory of Open Access Journals (Sweden)
Nazife O. Koca
2016-12-01
Full Text Available We describe an extension of the pyritohedral symmetry in 3D to 4-dimensional Euclidean space and construct the group elements of the 4D pyritohedral group of order 576 in terms of quaternions. It turns out that it is a maximal subgroup of both the rank-4 Coxeter groups W (F4 and W (H4, implying that it is a group relevant to the crystallographic as well as quasicrystallographic structures in 4-dimensions. We derive the vertices of the 24 pseudoicosahedra, 24 tetrahedra and the 96 triangular pyramids forming the facets of the pseudo snub 24-cell. It turns out that the relevant lattice is the root lattice of W (D4. The vertices of the dual polytope of the pseudo snub 24-cell consists of the union of three sets: 24-cell, another 24-cell and a new pseudo snub 24-cell. We also derive a new representation for the symmetry group of the pseudo snub 24-cell and the corresponding vertices of the polytopes.
Bootstrap Dynamical Symmetry Breaking
Directory of Open Access Journals (Sweden)
Wei-Shu Hou
2013-01-01
Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700 GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.
Wilczek, Frank
2004-01-01
Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world (8 pages) Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).
Classification in medical images using adaptive metric k-NN
Chen, C.; Chernoff, K.; Karemore, G.; Lo, P.; Nielsen, M.; Lauze, F.
2010-03-01
The performance of the k-nearest neighborhoods (k-NN) classifier is highly dependent on the distance metric used to identify the k nearest neighbors of the query points. The standard Euclidean distance is commonly used in practice. This paper investigates the performance of k-NN classifier with respect to different adaptive metrics in the context of medical imaging. We propose using adaptive metrics such that the structure of the data is better described, introducing some unsupervised learning knowledge in k-NN. We investigated four different metrics are estimated: a theoretical metric based on the assumption that images are drawn from Brownian Image Model (BIM), the normalized metric based on variance of the data, the empirical metric is based on the empirical covariance matrix of the unlabeled data, and an optimized metric obtained by minimizing the classification error. The spectral structure of the empirical covariance also leads to Principal Component Analysis (PCA) performed on it which results the subspace metrics. The metrics are evaluated on two data sets: lateral X-rays of the lumbar aortic/spine region, where we use k-NN for performing abdominal aorta calcification detection; and mammograms, where we use k-NN for breast cancer risk assessment. The results show that appropriate choice of metric can improve classification.
Tests of Lorentz and CPT symmetry with hadrons and nuclei
Noordmans, J. P.
2018-01-01
Using chiral-perturbation-theory techniques, we derive the low-energy effective Lagrangian in terms of pions and nucleons that corresponds to a selected set of dimension-five Lorentz- and CPT-violation quark and gluon operators. The form of the effective operators is determined by the symmetry properties of the original Lagrangian. Using the pion-nucleon Lagrangian, we find the Lorentz-violating contributions to comagnetometer experiments. This results in stringent limits on some of the parameters. For some other parameters we find that the best bounds will come from nucleon-nucleon interactions, and we derive the relevant nucleon-nucleon potential. These considerations imply possible new opportunities for spin-precession experiments involving for example the deuteron.
Unsuppressed fermion-number violation at high temperature: An O(3) model
International Nuclear Information System (INIS)
Mottola, E.; Wipf, A.
1989-01-01
The O(3) nonlinear σ model in 1+1 dimensions, modified by an explicit symmetry-breaking term, is presented as a model for baryon- and lepton-number violation in the standard electroweak theory. Although arguments based on the Atiyah-Singer index theorem and instanton physics apply to the model, we show by explicit calculations that the rate of chiral fermion-number violation due to the axial anomaly is entirely unsuppressed at sufficiently high temperatures. Our results apply to unbroken gauge theories as well and may require reevaluation of the role of instantons in high-temperature QCD
Limits on Lorentz Invariance Violation from Coulomb Interactions in Nuclei and Atoms.
Flambaum, V V; Romalis, M V
2017-04-07
Anisotropy in the speed of light that has been constrained by Michelson-Morley-type experiments also generates anisotropy in the Coulomb interactions. This anisotropy can manifest itself as an energy anisotropy in nuclear and atomic experiments. Here the experimental limits on Lorentz violation in _{10}^{21}Ne are used to improve the limits on Lorentz symmetry violations in the photon sector, namely, the anisotropy of the speed of light and the Coulomb interactions, by 7 orders of magnitude in comparison with previous experiments: the speed of light is isotropic to a part in 10^{28}.
Neutrino masses and family symmetry
International Nuclear Information System (INIS)
Grinstein, B.; Preskill, J.; Wise, M.B.
1985-01-01
Neutrino masses in the 100 eV-1 MeV range are permitted if there is a spontaneously broken global family symmetry that allows the heavy neutrinos to decay by Goldstone boson emission with a cosmologically acceptable lifetime. The family symmetry may be either abelian or nonabelian; we present models illustrating both possibilities. If the family symmetry is nonabelian, then the decay tau -> μ + Goldstone boson or tau -> e + Goldstone may have an observable rate. (orig.)
Exact dynamical and partial symmetries
Energy Technology Data Exchange (ETDEWEB)
Leviatan, A, E-mail: ami@phys.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)
2011-03-01
We discuss a hierarchy of broken symmetries with special emphasis on partial dynamical symmetries (PDS). The latter correspond to a situation in which a non-invariant Hamiltonian accommodates a subset of solvable eigenstates with good symmetry, while other eigenstates are mixed. We present an algorithm for constructing Hamiltonians with this property and demonstrate the relevance of the PDS notion to nuclear spectroscopy, to quantum phase transitions and to mixed systems with coexisting regularity and chaos.
Exact dynamical and partial symmetries
International Nuclear Information System (INIS)
Leviatan, A
2011-01-01
We discuss a hierarchy of broken symmetries with special emphasis on partial dynamical symmetries (PDS). The latter correspond to a situation in which a non-invariant Hamiltonian accommodates a subset of solvable eigenstates with good symmetry, while other eigenstates are mixed. We present an algorithm for constructing Hamiltonians with this property and demonstrate the relevance of the PDS notion to nuclear spectroscopy, to quantum phase transitions and to mixed systems with coexisting regularity and chaos.
Measurement of the parity violating asymmetry Aγ in n→+p→d+γ
International Nuclear Information System (INIS)
Snow, W.M.; Bazhenov, A.; Blessinger, C.S.; Bowman, J.D.; Chupp, T.E.; Coulter, K.P.; Freedman, S.J.; Fujikawa, B.K.; Gentile, T.R.; Greene, G.L.; Hansen, G.; Hogan, G.E.; Ishimoto, S.; Jones, G.L.; Knudson, J.N.; Kolomenski, E.; Lamoreaux, S.K.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Morgan, G.L.; Morimoto, K.; Morris, C.L.; Nann, H.; Penttilae, S.I.; Pirozhkov, A.; Pomeroy, V.R.; Rich, D.R.; Serebrov, A.; Sharapov, E.I.; Smith, D.A.; Smith, T.B.; Welsh, R.C.; Wietfeldt, F.E.; Wilburn, W.S.; Yuan, V.W.; Zerger, J.
2000-01-01
The weak interaction between neutrons and protons has never been resolved experimentally. In analogy with the strong NN interaction, the weak NN interaction at low energy can be parametrized in terms of a meson exchange model with parity violating meson-nucleon couplings. Unlike the measured proton-proton weak interaction, the neutron-proton weak interaction is sensitive to the weak pion-nucleon coupling constant H π 1 . This coupling, which is responsible for the longest-ranged part of the weak NN interaction and is therefore an essential part of any description of weak interactions in nuclei, remains undetermined despite many years of effort. A measurement of the gamma ray directional asymmetry A γ in the capture of polarized neutrons by parahydrogen has been proposed at Los Alamos National Laboratory. The goal of this experiment is to determine A γ with a relative standard uncertainty of -9 , which is smaller than all modern predictions for the size of the asymmetry. The design of the experiment is presented, with an emphasis on the techniques used for controlling systematic errors
The conservation of orbital symmetry
Woodward, R B
2013-01-01
The Conservation of Orbital Symmetry examines the principle of conservation of orbital symmetry and its use. The central content of the principle was that reactions occur readily when there is congruence between orbital symmetry characteristics of reactants and products, and only with difficulty when that congruence does not obtain-or to put it more succinctly, orbital symmetry is conserved in concerted reaction. This principle is expected to endure, whatever the language in which it may be couched, or whatever greater precision may be developed in its application and extension. The book ope
An introduction to Yangian symmetries
International Nuclear Information System (INIS)
Bernard, D.
1992-01-01
Some aspects of the quantum Yangians as symmetry algebras of two-dimensional quantum field theories are reviewed. They include two main issues: the first is the classical Heisenberg model, covering non-Abelian symmetries, generators of the symmetries and the semi-classical Yangians, an alternative presentation of the semi-classical Yangians, digression on Poisson-Lie groups. The second is the quantum Heisenberg chain, covering non-Abelian symmetries and the quantum Yangians, the transfer matrix and an alternative presentation of the Yangians, digression on the double Yangians. (K.A.) 15 refs
Leptogenesis and residual CP symmetry
International Nuclear Information System (INIS)
Chen, Peng; Ding, Gui-Jun; King, Stephen F.
2016-01-01
We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z 2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S 4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.
Quarks, baryons and chiral symmetry
Hosaka, Atsushi
2001-01-01
This book describes baryon models constructed from quarks, mesons and chiral symmetry. The role of chiral symmetry and of quark model structure with SU(6) spin-flavor symmetry are discussed in detail, starting from a pedagogic introduction. Emphasis is placed on symmetry aspects of the theories. As an application, the chiral bag model is studied for nucleon structure, where important methods of theoretical physics, mostly related to the semiclassical approach for a system of strong interactions, are demonstrated. The text is more practical than formal; tools and ideas are explained in detail w
Baryogenesis through lepton number violation
Sarkar, U
1998-01-01
The most promising scenarios of baryogenesis seems to be the one through lepton number violation. Lepton number violation through a Majarana mass of the right-handed neutrinos can generate a lepton asymmetry of the universe when the right-handed neutrinos decay. The left-handed neutrinos get small Majorana masses through see-saw mechanism in these models. A triplet higgs scalar violating lepton number explicitly through its couplings to two leptons or two higgs doublets can also naturally give small Majorana masses to the left-handed neutrinos and also generate a lepton asymmetry of the universe. We review both these models of leptogenesis, where the lepton number asymmetry then gets converted to a baryon asymmetry of the universe before the electroweak phase transition.
Flavour physics and CP violation
Nir, Y.
2015-05-22
We explain the many reasons for the interest in flavor physics. We describe flavor physics and the related CP violation within the Standard Model, and explain how the B-factories proved that the Kobayashi-Maskawa mechanism dominates the CP violation that is observed in meson decays. We explain the implications of flavor physics for new physics, with emphasis on the “new physics flavor puzzle”, and present the idea of minimal flavor violation as a possible solution. We explain why the values flavor parameters of the Standard Model are puzzling, present the Froggatt-Nielsen mechanism as a possible solution, and describe how measurements of neutrino parameters are interpreted in the context of this puzzle. We show that the recently discovered Higgs-like boson may provide new opportunities for making progress on the various flavor puzzles.
Fleischer, Robert
2004-01-01
After an introduction to the Standard-Model description of CP violation, we turn to the main focus of these lectures, the B-meson system. Since non-leptonic B decays play the key role for the exploration of CP violation, we have to discuss the tools to describe these transitions theoretically before classifying the main strategies to study CP violation. We will then have a closer look at the B-factory benchmark modes $B_d\\to J/\\psi K_S$, $B_d\\to\\phi K_S$ and $B_d\\to\\pi^+\\pi^-$, and shall emphasize the importance of studies of $B_s$ decays at hadron colliders. Finally, we focus on more recent developments related to $B\\to\\pi K$ modes and the $B_d\\to\\pi^+\\pi^-$, $B_s\\to K^+K^-$ system.
Anomalous Lorentz and CPT violation
Klinkhamer, F. R.
2018-01-01
If there exists Lorentz and CPT violation in nature, then it is crucial to discover and understand the underlying mechanism. In this contribution, we discuss one such mechanism which relies on four-dimensional chiral gauge theories defined over a spacetime manifold with topology ℛ3 × S 1 and periodic spin structure for the compact dimension. It can be shown that the effective gauge-field action contains a local Chern-Simons-like term which violates Lorentz and CPT invariance. For arbitrary Abelian U(1) gauge fields with trivial holonomies in the compact direction, this anomalous Lorentz and CPT violation has recently been established perturbatively with a Pauli-Villars-type regularization and nonperturbatively with a lattice regularization based on Ginsparg-Wilson fermions.
Electron correlation effects on magnetism in superconductors without inversion symmetry
International Nuclear Information System (INIS)
Fujimoto, Satoshi
2007-01-01
We investigate magnetic properties of superconductors without inversion symmetry with particular emphasis on the role played by electron correlation effects. It is found that the strong electron correlation seriously affects the temperature dependence of the spin susceptibility which consists of the Pauli term and the van-Vleck-like term, of which the existence is due to parity violating spin-orbit interaction. The implication of the results for the recent NMR measurement of the heavy fermion superconductor CePt 3 Si, which indicates the unchanged Knight shift below T c for any directions of a magnetic field, is presented
Symmetry and conservation laws in particle physics in the fifties
International Nuclear Information System (INIS)
Michel, L.
1989-01-01
This paper puzzles over why symmetry, so central to particle physics today, was so little attended to in the 1950s when the need for it was becoming profound, with the notion of parity violation and other break-downs in conservation laws, such as angular momentum and charge conjugation. Group theory, including Lie groups, would also have helped understanding of the particle physics discoveries of the 1950s such as strange particles, resonances, and associated production. They were adopted ten years too late by the physics community. (UK)
Conformal symmetry wormholes and the null energy condition
Kuhfittig, Peter K. F.
2017-06-01
In this paper, we seek a relationship between the assumption of conformal symmetry and the exotic matter needed to hold a wormhole open. By starting with a Morris-Thorne wormhole having a constant energy density, we show that the conformal factor provides an extra degree of freedom sufficient to account for the exotic matter. The same holds for Morris-Thorne wormholes in a noncommutative-geometry setting. Applied to thin shells, a radius that results in a wormhole with positive surface density and negative surface pressure and that violates the null energy condition on a thin shell would exist.
Type-II Symmetry-Protected Topological Dirac Semimetals
Chang, Tay-Rong; Xu, Su-Yang; Sanchez, Daniel S.; Tsai, Wei-Feng; Huang, Shin-Ming; Chang, Guoqing; Hsu, Chuang-Han; Bian, Guang; Belopolski, Ilya; Yu, Zhi-Ming; Yang, Shengyuan A.; Neupert, Titus; Jeng, Horng-Tay; Lin, Hsin; Hasan, M. Zahid
2017-07-01
The recent proposal of the type-II Weyl semimetal state has attracted significant interest. In this Letter, we propose the concept of the three-dimensional type-II Dirac fermion and theoretically identify this new symmetry-protected topological state in the large family of transition-metal icosagenides, M A3 (M =V , Nb, Ta; A =Al , Ga, In). We show that the VAl3 family features a pair of strongly Lorentz-violating type-II Dirac nodes and that each Dirac node can be split into four type-II Weyl nodes with chiral charge ±1 via symmetry breaking. Furthermore, we predict that the Landau level spectrum arising from the type-II Dirac fermions in VAl3 is distinct from that of known Dirac or Weyl semimetals. We also demonstrate a topological phase transition from a type-II Dirac semimetal to a quadratic Weyl semimetal or a topological crystalline insulator via crystalline distortions.
Moyotl, A.
2017-10-01
We present a short review of CP-violating effects induced by radiative corrections in a framework of extensions of the Standard Model: (EM,Weak, Chromo) electric dipole moments of heavy fermions, trilinear neutral gauge boson couplings and decays of the Higgs boson. We show that in order to induce CP-violating effects, non-diagonal couplings with complex coupling constant are required and the respective CP-odd term is proportional to the imaginary part of the product of coupling constants involved in the process, which is mathematically consistent with the respective CP-odd Lagrangian.
Flavor Mixing, CP-Violation and the Masses of the Light Quarks
Fritzsch, Harald
1998-01-01
The observed hierarchy of the quark masses is interpreted as a signal for an underlying ``subnuclear democracy'' as the relevant symmetry of the quark mass terms. A simple breaking of the symmetry leads to a mixing between the second and the third family, in agreement with observation. Introducing the mixing between the first and the second family, one finds an interesting pattern of maximal CP--violation as well as a complete determination of the elements of the CKM matrix and of the unitarity triangle.
Holography without translational symmetry
Vegh, David
2013-01-01
We propose massive gravity as a holographic framework for describing a class of strongly interacting quantum field theories with broken translational symmetry. Bulk gravitons are assumed to have a Lorentz-breaking mass term as a substitute for spatial inhomogeneities. This breaks momentum-conservation in the boundary field theory. At finite chemical potential, the gravity duals are charged black holes in asymptotically anti-de Sitter spacetime. The conductivity in these systems generally exhibits a Drude peak that approaches a delta function in the massless gravity limit. Furthermore, the optical conductivity shows an emergent scaling law: $|\\sigma(\\omega)| \\approx {A \\over \\omega^{\\alpha}} + B$. This result is consistent with that found earlier by Horowitz, Santos, and Tong who introduced an explicit inhomogeneous lattice into the system.
Spectral distributions and symmetries
International Nuclear Information System (INIS)
Quesne, C.
