Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 10. Groups and Symmetry: A Guide to Discovering Mathematics. Geetha Venkataraman. Book Review Volume 4 Issue 10 October 1999 pp 91-92. Fulltext. Click here to view fulltext PDF. Permanent link:
Farmer, David W
1995-01-01
In most mathematics textbooks, the most exciting part of mathematics-the process of invention and discovery-is completely hidden from the reader. The aim of Groups and Symmetry is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: Its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequ
Group analysis and renormgroup symmetries
International Nuclear Information System (INIS)
Kovalev, V.F.; Pustovalov, V.V.; Shirkov, D.V.
1996-01-01
An original regular approach to constructing special type symmetries for boundary-value problems, namely renormgroup symmetries, is presented. Different methods of calculating these symmetries based on modern group analysis are described. An application of the approach to boundary value problems is demonstrated with the help of a simple mathematical model. 35 refs
Symmetry and group theory in chemistry
Ladd, M
1998-01-01
A comprehensive discussion of group theory in the context of molecular and crystal symmetry, this book covers both point-group and space-group symmetries.Provides a comprehensive discussion of group theory in the context of molecular and crystal symmetryCovers both point-group and space-group symmetriesIncludes tutorial solutions
Quantum group and quantum symmetry
International Nuclear Information System (INIS)
Chang Zhe.
1994-05-01
This is a self-contained review on the theory of quantum group and its applications to modern physics. A brief introduction is given to the Yang-Baxter equation in integrable quantum field theory and lattice statistical physics. The quantum group is primarily introduced as a systematic method for solving the Yang-Baxter equation. Quantum group theory is presented within the framework of quantum double through quantizing Lie bi-algebra. Both the highest weight and the cyclic representations are investigated for the quantum group and emphasis is laid on the new features of representations for q being a root of unity. Quantum symmetries are explored in selected topics of modern physics. For a Hamiltonian system the quantum symmetry is an enlarged symmetry that maintains invariance of equations of motion and allows a deformation of the Hamiltonian and symplectic form. The configuration space of the integrable lattice model is analyzed in terms of the representation theory of quantum group. By means of constructing the Young operators of quantum group, the Schroedinger equation of the model is transformed to be a set of coupled linear equations that can be solved by the standard method. Quantum symmetry of the minimal model and the WZNW model in conformal field theory is a hidden symmetry expressed in terms of screened vertex operators, and has a deep interplay with the Virasoro algebra. In quantum group approach a complete description for vibrating and rotating diatomic molecules is given. The exact selection rules and wave functions are obtained. The Taylor expansion of the analytic formulas of the approach reproduces the famous Dunham expansion. (author). 133 refs, 20 figs
Group theory of spontaneous symmetry breaking
International Nuclear Information System (INIS)
Ghaboussi, F.
1987-01-01
The connection between the minimality of the Higgs field potential and the maximal little groups of its representation obtained by spontaneous symmetry breaking is analyzed. It is shown that for several representations the lowest minimum of the potential is related to the maximal little group of those representations. Furthermore, a practical necessity criterion is given for the representation of the Higgs field needed for spontaneous symmetry breaking
Group symmetries and information propagation
International Nuclear Information System (INIS)
Draayer, J.P.
1980-01-01
Spectroscopy concerns itself with the ways in which the Hamiltonian and other interesting operators defined in few-particle spaces are determined or determine properties of many-particle systems. But the action of the central limit theorem (CLT) filters the transmission of information between source and observed so whether propagating forward from a few-particle defining space, as is usual in theoretical studies, or projecting backward to it from measured things, each is only sensitive to averaged properties of the other. Our concern is with the propagation of spectroscopic information in the presence of good symmetries when filtering action of the CLT is effective. Specifically, we propose to address the question, What propagates and how. We begin with some examples, using both scalar and isospin geometries to illustrate simple propagation. Examples of matrix propagation are studied; contact with standard tensor algebra is established and an algorithm put forward for the expansion of any operator in terms of another set, complete or not; shell-model results for 20 Ne using a realistic interaction and two trace-equivalent forms are presented; and some further challenges are mentioned
Symmetry and group theory throughout physics
Directory of Open Access Journals (Sweden)
Villain J.
2012-03-01
Full Text Available As noticed in 1884 by Pierre Curie [1], physical properties of matter are tightly related to the kind of symmetry of the medium. Group theory is a systematic tool, though not always easy to handle, to exploit symmetry properties, for instance to find the eigenvectors and eigenvalues of an operator. Certain properties (optical activity, piezoelectricity are forbidden in molecules or crystals of high symmetry. A few theorems (Noether, Goldstone establish general relations between physical properties and symmetry. Applications of group theory to condensed matter physics, elementary particle physics, quantum mechanics, electromagnetism are reviewed. Group theory is not only a tool, but also a beautiful construction which casts insight into natural phenomena.
Symmetries and groups in particle physics
International Nuclear Information System (INIS)
Scherer, Stefan
2016-01-01
The aim of this book consists of a didactic introduction to the group-theoretical considerations and methods, which have led to an ever deeper understanding of the interactions of the elementary particles. The first three chapters deal primarily with the foundations of the representation theory of primarily finite groups, whereby many results are also transferable to compact Lie groups. In the third chapter we discuss the concept of Lie groups and their connection with Lie algebras. In the remaining chapter it is mainly about the application of group theory in physics. Chapter 4 deals with the groups SO(3) and SU(2), which occur in connection with the description of the angular momentum in quantum mechanics. We discuss the Wigner-Eckar theorem together with some applications. In chapter 5 we are employed to the composition properties of strongly interacting systems, so called hadrons, and discuss extensively the transformation properties of quarks with relation to the special unitary groups. The Noether theorem is generally treated in connection to the conservation laws belonging to the Galilei group and the Poincare group. We confine us in chapter 6 to internal symmetries, but explain for that extensively the application to quantum field theory. Especially an outlook on the effect of symmetries in form of so called Ward identities is granted. In chapter 7 we turn towards the gauge principle and discuss first the construction of quantum electrodynamics. In the following we generalize the gauge principle to non-Abelian groups (Yang-Mills theories) and formulate the quantum chromodynamics (QCD). Especially we take a view of ''random'' global symmetries of QCD, especially the chiral symmetry. In chapter 8 we illuminate the phenomenon of spontaneous symmetry breaking both for global and for local symmetries. In the final chapter we work out the group-theoretical structure of the Standard Model. Finally by means of the group SU(5) we take a view to
The Symmetry Group of the Permutahedron
Crisman, Karl-Dieter
2011-01-01
Although it can be visualized fairly easily and its symmetry group is easy to calculate, the permutahedron is a somewhat neglected combinatorial object. We propose it as a useful case study in abstract algebra. It supplies concrete examples of group actions, the difference between right and left actions, and how geometry and algebra can work…
Quregisters, Symmetry Groups and Clifford Algebras
International Nuclear Information System (INIS)
Cervantes, D; Morales-Luna, G
2016-01-01
Natural one-to-one and two-to-one homomorphisms from SO(3) into SU(2) are built conventionally, and the collection of qubits, is identified with a subgroup of SU(2). This construction is suitable to be extended to corresponding tensor powers. The notions of qubits, quregisters and qugates are translated into the language of symmetry groups. The corresponding elements to entangled states in the tensor product of Hilbert spaces reflect entanglement properties as well, and in this way a notion of entanglement is realised in the tensor product of symmetry groups. (paper)
Fuchigami, Kei; Schrandt, Matthew; Miessler, Gary L.
2016-01-01
A hands-on symmetry project is proposed as an innovative way of teaching point groups to undergraduate chemistry students. Traditionally, courses teaching symmetry require students to identify the point group of a given object. This project asks the reverse: students are instructed to identify an object that matches each point group. Doing so…
Computing the Symmetry Groups of the Platonic Solids With the ...
Indian Academy of Sciences (India)
In this article we will determine the symmetry groups of the platonic solids by a combination of some elementary group theory and use of the computer algebra package. Maple. The five platonic solids are the tetrahedron, the cube, the octahedron, the dodecahedron, and the icosa- hedron. By determining a symmetry group, ...
Temperature renormalization group approach to spontaneous symmetry breaking
International Nuclear Information System (INIS)
Manesis, E.; Sakakibara, S.
1985-01-01
We apply renormalization group equations that describe the finite-temperature behavior of Green's functions to investigate thermal properties of spontaneous symmetry breaking. Specifically, in the O(N).O(N) symmetric model we study the change of symmetry breaking patterns with temperature, and show that there always exists the unbroken symmetry phase at high temperature, modifying the naive result of leading order in finite-temperature perturbation theory. (orig.)
Symmetry an introduction to group theory and its applications
McWeeny, Roy
2002-01-01
Well-organized volume develops ideas of group and representation theory in progressive fashion. Emphasis on finite groups describing symmetry of regular polyhedra and of repeating patterns, plus geometric illustrations.
Lie symmetries and differential galois groups of linear equations
Oudshoorn, W.R.; Put, M. van der
2002-01-01
For a linear ordinary differential equation the Lie algebra of its infinitesimal Lie symmetries is compared with its differential Galois group. For this purpose an algebraic formulation of Lie symmetries is developed. It turns out that there is no direct relation between the two above objects. In
Can the family group be a global symmetry
International Nuclear Information System (INIS)
Reiss, D.B.
1982-01-01
We consider the possibility that the family group may be a spontaneously broken continuous global symmetry. In the context of grand unification, the couplings of the associated Goldstone bosons to fermions can be sufficiently suppressed so as to satisfy the phenomenological bounds. For a maximal family symmetry this requires a large number of Higgs fields. (orig.)
Surveying the quantum group symmetries of integrable open spin chains
Nepomechie, Rafael I.; Retore, Ana L.
2018-05-01
Using anisotropic R-matrices associated with affine Lie algebras g ˆ (specifically, A2n(2), A2n-1 (2) , Bn(1), Cn(1), Dn(1)) and suitable corresponding K-matrices, we construct families of integrable open quantum spin chains of finite length, whose transfer matrices are invariant under the quantum group corresponding to removing one node from the Dynkin diagram of g ˆ . We show that these transfer matrices also have a duality symmetry (for the cases Cn(1) and Dn(1)) and additional Z2 symmetries that map complex representations to their conjugates (for the cases A2n-1 (2) , Bn(1) and Dn(1)). A key simplification is achieved by working in a certain "unitary" gauge, in which only the unbroken symmetry generators appear. The proofs of these symmetries rely on some new properties of the R-matrices. We use these symmetries to explain the degeneracies of the transfer matrices.
Physical symmetry groups and associated bundles in field theory
International Nuclear Information System (INIS)
Crumeyrolle, A.
1986-01-01
A previous paper, ''Some geometrical consequences of physical symmetries'' describes in some detail invariant submanifolds of the linear representation space C /sup 4m/ for the physical symmetry group : SU(2,2)xSU(m) and its subgroup PxSU(m). In this paper the author intends to give a geometric version using homogeneous spaces and a spinorial approach. Some concrete orbits by means of spinor structures considered in the modern scope and some plausible physical consequences are discussed
Computing the Symmetry Groups of the Platonic Solids With the ...
Indian Academy of Sciences (India)
group theory and use of the computer algebra package. Maple. The five platonic solids are the tetrahedron, the cube, the octahedron, the dodecahedron, and the icosa- hedron. By determining a symmetry group, we lllean not just to determine its elements but to identify it, up to isomorphism, with a well-known group, such as ...
Determining Symmetry Properties of Gravitational Fields of Terrestrial Group Planets
Directory of Open Access Journals (Sweden)
R.A. Kascheev
2016-09-01
Full Text Available Numerous models of gravity fields of the Solar system bodies have been constructed recently owing to successful space missions. These models are sets of harmonic coefficients of gravity potential expansion in series of spherical functions, which is Laplace series. The sets of coefficients are different in quantity of numerical parameters, sources and composition of the initial observational data, methods to obtain and process them, and, consequently, in a variety of properties and accuracy characteristics. For this reason, the task of comparison of different models of celestial bodies considered in the paper is of interest and relevant. The main purpose of this study is comparison of the models of gravitational potential of the Earth, Moon, Mars, and Venus with the quantitative criteria of different types of symmetries developed by us. It is assumed that some particular symmetry of the density distribution function of the planetary body causes similar symmetry of its gravitational potential. The symmetry of gravitational potential, in its turn, imposes additional conditions (restrictions, which must be satisfied by the harmonic coefficients. The paper deals with seven main types of symmetries: central, axial, two symmetries specular relative to the equatorial planes and prime meridian, as well as three rotational symmetries (at π angle around the coordinate system axes. According to the results of calculations carried out for the Earth, Moon, Mars, and Venus, the values of the criteria vary considerably for different types of symmetries and for different planets. It means that the specific value of each criterion corresponding to a particular celestial body is indicative of the properties and internal structure characteristics of the latter and, therefore, it can be used as a tool for comparative planetology. On the basis of the performed calculations, it is possible to distinguish two groups of celestial bodies having similar properties of
Architects of symmetry in finite nonabelian groups
Czech Academy of Sciences Publication Activity Database
Křížek, Michal; Somer, L.
2010-01-01
Roč. 21, č. 4 (2010), s. 307-319 ISSN 0865-4824 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : Abel Prize * sporadic groups * monster Subject RIV: BA - General Mathematics
Renormalisation group improved leptogenesis in family symmetry models
International Nuclear Information System (INIS)
Cooper, Iain K.; King, Stephen F.; Luhn, Christoph
2012-01-01
We study renormalisation group (RG) corrections relevant for leptogenesis in the case of family symmetry models such as the Altarelli-Feruglio A 4 model of tri-bimaximal lepton mixing or its extension to tri-maximal mixing. Such corrections are particularly relevant since in large classes of family symmetry models, to leading order, the CP violating parameters of leptogenesis would be identically zero at the family symmetry breaking scale, due to the form dominance property. We find that RG corrections violate form dominance and enable such models to yield viable leptogenesis at the scale of right-handed neutrino masses. More generally, the results of this paper show that RG corrections to leptogenesis cannot be ignored for any family symmetry model involving sizeable neutrino and τ Yukawa couplings.
Polytope Contractions within Weyl Group Symmetries
Energy Technology Data Exchange (ETDEWEB)
Szajewska, Marzena, E-mail: m.szajewska@math.uwb.edu.pl [University of Bialystok, Institute of Mathematics (Poland)
2016-09-15
A general scheme for constructing polytopes is implemented here specifically for the classes of the most important 3D polytopes, namely those whose vertices are labeled by integers relative to a particular basis, here called the ω-basis. The actual number of non-isomorphic polytopes of the same group has no limit. To put practical bounds on the number of polytopes to consider for each group we limit our consideration to polytopes with dominant point (vertex) that contains only nonnegative integers in ω-basis. A natural place to start the consideration of polytopes from is the generic dominant weight which were all three coordinates are the lowest positive integer numbers. Contraction is a continuous change of one or several coordinates to zero.
The analysis of crystallographic symmetry types in finite groups
Sani, Atikah Mohd; Sarmin, Nor Haniza; Adam, Nooraishikin; Zamri, Siti Norziahidayu Amzee
2014-06-01
Undeniably, it is human nature to prefer objects which are considered beautiful. Most consider beautiful as perfection, hence they try to create objects which are perfectly balance in shape and patterns. This creates a whole different kind of art, the kind that requires an object to be symmetrical. This leads to the study of symmetrical objects and pattern. Even mathematicians and ethnomathematicians are very interested with the essence of symmetry. One of these studies were conducted on the Malay traditional triaxial weaving culture. The patterns derived from this technique are symmetrical and this allows for further research. In this paper, the 17 symmetry types in a plane, known as the wallpaper groups, are studied and discussed. The wallpaper groups will then be applied to the triaxial patterns of food cover in Malaysia.
Symmetry groups of state vectors in canonical quantum gravity
International Nuclear Information System (INIS)
Witt, D.M.
1986-01-01
In canonical quantum gravity, the diffeomorphisms of an asymptotically flat hypersurface S, not connected to the identity, but trivial at infinity, can act nontrivially on the quantum state space. Because state vectors are invariant under diffeomorphisms that are connected to the identity, the group of inequivalent diffeomorphisms is a symmetry group of states associated with S. This group is the zeroth homotopy group of the group of diffeomorphisms fixing a frame of infinity on S. It is calculated for all hypersurfaces of the form S = S 3 /G-point, where the removed point is thought of as infinity on S and the symmetry group S is the zeroth homotopy group of the group of diffeomorphisms of S 3 /G fixing a point and frame, denoted π 0 Diff/sub F/(S 3 /G). Before calculating π 0 Diff/sub F/ (S 3 /G), it is necessary to find π 0 of the group of diffeomorphisms. Once π 0 Diff(S 3 /G) is known, π 0 Diff/sub x/ 0 (S 3 /G) is calculated using a fiber bundle involving Diff(S 3 /G), Diff/sub x/ 0 (S 3 /G), and S 3 /G. Finally, a fiber bundle involving Diff/sub F/(S 3 /G), Diff(S 3 /G), and the bundle of frames over S 3 /G is used along with π 0 Diff/sub x/ 0 (S 3 /G) to calculate π 0 Diff/sub F/(S 3 /G)
Bogolyubov renormalization group and symmetry of solution in mathematical physics
International Nuclear Information System (INIS)
Shirkov, D.V.; Kovalev, V.F.
2000-01-01
Evolution of the concept known in the theoretical physics as the Renormalization Group (RG) is presented. The corresponding symmetry, that has been first introduced in QFT in mid-fifties, is a continuous symmetry of a solution with respect to transformation involving parameters (e.g., of boundary condition) specifying some particular solution. After short detour into Wilson's discrete semi-group, we follow the expansion of QFT RG and argue that the underlying transformation, being considered as a reparametrization one, is closely related to the self-similarity property. It can be treated as its generalization, the Functional Self-similarity (FS). Then, we review the essential progress during the last decade of the FS concept in application to boundary value problem formulated in terms of differential equations. A summary of a regular approach recently devised for discovering the RG = FS symmetries with the help of the modern Lie group analysis and some of its applications are given. As a main physical illustration, we give application of a new approach to solution for a problem of self-focusing laser beam in a nonlinear medium
Group quantization on configuration space: Gauge symmetries and linear fields
International Nuclear Information System (INIS)
Navarro, M.; Aldaya, V.; Calixto, M.
1997-01-01
A new, configuration-space picture of a formalism of group quantization, the GAQ formalism, is presented in the context of a previous algebraic generalization. This presentation serves to make a comprehensive discussion in which other extensions of the formalism, principally to incorporate gauge symmetries, are developed as well. Both images are combined in order to analyze, in a systematic manner and with complete generality, the case of linear fields (Abelian current groups). To illustrate these developments we particularize them for several fields and, in particular, we carry out the quantization of the Abelian Chern endash Simons models over an arbitrary closed surface in detail. copyright 1997 American Institute of Physics
de Sitter group as a symmetry for optical decoherence
International Nuclear Information System (INIS)
Baskal, S; Kim, Y S
2006-01-01
Stokes parameters form a Minkowskian 4-vector under various optical transformations. As a consequence, the resulting two-by-two density matrix constitutes a representation of the Lorentz group. The associated Poincare sphere is a geometric representation of the Lorentz group. Since the Lorentz group preserves the determinant of the density matrix, it cannot accommodate the decoherence process through the decaying off-diagonal elements of the density matrix, which yields to an increase in the value of the determinant. It is noted that the O(3, 2) de Sitter group contains two Lorentz subgroups. The change in the determinant in one Lorentz group can be compensated by the other. It is thus possible to describe the decoherence process as a symmetry transformation in the O(3, 2) space. It is shown also that these two coupled Lorentz groups can serve as a concrete example of Feynman's rest of the universe
New Insights into Viral Architecture via Affine Extended Symmetry Groups
Directory of Open Access Journals (Sweden)
T. Keef
2008-01-01
Full Text Available Since the seminal work of Caspar and Klug on the structure of the protein containers that encapsulate and hence protect the viral genome, it has been recognized that icosahedral symmetry is crucial for the structural organization of viruses. In particular, icosahedral symmetry has been invoked in order to predict the surface structures of viral capsids in terms of tessellations or tilings that schematically encode the locations of the protein subunits in the capsids. Whilst this approach is capable of predicting the relative locations of the proteins in the capsids, a prediction on the relative sizes of different virus particles in a family cannot be made. Moreover, information on the full 3D structure of viral particles, including the tertiary structures of the capsid proteins and the organization of the viral genome within the capsid are inaccessible with their approach. We develop here a mathematical framework based on affine extensions of the icosahedral group that allows us to address these issues. In particular, we show that the relative radii of viruses in the family of Polyomaviridae and the material boundaries in simple RNA viruses can be determined with our approach. The results complement Caspar and Klug's theory of quasi-equivalence and provide details on virus structure that have not been accessible with previous methods, implying that icosahedral symmetry is more important for virus architecture than previously appreciated.
Causality and symmetry in cosmology and the conformal group
International Nuclear Information System (INIS)
Segal, I.E.
1977-01-01
A new theoretic postulate in fundamental physics is considered which is called the chronometric principle because it deals primarily with the nature of time, or its dual or conjugate, energy. Conformality is equivalent to causality. Thus, the group of all local causality-preserving transformations in the vicinity of a point of Minkowski space is, as a local Lie group, identical with the conformal group. The same statement made globally on Minkowski space is: The set of all vector fields on Minkowski space which generate smooth local causality-preserving transformations is identical with the set of all conformal vector fields. The main validation for the chronometric principle is in cosmology or ultramacroscopic physics. Therefore this principle is illustrated along the lines of the red shift. This principle in combination with quantum field theory leads to a convergent and causal description of particle production in which nonlinearities are supplanted by more sophisticated and comprehensive actions for the fundamental symmetry groups. 11 references
The Poincare group as the symmetry group of canonical general relativity
International Nuclear Information System (INIS)
Beig, R.; Murchadha, N. o
1986-01-01
This work reconsiders the formulation, due to Regge and Teitelboim, of the phase space approach to General Relativity in the asymptotically flat context, phrasing it in the language of symplectic geometry. The necessary boundary conditions at spatial infinity are spelled out in detail. Precise meaning is given to the statement that, as a result of these boundary conditions, the Poincare group acts as a symmetry group on the phase space of G.R. This situation is compared with the spi-picture of Ashtekar and Hansen, where a larger asymptotic symmetry group is obtained. (Author)
Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model
International Nuclear Information System (INIS)
Ivanov, Igor P.; Vdovin, E.
2013-01-01
Symmetries play a crucial role in electroweak symmetry breaking models with non-minimal Higgs content. Within each class of these models, it is desirable to know which symmetry groups can be implemented via the scalar sector. In N-Higgs-doublet models, this classification problem was solved only for N=2 doublets. Very recently, we suggested a method to classify all realizable finite symmetry groups of Higgs-family transformations in the three-Higgs-doublet model (3HDM). Here, we present this classification in all detail together with an introduction to the theory of solvable groups, which play the key role in our derivation. We also consider generalized-CP symmetries, and discuss the interplay between Higgs-family symmetries and CP-conservation. In particular, we prove that presence of the Z 4 symmetry guarantees the explicit CP-conservation of the potential. This work completes classification of finite reparametrization symmetry groups in 3HDM. (orig.)
Magnetic superspace groups and symmetry constraints in incommensurate magnetic phases
International Nuclear Information System (INIS)
Perez-Mato, J M; Aroyo, M I; Ribeiro, J L; Petricek, V
2012-01-01
Superspace symmetry has been for many years the standard approach for the analysis of non-magnetic modulated crystals because of its robust and efficient treatment of the structural constraints present in incommensurate phases. For incommensurate magnetic phases, this generalized symmetry formalism can play a similar role. In this context we review from a practical viewpoint the superspace formalism particularized to magnetic incommensurate phases. We analyse in detail the relation between the description using superspace symmetry and the representation method. Important general rules on the symmetry of magnetic incommensurate modulations with a single propagation vector are derived. The power and efficiency of the method is illustrated with various examples, including some multiferroic materials. We show that the concept of superspace symmetry provides a simple, efficient and systematic way to characterize the symmetry and rationalize the structural and physical properties of incommensurate magnetic materials. This is especially relevant when the properties of incommensurate multiferroics are investigated. (topical review)
Molecular symmetry: Why permutation-inversion (PI) groups don't render the point groups obsolete
Groner, Peter
2018-01-01
The analysis of spectra of molecules with internal large-amplitude motions (LAMs) requires molecular symmetry (MS) groups that are larger than and significantly different from the more familiar point groups. MS groups are described often by the permutation-inversion (PI) group method. It is shown that point groups still can and should play a significant role together with the PI groups for a class of molecules with internal rotors. In molecules of this class, several simple internal rotors are attached to a rigid molecular frame. The PI groups for this class are semidirect products like H ^ F, where the invariant subgroup H is a direct product of cyclic groups and F is a point group. This result is used to derive meaningful labels for MS groups, and to derive correlation tables between MS groups and point groups. MS groups of this class have many parallels to space groups of crystalline solids.
EXECUTIVE SUMMARY OF THE SNOWMASS 2001 WORKING GROUP : ELECTROWEAK SYMMETRY BREAKING
International Nuclear Information System (INIS)
CARENA, M.; GERDES, D.W.; HABER, H.E.; TURCOT, A.S.; ZERWAS, P.M.
2001-01-01
In this summary report of the 2001 Snowmass Electroweak Symmetry Breaking Working Group, the main candidates for theories of electroweak symmetry breaking are surveyed, and the criteria for distinguishing among the different approaches are discussed. The potential for observing electroweak symmetry breaking phenomena at the upgraded Tevatron and the LHC is described. We emphasize the importance of a high-luminosity e + e - linear collider for precision measurements to clarify the underlying electroweak symmetry breaking dynamics. Finally, we note the possible roles of the μ + μ - collider and VLHC for further elucidating the physics of electroweak symmetry breaking
Quantum group and symmetry of the heat equation
International Nuclear Information System (INIS)
Jha, P.K.; Tripathy, K.C.
1992-07-01
The symmetry associated with the heat equation is re-examined using Lie's method. Under suitable choice of the arbitrary parameters in the Lie field, it is shown that the system exhibits SL(2,R) symmetry. On inspection of the q-analogue of the principal solution, we find broadening of the Gaussian-flow curve when q is varied from 1 to 0.002. The q-analogue of the general solution predicts the existence of additional degeneracy. (author). 8 refs, 1 fig
Gauging the graded conformal group with unitary internal symmetries
International Nuclear Information System (INIS)
Ferrara, S.; Townsend, P.K.; Kaku, M.; Nieuwenhuizen Van, P.
1977-06-01
Gauge theories for extended SU(N) conformal supergravity are constructed which are invariant under local scale, chiral, proper conformal, supersymmetry and internal SU(N) transformations. The relation between intrinsic parity and symmetry properties of their generators of the internal vector mesons is established. These theories contain no cosmological constants, but technical problems inherent to higher derivative actions are pointed out
Additivity of Feature-based and Symmetry-based Grouping Effects in Multiple Object Tracking
Directory of Open Access Journals (Sweden)
Chundi eWang
2016-05-01
Full Text Available Multiple object tracking (MOT is an attentional process wherein people track several moving targets among several distractors. Symmetry, an important indicator of regularity, is a general spatial pattern observed in natural and artificial scenes. According to the laws of perceptual organization proposed by Gestalt psychologists, regularity is a principle of perceptual grouping, such as similarity and closure. A great deal of research reported that feature-based similarity grouping (e.g., grouping based on color, size, or shape among targets in MOT tasks can improve tracking performance. However, no additive feature-based grouping effects have been reported where the tracking objects had two or more features. Additive effect refers to a greater grouping effect produced by grouping based on multiple cues instead of one cue. Can spatial symmetry produce a similar grouping effect similar to that of feature similarity in MOT tasks? Are the grouping effects based on symmetry and feature similarity additive? This study includes four experiments to address these questions. The results of Experiments 1 and 2 demonstrated the automatic symmetry-based grouping effects. More importantly, an additive grouping effect of symmetry and feature similarity was observed in Experiments 3 and 4. Our findings indicate that symmetry can produce an enhanced grouping effect in MOT and facilitate the grouping effect based on color or shape similarity. The where and what pathways might have played an important role in the additive grouping effect.
Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups
Casas, Lluís; Estop, Euge`nia
2015-01-01
Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…
On the representation of symmetry group transformation operators in the interaction picture
International Nuclear Information System (INIS)
Jorjadze, G.P.; Khvedelidze, A.M.; Kvinikhidze, A.H.
1987-01-01
The representation similar to that of Dyson, is obtained in the form of a chronologically (antichronologically) ordered exponent for operators of any symmetry group transformations of an interacting quantum field system. The exponent is given by an integral of the interaction Hamiltonian density in Dirac's picture. The domain of integration is determined by the symmetry transformation considered. 3 refs.; 2 figs
International Nuclear Information System (INIS)
Zhi Hongyan
2009-01-01
In this paper, based on the symbolic computing system Maple, the direct method for Lie symmetry groups presented by Sen-Yue Lou [J. Phys. A: Math. Gen. 38 (2005) L129] is extended from the continuous differential equations to the differential-difference equations. With the extended method, we study the well-known differential-difference KP equation, KZ equation and (2+1)-dimensional ANNV system, and both the Lie point symmetry groups and the non-Lie symmetry groups are obtained.
On the labeling and symmetry adaptation of the solvable finite groups representations
International Nuclear Information System (INIS)
Caride, A.O.; Zanette, S.I.; Nogueira, S.R.A.
1987-01-01
We propose a method to simultaneously perform a symmetry adaptation and a labeling of the bases of the irreducible representations of the solvable finite groups. It is performed by difining a self-adjoint operator with ligenvalues which evidence the descent in symmetry of the group-subgroups sequences. We also prove two theorems on the canonicity of the cpomposition series of the solvable groups. (author) [pt
The Exceptional Lie symmetry groups hierarchy and the expected number of Higgs bosons
International Nuclear Information System (INIS)
El Naschie, M.S.
2008-01-01
New insights into the structure of various exceptional Lie symmetry groups hierarchies are utilized to shed light on various problems pertinent to the standard model of high energy physics and the Higgs
Singular solutions of renormalization group equations and the symmetry of the lagrangian
International Nuclear Information System (INIS)
Kazakov, D.I.; Shirokov, D.V.
1975-01-01
On the basis of solution of the differential renormalization group equations the method is proposed for finding out the Lagrangians possessing some king of internal symmetry. It is shown that in the phase space of the invariant charges the symmetry corresponds to the straight-line singular solution of these equations remaining straight-line when taking into account the higher order corrections. We have studied the model of scalar fields with quartic couplings, as well as the set of models containing scalar, pseudoscalar and spinor fields with Yukawa and quartic interactions. Straight-line singular solutions in the first case correspond to isotopic symmetry only. For the second case they correspond to supersymmetry. No other symmetries have been discovered. For the model containing the gauge fields the solution corresponding to supersymmetry is obtained and it is shown that this is also the only symmetry that can be realized in the given set of fields
Group theoretical symmetries and generalized Bäcklund transformations for integrable systems
Haak, Guido
1994-05-01
A notion of symmetry for 1+1-dimensional integrable systems is presented which is consistent with their group theoretic description. It is shown how a group symmetry may be used together with a dynamical reduction to produce new generalizations of the Bäcklund transformation for the Korteweg-de Vries equation to its SL(n,C) generalization. An additional application to the relativistic invariance of the Leznov-Saveliev systems is given.
Symmetries and groups in particle physics; Symmetrien und Gruppen in der Teilchenphysik
Energy Technology Data Exchange (ETDEWEB)
Scherer, Stefan [Mainz Univ. (Germany)
2016-07-01
The aim of this book consists of a didactic introduction to the group-theoretical considerations and methods, which have led to an ever deeper understanding of the interactions of the elementary particles. The first three chapters deal primarily with the foundations of the representation theory of primarily finite groups, whereby many results are also transferable to compact Lie groups. In the third chapter we discuss the concept of Lie groups and their connection with Lie algebras. In the remaining chapter it is mainly about the application of group theory in physics. Chapter 4 deals with the groups SO(3) and SU(2), which occur in connection with the description of the angular momentum in quantum mechanics. We discuss the Wigner-Eckar theorem together with some applications. In chapter 5 we are employed to the composition properties of strongly interacting systems, so called hadrons, and discuss extensively the transformation properties of quarks with relation to the special unitary groups. The Noether theorem is generally treated in connection to the conservation laws belonging to the Galilei group and the Poincare group. We confine us in chapter 6 to internal symmetries, but explain for that extensively the application to quantum field theory. Especially an outlook on the effect of symmetries in form of so called Ward identities is granted. In chapter 7 we turn towards the gauge principle and discuss first the construction of quantum electrodynamics. In the following we generalize the gauge principle to non-Abelian groups (Yang-Mills theories) and formulate the quantum chromodynamics (QCD). Especially we take a view of ''random'' global symmetries of QCD, especially the chiral symmetry. In chapter 8 we illuminate the phenomenon of spontaneous symmetry breaking both for global and for local symmetries. In the final chapter we work out the group-theoretical structure of the Standard Model. Finally by means of the group SU(5) we take a view to
The 2-group of symmetries of a split chain complex
Elgueta, Josep
2010-01-01
We explicitly compute the 2-group of self-equivalences and (homotopy classes of) chain homotopies between them for any {\\it split} chain complex $A_{\\bullet}$ in an arbitrary $\\kb$-linear abelian category ($\\kb$ any commutative ring with unit). In particular, it is shown that it is a {\\it split} 2-group whose equivalence class depends only on the homology of $A_{\\bullet}$, and that it is equivalent to the trivial 2-group when $A_\\bullet$ is a split exact sequence. This provides a description ...
International Nuclear Information System (INIS)
Ma Hongcai
2005-01-01
Using the (2+1)-dimensional Broer-Kaup equation as an simple example, a new direct method is developed to find symmetry groups and symmetry algebras and then exact solutions of nonlinear mathematical physical equations.
sl (6,r) as the group of symmetries for non relativistic quantum systems
African Journals Online (AJOL)
It is shown that the 13 one parameter generators of the Lie group SL(6, R) are the maximal group of symmetries for nonrelativistic quantum systems. The group action on the set of states S Ĥ (H complex Hilbert space) preserves transition probabilities as well as the dynamics of the system. By considering a prolongation of ...
Quantum group symmetry of classical and noncommutative geometry
Indian Academy of Sciences (India)
Debashish Goswami
2016-07-01
Jul 1, 2016 ... universal enveloping algebra U(L) of a Lie algebra L, (iv) ... Kustermans defined locally compact quantum groups too. .... There are other versions of quantum isometries formulated by me ..... classical connected spaces when either the space is ..... Etingof-Walton's paper, we have : (i) M0 is open and dense,.
Fourier-space TEM reconstructions with symmetry adapted functions for all rotational point groups.
Trapani, Stefano; Navaza, Jorge
2013-05-01
A general-purpose and simple expression for the coefficients of symmetry adapted functions referred to conveniently oriented symmetry axes is given for all rotational point groups. The expression involves the computation of reduced Wigner-matrix elements corresponding to an angle specific to each group and has the computational advantage of leading to Fourier-space TEM (transmission electron microscopy) reconstruction procedures involving only real valued unknowns. Using this expression, a protocol for ab initio view and center assignment and reconstruction so far used for icosahedral particles has been tested with experimental data in other point groups. Copyright © 2013 Elsevier Inc. All rights reserved.
A generalized Wigner function for quantum systems with the SU(2) dynamical symmetry group
International Nuclear Information System (INIS)
Klimov, A B; Romero, J L
2008-01-01
We introduce a Wigner-like quasidistribution function to describe quantum systems with the SU(2) dynamic symmetry group. This function is defined in a three-dimensional group manifold and can be used to represent the states defined in several SU(2) invariant subspaces. The explicit differential Moyal-like form of the star product is found and analyzed in the semiclassical limit
The 27 Possible Intrinsic Symmetry Groups of Two-Component Links
Directory of Open Access Journals (Sweden)
Jason Parsley
2012-02-01
Full Text Available We consider the “intrinsic” symmetry group of a two-component link L, defined to be the image ∑(L of the natural homomorphism from the standard symmetry group MCG(S3, L to the product MCG(S3 × MCG(L. This group, first defined by Whitten in 1969, records directly whether L is isotopic to a link L′ obtained from L by permuting components or reversing orientations; it is a subgroup of Γ2, the group of all such operations. For two-component links, we catalog the 27 possible intrinsic symmetry groups, which represent the subgroups of Γ2 up to conjugacy. We are able to provide prime, nonsplit examples for 21 of these groups; some are classically known, some are new. We catalog the frequency at which each group appears among all 77,036 of the hyperbolic two-component links of 14 or fewer crossings in Thistlethwaite’s table. We also provide some new information about symmetry groups of the 293 non-hyperbolic two-component links of 14 or fewer crossings in the table.
Similar Symmetries: The Role of Wallpaper Groups in Perceptual Texture Similarity
Directory of Open Access Journals (Sweden)
Fraser Halley
2011-05-01
Full Text Available Periodic patterns and symmetries are striking visual properties that have been used decoratively around the world throughout human history. Periodic patterns can be mathematically classified into one of 17 different Wallpaper groups, and while computational models have been developed which can extract an image's symmetry group, very little work has been done on how humans perceive these patterns. This study presents the results from a grouping experiment using stimuli from the different wallpaper groups. We find that while different images from the same wallpaper group are perceived as similar to one another, not all groups have the same degree of self-similarity. The similarity relationships between wallpaper groups appear to be dominated by rotations.
More on PT-Symmetry in (Generalized Effect Algebras and Partial Groups
Directory of Open Access Journals (Sweden)
J. Paseka
2011-01-01
Full Text Available We continue in the direction of our paper on PT-Symmetry in (Generalized Effect Algebras and Partial Groups. Namely we extend our considerations to the setting of weakly ordered partial groups. In this setting, any operator weakly ordered partial group is a pasting of its partially ordered commutative subgroups of linear operators with a fixed dense domain over bounded operators. Moreover, applications of our approach for generalized effect algebras are mentioned.
International Nuclear Information System (INIS)
Halpern, L.
1981-01-01
Invariant varieties of suitable semisimple groups of transformations can serve as models of the space-time of the universe. The metric is expressible in terms of the basis vectors of the group. The symmetry of the group is broken by introducing a gauge formalism in the space of the basis vectors with the adjoint group as gauge group. The gauge potentials are expressible in terms of the basis vectors for the case of the De Sitter group. The resulting gauge theory is equivalent to De Sitter covariant general relativity. Group covariant generalizations of gravitational theory are discussed. (Auth.)
de Klerk, E.; Sotirov, R.
2007-01-01
We consider semidefinite programming relaxations of the quadratic assignment problem, and show how to exploit group symmetry in the problem data. Thus we are able to compute the best known lower bounds for several instances of quadratic assignment problems from the problem library: [R.E. Burkard,
Superspace group descriptions of the symmetries of incommensurate urea inclusion compounds
vanSmaalen, S; Harris, KDM
1996-01-01
Urea inclusion compounds are a class of incommensurate composite crystals. The urea molecules form a three-dimensionally connected network, with approximate space group symmetry P6(1)22. This network contains tunnels (channels), which accommodate guest molecules. The periodicities of the urea
Structure of Symmetry Groups via Cartan's Method: Survey of Four Approaches
Directory of Open Access Journals (Sweden)
Oleg I. Morozov
2005-10-01
Full Text Available In this review article we discuss four recent methods for computing Maurer-Cartan structure equations of symmetry groups of differential equations. Examples include solution of the contact equivalence problem for linear hyperbolic equations and finding a contact transformation between the generalized Hunter-Saxton equation and the Euler-Poisson equation.
Laughlin states on the Poincare half-plane and its quantum group symmetry
Alimohammadi, M.; Sadjadi, H. Mohseni
1996-01-01
We find the Laughlin states of the electrons on the Poincare half-plane in different representations. In each case we show that there exist a quantum group $su_q(2)$ symmetry such that the Laughlin states are a representation of it. We calculate the corresponding filling factor by using the plasma analogy of the FQHE.
Directory of Open Access Journals (Sweden)
Alexis De Vos
2011-06-01
Full Text Available Whereas quantum computing circuits follow the symmetries of the unitary Lie group, classical reversible computation circuits follow the symmetries of a finite group, i.e., the symmetric group. We confront the decomposition of an arbitrary classical reversible circuit with w bits and the decomposition of an arbitrary quantum circuit with w qubits. Both decompositions use the control gate as building block, i.e., a circuit transforming only one (qubit, the transformation being controlled by the other w−1 (qubits. We explain why the former circuit can be decomposed into 2w − 1 control gates, whereas the latter circuit needs 2w − 1 control gates. We investigate whether computer circuits, not based on the full unitary group but instead on a subgroup of the unitary group, may be decomposable either into 2w − 1 or into 2w − 1 control gates.
A re-examination of symmetry/Group relationships as applied ot the elementary particles
International Nuclear Information System (INIS)
Byrd, K.; Cole R.
1993-01-01
The purpose of this investigation is to apply Group Theory to the elementary particles. Group Theory is a mathematical discipline used to predict the existence of elementary particles by physicists. Perhaps, the most famous application of Group Theory to the elementary particles was by Murray Gell-Mann in 1964. Gell-Mann used the theory to predict the existence and characteristics of the then undiscovered Omega Minus Particle. Group Theory relies heavily on symmetry relationships and expresses them in terms of geometry. Existence and the characteristics of a logical intuitable, but unobserved member of a group are given by extrapolation of the geometric relationships and characteristics of the known members of the group. In this study, the Delta, Sigma, Chi and Omega baryons are used to illustrate how physicists apply geometry and symmetrical relationships to predict new particles. The author's hypothesis is that by using the D3 crystal symmetry group and Gell-Mann's baryons, three new particles will be predicted. The results of my new symmetry predicts the Omega 2, Omega 3, and Chi 3. However, the Chi 3 does not have characteristics consistent with those of the other known group members
Hidden Uq (sl(2)) Uq (sl(2)) Quantum Group Symmetry in Two Dimensional Gravity
Cremmer, Eugène; Gervais, Jean-Loup; Schnittger, Jens
1997-02-01
In a previous paper, the quantum-group-covariant chiral vertex operators in the spin 1/2 representation were shown to act, by braiding with the other covariant primaries, as generators of the well known Uq(sl(2)) quantum group symmetry (for a single screening charge). Here, this structure is transformed to the Bloch wave/Coulomb gas operator basis, thereby establishing for the first time its quantum group symmetry properties. A Uq(sl(2)) otimes Uq(sl(2)) symmetry of a novel type emerges: The two Cartan-generator eigenvalues are specified by the choice of matrix element (Vermamodules); the two Casimir eigenvalues are equal and specified by the Virasoro weight of the vertex operator considered; the co-product is defined with a matching condition dictated by the Hilbert space structure of the operator product. This hidden symmetry possesses a novel Hopf-like structure compatible with these conditions. At roots of unity it gives the right truncation. Its (non-linear) connection with the Uq(sl(2)) previously discussed is disentangled.
Zhou, L.-Q.; Meleshko, S. V.
2017-07-01
The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.
Symmetry breaking in fluid dynamics: Lie group reducible motions for real fluids
International Nuclear Information System (INIS)
Holm, D.D.
1976-07-01
The physics of fluids is based on certain kinematical invariance principles, which refer to coordinate systems, dimensions, and Galilean reference frames. Other, thermodynamic, symmetry principles are introduced by the material description. In the present work, the interplay between these two kinds of invariance principles is used to solve for classes of one-dimensional non-steady isentropic motions of a fluid whose equation of state is of Mie-Gruneisen type. Also, the change in profile and attenuation of weak shock waves in a dissipative medium is studied at the level of Burgers' approximation from the viewpoint of its underlying symmetry structure. The mathematical method of approach is based on the theory of infinitesimal Lie groups. Fluid motions are characterized according to inequivalent subgroups of the full invariance group of the flow description and exact group reducible solutions are presented
Symmetry breaking in fluid dynamics: Lie group reducible motions for real fluids
Energy Technology Data Exchange (ETDEWEB)
Holm, D.D.
1976-07-01
The physics of fluids is based on certain kinematical invariance principles, which refer to coordinate systems, dimensions, and Galilean reference frames. Other, thermodynamic, symmetry principles are introduced by the material description. In the present work, the interplay between these two kinds of invariance principles is used to solve for classes of one-dimensional non-steady isentropic motions of a fluid whose equation of state is of Mie-Gruneisen type. Also, the change in profile and attenuation of weak shock waves in a dissipative medium is studied at the level of Burgers' approximation from the viewpoint of its underlying symmetry structure. The mathematical method of approach is based on the theory of infinitesimal Lie groups. Fluid motions are characterized according to inequivalent subgroups of the full invariance group of the flow description and exact group reducible solutions are presented.
Generation of symmetry coordinates for crystals using multiplier representations of the space groups
DEFF Research Database (Denmark)
Hansen, Flemming Yssing
1978-01-01
Symmetry coordinates play an important role in the normal-mode calculations of crystals. It is therefore of great importance to have a general method, which may be applied for any crystal at any wave vector, to generate these. The multiplier representations of the space groups as given by Kovalev...... and the projection-operator technique provide a basis for such a method. The method is illustrated for the nonsymmorphic D36 space group, and the theoretical background for the representations of space groups in general is reviewed and illustrated on the example above. It is desirable to perform the projection...... of symmetry coordinates in such a way that they may be used for as many wave vectors as possible. We discuss how to achieve this goal. The detailed illustrations should make it simple to apply the theory in any other case....
Symmetries, Information and Monster Groups before and after the Big Bang
Directory of Open Access Journals (Sweden)
Arturo Tozzi
2016-12-01
Full Text Available The Monster group, the biggest of the sporadic groups, is equipped with the highest known number of dimensions and symmetries. Taking into account variants of the Borsuk–Ulam theorem and a novel topological approach cast in a physical fashion that has the potential to be operationalized, the universe can be conceived as a lower-dimensional manifold encompassed in the Monster group. Our universe might arise from spontaneous dimension decrease and symmetry breaking that occur inside the very structure of the Monster Module. We elucidate how the energetic loss caused by projection from higher to lower dimensions and by the Monster group’s non-abelian features is correlated with the present-day asymmetry in the thermodynamic arrow. By linking the Monster Module to its theoretical physical counterparts, it is then possible to calculate its enthalpy and Lie group trajectories. Our approach also reveals how a symmetry break might lead to a universe based on multi-dimensional string theories and CFT/AdS (anti-de Sitter/conformal field theory correspondence.
Partner Symmetries, Group Foliation and ASD Ricci-Flat Metrics without Killing Vectors
Directory of Open Access Journals (Sweden)
Andrei A. Malykh
2013-11-01
Full Text Available We demonstrate how a combination of our recently developed methods of partner symmetries, symmetry reduction in group parameters and a new version of the group foliation method can produce noninvariant solutions of complex Monge-Ampère equation (CMA and provide a lift from invariant solutions of CMA satisfying Boyer-Finley equation to non-invariant ones. Applying these methods, we obtain a new noninvariant solution of CMA and the corresponding Ricci-flat anti-self-dual Einstein-Kähler metric with Euclidean signature without Killing vectors, together with Riemannian curvature two-forms. There are no singularities of the metric and curvature in a bounded domain if we avoid very special choices of arbitrary functions of a single variable in our solution. This metric does not describe gravitational instantons because the curvature is not concentrated in a bounded domain.
Non-ladder extended renormalization group analysis of the dynamical chiral symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Aoki, Ken-Ichi; Takagi, Kaoru; Terao, Haruhiko; Tomoyose, Masashi [Kanazawa Univ., Inst. for Theoretical Physics, Kanazawa, Ishikawa (Japan)
2000-04-01
The order parameters of dynamical chiral symmetry breaking in QCD, the dynamical mass of quarks and the chiral condensates, are evaluated by numerically solving the non-perturbative renormalization group (NPRG) equations. We employ an approximation scheme beyond 'the ladder', that is, beyond the (improved) ladder Schwinger-Dyson equations. The chiral condensates are enhanced in comparison with the ladder approximation, which is phenomenologically favorable. The gauge dependence of the order parameters is reduced significantly in this scheme. (author)
Non-ladder extended renormalization group analysis of the dynamical chiral symmetry breaking
International Nuclear Information System (INIS)
Aoki, Ken-Ichi; Takagi, Kaoru; Terao, Haruhiko; Tomoyose, Masashi
2000-01-01
The order parameters of dynamical chiral symmetry breaking in QCD, the dynamical mass of quarks and the chiral condensates, are evaluated by numerically solving the non-perturbative renormalization group (NPRG) equations. We employ an approximation scheme beyond 'the ladder', that is, beyond the (improved) ladder Schwinger-Dyson equations. The chiral condensates are enhanced in comparison with the ladder approximation, which is phenomenologically favorable. The gauge dependence of the order parameters is reduced significantly in this scheme. (author)
Teaching Molecular Symmetry of Dihedral Point Groups by Drawing Useful 2D Projections
Chen, Lan; Sun, Hongwei; Lai, Chengming
2015-01-01
There are two main difficulties in studying molecular symmetry of dihedral point groups. One is locating the C[subscript 2] axes perpendicular to the C[subscript n] axis, while the other is finding the s[subscript]d planes which pass through the C[subscript n] axis and bisect the angles formed by adjacent C[subscript 2] axes. In this paper, a…
Gildea, Richard J; Winter, Graeme
2018-05-01
Combining X-ray diffraction data from multiple samples requires determination of the symmetry and resolution of any indexing ambiguity. For the partial data sets typical of in situ room-temperature experiments, determination of the correct symmetry is often not straightforward. The potential for indexing ambiguity in polar space groups is also an issue, although methods to resolve this are available if the true symmetry is known. Here, a method is presented to simultaneously resolve the determination of the Patterson symmetry and the indexing ambiguity for partial data sets. open access.
International Nuclear Information System (INIS)
Joos, H.; Schaefer, M.
1987-01-01
The symmetry group of staggered lattice fermions is discussed as a discrete subgroup of the symmetry group of the Dirac-Kaehler equation. For the representation theory of this group, G. Mackey's generalization of E.P. Wigner's procedure for the construction of unitary representations of groups with normal subgroups is used. A complete classification of these irreducible representations by ''momentum stars'', ''flavour orbits'' and ''reduced spins'' is given. (orig.)
Truncation effects in the functional renormalization group study of spontaneous symmetry breaking
International Nuclear Information System (INIS)
Defenu, N.; Mati, P.; Márián, I.G.; Nándori, I.; Trombettoni, A.
2015-01-01
We study the occurrence of spontaneous symmetry breaking (SSB) for O(N) models using functional renormalization group techniques. We show that even the local potential approximation (LPA) when treated exactly is sufficient to give qualitatively correct results for systems with continuous symmetry, in agreement with the Mermin-Wagner theorem and its extension to systems with fractional dimensions. For general N (including the Ising model N=1) we study the solutions of the LPA equations for various truncations around the zero field using a finite number of terms (and different regulators), showing that SSB always occurs even where it should not. The SSB is signalled by Wilson-Fisher fixed points which for any truncation are shown to stay on the line defined by vanishing mass beta functions.
Molecular symmetry and group theory a programmed introduction to chemical applications
Vincent, Alan
2013-01-01
This substantially revised and expanded new edition of the bestselling textbook, addresses the difficulties that can arise with the mathematics that underpins the study of symmetry, and acknowledges that group theory can be a complex concept for students to grasp.Written in a clear, concise manner, the author introduces a series of programmes that help students learn at their own pace and enable to them understand the subject fully. Readers are taken through a series of carefully constructed exercises, designed to simplify the mathematics and give them a full understanding of how this
A Phase Transformation with no Change in Space Group Symmetry: Octafluoronaphtalene
DEFF Research Database (Denmark)
Pawley, G. S.; Dietrich, O. W.
1975-01-01
A solid-state phase transformation in octafluoronaphthalene has been discovered at 266.5K on cooling, and at 15K higher on heating. The symmetry of both phases is found to be the same, namely monoclinic with space group P21/c. The unit cell parameters change by up to 10%, but the integrity...... of a single crystal, which shatters on cooling, is good enough for a single-crystal structure determination. This has been done in both phases to a sufficient accuracy that a mechanism for the transformation can be proposed. Molecules which lie parallel to one another shear to a new parallel position...
Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry
Directory of Open Access Journals (Sweden)
Chikashi Arita
2012-10-01
Full Text Available We study the entanglement properties of a higher-integer-spin Affleck-Kennedy-Lieb-Tasaki model with quantum group symmetry in the periodic boundary condition. We exactly calculate the finite size correction terms of the entanglement entropies from the double scaling limit. We also evaluate the geometric entanglement, which serves as another measure for entanglement. We find the geometric entanglement reaches its maximum at the isotropic point, and decreases with the increase of the anisotropy. This behavior is similar to that of the entanglement entropies.
Dynamical symmetry breaking of the electroweak interactions and the renormalization group
International Nuclear Information System (INIS)
Hill, C.T.
1990-08-01
We discuss dynamical symmetry breaking with an emphasis on the renormalization group as the key tool to obtaining reliable predictions. In particular we discuss the mechanism for breaking the electroweak interactions which relies upon the formation of condensates involving the conventional quarks and leptons. Such a scheme indicates that the top quark is heavy, greater than or of order 200 GeV, and gives further predictions for the Higgs boson mass. We also briefly describe recent attempts to incorporate a 4th generation in a more natural scheme. 13 refs., 3 figs., 1 tab
Symmetries and Laplacians introduction to harmonic analysis, group representations and applications
Gurarie, D
1992-01-01
Designed as an introduction to harmonic analysis and group representations,this book covers a wide range of topics rather than delving deeply into anyparticular one. In the words of H. Weyl ...it is primarily meant forthe humble, who want to learn as new the things set forth therein, rather thanfor the proud and learned who are already familiar with the subject and merelylook for quick and exact information.... The main objective is tointroduce the reader to concepts, ideas, results and techniques that evolvearound symmetry-groups, representations and Laplacians. Morespecifically, the main interest concerns geometrical objects and structures{X}, discrete or continuous, that possess sufficiently large symmetrygroup G, such as regular graphs (Platonic solids), lattices, andsymmetric Riemannian manifolds. All such objects have a natural Laplacian&Dgr;, a linear operator on functions over X, invariant underthe group action. There are many problems associated with Laplacians onX, such as continuous or discrete...
Unbounded representations of symmetry groups in gauge quantum field theory. Pt. 1
International Nuclear Information System (INIS)
Voelkel, A.H.
1983-01-01
Symmetry groups and especially the covariance (substitution rules) of the basic fields in a gauge quantum field theory of the Wightman-Garding type are investigated. By means of the continuity properties hidden in the substitution rules it is shown that every unbounded form-isometric representation U of a Lie group has a form-skew-symmetric differential deltaU with dense domain in the unphysical Hilbert space. Necessary and sufficient conditions for the existence of the closures of U and deltaU as well as for the isometry of U are derived. It is proved that a class of representations of the transition group enforces a relativistic confinement mechanism, by which some or all basic fields are confined but certain mixed products of them are not. (orig.)
Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Malyshev, A. V.
2018-03-01
In this paper we consider the model of incompressible fluid described by the stochastic Navier-Stokes equation with finite correlation time of a random force. Inertial-range asymptotic behavior of fully developed turbulence is studied by means of the field theoretic renormalization group within the one-loop approximation. It is corroborated that regardless of the values of model parameters and initial data the inertial-range behavior of the model is described by the limiting case of vanishing correlation time. This indicates that the Galilean symmetry of the model violated by the "colored" random force is restored in the inertial range. This regime corresponds to the only nontrivial fixed point of the renormalization group equation. The stability of this point depends on the relation between the exponents in the energy spectrum E ∝k1 -y and the dispersion law ω ∝k2 -η . The second analyzed problem is the passive advection of a scalar field by this velocity ensemble. Correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. We demonstrate that in accordance with Kolmogorov's hypothesis of the local symmetry restoration the main contribution to the operator product expansion is given by the isotropic operator, while anisotropic terms should be considered only as corrections.
Two dimentional lattice vibrations from direct product representations of symmetry groups
Directory of Open Access Journals (Sweden)
J. N. Boyd
1983-01-01
two dimensional crystals. First, the Born cyclic condition is applied to a double chain composed of coupled linear lattices to obtain a cylindrical arrangement. Then the quadratic Lagrangian function for the system is written in matrix notation. The Lagrangian is diagonalized to yield the natural frequencies of the system. The transformation to achieve the diagonalization was obtained from group theorectic considerations. Next, the techniques developed for the double chain are applied to a square lattice. The square lattice is transformed into the toroidal Ising model. The direct product nature of the symmetry group of the torus reveals the transformation to diagonalize the Lagrangian for the Ising model, and the natural frequencies for the principal directions in the model are obtained in closed form.
Hypersurfaces in P^{n} with 1-parameter symmetry groups II
DEFF Research Database (Denmark)
Plessis, Andrew du; Wall, C.T.C.
2010-01-01
We assume V a hypersurface of degree d in with isolated singularities and not a cone, admitting a group G of linear symmetries. In earlier work we treated the case when G is semi-simple; here we analyse the unipotent case. Our first main result lists the possible groups G. In each case we discuss...... the geometry of the action, reduce V to a normal form, find the singular points, study their nature, and calculate the Milnor numbers. The Tjurina number τ(V) ≤ (d − 1) n–2(d 2 − 3d + 3): we call V oversymmetric if this value is attained. We calculate τ in many cases, and characterise the oversymmetric...
International Nuclear Information System (INIS)
Maris, Th.A.J.
1976-01-01
The renormalization group theory has a natural place in a general framework of symmetries in quantum field theories. Seen in this way, a 'renormalization group' is a one-parametric subset of the direct product of dilatation and renormalization groups. This subset of spontaneously broken symmetry transformations connects the inequivalent solutions generated by a parameter-dependent regularization procedure, as occurs in renormalized perturbation theory. By considering the global, rather than the infinitesimal, transformations, an expression for general vertices is directly obtained, which is the formal solution of exact renormalization group equations [pt
Hierarchy of kissing numbers for exceptional Lie symmetry groups in high energy physics
International Nuclear Information System (INIS)
El Naschie, M.S.