1980-01-01
As it is now well known, the spectral distribution method has both statistical and group theoretical aspects which make for great simplifications in many-Fermion system calculations with respect to more conventional ones. Although both aspects intertwine and are equally essential to understand what is going on, we are only going to discuss some of the group theoretical aspects, namely those connected with the propagation of information, in view of their fundamental importance for the actual calculations of spectral distributions. To be more precise, let us recall that the spectral distribution method may be applied in principle to many-Fermion spaces which have a direct-product structure, i.e., are obtained by distributing a certain number n of Fermions over N single-particle states (O less than or equal to n less than or equal to N), as it is the case for instance for the nuclear shell model spaces. For such systems, the operation of a central limit theorem is known to provide us with a simplifying principle which, when used in conjunction with exact or broken symmetries, enables us to make definite predictions in those cases which are not amendable to exact shell model diagonalizations. The distribution (in energy) of the states corresponding to a fixed symmetry is then defined by a small number of low-order energy moments. Since the Hamiltonian is defined in few-particle subspaces embedded in the n-particlespace, the low-order moments, we are interested in, can be expressed in terms of simpler quantities defined in those few-particle subspaces: the information is said to propagate from the simple subspaces to the more complicated ones. The possibility of actually calculating spectral distributions depends upon the finding of simple ways to propagate the information
Planck-scale modifications to electrodynamics characterized by a spacelike symmetry-breaking vector
International Nuclear Information System (INIS)
Gubitosi, Giulia; Amelino-Camelia, Giovanni; Melchiorri, Alessandro; Genovese, Giuseppe
2010-01-01
In the study of Planck-scale ('quantum-gravity-induced') violations of Lorentz symmetry, an important role was played by the deformed-electrodynamics model introduced by Myers and Pospelov. Its reliance on conventional effective quantum field theory, and its description of symmetry-violation effects simply in terms of a four-vector with a nonzero component only in the time direction, rendered it an ideal target for experimentalists and a natural concept-testing ground for many theorists. At this point however the experimental limits on the single Myers-Pospelov parameter, after improving steadily over these past few years, are 'super-Planckian'; i.e. they take the model out of actual interest from a conventional quantum-gravity perspective. In light of this we here argue that it may be appropriate to move on to the next level of complexity, still with vectorial symmetry violation but adopting a generic four-vector. We also offer a preliminary characterization of the phenomenology of this more general framework, sufficient to expose a rather significant increase in complexity with respect to the original Myers-Pospelov setup. Most of these novel features are linked to the presence of spatial anisotropy, which is particularly pronounced when the symmetry-breaking vector is spacelike, and they are such that they reduce the bound-setting power of certain types of observations in astrophysics.
Symmetry chains and adaptation coefficients
International Nuclear Information System (INIS)
Fritzer, H.P.; Gruber, B.
1985-01-01
Given a symmetry chain of physical significance it becomes necessary to obtain states which transform properly with respect to the symmetries of the chain. In this article we describe a method which permits us to calculate symmetry-adapted quantum states with relative ease. The coefficients for the symmetry-adapted linear combinations are obtained, in numerical form, in terms of the original states of the system and can thus be represented in the form of numerical tables. In addition, one also obtains automatically the matrix elements for the operators of the symmetry groups which are involved, and thus for any physical operator which can be expressed either as an element of the algebra or of the enveloping algebra. The method is well suited for computers once the physically relevant symmetry chain, or chains, have been defined. While the method to be described is generally applicable to any physical system for which semisimple Lie algebras play a role we choose here a familiar example in order to illustrate the method and to illuminate its simplicity. We choose the nuclear shell model for the case of two nucleons with orbital angular momentum l = 1. While the states of the entire shell transform like the smallest spin representation of SO(25) we restrict our attention to its subgroup SU(6) x SU(2)/sub T/. We determine the symmetry chains which lead to total angular momentum SU(2)/sub J/ and obtain the symmetry-adapted states for these chains
Characterization of Partial Intrinsic Symmetries
Shehu, Aurela; Brunton, Alan; Wuhrer, Stefanie; Wand, Michael
2014-01-01
We present a mathematical framework and algorithm for characterizing and extracting partial intrinsic symmetries of surfaces, which is a fundamental building block for many modern geometry processing algorithms. Our goal is to compute all “significant” symmetry information of the shape, which we
Symmetry preservation during radiation damage
International Nuclear Information System (INIS)
Bhat, S.V.; Abdel-Gawad, M.M.H.
1991-01-01
An examination of radiation-damage processes consequent to high-energy irradiation in certain ammonium salts studied using ESR of free radicals together with the structural information available from neutron diffraction studies shows that, other factors being equal/nearly equal, symmetry-related bonds are preserved in preference to those unrelated to one another by any symmetry. (author). 23 refs., 3 tabs
Singlets of fermionic gauge symmetries
Bergshoeff, E.A.; Kallosh, R.E.; Rahmanov, M.A.
1989-01-01
We investigate under which conditions singlets of fermionic gauge symmetries which are "square roots of gravity" can exist. Their existence is non-trivial because there are no fields neutral in gravity. We tabulate several examples of singlets of global and local supersymmetry and Îº-symmetry and
Symmetry guide to ferroaxial transitions
Czech Academy of Sciences Publication Activity Database
Hlinka, Jiří; Přívratská, J.; Ondrejkovič, Petr; Janovec, Václav
2016-01-01
Roč. 116, č. 17 (2016), 1-6, č. článku 177602. ISSN 0031-9007 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : symmetry * symmetry breaking * ferroaxial Transitions * property tensors * Aizu species Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.462, year: 2016
Givental Graphs and Inversion Symmetry
Dunin-Barkovskiy, P.; Shadrin, S.; Spitz, L.
2013-01-01
Inversion symmetry is a very non-trivial discrete symmetry of Frobenius manifolds. It was obtained by Dubrovin from one of the elementary Schlesinger transformations of a special ODE associated to a Frobenius manifold. In this paper, we review the Givental group action on Frobenius manifolds in
Collective states and crossing symmetry
International Nuclear Information System (INIS)
Heiss, W.D.
1977-01-01
Collective states are usually described in simple terms but with the use of effective interactions which are supposed to contain more or less complicated contributions. The significance of crossing symmetry is discussed in this connection. Formal problems encountered in the attempts to implement crossing symmetry are pointed out
Flavour Physics and CP Violation
Pich, Antonio
2013-06-27
An introductory overview of the Standard Model description of flavour is presented. The main emphasis is put on present tests of the quark-mixing matrix structure and the phenomenological determination of its parameters. Special attention is given to the experimental evidences of CP violation and their important role in our understanding of flavour dynamics.
Searching for photon-sector Lorentz violation using gravitational-wave detectors
Energy Technology Data Exchange (ETDEWEB)
Kostelecký, V. Alan, E-mail: kostelec@indiana.edu [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Melissinos, Adrian C. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Mewes, Matthew [Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 (United States)
2016-10-10
We study the prospects for using interferometers in gravitational-wave detectors as tools to search for photon-sector violations of Lorentz symmetry. Existing interferometers are shown to be exquisitely sensitive to tiny changes in the effective refractive index of light occurring at frequencies around and below the microhertz range, including at the harmonics of the frequencies of the Earth's sidereal rotation and annual revolution relevant for tests of Lorentz symmetry. We use preliminary data obtained by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2006–2007 to place constraints on coefficients for Lorentz violation in the photon sector exceeding current limits by about four orders of magnitude.
Searching for photon-sector Lorentz violation using gravitational-wave detectors
Directory of Open Access Journals (Sweden)
V. Alan Kostelecký
2016-10-01
Full Text Available We study the prospects for using interferometers in gravitational-wave detectors as tools to search for photon-sector violations of Lorentz symmetry. Existing interferometers are shown to be exquisitely sensitive to tiny changes in the effective refractive index of light occurring at frequencies around and below the microhertz range, including at the harmonics of the frequencies of the Earth's sidereal rotation and annual revolution relevant for tests of Lorentz symmetry. We use preliminary data obtained by the Laser Interferometer Gravitational-Wave Observatory (LIGO in 2006–2007 to place constraints on coefficients for Lorentz violation in the photon sector exceeding current limits by about four orders of magnitude.
Explaining the symmetry breaking observed in the endofullerenes H2@C60, HF@C60, and H2O@C60.
Felker, Peter M; Vlček, Vojtěch; Hietanen, Isaac; FitzGerald, Stephen; Neuhauser, Daniel; Bačić, Zlatko
2017-11-29
Symmetry breaking has been recently observed in the endofullerenes M@C 60 (M = H 2 , HF, H 2 O), manifesting in the splittings of the three-fold degenerate ground states of the endohedral ortho-H 2 , ortho-H 2 O and the j = 1 level of HF. The nature of the interaction causing the symmetry breaking is established in this study. A fragment of the solid C 60 is considered, comprised of the central C 60 molecule surrounded by twelve nearest-neighbor (NN) C 60 molecules. The fullerenes have either P (major) or H (minor) orientational orderings, and are assumed to be rigid with I h symmetry. Only the central C 60 is occupied by the guest molecule M, while the NN fullerenes are all empty. The key proposition of the study is that the electrostatic interactions between the charge densities on the NN C 60 molecules and that on M inside the central C 60 give rise to the symmetry breaking responsible for the measured level splittings. Using this model, the M@C 60 level splittings of interest are calculated variationally and using perturbation theory, for both the P and H orientations. Those obtained for the dominant P orientation are in excellent agreement with the experimental results, with respect to the splitting magnitudes and patterns, for all three M@C 60 systems considered, pointing strongly to the quadrupolar M-NN interactions as the main cause of the symmetry breaking. The level splittings calculated for the H orientation are about 30 times smaller than the ones in the P orientation.
Symmetries in geology and geophysics.
Turcotte, D L; Newman, W I
1996-12-10
Symmetries have played an important role in a variety of problems in geology and geophysics. A large fraction of studies in mineralogy are devoted to the symmetry properties of crystals. In this paper, however, the emphasis will be on scale-invariant (fractal) symmetries. The earth's topography is an example of both statistically self-similar and self-affine fractals. Landforms are also associated with drainage networks, which are statistical fractal trees. A universal feature of drainage networks and other growth networks is side branching. Deterministic space-filling networks with side-branching symmetries are illustrated. It is shown that naturally occurring drainage networks have symmetries similar to diffusion-limited aggregation clusters.
Axions from chiral family symmetry
International Nuclear Information System (INIS)
Chang, D.; Pal, P.B.; Maryland Univ., College Park; Senjanovic, G.
1985-01-01
We investigate the possibility that family symmetry, Gsub(F), is spontaneously broken chiral global symmetry. We classify the interesting cases when family symmetry can result in an automatic Peccei-Quinn symmetry U(1)sub(PQ) and thus provide a solution to the strong CP problem. The result disfavors having two or four families. For more than four families, U(1)sub(PQ) is in general automatic. In the case of three families, a unique Higgs sector allows U(1)sub(PQ) in the simplest case of Gsub(F)=[SU(3)] 3 . Cosmological consideration also puts strong constraint on the number of families. For Gsub(F)=[SU(N)] 3 cosmology singles out the three-family (N=3) case as a unique solution if there are three light neutrinos. Possible implication of decoupling theorem as applied to family symmetry breaking is also discussed. (orig.)
Shape analysis with subspace symmetries
Berner, Alexander
2011-04-01
We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).
A kNN method that uses a non-natural evolutionary algorithm for ...
African Journals Online (AJOL)
We used this algorithm for component selection of a kNN (k Nearest Neighbor) method for breast cancer prognosis. Results with the UCI prognosis data set show that we can find components that help improve the accuracy of kNN by almost 3%, raising it above 79%. Keywords: kNN; classification; evolutionary algorithm; ...
Simultaneous B and L violation: new signatures from RPV-SUSY
International Nuclear Information System (INIS)
Faroughy, Cyrus; Prabhu, Siddharth; Zheng, Bob
2015-01-01
Studies of R-parity violating (RPV) supersymmetry typically assume that nucleon stability is protected by approximate baryon number (B) or lepton number (L) conservation. We present a new class of RPV models that violate B and L simultaneously (BLRPV), without inducing rapid nucleon decay. These models feature an approximate Z 2 e ×Z 2 μ ×Z 2 τ flavor symmetry, which forbids 2-body nucleon decay and ensures that flavor antisymmetric LLE c couplings are the only non-negligible L-violating operators. Nucleons are predicted to decay through N→Keμν and n→eμν; the resulting bounds on RPV couplings are rather mild. Novel collider phenomenology arises because the superpartners can decay through both L-violating and B-violating couplings. This can lead to, for example, final states with high jet multiplicity and multiple leptons of different flavor, or a spectrum in which depending on the superpartner, either B or L violating decays dominate. BLRPV can also provide a natural setting for displaced ν̃→μe decays, which evade many existing collider searches for RPV supersymmetry.
Simultaneous B and L violation: new signatures from RPV-SUSY
Energy Technology Data Exchange (ETDEWEB)
Faroughy, Cyrus [Department of Physics and Astronomy, Johns Hopkins University,Baltimore, MD 21218 (United States); Prabhu, Siddharth [Department of Physics, Yale University,New Haven, CT 06511 (United States); Zheng, Bob [Michigan Center for Theoretical Physics, University of Michigan,Ann Arbor, MI 48109 (United States)
2015-06-11
Studies of R-parity violating (RPV) supersymmetry typically assume that nucleon stability is protected by approximate baryon number (B) or lepton number (L) conservation. We present a new class of RPV models that violate B and L simultaneously (BLRPV), without inducing rapid nucleon decay. These models feature an approximate Z{sub 2}{sup e}×Z{sub 2}{sup μ}×Z{sub 2}{sup τ} flavor symmetry, which forbids 2-body nucleon decay and ensures that flavor antisymmetric LLE{sup c} couplings are the only non-negligible L-violating operators. Nucleons are predicted to decay through N→Keμν and n→eμν; the resulting bounds on RPV couplings are rather mild. Novel collider phenomenology arises because the superpartners can decay through both L-violating and B-violating couplings. This can lead to, for example, final states with high jet multiplicity and multiple leptons of different flavor, or a spectrum in which depending on the superpartner, either B or L violating decays dominate. BLRPV can also provide a natural setting for displaced ν̃→μe decays, which evade many existing collider searches for RPV supersymmetry.
Energy Technology Data Exchange (ETDEWEB)
Alvaro Calle Cordon,Manuel Pavon Valderrama,Enrique Ruiz Arriola
2012-02-01
We study the interplay between charge symmetry breaking and renormalization in the NN system for S-waves. We find a set of universality relations which disentangle explicitly the known long distance dynamics from low energy parameters and extend them to the Coulomb case. We analyze within such an approach the One-Boson-Exchange potential and the theoretical conditions which allow to relate the proton-neutron, proton-proton and neutron-neutron scattering observables without the introduction of extra new parameters and providing good phenomenological success.
A definition of maximal CP-violation
International Nuclear Information System (INIS)
Roos, M.
1985-01-01
The unitary matrix of quark flavour mixing is parametrized in a general way, permitting a mathematically natural definition of maximal CP violation. Present data turn out to violate this definition by 2-3 standard deviations. (orig.)
Sources of CP violation from E{sub 6} inspired heterotic string model
Energy Technology Data Exchange (ETDEWEB)
Boussahel, M.; Mebarki, N. [Departement de physique Faculte des sciences Universite de M' sila 28000 (Algeria); Laboratoire de Physique Mathematique et Subatomique Mentouri University, Constantine (Algeria)
2012-06-27
Sources of the weak CP violation from the SU{sub L}(3)x SU{sub R}(3)x SU{sub c}(3) subgroup of the E{sub 6} inspired heterotic string model are discussed. It is shown that the number of the Cabibo-Kobayachi-Maskawa like matrices depends on the spontaneous breakdown of the E{sub 6} gauge symmetry and/or supersymmetry.
One-loop renormalization of the electroweak sector with Lorentz violation
International Nuclear Information System (INIS)
Colladay, Don; McDonald, Patrick
2009-01-01
The one-loop renormalizability of the electroweak sector of the standard model extension (SME) with Lorentz violation is studied. Functional determinants are used to calculate the one-loop contributions of the Higgs, gauge bosons and fermions to the one-loop effective action. The results are consistent with multiplicative renormalization of the SME coupling constants. Conventional electroweak symmetry breaking is effectively unaltered relative to the standard case as the renormalized SME parameters are sufficient to absorb all infinite contributions.
One-Loop Renormalization of the Electroweak Sector with Lorentz Violation
Colladay, Don; McDonald, Patrick
2009-01-01
The one-loop renormalizability of the electroweak sector of the Standard Model Extension with Lorentz violation is studied. Functional determinants are used to calculate the one-loop contributions of the higgs, gauge bosons and fermions to the one-loop effective action. The results are consistent with multiplicative renormalization of the SME coupling constants. Conventional Electroweak symmetry breaking is effectively unaltered relative to the standard case as the renormalized SME parameters...
The strong equivalence principle and its violation
International Nuclear Information System (INIS)
Canuto, V.M.; Goldman, I.
1983-01-01
In this paper, the authors discuss theoretical and observational aspects of an SEP violation. They present a two-times theory as a possible framework to handle an SEP violation and summarize the tests performed to check the compatibility of such violation with a host of data ranging from nucleosynthesis to geophysics. They also discuss the dynamical equations needed to analyze radar ranging data to reveal an SEP violation and in particular the method employed by Shapiro and Reasenberg. (Auth.)
Breakdown of NpNn scheme in very heavy nuclei
International Nuclear Information System (INIS)
Varshney, A.K.; Singh, M.; Kumar, Rajesh; Gupta, K.K.; Gupta, D.K.
2016-01-01
The proton neutron interaction has been considered the key ingredient in the development of configuration mixing, collectivity and ultimately deformation in atomic nuclei for over five decades. Phenomenologically, the correlation of the integrated valance p - n interaction with the onset of collectivity and deformation has been described in terms of NpNn scheme
Stress Assignment in N+N Combinations in Arabic
Directory of Open Access Journals (Sweden)
Abdel Rahman Mitib Altakhaineh
2017-09-01
Full Text Available The validity of stress as a criterion to distinguish between compounds and phrases has been investigated in many languages, including English (see e.g. Lieber 2005: 376; Booij 2012: 84. However, the possibility of using stress as a criterion in this way has not been investigated for Arabic. Siloni (1997: 21 claims that in N+N combinations in Semitic languages, stress always falls on the second element. However, the results of a study using PRAAT reveal that, in Modern Standard Arabic (MSA and Jordanian Arabic (JA, stress plays no role in distinguishing between various N+N combinations, i.e. compounds and phrases, e.g.ˈmuʕallim lfiizyaaʔ ‘the physics teacher’ vs.ˈbayt lwalad ‘the boy’s house’, respectively. Analysis shows that the default position of stress in N+N combinations in MSA and JA is on the first element. There is only one systematic exception, which is phonetically conditioned: in N+N combinations with assimilated geminates on the word boundary, a secondary stress or perhaps double stress is assigned.
[Leo Bormans. Õnn on] / Krista Kivisalu
Kivisalu, Krista, 1968-
2015-01-01
Tutvustus: Õnn on : kogu maailma õnneraamat : teadmisi ja tarkusi enam kui sajalt õnneasjatundjalt kogu maailmast / toimetanud Leo Bormans ; [inglise keelest tõlkinud Triin Aimla-Laid ; toimetanud Violetta Riidas ; originaali kujundus: Kris Demey] Ilmunud [Tallinn] : Pegasus, c2015
Effective theory of NN interactions in a separable representation
Krippa, B.; Bakker, B.L.G.
2002-01-01
We consider the effective field theory of the NN system in a separable representation. The pionic part of the effective potential is included nonperturbatively and approximated by a separable potential. The use of a separable representation allows for the explicit solution of the Lippmann-Schwinger
Tandem synthesis of N,N -alkylidenebisamides promoted by nano ...
Indian Academy of Sciences (India)
alkylidenebisamides in the presence of nano-SnCl4.SiO2 as a catalysis described. N,N -alkylidenebisamides have been prepared via condensation reaction of various aldehydes and amides. All of the reactions proceeded in high yields and in moderately ...
NN-SITE: A remote monitoring testbed facility
International Nuclear Information System (INIS)
Kadner, S.; White, R.; Roman, W.; Sheely, K.; Puckett, J.; Ystesund, K.
1997-01-01
DOE, Aquila Technologies, LANL and SNL recently launched collaborative efforts to create a Non-Proliferation Network Systems Integration and Test (NN-Site, pronounced N-Site) facility. NN-Site will focus on wide area, local area, and local operating level network connectivity including Internet access. This facility will provide thorough and cost-effective integration, testing and development of information connectivity among diverse operating systems and network topologies prior to full-scale deployment. In concentrating on instrument interconnectivity, tamper indication, and data collection and review, NN-Site will facilitate efforts of equipment providers and system integrators in deploying systems that will meet nuclear non-proliferation and safeguards objectives. The following will discuss the objectives of ongoing remote monitoring efforts, as well as the prevalent policy concerns. An in-depth discussion of the Non-Proliferation Network Systems Integration and Test facility (NN-Site) will illuminate the role that this testbed facility can perform in meeting the objectives of remote monitoring efforts, and its potential contribution in promoting eventual acceptance of remote monitoring systems in facilities worldwide
Renormalization of NN Interaction with Relativistic Chiral Two Pion Exchange
Energy Technology Data Exchange (ETDEWEB)
Higa, R; Valderrama, M Pavon; Arriola, E Ruiz
2007-06-14
The renormalization of the NN interaction with the Chiral Two Pion Exchange Potential computed using relativistic baryon chiral perturbation theory is considered. The short distance singularity reduces the number of counter-terms to about a half as those in the heavy-baryon expansion. Phase shifts and deuteron properties are evaluated and a general overall agreement is observed.
The crossing phenomenon and power of the 1-NN rule
Czech Academy of Sciences Publication Activity Database
Jiřina, Marcel; Krayem, S.
submitted 2017 (2018) ISSN 0176-4268 R&D Projects: GA MŠk(CZ) LG15047 Institutional support: RVO:67985807 Keywords : kNN rule * multivariate data * classification * distance * nearest neighbor * distribution mapping function Impact factor: 3.083, year: 2016
Time-reversal symmetry breaking in quantum billiards
International Nuclear Information System (INIS)
Schaefer, Florian
2009-01-01
The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally
Time-reversal symmetry breaking in quantum billiards
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Florian
2009-01-26
The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally
Parity violation in p-p scattering
International Nuclear Information System (INIS)
Birchall, J.; Berdoz, A.R.; Campbell, J.R.; Davis, C.A.; Davison, N.E.; Hamian, A.; Page, S.A.; Ramsay, W.D.; Oers, W.T.H. van; Bowman, J.D.; Mischke, R.E.; Green, P.W.; Korkmaz, E.; Roy, G.; Soukup, J.; Stinson, G.M.; Stocki, T.J.; Healey, D.C.; Helmer, R.; Schmor, P.W.; Titov, N.A.; Zelenskii, A.N.
1993-01-01
An outline is given of an experiment to measure parity violation in p-p scattering at 230 MeV at TRIUMF. The parity-violating longitudinal analysing power A z will be measured to a precision of 2x10 -8 and will isolate the parity-violating 3 P 2 - 1 D 2 partial wave amplitude. (orig.)
7 CFR 631.14 - Contract violations.
2010-01-01
... AGRICULTURE LONG TERM CONTRACTING GREAT PLAINS CONSERVATION PROGRAM Contracts § 631.14 Contract violations. Contract violations, determinations and appeals will be handled in accordance with the terms of the... 7 Agriculture 6 2010-01-01 2010-01-01 false Contract violations. 631.14 Section 631.14 Agriculture...
T violating neutron spin rotation asymmetry
International Nuclear Information System (INIS)
Masuda, Yasushiro.
1993-01-01
A new experiment on T-violation is proposed, where a spin-rotating-neutron transmission through a polarized nuclear target is measuered. The method to control the neutron spin is discussed for the new T-violation experiment. The present method has possibility to provide us more accurate T-violation information than the neutron EDM measurement
78 FR 11902 - Pattern of Violations
2013-02-20
... Safety and Health Administration RIN 1219-AB73 Pattern of Violations AGENCY: Mine Safety and Health... requirements contained in the final rule on Pattern of Violations. DATES: The Office of Management and Budget... existing regulation for pattern of violations. The effective date of the final rule is March 25, 2013...
76 FR 18467 - Pattern of Violations
2011-04-04
... Safety and Health Administration 30 CFR Part 104 RIN 1219-AB73 Pattern of Violations AGENCY: Mine Safety... addressing Pattern of Violations (POV). This extension gives commenters additional time to review and comment... proposed rule on Pattern of Violations (POV). In response to requests from interested parties, MSHA is...
Constraints on the CP-Violating MSSM
Arbey, A; Godbole, R M; Mahmoudi, F
2016-01-01
We discuss the prospects for observing CP violation in the MSSM with six CP-violating phases, using a geometric approach to maximise CP-violating observables subject to the experimental upper bounds on electric dipole moments. We consider constraints from Higgs physics, flavour physics, the dark matter relic density and spin-independent scattering cross section with matter.
CP violation without elementary scalar fields
International Nuclear Information System (INIS)
Eichten, E.; Lane, K.; Preskill, J.
1980-04-01
Dynamically broken gauge theories of electroweak interactions provide a natural mechanism for generating CP violation. Even if all vacuum angles are unobservable, strong CP violation is not automatically avoided. In the absence of strong CP violation, the neutron electric dipole moment is expected to be of order 10 -24 e cm
Indian Academy of Sciences (India)
Recent results on CP-violation measurements in decays from energy asymmetric -factory experiments are reported. Thanks to large accumulated data samples, CP-violations in decays in mixing-decay interference and direct CP-violation are now firmly established. The measurements of three angles of the unitarity ...
Liu, Yan-Jun; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan
2017-11-01
A neural network (NN) adaptive control design problem is addressed for a class of uncertain multi-input-multi-output (MIMO) nonlinear systems in block-triangular form. The considered systems contain uncertainty dynamics and their states are enforced to subject to bounded constraints as well as the couplings among various inputs and outputs are inserted in each subsystem. To stabilize this class of systems, a novel adaptive control strategy is constructively framed by using the backstepping design technique and NNs. The novel integral barrier Lyapunov functionals (BLFs) are employed to overcome the violation of the full state constraints. The proposed strategy can not only guarantee the boundedness of the closed-loop system and the outputs are driven to follow the reference signals, but also can ensure all the states to remain in the predefined compact sets. Moreover, the transformed constraints on the errors are used in the previous BLF, and accordingly it is required to determine clearly the bounds of the virtual controllers. Thus, it can relax the conservative limitations in the traditional BLF-based controls for the full state constraints. This conservatism can be solved in this paper and it is for the first time to control this class of MIMO systems with the full state constraints. The performance of the proposed control strategy can be verified through a simulation example.
On the Flavor Structure of Natural Composite Higgs Models & Top Flavor Violation
Azatov, Aleksandr; Perez, Gilad; Soreq, Yotam
2014-01-01
We explore the up flavor structure of composite pseudo Nambu-Goldstone-boson Higgs models, where we focus on the flavor anarchic minimal $SO(5)$ case. We identify the different sources of flavor violation in this framework and emphasise the differences from the anarchic Randall-Sundrum scenario. In particular, the fact that the flavor symmetry does not commute with the symmetries that stabilize the Higgs potential may constrain the flavor structure of the theory. In addition, we consider the interplay between the fine tuning of the model and flavor violation. We find that generically the tuning of this class of models is worsen in the anarchic case due to the contributions from the additional fermion resonances. We show that, even in the presence of custodial symmetry, large top flavor violating rate are naturally expected. In particular, $t\\to cZ$ branching ratio of order of $10^{-5}$ is generic for this class of models. Thus, this framework can be tested in the next run of the LHC as well as in other future...
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E. [Stanford Univ., CA (United States)
1994-12-01
When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.
Gravitation and Gauge Symmetries
Stewart, J
2002-01-01
The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...
Segmentation Using Symmetry Deviation
DEFF Research Database (Denmark)
Hollensen, Christian; Højgaard, L.; Specht, L.
2011-01-01
and evaluate the method. The method uses deformable registration on computed tomography(CT) to find anatomical symmetry deviations of Head & Neck squamous cell carcinoma and combining it with positron emission tomography (PET) images. The method allows the use anatomical and symmetrical information of CT scans...... segmentations on manual contours was evaluated using concordance index and sensitivity for the hypopharyngeal patients. The resulting concordance index and sensitivity was compared with the result of using a threshold of 3 SUV using a paired t-test. Results: The anatomical and symmetrical atlas was constructed...... and sensitivity of respectively 0.43±0.15 and 0.56±0.18 was acquired. It was compared to the concordance index of segmentation using absolute threshold of 3 SUV giving respectively 0.41±0.16 and 0.51±0.19 for concordance index and sensitivity yielding p-values of 0.33 and 0.01 for a paired t-test respectively....
International Nuclear Information System (INIS)
Peskin, M.E.
1994-01-01
When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics
Symmetries in nuclear structure
Allaart, K; Dieperink, A
1983-01-01
The 1982 summer school on nuclear physics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the fifth in a series that started in 1963. The number of students attending has always been about one hundred, coming from about thirty countries. The theme of this year's school was symmetry in nuclear physics. This book covers the material presented by the enthusi astic speakers, who were invited to lecture on this subject. We think they have succeeded in presenting us with clear and thorough introductory talks at graduate or higher level. The time schedule of the school and the location allowed the participants to make many informal contacts during many social activities, ranging from billiards to surf board sailing. We hope and expect that the combination of a relaxed atmosphere during part of the time and hard work during most of the time, has furthered the interest in, and understanding of, nuclear physics. The organization of the summer school was made possible by substantia...
Quark diquark symmetry breaking
International Nuclear Information System (INIS)
Souza, M.M. de
1980-01-01
Assuming the baryons are made of quark-diquark pairs, the wave functions for the 126 allowed ground states are written. The quark creation and annihilations operators are generalized to describe the quark-diquark structure in terms of a parameter σ. Assuming that all quark-quark interactions are mediated by gluons transforming like an octet of vector mesons, the effective Hamiltonian and the baryon masses as constraint equations for the elements of the mass matrix is written. The symmetry is the SU(6) sub(quark)x SU(21) sub(diquark) broken by quark-quark interactions respectively invariant under U(6), U(2) sub(spin), U(3) and also interactions transforming like the eighth and the third components of SU(3). In the limit of no quark-diquark structure (σ = 0), the ground state masses is titted to within 1% of the experimental data, except for the Δ(1232), where the error is almost 2%. Expanding the decuplet mass equations in terms of σ and keeping terms only up to the second order, this error is reduced to 67%. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Borges, L.H.C.; Ferrari, A.F. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [Universidade Federal de Itajuba, IFQ, Itajuba, MG (Brazil)
2016-11-15
This paper is dedicated to the study of interactions between external sources for the electromagnetic field in the presence of Lorentz symmetry breaking. We focus on a higher derivative, Lorentz violating interaction that arises from a specific model that was argued to lead to interesting effects in the low energy phenomenology of light pseudoscalars interacting with photons. The kind of higher derivative Lorentz violating interaction we discuss are called nonminimal. They are usually expected to be relevant only at very high energies, but we argue they might also induce relevant effects in low energy phenomena. Indeed, we show that the Lorentz violating background considered by us leads to several phenomena that have no counterpart in Maxwell theory, such as nontrivial torques on isolated electric dipoles, as well as nontrivial forces and torques between line currents and point like charges, as well as among Dirac strings and other electromagnetic sources. (orig.)
Violation of CPT invariance in the early universe and leptogenesis/baryogenesis
Mavromatos, Nick E
2013-01-01
In this talk, I review some plausible scenarios entailing violation of CPT symmetry in the early Universe, due to space-time backgrounds which do not respect some of the assumptions for the validity of the CPT theorem (here considered will be Lorentz invariance and/or Unitarity). The key point in all these models is that the background induces different populations of fermions as compared to antifermions, and hence CPT Violation (CPTV), already in thermal equilibrium. Such populations may freeze out at various conditions depending on the details of the underlying microscopic model, thereby leading to leptogenesis and baryogenesis. Among the considered scenarios is a stringy one, in which the CPTV is associated with a cosmological background with torsion provided by the Kalb-Ramond antisymmetric tensor field (axion) of the string gravitational multiplet. We also discuss briefly (Lorentz Violating) CPTV models that go beyond the local effective lagrangian framework, such as a stochastic Finsler metric and D-par...
The CTA Sensitivity to Lorentz-Violating Effects on the Gamma-Ray Horizon
Fairbairn, Malcolm; Ellis, John; Hinton, Jim; White, Richard
2014-01-01
The arrival of TeV-energy photons from distant galaxies is expected to be affected by their QED interaction with intergalactic radiation fields through electron-positron pair production. In theories where high-energy photons violate Lorentz symmetry, the kinematics of the process $\\gamma + \\gamma\\rightarrow e^+ + e^-$ is altered and the cross-section suppressed. Consequently, one would expect more of the highest-energy photons to arrive if QED is modified by Lorentz violation than if it is not. We estimate the sensitivity of Cherenkov Telescope Array (CTA) to changes in the $\\gamma$-ray horizon of the Universe due to Lorentz violation, and find that it should be competitive with other leading constraints.
Scale symmetry and virial theorem
International Nuclear Information System (INIS)
Westenholz, C. von
1978-01-01
Scale symmetry (or dilatation invariance) is discussed in terms of Noether's Theorem expressed in terms of a symmetry group action on phase space endowed with a symplectic structure. The conventional conceptual approach expressing invariance of some Hamiltonian under scale transformations is re-expressed in alternate form by infinitesimal automorphisms of the given symplectic structure. That is, the vector field representing scale transformations leaves the symplectic structure invariant. In this model, the conserved quantity or constant of motion related to scale symmetry is the virial. It is shown that the conventional virial theorem can be derived within this framework
Nonlinear electromagnetic fields and symmetries
Barjašić, Irena; Gulin, Luka; Smolić, Ivica
2017-06-01
We extend the classical results on the symmetry inheritance of the canonical electromagnetic fields, described by the Maxwell's Lagrangian, to a much wider class of models, which include those of the Born-Infeld, power Maxwell and the Euler-Heisenberg type. Symmetry inheriting fields allow the introduction of electromagnetic scalar potentials and these are proven to be constant on the Killing horizons. Finally, using the relations obtained along the analysis, we generalize and simplify the recent proof for the symmetry inheritance of the 3-dimensional case, as well as give the first constraint for the higher dimensional electromagnetic fields.
Statistical symmetries of the Lundgren-Monin-Novikov hierarchy.