2008-01-01
We are constructing a hierarchy of kissing numbers representing singular contact points of hyper-spheres in exceptional Lie symmetry groups lattice arrangement embedded in the 26 dimensional bosonic strings spacetime. That way we find a total number of points and dimensions equal to 548. This is 52 more than the order of E 8 E 8 of heterotic string theory and leads to the prediction of 69 elementary particles at an energy scale under 1 T. In other words, our mathematical model predicts nine more particles than what is currently experimentally known to exist in the standard model of high energy physics namely only 60. The result is thus in full agreement with all our previous theoretical findings
Symmetry breaking in the opinion dynamics of a multi-group project organization
International Nuclear Information System (INIS)
Zhu Zhen-Tao; Zhou Jing; Chen Xing-Guang; Li Ping
2012-01-01
A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group's opinion evolution is driven by two types of forces: (i) the group's cohesive force which tends to restore the opinion back towards the initial status because of its company culture; and (ii) nonlinear coupling forces with other groups which attempt to bring opinions closer due to collaboration willingness. Bifurcation analysis for the case of a two-group project shows a cusp catastrophe phenomenon and three distinctive evolutionary regimes, i.e., a deadlock regime, a convergence regime, and a bifurcation regime in opinion dynamics. The critical value of initial discord between the two groups is derived to discriminate which regime the opinion evolution belongs to. In the case of a three-group project with a symmetric social network, both bifurcation analysis and simulation results demonstrate that if each pair has a high initial discord, instead of symmetrically converging to consensus with the increase of coupling scale as expected by Gabbay's result (Physica A 378 (2007) p. 125 Fig. 5), project organization (PO) may be split into two distinct clusters because of the symmetry breaking phenomenon caused by pitchfork bifurcations, which urges that apart from divergence in participants' interests, nonlinear interaction can also make conflict inevitable in the PO. The effects of two asymmetric level parameters are tested in order to explore the ways of inducing dominant opinion in the whole PO. It is found that the strong influence imposed by a leader group with firm faith on the flexible and open minded follower groups can promote the formation of a positive dominant opinion in the PO
Symmetry breaking in the opinion dynamics of a multi-group project organization
Zhu, Zhen-Tao; Zhou, Jing; Li, Ping; Chen, Xing-Guang
2012-10-01
A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group's opinion evolution is driven by two types of forces: (i) the group's cohesive force which tends to restore the opinion back towards the initial status because of its company culture; and (ii) nonlinear coupling forces with other groups which attempt to bring opinions closer due to collaboration willingness. Bifurcation analysis for the case of a two-group project shows a cusp catastrophe phenomenon and three distinctive evolutionary regimes, i.e., a deadlock regime, a convergence regime, and a bifurcation regime in opinion dynamics. The critical value of initial discord between the two groups is derived to discriminate which regime the opinion evolution belongs to. In the case of a three-group project with a symmetric social network, both bifurcation analysis and simulation results demonstrate that if each pair has a high initial discord, instead of symmetrically converging to consensus with the increase of coupling scale as expected by Gabbay's result (Physica A 378 (2007) p. 125 Fig. 5), project organization (PO) may be split into two distinct clusters because of the symmetry breaking phenomenon caused by pitchfork bifurcations, which urges that apart from divergence in participants' interests, nonlinear interaction can also make conflict inevitable in the PO. The effects of two asymmetric level parameters are tested in order to explore the ways of inducing dominant opinion in the whole PO. It is found that the strong influence imposed by a leader group with firm faith on the flexible and open minded follower groups can promote the formation of a positive dominant opinion in the PO.
Seiler, Christian; Evers, Ferdinand
2016-10-01
A formalism for electronic-structure calculations is presented that is based on the functional renormalization group (FRG). The traditional FRG has been formulated for systems that exhibit a translational symmetry with an associated Fermi surface, which can provide the organization principle for the renormalization group (RG) procedure. We here advance an alternative formulation, where the RG flow is organized in the energy-domain rather than in k space. This has the advantage that it can also be applied to inhomogeneous matter lacking a band structure, such as disordered metals or molecules. The energy-domain FRG (ɛ FRG) presented here accounts for Fermi-liquid corrections to quasiparticle energies and particle-hole excitations. It goes beyond the state of the art G W -BSE , because in ɛ FRG the Bethe-Salpeter equation (BSE) is solved in a self-consistent manner. An efficient implementation of the approach that has been tested against exact diagonalization calculations and calculations based on the density matrix renormalization group is presented. Similar to the conventional FRG, also the ɛ FRG is able to signalize the vicinity of an instability of the Fermi-liquid fixed point via runaway flow of the corresponding interaction vertex. Embarking upon this fact, in an application of ɛ FRG to the spinless disordered Hubbard model we calculate its phase boundary in the plane spanned by the interaction and disorder strength. Finally, an extension of the approach to finite temperatures and spin S =1 /2 is also given.
On the Lie symmetry group for classical fields in noncommutative space
Energy Technology Data Exchange (ETDEWEB)
Pereira, Ricardo Martinho Lima Santiago [Universidade Federal da Bahia (UFBA), BA (Brazil); Instituto Federal da Bahia (IFBA), BA (Brazil); Ressureicao, Caio G. da [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica; Vianna, Jose David M. [Universidade Federal da Bahia (UFBA), BA (Brazil); Universidade de Brasilia (UnB), DF (Brazil)
2011-07-01
Full text: An alternative way to include effects of noncommutative geometries in field theory is based on the concept of noncommutativity among degrees of freedom of the studied system. In this context it is reasonable to consider that, in the multiparticle noncommutative quantum mechanics (NCQM), the noncommutativity among degrees of freedom to discrete system with N particles is also verified. Further, an analysis of the classical limit of the single particle NCQM leads to a deformed Newtonian mechanics where the Newton's second law is modified in order to include the noncommutative parameter {theta}{sub {iota}j} and, for a one-dimensional discrete system with N particles, the dynamical evolution of each particle is given by this modified Newton's second law. Hence, applying the continuous limit to this multiparticle classical system it is possible to obtain a noncommutative extension of two -dimensional field theory in a noncommutative space. In the present communication we consider a noncommutative extension of the scalar field obtained from this approach and we analyze the Lie symmetries in order to compare the Lie group of this field with the usual scalar field in the commutative space. (author)
DEFF Research Database (Denmark)
Hempler, Daniela; Schmidt, Martin U.; Van De Streek, Jacco
2017-01-01
More than 600 molecular crystal structures with correct, incorrect and uncertain space-group symmetry were energy-minimized with dispersion-corrected density functional theory (DFT-D, PBE-D3). For the purpose of determining the correct space-group symmetry the required tolerance on the atomic...... with missed symmetry were investigated by dispersion-corrected density functional theory. In 98.5% of the cases the correct space group is found....
Ahmed, Ibrahim; Nepomechie, Rafael I.; Wang, Chunguang
2017-07-01
We argue that the Hamiltonians for A(2)2n open quantum spin chains corresponding to two choices of integrable boundary conditions have the symmetries Uq(Bn) and Uq(Cn) , respectively. We find a formula for the Dynkin labels of the Bethe states (which determine the degeneracies of the corresponding eigenvalues) in terms of the numbers of Bethe roots of each type. With the help of this formula, we verify numerically (for a generic value of the anisotropy parameter) that the degeneracies and multiplicities of the spectra implied by the quantum group symmetries are completely described by the Bethe ansatz.
Wang, Juven C; Gu, Zheng-Cheng; Wen, Xiao-Gang
2015-01-23
The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4+1)D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context.
International Nuclear Information System (INIS)
Henley, E.M.
1981-09-01
Internal and space-time symmetries are discussed in this group of lectures. The first of the lectures deals with an internal symmetry, or rather two related symmetries called charge independence and charge symmetry. The next two discuss space-time symmetries which also hold approximately, but are broken only by the weak forces; that is, these symmetries hold for both the hadronic and electromagnetic forces
International Nuclear Information System (INIS)
Haapasalo, Erkka Theodor; Pellonpaeae, Juha-Pekka
2011-01-01
We represent quantum observables as normalized positive operator valued measures and consider convex sets of observables which are covariant with respect to a unitary representation of a locally compact Abelian symmetry group G. The value space of such observables is a transitive G-space. We characterize the extreme points of covariant observables and also determine the covariant extreme points of the larger set of all quantum observables. The results are applied to position, position difference, and time observables.
International Nuclear Information System (INIS)
Hudetz, T.
1989-01-01
We review the development of the non-Abelian generalization of the Kolmogorov-Sinai(KS) entropy invariant, as initated by Connes and Stormer and completed by Connes, Narnhofer and Thirring only recently. As an introduction and motivation, the classical KS theory is reformulated in terms of Abelian W * -algebras. Finally, we describe simple physical applications of the developed characteristic invariant to space-time symmetry group actions on infinite quantum systems. 42 refs. (Author)
Hidden U$_{q}$(sl(2)) x U$_{q}$(sl(2)) quantum group symmetry in two dimensional gravity
Cremmer, E; Schnittger, J
1997-01-01
In a previous paper, we proposed a construction of U_q(sl(2)) quantum group symmetry generators for 2d gravity, where we took the chiral vertex operators of the theory to be the quantum group covariant ones established in earlier works. The basic idea was that the covariant fields in the spin 1/2 representation themselves can be viewed as generators, as they act, by braiding, on the other fields exactly in the required way. Here we transform this construction to the more conventional description of 2d gravity in terms of Bloch wave/Coulomb gas vertex operators, thereby establishing for the first time its quantum group symmetry properties. A U_q(sl(2))\\otimes U_q(sl(2)) symmetry of a novel type emerges: The two Cartan-generator eigenvalues are specified by the choice of matrix element (bra/ket Verma-modules); the two Casimir eigenvalues are equal and specified by the Virasoro weight of the vertex operator considered; the co-product is defined with a matching condition dictated by the Hilbert space structure of...
Peripheral Contour Grouping and Saccade Targeting: The Role of Mirror Symmetry
Directory of Open Access Journals (Sweden)
Michaël Sassi
2014-01-01
Full Text Available Integrating shape contours in the visual periphery is vital to our ability to locate objects and thus make targeted saccadic eye movements to efficiently explore our surroundings. We tested whether global shape symmetry facilitates peripheral contour integration and saccade targeting in three experiments, in which observers responded to a successful peripheral contour detection by making a saccade towards the target shape. The target contours were horizontally (Experiment 1 or vertically (Experiments 2 and 3 mirror symmetric. Observers responded by making a horizontal (Experiments 1 and 2 or vertical (Experiment 3 eye movement. Based on an analysis of the saccadic latency and accuracy, we conclude that the figure-ground cue of global mirror symmetry in the periphery has little effect on contour integration or on the speed and precision with which saccades are targeted towards objects. The role of mirror symmetry may be more apparent under natural viewing conditions with multiple objects competing for attention, where symmetric regions in the visual field can pre-attentively signal the presence of objects, and thus attract eye movements.
Mixed-symmetry fields in de Sitter space: a group theoretical glance
Energy Technology Data Exchange (ETDEWEB)
Basile, Thomas [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS,Fédération de Recherche 2964 Denis Poisson, Université François Rabelais,Parc de Grandmont, 37200 Tours (France); Groupe de Mécanique et Gravitation, Service de Physique Théorique et Mathématique,Université de Mons - UMONS,20 Place du Parc, 7000 Mons, Belgique (Belgium); Bekaert, Xavier [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS,Fédération de Recherche 2964 Denis Poisson, Université François Rabelais,Parc de Grandmont, 37200 Tours (France); B.W. Lee Center for Fields, Gravity and Strings, Institute for Basic Science,Daejeon (Korea, Republic of); Boulanger, Nicolas [Groupe de Mécanique et Gravitation, Service de Physique Théorique et Mathématique,Université de Mons - UMONS,20 Place du Parc, 7000 Mons, Belgique (Belgium)
2017-05-15
We derive the characters of all unitary irreducible representations of the (d+1)-dimensional de Sitter spacetime isometry algebra so(1,d+1), and propose a dictionary between those representations and massive or (partially) massless fields on de Sitter spacetime. We propose a way of taking the flat limit of representations in (anti-) de Sitter spaces in terms of these characters, and conjecture the spectrum resulting from taking the flat limit of mixed-symmetry fields in de Sitter spacetime. We identify the equivalent of the scalar singleton for the de Sitter (dS) spacetime.
Power of the Poincaré group: elucidating the hidden symmetries in focal conic domains.
Alexander, Gareth P; Chen, Bryan Gin-Ge; Matsumoto, Elisabetta A; Kamien, Randall D
2010-06-25
Focal conic domains are typically the "smoking gun" by which smectic liquid crystalline phases are identified. The geometry of the equally spaced smectic layers is highly generic but, at the same time, difficult to work with. In this Letter we develop an approach to the study of focal sets in smectics which exploits a hidden Poincaré symmetry revealed only by viewing the smectic layers as projections from one-higher dimension. We use this perspective to shed light upon several classic focal conic textures, including the concentric cyclides of Dupin, polygonal textures, and tilt-grain boundaries.
Power of the Poincare Group: Elucidating the Hidden Symmetries in Focal Conic Domains
International Nuclear Information System (INIS)
Alexander, Gareth P.; Chen, Bryan Gin-ge; Matsumoto, Elisabetta A.; Kamien, Randall D.
2010-01-01
Focal conic domains are typically the 'smoking gun' by which smectic liquid crystalline phases are identified. The geometry of the equally spaced smectic layers is highly generic but, at the same time, difficult to work with. In this Letter we develop an approach to the study of focal sets in smectics which exploits a hidden Poincare symmetry revealed only by viewing the smectic layers as projections from one-higher dimension. We use this perspective to shed light upon several classic focal conic textures, including the concentric cyclides of Dupin, polygonal textures, and tilt-grain boundaries.
Response matrix method for neutron transport in reactor lattices using group symmetry properties
International Nuclear Information System (INIS)
Mund, E.H.
1991-01-01
This paper describes a response matrix method for the approximate solution of one-velocity, multi-dimensional transport problems in reactor lattices, with isotropic neutron scattering. The transport equation is solved on a homogeneous cell by using a Petrov-Galerkin technique based on a set of trial and test functions (including polynomials and exponential functions) closely related to transport problems in infinite media. The number of non-zero elements of the response matrices reduces to a minimum when the symmetry properties of the cell are included ab initio in the span of the basis functions. To include these properties, use is made of projection operations which are performed very efficiently on symbolic manipulation programs. Numerical results of model problems in square geometry show a good agreement with reference solutions
International Nuclear Information System (INIS)
Masago, Akira; Suzuki, Naoshi
2001-01-01
By a group theoretical procedure we derive the possible spontaneously broken-symmetry states for the two-fold degenerate Hubbard model on a two-dimensional triangular lattice. For ordering wave vectors corresponding to the points Γ and K in the first BZ we find 22 states which include 16 collinear and six non-collinear states. The collinear states include the usual SDW and CDW states which appear also in the single-band Hubbard model. The non-collinear states include exotic ordering states of orbitals and spins as well as the triangular arrangement of spins
Symmetry, Symmetry Breaking and Topology
Directory of Open Access Journals (Sweden)
Siddhartha Sen
2010-07-01
Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.
Rehren, K. -H.
1996-01-01
Weak C* Hopf algebras can act as global symmetries in low-dimensional quantum field theories, when braid group statistics prevents group symmetries. Possibilities to construct field algebras with weak C* Hopf symmetry from a given theory of local observables are discussed.
Energy Technology Data Exchange (ETDEWEB)
Lorenzen, R.
2007-03-15
Starting from the assumption of modular P{sub 1}CT symmetry in quantum field theory a representation of the universal covering of the Poincar'e group is constructed in terms of pairs of modular conjugations. The modular conjugations are associated with field algebras of unbounded operators localised in wedge regions. It turns out that an essential step consists in characterising the universal covering group of the Lorentz group by pairs of wedge regions, in conjunction with an analysis of its geometrical properties. In this thesis two approaches to this problem are developed in four spacetime dimensions. First a realisation of the universal covering as the quotient space over the set of pairs of wedge regions is presented. In spite of the intuitive definition, the necessary properties of a covering space are not straightforward to prove. But the geometrical properties are easy to handle. The second approach takes advantage of the well-known features of spin groups, given as subgroups of Clifford algebras. Characterising elements of spin groups by pairs of wedge regions is possible in an elegant manner. The geometrical analysis is performed by means of the results achieved in the first approach. These geometrical properties allow for constructing a representation of the universal cover of the Lorentz group in terms of pairs of modular conjugations. For this representation the derivation of the spin-statistics theorem is straightforward, and a PCT operator can be defined. Furthermore, it is possible to transfer the results to nets of field algebras in algebraic quantum field theory with ease. Many of the usual assumptions in quantum field theory like the spectrum condition or the existence of a covariant unitary representation, as well as the assumption on the quantum field to have only finitely many components, are not required. For the standard axioms, the crucial assumption of modular P{sub 1}CT symmetry constitutes no loss of generality because it is a
International Nuclear Information System (INIS)
Lorenzen, R.
2007-03-01
Starting from the assumption of modular P 1 CT symmetry in quantum field theory a representation of the universal covering of the Poincar'e group is constructed in terms of pairs of modular conjugations. The modular conjugations are associated with field algebras of unbounded operators localised in wedge regions. It turns out that an essential step consists in characterising the universal covering group of the Lorentz group by pairs of wedge regions, in conjunction with an analysis of its geometrical properties. In this thesis two approaches to this problem are developed in four spacetime dimensions. First a realisation of the universal covering as the quotient space over the set of pairs of wedge regions is presented. In spite of the intuitive definition, the necessary properties of a covering space are not straightforward to prove. But the geometrical properties are easy to handle. The second approach takes advantage of the well-known features of spin groups, given as subgroups of Clifford algebras. Characterising elements of spin groups by pairs of wedge regions is possible in an elegant manner. The geometrical analysis is performed by means of the results achieved in the first approach. These geometrical properties allow for constructing a representation of the universal cover of the Lorentz group in terms of pairs of modular conjugations. For this representation the derivation of the spin-statistics theorem is straightforward, and a PCT operator can be defined. Furthermore, it is possible to transfer the results to nets of field algebras in algebraic quantum field theory with ease. Many of the usual assumptions in quantum field theory like the spectrum condition or the existence of a covariant unitary representation, as well as the assumption on the quantum field to have only finitely many components, are not required. For the standard axioms, the crucial assumption of modular P 1 CT symmetry constitutes no loss of generality because it is a consequence of
Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups
International Nuclear Information System (INIS)
Podles, P.
1995-01-01
We prove that each action of a compact matrix quantum group on a compact quantum space can be decomposed into irreducible representations of the group. We give the formula for the corresponding multiplicities in the case of the quotient quantum spaces. We describe the subgroups and the quotient spaces of quantum SU(2) and SO(3) groups. (orig.)
Hempler, Daniela; Schmidt, Martin U; van de Streek, Jacco
2017-08-01
More than 600 molecular crystal structures with correct, incorrect and uncertain space-group symmetry were energy-minimized with dispersion-corrected density functional theory (DFT-D, PBE-D3). For the purpose of determining the correct space-group symmetry the required tolerance on the atomic coordinates of all non-H atoms is established to be 0.2 Å. For 98.5% of 200 molecular crystal structures published with missed symmetry, the correct space group is identified; there are no false positives. Very small, very symmetrical molecules can end up in artificially high space groups upon energy minimization, although this is easily detected through visual inspection. If the space group of a crystal structure determined from powder diffraction data is ambiguous, energy minimization with DFT-D provides a fast and reliable method to select the correct space group.
International Nuclear Information System (INIS)
Sheftel', M.B.
1997-01-01
The basics of modern group analysis of different equations are presented. The group analysis produces in a natural way the variables, which are most suitable for a problem of question, and also the associated differential-geometric structures, such as pseudo Riemann geometry, connections, Hamiltonian and Lagrangian formalism
Group theory approach to unification of gravity with internal symmetry gauge interactions. Part 1
International Nuclear Information System (INIS)
Samokhvalov, S.E.; Vanyashin, V.S.
1990-12-01
The infinite group of deformed diffeomorphisms of space-time continuum is put into the basis of the Gauge Theory of Gravity. This gives rise to some new ways for unification of gravity with other gauge interactions. (author). 7 refs
Energy Technology Data Exchange (ETDEWEB)
Sikora, W
1974-10-15
A description of magnetic structures based on the use of representations of space groups is given. Representations of the space groups were established for each compound on the basis of experimental data by the method of projection operators. The compounds contained in the list are collected according to crystal systems, alphabetically within each system. The description of each compound consists of the four parts. The first part contain the chemical symbol of the compound, the second its space group. The next part contains the chemical symbol of the magnetic atom and its positions in Wychoff notation with the number of equivalent positions in the crystal unit cell. The main description of a compound magnetic structure is given in the fourth part. It contains: K vector defined in the reciprocal space, the representation according to which a magnetic structure is transformed and the axial vector function S which describes the magnetic structure.
International Nuclear Information System (INIS)
Souriau, J.M.
1984-01-01
The sky uniformity can be noticed in studying the repartition of objects far enough. The sky isotropy description uses space rotations. The group theory elements will allow to give a meaning at the same time precise and general to the word a ''symmetry''. Universe models are reviewed, which must have both of the following qualities: - conformity with the physic known laws; - rigorous symmetry following one of the permitted groups. Each of the models foresees that universe evolution obeys an evolution equation. Expansion and big-bang theory are recalled. Is universe an open or closed space. Universe is also electrically neutral. That leads to a work hypothesis: the existing matter is not given data of universe but it appeared by evolution from nothing. Problem of matter and antimatter is then raised up together with its place in universe [fr
Symmetry and symmetry breaking
International Nuclear Information System (INIS)
Balian, R.; Lambert, D.; Brack, A.; Lachieze-Rey, M.; Emery, E.; Cohen-Tannoudji, G.; Sacquin, Y.
1999-01-01
The symmetry concept is a powerful tool for our understanding of the world. It allows a reduction of the volume of information needed to apprehend a subject thoroughly. Moreover this concept does not belong to a particular field, it is involved in the exact sciences but also in artistic matters. Living beings are characterized by a particular asymmetry: the chiral asymmetry. Although this asymmetry is visible in whole organisms, it seems it comes from some molecules that life always produce in one chirality. The weak interaction presents also the chiral asymmetry. The mass of particles comes from the breaking of a fundamental symmetry and the void could be defined as the medium showing as many symmetries as possible. The texts put together in this book show to a great extent how symmetry goes far beyond purely geometrical considerations. Different aspects of symmetry ideas are considered in the following fields: the states of matter, mathematics, biology, the laws of Nature, quantum physics, the universe, and the art of music. (A.C.)
Unbounded representations of symmetry groups in gauge quantum field theory. II. Integration
International Nuclear Information System (INIS)
Voelkel, A.H.
1986-01-01
Within the gauge quantum field theory of the Wightman--Garding type, the integration of representations of Lie algebras is investigated. By means of the covariance condition (substitution rules) for the basic fields, it is shown that a form skew-symmetric representation of a Lie algebra can be integrated to a form isometric and in general unbounded representation of the universal covering group of a corresponding Lie group provided the conditions (Nelson, Sternheimer, etc.), which are well known for the case of Hilbert or Banach representations, hold. If a form isometric representation leaves the subspace from which the physical Hilbert space is obtained via factorization and completion invariant, then the same is proved to be true for its differential. Conversely, a necessary and sufficient condition is derived for the transmission of the invariance of this subspace under a form skew-symmetric representation of a Lie algebra to its integral
The application of the extending symmetry group approach in optical soliton communication
International Nuclear Information System (INIS)
Ruan Hangyu; Li Huijun; Chen Yixin
2005-01-01
A systematic method which is based on the classical Lie group reduction is used to find the novel exact solution of the nonlinear Schroedinger equation (NLS) with distributed dispersion, nonlinearity and gain or loss. We study the transformations between the standard NLS equation and the NLS equations with distributed dispersion, nonlinearity and gain or loss. Appropriate solitary wave solutions can be applied to discuss soliton propagation in optical fibres, and the amplification and compression of pulses in optical fibre amplifiers
On the mixed symmetry irreducible representations of the Poincare group in the BRST approach
International Nuclear Information System (INIS)
Burdik, C.; Pashnev, A.; Tsulaya, M.
2001-01-01
The Lagrangian description of irreducible massless representations of the Poincare group with the corresponding Young tableaux having two rows along with some explicit examples including the notoph and Weyl tensor is given. For this purpose the method of the BRST constructions is used adopted to the systems of the second class constraints by the construction of auxiliary representations of the algebras of constraints in terms of Verma modules
Approximate and renormgroup symmetries
Energy Technology Data Exchange (ETDEWEB)
Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling
2009-07-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Approximate and renormgroup symmetries
International Nuclear Information System (INIS)
Ibragimov, Nail H.; Kovalev, Vladimir F.
2009-01-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Gauge fields in nonlinear group realizations involving two-dimensional space-time symmetry
International Nuclear Information System (INIS)
Machacek, M.E.; McCliment, E.R.
1975-01-01
It is shown that gauge fields may be consistently introduced into a model Lagrangian previously considered by the authors. The model is suggested by the spontaneous breaking of a Lorentz-type group into a quasiphysical two-dimensional space-time and one internal degree of freedom, loosely associated with charge. The introduction of zero-mass gauge fields makes possible the absorption via the Higgs mechanism of the Goldstone fields that appear in the model despite the fact that the Goldstone fields do not transform as scalars. Specifically, gauge invariance of the Yang-Mills type requires the introduction of two sets of massless gauge fields. The transformation properties in two-dimensional space-time suggest that one set is analogous to a charge doublet that behaves like a second-rank tensor in real four-dimensional space time. The other set suggests a spin-one-like charge triplet. Via the Higgs mechanism, the first set absorbs the Goldstone fields and acquires mass. The second set remains massless. If massive gauge fields are introduced, the associated currents are not conserved and the Higgs mechanism is no longer fully operative. The Goldstone fields are not eliminated, but coupling between the Goldstone fields and the gauge fields does shift the mass of the antisymmetric second-rank-tensor gauge field components
Khundjua, A. G.; Ptitsin, A. G.; Brovkina, E. A.
2018-01-01
The internal structure of experimentally observed self-accommodation complexes of martensite crystals, which is determined by the system of twinning planes, is studied in this work. The direct correlation of the construction type of the complexes with the subgroups of the austenite lattice symmetry group is shown.
International Nuclear Information System (INIS)
Mainzer, K.
1988-01-01
Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs
Energy Technology Data Exchange (ETDEWEB)
Mainzer, K
1988-05-01
Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs.
Wang, Qing-Rui; Gu, Zheng-Cheng
2018-01-01
The classification and construction of symmetry-protected topological (SPT) phases in interacting boson and fermion systems have become a fascinating theoretical direction in recent years. It has been shown that (generalized) group cohomology theory or cobordism theory gives rise to a complete classification of SPT phases in interacting boson or spin systems. The construction and classification of SPT phases in interacting fermion systems are much more complicated, especially in three dimensions. In this work, we revisit this problem based on an equivalence class of fermionic symmetric local unitary transformations. We construct very general fixed-point SPT wave functions for interacting fermion systems. We naturally reproduce the partial classifications given by special group supercohomology theory, and we show that with an additional B ˜H2(Gb,Z2) structure [the so-called obstruction-free subgroup of H2(Gb,Z2) ], a complete classification of SPT phases for three-dimensional interacting fermion systems with a total symmetry group Gf=Gb×Z2f can be obtained for unitary symmetry group Gb. We also discuss the procedure for deriving a general group supercohomology theory in arbitrary dimensions.
Quantum symmetry for pedestrians
International Nuclear Information System (INIS)
Mack, G.; Schomerus, V.
1992-03-01
Symmetries more general than groups are possible in quantum therory. Quantum symmetries in the narrow sense are compatible with braid statistics. They are theoretically consistent much as supersymmetry is, and they could lead to degenerate multiplets of excitations with fractional spin in thin films. (orig.)
8x8 and 10x10 Hyperspace Representations of SU(3) and 10-fold Point-Symmetry Group of Quasicrystals
Animalu, Alexander
2012-02-01
In order to further elucidate the unexpected 10-fold point-symmetry group structure of quasi-crystals for which the 2011 Nobel Prize in chemistry was awarded to Daniel Shechtman, we explore a correspondence principle between the number of (projective) geometric elements (points[vertices] + lines[edges] + planes[faces]) of primitive cells of periodic or quasi-periodic arrangement of hard or deformable spheres in 3-dimensional space of crystallography and elements of quantum field theory of particle physics [points ( particles, lines ( particles, planes ( currents] and hence construct 8x8 =64 = 28+36 = 26 + 38, and 10x10 =100= 64 + 36 = 74 + 26 hyperspace representations of the SU(3) symmetry of elementary particle physics and quasicrystals of condensed matter (solid state) physics respectively, As a result, we predict the Cabibbo-like angles in leptonic decay of hadrons in elementary-particle physics and the observed 10-fold symmetric diffraction pattern of quasi-crystals.
Energy Technology Data Exchange (ETDEWEB)
Blum, Alexander Simon
2009-06-10
This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)
International Nuclear Information System (INIS)
Blum, Alexander Simon
2009-01-01
This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D 4 , the other describing quarks and employing the symmetry D 14 . In the latter model it is the quark mixing matrix element V ud - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)
Aniello, Paolo; Chruściński, Dariusz
2017-07-01
A symmetry witness is a suitable subset of the space of selfadjoint trace class operators that allows one to determine whether a linear map is a symmetry transformation, in the sense of Wigner. More precisely, such a set is invariant with respect to an injective densely defined linear operator in the Banach space of selfadjoint trace class operators (if and) only if this operator is a symmetry transformation. According to a linear version of Wigner’s theorem, the set of pure states—the rank-one projections—is a symmetry witness. We show that an analogous result holds for the set of projections with a fixed rank (with some mild constraint on this rank, in the finite-dimensional case). It turns out that this result provides a complete classification of the sets of projections with a fixed rank that are symmetry witnesses. These particular symmetry witnesses are projectable; i.e. reasoning in terms of quantum states, the sets of ‘uniform’ density operators of corresponding fixed rank are symmetry witnesses too.
Flavour from accidental symmetries
International Nuclear Information System (INIS)
Ferretti, Luca; King, Stephen F.; Romanino, Andrea
2006-01-01
We consider a new approach to fermion masses and mixings in which no special 'horizontal' dynamics is invoked to account for the hierarchical pattern of charged fermion masses and for the peculiar features of neutrino masses. The hierarchy follows from the vertical, family-independent structure of the model, in particular from the breaking pattern of the Pati-Salam group. The lightness of the first two fermion families can be related to two family symmetries emerging in this context as accidental symmetries
Symmetry and symmetry breaking in modern physics
International Nuclear Information System (INIS)
Barone, M; Theophilou, A K
2008-01-01
In modern physics, the theory of symmetry, i.e. group theory, is a basic tool for understanding and formulating the fundamental principles of Physics, like Relativity, Quantum Mechanics and Particle Physics. In this work we focus on the relation between Mathematics, Physics and objective reality
Voisin, Claire
1999-01-01
This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...
Symmetry rules. How science and nature are founded on symmetry
Energy Technology Data Exchange (ETDEWEB)
Rosen, J.
2008-07-01
When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences. (orig.)
Symmetry rules How science and nature are founded on symmetry
Rosen, Joe
2008-01-01
When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences.