Wacławczyk, Marta; Staffolani, Nicola; Oberlack, Martin; Rosteck, Andreas; Wilczek, Michael; Friedrich, Rudolf
2014-07-01
It was shown by Oberlack and Rosteck [Discr. Cont. Dyn. Sys. S, 3, 451 2010] that the infinite set of multipoint correlation (MPC) equations of turbulence admits a considerable extended set of Lie point symmetries compared to the Galilean group, which is implied by the original set of equations of fluid mechanics. Specifically, a new scaling group and an infinite set of translational groups of all multipoint correlation tensors have been discovered. These new statistical groups have important consequences for our understanding of turbulent scaling laws as they are essential ingredients of, e.g., the logarithmic law of the wall and other scaling laws, which in turn are exact solutions of the MPC equations. In this paper we first show that the infinite set of translational groups of all multipoint correlation tensors corresponds to an infinite dimensional set of translations under which the Lundgren-Monin-Novikov (LMN) hierarchy of equations for the probability density functions (PDF) are left invariant. Second, we derive a symmetry for the LMN hierarchy which is analogous to the scaling group of the MPC equations. Most importantly, we show that this symmetry is a measure of the intermittency of the velocity signal and the transformed functions represent PDFs of an intermittent (i.e., turbulent or nonturbulent) flow. Interesting enough, the positivity of the PDF puts a constraint on the group parameters of both shape and intermittency symmetry, leading to two conclusions. First, the latter symmetries may no longer be Lie group as under certain conditions group properties are violated, but still they are symmetries of the LMN equations. Second, as the latter two symmetries in its MPC versions are ingredients of many scaling laws such as the log law, the above constraints implicitly put weak conditions on the scaling parameter such as von Karman constant κ as they are functions of the group parameters. Finally, let us note that these kind of statistical symmetries are
Results on CP, T, CPT symmetries with tagged $K^{0} and K^{0}$ by CPLEAR
Angelopoulos, Angelos; Aslanides, Elie; Backenstoss, Gerhard; Bargassa, P; Behnke, O; Benelli, A; Bertin, V; Blanc, F; Bloch, P; Carlson, P J; Carroll, M; Cawley, E; Chertok, M B; Dapielsson, M; Dejardin, M; Derré, J; Ealet, A; Eleftheriadis, C; Faravel, L; Fetscher, W; Fidecaro, Maria; Filipcic, A; Francis, D; Fry, J; Gabathuler, Erwin; Gamet, R; Gerber, H J; Go, A; Haselden, A; Hayman, P J; Henry-Coüannier, F; Hollander, R W; Jon-And, K; Kettle, P R; Kokkas, P; Kreuger, R; Le Gac, R; Leimgruber, F; Mandic, I; Manthos, N; Marel, Gérard; Mikuz, M; Miller, J; Montanet, François; Müller, A; Nakada, Tatsuya; Pagels, B; Papadopoulos, I M; Pavlopoulos, P; Polivka, G; Rickenbach, R; Roberts, B L; Ruf, T; Scafer, M; Schaller, L A; Schietinger, T; Schopper, A; Tauscher, Ludwig; Thibault, C; Touchard, F; Touramanis, C; van Eijk, C W E; Vlachos, S; Weber, P; Wigger, O; Wolter, M; Zavrtanik, D; Zimmerman, D
1999-01-01
We report the results of the CPLEAR experiment on CP-, T- and CPT- symmetries in the neutral kaon system. CPLEAR has experimentally determined, for the first time, the violation of T invariance by a direct method using semileptonic decays. The CPT symmetry is tested through the parameters re( delta ) with a precision of a few 10/sup -4/ and Im( delta ), from the Bell-Steinberger relation, with a precision of 10/sup -5/. This allows the mass equality between the K /sup 0/ and K/sup 0/ to be tested down to the level of 10/sup -19/ Ge V. (11 refs).
Impact of Lorentz violation on the dynamics of inflation
International Nuclear Information System (INIS)
Avelino, P.P.; Bazeia, D.; Losano, L.; Menezes, R.; Rodrigues, J.J.
2011-01-01
Full text: The Einstein-Aether theory is a natural framework to explore the violation of the Lorentz symmetry in a cosmological context, where gravity plays a dominant role. This theory has a vector field which couples non-minimally to the metric tensor. It is assumed that its norm has spontaneously acquired a non-zero expectation value thus defining a preferred frame, leading to a spontaneous violation of local Lorentz invariance. This was first investigated by Will and Nordtvedt in 70's and recently studied in detail by Jacobson and Mattingly, based on ideas of Kostelecky and Samuel. The parameter space of theory, at the present time, is severely restricted both by Parametrized Post Newtonian and pulsar constraints. On the other hand, the observation of ultra-high energy cosmic rays implies no significant energy loss via vacuum Cherenkov type radiation thus leading to very stringent constraints on the parameters of theory. Still, cosmological constraints on the violation of the Lorentz symmetry, in the context of the Einstein-Aether theory, have been investigated by various authors which found that the theory is consistent with experimental and observational data over a range of its parameter space. On small scales the Einstein- Aether vector field will in general lead to a renormalization of the local Newton Constant while on large scales it may leave an observable imprint on the galaxy and angular CMB power spectra. In this work we shall investigate a simple extension of the Einstein-Aether theory in the context of inflation which includes a scalar field non-minimally coupled to gravity as an extra ingredient. We shall assume that this scalar field is the inflaton field, driving a period of accelerated expansion in the early universe. We use a simple but powerful first-order method to obtain exact analytical solutions. We will find a necessary condition which has to be satisfied if inflation is to provide a solution to the flatness problem. Particular attention
Parity violating total cross sections
International Nuclear Information System (INIS)
Goldman, T.; Preston, D.
1988-01-01
A diquark-quark scattering model for the parity-violating asymmetry in nucleon-nucleon scattering is described. Criticism of the model by Simonius and Unger is refuted. The strong energy dependence of the result, and the possibility of important non-valence contributions to the nucleon polarization, both support the need for further measurements at Fermilab and at Brookhaven energies. 9 refs., 7 figs
Strings, Branes and Symmetries
International Nuclear Information System (INIS)
Westerberg, A.
1997-01-01
Recent dramatic progress in the understanding of the non-perturbative structure of superstring theory shows that extended objects of various kinds, collectively referred to as p-branes, are an integral part of the theory. In this thesis, comprising an introductory text and seven appended research papers, we study various aspects of p-branes with relevance for superstring theory. The first part of the introductory text is a brief review of string theory focussing on the role of p-branes. In particular, we consider the so-called D-branes which currently are attracting a considerable amount of attention. The purpose of this part is mainly to put into context the results of paper 4, 5 and 6 concerning action functionals describing the low-energy dynamics of D-branes. The discussion of perturbative string theory given in this part of the introduction is also intended to provide some background to paper 2 which contains an application of the Reggeon-sewing approach to the construction of string vertices. The second part covers a rather different subject, namely higher-dimensional loop algebras and their cohomology, with the aim of facilitating the reading of papers 1, 3 and 7. The relation to p-branes is to be found in paper 1 where we introduce a certain higher-dimensional generalization of the loop algebra and discuss its potential applicability as a symmetry algebra for p-branes. Papers 3 and 7 are mathematically oriented out-growths of this paper addressing the issue of realizing algebras of this kind, known in physics as current algebras, in terms of pseudo differential operators (PSDOs). The main result of paper 3 is a proof of the equivalence between certain Lie-algebra cocycles on the space of second-quantizable PSDOs
Symmetries in the Lagrangean formalism
International Nuclear Information System (INIS)
Grigore, D.R.
1987-09-01
We generalize the analysis of Levy-Leblond for lagrangean systems with symmetry. We prove that this analysis goes through practically unchanged and after that we analyse in detail some examples.(author)
Renormgroup symmetry for solution functionals
International Nuclear Information System (INIS)
Shirkov, D.V.; Kovalev, V.F.
2004-01-01
The paper contains generalization of the renormgroup algorithm for boundary value problems of mathematical physics and related concept of the renormgroup symmetry, formulated earlier by the authors with reference to models based on differential equations. These algorithm and symmetry are formulated now for models with nonlocal (integral) equations. We discuss in detail and illustrate by examples the applications of the generalized algorithm to models with nonlocal terms which appear as linear functionals of the solution. (author)
A Study of Gaugeon Formalism for QED in Lorentz Violating Background
Shah, Mushtaq B.; Ganai, Prince A.
2018-02-01
At the energy regimes close to Planck scales, the usual structure of Lorentz symmetry fails to address certain fundamental issues and eventually breaks down, thus paving the way for an alternative road map. It is thus argued that some subgroup of proper Lorentz group could stand consistent and might possibly help us to circumvent this problem. It is this subgroup that goes by the name of Very Special Relativity (VSR). Apart from violating rotational symmetry, VSR is believed to preserve the very tenets of special relativity. The gaugeon formalism due to type-I Yokoyama and type-II Izawa are found to be invariant under BRST symmetry. In this paper, we analyze the scope of this invariance in the scheme of VSR. Furthermore, we will obtain VSR modified Lagrangian density using path integral derivation. We will explore the consistency of VSR with regard to these theories.
Energy Technology Data Exchange (ETDEWEB)
Choudhury, Sayantan [Tata Institute of Fundamental Research, Department of Theoretical Physics, Mumbai (India); TIFR, DTP, Mumbai (India); Panda, Sudhakar [Institute of Physics, Bhubaneswar, Odisha (India); Homi Bhabha National Institute, Mumbai (India); Singh, Rajeev [Savitribai Phule Pune University, Department of Physics, Pune (India)
2017-02-15
In this work, we have studied the possibility of setting up Bell's inequality violating experiment in the context of cosmology, based on the basic principles of quantum mechanics. First we start with the physical motivation of implementing the Bell inequality violation in the context of cosmology. Then to set up the cosmological Bell violating test experiment we introduce a model independent theoretical framework using which we have studied the creation of new massive particles by implementing the WKB approximation method for the scalar fluctuations in the presence of additional time-dependent mass contribution in the cosmological perturbation theory. Here for completeness we compute the total number density and the energy density of the newly created particles in terms of the Bogoliubov coefficients using the WKB approximation method. Next using the background scalar fluctuation in the presence of a new time-dependent mass contribution, we explicitly compute the expression for the one point and two point correlation functions. Furthermore, using the results for a one point function we introduce a new theoretical cosmological parameter which can be expressed in terms of the other known inflationary observables and can also be treated as a future theoretical probe to break the degeneracy amongst various models of inflation. Additionally, we also fix the scale of inflation in a model-independent way without any prior knowledge of primordial gravitational waves. Also using the input from a newly introduced cosmological parameter, we finally give a theoretical estimate for the tensor-to-scalar ratio in a model-independent way. Next, we also comment on the technicalities of measurements from isospin breaking interactions and the future prospects of newly introduced massive particles in a cosmological Bell violating test experiment. Further, we cite a precise example of this setup applicable in the context of string theory motivated axion monodromy model. Then we
Quantum resonant leptogenesis and minimal lepton flavour violation
Energy Technology Data Exchange (ETDEWEB)
Cirigliano, Vincenzo [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); De Simone, Andrea [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Isidori, Gino [Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56100 Pisa (Italy); Masina, Isabella; Riotto, Antonio, E-mail: cirigliano@lanl.gov, E-mail: andreads@mit.edu, E-mail: Gino.Isidori@lnf.infn.it, E-mail: imasina@mail.cern.ch, E-mail: riotto@mail.cern.ch [CERN, Department of Physics, Theory Division, CH-1211 Geneva 23 (Switzerland)
2008-01-15
It has recently been shown that the quantum Boltzmann equations may be relevant for the leptogenesis scenario. In particular, they lead to a time-dependent CP asymmetry which depends upon the previous dynamics of the system. This memory effect in the CP asymmetry is particularly important in resonant leptogenesis where the asymmetry is generated by the decays of nearly mass-degenerate right-handed neutrinos. We study the impact of the non-trivial time evolution of the CP asymmetry in the so-called minimal lepton flavour violation framework where the charged-lepton and the neutrino Yukawa couplings are the only irreducible sources of lepton flavour symmetry breaking and resonant leptogenesis is achieved. We show that significant quantitative differences arise with respect to the case in which the time dependence of the CP asymmetry is neglected.
Quantum Resonant Leptogenesis and Minimal Lepton Flavour Violation
Cirigliano, Vincenzo; Isidori, Gino; Masina, Isabella; Riotto, Antonio
2008-01-01
It has been recently shown that the quantum Boltzmann equations may be relevant for the leptogenesis scenario. In particular, they lead to a time-dependent CP asymmetry which depends upon the previous dynamics of the system. This memory effect in the CP asymmetry is particularly important in resonant leptogenesis where the asymmetry is generated by the decays of nearly mass-degenerate right-handed neutrinos. We study the impact of the non-trivial time evolution of the CP asymmetry in the so-called Minimal Lepton Flavour Violation framework where the charged-lepton and the neutrino Yukawa couplings are the only irreducible sources of lepton-flavour symmetry breaking and resonant leptogenesis is achieved. We show that significant quantitative differences arise with respect to the case in which the time dependence of the CP asymmetry is neglected.
Testing partonic charge symmetry at a high-energy electron collider
International Nuclear Information System (INIS)
Hobbs, T.J.; Londergan, J.T.; Murdock, D.P.; Thomas, A.W.
2011-01-01
We examine the possibility that one could measure partonic charge symmetry violation (CSV) by comparing neutrino or antineutrino production through charged-current reactions induced by electrons or positrons at a possible electron collider at the LHC. We calculate the magnitude of CSV that might be expected at such a facility. We show that this is likely to be a several percent effect, substantially larger than the typical CSV effects expected for partonic reactions.
Test of Pseudospin Symmetry in Deformed Nuclei
Ginocchio, J. N.; Leviatan, A.; Meng, J.; Zhou, Shan-Gui
2003-01-01
Pseudospin symmetry is a relativistic symmetry of the Dirac Hamiltonian with scalar and vector mean fields equal and opposite in sign. This symmetry imposes constraints on the Dirac eigenfunctions. We examine extensively the Dirac eigenfunctions of realistic relativistic mean field calculations of deformed nuclei to determine if these eigenfunctions satisfy these pseudospin symmetry constraints.
Symmetry and group theory in chemistry
Ladd, M
1998-01-01
A comprehensive discussion of group theory in the context of molecular and crystal symmetry, this book covers both point-group and space-group symmetries.Provides a comprehensive discussion of group theory in the context of molecular and crystal symmetryCovers both point-group and space-group symmetriesIncludes tutorial solutions
Test of pseudospin symmetry in deformed nuclei
International Nuclear Information System (INIS)
Ginocchio, J.N.; Leviatan, A.; Meng, J.; Zhou Shangui
2004-01-01
Pseudospin symmetry is a relativistic symmetry of the Dirac Hamiltonian with scalar and vector mean fields equal and opposite in sign. This symmetry imposes constraints on the Dirac eigenfunctions. We examine extensively the Dirac eigenfunctions of realistic relativistic mean field calculations of deformed nuclei to determine if these eigenfunctions satisfy these pseudospin symmetry constraints
Energy transparency and symmetries in the beam-beam interaction
Directory of Open Access Journals (Sweden)
S. Krishnagopal
2000-02-01
Full Text Available We have modified the beam-beam simulation code CBI to handle asymmetric beams and used it to look at energy transparency and symmetries in the beam-beam interaction. We find that even a small violation of energy transparency, or of the symmetry between the two beams, changes the character of the collective (coherent motion; in particular, period-n oscillations are no longer seen. We speculate that the one-time observation of these oscillations at LEP, and the more ubiquitous observation of the flip-flop instability in colliders around the world, may be a consequence of breaking the symmetry between the electron and positron beams. We also apply this code to the asymmetric collider PEP-II, and find that for the nominal parameters of PEP-II, in particular, the nominal tune-shift parameter of ξ_{0}=0.03, there are no collective beam-beam issues. Collective quadrupole motion sets in only at ξ_{0}=0.06 and above, consistent with earlier observations for symmetric beams.
Viability of minimal left–right models with discrete symmetries
Directory of Open Access Journals (Sweden)
Wouter Dekens
2014-12-01
Full Text Available We provide a systematic study of minimal left–right models that are invariant under P, C, and/or CP transformations. Due to the high amount of symmetry such models are quite predictive in the amount and pattern of CP violation they can produce or accommodate at lower energies. Using current experimental constraints some of the models can already be excluded. For this purpose we provide an overview of the experimental constraints on the different left–right symmetric models, considering bounds from colliders, meson-mixing and low-energy observables, such as beta decay and electric dipole moments. The features of the various Yukawa and Higgs sectors are discussed in detail. In particular, we give the Higgs potentials for each case, discuss the possible vacua and investigate the amount of fine-tuning present in these potentials. It turns out that all left–right models with P, C, and/or CP symmetry have a high degree of fine-tuning, unless supplemented with mechanisms to suppress certain parameters. The models that are symmetric under both P and C are not in accordance with present observations, whereas the models with either P, C, or CP symmetry cannot be excluded by data yet. To further constrain and discriminate between the models measurements of B-meson observables at LHCb and B-factories will be especially important, while measurements of the EDMs of light nuclei in particular could provide complementary tests of the LRMs.
Hidden Neural Networks: A Framework for HMM/NN Hybrids
DEFF Research Database (Denmark)
Riis, Søren Kamaric; Krogh, Anders Stærmose
1997-01-01
This paper presents a general framework for hybrids of hidden Markov models (HMM) and neural networks (NN). In the new framework called hidden neural networks (HNN) the usual HMM probability parameters are replaced by neural network outputs. To ensure a probabilistic interpretation the HNN is nor...... HMMs on TIMIT continuous speech recognition benchmarks. On the task of recognizing five broad phoneme classes an accuracy of 84% is obtained compared to 76% for a standard HMM. Additionally, we report a preliminary result of 69% accuracy on the TIMIT 39 phoneme task......This paper presents a general framework for hybrids of hidden Markov models (HMM) and neural networks (NN). In the new framework called hidden neural networks (HNN) the usual HMM probability parameters are replaced by neural network outputs. To ensure a probabilistic interpretation the HNN...
Direct determinations of the πNN coupling constants
International Nuclear Information System (INIS)
Ericson, T.E.O.; ); Loiseau, B.
1998-01-01
A novel extrapolation method has been used to deduce directly the charged πNN coupling constant from backward np differential scattering cross sections. The extracted value, g c 2 = 14.52(026)is higher than the indirectly deduced values obtained in nucleon-nucleon energy-dependent partial-wave analyses. Our preliminary direct value from a reanalysis of the GMO sum-rule points to an intermediate value of g c 2 about 13.97(30). (author)
Precise strength of the $\\pi$NN coupling constant
Ericson, Torleif Eric Oskar; Rahm, J; Blomgren, J; Olsson, N; Thomas, A W
1998-01-01
We report here a preliminary value for the piNN coupling constant deduced from the GMO sumrule for forward piN scattering. As in our previous determination from np backward differential scattering cross sections we give a critical discussion of the analysis with careful attention not only to the statistical, but also to the systematic uncertainties. Our preliminary evaluation gives $g^2_c$(GMO) = 13.99(24).
C P -violating polarization asymmetry in charmless two-body decays of beauty baryons
He, Min; He, Xiao-Gang; Li, Guan-Nan
2015-08-01
Several baryons containing a heavy b-quark, the b-baryons, have been discovered. The charmless two-body decays of b-baryons can provide a new platform for C P violating studies in a similar way provided by charmless two-body decays of B-meson. There are new C P violating observables related to baryon polarization in b-baryon decays. We show that in the flavor S U (3 ) limit, there exists relations involving different combinations of the decay amplitudes compared with those in C P violating rate asymmetry. These new relations therefore provide interesting tests for the mechanism of C P violations in the standard model (SM) and flavor S U (3 ) symmetry. Such tests could complement the b-meson decay studies which hint at a better flavor S U (3 ) conservation in b-hadron decays than in kaon and hyperon decays. Future data from LHCb can provide new information about C P violation in the SM.
Flavor Physics & CP Violation 2015
"Flavor Physics & CP violation 2015" (FPCP 2015) was held in Nagoya, Japan, at Nagoya University, from May 25 to May 29 2015. This is the 13th meeting of the series of annual conferences started in Philadelphia, PA, USA in 2002. The aim of the conference is to review developments in flavor physics and CP violation, in both theory and experiment, exploiting the potential to study new physics at the LHC and future facilities. The topics include CP violation, rare decays, CKM elements with heavy quark decays, flavor phenomena in charged leptons and neutrinos, and also interplay between flavor and LHC high Pt physics. The FPCP2015 conference had more than 140 participants, including researchers from abroad and many young researchers (postdocs and students). The conference consisted of plenary talks and poster presentations. The plenary talks include 2 overview talks, 48 review talks, and 2 talks for outlook in theories and experiments, given by world leading researchers. There was also a special lecture by Prof. Makoto Kobayashi, one of the Nobel laureates in 2008. The poster session had 41 contributions. Many young researchers presented their works. These proceedings contain written documents for these plenary and poster presentations. The full scientific program and presentation materials can be found at http://fpcp2015.hepl.phys.nagoya-u.ac.jp/. We would like to thank the International Advisory Committee for their invaluable assistance in coordinating the scientific program and in helping to identifying many speakers. Thanks are also due to the Local Organizing Committee for tireless efforts for smooth running of the conference and very enjoyable social activities. We also thank the financial supports provided by Japanese Scociety for the Promotion of Science (JSPS) unfer the Grant-in-Aid for Scientific Research (S) "Probing New Physics with Tau-Lepton" (No. 26220706), by Nagoya University under the Program for Promoting the Enhancement of Research Universities, and
Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density
Bratkovskaya, E. L.; Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.; Moreau, P.
2017-07-01
The effect of the chiral symmetry restoration (CSR) on observables from heavy-ion collisions is studied in the energy range \\sqrt{{s}NN}=3-20 {GeV} within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the non-linear σ - ω model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations. For the pion-nucleon Σ-term we adopt Σ π ≈ 45 MeV which corresponds to some ‘world average’. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at \\sqrt{{s}NN}=3-20 {GeV}, realizing an increase of the hadronic particle production in the strangeness sector with respect to the non-strange one. We identify particle abundances and rapidity spectra to be suitable probes in order to extract information about CSR, while transverse mass spectra are less sensitive. Our results provide a microscopic explanation for the “horn” structure in the excitation function of the K +/π + ratio: the CSR in the hadronic phase produces the steep increase of this particle ratio up to \\sqrt{{s}NN}≈ 7 {GeV}, while the drop at higher energies is associated to the appearance of a deconfined partonic medium.
Prediction of Human Eye Fixations using Symmetry
Kootstra, Gert; Schomaker, Lambert R. B.
2009-01-01
Humans are very sensitive to symmetry in visual patterns. Reaction time experiments show that symmetry is detected and recognized very rapidly. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of saliency. In this paper, we discuss local symmetry as a measure of saliency. We propose a number of symmetry models and perform an eye-tracking study with human participants viewing photographic i...
Some Remarks on the Symmetry Kernel Test
Baszczyńska, Aleksandra
2013-01-01
The paper presents chosen statistical tests used to verify the hypothesis of the symmetry of random variable’s distribution. Detailed analysis of the symmetry kernel test is made. The properties of the regarded symmetry kernel test are compared with the other symmetry tests using Monte Carlo methods. The symmetry tests are used, as an example, in analysis of the distribution of the Human Development Index (HDI). W pracy przedstawiono wybrane statystyczne testy wykorzystywane w ...
Searches for Lorentz Violation in Top-Quark Production and Decay at Hadron Colliders
Energy Technology Data Exchange (ETDEWEB)
Whittington, Denver Wade [Indiana Univ., Bloomington, IN (United States)
2012-07-01
We present a first-of-its-kind confirmation that the most massive known elementary particle obeys the special theory of relativity. Lorentz symmetry is a fundamental aspect of special relativity which posits that the laws of physics are invariant regardless of the orientation and velocity of the reference frame in which they are measured. Because this symmetry is a fundamental tenet of physics, it is important to test its validity in all processes. We quantify violation of this symmetry using the Standard-Model Extension framework, which predicts the effects that Lorentz violation would have on elementary particles and their interactions. The top quark is the most massive known elementary particle and has remained inaccessible to tests of Lorentz invariance until now. This model predicts a dependence of the production cross section for top and antitop quark pairs on sidereal time as the orientation of the experiment in which these events are produced changes with the rotation of the Earth. Using data collected with the DØ detector at the Fermilab Tevatron Collider, we search for violation of Lorentz invariance in events involving the production of a $t\\bar{t}$ pair. Within the experimental precision, we find no evidence for such a violation and set upper limits on parameters describing its possible strength within the Standard-Model Extension. We also investigate the prospects for extending this analysis using the ATLAS detector at the Large Hadron Collider which, because of the higher rate of $t\\bar{t}$ events at that experiment, has the potential to improve the limits presented here.
Kalinowski, Jan
1999-01-01
In a general two-Higgs-doublet model with CP violation in the Higgs sector, the three neutral physical Higgs bosons have no definite CP properties. A new sum rule relating Yukawa and Higgs-Z couplings implies that a neutral Higgs boson cannot escape detection at an e^+e^- collider if it is kinematically accessible in Z+Higgs, $b\\bar b+$Higgs and $t\\bar t+$Higgs production, irrespective of the mixing angles and the masses of the other neutral Higgs bosons. The implications of the sum rules for...
Miller, G A
2003-01-01
Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...
Phase transition and hyperscaling violation for scalar black branes
Cadoni, Mariano; Mignemi, Salvatore
2012-06-01
We investigate the thermodynamical behavior and the scaling symmetries of the scalar dressed black brane (BB) solutions of a recently proposed, exactly integrable Einstein-scalar gravity model [1], which also arises as compactification of ( p-1)-branes with a smeared charge. The extremal, zero temperature, solution is a scalar soliton interpolating between a conformal invariant AdS vacuum in the near-horizon region and a scale covariant metric (generating hyperscaling violation on the boundary field theory) asymptotically. We show explicitly that for the boundary field theory this implies the emergence of an UV length scale (related to the size of the brane), which decouples in the IR, where conformal invariance is restored. We also show that at high temperatures the system undergoes a phase transition. Whereas at small temperature the Schwarzschild-AdS BB is stable, above a critical temperature the scale covariant, scalar-dressed BB solution, becomes energetically preferred. We calculate the critical exponent z and the hyperscaling violation parameter θ of the scalar-dressed phase. In particular we show that θ is always negative. We also show that the above features are not a peculiarity of the exact integrable model of ref. [1], but are a quite generic feature of Einstein-scalar and Einstein-Maxwell-scalar gravity models for which the squared-mass of the scalar field ϕ is positive and the potential vanishes exponentially as ϕ → -∞.
Discrete flavour groups, θ 13 and lepton flavour violation
Altarelli, Guido; Feruglio, Ferruccio; Merlo, Luca; Stamou, Emmanuel
2012-08-01
Discrete flavour groups have been studied in connection with special patterns of neutrino mixing suggested by the data, such as Tri-Bimaximal mixing (groups A 4, S 4…) or Bi-Maximal mixing (group S 4…) etc. We review the predictions for sin θ 13 in a number of these models and confront them with the experimental measurements. We compare the performances of the different classes of models in this respect. We then consider, in a supersymmetric framework, the important implications of these flavour symmetries on lepton flavour violating processes, like μ → eγ and similar processes. We discuss how the existing limits constrain these models, once their parameters are adjusted so as to optimize the agreement with the measured values of the mixing angles. In the simplified CMSSM context, adopted here just for indicative purposes, the small tan β range and heavy SUSY mass scales are favoured by lepton flavour violating processes, which makes it even more difficult to reproduce the reported muon g - 2 discrepancy.
Discrete Flavour Groups, \\theta_13 and Lepton Flavour Violation
Altarelli, Guido; Merlo, Luca; Stamou, Emmanuel
2012-01-01
Discrete flavour groups have been studied in connection with special patterns of neutrino mixing suggested by the data, such as Tri-Bimaximal mixing (groups A4, S4...) or Bi-Maximal mixing (group S4...) etc. We review the predictions for sin(\\theta_13) in a number of these models and confront them with the experimental measurements. We compare the performances of the different classes of models in this respect. We then consider, in a supersymmetric framework, the important implications of these flavour symmetries on lepton flavour violating processes, like \\mu -> e gamma and similar processes. We discuss how the existing limits constrain these models, once their parameters are adjusted so as to optimize the agreement with the measured values of the mixing angles. In the simplified CMSSM context, adopted here just for indicative purposes, the small tan(beta) range and heavy SUSY mass scales are favoured by lepton flavour violating processes, which makes it even more difficult to reproduce the reported muon g-2...
Spontaneous Lorentz violation: the case of infrared QED
Energy Technology Data Exchange (ETDEWEB)
Balachandran, A.P. [Syracuse University, Physics Department, Syracuse, NY (United States); Kuerkcueoglu, S. [Middle East Technical University, Department of Physics, Ankara (Turkey); Queiroz, A.R. de [Universidade de Brasilia, Instituto de Fisica, Brasilia (Brazil); Universidad de Zaragoza, Departamento de Fisica Teorica, Facultad de Ciencias, Zaragoza (Spain); Vaidya, S. [Indian Institute of Science, Centre for High Energy Physics, Bangalore (India)
2015-02-01
It is by now clear that the infrared sector of quantum electrodynamics (QED) has an intriguingly complex structure. Based on earlier pioneering work on this subject, two of us recently proposed a simple modification of QED by constructing a generalization of the U(1) charge group of QED to the ''Sky'' group incorporating the well-known spontaneous Lorentz violation due to infrared photons, but still compatible in particular with locality (Balachandran and Vaidya, Eur Phys J Plus 128:118, 2013). It was shown that the ''Sky'' group is generated by the algebra of angle-dependent charges and a study of its superselection sectors has revealed a manifest description of spontaneous breaking of the Lorentz symmetry. We further elaborate this approach here and investigate in some detail the properties of charged particles dressed by the infrared photons. We find that Lorentz violation due to soft photons may be manifestly codified in an angle-dependent fermion mass, modifying therefore the fermion dispersion relations. The fact that the masses of the charged particles are not Lorentz invariant affects their spin content, and time dilation formulas for decays should also get corrections. (orig.)
Cosmic censorship in Lorentz-violating theories of gravity
Meiers, Michael; Saravani, Mehdi; Afshordi, Niayesh
2016-05-01
Is cosmic censorship special to general relativity, or can it survive a violation of local Lorentz invariance? Recent studies have shown that singularities in Lorentz -violating Einstein-Aether (or Horava-Lifshitz) theories can lie behind a universal horizon in simple black hole spacetimes. Even infinitely fast signals cannot escape these universal horizons. We extend this result, for an incompressible aether, to 3 +1 d dynamical or spinning spacetimes which possess inner Killing horizons, and show that a universal horizon always forms in between the outer and (would-be) inner horizons. This finding suggests a notion of cosmic censorship, given that geometry in these theories never evolves beyond the universal horizon (avoiding potentially singular inner Killing horizons). A surprising result is that there are 3 distinct possible stationary universal horizons for a spinning black hole, only one of which matches the dynamical spherical solution. This motivates dynamical studies of collapse in Einstein-Aether theories beyond spherical symmetry, which may reveal instabilities around the spherical solution.
B decays and models for CP violation
International Nuclear Information System (INIS)
He, Xiao Gang
1995-12-01
The decay modes B to π π,υK S , K - D, πK and ηK are promising channels to study the unitarity triangle of the CP violating Cabibbo-Kobayashi-Maskawa (CKM) matrix. The consequences of these measurements in the Weinberg model are discussed. It is shown that measurements of CP violation in B decay can be used to distinguish Standard Model from Weinberg model and that the following different mechanisms for CP violation can be distinguished: 1) CP is violated in the CKM sector only; 2) CP is violated spontaneously in the Higgs sector only; and 3) CP is violated in both the CKM and Higgs sectors. 27 refs., 4 figs
Parity violation in p-p scattering
Energy Technology Data Exchange (ETDEWEB)
Birchall, J.; Berdoz, A.R.; Campbell, J.R.; Davis, C.A.; Davison, N.E.; Hamian, A.; Page, S.A.; Ramsay, W.D.; Oers, W.T.H. van (Dept. of Physics, Univ. Manitoba, Winnipeg, MB (Canada)); Bowman, J.D.; Mischke, R.E. (Los Alamos National Lab., NM (United States)); Green, P.W.; Korkmaz, E.; Roy, G.; Soukup, J.; Stinson, G.M.; Stocki, T.J. (Nuclear Research Centre, Dept. of Physics, Univ. Alberta, Edmonton, AB (Canada)); Healey, D.C.; Helmer, R.; Schmor, P.W. (TRIUMF, Vancouver, BC (Canada)); Titov, N.A.; Zelenskii, A.N. (Inst. for Nuclear Research, Russian Academy of Sciences, Moscow (Russia))
1993-03-01
An outline is given of an experiment to measure parity violation in p-p scattering at 230 MeV at TRIUMF. The parity-violating longitudinal analysing power A[sub z] will be measured to a precision of 2x10[sup -8] and will isolate the parity-violating [sup 3]P[sub 2]-[sup 1]D[sub 2] partial wave amplitude. (orig.).
Parity Violation by a Dark Gauge Boson
Lee, Hye-Sung
2014-01-01
We overview the dark parity violation, which means the parity violation induced by a dark gauge boson of very small mass and coupling. When a dark gauge boson has an axial coupling, as in dark Z model, it can change the effective Weinberg angle in the low-energy experiments such as the atomic parity violation and the low-Q^2 polarized electron scatterings. Such low-energy parity tests are an excellent probe of the dark force.
Gershon, T; Gligorov, V V
2017-04-01
The phenomenon of CP violation is crucial to understand the asymmetry between matter and antimatter that exists in the Universe. Dramatic experimental progress has been made, in particular in measurements of the behaviour of particles containing the b quark, where CP violation effects are predicted by the Kobayashi-Maskawa mechanism that is embedded in the standard model. The status of these measurements and future prospects for an understanding of CP violation beyond the standard model are reviewed.
GPU-FS-kNN: a software tool for fast and scalable kNN computation using GPUs.
Directory of Open Access Journals (Sweden)
Ahmed Shamsul Arefin
Full Text Available BACKGROUND: The analysis of biological networks has become a major challenge due to the recent development of high-throughput techniques that are rapidly producing very large data sets. The exploding volumes of biological data are craving for extreme computational power and special computing facilities (i.e. super-computers. An inexpensive solution, such as General Purpose computation based on Graphics Processing Units (GPGPU, can be adapted to tackle this challenge, but the limitation of the device internal memory can pose a new problem of scalability. An efficient data and computational parallelism with partitioning is required to provide a fast and scalable solution to this problem. RESULTS: We propose an efficient parallel formulation of the k-Nearest Neighbour (kNN search problem, which is a popular method for classifying objects in several fields of research, such as pattern recognition, machine learning and bioinformatics. Being very simple and straightforward, the performance of the kNN search degrades dramatically for large data sets, since the task is computationally intensive. The proposed approach is not only fast but also scalable to large-scale instances. Based on our approach, we implemented a software tool GPU-FS-kNN (GPU-based Fast and Scalable k-Nearest Neighbour for CUDA enabled GPUs. The basic approach is simple and adaptable to other available GPU architectures. We observed speed-ups of 50-60 times compared with CPU implementation on a well-known breast microarray study and its associated data sets. CONCLUSION: Our GPU-based Fast and Scalable k-Nearest Neighbour search technique (GPU-FS-kNN provides a significant performance improvement for nearest neighbour computation in large-scale networks. Source code and the software tool is available under GNU Public License (GPL at https://sourceforge.net/p/gpufsknn/.
GPU-FS-kNN: a software tool for fast and scalable kNN computation using GPUs.
Arefin, Ahmed Shamsul; Riveros, Carlos; Berretta, Regina; Moscato, Pablo
2012-01-01
The analysis of biological networks has become a major challenge due to the recent development of high-throughput techniques that are rapidly producing very large data sets. The exploding volumes of biological data are craving for extreme computational power and special computing facilities (i.e. super-computers). An inexpensive solution, such as General Purpose computation based on Graphics Processing Units (GPGPU), can be adapted to tackle this challenge, but the limitation of the device internal memory can pose a new problem of scalability. An efficient data and computational parallelism with partitioning is required to provide a fast and scalable solution to this problem. We propose an efficient parallel formulation of the k-Nearest Neighbour (kNN) search problem, which is a popular method for classifying objects in several fields of research, such as pattern recognition, machine learning and bioinformatics. Being very simple and straightforward, the performance of the kNN search degrades dramatically for large data sets, since the task is computationally intensive. The proposed approach is not only fast but also scalable to large-scale instances. Based on our approach, we implemented a software tool GPU-FS-kNN (GPU-based Fast and Scalable k-Nearest Neighbour) for CUDA enabled GPUs. The basic approach is simple and adaptable to other available GPU architectures. We observed speed-ups of 50-60 times compared with CPU implementation on a well-known breast microarray study and its associated data sets. Our GPU-based Fast and Scalable k-Nearest Neighbour search technique (GPU-FS-kNN) provides a significant performance improvement for nearest neighbour computation in large-scale networks. Source code and the software tool is available under GNU Public License (GPL) at https://sourceforge.net/p/gpufsknn/.