Statistical symmetries in physics
International Nuclear Information System (INIS)
Green, H.S.; Adelaide Univ., SA
1994-01-01
Every law of physics is invariant under some group of transformations and is therefore the expression of some type of symmetry. Symmetries are classified as geometrical, dynamical or statistical. At the most fundamental level, statistical symmetries are expressed in the field theories of the elementary particles. This paper traces some of the developments from the discovery of Bose statistics, one of the two fundamental symmetries of physics. A series of generalizations of Bose statistics is described. A supersymmetric generalization accommodates fermions as well as bosons, and further generalizations, including parastatistics, modular statistics and graded statistics, accommodate particles with properties such as 'colour'. A factorization of elements of ggl(n b ,n f ) can be used to define truncated boson operators. A general construction is given for q-deformed boson operators, and explicit constructions of the same type are given for various 'deformed' algebras. A summary is given of some of the applications and potential applications. 39 refs., 2 figs
International Nuclear Information System (INIS)
Coon, S.A.; Scadron, M.D.
2000-01-01
Charge symmetry breaking (CSB) in the strong N N interaction is believed to have its origins at the quark level. However, the meson-exchange potentials which successfully describe the empirical CSB utilize instead values of the Δ I = 1 π η and ρ ω mixing obtained with the aid of group theory from a hadronic tadpole Hamiltonian introduced by Coleman and Glashow to describe electromagnetic mass splitting in hadronic isospin multiplets. We review i) the CSB N N potentials so constructed and their nuclear charge asymmetry effects, i i) the universal scale of the Coleman-Glashow tadpole, and i i i) the quark loop evaluation of both meson mass differences and meson mixing. The latter quark loop calculations, which use chiral symmetry to evaluate the integrals, demonstrate clearly that the u-d constituent quark mass difference, long suspected as the origin of CSB, does quantitatively yield the universal Coleman-Glashow tadpole scale which underlies the successful meson-exchange description of CSB in nuclear physics. (Author) 38 refs., 3 figs
Quantum symmetry in quantum theory
International Nuclear Information System (INIS)
Schomerus, V.
1993-02-01
Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry
International Nuclear Information System (INIS)
Chimento, Luis P.
2002-01-01
We find the group of symmetry transformations under which the Einstein equations for the spatially flat Friedmann-Robertson-Walker universe are form invariant. They relate the energy density and the pressure of the fluid to the expansion rate. We show that inflation can be obtained from nonaccelerated scenarios by a symmetry transformation. We derive the transformation rule for the spectrum and spectral index of the curvature perturbations. Finally, the group is extended to investigate inflation in the anisotropic Bianchi type-I spacetime and the brane-world cosmology
International Nuclear Information System (INIS)
El Naschie, M.S.
2008-01-01
The short note gives a derivation for a new E12 exceptional Lie group corresponding to affine KAC-Moody algebra. We derive the dimension of the group by intersectionally embedding the intrinsic dimension of E8 namely D(E8) = 57 into the 12 spacetime dimensions of F theory and finding that Dim E12 = D(E8) (DF) + 1 = (57)(12) + 1 = 685
Directory of Open Access Journals (Sweden)
Jinming Zhou
2018-05-01
Full Text Available Pythagorean fuzzy sets are highly appealing in dealing with uncertainty as they allow for greater flexibility in regards to the membership and non-membership degrees by extending the set of possible values. In this paper, we propose a multi-criteria group decision-making approach based on the Pythagorean normal cloud. Some cloud aggregation operators are presented in this paper to facilitate the appraisal of the underlying utilities of the alternatives under consideration. The concept and properties of the Pythagorean normal cloud and its backward generation algorithm, aggregation operators and distance measurement are outlined. The proposed approach resembles the TOPSIS technique, which, indeed, considers the symmetry of the distances to the positive and negative ideal solutions. Furthermore, an example from e-commerce is presented to demonstrate and validate the proposed decision-making approach. Finally, the comparative analysis is implemented to check the robustness of the results when the aggregation rules are changed.
Molecular symmetry and spectroscopy
Bunker, Philip; Jensen, Per
2006-01-01
The first edition, by P.R. Bunker, published in 1979, remains the sole textbook that explains the use of the molecular symmetry group in understanding high resolution molecular spectra. Since 1979 there has been considerable progress in the field and a second edition is required; the original author has been joined in its writing by Per Jensen. The Material of the first edition has been reorganized and much has been added. The molecular symmetry group is now introduced early on, and the explanation of how to determine nuclear spin statistical weights has been consolidated in one chapter, after groups, symmetry groups, character tables and the Hamiltonian have been introduced. A description of the symmetry in the three-dimensional rotation group K(spatial), irreducible spherical tensor operators, and vector coupling coefficients is now included. The chapters on energy levels and selection rules contain a great deal of material that was not in the first edition (much of it was undiscovered in 1979), concerning ...
An introduction to Yangian symmetries
International Nuclear Information System (INIS)
Bernard, D.
1992-01-01
Some aspects of the quantum Yangians as symmetry algebras of two-dimensional quantum field theories are reviewed. They include two main issues: the first is the classical Heisenberg model, covering non-Abelian symmetries, generators of the symmetries and the semi-classical Yangians, an alternative presentation of the semi-classical Yangians, digression on Poisson-Lie groups. The second is the quantum Heisenberg chain, covering non-Abelian symmetries and the quantum Yangians, the transfer matrix and an alternative presentation of the Yangians, digression on the double Yangians. (K.A.) 15 refs
Symmetry of crystals and molecules
Ladd, Mark
2014-01-01
This book successfully combines a thorough treatment of molecular and crystalline symmetry with a simple and informal writing style. By means of familiar examples the author helps to provide the reader with those conceptual tools necessary for the development of a clear understanding of what are often regarded as 'difficult' topics. Christopher Hammond, University of Leeds This book should tell you everything you need to know about crystal and molecular symmetry. Ladd adopts an integrated approach so that the relationships between crystal symmetry, molecular symmetry and features of chemical interest are maintained and reinforced. The theoretical aspects of bonding and symmetry are also well represented, as are symmetry-dependent physical properties and the applications of group theory. The comprehensive coverage will make this book a valuable resource for a broad range of readers.
Weiss, Asia; Whiteley, Walter
2014-01-01
This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme. Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology. The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...
Discrete symmetries in the MSSM
Energy Technology Data Exchange (ETDEWEB)
Schieren, Roland
2010-12-02
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)
Discrete symmetries in the MSSM
International Nuclear Information System (INIS)
Schieren, Roland
2010-01-01
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z R 4 symmetry is discovered which solves the μ-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z R 4 is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z R 4 symmetry and other desirable features. (orig.)
Symmetry and quantum mechanics
Corry, Scott
2016-01-01
This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.
Gravitation, Symmetry and Undergraduates
Jorgensen, Jamie
2001-04-01
This talk will discuss "Project Petrov" Which is designed to investigate gravitational fields with symmetry. Project Petrov represents a collaboration involving physicists, mathematicians as well as graduate and undergraduate math and physics students. An overview of Project Petrov will be given, with an emphasis on students' contributions, including software to classify and generate Lie algebras, to classify isometry groups, and to compute the isometry group of a given metric.
Little, Anthony C; Apicella, Coren L; Marlowe, Frank W
2007-12-22
Many studies show agreement within and between cultures for general judgements of facial attractiveness. Few studies, however, have examined the attractiveness of specific traits and few have examined preferences in hunter-gatherers. The current study examined preferences for symmetry in both the UK and the Hadza, a hunter-gatherer society of Tanzania. We found that symmetry was more attractive than asymmetry across both the cultures and was more strongly preferred by the Hadza than in the UK. The different ecological conditions may play a role in generating this difference. Such variation in preference may be adaptive if it reflects adaptation to local conditions. Symmetry is thought to indicate genetic quality, which may be more important among the Hadza with much higher mortality rates from birth onwards. Hadza men who were more often named as good hunters placed a greater value on symmetry in female faces. These results suggest that high quality Hadza men are more discriminating in their choice of faces. Hadza women had increased preferences for symmetry in men's faces when they were pregnant or nursing, perhaps due to their increased discrimination and sensitivity to foods and disease harmful to a foetus or nursing infant. These results imply that symmetry is an evolutionarily relevant trait and that variation in symmetry preference appears strategic both between cultures and within individuals of a single culture.
Symmetry of quantum intramolecular dynamics
International Nuclear Information System (INIS)
Burenin, Alexander V
2002-01-01
The paper reviews the current progress in describing quantum intramolecular dynamics using merely symmetry principles as a basis. This closed qualitative approach is of particular interest because it is the only method currently available for a broad class of topical problems in the internal dynamics of molecules. Moreover, a molecule makes a physical system whose collective internal motions are geometrically structured, so that its description by perturbation methods requires a symmetry analysis of this structure. The nature of the geometrical symmetry groups crucial for the closed formulation of the qualitative approach is discussed. In particular, the point group of a molecule is of this type. (methodological notes)
Gauge origin of discrete flavor symmetries in heterotic orbifolds
Directory of Open Access Journals (Sweden)
Florian Beye
2014-09-01
Full Text Available We show that non-Abelian discrete symmetries in orbifold string models have a gauge origin. This can be understood when looking at the vicinity of a symmetry enhanced point in moduli space. At such an enhanced point, orbifold fixed points are characterized by an enhanced gauge symmetry. This gauge symmetry can be broken to a discrete subgroup by a nontrivial vacuum expectation value of the Kähler modulus T. Using this mechanism it is shown that the Δ(54 non-Abelian discrete symmetry group originates from a SU(3 gauge symmetry, whereas the D4 symmetry group is obtained from a SU(2 gauge symmetry.
Approximate symmetries of Hamiltonians
Chubb, Christopher T.; Flammia, Steven T.
2017-08-01
We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.
Symmetry chains and adaptation coefficients
International Nuclear Information System (INIS)
Fritzer, H.P.; Gruber, B.
1985-01-01
Given a symmetry chain of physical significance it becomes necessary to obtain states which transform properly with respect to the symmetries of the chain. In this article we describe a method which permits us to calculate symmetry-adapted quantum states with relative ease. The coefficients for the symmetry-adapted linear combinations are obtained, in numerical form, in terms of the original states of the system and can thus be represented in the form of numerical tables. In addition, one also obtains automatically the matrix elements for the operators of the symmetry groups which are involved, and thus for any physical operator which can be expressed either as an element of the algebra or of the enveloping algebra. The method is well suited for computers once the physically relevant symmetry chain, or chains, have been defined. While the method to be described is generally applicable to any physical system for which semisimple Lie algebras play a role we choose here a familiar example in order to illustrate the method and to illuminate its simplicity. We choose the nuclear shell model for the case of two nucleons with orbital angular momentum l = 1. While the states of the entire shell transform like the smallest spin representation of SO(25) we restrict our attention to its subgroup SU(6) x SU(2)/sub T/. We determine the symmetry chains which lead to total angular momentum SU(2)/sub J/ and obtain the symmetry-adapted states for these chains
BOOK REVIEW: Symmetry Breaking
Ryder, L. H.
2005-11-01
One of the most fruitful and enduring advances in theoretical physics during the last half century has been the development of the role played by symmetries. One needs only to consider SU(3) and the classification of elementary particles, the Yang Mills enlargement of Maxwell's electrodynamics to the symmetry group SU(2), and indeed the tremendous activity surrounding the discovery of parity violation in the weak interactions in the late 1950s. This last example is one of a broken symmetry, though the symmetry in question is a discrete one. It was clear to Gell-Mann, who first clarified the role of SU(3) in particle physics, that this symmetry was not exact. If it had been, it would have been much easier to discover; for example, the proton, neutron, Σ, Λ and Ξ particles would all have had the same mass. For many years the SU(3) symmetry breaking was assigned a mathematical form, but the importance of this formulation fell away when the quark model began to be taken seriously; the reason the SU(3) symmetry was not exact was simply that the (three, in those days) quarks had different masses. At the same time, and in a different context, symmetry breaking of a different type was being investigated. This went by the name of `spontaneous symmetry breaking' and its characteristic was that the ground state of a given system was not invariant under the symmetry transformation, though the interactions (the Hamiltonian, in effect) was. A classic example is ferromagnetism. In a ferromagnet the atomic spins are aligned in one direction only—this is the ground state of the system. It is clearly not invariant under a rotation, for that would change the ground state into a (similar but) different one, with the spins aligned in a different direction; this is the phenomenon of a degenerate vacuum. The contribution of the spin interaction, s1.s2, to the Hamiltonian, however, is actually invariant under rotations. As Coleman remarked, a little man living in a ferromagnet would
Symmetries and microscopic physics
International Nuclear Information System (INIS)
Blaizot, J.P.
1997-01-01
This book is based on a course of lectures devoted to the applications of group theory to quantum physics. The purpose is to give students a precise idea of general principles involving the concept of symmetry and to present practical methods used to calculate physical properties derived from symmetries. The first chapter is an introduction to the main results of group theory, 2 chapters highlight principles and methods concerning geometrical transformations in the space of states, state degeneracy and perturbation theory. The last 4 chapters investigate the applications of these methods to atom physics, nuclear structure and elementary particles. A chapter is devoted to the atom of hydrogen and another to the isospin. Numerous exercises and problems, some with their corrections, are proposed. (A.C.)
Symmetry of quantum molecular dynamics
International Nuclear Information System (INIS)
Burenin, A.V.
2002-01-01
The paper reviews the current state-of-art in describing quantum molecular dynamics based on symmetry principles alone. This qualitative approach is of particular interest as the only method currently available for a broad and topical class of problems in the internal dynamics of molecules. Besides, a molecule is a physical system whose collective internal motions are geometrically structured, and its perturbation theory description requires a symmetry analysis of this structure. The nature of the geometrical symmetry groups crucial for the closed formulation of the qualitative approach is discussed [ru
Scale symmetry and virial theorem
International Nuclear Information System (INIS)
Westenholz, C. von
1978-01-01
Scale symmetry (or dilatation invariance) is discussed in terms of Noether's Theorem expressed in terms of a symmetry group action on phase space endowed with a symplectic structure. The conventional conceptual approach expressing invariance of some Hamiltonian under scale transformations is re-expressed in alternate form by infinitesimal automorphisms of the given symplectic structure. That is, the vector field representing scale transformations leaves the symplectic structure invariant. In this model, the conserved quantity or constant of motion related to scale symmetry is the virial. It is shown that the conventional virial theorem can be derived within this framework
Inverse semigroups the theory of partial symmetries
Lawson, Mark V
1998-01-01
Symmetry is one of the most important organising principles in the natural sciences. The mathematical theory of symmetry has long been associated with group theory, but it is a basic premise of this book that there are aspects of symmetry which are more faithfully represented by a generalization of groups called inverse semigroups. The theory of inverse semigroups is described from its origins in the foundations of differential geometry through to its most recent applications in combinatorial group theory, and the theory tilings.
Chiral symmetry and chiral-symmetry breaking
International Nuclear Information System (INIS)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed
Yale, Paul B
2012-01-01
This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi
International Nuclear Information System (INIS)
Henley, E.M.
1987-01-01
Nuclei are very useful for testing symmetries, and for studies of symmetry breaking. This thesis is illustrated for two improper space-time transformations, parity and time-reversal and for one internal symmetry: charge symmetry and independence. Recent progress and present interest is reviewed. 23 refs., 8 figs., 2 tabs
Symmetry analysis in parametrisation of complex systems
International Nuclear Information System (INIS)
Sikora, W; Malinowski, J
2010-01-01
The symmetry analysis method based on the theory of group representations is used for description of complex systems and their behavior in this work. The first trial of using the symmetry analysis in modeling of behavior of complex social system is presented. The evacuation of large building scenarios are discussed as transition from chaotic to ordered states, described as movements of individuals according to fields of displacements, calculated correspondingly to given scenario. The symmetry of the evacuation space is taken into account in calculation of displacements field - the displacements related to every point of this space are presented in the coordinate frame in the best way adapted to given symmetry space group, which is the set of basic vectors of irreducible representation of given symmetry group. The results got with using the symmetry consideration are compared with corresponding results calculated under assumption of shortest way to exits (Voronoi assumption).
Symmetry analysis in parametrisation of complex systems
Energy Technology Data Exchange (ETDEWEB)
Sikora, W; Malinowski, J, E-mail: sikora@novell.ftj.agh.edu.p [Faculty of Physics and Applied Computer Science, AGH - University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland)
2010-03-01
The symmetry analysis method based on the theory of group representations is used for description of complex systems and their behavior in this work. The first trial of using the symmetry analysis in modeling of behavior of complex social system is presented. The evacuation of large building scenarios are discussed as transition from chaotic to ordered states, described as movements of individuals according to fields of displacements, calculated correspondingly to given scenario. The symmetry of the evacuation space is taken into account in calculation of displacements field - the displacements related to every point of this space are presented in the coordinate frame in the best way adapted to given symmetry space group, which is the set of basic vectors of irreducible representation of given symmetry group. The results got with using the symmetry consideration are compared with corresponding results calculated under assumption of shortest way to exits (Voronoi assumption).
International Nuclear Information System (INIS)
Ting, V.; Liu, Y.; Withers, R.L.; Krausz, E.
2004-01-01
A careful investigation has been carried out into the space group symmetries, structures and crystal chemistries of the 1:1 B-site ordered double perovskites A 2 InNbO 6 (A=Ca 2+ , Sr 2+ , Ba 2+ ) using a combination of bond valence sum calculations, powder XRD and electron diffraction. A recent investigation of these compounds by Yin et al. reported a random distribution of In 3+ and Nb 5+ ions onto the perovskite B-site positions of these compounds and hence Pm3-barm (a=a p , subscript p for parent perovskite sub-structure) space group symmetry for the A=Ba and Sr compounds and Pnma (a=a p +b p , b=-a p +b p , c=2c p ) space group symmetry for the A=Ca compound. A careful electron diffraction study, however, shows that both the A=Ca and Sr compounds occur at room temperature in P12 1 /n1 (a=a p +b p , b=-a p +b p , c=2c p ) perovskite-related superstructure phases while the A=Ba compound occurs in the Fm3-barm, a=2a p , elpasolite structure type. Bond valence sum calculations are used to explain why this should be so as well as to provide a useful first-order approximation to the structures of each of the compounds
Cohomology for Lagrangian systems and Noetherian symmetries
International Nuclear Information System (INIS)
Popp, O.T.
1989-06-01
Using the theory of sheaves we find some exact sequences describing the locally Lagrangian systems. Using cohomology theory of groups with coefficients in sheaves we obtain some exact sequences describing the Noetherian symmetries. It is shown how the results can be used to find all locally Lagrangian dynamics Noetherian invariant with respect to a given group of kinematical symmetries.(author)
Discrete Symmetries Analysis and Exact Solutions of the Inviscid Burgers Equation
Directory of Open Access Journals (Sweden)
Hongwei Yang
2012-01-01
Full Text Available We discuss the Lie point symmetries and discrete symmetries of the inviscid Burgers equation. By employing the Lie group method of infinitesimal transformations, symmetry reductions and similarity solutions of the governing equation are given. Based on discrete symmetries analysis, two groups of discrete symmetries are obtained, which lead to new exact solutions of the inviscid Burgers equation.
Ermolenko, Alexander E; Perepada, Elena A
2007-01-01
The paper contains a description of basic regularities in the manifestation of symmetry of human structural organization and its ontogenetic and phylogenetic development. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant. The symmetry of the chromosome, of the embrio at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described. An hypothesis is postulated that the two-plane symmetry is formed by two mechanisms: a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and, b) genetic mechanisms of the development of chromosomes having two-plane symmetry.
Exploiting Symmetry on Parallel Architectures.
Stiller, Lewis Benjamin
1995-01-01
This thesis describes techniques for the design of parallel programs that solve well-structured problems with inherent symmetry. Part I demonstrates the reduction of such problems to generalized matrix multiplication by a group-equivariant matrix. Fast techniques for this multiplication are described, including factorization, orbit decomposition, and Fourier transforms over finite groups. Our algorithms entail interaction between two symmetry groups: one arising at the software level from the problem's symmetry and the other arising at the hardware level from the processors' communication network. Part II illustrates the applicability of our symmetry -exploitation techniques by presenting a series of case studies of the design and implementation of parallel programs. First, a parallel program that solves chess endgames by factorization of an associated dihedral group-equivariant matrix is described. This code runs faster than previous serial programs, and discovered it a number of results. Second, parallel algorithms for Fourier transforms for finite groups are developed, and preliminary parallel implementations for group transforms of dihedral and of symmetric groups are described. Applications in learning, vision, pattern recognition, and statistics are proposed. Third, parallel implementations solving several computational science problems are described, including the direct n-body problem, convolutions arising from molecular biology, and some communication primitives such as broadcast and reduce. Some of our implementations ran orders of magnitude faster than previous techniques, and were used in the investigation of various physical phenomena.
Symposium Symmetries in Science XIII
Gruber, Bruno J; Yoshinaga, Naotaka; Symmetries in Science XI
2005-01-01
This book is a collection of reviews and essays about the recent developments in the area of Symmetries and applications of Group Theory. Contributions have been written mostly at the graduate level but some are accessible to advanced undergraduates. The book is of interest to a wide audience and covers a broad range of topics with a strong degree of thematical unity. The book is part of a Series of books on Symmetries in Science and may be compared to the published Proceedings of the Colloquia on Group Theoretical Methods in Physics. Here, however, prevails a distinguished character for presenting extended reviews on present applications to Science, not restricted to Theoretical Physics.
Symmetry gauge theory for paraparticles
International Nuclear Information System (INIS)
Kursawe, U.
1986-01-01
In the present thesis it was shown that for identical particles the wave function of which has a more complicated symmetry than it is the case at the known kinds of particles, the bosons and fermions, a gauge theory can be formulated, the so-called 'symmetry gauge theory'. This theory has its origin alone in the symmetry of the particle wave functions and becomes first relevant when more than two particles are considered. It was shown that for particles with mixed-symmetrical wave functions, so-called 'paraparticles', the quantum mechanical state is no more described by one Hilbert-space element but by a many-dimensional subspace of this Hilbert space. The gauge freedom consists then just in the freedom of the choice of the basis in this subspace, the corresponding gauge group is the group of the unitary basis transformation in this subspace. (orig./HSI) [de
International Nuclear Information System (INIS)
Webb, G M; Zank, G P
2007-01-01
We explore the role of the Lagrangian map for Lie symmetries in magnetohydrodynamics (MHD) and gas dynamics. By converting the Eulerian Lie point symmetries of the Galilei group to Lagrange label space, in which the Eulerian position coordinate x is regarded as a function of the Lagrange fluid labels x 0 and time t, one finds that there is an infinite class of symmetries in Lagrange label space that map onto each Eulerian Lie point symmetry of the Galilei group. The allowed transformation of the Lagrangian fluid labels x 0 corresponds to a fluid relabelling symmetry, including the case where there is no change in the fluid labels. We also consider a class of three, well-known, scaling symmetries for a gas with a constant adiabatic index γ. These symmetries map onto a modified form of the fluid relabelling symmetry determining equations, with non-zero source terms. We determine under which conditions these symmetries are variational or divergence symmetries of the action, and determine the corresponding Lagrangian and Eulerian conservation laws by use of Noether's theorem. These conservation laws depend on the initial entropy, density and magnetic field of the fluid. We derive the conservation law corresponding to the projective symmetry in gas dynamics, for the case γ = (n + 2)/n, where n is the number of Cartesian space coordinates, and the corresponding result for two-dimensional (2D) MHD, for the case γ = 2. Lie algebraic structures in Lagrange label space corresponding to the symmetries are investigated. The Lie algebraic symmetry relations between the fluid relabelling symmetries in Lagrange label space, and their commutators with a linear combination of the three symmetries with a constant adiabatic index are delineated
International Nuclear Information System (INIS)
Nilles, Hans Peter
2012-04-01
Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.
Energy Technology Data Exchange (ETDEWEB)
Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-04-15
Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.
Symmetry, asymmetry and dissymmetry
International Nuclear Information System (INIS)
Wackenheim, A.; Zollner, G.
1987-01-01
The authors discuss the concept of symmetry and defect of symmetry in radiological imaging and recall the definition of asymmetry (congenital or constitutional) and dissymmetry (acquired). They then describe a rule designed for the cognitive method of automatic evaluation of shape recognition data and propose the use of reversal symmetry [fr
International Nuclear Information System (INIS)
Fuentes Cobas, L.E.; Font Hernandez, R.
1993-01-01
An analytical treatment of electrostatic and magnetostatic field symmetry, as a function of charge and current distribution symmetry, is proposed. The Newmann Principle, related to the cause-effect symmetry relation, is presented and applied to the characterization of simple configurations. (Author) 5 refs
International Nuclear Information System (INIS)
Weinberg, S.
1976-01-01
The problem of how gauge symmetries of the weak interactions get broken is discussed. Some reasons why such a heirarchy of gauge symmetry breaking is needed, the reason gauge heirarchies do not seem to arise in theories of a given and related type, and the implications of theories with dynamical symmetry breaking, which can exhibit a gauge hierarchy
On the origin of neutrino flavour symmetry
International Nuclear Information System (INIS)
King, Stephen F.; Luhn, Christoph
2009-01-01
We study classes of models which are based on some discrete family symmetry which is completely broken such that the observed neutrino flavour symmetry emerges indirectly as an accidental symmetry. For such 'indirect' models we discuss the D-term flavon vacuum alignments which are required for such an accidental flavour symmetry consistent with tri-bimaximal lepton mixing to emerge. We identify large classes of suitable discrete family symmetries, namely the Δ(3n 2 ) and Δ(6n 2 ) groups, together with other examples such as Z 7 x Z 3 . In such indirect models the implementation of the type I see-saw mechanism is straightforward using constrained sequential dominance. However the accidental neutrino flavour symmetry may be easily violated, for example leading to a large reactor angle, while maintaining accurately the tri-bimaximal solar and atmospheric predictions.
Discrete symmetries in periodic-orbit theory
International Nuclear Information System (INIS)
Robbins, J.M.
1989-01-01
The application of periodic-orbit theory to systems which possess a discrete symmetry is considered. A semiclassical expression for the symmetry-projected Green's function is obtained; it involves a sum over classical periodic orbits on a symmetry-reduced phase space, weighted by characters of the symmetry group. These periodic orbits correspond to trajectories on the full phase space which are not necessarily periodic, but whose end points are related by symmetry. If the symmetry-projected Green's functions are summed, the contributions of the unperiodic orbits cancel, and one recovers the usual periodic-orbit sum for the full Green's function. Several examples are considered, including the stadium billiard, a particle in a periodic potential, the Sinai billiard, the quartic oscillator, and the rotational spectrum of SF 6
Structural symmetry and protein function.
Goodsell, D S; Olson, A J
2000-01-01
The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of
Directory of Open Access Journals (Sweden)
Tetsuo Deguchi
2011-06-01
Full Text Available We show some symmetry relations among the correlation functions of the integrable higher-spin XXX and XXZ spin chains, where we explicitly evaluate the multiple integrals representing the one-point functions in the spin-1 case. We review the multiple-integral representations of correlation functions for the integrable higher-spin XXZ chains derived in a region of the massless regime including the anti-ferromagnetic point. Here we make use of the gauge transformations between the symmetric and asymmetric R-matrices, which correspond to the principal and homogeneous gradings, respectively, and we send the inhomogeneous parameters to the set of complete 2s-strings. We also give a numerical support for the analytical expression of the one-point functions in the spin-1 case.
Lie symmetries in differential equations
International Nuclear Information System (INIS)
Pleitez, V.
1979-01-01
A study of ordinary and Partial Differential equations using the symmetries of Lie groups is made. Following such a study, an application to the Helmholtz, Line-Gordon, Korleweg-de Vries, Burguer, Benjamin-Bona-Mahony and wave equations is carried out [pt
Raibert, M H
1986-03-14
Symmetry plays a key role in simplifying the control of legged robots and in giving them the ability to run and balance. The symmetries studied describe motion of the body and legs in terms of even and odd functions of time. A legged system running with these symmetries travels with a fixed forward speed and a stable upright posture. The symmetries used for controlling legged robots may help in elucidating the legged behavior of animals. Measurements of running in the cat and human show that the feet and body sometimes move as predicted by the even and odd symmetry functions.
Kemeth, Felix P.; Haugland, Sindre W.; Krischer, Katharina
2018-05-01
Symmetry broken states arise naturally in oscillatory networks. In this Letter, we investigate chaotic attractors in an ensemble of four mean-coupled Stuart-Landau oscillators with two oscillators being synchronized. We report that these states with partially broken symmetry, so-called chimera states, have different setwise symmetries in the incoherent oscillators, and in particular, some are and some are not invariant under a permutation symmetry on average. This allows for a classification of different chimera states in small networks. We conclude our report with a discussion of related states in spatially extended systems, which seem to inherit the symmetry properties of their counterparts in small networks.
Parastatistics and gauge symmetries
International Nuclear Information System (INIS)
Govorkov, A.B.
1982-01-01
A possible formulation of gauge symmetries in the Green parafield theory is analysed and the SO(3) gauge symmetry is shown to be on a distinct status. The Greenberg paraquark hypothesis turns out to be not equivalent to the hypothesis of quark colour SU(3)sub(c) symmetry. Specific features of the gauge SO(3) symmetry are discussed, and a possible scheme where it is an exact subgroup of the broken SU(3)sub(c) symmetry is proposed. The direct formulation of the gauge principle for the parafield represented by quaternions is also discussed
Applications of chiral symmetry
International Nuclear Information System (INIS)
Pisarski, R.D.
1995-03-01
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T χ implies that the ρ and a 1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, m ρ (T χ ) > m ρ (0). The author conjectures that at T χ the thermal ρ - a 1 , peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by T χ . The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates
Noncompact symmetries in string theory
International Nuclear Information System (INIS)
Maharana, J.; Schwarz, J.H.