Energy Technology Data Exchange (ETDEWEB)
Masuda, Y. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)
1996-05-01
New ideas for experiments to improve the T-violation limit by a factor of 10 to 100 is discussed for a intensive spallation neutron source. The methods to improve the limit of the right-handed current and the neutron lifetime are also discussed. (author)
Soft theorems from anomalous symmetries
Huang, Yu-tin; Wen, Congkao
2015-12-01
We discuss constraints imposed by soft limits for effective field theories arising from symmetry breaking. In particular, we consider those associated with anomalous conformal symmetry as well as duality symmetries in supergravity. We verify these soft theorems for the dilaton effective action relevant for the a-theorem, as well as the one-loop effective action for N=4 supergravity. Using the universality of leading transcendental coefficients in the α' expansion of string theory amplitudes, we study the matrix elements of operator R 4 with half maximal supersymmetry. We construct the non-linear completion of R 4 that satisfies both single and double soft theorems up to seven points. This supports the existence of duality invariant completion of R 4.
Soft theorems from anomalous symmetries
Energy Technology Data Exchange (ETDEWEB)
Huang, Yu-tin [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, ROC (China); Wen, Congkao [I.N.F.N. Sezione di Roma “Tor Vergata”,Via della Ricerca Scientifica, 00133 Roma (Italy)
2015-12-22
We discuss constraints imposed by soft limits for effective field theories arising from symmetry breaking. In particular, we consider those associated with anomalous conformal symmetry as well as duality symmetries in supergravity. We verify these soft theorems for the dilaton effective action relevant for the a-theorem, as well as the one-loop effective action for N=4 supergravity. Using the universality of leading transcendental coefficients in the α{sup ′} expansion of string theory amplitudes, we study the matrix elements of operator R{sup 4} with half maximal supersymmetry. We construct the non-linear completion of R{sup 4} that satisfies both single and double soft theorems up to seven points. This supports the existence of duality invariant completion of R{sup 4}.
Hidden Symmetries of Stochastic Models
Directory of Open Access Journals (Sweden)
Boyka Aneva
2007-05-01
Full Text Available In the matrix product states approach to $n$ species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. The quadratic algebra defines a noncommutative space with a $SU_q(n$ quantum group action as its symmetry. Boundary processes amount to the appearance of parameter dependent linear terms in the algebraic relations and lead to a reduction of the $SU_q(n$ symmetry. We argue that the boundary operators of the asymmetric simple exclusion process generate a tridiagonal algebra whose irriducible representations are expressed in terms of the Askey-Wilson polynomials. The Askey-Wilson algebra arises as a symmetry of the boundary problem and allows to solve the model exactly.
Symmetry gauge theory for paraparticles
International Nuclear Information System (INIS)
Kursawe, U.
1986-01-01
In the present thesis it was shown that for identical particles the wave function of which has a more complicated symmetry than it is the case at the known kinds of particles, the bosons and fermions, a gauge theory can be formulated, the so-called 'symmetry gauge theory'. This theory has its origin alone in the symmetry of the particle wave functions and becomes first relevant when more than two particles are considered. It was shown that for particles with mixed-symmetrical wave functions, so-called 'paraparticles', the quantum mechanical state is no more described by one Hilbert-space element but by a many-dimensional subspace of this Hilbert space. The gauge freedom consists then just in the freedom of the choice of the basis in this subspace, the corresponding gauge group is the group of the unitary basis transformation in this subspace. (orig./HSI) [de
MAXIMS VIOLATIONS IN LITERARY WORK
Directory of Open Access Journals (Sweden)
Widya Hanum Sari Pertiwi
2015-12-01
Full Text Available This study was qualitative research action that focuses to find out the flouting of Gricean maxims and the functions of the flouting in the tales which are included in collection of children literature entitled My Giant Treasury of Stories and Rhymes. The objective of the study is generally to identify the violation of maxims of quantity, quality, relevance, and manner in the data sources and also to analyze the use of the flouting in the tales which are included in the book. Qualitative design using categorizing strategies, specifically coding strategy, was applied. Thus, the researcher as the instrument in this investigation was selecting the tales, reading them, and gathering every item which reflects the violation of Gricean maxims based on some conditions of flouting maxims. On the basis of the data analysis, it was found that the some utterances in the tales, both narration and conversation, flouting the four maxims of conversation, namely maxim of quality, maxim of quantity, maxim of relevance, and maxim of manner. The researcher has also found that the flouting of maxims has one basic function that is to encourage the readers’ imagination toward the tales. This one basic function is developed by six others functions: (1 generating specific situation, (2 developing the plot, (3 enlivening the characters’ utterance, (4 implicating message, (5 indirectly characterizing characters, and (6 creating ambiguous setting. Keywords: children literature, tales, flouting maxims
National trends in drinking water quality violations.
Allaire, Maura; Wu, Haowei; Lall, Upmanu
2018-02-27
Ensuring safe water supply for communities across the United States is a growing challenge in the face of aging infrastructure, impaired source water, and strained community finances. In the aftermath of the Flint lead crisis, there is an urgent need to assess the current state of US drinking water. However, no nationwide assessment has yet been conducted on trends in drinking water quality violations across several decades. Efforts to reduce violations are of national concern given that, in 2015, nearly 21 million people relied on community water systems that violated health-based quality standards. In this paper, we evaluate spatial and temporal patterns in health-related violations of the Safe Drinking Water Act using a panel dataset of 17,900 community water systems over the period 1982-2015. We also identify vulnerability factors of communities and water systems through probit regression. Increasing time trends and violation hot spots are detected in several states, particularly in the Southwest region. Repeat violations are prevalent in locations of violation hot spots, indicating that water systems in these regions struggle with recurring issues. In terms of vulnerability factors, we find that violation incidence in rural areas is substantially higher than in urbanized areas. Meanwhile, private ownership and purchased water source are associated with compliance. These findings indicate the types of underperforming systems that might benefit from assistance in achieving consistent compliance. We discuss why certain violations might be clustered in some regions and strategies for improving national drinking water quality.
Flavon-induced lepton flavour violation
Keus, Venus
2017-07-01
ATLAS and CMS have observed a flavor violating decay of the Higgs to muon and tau. The fact that flavour violating couplings of the Higgs boson are exactly zero in the Standard Model suggests the mixing of the Higgs with another scalar with flavour violating couplings. We use the flavon field from the Froggatt-Nielsen mechanism, responsible for generating the lepton Yukawa matrices, for this purpose. The parameter space is constrained from experimental bounds on charged lepton flavor violation in other processes, however, we show that a substantial region of parameter space survives these bounds while producing a large enough Br(h → μτ).
Measurement of the parity violating asymmetry A{sub {gamma}} in n{yields}+p{yields}d+{gamma}
Energy Technology Data Exchange (ETDEWEB)
Snow, W.M. E-mail: snow@iucf.indiana.edu; Bazhenov, A.; Blessinger, C.S.; Bowman, J.D.; Chupp, T.E.; Coulter, K.P.; Freedman, S.J.; Fujikawa, B.K.; Gentile, T.R.; Greene, G.L.; Hansen, G.; Hogan, G.E.; Ishimoto, S.; Jones, G.L.; Knudson, J.N.; Kolomenski, E.; Lamoreaux, S.K.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Morgan, G.L.; Morimoto, K.; Morris, C.L.; Nann, H.; Penttilae, S.I.; Pirozhkov, A.; Pomeroy, V.R.; Rich, D.R.; Serebrov, A.; Sharapov, E.I.; Smith, D.A.; Smith, T.B.; Welsh, R.C.; Wietfeldt, F.E.; Wilburn, W.S.; Yuan, V.W.; Zerger, J
2000-02-11
The weak interaction between neutrons and protons has never been resolved experimentally. In analogy with the strong NN interaction, the weak NN interaction at low energy can be parametrized in terms of a meson exchange model with parity violating meson-nucleon couplings. Unlike the measured proton-proton weak interaction, the neutron-proton weak interaction is sensitive to the weak pion-nucleon coupling constant H{sub {pi}}{sup 1}. This coupling, which is responsible for the longest-ranged part of the weak NN interaction and is therefore an essential part of any description of weak interactions in nuclei, remains undetermined despite many years of effort. A measurement of the gamma ray directional asymmetry A{sub {gamma}} in the capture of polarized neutrons by parahydrogen has been proposed at Los Alamos National Laboratory. The goal of this experiment is to determine A{sub {gamma}} with a relative standard uncertainty of <5x10{sup -9}, which is smaller than all modern predictions for the size of the asymmetry. The design of the experiment is presented, with an emphasis on the techniques used for controlling systematic errors.
Direct terrestrial test of Lorentz symmetry in electrodynamics to 10(-18).
Nagel, Moritz; Parker, Stephen R; Kovalchuk, Evgeny V; Stanwix, Paul L; Hartnett, John G; Ivanov, Eugene N; Peters, Achim; Tobar, Michael E
2015-09-01
Lorentz symmetry is a foundational property of modern physics, underlying the standard model of particles and general relativity. It is anticipated that these two theories are low-energy approximations of a single theory that is unified and consistent at the Planck scale. Many unifying proposals allow Lorentz symmetry to be broken, with observable effects appearing at Planck-suppressed levels; thus, precision tests of Lorentz invariance are needed to assess and guide theoretical efforts. Here we use ultrastable oscillator frequency sources to perform a modern Michelson-Morley experiment and make the most precise direct terrestrial test to date of Lorentz symmetry for the photon, constraining Lorentz violating orientation-dependent relative frequency changes Δν/ν to 9.2±10.7 × 10(-19) (95% confidence interval). This order of magnitude improvement over previous Michelson-Morley experiments allows us to set comprehensive simultaneous bounds on nine boost and rotation anisotropies of the speed of light, finding no significant violations of Lorentz symmetry.
Shift symmetry and Higgs inflation in supergravity with observable gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Lazarides, G. [School of Electrical & Computer Engineering, Faculty of Engineering,Aristotle University of Thessaloniki,Thessaloniki, GR-54124 (Greece); Pallis, C. [Departament de Física Teòrica and IFIC,Universitat de València-CSIC, E-46100 Burjassot (Spain)
2015-11-17
We demonstrate how to realize within supergravity a novel chaotic-type inflationary scenario driven by the radial parts of a conjugate pair of Higgs superfields causing the spontaneous breaking of a grand unified gauge symmetry at a scale assuming the value of the supersymmetric grand unification scale. The superpotential is uniquely determined at the renormalizable level by the gauge symmetry and a continuous R symmetry. We select two types of Kähler potentials, which respect these symmetries as well as an approximate shift symmetry. In particular, they include in a logarithm a dominant shift-symmetric term proportional to a parameter c{sub −} together with a small term violating this symmetry and characterized by a parameter c{sub +}. In both cases, imposing a lower bound on c{sub −}, inflation can be attained with subplanckian values of the original inflaton, while the corresponding effective theory respects perturbative unitarity for r{sub ±}=c{sub +}/c{sub −}≤1. These inflationary models do not lead to overproduction of cosmic defects, are largely independent of the one-loop radiative corrections and accommodate, for natural values of r{sub ±}, observable gravitational waves consistently with all the current observational data. The inflaton mass is mostly confined in the range (3.7−8.1)×10{sup 10} GeV.
Symposium Symmetries in Science XIII
Gruber, Bruno J; Yoshinaga, Naotaka; Symmetries in Science XI
2005-01-01
This book is a collection of reviews and essays about the recent developments in the area of Symmetries and applications of Group Theory. Contributions have been written mostly at the graduate level but some are accessible to advanced undergraduates. The book is of interest to a wide audience and covers a broad range of topics with a strong degree of thematical unity. The book is part of a Series of books on Symmetries in Science and may be compared to the published Proceedings of the Colloquia on Group Theoretical Methods in Physics. Here, however, prevails a distinguished character for presenting extended reviews on present applications to Science, not restricted to Theoretical Physics.
Chiral symmetry on the lattice
Energy Technology Data Exchange (ETDEWEB)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.
Cosmological Reflection of Particle Symmetry
Directory of Open Access Journals (Sweden)
Maxim Khlopov
2016-08-01
Full Text Available The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetry and the mechanisms of its breaking are the subject of the present review.
Symmetry of intramolecular quantum dynamics
Burenin, Alexander V
2012-01-01
The main goal of this book is to give a systematic description of intramolecular quantum dynamics on the basis of only the symmetry principles. In this respect, the book has no analogs in the world literature. The obtained models lead to a simple, purely algebraic, scheme of calculation and are rigorous in the sense that their correctness is limited only to the correct choice of symmetry of the internal dynamics. The book is basically intended for scientists working in the field of molecular spectroscopy, quantum and structural chemistry.
Clifford algebraic symmetries in physics
International Nuclear Information System (INIS)
Salingaros, N.
1986-01-01
This paper reviews the following appearances of Clifford algebras in theoretical physics: statistical mechanics; general relativity; quantum electrodynamics; internal symmetries; the vee product; classical electrodynamics; charged-particle motion; and the Lorentz group. It is concluded that the power of the Clifford-algebraic description resides in its ability to perform representation-free calculations which are generalizations of the traditional vector algebra and that this considerable computational asset, in combination with the intrinsic symmetry, provides a practical framework for much of theoretical physics. 5 references
Renormalizable models with broken symmetries
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1975-10-01
The results of the renormalized perturbation theory, in the absence of massless quanta, are summarized. The global symmetry breaking is studied and the associated currents are discussed in terms of the coupling with a classical Yang Mills field. Gauge theories are discussed; it is most likely that the natural set up should be the theory of fiber bundles and that making a choice of field coordinates makes the situation obscure. An attempt is made in view of clarifying the meaning of the Slavnov symmetry which characterizes gauge field theories [fr
Kastner, Ruth E.
2011-11-01
This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.
International Nuclear Information System (INIS)
Kastner, Ruth E.
2011-01-01
This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.
Scale symmetry of quantum solitons
International Nuclear Information System (INIS)
Chepilko, N.M.; Fujii, K.; Kobushkin, A.P.
1991-01-01
A collective-coordinate Lagrangian for a rotating and vibrating quantum soliton in the nonlinear σ-model is shown to possess a symmetry under scale transformation of the chiral field. Using this symmetry an integrodifferential equation for the chiral angle is obtained. A consistency condition between this equation and the Schroedinger equation for the quantum soliton is also discussed. At limiting cases (a vibrating, but not rotating soliton; or a rotating, but not vibrating soliton) the integrodifferential ones and the chiral angle becomes independent of the solution of the Schroedinger equation. 7 refs
Symmetry analysis of cellular automata
International Nuclear Information System (INIS)
García-Morales, V.
2013-01-01
By means of B-calculus [V. García-Morales, Phys. Lett. A 376 (2012) 2645] a universal map for deterministic cellular automata (CAs) has been derived. The latter is shown here to be invariant upon certain transformations (global complementation, reflection and shift). When constructing CA rules in terms of rules of lower range a new symmetry, “invariance under construction” is uncovered. Modular arithmetic is also reformulated within B-calculus and a new symmetry of certain totalistic CA rules, which calculate the Pascal simplices modulo an integer number p, is then also uncovered.
Microscopic basis of collective symmetries
International Nuclear Information System (INIS)
Arima, A.
1983-01-01
The seniority scheme of SU(2) symmetry in a single closed shell is an interaction to conserve seniority. It is suggested that an interaction simpler than delta interaction can be used to study the level structure of Pb isotopes. The concept of seniority number is introduced. Reduction formulae are then derived for one-body operators. Conservation of seniority in a single closed shell is treated. SU(6) symmetry of nuclear collective motion, or the SU(6) invariance of the boson system, is derived
Chiral symmetry on the lattice
International Nuclear Information System (INIS)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model
Optical metamaterials with quasicrystalline symmetry: symmetry-induced optical isotropy
International Nuclear Information System (INIS)
Kruk, S.S.; Decker, M.; Helgert, Ch.; Neshev, D.N.; Kivshar, Y.S.; Staude, I.; Powell, D.A.; Pertsch, Th.; Menzel, Ch.; Helgert, Ch.; Etrich, Ch.; Rockstuhl, C.; Menzel, Ch.
2013-01-01
Taking advantage of symmetry considerations, we have analyzed the potential of various metamaterials to affect the polarization state of light upon oblique illumination. We have shown that depending on the angle of illumination, metamaterials are able to support specific polarization states. The presented methodology that using ellipticity and circular dichroism, provides an unambiguous language for discussing the impact of the inherent symmetry of the metamaterial lattices on their far-field response. Our findings allow the quantification analysis of the impact of inter-element coupling and lattice symmetry on the optical properties of metamaterials, and to separate this contribution from the response associated with a single meta-atom. In addition, we have studied the concept of optical quasicrystalline metamaterials, revealing that the absence of translational symmetry (periodicity) of quasicrystalline metamaterials causes an isotropic optical response, while the long-range positional order preserves the resonance properties. Our findings constitute an important step towards the design of optically isotropic metamaterials and metasurfaces. (authors)
International Nuclear Information System (INIS)
Kotel'nikov, G.A.
1994-01-01
An algorithm id proposed for research the symmetries of mathematical physics equation. The application of this algorithm to the Schroedinger equation permitted to establish, that in addition to the known symmetry the Schroedinger equation possesses also the relativistic symmetry
The master symmetry and time dependent symmetries of the differential–difference KP equation
International Nuclear Information System (INIS)
Khanizadeh, Farbod
2014-01-01
We first obtain the master symmetry of the differential–difference KP equation. Then we show how this master symmetry, through sl(2,C)-representation of the equation, can construct generators of time dependent symmetries. (paper)
Controlling active self-assembly through broken particle-shape symmetry.