1993-01-01
Noncompact groups, similar to those that appeared in various supergravity theories in the 1970's have been turning up in recent studies of string theory. First it was discovered that moduli spaces of toroidal compactification are given by noncompact groups modded out by their maximal compact subgroups and discrete duality groups. Then it was found that many other moduli spaces have analogous descriptions. More recently, noncompact group symmetries have turned up in effective actions used to study string cosmology and other classical configurations. This paper explores these noncompact groups in the case of toroidal compactification both from the viewpoint of low-energy effective field theory, using the method of dimensional reduction, and from the viewpoint of the string theory world-sheet. The conclusion is that all these symmetries are intimately related. In particular, we find that Chern-Simons terms in the three-form field strength H μνρ play a crucial role. (orig.)
Symmetry breaking patterns for inflation
Klein, Remko; Roest, Diederik; Stefanyszyn, David
2018-06-01
We study inflationary models where the kinetic sector of the theory has a non-linearly realised symmetry which is broken by the inflationary potential. We distinguish between kinetic symmetries which non-linearly realise an internal or space-time group, and which yield a flat or curved scalar manifold. This classification leads to well-known inflationary models such as monomial inflation and α-attractors, as well as a new model based on fixed couplings between a dilaton and many axions which non-linearly realises higher-dimensional conformal symmetries. In this model, inflation can be realised along the dilatonic direction, leading to a tensor-to-scalar ratio r ˜ 0 .01 and a spectral index n s ˜ 0 .975. We refer to the new model as ambient inflation since inflation proceeds along an isometry of an anti-de Sitter ambient space-time, which fully determines the kinetic sector.
Hidden Symmetries of Stochastic Models
Directory of Open Access Journals (Sweden)
Boyka Aneva
2007-05-01
Full Text Available In the matrix product states approach to $n$ species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. The quadratic algebra defines a noncommutative space with a $SU_q(n$ quantum group action as its symmetry. Boundary processes amount to the appearance of parameter dependent linear terms in the algebraic relations and lead to a reduction of the $SU_q(n$ symmetry. We argue that the boundary operators of the asymmetric simple exclusion process generate a tridiagonal algebra whose irriducible representations are expressed in terms of the Askey-Wilson polynomials. The Askey-Wilson algebra arises as a symmetry of the boundary problem and allows to solve the model exactly.
International Nuclear Information System (INIS)
Gaiotto, Davide; Kapustin, Anton; Seiberg, Nathan; Willett, Brian
2015-01-01
A q-form global symmetry is a global symmetry for which the charged operators are of space-time dimension q; e.g. Wilson lines, surface defects, etc., and the charged excitations have q spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (q=0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a subgroup). They can also have ’t Hooft anomalies, which prevent us from gauging them, but lead to ’t Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. Our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.
Directory of Open Access Journals (Sweden)
Meng Cheng
2016-12-01
Full Text Available The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a “spinon” excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of “anyonic spin-orbit coupling,” which may arise from the interplay of translational and on-site symmetries. These include the possibility of on-site symmetry defect branch lines carrying topological charge per unit length and lattice dislocations inducing degeneracies protected by on-site symmetry.
Symmetry and symmetry breaking in quantum mechanics
International Nuclear Information System (INIS)
Chomaz, Philippe
1998-01-01
In the world of infinitely small, the world of atoms, nuclei and particles, the quantum mechanics enforces its laws. The discovery of Quanta, this unbelievable castration of the Possible in grains of matter and radiation, in discrete energy levels compels us of thinking the Single to comprehend the Universal. Quantum Numbers, magic Numbers and Numbers sign the wave. The matter is vibration. To describe the music of the world one needs keys, measures, notes, rules and partition: one needs quantum mechanics. The particles reduce themselves not in material points as the scholars of the past centuries thought, but they must be conceived throughout the space, in the accomplishment of shapes of volumes. When Einstein asked himself whether God plays dice, there was no doubt among its contemporaries that if He exists He is a geometer. In a Nature reduced to Geometry, the symmetries assume their role in servicing the Harmony. The symmetries allow ordering the energy levels to make them understandable. They impose there geometrical rules to the matter waves, giving them properties which sometimes astonish us. Hidden symmetries, internal symmetries and newly conceived symmetries have to be adopted subsequently to the observation of some order in this world of Quanta. In turn, the symmetries provide new observables which open new spaces of observation
Symmetries of Ginsparg-Wilson chiral fermions
International Nuclear Information System (INIS)
Mandula, Jeffrey E.
2009-01-01
The group structure of the variant chiral symmetry discovered by Luescher in the Ginsparg-Wilson description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism of this extended chiral group, and the CP transformation properties of the symmetry generators are found. The group has an infinite-parameter invariant subgroup, and the factor group, whose elements are its cosets, is isomorphic to the continuum chiral symmetry group. Features of the currents associated with these symmetries are discussed, including the fact that some different, noncommuting symmetry generators lead to the same Noether current. These are universal features of lattice chiral fermions based on the Ginsparg-Wilson relation; they occur in the overlap, domain-wall, and perfect-action formulations. In a solvable example, free overlap fermions, these noncanonical elements of lattice chiral symmetry are related to complex energy singularities that violate reflection positivity and impede continuation to Minkowski space.
Symmetries of collective models in intrinsic frame
International Nuclear Information System (INIS)
Gozdz, A.; Pedrak, A.; Szulerecka, A.; Dobrowolski, A.; Dudek, J.
2013-01-01
In the paper a very general definition of intrinsic frame, by means of group theoretical methods, is introduced. It allows to analyze nuclear properties which are invariant in respect to the group which defines the intrinsic frame. For example, nuclear shape is a well determined feature in the intrinsic frame defined by the Euclidean group. It is shown that using of intrinsic frame gives an opportunity to consider intrinsic nuclear symmetries which are independent of symmetries observed in the laboratory frame. An importance of the notion of partial symmetries is emphasized. (author)
Some general constraints on identical band symmetries
International Nuclear Information System (INIS)
Guidry, M.W.; Strayer, M.R.; Wu, C.; Feng, D.H.
1993-01-01
We argue on general grounds that nearly identical bands observed for superdeformation and less frequently for normal deformation must be explicable in terms of a symmetry having a microscopic basis. We assume that the unknown symmetry is associated with a Lie algebra generated by terms bilinear in fermion creation and annihilation operators. Observed features of these bands and the general properties of Lie groups are then used to place constraints on acceptable algebras. Additional constraints are placed by assuming that the collective spectrum is associated with a dynamical symmetry, and examining the subgroup structure required by phenomenology. We observe that requisite symmetry cannot be unitary, and that the simplest known group structures consistent with these minimal criteria are associated with the Ginocchio algebras employed in the fermion dynamical symmetry model. However, our arguments are general in nature, and we propose that they imply model-independent constraints on any candidate explanation for identical bands
Mirror symmetry and loop operators
Energy Technology Data Exchange (ETDEWEB)
Assel, Benjamin [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada)
2015-11-09
Wilson loops in gauge theories pose a fundamental challenge for dualities. Wilson loops are labeled by a representation of the gauge group and should map under duality to loop operators labeled by the same data, yet generically, dual theories have completely different gauge groups. In this paper we resolve this conundrum for three dimensional mirror symmetry. We show that Wilson loops are exchanged under mirror symmetry with Vortex loop operators, whose microscopic definition in terms of a supersymmetric quantum mechanics coupled to the theory encode in a non-trivial way a representation of the original gauge group, despite that the gauge groups of mirror theories can be radically different. Our predictions for the mirror map, which we derive guided by branes in string theory, are confirmed by the computation of the exact expectation value of Wilson and Vortex loop operators on the three-sphere.
International Nuclear Information System (INIS)
Arima, A.
2003-01-01
(1) There are symmetries in nature, and the concept of symmetry has been used in art and architecture. The symmetry is evaluated high in the European culture. In China, the symmetry is broken in the paintings but it is valued in the architecture. In Japan, however, the symmetry has been broken everywhere. The serious and interesting question is why these differences happens? (2) In this lecture, I reviewed from the very beginning the importance of the rotational symmetry in quantum mechanics. I am sorry to be too fundamental for specialists of nuclear physics. But for people who do not use these theories, I think that you could understand the mathematical aspects of quantum mechanics and the relation between the angular momentum and the rotational symmetry. (3) To the specialists of nuclear physics, I talked about my idea as follows: dynamical treatment of collective motions in nuclei by IBM, especially the meaning of the degeneracy observed in the rotation bands top of γ vibration and β vibration, and the origin of pseudo-spin symmetry. Namely, if there is a symmetry, a degeneracy occurs. Conversely, if there is a degeneracy, there must be a symmetry. I discussed some details of the observed evidence and this correspondence is my strong belief in physics. (author)
Symmetries of cluster configurations
International Nuclear Information System (INIS)
Kramer, P.
1975-01-01
A deeper understanding of clustering phenomena in nuclei must encompass at least two interrelated aspects of the subject: (A) Given a system of A nucleons with two-body interactions, what are the relevant and persistent modes of clustering involved. What is the nature of the correlated nucleon groups which form the clusters, and what is their mutual interaction. (B) Given the cluster modes and their interaction, what systematic patterns of nuclear structure and reactions emerge from it. Are there, for example, families of states which share the same ''cluster parents''. Which cluster modes are compatible or exclude each other. What quantum numbers could characterize cluster configurations. There is no doubt that we can learn a good deal from the experimentalists who have discovered many of the features relevant to aspect (B). Symmetries specific to cluster configurations which can throw some light on both aspects of clustering are discussed
Stringy origin of non-Abelian discrete flavor symmetries
International Nuclear Information System (INIS)
Kobayashi, Tatsuo; Nilles, Hans Peter; Ploeger, Felix; Raby, Stuart; Ratz, Michael
2007-01-01
We study the origin of non-Abelian discrete flavor symmetries in superstring theory. We classify all possible non-Abelian discrete flavor symmetries which can appear in heterotic orbifold models. These symmetries include D 4 and Δ(54). We find that the symmetries of the couplings are always larger than the symmetries of the compact space. This is because they are a consequence of the geometry of the orbifold combined with the space group selection rules of the string. We also study possible breaking patterns. Our analysis yields a simple geometric understanding of the realization of non-Abelian flavor symmetries
Dynamics symmetries of Hamiltonian system on time scales
Energy Technology Data Exchange (ETDEWEB)
Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)
2014-04-15
In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.
Discrete symmetries and their stringy origin
International Nuclear Information System (INIS)
Mayorga Pena, Damian Kaloni
2014-05-01
Discrete symmetries have proven to be very useful in controlling the phenomenology of theories beyond the standard model. In this work we explore how these symmetries emerge from string compactifications. Our approach is twofold: On the one hand, we consider the heterotic string on orbifold backgrounds. In this case the discrete symmetries can be derived from the orbifold conformal field theory, and it can be shown that they are in close relation with the orbifold geometry. We devote special attention to R-symmetries, which arise from discrete remnants of the Lorentz group in compact space. Further we discuss the physical implications of these symmetries both in the heterotic mini-landscape and in newly constructed models based on the Z 2 x Z 4 orbifold. In both cases we observe that the discrete symmetries favor particular locations in the orbifold where the particles of standard model should live. On the other hand we consider a class of F-theory models exhibiting an SU(5) gauge group, times additional U(1) symmetries. In this case, the smooth compactification background does not permit us to track the discrete symmetries as transparently as in orbifold models. Hence, we follow a different approach and search for discrete subgroups emerging after the U(1)s are broken. We observe that in this approach it is possible to obtain the standard Z 2 matter parity of the MSSM.
From physical symmetries to emergent gauge symmetries
International Nuclear Information System (INIS)
Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.
2016-01-01
Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.
Harris, A. Brooks
2006-01-01
This paper represents a detailed instruction manual for constructing the Landau expansion for magnetoelectric coupling in incommensurate ferroelectric magnets. The first step is to describe the magnetic ordering in terms of symmetry adapted coordinates which serve as complex valued magnetic order parameters whose transformation properties are displayed. In so doing we use the previously proposed technique to exploit inversion symmetry, since this symmetry had been universally overlooked. Havi...
Anomalous Symmetry Fractionalization and Surface Topological Order
Directory of Open Access Journals (Sweden)
Xie Chen
2015-10-01
Full Text Available In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain “anomalous” SETs can only occur on the surface of a 3D symmetry-protected topological (SPT phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H^{4}(G,U(1, which also precisely labels the set of 3D SPT phases, with symmetry group G. An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U(1_{2}] topological order with a reduced symmetry Z_{2}×Z_{2}⊂SO(3, which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.
Quantized Response and Topological Magnetic Insulators with Inversion Symmetry
Turner, A.M.; Zhang, Y.; Mong, R.S.K.; Vishwanath, A.
2012-01-01
We study three-dimensional insulators with inversion symmetry in which other point group symmetries, such as time reversal, are generically absent. We find that certain information about such materials’ behavior is determined by just the eigenvalues under inversion symmetry of occupied states at
The zonal satellite problem. III Symmetries
Directory of Open Access Journals (Sweden)
Mioc V.
2002-01-01
Full Text Available The two-body problem associated with a force field described by a potential of the form U =Sum(k=1,n ak/rk (r = distance between particles, ak = real parameters is resumed from the only standpoint of symmetries. Such symmetries, expressed in Hamiltonian coordinates, or in standard polar coordinates, are recovered for McGehee-type coordinates of both collision-blow-up and infinity-blow-up kind. They form diffeomorphic commutative groups endowed with a Boolean structure. Expressed in Levi-Civita’s coordinates, the problem exhibits a larger group of symmetries, also commutative and presenting a Boolean structure.
Ermakov's Superintegrable Toy and Nonlocal Symmetries
Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.
2005-11-01
We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
Ermakov's Superintegrable Toy and Nonlocal Symmetries
Directory of Open Access Journals (Sweden)
P.G.L. Leach
2005-11-01
Full Text Available We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R. The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
Atomic Nuclei with Tetrahedral and Octahedral Symmetries
International Nuclear Information System (INIS)
Dudek, J.; Gozdz, A.; Schunck, N.
2003-01-01
We present possible manifestations of octahedral and tetrahedral symmetries in nuclei. These symmetries are associated with the O D h and T D d double point groups. Both of them have very characteristic finger-prints in terms of the nucleonic level properties - unique in the Fermionic universe. The tetrahedral symmetry leads to the four-fold degeneracies in the nucleonic spectra; it does not preserve the parity. The octahedral symmetry leads to the four-fold degeneracies in the nucleonic spectra as well but it does preserve the parity. Microscopic predictions have been obtained using mean-field theory based on the relativistic equations and confirmed by using ''traditional'' Schrodinger equation formalism. Calculations are performed in multidimensional deformation spaces using newly designed algorithms. We discuss some experimental fingerprints of the hypothetical new symmetries and possibilities of their verification through experiments. (author)
International Nuclear Information System (INIS)
Choi, K.; Kaplan, D.B.; Nelson, A.E.
1993-01-01
Conventional solutions to the strong CP problem all require the existence of global symmetries. However, quantum gravity may destroy global symmetries, making it hard to understand why the electric dipole moment of the neutron (EDMN) is so small. We suggest here that CP is actually a discrete gauge symmetry, and is therefore not violated by quantum gravity. We show that four-dimensional CP can arise as a discrete gauge symmetry in theories with dimensional compactification, if the original number of Minkowski dimensions equals 8k+1, 8k+2 or 8k+3, and if there are certain restrictions on the gauge group; these conditions are met by superstrings. CP may then be broken spontaneously below 10 9 GeV, explaining the observed CP violation in the kaon system without inducing a large EDMN. We discuss the phenomenology of such models, as well as the peculiar properties of cosmic 'SP strings' which could be produced at the compactification scale. Such strings have the curious property that a particle carried around the string is turned into its CP conjugate. A single CP string renders four-dimensional space-time nonorientable. (orig.)
Lie-algebra approach to symmetry breaking
International Nuclear Information System (INIS)
Anderson, J.T.
1981-01-01
A formal Lie-algebra approach to symmetry breaking is studied in an attempt to reduce the arbitrariness of Lagrangian (Hamiltonian) models which include several free parameters and/or ad hoc symmetry groups. From Lie algebra it is shown that the unbroken Lagrangian vacuum symmetry can be identified from a linear function of integers which are Cartan matrix elements. In broken symmetry if the breaking operators form an algebra then the breaking symmetry (or symmetries) can be identified from linear functions of integers characteristic of the breaking symmetries. The results are applied to the Dirac Hamiltonian of a sum of flavored fermions and colored bosons in the absence of dynamical symmetry breaking. In the partially reduced quadratic Hamiltonian the breaking-operator functions are shown to consist of terms of order g 2 , g, and g 0 in the color coupling constants and identified with strong (boson-boson), medium strong (boson-fermion), and fine-structure (fermion-fermion) interactions. The breaking operators include a boson helicity operator in addition to the familiar fermion helicity and ''spin-orbit'' terms. Within the broken vacuum defined by the conventional formalism, the field divergence yields a gauge which is a linear function of Cartan matrix integers and which specifies the vacuum symmetry. We find that the vacuum symmetry is chiral SU(3) x SU(3) and the axial-vector-current divergence gives a PCAC -like function of the Cartan matrix integers which reduces to PCAC for SU(2) x SU(2) breaking. For the mass spectra of the nonets J/sup P/ = 0 - ,1/2 + ,1 - the integer runs through the sequence 3,0,-1,-2, which indicates that the breaking subgroups are the simple Lie groups. Exact axial-vector-current conservation indicates a breaking sum rule which generates octet enhancement. Finally, the second-order breaking terms are obtained from the second-order spin tensor sum of the completely reduced quartic Hamiltonian
Arithmetic crystal classes of magnetic symmetries
International Nuclear Information System (INIS)
Angelova, M.N.; Boyle, L.L.
1993-01-01
The symmetries and properties of a broad class of magnetic crystals are described by magnetic space groups which contain both (unitary) spatial symmetry operations and their combinations with the (anti-unitary operation of) time inversion, 0. The spatial symmetry operations form a halving, non-magnetic, space group H of the magnetic group M such that M=H+aH. As an abstract group the magnetic group M is isomorphic to a non-magnetic group G. The anti-unitary operator a is simply the time inversion 0 when M is a grey group but a product of time inversion with some spatial operation belonging to the coset G-H when M is a black-and-white group. (Author)
Automorphic Lie algebras with dihedral symmetry
International Nuclear Information System (INIS)
Knibbeler, V; Lombardo, S; A Sanders, J
2014-01-01
The concept of automorphic Lie algebras arises in the context of reduction groups introduced in the early 1980s in the field of integrable systems. automorphic Lie algebras are obtained by imposing a discrete group symmetry on a current algebra of Krichever–Novikov type. Past work shows remarkable uniformity between algebras associated to different reduction groups. For example, if the base Lie algebra is sl 2 (C) and the poles of the automorphic Lie algebra are restricted to an exceptional orbit of the symmetry group, changing the reduction group does not affect the Lie algebra structure. In this research we fix the reduction group to be the dihedral group and vary the orbit of poles as well as the group action on the base Lie algebra. We find a uniform description of automorphic Lie algebras with dihedral symmetry, valid for poles at exceptional and generic orbits. (paper)
International Nuclear Information System (INIS)
Haxton, W.C.
1988-01-01
I discuss a number of the themes of the Symmetries and Spin session of the 8th International Symposium on High Energy Spin Physics: parity nonconservation, CP/T nonconservation, and tests of charge symmetry and charge independence. 28 refs., 1 fig
2016-01-01
The Symmetry Festival is a science and art program series, the most important periodic event (see its history) to bring together scientists, artists, educators and practitioners interested in symmetry (its roots, what is behind, applications, etc.), or in the consequences of its absence.
Wigner's Symmetry Representation Theorem
Indian Academy of Sciences (India)
IAS Admin
At the Heart of Quantum Field Theory! Aritra Kr. ... principle of symmetry was not held as something very fundamental ... principle of local symmetry: the laws of physics are invariant un- .... Next, we would show that different coefficients of a state ...
Charged fluids with symmetries
Indian Academy of Sciences (India)
It is possible to introduce many types of symmetries on the manifold which restrict the ... metric tensor field and generate constants of the motion along null geodesics .... In this analysis we have studied the role of symmetries for charged perfect ...
Marchis, Iuliana
2009-01-01
Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.
A search for symmetries in the genetic code
International Nuclear Information System (INIS)
Hornos, J.E.M.; Hornos, Y.M.M.
1991-01-01
A search for symmetries based on the classification theorem of Cartan for the compact simple Lie algebras is performed to verify to what extent the genetic code is a manifestation of some underlying symmetry. An exact continuous symmetry group cannot be found to reproduce the present, universal code. However a unique approximate symmetry group is compatible with codon assignment for the fundamental amino acids and the termination codon. In order to obtain the actual genetic code, the symmetry must be slightly broken. (author). 27 refs, 3 figs, 6 tabs
Symmetry and fermion degeneracy on a lattice
International Nuclear Information System (INIS)
Raszillier, H.
1982-03-01
In this paper we consider the general form of finite difference approximation to the Dirac (Weyl) Hamiltonian on a lattice and investigate systematically the dependence on symmetry of the number of particles described by it. Our result is, that to a symmetry - expressed by a crystallographic space group - there corresponds a minimal number of particles, which are associated to prescribed points of momentum space (the unit cell of the reciprocal lattice). For convenience of the reader we show, using the existing detailed descriptions of space groups, how these results look for all the relevant (symmorphic) symmetry groups. Only for lattice Hamiltonians with a momentum dependent mass term can this degeneracy be reduced and even eliminated without reducing the symmetry. (orig./HSI)
Symbolic Detection of Permutation and Parity Symmetries of Evolution Equations
Alghamdi, Moataz
2017-06-18
We introduce a symbolic computational approach to detecting all permutation and parity symmetries in any general evolution equation, and to generating associated invariant polynomials, from given monomials, under the action of these symmetries. Traditionally, discrete point symmetries of differential equations are systemically found by solving complicated nonlinear systems of partial differential equations; in the presence of Lie symmetries, the process can be simplified further. Here, we show how to find parity- and permutation-type discrete symmetries purely based on algebraic calculations. Furthermore, we show that such symmetries always form groups, thereby allowing for the generation of new group-invariant conserved quantities from known conserved quantities. This work also contains an implementation of the said results in Mathematica. In addition, it includes, as a motivation for this work, an investigation of the connection between variational symmetries, described by local Lie groups, and conserved quantities in Hamiltonian systems.
Symmetry breaking by bifundamentals
Schellekens, A. N.
2018-03-01
We derive all possible symmetry breaking patterns for all possible Higgs fields that can occur in intersecting brane models: bifundamentals and rank-2 tensors. This is a field-theoretic problem that was already partially solved in 1973 by Ling-Fong Li [1]. In that paper the solution was given for rank-2 tensors of orthogonal and unitary group, and U (N )×U (M ) and O (N )×O (M ) bifundamentals. We extend this first of all to symplectic groups. When formulated correctly, this turns out to be straightforward generalization of the previous results from real and complex numbers to quaternions. The extension to mixed bifundamentals is more challenging and interesting. The scalar potential has up to six real parameters. Its minima or saddle points are described by block-diagonal matrices built out of K blocks of size p ×q . Here p =q =1 for the solutions of Ling-Fong Li, and the number of possibilities for p ×q is equal to the number of real parameters in the potential, minus 1. The maximum block size is p ×q =2 ×4 . Different blocks cannot be combined, and the true minimum occurs for one choice of basic block, and for either K =1 or K maximal, depending on the parameter values.
International Nuclear Information System (INIS)
O'Raifeartaigh, L.
1979-01-01
This review describes the principles of hidden gauge symmetry and of its application to the fundamental interactions. The emphasis is on the structure of the theory rather than on the technical details and, in order to emphasise the structure, gauge symmetry and hidden symmetry are first treated as independent phenomena before being combined into a single (hidden gauge symmetric) theory. The main application of the theory is to the weak and electromagnetic interactions of the elementary particles, and although models are used for comparison with experiment and for illustration, emphasis is placed on those features of the application which are model-independent. (author)
Sequential flavor symmetry breaking
International Nuclear Information System (INIS)
Feldmann, Thorsten; Jung, Martin; Mannel, Thomas
2009-01-01
The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.
Sequential flavor symmetry breaking
Feldmann, Thorsten; Jung, Martin; Mannel, Thomas
2009-08-01
The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.
Schwichtenberg, Jakob
2015-01-01
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.
Nanostructure symmetry: Relevance for physics and computing
International Nuclear Information System (INIS)
Dupertuis, Marc-André; Oberli, D. Y.; Karlsson, K. F.; Dalessi, S.; Gallinet, B.; Svendsen, G.
2014-01-01
We review the research done in recent years in our group on the effects of nanostructure symmetry, and outline its relevance both for nanostructure physics and for computations of their electronic and optical properties. The exemples of C3v and C2v quantum dots are used. A number of surprises and non-trivial aspects are outlined, and a few symmetry-based tools for computing and analysis are shortly presented
Nanostructure symmetry: Relevance for physics and computing
Energy Technology Data Exchange (ETDEWEB)
Dupertuis, Marc-André; Oberli, D. Y. [Laboratory for Physics of Nanostructure, EPF Lausanne (Switzerland); Karlsson, K. F. [Department of Physics, Chemistry, and Biology (IFM), Linköping University (Sweden); Dalessi, S. [Computational Biology Group, Department of Medical Genetics, University of Lausanne (Switzerland); Gallinet, B. [Nanophotonics and Metrology Laboratory, EPF Lausanne (Switzerland); Svendsen, G. [Dept. of Electronics and Telecom., Norwegian University of Science and Technology, Trondheim (Norway)
2014-03-31
We review the research done in recent years in our group on the effects of nanostructure symmetry, and outline its relevance both for nanostructure physics and for computations of their electronic and optical properties. The exemples of C3v and C2v quantum dots are used. A number of surprises and non-trivial aspects are outlined, and a few symmetry-based tools for computing and analysis are shortly presented.
International Nuclear Information System (INIS)
Dragon, N.
1979-01-01
The possible use of trilinear algebras as symmetry algebras for para-Fermi fields is investigated. The shortcomings of the examples are argued to be a general feature of such generalized algebras. (author)
Gauge symmetry from decoupling
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-02-01
Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
Segmentation Using Symmetry Deviation
DEFF Research Database (Denmark)
Hollensen, Christian; Højgaard, L.; Specht, L.
2011-01-01
of the CT-scans into a single atlas. Afterwards the standard deviation of anatomical symmetry for the 20 normal patients was evaluated using non-rigid registration and registered onto the atlas to create an atlas for normal anatomical symmetry deviation. The same non-rigid registration was used on the 10...... hypopharyngeal cancer patients to find anatomical symmetry and evaluate it against the standard deviation of the normal patients to locate pathologic volumes. Combining the information with an absolute PET threshold of 3 Standard uptake value (SUV) a volume was automatically delineated. The overlap of automated....... The standard deviation of the anatomical symmetry, seen in figure for one patient along CT and PET, was extracted for normal patients and compared with the deviation from cancer patients giving a new way of determining cancer pathology location. Using the novel method an overlap concordance index...
Wigner's Symmetry Representation Theorem
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...
Dynamical symmetries for fermions
International Nuclear Information System (INIS)
Guidry, M.
1989-01-01
An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E 2 ) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and ''exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs
Applications of Symmetry Methods to the Theory of Plasma Physics
Directory of Open Access Journals (Sweden)
Giampaolo Cicogna
2006-02-01
Full Text Available The theory of plasma physics offers a number of nontrivial examples of partial differential equations, which can be successfully treated with symmetry methods. We propose three different examples which may illustrate the reciprocal advantage of this "interaction" between plasma physics and symmetry techniques. The examples include, in particular, the complete symmetry analysis of system of two PDE's, with the determination of some conditional and partial symmetries, the construction of group-invariant solutions, and the symmetry classification of a nonlinear PDE.
Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun
2014-05-07
methodology, there is fertile ground to consider a symmetry model for genetic coding based on our specific wallpaper group. A more integrated formulation containing "central dogma" for future molecular/genetic biology remains to be explored.
Dynamical symmetry breakdown in SU(5) and SO(10)
International Nuclear Information System (INIS)
Shellard, R.C.
1983-09-01
Some restrictions imposed upon Grand Unified Theories by dynamical symmetry breakdown are examined. It is observed in particular, that theories with SU(5) as symmetry group, with 3 or more fermion families undergo dynamical symmetry breakdown, and some of the fermions will acquire mass at the Grand Unified scale. On the other hand, the SO(10) group, with 3 families is free from this problem. (Author) [pt
Tracking gauge symmetry factorizability on intervals
International Nuclear Information System (INIS)
Ngoc-Khanh Tran
2006-01-01
We track the gauge symmetry breaking pattern by boundary conditions on fifth and higher-dimensional intervals. It is found that, with Dirichlet-Neumann boundary conditions, the Kaluza-Klein decomposition in five-dimension for arbitrary gauge group can always be factorized into that for separate subsets of at most two gauge symmetries, and so is completely solvable. Accordingly, we present a simple and systematic geometric method to unambiguously identify the gauge breaking/mixing content by general set of Dirichlet-Neumann boundary conditions. We then formulate a limit theorem on gauge symmetry factorizability to recapitulate this interesting feature. Albeit the breaking/mixing, a particularly simple check of orthogonality and normalization of fields' modes in effective 4-dim picture is explicitly obtained. An interesting chained-mixing of gauge symmetries in higher dimensions by Dirichlet-Neumann boundary conditions is also explicitly constructed. This study has direct applications to higgsless/GUT model building
Symmetry breaking in gauge glasses
International Nuclear Information System (INIS)
Hansen, K.
1988-09-01
In order to explain why nature selects the gauge groups of the Standard Model, Brene and Nielsen have proposed a way to break gauge symmetry which does not rely on the existence of a Higgs field. The observed gauge groups will in this scheme appear as the only surviving ones when this mechanism is applied to a random selection of gauge groups. The essential assumption is a discrete space-time with random couplings. Some working assumptions were made for computational reasons of which the most important is that quantum fluctuations were neclected. This work presents an example which under the same conditions show that a much wider class of groups than predicted by Brene and Nielsen will be broken. In particular no possible Standard Model Group survives unbroken. Numerical calculations support the analytical result. (orig.)
Antiunitary symmetry operators in quantum mechanics
International Nuclear Information System (INIS)
Carinena, J.F.; Santander, M.
1981-01-01
A criterion to decide that some symmetries of a quantum system must be realized as antiunitary operators is given. It is based on some mathematical theorems about the second cohomology group of the symmetry group when expressed in terms of those of a normal subgroup and the corresponding factor group. It is also shown that this criterion implies that the only possibility for the unitary subgroup in the Galilean case is that generated by the space reflection and the connected component containing the identity; otherwise only massless systems would arise. (author)
Quantum Space-Time Deformed Symmetries Versus Broken Symmetries
Amelino-Camelia, G
2002-01-01
Several recent studies have concerned the faith of classical symmetries in quantum space-time. In particular, it appears likely that quantum (discretized, noncommutative,...) versions of Minkowski space-time would not enjoy the classical Lorentz symmetries. I compare two interesting cases: the case in which the classical symmetries are "broken", i.e. at the quantum level some classical symmetries are lost, and the case in which the classical symmetries are "deformed", i.e. the quantum space-time has as many symmetries as its classical counterpart but the nature of these symmetries is affected by the space-time quantization procedure. While some general features, such as the emergence of deformed dispersion relations, characterize both the symmetry-breaking case and the symmetry-deformation case, the two scenarios are also characterized by sharp differences, even concerning the nature of the new effects predicted. I illustrate this point within an illustrative calculation concerning the role of space-time symm...
Symmetry of priapulids (Priapulida). 2. Symmetry of larvae.
Adrianov, A V; Malakhov, V V
2001-02-01
Larvae of priapulids are characterized by radial symmetry evident from both external and internal characters of the introvert and lorica. The bilaterality appears as a result of a combination of several radial symmetries: pentaradial symmetry of the teeth, octaradial symmetry of the primary scalids, 25-radial symmetry of scalids, biradial symmetry of the neck, and biradial and decaradial symmetry of the trunk. Internal radiality is exhibited by musculature and the circumpharyngeal nerve ring. Internal bilaterality is evident from the position of the ventral nerve cord and excretory elements. Externally, the bilaterality is determined by the position of the anal tubulus and two shortened midventral rows of scalids bordering the ventral nerve cord. The lorical elements define the biradial symmetry that is missing in adult priapulids. The radial symmetry of larvae is a secondary appearance considered an evolutionary adaptation to a lifestyle within the three-dimensional environment of the benthic sediment. Copyright 2001 Wiley-Liss, Inc.
The priority of internal symmetries in particle physics
Kantorovich, Aharon
2003-12-01
In this paper, I try to decipher the role of internal symmetries in the ontological maze of particle physics. The relationship between internal symmetries and laws of nature is discussed within the framework of ;Platonic realism.; The notion of physical ;structure; is introduced as representing a deeper ontological layer behind the observable world. I argue that an internal symmetry is a structure encompassing laws of nature. The application of internal symmetry groups to particle physics came about in two revolutionary steps. The first was the introduction of the internal symmetries of hadrons in the early 1960s. These global and approximate symmetries served as means of bypassing the dynamics. I argue that the realist could interpret these symmetries as ontologically prior to the hadrons. The second step was the gauge revolution in the 1970s, where symmetries became local and exact and were integrated with the dynamics. I argue that the symmetries of the second generation are fundamental in the following two respects: (1) According to the so-called ;gauge argument,; gauge symmetry dictates the existence of gauge bosons, which determine the nature of the forces. This view, which has been recently criticized by some philosophers, is widely accepted in particle physics at least as a heuristic principle. (2) In view of grand unified theories, the new symmetries can be interpreted as ontologically prior to baryon matter.
Schwichtenberg, Jakob
2018-01-01
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations. .
Symmetry Analysis and Exact Solutions of (2+1)-Dimensional Sawada-Kotera Equation
International Nuclear Information System (INIS)
Zhi Hongyan; Zhang Hongqing
2008-01-01
Based on the symbolic computation system Maple, the infinite-dimensional symmetry group of the (2+1)-dimensional Sawada-Kotera equation is found by the classical Lie group method and the characterization of the group properties is given. The symmetry groups are used to perform the symmetry reduction. Moreover, with Lou's direct method that is based on Lax pairs, we obtain the symmetry transformations of the Sawada-Kotera and Konopelchenko-Dubrovsky equations, respectively.
Symmetries and retracts of quantum logics
International Nuclear Information System (INIS)
Kallus, M.; Trnkova, V.
1987-01-01
The authors prove that there are arbitrarily many quantum logics, none of which is similar to a part of another and each of which has the group of all symmetries isomorphic to a given abstract group. Moreover, each of them contains a given logic with atomic blocks as its sublogic
Symmetries of string, M- and F-theories
Bergshoeff, Eric; Proeyen, Antoine Van
2001-01-01
The d = 10 type II string theories, d = 11 M-theory and d = 12 F-theory have the same symmetry group. It can be viewed either as a subgroup of a conformal group OSp(1|64) or as a contraction of OSp(1|32). The theories are related by different identifications of their symmetry operators as generators
CONSEQUENCES OF SYMMETRY GROUPS FOR ELECTROMAGNETIC PROPERTIES
Energy Technology Data Exchange (ETDEWEB)
MacFarlane, A. J.; Sudarshan, E. C.G.
1963-06-15
The electromagnetic properties of SU/sub 3/ supermultiplets are obtained formally by a unitary transformation of a theory whose SU/sub 3/ invariant strong interactions are perturbed by merely charge-independent interactions. Several new results are presented, but the emphasis is on the simplicity and power of the method. Electromagnetic properties of the first and second kinds are distinguished, the former being independent of the precise manner in which the particular electromagnetic property depends on the electric charge current density. It is shown that all except two relations between the magnetic moments of the baryon octet hold equally well for other electromagnetic properties like self energies and Compton scattering amplitudes. (auth)
Operational symmetries basic operations in physics
Saller, Heinrich
2017-01-01
This book describes the endeavour to relate the particle spectrum with representations of operational electroweak spacetime, in analogy to the atomic spectrum as characterizing representations of hyperbolic space. The spectrum of hyperbolic position space explains the properties of the nonrelativistic atoms; the spectrum of electroweak spacetime is hoped to explain those of the basic interactions and elementary particles. In this book, the theory of operational symmetries is developed from the numbers, from Plato’s and Kepler’s symmetries over the simple Lie groups to their applications in nonrelativistic, special relativistic and general relativistic quantum theories with the atomic spectrum for hyperbolic position and, in first attempts, the particle spectrum for electroweak spacetime. The standard model of elementary particles and interactions is characterized by a symmetry group. In general, as initiated by Weyl and stressed by Heisenberg, quantum theory can be built as a theory of operation groups an...
Symmetry, structure, and spacetime
Rickles, Dean
2007-01-01
In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational
Symmetries and Dirac equation solutions
International Nuclear Information System (INIS)
Souza, Marcio Lima de.
1991-06-01
The purpose of this thesis is the extension to be relativistic case of a method that has proved useful for the solution of various potential problems in non relativistic situation. This method, the method of dynamical symmetries, is based on the Baker-Campbell-Hausdorf formulae and developed first for the particular example of the relativistic Coulomb problem. Here we generalize the method for a Hamiltonian that can be written as a linear combination of generators of the SO(2,1) group. As illustrative examples, we solve the problem of a charged particle in a constant magnetic field and the exponential magnetic field. (author). 21 refs
History of electroweak symmetry breaking
International Nuclear Information System (INIS)
Kibble, T W B
2015-01-01
In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012. (paper)
The weak-scale hierarchy and discrete symmetries
International Nuclear Information System (INIS)
Haba, Naoyuki; Matsuoka, Takeo; Hattori, Chuichiro; Matsuda, Masahisa; Mochinaga, Daizo.
1996-01-01
In the underlying Planck scale theory, we introduce a certain type of discrete symmetry, which potentially brings the stability of the weak-scale hierarchy under control. Under the discrete symmetry the μ-problem and the tadpole problem can be solved simultaneously without relying on some fine-tuning of parameters. Instead, it is required that doublet Higgs and color-triplet Higgs fields reside in different irreducible representations of the gauge symmetry group at the Planck scale and that they have distinct charges of the discrete symmetry group. (author)
Energy Technology Data Exchange (ETDEWEB)
Miller, G.A. [Department of Physics, University of Washington, Seattle (United States); Kolck, U. van [Department of Physics, University of Arizona, Tucson (United States)
2003-06-01
production of neutral pi-mesons (pions) when a neutron is captured by a proton in a hydrogen target to form a deuteron. The probability, or cross-section, for this n + p {yields} d + {pi}{sup 0} reaction to occur depends on the angle between the momentum of the outgoing pion and that of the incident neutron beam. Another experimental team, led by Andy Bacher and Ed Stephenson at Indiana University in the US. Since the 1950s experimentalists have been trying to detect the formation of a neutral pion and an alpha particle in the fusion of two deuterons, d + d {yields} {alpha} +{pi}{sup 0}. The experiment was approved and everything was set and ready, except for the fact that the IUCF was already scheduled to be transformed into a materials and medical research facility. Bacher and Stephenson's team worked frantically for two months and finally produced two separate observations of a beautiful peak at exactly the right pion energy. Their experimental cross-section is almost the same as our estimate, and this measurement of such a small charge-symmetry-breaking probability is an immense technical achievement. Now the ball is back in the theorists' court. A large group, including Antonio Fonseca at the University of Lisbon in Portugal, Anders Gardestig and Chuck Horowitz at Indiana University, Andreas Nogga at the University of Arizona, and the present authors, is carrying out the task of turning the initial estimate of the cross-section of the d + d {yields} {alpha} +{pi}{sup 0} reaction into a reliable calculation. The same charge-symmetry-breaking mechanisms contribute to both the TRIUMF and IUCF experiments, which means that together they can provide important information on the mass difference between up and down quarks. The origin of the quark masses is not fully understood. In the Standard Model of particle physics, the Higgs mechanism allows the generation of such masses but it cannot predict the actual mass values. This is like having a recipe to make cookies
Spinor Structure and Internal Symmetries
Varlamov, V. V.
2015-10-01
Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries P, T and their combination PT are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation C is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation C allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincaré group and SU(3)-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of SU(3)). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of SU(3)-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann-Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.
Quasi Hopf quantum symmetry in quantum theory
International Nuclear Information System (INIS)
Mack, G.; Schomerus, V.
1991-05-01
In quantum theory, internal symmetries more general than groups are possible. We show that quasitriangular quasi Hopf algebras G * as introduced by Drinfeld permit a consistent formulation of a transformation law of states in the physical Hilbert space H, of invariance of the ground state, and of a transformation law of field operators which is consistent with local braid relations of field operators as proposed by Froehlich. All this remains true when Drinfelds axioms are suitably weakened in order to build in truncated tensor products. Conversely, all the axioms of a weak quasitriangular quasi Hopf algebra are motivated from what physics demands of a symmetry. Unitarity requires in addition that G * admits a * -operation with certain properties. Invariance properties of Greens functions follow from invariance of the ground state and covariance of field operators as usual. Covariant adjoints and covariant products of field operators can be defined. The R-matrix elements in the local braid relations are in general operators in H. They are determined by the symmetry up to a phase factor. Quantum group algebras like U q (sl 2 ) with vertical strokeqvertical stroke=1 are examples of symmetries with special properties. We show that a weak quasitriangular quasi Hopf algebra G * is canonically associated with U q (sl 2 ) if q P =-1. We argue that these weak quasi Hopf algebras are the true symmetries of minimal conformal models. Their dual algebras G ('functions on the group') are neither commutative nor associative. (orig.)
Symmetry-adapted Liouville space. Pt. 7
International Nuclear Information System (INIS)
Temme, F.P.
1990-01-01
In examining nuclear spin dynamics of NMR spin clusters in density operator/generalized torque formalisms over vertical strokekqv>> operator bases of Liouville space, it is necessary to consider the symmetry mappings and carrier spaces under a specialized group for such (k i = 1) nuclear spin clusters. The SU2 X S n group provides the essential mappings and the form of H carrier space, which allows one to: (a) draw comparisons with Hilbert space duality, and (b) outline the form of the Coleman-Kotani genealogical hierarchy under induced S n -symmetry. (orig.)
Deformations of spacetime and internal symmetries
Directory of Open Access Journals (Sweden)
Gresnigt Niels G.
2017-01-01
Full Text Available Algebraic deformations provide a systematic approach to generalizing the symmetries of a physical theory through the introduction of new fundamental constants. The applications of deformations of Lie algebras and Hopf algebras to both spacetime and internal symmetries are discussed. As a specific example we demonstrate how deforming the classical flavor group S U(3 to the quantum group S Uq(3 ≡ U q (su(3 (a Hopf algebra and taking into account electromagnetic mass splitting within isospin multiplets leads to new and exceptionally accurate baryon mass sum rules that agree perfectly with experimental data.
Introduction to Chiral Symmetry
Energy Technology Data Exchange (ETDEWEB)
Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-05-09
These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.
Jinzenji, Masao
2018-01-01
This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construct...
Introduction to chiral symmetry
International Nuclear Information System (INIS)
Koch, V.
1996-01-01
These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented
Pels, D.L.
While symmetry and impartiality have become ruling principles in S&TS, defining its core ideal of a 'value-free relativism', their philosophical anchorage has attracted much less discussion than the issue or:how far their jurisdiction can be extended or generalized. This paper seeks to argue that
Symmetries in fundamental physics
Sundermeyer, Kurt
2014-01-01
Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P.Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also underst...
Symmetries in fundamental physics
Sundermeyer, Kurt
2014-01-01
Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also unders...
International Nuclear Information System (INIS)
Sezgin, E.
1991-08-01
We review the structure of W ∞ algebras, their super and topological extensions, and their contractions down to (super) w ∞ . Emphasis is put on the field theoretic realizations of these algebras. We also review the structure of w ∞ and W ∞ gravities and comment on various applications of W ∞ symmetry. (author). 42 refs
International Nuclear Information System (INIS)
Hojman, Sergio A.
1996-01-01
The purpose of these lectures is to present some of the ways in which non-Noetherian symmetries are used in contemporary mathematical physics. These include, among others, obtaining conservation laws for dynamical systems, solving non-linear problems, getting alternative Lagrangians for systems of differential equations and constructing symplectic structures and Hamiltonians for dynamical systems starting from scratch
Detection symmetry and asymmetry
du Buf, J.M.H.
1991-01-01
Experiments were performed on the detection symmetry and asymmetry of incremental and decremental disks, as a function of both disk diameter and duration. It was found that, for a background luminance of 300cd.m-2, thresholds of dynamic (briefly presented) foveal disks are symmetrical for all
International Nuclear Information System (INIS)
Stern, J.
2000-01-01
The problem of a uniform description of symmetries, their dynamic disturbing and the structure of the vacuum is discussed. The role which problems of this kind played in searching for and understanding the Standard Model of elementary particles from the 1960s till now is also highlighted. (Z.J.)
Fields, symmetries, and quarks
International Nuclear Information System (INIS)
Mosel, U.
1989-01-01
'Fields, symmetries, and quarks' covers elements of quantum field theory, symmetries, gauge field theories and phenomenological descriptions of hadrons, with special emphasis on topics relevant to nuclear physics. It is aimed at nuclear physicists in general and at scientists who need a working knowledge of field theory, symmetry principles of elementary particles and their interactions and the quark structure of hadrons. The book starts out with an elementary introduction into classical field theory and its quantization. As gauge field theories require a working knowledge of global symmetries in field theories this topic is then discussed in detail. The following part is concerned with the general structure of gauge field theories and contains a thorough discussion of the still less widely known features of Non-Abelian gauge field theories. Quantum Chromodynamics (QCD), which is important for the understanding of hadronic matter, is discussed in the next section together with the quark compositions of hadrons. The last two chapters give a detailed discussion of phenomenological bag-models. The MIT bag is discussed, so that all theoretical calculations can be followed step by step. Since in all other bag-models the calculational methods and steps are essentially identical, this chapter should enable the reader to actually perform such calculations unaided. A last chapter finally discusses the topological bag-models which have become quite popular over the last few years. (orig.)
Symmetry of priapulids (Priapulida). 1. Symmetry of adults.
Adrianov, A V; Malakhov, V V
2001-02-01
Priapulids possess a radial symmetry that is remarkably reflected in both external morphology and internal anatomy. It results in the appearance of 25-radial (a number divisible by five) symmetry summarized as a combination of nonaradial, octaradial, and octaradial (9+8+8) symmetries of scalids. The radial symmetry is a secondary appearance considered as an evolutionary adaptation to a lifestyle within the three-dimensional environment of bottom sediment. The eight anteriormost, or primary, scalids retain their particular position because of their innervation directly from the circumpharyngeal brain. As a result of a combination of the octaradial symmetry of primary scalids, pentaradial symmetry of teeth, and the 25-radial symmetry of scalids, the initial bilateral symmetry remains characterized by the single sagittal plane. Copyright 2001 Wiley-Liss, Inc.
Decoupling Subtraction Conserving Full Gauge Symmetries : Particles and Fields
Noriyasu, OHTSUBO; Hideo, MIYATA; Department of Phycics, Kanazawa Technical College; Department of Information Science, Kanazawa Institute of Technolgy
1984-01-01
A new subtraction scheme (^^^) which realizes the decoupling and conserves the symmetries of full gauge group simultaneously, is proposed. One particle irreducible Green's functions subtracted by ^^^ reveal the effective low energy symmetries at -p^2≪M^2 and the full symmetries at -p^2≫M^2, where M denotes a heavy mass. Also discussed are conditions in order to carry out ^^^ under two-loop approximation.
A cyclic symmetry principle in physics
International Nuclear Information System (INIS)
Green, H.S.; Adelaide Univ., SA
1994-01-01
Many areas of modern physics are illuminated by the application of a symmetry principle, requiring the invariance of the relevant laws of physics under a group of transformations. This paper examines the implications and some of the applications of the principle of cyclic symmetry, especially in the areas of statistical mechanics and quantum mechanics, including quantized field theory. This principle requires invariance under the transformations of a finite group, which may be a Sylow π-group, a group of Lie type, or a symmetric group. The utility of the principle of cyclic invariance is demonstrated in finding solutions of the Yang-Baxter equation that include and generalize known solutions. It is shown that the Sylow π-groups have other uses, in providing a basis for a type of generalized quantum statistics, and in parametrising a new generalization of Lie groups, with associated algebras that include quantized algebras. 31 refs
Is space-time symmetry a suitable generalization of parity-time symmetry?
International Nuclear Information System (INIS)
Amore, Paolo; Fernández, Francisco M.; Garcia, Javier
2014-01-01
We discuss space-time symmetric Hamiltonian operators of the form H=H 0 +igH ′ , where H 0 is Hermitian and g real. H 0 is invariant under the unitary operations of a point group G while H ′ is invariant under transformation by elements of a subgroup G ′ of G. If G exhibits irreducible representations of dimension greater than unity, then it is possible that H has complex eigenvalues for sufficiently small nonzero values of g. In the particular case that H is parity-time symmetric then it appears to exhibit real eigenvalues for all 0
Family symmetries in F-theory GUTs
King, S F; Ross, G G
2010-01-01
We discuss F-theory SU(5) GUTs in which some or all of the quark and lepton families are assigned to different curves and family symmetry enforces a leading order rank one structure of the Yukawa matrices. We consider two possibilities for the suppression of baryon and lepton number violation. The first is based on Flipped SU(5) with gauge group SU(5)\\times U(1)_\\chi \\times SU(4)_{\\perp} in which U(1)_{\\chi} plays the role of a generalised matter parity. We present an example which, after imposing a Z_2 monodromy, has a U(1)_{\\perp}^2 family symmetry. Even in the absence of flux, spontaneous breaking of the family symmetry leads to viable quark, charged lepton and neutrino masses and mixing. The second possibility has an R-parity associated with the symmetry of the underlying compactification manifold and the flux. We construct an example of a model with viable masses and mixing angles based on the gauge group SU(5)\\times SU(5)_{\\perp} with a U(1)_{\\perp}^3 family symmetry after imposing a Z_2 monodromy.
Patterns of symmetry breaking in chiral QCD
Bolognesi, Stefano; Konishi, Kenichi; Shifman, Mikhail
2018-05-01
We consider S U (N ) Yang-Mills theory with massless chiral fermions in a complex representation of the gauge group. The main emphasis is on the so-called hybrid ψ χ η model. The possible patterns of realization of the continuous chiral flavor symmetry are discussed. We argue that the chiral symmetry is broken in conjunction with a dynamical Higgsing of the gauge group (complete or partial) by bifermion condensates. As a result a color-flavor locked symmetry is preserved. The 't Hooft anomaly matching proceeds via saturation of triangles by massless composite fermions or, in a mixed mode, i.e. also by the "weakly" coupled fermions associated with dynamical Abelianization, supplemented by a number of Nambu-Goldstone mesons. Gauge-singlet condensates are of the multifermion type and, though it cannot be excluded, the chiral symmetry realization via such gauge invariant condensates is more contrived (requires a number of four-fermion condensates simultaneously and, even so, problems remain) and less plausible. We conclude that in the model at hand, chiral flavor symmetry implies dynamical Higgsing by bifermion condensates.
Symmetries in physics and harmonics
International Nuclear Information System (INIS)
Kolk, D.
2006-01-01
In this book the symmetries of elementary particles are described in relation to the rules of harmonics in music. The selection rules are described in connections with harmonic intervals. Also symmetry breaking is considered in this framework. (HSI)
International Nuclear Information System (INIS)
Gruber, B.; Thomas, M.S.
1980-01-01
In this article the symmetry chains for the atomic shell model are classified in such a way that they lead from the group SU(4l+2) to its subgroup SOsub(J)(3). The atomic configurations (nl)sup(N) transform like irreducible representations of the group SU(4l+2), while SOsub(J)(3) corresponds to total angular momentum in SU(4l+2). The defining matrices for the various embeddings are given for each symmetry chain that is obtained. These matrices also define the projection onto the weight subspaces for the corresponding subsymmetries and thus relate the various quantum numbers and determine the branching of representations. It is shown in this article that three (interrelated) symmetry chains are obtained which correspond to L-S coupling, j-j coupling, and a seniority dependent coupling. Moreover, for l<=6 these chains are complete, i.e., there are no other chains but these. In articles to follow, the symmetry chains that lead from the group SO(8l+5) to SOsub(J)(3) will be discussed, with the entire atomic shell transforming like an irreducible representation of SO(8l+5). The transformation properties of the states of the atomic shell will be determined according to the various symmetry chains obtained. The symmetry lattice discussed in this article forms a sublattice of the larger symmetry lattice with SO(8l+5) as supergroup. Thus the transformation properties of the states of the atomic configurations, according to the various symmetry chains discussed in this article, will be obtained too. (author)
Unified Symmetry of Hamilton Systems
International Nuclear Information System (INIS)
Xu Xuejun; Qin Maochang; Mei Fengxiang
2005-01-01
The definition and the criterion of a unified symmetry for a Hamilton system are presented. The sufficient condition under which the Noether symmetry is a unified symmetry for the system is given. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, is obtained. An example is finally given to illustrate the application of the results.
Quantum symmetries in particle interactions
International Nuclear Information System (INIS)
Shirkov, D.V.
1983-01-01
The concept of a quantum symmetry is introduced as a symmetry in the formulation of which quantum representations and specific quantum notions are used essentially. Three quantum symmetry principles are discussed: the principle of renormalizability (possibly super-renormalizability), the principle of local gauge symmetry, and the principle of supersymmetry. It is shown that these principles play a deterministic role in the development of quantum field theory. Historically their use has led to ever stronger restrictions on the interaction mechanism of quantum fields
Symmetry and topology in evolution
International Nuclear Information System (INIS)
Lukacs, B.; Berczi, S.; Molnar, I.; Paal, G.
1991-10-01
This volume contains papers of an interdisciplinary symposium on evolution. The aim of this symposium, held in Budapest, Hungary, 28-29 May 1991, was to clear the role of symmetry and topology at different levels of the evolutionary processes. 21 papers were presented, their topics included evolution of the Universe, symmetry of elementary particles, asymmetry of the Earth, symmetry and asymmetry of biomolecules, symmetry and topology of lining objects, human asymmetry etc. (R.P.)
Charge independence and charge symmetry
Energy Technology Data Exchange (ETDEWEB)
Miller, G A [Washington Univ., Seattle, WA (United States). Dept. of Physics; van Oers, W T.H. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada)
1994-09-01
Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs.
Charge independence and charge symmetry
International Nuclear Information System (INIS)
Miller, G.A.
1994-09-01
Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs
Symmetry energy in nuclear surface
International Nuclear Information System (INIS)
Danielewicz, P.; Lee, Jenny
2009-01-01
Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry. (author)
Emergence of Symmetries from Entanglement
CERN. Geneva
2016-01-01
Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.
Symmetry, stability, and diffraction properties of icosahedral crystals
International Nuclear Information System (INIS)
Bak, P.
1985-01-01
In a remarkable experiment on an Mn-Al alloy, Shechtman et al. observed a diffraction spectrum with icosahedral symmetry. This is inconsistent with discrete translational invariance since the symmetry includes a five-fold axis. In this paper, it is shown that the crystallography and diffraction pattern can be described by a six-dimensional space group. The crystal structure in 3d is obtained as a cut along a 3d hyperplane in a regular 6d crystal. Displacements of the 6d crystal along 6 orthogonal directions define 6 continuous symmetries for the icosahedral crystal, three of which are phase symmetries describing internal rearrangements of the atoms
Kac-Moody-Virasoro Symmetries and Related Conservation Laws
International Nuclear Information System (INIS)
Lou, S. Y.; Jia, M.; Tang, X. Y.
2010-01-01
In this report, some important facts on the symmetries and conservation laws of high dimensional integrable systems are discussed. It is summarized that almost all the known (2+1)-dimensional integrable models possess the Kac-Moody-Virasoro (KMV) symmetry algebras. One knows that infinitely many partial differential equations may possess a same KMV symmetry algebra. It is found that the KMV symmetry groups can be explicitly obtained by using some direct methods. For some quite general variable coefficient nonlinear systems, their sufficient and necessary condition for the existence of the KMV symmetry algebra is they can be changed to the related known constant coefficient models. Finally, it is found that every one symmetry may be related to infinitely many conservation laws and then infinitely many models may possess a same set of infinitely many conservation laws.
R-symmetries from the orbifolded heterotic string
International Nuclear Information System (INIS)
Schmitz, Matthias
2014-08-01
We examine the geometric origin of discrete R-symmetries in heterotic orbifold compactifications. By analysing the symmetries of the worldsheet instanton solutions and the underlying geometry, we obtain a scheme that allows us to systematically explore the R-symmetries arising in these compactifications. Applying this scheme to a classification of orbifold geometries, we are able to find all R-symmetries of heterotic orbifolds with Abelian point groups. We show that in the vast majority of cases, the R-symmetries found satisfy anomaly universality constraints, as required in heterotic orbifolds. Then we examine the implications of the presence of these R-symmetries on a class of phenomenologically attractive orbifold compactifications known as the heterotic mini-landscape. We use the technique of Hilbert bases in order to analyse the properties of a vacuum configuration. We find that phenomenologically viable models remain and the main attractive features of the mini-landscape are unaltered.
Dark discrete gauge symmetries
International Nuclear Information System (INIS)
Batell, Brian
2011-01-01
We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.
Asymmetry, Symmetry and Beauty
Directory of Open Access Journals (Sweden)
Abbe R. Kopra
2010-07-01
Full Text Available Asymmetry and symmetry coexist in natural and human processes. The vital role of symmetry in art has been well demonstrated. This article highlights the complementary role of asymmetry. Further we show that the interaction of asymmetric action (recursion and symmetric opposition (sinusoidal waves are instrumental in generating creative features (relatively low entropy, temporal complexity, novelty (less recurrence in the data than in randomized copies and complex frequency composition. These features define Bios, a pattern found in musical compositions and in poetry, except for recurrence instead of novelty. Bios is a common pattern in many natural and human processes (quantum processes, the expansion of the universe, gravitational waves, cosmic microwave background radiation, DNA, physiological processes, animal and human populations, and economic time series. The reduction in entropy is significant, as it reveals creativity and contradicts the standard claim of unavoidable decay towards disorder. Artistic creations capture fundamental features of the world.
Strong Electroweak Symmetry Breaking
Grinstein, Benjamin
2011-01-01
Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...
A broken symmetry ontology: Quantum mechanics as a broken symmetry
International Nuclear Information System (INIS)
Buschmann, J.E.
1988-01-01
The author proposes a new broken symmetry ontology to be used to analyze the quantum domain. This ontology is motivated and grounded in a critical epistemological analysis, and an analysis of the basic role of symmetry in physics. Concurrently, he is led to consider nonheterogeneous systems, whose logical state space contains equivalence relations not associated with the causal relation. This allows him to find a generalized principle of symmetry and a generalized symmetry-conservation formalisms. In particular, he clarifies the role of Noether's theorem in field theory. He shows how a broken symmetry ontology already operates in a description of the weak interactions. Finally, by showing how a broken symmetry ontology operates in the quantum domain, he accounts for the interpretational problem and the essential incompleteness of quantum mechanics. He proposes that the broken symmetry underlying this ontological domain is broken dilation invariance
International Nuclear Information System (INIS)
Bunakov, V.E.; Ivanov, I.B.
1999-01-01
Connections between the symmetries of Hamiltonian systems in classical and quantum mechanics, on one hand, and their regularity or chaoticity, on the other hand, are considered. The quantum-chaoticity criterion that was proposed previously and which was borrowed from the theory of compound-nucleus resonances is used to analyze the quantum diamagnetic Kepler problem - that is, the motion of a spinless charged particle in a Coulomb and a uniform magnetic field
International Nuclear Information System (INIS)
French, J.B.
1974-01-01
The concepts of statistical behavior and symmetry are presented from the point of view of many body spectroscopy. Remarks are made on methods for the evaluation of moments, particularly widths, for the purpose of giving a feeling for the types of mathematical structures encountered. Applications involving ground state energies, spectra, and level densities are discussed. The extent to which Hamiltonian eigenstates belong to irreducible representations is mentioned. (4 figures, 1 table) (U.S.)