Wensink, H H; Kantsler, V; Goldstein, R E; Dunkel, J
2014-01-01
Many structural properties of conventional passive materials are known to arise from the symmetries of their microscopic constituents. By contrast, it is largely unclear how the interplay between particle shape and self-propulsion controls the meso- and macroscale behavior of active matter. Here we use large-scale simulations of homo- and heterogeneous self-propelled particle systems to identify generic effects of broken particle-shape symmetry on collective motion. We find that even small violations of fore-aft symmetry lead to fundamentally different collective behaviors, which may facilitate demixing of differently shaped species as well as the spontaneous formation of stable microrotors. These results suggest that variation of particle shape yields robust physical mechanisms to control self-assembly of active matter, with possibly profound implications for biology and materials design.
Classically conformal radiative neutrino model with gauged B−L symmetry
Directory of Open Access Journals (Sweden)
Hiroshi Okada
2016-09-01
Full Text Available We propose a classically conformal model in a minimal radiative seesaw, in which we employ a gauged B−L symmetry in the standard model that is essential in order to work the Coleman–Weinberg mechanism well that induces the B−L symmetry breaking. As a result, nonzero Majorana mass term and electroweak symmetry breaking simultaneously occur. In this framework, we show a benchmark point to satisfy several theoretical and experimental constraints. Here theoretical constraints represent inert conditions and Coleman–Weinberg condition. Experimental bounds come from lepton flavor violations (especially μ→eγ, the current bound on the Z′ mass at the CERN Large Hadron Collider, and neutrino oscillations.
Weak ωNN coupling in the non-linear chiral model
International Nuclear Information System (INIS)
Shmatikov, M.
1988-01-01
In the non-linear chiral model with the soliton solution stabilized by the ω-meson field the weak ωNN coupling constants are calculated. Applying the vector dominance model for the isoscalar current the constant of the isoscalar P-odd ωNN interaction h ω (0) =0 is obtained while the constant of the isovector (of the Lagrangian of the ωNN interaction proves to be h ω (1) ≅ 1.0x10 -7
Directory of Open Access Journals (Sweden)
Moskal P.
2016-01-01
Full Text Available Discrete symmetries such as parity (P, charge-conjugation (C and time reversal (T are of fundamental importance in physics and cosmology. Breaking of charge conjugation symmetry (C and its combination with parity (CP constitute necessary conditions for the existence of the asymmetry between matter and antimatter in the observed Universe. The presently known sources of discrete symmetries violations can account for only a tiny fraction of the excess of matter over antimatter. So far CP and T symmetries violations were observed only for systems involving quarks and they were never reported for the purely leptonic objects. In this article we describe briefly an experimental proposal for the test of discrete symmetries in the decays of positronium atom which is made exclusively of leptons. The experiments are conducted by means of the Jagiellonian Positron Emission Tomograph (J-PET which is constructed from strips of plastic scintillators enabling registration of photons from the positronium annihilation. J-PET tomograph together with the positronium target system enable to measure expectation values for the discrete symmetries odd operators constructed from (i spin vector of the ortho-positronium atom, (ii momentum vectors of photons originating from the decay of positronium, and (iii linear polarization direction of annihilation photons. Linearly polarized positronium will be produced in the highly porous aerogel or polymer targets, exploiting longitudinally polarized positrons emitted by the sodium 22Na isotope. Information about the polarization vector of orthopositronium will be available on the event by event basis and will be reconstructed from the known position of the positron source and the reconstructed position of the orthopositronium annihilation. In 2016 the first tests and calibration runs are planned, and the data collection with high statistics will commence in the year 2017.
Sum rules for the ed - NN scattering reactions and microscopic potential field-theoretical approach
International Nuclear Information System (INIS)
Machivariani, A.I.
1996-01-01
The connections between the equal-time commutators of nucleon and photon field-operators and relativistic potential approach of ed - NN scattering equations is established. Namely, it is demonstrated that: 1) equal-time commutator between nucleon field operators generated completeness condition for NN interaction functions, 2) the off-mass shell contributions in γd - NN exchange currents or in microscopic NN potential are determined by equal time commutator between nucleon field operator and photon or nucleon source operators, and 3) equal-time commutators between source operators produce sum rules for same vertex functions and effective potentials [ru
A model of intrinsic symmetry breaking
International Nuclear Information System (INIS)
Ge, Li; Li, Sheng; George, Thomas F.; Sun, Xin
2013-01-01
Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry
Hadronic parity violation in n->p->d{gamma} with effective field theory
Energy Technology Data Exchange (ETDEWEB)
Hyun, C.H. [Department of Physics and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)]. E-mail: hch@meson.skku.ac.kr; Ando, S. [Department of Physics and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)]. E-mail: sando@meson.skku.ac.kr; Desplanques, B. [LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, F-38026 Grenoble Cedex (France)]. E-mail: desplanq@lpsc.in2p3.fr
2007-07-26
The parity-violating nucleon-nucleon (NN) potential is considered up to next-to-next-to leading order in heavy-baryon chiral perturbation theory. We include one-pion exchange at leading order and the two-pion exchange and two-nucleon contact terms at next-to-next-to-leading order. The effects of intermediate (two-pion exchange) and short-range (two-nucleon contact) terms are probed by calculating the photon asymmetry A{sub {gamma}} in n->p->d{gamma} employing Siegert's theorem and an accurate phenomenological potential for the parity-conserving NN interaction. We explore in detail the uncertainties due to the parameters that control the contribution of the short-range interaction. We obtain about 20% uncertainty in the value of A{sub {gamma}} up to the next-to-next-to leading order. We discuss the implication of this uncertainty for the determination of the weak pion-nucleon coupling constant and how the uncertainty can be reduced.
Perspectives for detecting lepton flavour violation in left-right symmetric models
Energy Technology Data Exchange (ETDEWEB)
Bonilla, Cesar [AHEP Group, Instituto de Física Corpuscular - C.S.I.C./Universitat de València,Edificio de Institutos de Paterna, C/Catedratico José Beltrán 2,E-46980 Paterna (València) (Spain); Krauss, Manuel E.; Opferkuch, Toby [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany); Porod, Werner [Institut für Theoretische Physik und Astronomie, Universität Würzburg,Am Hubland, 97074 Würzburg (Germany)
2017-03-06
We investigate lepton flavour violation in a class of minimal left-right symmetric models where the left-right symmetry is broken by triplet scalars. In this context we present a method to consistently calculate the triplet-Yukawa couplings which takes into account the experimental data while simultaneously respecting the underlying symmetries. Analysing various scenarios, we then calculate the full set of tree-level and one-loop contributions to all radiative and three-body flavour-violating fully leptonic decays as well as μ−e conversion in nuclei. Our method illustrates how these processes depend on the underlying parameters of the theory. To that end we observe that, for many choices of the model parameters, there is a strong complementarity between the different observables. For instance, in a large part of the parameter space, lepton flavour violating τ-decays have a large enough branching ratio to be measured in upcoming experiments. Our results further show that experiments coming online in the immediate future, like Mu3e and BELLE II, or longer-term, such as PRISM/PRIME, will probe significant portions of the currently allowed parameter space.
From symmetries to number theory
International Nuclear Information System (INIS)
Tempesta, P.
2009-01-01
It is shown that the finite-operator calculus provides a simple formalism useful for constructing symmetry-preserving discretizations of quantum-mechanical integrable models. A related algebraic approach can also be used to define a class of Appell polynomials and of L series.
Orthogonal symmetries and Clifford algebras
Indian Academy of Sciences (India)
a universal property of the even Clifford algebra in §3. ..... symmetry if σ2 = id. In the literature, such maps are sometimes also called “orthogonal involutions” (cf. Ch. III, §5 of [4]). We have, however, preferred to use the former ...... [7] Helmstetter J and Micali A, Quadratic mappings and Clifford algebras (Basel: Birkhäuser.
Exploiting symmetry in protocol testing
J.M.T. Romijn (Judi); J.G. Springintveld
1999-01-01
textabstractTest generation and execution are often hampered by the large state spaces of the systems involved. In automata (or transition system) based test algorithms, taking advantage of symmetry in the behavior of specification and implementation may substantially reduce the amount of tests. We
Testing for Bivariate Spherical Symmetry
Einmahl, J.H.J.; Gantner, M.
2010-01-01
An omnibus test for spherical symmetry in R2 is proposed, employing localized empirical likelihood. The thus obtained test statistic is distri- bution-free under the null hypothesis. The asymptotic null distribution is established and critical values for typical sample sizes, as well as the
Second-quantized mirror symmetry
Ferrara, Sergio; Strominger, A; Vafa, C
1995-01-01
We propose and give strong evidence for a duality relating Type II theories on Calabi-Yau spaces and heterotic strings on K3 \\times T^2, both of which have N=2 spacetime supersymmetry. Entries in the dictionary relating the dual theories are derived from an analysis of the soliton string worldsheet in the context of N=2 orbifolds of dual N=4 compactifications of Type II and heterotic strings. In particular we construct a pairing between Type II string theory on a self-mirror Calabi-Yau space X with h^{11}= h^{21}= 11 and a (4, 0) background of heterotic string theory on K3\\times T^2. Under the duality transformation the usual first-quantized mirror symmetry of X becomes a second-quantized mirror symmetry which determines nonperturbative quantum effects. This enables us to compute the exact quantum moduli space. Mirror symmetry of X implies that the low-energy N=2 gauge theory is finite, even at enhanced symmetry points. This prediction is verified by direct computation on the heterotic side. Other branches of...
Lifshitz symmetries and nonrelativistic holography
Sybesma, Z.W.
2017-01-01
In this dissertation we cover topics within the main themes of Lifshitz symmetries and nonrelativistic holography. Nonrelativistic theories are typically less constrained than relativistic ones, which makes them often more cumbersome to work with. Via holography one can have acces to domains of a
Symmetry, empirical significance, and identity
Friederich, Simon
The article proposes a novel approach to the much discussed question of which symmetries have ‘direct empirical significance’ and which do not. The approach is based on a development of a recently proposed framework by Hilary Greaves and David Wallace, who claim that, contrary to the standard
Exploiting Symmetry on Parallel Architectures.
Stiller, Lewis Benjamin
1995-01-01
This thesis describes techniques for the design of parallel programs that solve well-structured problems with inherent symmetry. Part I demonstrates the reduction of such problems to generalized matrix multiplication by a group-equivariant matrix. Fast techniques for this multiplication are described, including factorization, orbit decomposition, and Fourier transforms over finite groups. Our algorithms entail interaction between two symmetry groups: one arising at the software level from the problem's symmetry and the other arising at the hardware level from the processors' communication network. Part II illustrates the applicability of our symmetry -exploitation techniques by presenting a series of case studies of the design and implementation of parallel programs. First, a parallel program that solves chess endgames by factorization of an associated dihedral group-equivariant matrix is described. This code runs faster than previous serial programs, and discovered it a number of results. Second, parallel algorithms for Fourier transforms for finite groups are developed, and preliminary parallel implementations for group transforms of dihedral and of symmetric groups are described. Applications in learning, vision, pattern recognition, and statistics are proposed. Third, parallel implementations solving several computational science problems are described, including the direct n-body problem, convolutions arising from molecular biology, and some communication primitives such as broadcast and reduce. Some of our implementations ran orders of magnitude faster than previous techniques, and were used in the investigation of various physical phenomena.
Symmetry structure and phase transitions
Indian Academy of Sciences (India)
We study chiral symmetry structure at finite density and temperature in the presence of external magnetic field and .... the case of neutron stars as a function of chemical potential µ associated with finite baryon number density we ..... work expended to create a bubble and are given by Rc = 2σ Ph(T) Pq(T) and Wc = 4πσR2.
Symmetry structure and phase transitions
Indian Academy of Sciences (India)
Spontaneous symmetry breaking is one of the most important concepts of all unified gauge theories. The idea that ... stable configurations of gauge and Higgs fields in the form of domain walls, cosmic strings and monopoles on the ..... pressure to balance the surface tension and the pressure of the hadron phase. The quark.
Experimental tests of fundamental symmetries
Jungmann, K. P.
2014-01-01
Ongoing experiments and projects to test our understanding of fundamental inter- actions and symmetries in nature have progressed significantly in the past few years. At high energies the long searched for Higgs boson has been found; tests of gravity for antimatter have come closer to reality;
Superdeformations and fermion dynamical symmetries
International Nuclear Information System (INIS)
Wu, Cheng-Li
1990-01-01
In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU 3 of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU 3 fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU 3 symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting γ-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs
Symmetry in labeled transition systems
I.A. van Langevelde
2003-01-01
textabstractSymmetry is defined for labeled transition systems, and it is shown how symmetrical systems can be symmetrically decomposed into components. The central question is under what conditions one such component may represent the whole system, in the sense that one symmetrical system is
Dark Energy and Spacetime Symmetry
Directory of Open Access Journals (Sweden)
Irina Dymnikova
2017-03-01
Full Text Available The Petrov classification of stress-energy tensors provides a model-independent definition of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which makes vacuum fluid essentially anisotropic and allows it to be evolving and clustering. The relevant solutions to the Einstein equations describe regular cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter vacuum interiors—which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry. In the cosmological context spacetime symmetry provides a mechanism for relaxing cosmological constant to a needed non-zero value.
Testing for bivariate spherical symmetry
Einmahl, J.H.J.; Gantner, M.
2012-01-01
An omnibus test for spherical symmetry in R2 is proposed, employing localized empirical likelihood. The thus obtained test statistic is distribution free under the null hypothesis. The asymptotic null distribution is established and critical values for typical sample sizes, as well as the asymptotic
On four dimensional mirror symmetry
International Nuclear Information System (INIS)
Losev, A.; Nekrasov, N.; Shatashvili, S.
2000-01-01
A conjecture relating instanton calculus in four dimensional supersymmetric theories and the deformation theory of Lagrangian submanifolds in C 2r invariant under a (subgroup of) Sp(2r,Z) is formulated. This is a four dimensional counterpart of the mirror symmetry of topological strings (relating Gromov-Witten invariants and generalized variations of Hodge structure). (orig.)
Kohn's theorem and Galilean symmetry
Zhang, P.-M.; Horvathy, P. A.
2011-08-01
The relation between the separability of a system of charged particles in a uniform magnetic field and Galilean symmetry is revisited using Duval's “Bargmann framework”. If the charge-to-mass ratios of the particles are identical, ea/ma=ɛ for all particles, then the Bargmann space of the magnetic system is isometric to that of an anisotropic harmonic oscillator. Assuming that the particles interact through a potential which only depends on their relative distances, the system splits into one representing the center of mass plus a decoupled internal part, and can be mapped further into an isolated system using Niederer's transformation. Conversely, the manifest Galilean boost symmetry of the isolated system can be “imported” to the oscillator and to the magnetic systems, respectively, to yield the symmetry used by Gibbons and Pope to prove the separability. For vanishing interaction potential the isolated system is free and our procedure endows all our systems with a hidden Schrödinger symmetry, augmented with independent internal rotations. All these properties follow from the cohomological structure of the Galilei group, as explained by Souriau's “décomposition barycentrique”.
Experimental violation of Svetlichny's inequality
International Nuclear Information System (INIS)
Lavoie, J; Kaltenbaek, R; Resch, K J
2009-01-01
It is well known that quantum mechanics is incompatible with local realistic theories. Svetlichny showed, through the development of a Bell-like inequality, that quantum mechanics is also incompatible with a restricted class of nonlocal realistic theories for three particles where any two-body nonlocal correlations are allowed (Svetlichny 1987 Phys. Rev. D 35 3066). In the present work, we experimentally generate three-photon GHZ states to test Svetlichny's inequality. Our states are fully characterized by quantum state tomography using an overcomplete set of measurements and have a fidelity of (84±1)% with the target state. We measure a convincing, 3.6σ, violation of Svetlichny's inequality and rule out this class of restricted nonlocal realistic models.
Searches for lepton flavor violation
International Nuclear Information System (INIS)
Bryman, D.
1986-01-01
The search for lepton flavor violation has reached considerable sensitivity, but with only null results so far. The experiments are sensitive to new particle in the 1 to 100 TeV range arising in a variety of theories, although the constraints on the masses of such particles improve only as the inverse fourth power of branching ratios. Presenting, neutrinoless μe conversion in the field of a nucleus provides the most serious constraints for many models. New experiments on rare kaon decays γe conversion and μ → eγ will result in improved sensitivity in the next few years. Ignoring theoretical prejudice, it is important to study many different processes in the hope uncovering some new effects
Lepton number violation searches at the LHC
Salvucci, Antonio; The ATLAS collaboration
2017-01-01
Lepton number is conserved in the Standard Model, therefore, any evidence for its violation would indicate the existence of new physics. This talk presents a review of the latest searches performed at the LHC concerning Lepton Number Violation (LNV) processes in the context of Left-Right Symmetric theory and Seesaw mechanism.
Parity violation in neutron induced reactions
International Nuclear Information System (INIS)
Gudkov, V.P.
1991-06-01
The theory of parity violation in neutron induced reactions is discussed. Special attention is paid to the energy dependence and enhancement factors for the various types of nuclear reactions and the information which might be obtained from P-violating effects in nuclei. (author)
What If Quantum Theory Violates All Mathematics?
Directory of Open Access Journals (Sweden)
Rosinger Elemér Elad
2017-09-01
Full Text Available It is shown by using a rather elementary argument in Mathematical Logic that if indeed, quantum theory does violate the famous Bell Inequalities, then quantum theory must inevitably also violate all valid mathematical statements, and in particular, such basic algebraic relations like 0 = 0, 1 = 1, 2 = 2, 3 = 3, … and so on …
Weak NNM couplings and nuclear parity violation
International Nuclear Information System (INIS)
Holstein, B.R.
1987-01-01
After many years of careful theoretical and experimental study of nuclear parity violation, rough empirical values for weak parity violation nucleon-nucleon-meson vertices have been deduced. We address some of the physics which has been learned from this effort and show that it has implications for work going on outside this field. (author)
Possible violations of the relativity theory
International Nuclear Information System (INIS)
Tiomno, J.