Energy Technology Data Exchange (ETDEWEB)
Herrero, O F, E-mail: o.f.herrero@hotmail.co [Conservatorio Superior de Musica ' Eduardo Martinez Torner' Corrada del Obispo s/n 33003 - Oviedo - Asturias (Spain)
2010-06-01
Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.
Lie symmetries and superintegrability
International Nuclear Information System (INIS)
Nucci, M C; Post, S
2012-01-01
We show that a known superintegrable system in two-dimensional real Euclidean space (Post and Winternitz 2011 J. Phys. A: Math. Theor. 44 162001) can be transformed into a linear third-order equation: consequently we construct many autonomous integrals—polynomials up to order 18—for the same system. The reduction method and the connection between Lie symmetries and Jacobi last multiplier are used.
International Nuclear Information System (INIS)
Herrero, O F
2010-01-01
Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.
Symmetries of noncommutative scalar field theory
International Nuclear Information System (INIS)
De Goursac, Axel; Wallet, Jean-Christophe
2011-01-01
We investigate symmetries of the scalar field theory with a harmonic term on the Moyal space with the Euclidean scalar product and general symplectic form. The classical action is invariant under the orthogonal group if this group acts also on the symplectic structure. We find that the invariance under the orthogonal group can also be restored at the quantum level by restricting the symplectic structures to a particular orbit.
Quotients of irreducible N=2 superconformal coset theories by discrete symmetries
International Nuclear Information System (INIS)
Bailin, D.; Love, A.
1990-01-01
The spectrum of massless states is studied for the irreducible N=2 superconformal coset theories when these theories are quotiented by discrete symmetries, including the effect of embedding the discrete symmetries in the gauge group. (orig.)
The quantum symmetry of rational field theories
International Nuclear Information System (INIS)
Fuchs, J.
1993-12-01
The quantum symmetry of a rational quantum field theory is a finite-dimensional multi-matrix algebra. Its representation category, which determines the fusion rules and braid group representations of superselection sectors, is a braided monoidal C*-category. Various properties of such algebraic structures are described, and some ideas concerning the classification programme are outlined. (orig.)
Holography with broken Poincaré symmetry
Korovins, J.
2014-01-01
This thesis deals with the extensions of the holographic dualities to the situations where part of the Poincaré group has been broken. Such theories are particularly relevant for applications of gauge/gravity dualities to condensed matter systems, which usually exhibit non-relativistic symmetry.
Broken dynamical symmetries in quantum mechanics and phase transition phenomena
International Nuclear Information System (INIS)
Guenther, N.J.
1979-12-01
This thesis describes applications of dynamical symmetries to problems in quantum mechanics and many-body physics where the latter is formulated as a Euclidean scalar field theory in d-space dimensions. By invoking the concept of a dynamical symmetry group a unified understanding of apparently disparate results is achieved. (author)
The Search for Symmetries in the Genetic Code:
Antoneli, Fernando; Forger, Michael; Hornos, José Eduardo M.
We give a full classification of the possible schemes for obtaining the distribution of multiplets observed in the standard genetic code by symmetry breaking in the context of finite groups, based on an extended notion of partial symmetry breaking that incorporates the intuitive idea of "freezing" first proposed by Francis Crick, which is given a precise mathematical meaning.
limit and complete classification of symmetry schemes in proton ...
Indian Academy of Sciences (India)
Proton–neutron interacting boson model; pnIBM; symmetry limits; complete classifica- tion; F spin; F spin .... Dynamical symmetry limits of pnIBM correspond to the group chains starting withU(12) generating N ...... value must be. MFs = MF MFd.
Dynamical symmetries for odd-odd nuclei
International Nuclear Information System (INIS)
Balantekin, A.B.
1986-01-01
Recent work for developing dynamical symmetries and supersymmetries is reviewed. An accurate description of odd-odd nuclei requires inclusion of the fermion-fermion force (the residual interaction) and the distinguishing of fermion configurations which are particle like and those which are hole like. A parabolic dependence of the proton-neutron multiplet in odd-odd nuclei is demonstrated. It is shown that a group structure for Bose-Fermi symmetries can be embedded in a supergroup. These methods are used to predict level schemes for Au-196 and Au-198. 11 refs., 3 figs
Symmetry methods for option pricing
Davison, A. H.; Mamba, S.
2017-06-01
We obtain a solution of the Black-Scholes equation with a non-smooth boundary condition using symmetry methods. The Black-Scholes equation along with its boundary condition are first transformed into the one dimensional heat equation and an initial condition respectively. We then find an appropriate general symmetry generator of the heat equation using symmetries and the fundamental solution of the heat equation. The symmetry generator is chosen such that the boundary condition is left invariant; the symmetry can be used to solve the heat equation and hence the Black-Scholes equation.
Dual symmetry in gauge theories
International Nuclear Information System (INIS)
Koshkarov, A.L.
1997-01-01
Continuous dual symmetry in electrodynamics, Yang-Mills theory and gravitation is investigated. Dual invariant which leads to badly nonlinear motion equations is chosen as a Lagrangian of the pure classical dual nonlinear electrodynamics. In a natural manner some dual angle which is determined by the electromagnetic strengths at the point of the time-space appears in the model. Motion equations may well be interpreted as the equations of the standard Maxwell theory with source. Alternative interpretation is the quasi-Maxwell linear theory with magnetic charge. Analogous approach is possible in the Yang-Mills theory. In this case the dual-invariant non-Abelian theory motion equations possess the same instanton solutions as the conventional Yang-Mills equations have. An Abelian two-parameter dual group is found to exist in gravitation. Irreducible representations have been obtained: the curvature tensor was expanded into the sum of twice anti-self-dual and self-dual parts. Gravitational instantons are defined as (real )solutions to the usual duality equations. Central symmetry solutions to these equations are obtained. The twice anti-self-dual part of the curvature tensor may be used for introduction of new gravitational equations generalizing Einstein''s equations. However, the theory obtained reduces to the conformal-flat Nordstroem theory
Gauge symmetries, topology, and quantisation
International Nuclear Information System (INIS)
Balachandran, A.P.
1994-01-01
The following two loosely connected sets of topics are reviewed in these lecture notes: (1) Gauge invariance, its treatment in field theories and its implications for internal symmetries and edge states such as those in the quantum Hall effect. (2) Quantisation on multiply connected spaces and a topological proof the spin-statistics theorem which avoids quantum field theory and relativity. Under (1), after explaining the meaning of gauge invariance and the theory of constraints, we discuss boundary conditions on gauge transformations and the definition of internal symmetries in gauge field theories. We then show how the edge states in the quantum Hall effect can be derived from the Chern-Simons action using the preceding ideas. Under (2), after explaining the significance of fibre bundles for quantum physics, we review quantisation on multiply connected spaces in detail, explaining also mathematical ideas such as those of the universal covering space and the fundamental group. These ideas are then used to prove the aforementioned topological spin-statistics theorem
Translational spacetime symmetries in gravitational theories
International Nuclear Information System (INIS)
Petti, R J
2006-01-01
How to include spacetime translations in fibre bundle gauge theories has been a subject of controversy, because spacetime symmetries are not internal symmetries of the bundle structure group. The standard method for including affine symmetry in differential geometry is to define a Cartan connection on an affine bundle over spacetime. This is equivalent to (1) defining an affine connection on the affine bundle, (2) defining a zero section on the associated affine vector bundle and (3) using the affine connection and the zero section to define an 'associated solder form', whose lift to a tensorial form on the frame bundle becomes the solder form. The zero section reduces the affine bundle to a linear bundle and splits the affine connection into translational and homogeneous parts; however, it violates translational equivariance/gauge symmetry. This is the natural geometric framework for Einstein-Cartan theory as an affine theory of gravitation. The last section discusses some alternative approaches that claim to preserve translational gauge symmetry
Translational spacetime symmetries in gravitational theories
Energy Technology Data Exchange (ETDEWEB)
Petti, R J [MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760 (United States)
2006-02-07
How to include spacetime translations in fibre bundle gauge theories has been a subject of controversy, because spacetime symmetries are not internal symmetries of the bundle structure group. The standard method for including affine symmetry in differential geometry is to define a Cartan connection on an affine bundle over spacetime. This is equivalent to (1) defining an affine connection on the affine bundle, (2) defining a zero section on the associated affine vector bundle and (3) using the affine connection and the zero section to define an 'associated solder form', whose lift to a tensorial form on the frame bundle becomes the solder form. The zero section reduces the affine bundle to a linear bundle and splits the affine connection into translational and homogeneous parts; however, it violates translational equivariance/gauge symmetry. This is the natural geometric framework for Einstein-Cartan theory as an affine theory of gravitation. The last section discusses some alternative approaches that claim to preserve translational gauge symmetry.
Recursions of Symmetry Orbits and Reduction without Reduction
Directory of Open Access Journals (Sweden)
Andrei A. Malykh
2011-04-01
Full Text Available We consider a four-dimensional PDE possessing partner symmetries mainly on the example of complex Monge-Ampère equation (CMA. We use simultaneously two pairs of symmetries related by a recursion relation, which are mutually complex conjugate for CMA. For both pairs of partner symmetries, using Lie equations, we introduce explicitly group parameters as additional variables, replacing symmetry characteristics and their complex conjugates by derivatives of the unknown with respect to group parameters. We study the resulting system of six equations in the eight-dimensional space, that includes CMA, four equations of the recursion between partner symmetries and one integrability condition of this system. We use point symmetries of this extended system for performing its symmetry reduction with respect to group parameters that facilitates solving the extended system. This procedure does not imply a reduction in the number of physical variables and hence we end up with orbits of non-invariant solutions of CMA, generated by one partner symmetry, not used in the reduction. These solutions are determined by six linear equations with constant coefficients in the five-dimensional space which are obtained by a three-dimensional Legendre transformation of the reduced extended system. We present algebraic and exponential examples of such solutions that govern Legendre-transformed Ricci-flat Kähler metrics with no Killing vectors. A similar procedure is briefly outlined for Husain equation.
Discrete symmetries in the Weyl expansion for quantum billiards
International Nuclear Information System (INIS)
Pavloff, N.
1994-01-01
2 and 3 dimensional quantum billiards with discrete symmetries are considered. The boundary condition is either Dirichlet or Neumann. The first terms of the Weyl expansion are derived for the level density projected onto the irreducible representations of the symmetry group. The formulae require only the knowledge of the character table of the group and the geometrical properties (such as surface, perimeter etc.) of sub-parts of the billiard invariant under a group transformation. (author). 17 refs., 1 fig., 1 tab
Greene, Brian R
1997-01-01
Mirror symmetry has undergone dramatic progress during the last five years. Tremendous insight has been gained on a number of key issues. This volume surveys these results. Some of the contributions in this work have appeared elsewhere, while others were written specifically for this collection. The areas covered are organized into 4 sections, and each presents papers by both physicists and mathematicians. This volume collects the most important developments that have taken place in mathematical physics since 1991. It is an essential reference tool for both mathematics and physics libraries and for students of physics and mathematics.
Energy Technology Data Exchange (ETDEWEB)
Hill, Christopher T.
2018-03-19
We review and expand upon recent work demonstrating that Weyl invariant theories can be broken "inertially," which does not depend upon a potential. This can be understood in a general way by the "current algebra" of these theories, independently of specific Lagrangians. Maintaining the exact Weyl invariance in a renormalized quantum theory can be accomplished by renormalization conditions that refer back to the VEV's of fields in the action. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential that breaks a U(1) symmetry together,with scale invariance.
Leadership, power and symmetry
DEFF Research Database (Denmark)
Spaten, Ole Michael
2016-01-01
Research publications concerning managers who coach their own employees are barely visible despite its wide- spread use in enterprises (McCarthy & Milner, 2013; Gregory & Levy, 2011; Crabb, 2011). This article focuses on leadership, power and moments of symmetry in the coaching relationship...... regarding managers coaching their employees and it is asked; what contributes to coaching of high quality when one reflects on the power aspect as being immanent? Fourteen middle managers coached five of their employees, and all members of each party wrote down cues and experiences immediately after each...
DEFF Research Database (Denmark)
Faldt, André; Krebs, Frederik C; Thorup, Niels
1997-01-01
of opposite chirality are present within the unit cell, Finally compound 13 crystallises in a centrosymmetric space group. The room temperature pyroelectric coefficient of 3 has been determined, The spatial extent of the trioxatriangulene ground system has been perturbed by chemical substitution......4,8,12-Trioxa-4,8,12,12c-tetrahydrodibenzo [cd,mn]pyrene (3),2,6,10-tri-tert-butyl-4,8,12 -trioxa-4,8,12,12c-tetrahydrodibenzo [cd,mn]pyrene (11) and 2,6,10-tri-tert-butyl-4,8,12-trioxa-12c -methyl-4,8,12,12c -tetrahydrodibenzo[cd,mn]pyrene (12)have been synthesised and their crystal structures...... and the effect: of the substitutions upon the space group symmetry of the chemical derivative has been uncovered by X-ray structural resolution, The non-centrosymmetric point group symmetry of the molecules is reflected in a non-centrosymmetric space group symmetry whenever the spatial perturbations do...
Pomeranchuk conjecture and symmetry schemes
Energy Technology Data Exchange (ETDEWEB)
Galindo, A.; Morales, A.; Ruegg, H. [Junta de Energia Nuclear, Madrid (Spain); European Organization for Nuclear Research, Geneva (Switzerland); University of Geneva, Geneva (Switzerland)
1963-01-15
Pomeranchuk has conjectured that the cross-sections for charge-exchange processes vanish asymptotically as the energy tends to infinity. (By ''charge'' it is meant any internal quantum number, like electric charge, hypercharge, .. . ). It has been stated by several people that this conjecture implies equalities among the total cross-sections whenever any symmetry scheme is invoked for the strong interactions. But to our knowledge no explicit general proof of this statement has been given so far. We want to give this proof for any compact Lie group. We also prove, under certain assumptions, that the equality of the total cross-sections implies that s{sup -l} times the charge-exchange forward scattering absorptive amplitudes tend to zero as s -> ∞.
Dorodnitsyn, Vladimir A.; Kozlov, Roman; Meleshko, Sergey V.; Winternitz, Pavel
2018-05-01
A recent article was devoted to an analysis of the symmetry properties of a class of first-order delay ordinary differential systems (DODSs). Here we concentrate on linear DODSs, which have infinite-dimensional Lie point symmetry groups due to the linear superposition principle. Their symmetry algebra always contains a two-dimensional subalgebra realized by linearly connected vector fields. We identify all classes of linear first-order DODSs that have additional symmetries, not due to linearity alone, and we present representatives of each class. These additional symmetries are then used to construct exact analytical particular solutions using symmetry reduction.
Extensions of automorphisms and gauge symmetries
International Nuclear Information System (INIS)
Buchholz, D.; Doplicher, S.; Longo, R.; Roberts, J.E.
1993-01-01
We characterize the automophisms of a C*-algebra A which extend to automorphisms of the crossed product B of A by a compact group dual. The case where the inclusion A contains or equal to B is equipped with a group of automorphisms commuting with the dual action is also treated. These results are applied to the analysis of broken gauge symmetries in Quantum Field Theory to draw conclusions on the structure of the degenerate vacua on the field algebra. (orig.)
Bootstrap Dynamical Symmetry Breaking
Directory of Open Access Journals (Sweden)
Wei-Shu Hou
2013-01-01
Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700 GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.
Directory of Open Access Journals (Sweden)
Angel Garrido
2011-01-01
Full Text Available In this paper, we analyze a few interrelated concepts about graphs, such as their degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as any set of components functioning together as a whole. A systemic point of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact more closely than others. Network Science analyzes the interconnections among diverse networks from different domains: physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis of Complex Networks, based on graph theory, have been rapidly translated to studies of brain network organization. The brain's systems have complex network features—such as the small-world topology, highly connected hubs and modularity. These networks are not random. The topology of many different networks shows striking similarities, such as the scale-free structure, with the degree distribution following a Power Law. How can very different systems have the same underlying topological features? Modeling and characterizing these networks, looking for their governing laws, are the current lines of research. So, we will dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and highlight their close relation with measures of information and entropy.
Flavor universal dynamical electroweak symmetry breaking
International Nuclear Information System (INIS)
Burdman, G.; Evans, N.
1999-01-01
The top condensate seesaw mechanism of Dobrescu and Hill allows electroweak symmetry to be broken while deferring the problem of flavor to an electroweak singlet, massive sector. We provide an extended version of the singlet sector that naturally accommodates realistic masses for all the standard model fermions, which play an equal role in breaking electroweak symmetry. The models result in a relatively light composite Higgs sector with masses typically in the range of (400 - 700) GeV. In more complete models the dynamics will presumably be driven by a broken gauged family or flavor symmetry group. As an example of the higher scale dynamics a fully dynamical model of the quark sector with a GIM mechanism is presented, based on an earlier top condensation model of King using broken family gauge symmetry interactions (that model was itself based on a technicolor model of Georgi). The crucial extra ingredient is a reinterpretation of the condensates that form when several gauge groups become strong close to the same scale. A related technicolor model of Randall which naturally includes the leptons too may also be adapted to this scenario. We discuss the low energy constraints on the massive gauge bosons and scalars of these models as well as their phenomenology at the TeV scale. copyright 1999 The American Physical Society
Symmetry and physical properties of crystals
Malgrange, Cécile; Schlenker, Michel
2014-01-01
Crystals are everywhere, from natural crystals (minerals) through the semiconductors and magnetic materials in electronic devices and computers or piezoelectric resonators at the heart of our quartz watches to electro-optical devices. Understanding them in depth is essential both for pure research and for their applications. This book provides a clear, thorough presentation of their symmetry, both at the microscopic space-group level and the macroscopic point-group level. The implications of the symmetry of crystals for their physical properties are then presented, together with their mathematical description in terms of tensors. The conditions on the symmetry of a crystal for a given property to exist then become clear, as does the symmetry of the property. The geometrical representation of tensor quantities or properties is presented, and its use in determining important relationships emphasized. An original feature of this book is that most chapters include exercises with complete solutions. This all...
Wilczek, Frank
2004-01-01
Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world (8 pages) Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).
Trieste lectures on mirror symmetry
Energy Technology Data Exchange (ETDEWEB)
Hori, K [Department of Physics and Department of Mathematics, University of Toronto, Toronto, Ontario (Canada)
2003-08-15
These are pedagogical lectures on mirror symmetry given at the Spring School in ICTP, Trieste, March 2002. The focus is placed on worldsheet descriptions of the physics related to mirror symmetry. We start with the introduction to general aspects of (2,2) supersymmetric field theories in 1 + 1 dimensions. We next move on to the study and applications of linear sigma model. Finally, we provide a proof of mirror symmetry in a class of models. (author)
Neutrino masses and family symmetry
International Nuclear Information System (INIS)
Grinstein, B.; Preskill, J.; Wise, M.B.
1985-01-01
Neutrino masses in the 100 eV-1 MeV range are permitted if there is a spontaneously broken global family symmetry that allows the heavy neutrinos to decay by Goldstone boson emission with a cosmologically acceptable lifetime. The family symmetry may be either abelian or nonabelian; we present models illustrating both possibilities. If the family symmetry is nonabelian, then the decay tau -> μ + Goldstone boson or tau -> e + Goldstone may have an observable rate. (orig.)
Dynamical Symmetry Breaking of Extended Gauge Symmetries
Appelquist, Thomas; Shrock, Robert
2003-01-01
We construct asymptotically free gauge theories exhibiting dynamical breaking of the left-right, strong-electroweak gauge group $G_{LR} = {\\rm SU}(3)_c \\times {\\rm SU}(2)_L \\times {\\rm SU}(2)_R \\times {\\rm U}(1)_{B-L}$, and its extension to the Pati-Salam gauge group $G_{422}={\\rm SU}(4)_{PS} \\times {\\rm SU}(2)_L \\times {\\rm SU}(2)_R$. The models incorporate technicolor for electroweak breaking, and extended technicolor for the breaking of $G_{LR}$ and $G_{422}$ and the generation of fermion ...
Killing symmetries in neutron transport
International Nuclear Information System (INIS)
Lukacs, B.; Racz, A.
1992-10-01
Although inside the reactor zone there is no exact continuous spatial symmetry, in certain configurations neutron flux distribution is close to a symmetrical one. In such cases the symmetrical solution could provide a good starting point to determine the non-symmetrical power distribution. All possible symmetries are determined in the 3-dimensional Euclidean space, and the form of the transport equation is discussed in such a coordinate system which is adapted to the particular symmetry. Possible spontaneous symmetry breakings are pointed out. (author) 6 refs
The conservation of orbital symmetry
Woodward, R B
2013-01-01
The Conservation of Orbital Symmetry examines the principle of conservation of orbital symmetry and its use. The central content of the principle was that reactions occur readily when there is congruence between orbital symmetry characteristics of reactants and products, and only with difficulty when that congruence does not obtain-or to put it more succinctly, orbital symmetry is conserved in concerted reaction. This principle is expected to endure, whatever the language in which it may be couched, or whatever greater precision may be developed in its application and extension. The book ope
Leptogenesis and residual CP symmetry
International Nuclear Information System (INIS)
Chen, Peng; Ding, Gui-Jun; King, Stephen F.
2016-01-01
We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z 2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S 4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.
Black Hole Entropy from Bondi-Metzner-Sachs Symmetry at the Horizon.
Carlip, S
2018-03-09
Near the horizon, the obvious symmetries of a black hole spacetime-the horizon-preserving diffeomorphisms-are enhanced to a larger symmetry group with a three-dimensional Bondi-Metzner-Sachs algebra. Using dimensional reduction and covariant phase space techniques, I investigate this augmented symmetry and show that it is strong enough to determine the black hole entropy in any dimension.
The geometric role of symmetry breaking in gravity
International Nuclear Information System (INIS)
Wise, Derek K
2012-01-01
In gravity, breaking symmetry from a group G to a group H plays the role of describing geometry in relation to the geometry of the homogeneous space G/H. The deep reason for this is Cartan's 'method of equivalence,' giving, in particular, an exact correspondence between metrics and Cartan connections. I argue that broken symmetry is thus implicit in any gravity theory, for purely geometric reasons. As an application, I explain how this kind of thinking gives a new approach to Hamiltonian gravity in which an observer field spontaneously breaks Lorentz symmetry and gives a Cartan connection on space.
Symbolic Detection of Permutation and Parity Symmetries of Evolution Equations
Alghamdi, Moataz
2017-01-01
conserved quantities. This work also contains an implementation of the said results in Mathematica. In addition, it includes, as a motivation for this work, an investigation of the connection between variational symmetries, described by local Lie groups
Nonlocal symmetry generators and explicit solutions of some partial differential equations
International Nuclear Information System (INIS)
Qin Maochang
2007-01-01
The nonlocal symmetry of a partial differential equation is studied in this paper. The partial differential equation written as a conservation law can be transformed into an equivalent system by introducing a suitable potential. The nonlocal symmetry group generators of original partial differential equations can be obtained through their equivalent system. Further, new explicit solutions can be constructed from the newly obtained symmetry generators. The Burgers equation is chosen as an example; many new valuable explicit solutions and nonlocal symmetry generators are presented
Greiner, Walter
1989-01-01
"Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...
Holography without translational symmetry
Vegh, David
2013-01-01
We propose massive gravity as a holographic framework for describing a class of strongly interacting quantum field theories with broken translational symmetry. Bulk gravitons are assumed to have a Lorentz-breaking mass term as a substitute for spatial inhomogeneities. This breaks momentum-conservation in the boundary field theory. At finite chemical potential, the gravity duals are charged black holes in asymptotically anti-de Sitter spacetime. The conductivity in these systems generally exhibits a Drude peak that approaches a delta function in the massless gravity limit. Furthermore, the optical conductivity shows an emergent scaling law: $|\\sigma(\\omega)| \\approx {A \\over \\omega^{\\alpha}} + B$. This result is consistent with that found earlier by Horowitz, Santos, and Tong who introduced an explicit inhomogeneous lattice into the system.
Locally Hamiltonian systems with symmetry and a generalized Noether's theorem
International Nuclear Information System (INIS)
Carinena, J.F.; Ibort, L.A.
1985-01-01
An analysis of global aspects of the theory of symmetry groups G of locally Hamiltonian dynamical systems is carried out for particular cases either of the symmetry group, or the differentiable manifold M supporting the symplectic structure, or the action of G on M. In every case it is obtained a generalization of Noether's theorem. It has been looked at the classical Noether's theorem for Lagrangian systems from a modern perspective
Accidental symmetries and the effective Lagrangian of string theory
International Nuclear Information System (INIS)
Ovrut, B.A.
1989-01-01
In this paper the relationship between accidental worldsheet symmetries of the string generating functional and target space invariance groups is discussed. Accidental symmetries are used to derive the invariance groups and effective low energy Lagrangian for the bosonic string, and the heterotic string compactified to four-dimensions on Z N orbifolds. The necessity of a new type of Green-Schwarz mechanism, associated with the auxiliary vector field in the four-dimensional N = 1 supergravity multiplet, is shown using these methods
Neutrino mass and mixing with discrete symmetry
International Nuclear Information System (INIS)
King, Stephen F; Luhn, Christoph
2013-01-01
This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A 4 , S 4 and Δ(96). (review article)
On systems having Poincaré and Galileo symmetry
International Nuclear Information System (INIS)
Holland, Peter
2014-01-01
Using the wave equation in d≥1 space dimensions it is illustrated how dynamical equations may be simultaneously Poincaré and Galileo covariant with respect to different sets of independent variables. This provides a method to obtain dynamics-dependent representations of the kinematical symmetries. When the field is a displacement function both symmetries have a physical interpretation. For d=1 the Lorentz structure is utilized to reveal hitherto unnoticed features of the non-relativistic Chaplygin gas including a relativistic structure with a limiting case that exhibits the Carroll group, and field-dependent symmetries and associated Noether charges. The Lorentz transformations of the potentials naturally associated with the Chaplygin system are given. These results prompt the search for further symmetries and it is shown that the Chaplygin equations support a nonlinear superposition principle. A known spacetime mixing symmetry is shown to decompose into label-time and superposition symmetries. It is shown that a quantum mechanical system in a stationary state behaves as a Chaplygin gas. The extension to d>1 is used to illustrate how the physical significance of the dual symmetries is contingent on the context by showing that Maxwell’s equations exhibit an exact Galileo covariant formulation where Lorentz and gauge transformations are represented by field-dependent symmetries. A natural conceptual and formal framework is provided by the Lagrangian and Eulerian pictures of continuum mechanics
Collective states and crossing symmetry
International Nuclear Information System (INIS)
Heiss, W.D.
1977-01-01
Collective states are usually described in simple terms but with the use of effective interactions which are supposed to contain more or less complicated contributions. The significance of crossing symmetry is discussed in this connection. Formal problems encountered in the attempts to implement crossing symmetry are pointed out
Singlets of fermionic gauge symmetries
Bergshoeff, E.A.; Kallosh, R.E.; Rahmanov, M.A.
1989-01-01
We investigate under which conditions singlets of fermionic gauge symmetries which are "square roots of gravity" can exist. Their existence is non-trivial because there are no fields neutral in gravity. We tabulate several examples of singlets of global and local supersymmetry and Îº-symmetry and
''Natural'' left-right symmetry
International Nuclear Information System (INIS)
Mohapatra, R.N.; Pati, J.C.
1975-01-01
It is remarked that left-right symmetry of the starting gauge interactions is retained as a ''natural'' symmetry if it is broken in no way except possibly by mass terms in the Lagrangian. The implications of this result for the unification of coupling constants and for parity nonconservation at low and high energies are stressed
Symmetry guide to ferroaxial transitions
Czech Academy of Sciences Publication Activity Database
Hlinka, Jiří; Přívratská, J.; Ondrejkovič, Petr; Janovec, Václav
2016-01-01
Roč. 116, č. 17 (2016), 1-6, č. článku 177602. ISSN 0031-9007 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : symmetry * symmetry breaking * ferroaxial Transitions * property tensors * Aizu species Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.462, year: 2016
Fifty years of symmetry operations
International Nuclear Information System (INIS)
Wigner, E.P.
1978-01-01
The author begins by discussing the application of symmetry principles in classical physics, which began 150 years ago. He then offers a few remarks on the essence of these principles and their role in the structure of physics; events, laws of nature, and invariance principles - kinematic and then dynamic - are treated. After this general discussion of the various types of symmetries, he considers the fundamental differences in their application in classical and quantum physics; the symmetry principles have greater effectiveness in quantum theory. After a few critical remarks of a general nature on the invariance principles, the author reviews the application of symmetry principles in various areas of quantum mechanics: atomic spectra, molecular physics, solid state physics, nuclear physics, and particle physics. He notes that the role of the different symmetries recognized to be approximate provide the most interesting conclusions
Symmetry inheritance of scalar fields
International Nuclear Information System (INIS)
Ivica Smolić
2015-01-01
Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair. (paper)
Shape analysis with subspace symmetries
Berner, Alexander
2011-04-01
We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).
Hyperbolic-symmetry vector fields.
Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2015-12-14
We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.
Spontaneous emergence of gauge symmetry
International Nuclear Information System (INIS)
Nielsen, H.B.; Brene, N.
1987-05-01
Within the framework of the random dynamics project we have demonstrated several mechanisms for breakdown of a preexisting exact gauge symmetry. This note concerns and reviews a mechanism which works essentially in the opposite direction, leading from am accidental approximate symmetry to an exact formal gauge symmetry. It was shown that although this symmetry is a priori only strictly formal, it can under certain circumstances lead to a physical consequence: the corresponding gauge boson becomes massless. In the chaotic models typical for our random dynamics project there is, of course, a strong competition between this mechanism and mechanisms which temd to destroy the symmetry and give mass(es) to the gauge boson(s). (orig.)
Axions from chiral family symmetry
International Nuclear Information System (INIS)
Chang, D.; Pal, P.B.; Maryland Univ., College Park; Senjanovic, G.