1985-01-01
A review of previous works of the author and collaborators on possible violations of the Theory of Relativity (SR) is made. It is shown that there is no contradiction of the predictions of the Lorentz Aether Theory, in the form presented in these papers, with existing experiments. Further experiments to detect these violations (or to confirm SR) are indicated. (Author) [pt
Lorentz violation and deep inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Kostelecký, V. Alan, E-mail: kostelec@indiana.edu [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Lunghi, E. [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Vieira, A.R. [Indiana University Center for Spacetime Symmetries, Bloomington, IN 47405 (United States); Departamento de Física – ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG 30.161-970 (Brazil)
2017-06-10
The effects of quark-sector Lorentz violation on deep inelastic electron–proton scattering are studied. We show that existing data can be used to establish first constraints on numerous coefficients for Lorentz violation in the quark sector at an estimated sensitivity of parts in a million.
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Violations. 60.181 Section 60.181 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES... violation of the provisions of— (1) The Atomic Energy Act of 1954, as amended; (2) Title II of the Energy...
CP violation in $b$ hadrons at LHCb
Hicheur, Adlene
2017-01-01
The most recent results on $CP$ violation in b hadrons obtained by the LHCb Collaboration with Run I and years 2015-2016 of Run II are reviewed. The different types of violation are covered by the studies presented in this paper.
Explicit one-loop corrections to the strong CP-violating phase in SU(2)/sub L/ x U(1)
International Nuclear Information System (INIS)
Goffin, V.; Segre, G.; Weldon, H.A.
1980-01-01
In a CP-invariant Lagrangian the spontaneous symmetry breaking that generates the quark mass matrix m will induce CP violations into the strong interactions with strength theta/sub QFD/=arg Detm, where QFD refers to quantum flavor dynamics. Even if Detm is real in tree approximation, it will generally not be in higher order. We show that in any SU(2)/sub L/ x U(1) model the only one-loop corrections to theta/sub QFD/ come from Higgs particles. These are explicitly calculated in a six-quark model with permutation symmetry. We find theta/sub QFD/ approx. = 10 -10 (m/sub s//m/sub b/)(m/sub t//m/sub b/) 2 in one case and theta/sub QFD/ approx. = 10 -8 (m/sub c//m/sub t/) in a second case. Cabibbo angles and CP violation in the kaon system are also examined
A System for Traffic Violation Detection
Directory of Open Access Journals (Sweden)
Nourdine Aliane
2014-11-01
Full Text Available This paper describes the framework and components of an experimental platform for an advanced driver assistance system (ADAS aimed at providing drivers with a feedback about traffic violations they have committed during their driving. The system is able to detect some specific traffic violations, record data associated to these faults in a local data-base, and also allow visualization of the spatial and temporal information of these traffic violations in a geographical map using the standard Google Earth tool. The test-bed is mainly composed of two parts: a computer vision subsystem for traffic sign detection and recognition which operates during both day and nighttime, and an event data recorder (EDR for recording data related to some specific traffic violations. The paper covers firstly the description of the hardware architecture and then presents the policies used for handling traffic violations.
Eta photoproduction as a test of the extended chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Fernandez-Ramirez, C. [Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid (Spain)]. E-mail: cesar@nuc2.fis.ucm.es; Moya de Guerra, E. [Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain); Udias, J.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain)
2007-08-09
We analyze the {gamma}p->{eta}p process from threshold up to 1.2 GeV, employing an effective Lagrangian approach that allows for a mixing of eta couplings of pseudoscalar and pseudovector nature. The mixing ratio of the couplings may serve as a quantitative estimation of the SU{sub L}(3)xSU{sub R}(3) extended chiral symmetry violation in this energy regime. The data analyzed (differential cross sections and asymmetries) show a preference for the pseudoscalar coupling-91% of pseudoscalar coupling component for the best fit. We stress that a more conclusive answer to this question requires a more complete electromagnetic multipole database than the presently available one.
Discrete Symmetries and Neutrino Mass Perturbations for θ$_{13}$
Hall, L J
2013-01-01
The recent measurement of the third lepton mixing angle, \\theta_{13}, has shown that, although small compared to \\theta_{12} and \\theta_{23}, it is much larger than anticipated in schemes that generate Tri-Bi-Maximal (TBM) or Golden Ratio (GR) mixing. We develop a model-independent formalism for perturbations away from exact TBM or GR mixing in the neutrino sector. Each resulting perturbation scheme reflects an underlying symmetry structure and involves a single complex parameter. We show that such perturbations can readily fit the observed value of \\theta_{13}, which is then correlated with a change in the other mixing angles. We also determine the implication for the lepton CP violating phases. For comparison we determine the predictions for Bi-Maximal mixing corrected by charged lepton mixing and we discuss the accuracy that will be needed to distinguish between the various schemes.
BRST and Anti-BRST Symmetries in Perturbative Quantum Gravity
Faizal, Mir
2011-02-01
In perturbative quantum gravity, the sum of the classical Lagrangian density, a gauge fixing term and a ghost term is invariant under two sets of supersymmetric transformations called the BRST and the anti-BRST transformations. In this paper we will analyse the BRST and the anti-BRST symmetries of perturbative quantum gravity in curved spacetime, in linear as well as non-linear gauges. We will show that even though the sum of ghost term and the gauge fixing term can always be expressed as a total BRST or a total anti-BRST variation, we can express it as a combination of both of them only in certain special gauges. We will also analyse the violation of nilpotency of the BRST and the anti-BRST transformations by introduction of a bare mass term, in the massive Curci-Ferrari gauge.
Non-leptonic weak decay of hadrons and chiral symmetry
International Nuclear Information System (INIS)
Suzuki, Katsuhiko
2000-01-01
We review the non-leptonic weak decay of hyperons and ΔI=1/2 rule with a special emphasis on the role of chiral symmetry. The soft-pion theorem provides a powerful framework to understand the origin of ΔI=1/2 rule qualitatively. However, quantitative description is still incomplete in any model of the hadrons. Naive chiral perturbation theory cannot explain the parity-conserving and violating amplitudes simultaneously, and convergence of the chiral expansion seems to be worse. We demonstrate how the non-leptonic weak decay amplitudes are sensitive to the quark-pair correlation in the baryons, and show the importance of the strong quark correlation in the spin-0 channel to reproduce the experimental data. We finally remark several related topics. (author)
Lybeck, Mari
2014-01-01
Tämän mestarityön tarkoituksena oli selvittää ja kirjata laajan ja pitkäkestoisen hotellikiinteistön peruskorjauksen itselleluovutuksen käytännöt rakennushankkeen 2-vaiheen aikana. Itselleluovutusten dokumentointi toteutettiin osana Consti Korjausurakoinnin työnjohtotehtäviä Consti Scandic Parkin työmaalla kesäkaudella 2014. Teoriaosuudessa perehdyttiin itselleluovutuksen viranomaisvaatimuksiin, rakennusalan yleisesti hyväksyttyihin laadun ja itselleluovutuksen käytäntöihin, Consti S...
Metrology in CNEN NN 3.05/13 standard
International Nuclear Information System (INIS)
Mello, Marina Santiago de
2014-01-01
The nuclear medicine exams are widely used tools in health services for a reliable clinical and functional diagnosis of a disease. In Brazil, the National Nuclear Energy Commission, through the norm CNEN-NN 3:05/13, provides for the requirements of safety and radiological protection in nuclear medicine services. The objective of this review article was to emphasize the importance of metrology in compliance with this norm. We observed that metrology plays a vital role as it ensures the quality, accuracy, reproducibility and consistency of the measurements in the field of nuclear medicine. (author)
Further investigations of the NN interaction in the Skyrme model
International Nuclear Information System (INIS)
Kaelbermann, G.; Eisenberg, J.M.
1989-01-01
We examine the influence of the coupling to NΔ and ΔΔ degrees of freedom for the NN interaction as derived in the Skyrme model, carrying out an extensive search for parameters in the basic Lagrangian that will yield both reasonable single-baryon results and appreciable attraction. Separately the free one-body skyrmeon solution and an improved two-body solution are inserted in the product ansatz for the two-body system both with and without time-dependent dynamical terms. No appreciable central attraction between nucleons is found with either of these approaches. (author)
Juurus, Laura; Parind, Merle
2010-01-01
Opinnäytetyömme on lyhytelokuva, jossa kerrotaan kaksi vanhaa satua yhtenä ja uudistettuna. Käytimme Grimmin Punahilkka ja Prinsessa Ruusunen –satuja inspiraationa projektia käsikirjoittaessa. Ko. satujen hahmot ovat lyhytelokuvan kaksi päähenkilöä, joiden omat tarinat sekoittuvat toisiinsa yllättävin seurauksin. Meillä on tietynlaiset – samanlaiset käsitykset siitä, mikä on hyvännäköistä, kun on kyse audiovisuaalisesta tekemisestä. Me molemmat olemme (pääosin) hyvin keskenämme toimeentu...
One-loop renormalization of Lorentz and C P T -violating scalar field theory in curved spacetime
Netto, Tibério de Paula
2018-03-01
The one-loop divergences for the scalar field theory with Lorentz and/or C P T breaking terms are obtained in curved spacetime. We analyze two separate cases: a minimal coupled scalar field with gravity and a nonminimal one. For the minimal case with a real scalar field, the counterterms are evaluated in a nonperturbative form in the C P T -even parameter through a redefinition of a space-time metric. In the most complicated case of a complex scalar field nonminimally interacting with gravity, the solution for the divergences is obtained in the first order in the weak Lorentz violating parameter. The necessary form of the vacuum counterterms indicate the most important structures of Lorentz and C P T violations in the pure gravitational sector of the theory. The conformal theory limit is also analyzed. It turns out that if we allow the violating fields to transform, the classical conformal invariance of massless scalar fields can be maintained in the ξ =1 /6 case. At a quantum level, the conformal symmetry is violated by a trace anomaly. As a result, the conformal anomaly and the anomaly induced effective action are evaluated in the presence of extra Lorentz- and/or C P T -violating parameters. Such gravitational effective action is important for cosmological applications and can be used for searching of Lorentz violation in the primordial Universe in the cosmological perturbations, especially gravitational waves.
Assessing symmetry of financial returns series
H. F. Coronel-Brizio; A. R. Hernandez-Montoya; Huerta-Quintanilla; M. Rodriguez-Achach; .
2007-01-01
Testing symmetry of a probability distribution is a common question arising from applications in several fields. Particularly, in the study of observables used in the analysis of stock market index variations, the question of symmetry has not been fully investigated by means of statistical procedures. In this work a distribution-free test statistic Tn for testing symmetry, derived by Einmahl and McKeague, based on the empirical likelihood approach, is used to address the study of symmetry of ...
Scaling Symmetry and Integrable Spherical Hydrostatics
Bludman, Sidney; Kennedy, Dallas C.
2011-01-01
Any symmetry reduces a second-order differential equation to a first integral: variational symmetries of the action (exemplified by central field dynamics) lead to conservation laws, but symmetries of only the equations of motion (exemplified by scale-invariant hydrostatics) yield first-order {\\em non-conservation laws} between invariants. We obtain these non-conservation laws by extending Noether's Theorem to non-variational symmetries and present an innovative variational formulation of sph...
Symmetry of the Pyritohedron and Lattices
Directory of Open Access Journals (Sweden)
Nazife O. Koca
2016-12-01
Full Text Available The pyritohedron consisting of twelve identical but non regular pentagonal faces and its dual pseudoicosahedron that possess the pyritohedral (Th symmetry play an essential role in understanding the crystallographic structures with the pyritohedral symmetry. The pyritohedral symmetry takes a simpler form in terms of quaternionic representation. We discuss the 3D crystals with the pyritohedral symmetry which can be derived from the Coxeter-Dynkin diagram of D3.
Baryon spectroscopy: symmetries, symmetry breaking and hadronic loops
International Nuclear Information System (INIS)
Zenczykowski, P.
1985-01-01
The problem of hadronic loop effects in baryon spectroscopy is thoroughly discussed. It is argued that such effects very likely constitute the dominant contribution to the observed splitting and mixing pattern of the (56,0 + ) and (70,1 - ) baryon multiplets. In particular, this dominance is demonstrated in the original Isgur-Karl-Koniuk model of baryons, in which hadronic loops are shown to provide an explanation for at least 2/3 of the observed size of splittings, both for the ground-state and excited baryons. The unitarity-induced mixing angles in the (70,1 - )-multiplet are also shown to be in good agreement with experiment. For the ground-state baryons the formula relating Σ-Λ and Δ-Ν mass differences - as originally derived by de Rujula, Georgi and Glashow from the single gluon exchange-is obtained from the hadronic loop effects as well. This (and other) results are derived after taking into account a complete set of symmetry-related hadronic loops. Consideration of such a complete set of symmetry-related processes is shown to be crucial in restoring proper symmetry properties of the calculated spectrum. 74 refs., 10 figs., 4 tabs. (author)
Prediction of human eye fixations using symmetry
Kootstra, Gert; Schomaker, Lambert
2009-01-01
Humans are very sensitive to symmetry in visual patterns. Reaction time experiments show that symmetry is detected and recognized very rapidly. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of
Symmetry and electromagnetism. Simetria y electromagnetismo
Energy Technology Data Exchange (ETDEWEB)
Fuentes Cobas, L.E.; Font Hernandez, R.
1993-01-01
An analytical treatment of electrostatic and magnetostatic field symmetry, as a function of charge and current distribution symmetry, is proposed. The Newmann Principle, related to the cause-effect symmetry relation, is presented and applied to the characterization of simple configurations. (Author) 5 refs.
Generalized partial dynamical symmetry in nuclei.
Leviatan, A; Isacker, P Van
2002-11-25
We introduce the notion of a generalized partial dynamical-symmetry for which part of the eigenstates have part of the dynamical symmetry. This general concept is illustrated with the example of Hamiltonians with a partial dynamical O(6) symmetry in the framework of the interacting boson model. The resulting spectrum and electromagnetic transitions are compared with empirical data in 162Dy.
Partial Dynamical Symmetry in Deformed Nuclei
International Nuclear Information System (INIS)
Leviatan, A.
1996-01-01
We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei. copyright 1996 The American Physical Society
Simultaneous occurrence of distinct symmetries in nuclei
International Nuclear Information System (INIS)
Leviatan, A.
2016-01-01
We show that distinct emergent symmetries, such as partial dynamical symmetry and quasi dynamical symmetry, can occur simultaneously in the same or different eigenstates of the Hamiltonian. Implications for nuclear spectroscopy in the rare-earth region and for first-order quantum phase transitions between spherical and deformed shapes, are considered. (paper)
Generalized partial dynamical symmetry in nuclei
International Nuclear Information System (INIS)
Leviatan, A.; Isacker, P. van
2002-01-01
We introduce the notion of a generalized partial dynamical-symmetry for which part of the eigenstates have part of the dynamical symmetry. This general concept is illustrated with the example of Hamiltonians with a partial dynamical O(6) symmetry in the framework of the interacting boson model. The resulting spectrum and electromagnetic transitions are compared with empirical data in Dy 162
Partial Dynamical Symmetry in Deformed Nuclei
Energy Technology Data Exchange (ETDEWEB)
Leviatan, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)
1996-07-01
We discuss the notion of partial dynamical symmetry in relation to nuclear spectroscopy. Explicit forms of Hamiltonians with partial SU(3) symmetry are presented in the framework of the interacting boson model of nuclei. An analysis of the resulting spectrum and electromagnetic transitions demonstrates the relevance of such partial symmetry to the spectroscopy of axially deformed nuclei. {copyright} {ital 1996 The American Physical Society.}
Involution symmetries and the PMNS matrix
Indian Academy of Sciences (India)
Palash B Pal
2017-10-09
Oct 9, 2017 ... approach, advocated first by Lam [1], one starts by look- ing at the symmetries of the low-energy Lagrangian, and tries to see which group can contain these symmetries. The bigger symmetry might then determine the PMNS matrix, or at least some information about its elements. In this paper, we are going ...
Natural Cold Baryogenesis from Strongly Interacting Electroweak Symmetry Breaking
Konstandin, Thomas
2011-01-01
The mechanism of "cold electroweak baryogenesis" has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on...
Spontaneous CP Violation in the Next-to-Minimal Supersymmetric Standard Model Revisited
Branco, G.C.; Romao, J.C.; Teixeira, A.M.
2001-01-01
We re-examine spontaneous CP violation at the tree level in the context of the next-to-minimal supersymmetric standard model (NMSSM) with two Higgs doublets H_{1,2} and a gauge singlet field N. Within such a framework, the Cabibbo-Kobayashi-Maskawa matrix is real and all CP-violating phenomena can be described by two phases phi_D and phi_N which arise from the complex vacuum expectation values and of the neutral Higgs doublet and singlet fields respectively. We analyse the most general Higgs potential without a discrete Z_3 symmetry, and derive an upper bound on the mass of the lightest neutral Higgs boson which is still consistent with present experimental data. We investigate, in particular, its dependence on the CP-violating phase phi_N as well as the admixture of the gauge singlet field, and on tan(beta). To assess the viability of the spontaneous CP violation scenario, we estimate epsilon_K by applying the mass insertion approximation. We find that a non-trivial flavour structure in the soft-breaking A...
CPLEAR and BaBar: CP violation in all its states
Yeche, Christophe
2003-01-01
This report of French 'Habilitation a diriger les recherches' summarizes my scientific activity from 1993 to 2003. During this decade, my research work was related to two particle physics experiments: CPLEAR and BABAR. The first one, CPLEAR, has recorded data from 1988 to 1995 on the low energy anti-proton ring (LEAR) at CERN. This experiment was devoted to the study of T, CPT et CP discrete symmetries. The second experiment, BABAR, has been running since 1999, on the PEP-II B factory at SLAC. This experiment searches for CP violation and tests the Standard Model through the measurements of the angles and the sides of the Unitarity Triangle. My research work is divided in five main topics: Study of CP and CPT violation in K0 → π+ π- decays; Performance optimization of the particle identification detector (DIRC) of the BABAR experiment; B meson tagging in BABAR experiment; Δmd measurement and Search for CP and T violation in mixing with dilepton events; Search for CP violation in B0 → ρ± π± and B0 �...