1985-01-01
We investigate the possibility that family symmetry, Gsub(F), is spontaneously broken chiral global symmetry. We classify the interesting cases when family symmetry can result in an automatic Peccei-Quinn symmetry U(1)sub(PQ) and thus provide a solution to the strong CP problem. The result disfavors having two or four families. For more than four families, U(1)sub(PQ) is in general automatic. In the case of three families, a unique Higgs sector allows U(1)sub(PQ) in the simplest case of Gsub(F)=[SU(3)] 3 . Cosmological consideration also puts strong constraint on the number of families. For Gsub(F)=[SU(N)] 3 cosmology singles out the three-family (N=3) case as a unique solution if there are three light neutrinos. Possible implication of decoupling theorem as applied to family symmetry breaking is also discussed. (orig.)
Directory of Open Access Journals (Sweden)
Renato Lemus
2012-11-01
Full Text Available The eigenfunction approach used for discrete symmetries is deduced from the concept of quantum numbers. We show that the irreducible representations (irreps associated with the eigenfunctions are indeed a shorthand notation for the set of eigenvalues of the class operators (character table. The need of a canonical chain of groups to establish a complete set of commuting operators is emphasized. This analysis allows us to establish in natural form the connection between the quantum numbers and the eigenfunction method proposed by J.Q. Chen to obtain symmetry adapted functions. We then proceed to present a friendly version of the eigenfunction method to project functions.
Gauging hidden symmetries in two dimensions
International Nuclear Information System (INIS)
Samtleben, Henning; Weidner, Martin
2007-01-01
We initiate the systematic construction of gauged matter-coupled supergravity theories in two dimensions. Subgroups of the affine global symmetry group of toroidally compactified supergravity can be gauged by coupling vector fields with minimal couplings and a particular topological term. The gauge groups typically include hidden symmetries that are not among the target-space isometries of the ungauged theory. The gaugings constructed in this paper are described group-theoretically in terms of a constant embedding tensor subject to a number of constraints which parametrizes the different theories and entirely encodes the gauged Lagrangian. The prime example is the bosonic sector of the maximally supersymmetric theory whose ungauged version admits an affine e 9 global symmetry algebra. The various parameters (related to higher-dimensional p-form fluxes, geometric and non-geometric fluxes, etc.) which characterize the possible gaugings, combine into an embedding tensor transforming in the basic representation of e 9 . This yields an infinite-dimensional class of maximally supersymmetric theories in two dimensions. We work out and discuss several examples of higher-dimensional origin which can be systematically analyzed using the different gradings of e 9
International Nuclear Information System (INIS)
Peskin, M.E.
1994-01-01
When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics
Gravitation and Gauge Symmetries
Stewart, J
2002-01-01
The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E. [Stanford Univ., CA (United States)
1994-12-01
When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.
Symmetries in nuclear structure
Allaart, K; Dieperink, A
1983-01-01
The 1982 summer school on nuclear physics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the fifth in a series that started in 1963. The number of students attending has always been about one hundred, coming from about thirty countries. The theme of this year's school was symmetry in nuclear physics. This book covers the material presented by the enthusi astic speakers, who were invited to lecture on this subject. We think they have succeeded in presenting us with clear and thorough introductory talks at graduate or higher level. The time schedule of the school and the location allowed the participants to make many informal contacts during many social activities, ranging from billiards to surf board sailing. We hope and expect that the combination of a relaxed atmosphere during part of the time and hard work during most of the time, has furthered the interest in, and understanding of, nuclear physics. The organization of the summer school was made possible by substantia...
Quark diquark symmetry breaking
International Nuclear Information System (INIS)
Souza, M.M. de
1980-01-01
Assuming the baryons are made of quark-diquark pairs, the wave functions for the 126 allowed ground states are written. The quark creation and annihilations operators are generalized to describe the quark-diquark structure in terms of a parameter σ. Assuming that all quark-quark interactions are mediated by gluons transforming like an octet of vector mesons, the effective Hamiltonian and the baryon masses as constraint equations for the elements of the mass matrix is written. The symmetry is the SU(6) sub(quark)x SU(21) sub(diquark) broken by quark-quark interactions respectively invariant under U(6), U(2) sub(spin), U(3) and also interactions transforming like the eighth and the third components of SU(3). In the limit of no quark-diquark structure (σ = 0), the ground state masses is titted to within 1% of the experimental data, except for the Δ(1232), where the error is almost 2%. Expanding the decuplet mass equations in terms of σ and keeping terms only up to the second order, this error is reduced to 67%. (Author) [pt
Decoherence and discrete symmetries in deformed relativistic kinematics
Arzano, Michele
2018-01-01
Models of deformed Poincaré symmetries based on group valued momenta have long been studied as effective modifications of relativistic kinematics possibly capturing quantum gravity effects. In this contribution we show how they naturally lead to a generalized quantum time evolution of the type proposed to model fundamental decoherence for quantum systems in the presence of an evaporating black hole. The same structures which determine such generalized evolution also lead to a modification of the action of discrete symmetries and of the CPT operator. These features can in principle be used to put phenomenological constraints on models of deformed relativistic symmetries using precision measurements of neutral kaons.
RG analysis of magnetic catalysis in dynamical symmetry breaking
International Nuclear Information System (INIS)
Hong, Deog Ki; Kim, Youngman
1996-01-01
We perform the renormalization group analysis on the dynamical symmetry breaking under strong external magnetic field, studied recently by Gusynin, Miransky and Shovkovy. We find that any attractive four-Fermi interaction becomes strong in the low energy, thus leading to dynamical symmetry breaking. When the four-Fermi interaction is absent, the β-function for the electromagnetic coupling vanishes in the leading order in 1/N. By solving the Schwinger-Dyson equation for the fermion propagator, we show that in 1/N expansion, for any electromagnetic coupling, dynamical symmetry breaking occurs due to the presence of Landau energy gap by the external magnetic field. 5 refs
Classification of mammographic masses using geometric symmetry and fractal analysis
Energy Technology Data Exchange (ETDEWEB)
Guo Qi; Ruiz, V.F. [Cybernetics, School of Systems Engineering, Univ. of Reading (United Kingdom); Shao Jiaqing [Dept. of Electronics, Univ. of Kent (United Kingdom); Guo Falei [WanDe Industrial Engineering Co. (China)
2007-06-15
In this paper, we propose a fuzzy symmetry measure based on geometrical operations to characterise shape irregularity of mammographic mass lesion. Group theory, a powerful tool in the investigation of geometric transformation, is employed in our work to define and describe the underlying mathematical relations. We investigate the usefulness of fuzzy symmetry measure in combination with fractal analysis for classification of masses. Comparative studies show that fuzzy symmetry measure is useful for shape characterisation of mass lesions and is a good complementary feature for benign-versus-malignant classification of masses. (orig.)
Symmetries of dynamically equivalent theories
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M.; Tyutin, I.V. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Lebedev Physics Institute, Moscow (Russian Federation)
2006-03-15
A natural and very important development of constrained system theory is a detail study of the relation between the constraint structure in the Hamiltonian formulation with specific features of the theory in the Lagrangian formulation, especially the relation between the constraint structure with the symmetries of the Lagrangian action. An important preliminary step in this direction is a strict demonstration, and this is the aim of the present article, that the symmetry structures of the Hamiltonian action and of the Lagrangian action are the same. This proved, it is sufficient to consider the symmetry structure of the Hamiltonian action. The latter problem is, in some sense, simpler because the Hamiltonian action is a first-order action. At the same time, the study of the symmetry of the Hamiltonian action naturally involves Hamiltonian constraints as basic objects. One can see that the Lagrangian and Hamiltonian actions are dynamically equivalent. This is why, in the present article, we consider from the very beginning a more general problem: how the symmetry structures of dynamically equivalent actions are related. First, we present some necessary notions and relations concerning infinitesimal symmetries in general, as well as a strict definition of dynamically equivalent actions. Finally, we demonstrate that there exists an isomorphism between classes of equivalent symmetries of dynamically equivalent actions. (author)
Astroparticle tests of Lorentz symmetry
Energy Technology Data Exchange (ETDEWEB)
Diaz, Jorge [Karlsruhe Institute of Technology, Karlsruhe (Germany)
2016-07-01
Lorentz symmetry is a cornerstone of modern physics. As the spacetime symmetry of special relativity, Lorentz invariance is a basic component of the standard model of particle physics and general relativity, which to date constitute our most successful descriptions of nature. Deviations from exact symmetry would radically change our view of the universe and current experiments allow us to test the validity of this assumption. In this talk, I describe effects of Lorentz violation in cosmic rays and gamma rays that can be studied in current observatories.
Geometrical spin symmetry and spin
International Nuclear Information System (INIS)
Pestov, I. B.
2011-01-01
Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.
Directory of Open Access Journals (Sweden)
Nadjafikhah M.
2017-07-01
Full Text Available Lie group method is applicable to both linear and non-linear partial differential equations, which leads to find new solutions for partial differential equations. Lie symmetry group method is applied to study Newtonian incompressible fluid’s equations flow in turbulent boundary layers. The symmetry group and its optimal system are given, and group invariant solutions associated to the symmetries are obtained. Finally the structure of the Lie algebra such as Levi decomposition, radical subalgebra, solvability and simplicity of symmetries is given.
Strings, Branes and Symmetries
International Nuclear Information System (INIS)
Westerberg, A.
1997-01-01
Recent dramatic progress in the understanding of the non-perturbative structure of superstring theory shows that extended objects of various kinds, collectively referred to as p-branes, are an integral part of the theory. In this thesis, comprising an introductory text and seven appended research papers, we study various aspects of p-branes with relevance for superstring theory. The first part of the introductory text is a brief review of string theory focussing on the role of p-branes. In particular, we consider the so-called D-branes which currently are attracting a considerable amount of attention. The purpose of this part is mainly to put into context the results of paper 4, 5 and 6 concerning action functionals describing the low-energy dynamics of D-branes. The discussion of perturbative string theory given in this part of the introduction is also intended to provide some background to paper 2 which contains an application of the Reggeon-sewing approach to the construction of string vertices. The second part covers a rather different subject, namely higher-dimensional loop algebras and their cohomology, with the aim of facilitating the reading of papers 1, 3 and 7. The relation to p-branes is to be found in paper 1 where we introduce a certain higher-dimensional generalization of the loop algebra and discuss its potential applicability as a symmetry algebra for p-branes. Papers 3 and 7 are mathematically oriented out-growths of this paper addressing the issue of realizing algebras of this kind, known in physics as current algebras, in terms of pseudo differential operators (PSDOs). The main result of paper 3 is a proof of the equivalence between certain Lie-algebra cocycles on the space of second-quantizable PSDOs
Analysis of chiral symmetry breaking mechanism
International Nuclear Information System (INIS)
Guo, X. H.; Academia Sinica, Beijing; Huang, T.; CCAST
1997-01-01
The renormalization group invariant quark condensate μ is determined both from the consistent equation for quark condensate in the chiral limit and from the Schwinger-Dyson (SD) equation improved by the intermediate range QCD force singular like δ (q) which is associated with the gluon condensate. The solutions of μ in these two equations are consistent. The authors also obtain the critical strong coupling constant α c above which chiral symmetry breaks in these two approaches. The nonperturbative kernel of the SD equation makes α c smaller and μ bigger. An intuitive picture of the condensation above α c is discussed. In addition, with the help of the Slavnov-Taylor-Ward (STW) identity they derive the equations for the nonperturbative quark propagator from the SD equation in the presence of the intermediate range force and find that the intermediate-range force is also responsible for dynamical chiral symmetry breaking
Tensegrity structures form, stability, and symmetry
Zhang, Jing Yao
2015-01-01
To facilitate a deeper understanding of tensegrity structures, this book focuses on their two key design problems: self-equilibrium analysis and stability investigation. In particular, high symmetry properties of the structures are extensively utilized. Conditions for self-equilibrium as well as super-stability of tensegrity structures are presented in detail. An analytical method and an efficient numerical method are given for self-equilibrium analysis of tensegrity structures: the analytical method deals with symmetric structures and the numerical method guarantees super-stability. Utilizing group representation theory, the text further provides analytical super-stability conditions for the structures that are of dihedral as well as tetrahedral symmetry. This book not only serves as a reference for engineers and scientists but is also a useful source for upper-level undergraduate and graduate students. Keeping this objective in mind, the presentation of the book is self-contained and detailed, with an abund...
Supergauge symmetry in local quantum field theory
International Nuclear Information System (INIS)
Ferrara, S.
1974-01-01
The extension of supergauge symmetry to four-dimensional space-time allows to investigate the possible role of this symmetry in conventional local quantum field theory. The supergauge algebra is obtained by adding to the conformal group of space-time two Majorana spinor generators and the chiral charge. The commutation properties of the algebra are used to derive the most general form of the superfield. This field contains two Majorana spinors, two scalar fields, a chiral doublet, and a real vector field called the vector superfield. The covariant derivatives defined, together with the scalar and vector multiplets are the basic ingredients used in order to build up supergauge symmetric Lagrangians. It is shown that the only possible fields which can be considered as supergauge invariant Lagrangians are the F and D components of the scalar and vector multiplets respectively
Symmetry adaptation, operator equivalents and magnetic resonance
International Nuclear Information System (INIS)
Kibler, M.; Chatterjee, R.
1977-12-01
Basic quantities for symmetry adaptation are discussed in connection with molecular and solid state physics. This gives rise to a formalism whose the central elements are operator equivalents adapted to a point group. Such symmetry adapted operator equivalents are defined in terms of Schwinger operators so that they cover the off-diagonal and diagonal cases. Special emphasis is put on the applications of the formalism to magnetic resonance. More specifically, it is shown how to apply the formalism to the construction, the study of the transformation properties, and the determination of the eigenstates of a generalized spin hamiltonian. Numerous examples are given as well as key tables relative to the chain SO(3) for making easy the application of the formalism to electron paramagnetic resonance [fr
Nuclear symmetries at low isospin
International Nuclear Information System (INIS)
Juillet, Olivier
1999-01-01
With the development of radioactive beams, an area of intense research in nuclear physics concerns the structure of exotic systems with roughly equal numbers of protons and neutrons. These nuclei might in fact develop a proton-neutron superfluidity whose importance compared to pairing correlations between like nucleons is currently investigated. The work presented in this thesis suggests to look at such a competition in an algebraic framework based on a Wigner SU(4) symmetry that combines the pseudo-spin and isospin degrees of freedom. After a detailed review of group theory in quantum mechanics, the validity of the pseudo-SU(4) classification is shown via a direct analysis of realistic shell model states. Its consequences on binding energies and β decay are also studied. Moreover, a simplified boson realisation with zero orbital angular momentum is used to find some physical features of N=Z nuclei such as the condensation of α-like structures or the destruction of isoscalar superfluid correlations by the spin-orbit potential. Finally, another bosonization scheme that includes quadrupole degrees of freedom (IBM-4 model) is tested for the first time by diagonalization of a full Hamiltonian deduced from a realistic shell model interaction. The quality of the results, especially for odd-odd nuclei, allows one to consider this boson approximation as an alternative to standard fermionic approaches for the collective structure of the exotic line N∼Z=28-50. (author) [fr
Stochastic mechanism of symmetry breaking
International Nuclear Information System (INIS)
Baseyan, H.Z.
1983-01-01
A new symmetry breaking mechanism conditioned by presence of random fields in vacuum is proposed. Massive Yang-Mills fields finally arise, that may be interpreted as ''macroscopic'' manifestation of the ''microscopic'' Yang-Mills massless theory
Shape analysis with subspace symmetries
Berner, Alexander; Wand, Michael D.; Mitra, Niloy J.; Mewes, Daniel; Seidel, Hans Peter
2011-01-01
We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more
Symmetries in the Lagrangean formalism
International Nuclear Information System (INIS)
Grigore, D.R.
1987-09-01
We generalize the analysis of Levy-Leblond for lagrangean systems with symmetry. We prove that this analysis goes through practically unchanged and after that we analyse in detail some examples.(author)
International Nuclear Information System (INIS)
Wang Ling; Dong Zhongzhou; Liu Xiqiang
2008-01-01
By applying a direct symmetry method, we get the symmetry of the asymmetric Nizhnik-Novikov-Veselov equation (ANNV). Taking the special case, we have a finite-dimensional symmetry. By using the equivalent vector of the symmetry, we construct an eight-dimensional symmetry algebra and get the optimal system of group-invariant solutions. To every case of the optimal system, we reduce the ANNV equation and obtain some solutions to the reduced equations. Furthermore, we find some new explicit solutions of the ANNV equation. At last, we give the conservation laws of the ANNV equation.
Quasigroup of local-symmetry transformations in constrained theories
International Nuclear Information System (INIS)
Chitaya, N.P.; Gogilidze, S.A.; Surovtsev, Yu.S.
1996-01-01
In the framework of the generalized Hamiltonian formalism by Dirac, the local symmetries of dynamical systems with first- and second-class constraints are investigated in the general case without restrictions on the algebra of constraints. The method of constructing the generator of local-symmetry transformations is obtained from the requirement for them to map the solutions of the Hamiltonian equations of motion into the solutions of the same equations. It is proved that second-class constraints do not contribute to the transformation law of the local symmetry entirely stipulated by all the first-class constraints (only by them) of an equivalent set passing to which from the initial constraint set is always possible and is presented. A mechanism of occurrence of higher derivatives of coordinates and group parameters in the symmetry transformation law in the Noether second theorem is elucidated. In the latter case it is shown that the obtained transformations of symmetry are canonical in the extended (by Ostrogradsky) phase space. It is thereby shown in the general case that the degeneracy of theories with the first- and second-class constraints is due to their invariance under local-symmetry transformations. It is also shown in the general case that the action functional and the corresponding Hamiltonian equations of motion are invariant under the same quasigroup of local-symmetry transformations. 29 refs
Renormgroup symmetry for solution functionals
International Nuclear Information System (INIS)
Shirkov, D.V.; Kovalev, V.F.
2004-01-01
The paper contains generalization of the renormgroup algorithm for boundary value problems of mathematical physics and related concept of the renormgroup symmetry, formulated earlier by the authors with reference to models based on differential equations. These algorithm and symmetry are formulated now for models with nonlocal (integral) equations. We discuss in detail and illustrate by examples the applications of the generalized algorithm to models with nonlocal terms which appear as linear functionals of the solution. (author)
Conformal symmetry in quantum finance
International Nuclear Information System (INIS)
Romero, Juan M; Lavana, Ulises; Miranda, Elio Martínez
2014-01-01
The quantum finance symmetries are studied. In order to do this, the one dimensional free non-relativistic particle and its symmetries are revisited and the particle mass is identified as the inverse of square of the volatility. Furthermore, using financial variables, a Schrödinger algebra representation is constructed. In addition, it is shown that the operators of this last representation are not hermitian and not conserved.
PREFACE: Symmetries in Science XVI
2014-10-01
This volume of the proceedings ''Symmetries in Science XVI'' is dedicated to the memory of Miguel Lorente and Allan Solomon who both participated several times in these Symposia. We lost not only two great scientists and colleagues, but also two wonderful persons of high esteem whom we will always remember. Dieter Schuch, Michael Ramek There is a German saying ''all good things come in threes'' and ''Symmetries in Science XVI'', convened July 20-26, 2013 at the Mehrerau Monastery, was our third in the sequel of these symposia since taking it over from founder Bruno Gruber who instigated it in 1988 (then in Lochau). Not only the time seemed to have been perfect (one week of beautiful sunshine), but also the medley of participants could hardly have been better. This time, 34 scientists from 16 countries (more than half outside the European Union) came together to report and discuss their latest results in various fields of science, all related to symmetries. The now customary grouping of renowned experts and talented newcomers was very rewarding and stimulating for all. The informal, yet intense, discussions at ''Gasthof Lamm'' occurred (progressively later) each evening till well after midnight and finally till almost daybreak! However, prior to the opening ceremony and during the conference, respectively, we were informed that Miguel Lorente and Allan Solomon had recently passed away. Both attended the SIS Symposia several times and had many friends among present and former participants. Professor Peter Kramer, himself a long-standing participant and whose 80th birthday commemoration prevented him from attending SIS XVI, kindly agreed to write the obituary for Miguel Lorente. Professors Richard Kerner and Carol Penson (both also former attendees) penned, at very short notice, the tribute to Allan Solomon. The obituaries are included in these Proceedings and further tributes have been posted to our conference website. In 28 lectures and an evening poster
Group theory and its applications
Patra, Prasanta Kumar
2018-01-01
Every molecule possesses symmetry and hence has symmetry operations and symmetry elements. From symmetry properties of a system we can deduce its significant physical results. Consequently it is essential to operations of a system forms a group. Group theory is an abstract mathematical tool that underlies the study of symmetry and invariance. By using the concepts of symmetry and group theory, it is possible to obtain the members of complete set of known basis functions of the various irreducible representations of the group. I practice this is achieved by applying the projection operators to linear combinations of atomic orbital (LCAO) when the valence electrons are tightly bound to the ions, to orthogonalized plane waves (OPW) when valence electrons are nearly free and to the other given functions that are judged to the particular system under consideration. In solid state physics the group theory is indispensable in the context of finding the energy bands of electrons in solids. Group theory can be applied...
Radiative violation of CP-symmetry
International Nuclear Information System (INIS)
Galvan Herrera, J.B.
1990-01-01
The left-right quiral symmetry is not conserved by the Standard model. A subgroup of the standard gauge group (SU(2) L ) breaks this symmetry in a explicit way. Moreover, the standard model, if there are theree or more matter generations, violates the CP discrete symmetry. This prediction has been experimentally demonstrated correct in the Kaon anti Kaon system. In this work some possible explanations to the CP violation parameter magnitude are researched. We have studied the variation of the Kobayashi-Maskawa matrix with the energy scale. To realize this work we have developed a general method to calculate the renormalization group equations of the Kobayashi-Maskawa matrix parameters. From these equations we could also calculate the renormalization group equation of the J parameter that characterizes the CP violation. This calculus has been applied in a concrete example: a typical supersymmetric model from superstring theories. This model can be seen like a natural extension of the supersymmetric standard model. This kind of models have a gauge group bigger that the standard one more particles and new terms of the Lagrangian. We have verified that such model provides us of a correct low energy fenomenology and, moreover other results, some particle spectrums have been developed. In the elaboration of this model some conditions, that the model has to respected to be compatible with the actual fenomenology, have been studied. The most interesting results of this thesis are the develop of a general method to calculate the renormalization group equations of the Kobayashi-Maskawa matrix parameters and the develop of a new mechanism of the radiative violation. This mechanism is related with the new terms of the Lagrangian. (Author)
Symmetries of some hypergeometric series: Implications for 3j- and 6j-coefficients
International Nuclear Information System (INIS)
Louck, J.D.; Beyer, W.A.; Biedenharn, L.C.; Stein, P.R.
1986-10-01
The occurrence of generalized hypergeometric series as factors, in the Wigner-Clebsch-Gordan (3j) and Racah (6j) coefficients is well known. The recently discovered S 5 symmetry of the Saalscheutzian 4 F 3 series may be used to extend the symmetries of the 6j-coefficients to the much larger group generated by S 5 and the group of Regge symmetries. (A similar extension may be carried out for the 3j-coefficients). The required extension of the domain of definition of the 6j-coefficients and the properties of its symmetry group is developed here. 7 refs
Local E11 and the gauging of the trombone symmetry
International Nuclear Information System (INIS)
Riccioni, Fabio
2010-01-01
In any dimension, the positive level generators of the very extended Kac-Moody algebra E 11 with completely antisymmetric spacetime indices are associated with the form fields of the corresponding maximal supergravity. We consider the local E 11 algebra, that is the algebra obtained by enlarging these generators of E 11 in such a way that the global E 11 symmetries are promoted to gauge symmetries. These are the gauge symmetries of the corresponding massless maximal supergravity. We show the existence of a new type of deformation of the local E 11 algebra, which corresponds to the gauging of the symmetry under rescaling of the fields. In particular, we show how the gauged IIA theory of Howe, Lambert and West is obtained from an 11-dimensional group element that only depends on the 11th coordinate via a linear rescaling. We then show how this results in ten dimensions in a deformed local E 11 algebra of a new type.
Supersymmetry and intermediate symmetry breaking in SO(10) superunification
International Nuclear Information System (INIS)
Asatryan, H.M.; Ioannisyan, A.N.
1985-01-01
A scheme of simultaneous breakdown of intermediate symmetry SO(10) → SU(3)sub(c) x U(1) x SU(2)sub(L) x SU(2)sub(R) and supersymmetry by means of a single scale parameter is suggested. This intermediate symmetry, which is preferable physically, owing to the broken supersymmetry has a minimum lying lower than SU(4) x SU(2)sub(L) x SU(2)sub(R). The intermediate symmetry is broken by the vacuum expectation value of the Higgs superfields. Owing to the quantum corrections the potential minimum turns out to correspond to breakdown of the intermediate symmetry up to the standard group SU(3)sub(c) x SU(2)sub(L) x U(1)sub(y). The value of the Weinberg angle is less than that in the supersymmetric SU(5) model and agrees with the experiment
Experimental probes of emergent symmetries in the quantum Hall system
Lutken, C A
2011-01-01
Experiments studying renormalization group flows in the quantum Hall system provide significant evidence for the existence of an emergent holomorphic modular symmetry Gamma(0)(2). We briefly review this evidence and show that, for the lowest temperatures, the experimental determination of the position of the quantum critical points agrees to the parts per mille level with the prediction from Gamma(0)(2). We present evidence that experiments giving results that deviate substantially from the symmetry predictions are not cold enough to be in the quantum critical domain. We show how the modular symmetry extended by a non-holomorphic particle hole duality leads to an extensive web of dualities related to those in plateau insulator transitions, and we derive a formula relating dual pairs (B, B(d)) of magnetic field strengths across any transition. The experimental data obtained for the transition studied so far is in excellent agreement with the duality relations following from this emergent symmetry, and rule out...
Constraining the physical state by symmetries
Energy Technology Data Exchange (ETDEWEB)
Fatibene, L., E-mail: lorenzo.fatibene@unito.it [Department of Mathematics, University of Torino (Italy); INFN - Sezione Torino - IS QGSKY (Italy); Ferraris, M.; Magnano, G. [Department of Mathematics, University of Torino (Italy)
2017-03-15
After reviewing the hole argument and its relations with initial value problem and general covariance, we shall discuss how much freedom one has to define the physical state in a generally covariant field theory (with or without internal gauge symmetries). Our analysis relies on Cauchy problems, thus it is restricted to globally hyperbolic spacetimes. We shall show that in generally covariant theories on a compact space (as well as for internal gauge symmetries on any spacetime) one has no freedom and one is forced to declare as physically equivalent two configurations which differ by a global spacetime diffeomorphism (or by an internal gauge transformation) as it is usually prescribed. On the contrary, when space is not compact, the result does not hold true and one may have different options to define physically equivalent configurations, still preserving determinism. - Highlights: • Investigate the relation between the hole argument, covariance, determinism and physical state. • Show that if space is compact then any diffeomorphism is a gauge symmetry. • Show that if space is not compact then there may be more freedom in choosing gauge group.
Prediction of Human Eye Fixations using Symmetry
Kootstra, Gert; Schomaker, Lambert R. B.
2009-01-01
Humans are very sensitive to symmetry in visual patterns. Reaction time experiments show that symmetry is detected and recognized very rapidly. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of saliency. In this paper, we discuss local symmetry as a measure of saliency. We propose a number of symmetry models and perform an eye-tracking study with human participants viewing photographic i...
Miller, G A
2003-01-01
Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...
Symmetry and Asymmetry Level Measures
Directory of Open Access Journals (Sweden)
Angel Garrido
2010-04-01
Full Text Available Usually, Symmetry and Asymmetry are considered as two opposite sides of a coin: an object is either totally symmetric, or totally asymmetric, relative to pattern objects. Intermediate situations of partial symmetry or partial asymmetry are not considered. But this dichotomy on the classification lacks of a necessary and realistic gradation. For this reason, it is convenient to introduce "shade regions", modulating the degree of Symmetry (a fuzzy concept. Here, we will analyze the Asymmetry problem by successive attempts of description and by the introduction of the Asymmetry Level Function, as a new Normal Fuzzy Measure. Our results (both Theorems and Corollaries suppose to be some new and original contributions to such very active and interesting field of research. Previously, we proceed to the analysis of the state of art.
Flavor physics without flavor symmetries
Buchmuller, Wilfried; Patel, Ketan M.
2018-04-01
We quantitatively analyze a quark-lepton flavor model derived from a six-dimensional supersymmetric theory with S O (10 )×U (1 ) gauge symmetry, compactified on an orbifold with magnetic flux. Two bulk 16 -plets charged under the U (1 ) provide the three quark-lepton generations whereas two uncharged 10 -plets yield two Higgs doublets. At the orbifold fixed points mass matrices are generated with rank one or two. Moreover, the zero modes mix with heavy vectorlike split multiplets. The model possesses no flavor symmetries. Nevertheless, there exist a number of relations between Yukawa couplings, remnants of the underlying grand unified theory symmetry and the wave function profiles of the zero modes, which lead to a prediction of the light neutrino mass scale, mν 1˜10-3 eV and heavy Majorana neutrino masses in the range from 1 012 to 1 014 GeV . The model successfully includes thermal leptogenesis.
The symmetries of magnetic structures in rare earth tetraborides
International Nuclear Information System (INIS)
Schaefer, W.; Will, G.; Buschow, K.H.J.
1975-01-01
The collinear antiferromagnetic spin configurations, which are possible in the rare earth tetraboride structure (space group P 4/mbm) and their distinction by neutron diffraction are discussed. The symmetries of the different antiferromagnetic structures are described by the corrosponding magnetic space groups. Neutron diffraction data collected from ErB 4 are integrated in the structure discussion. (orig.) [de
Simple mathematical models of symmetry breaking. Application to particle physics
International Nuclear Information System (INIS)
Michel, L.
1976-01-01
Some mathematical facts relevant to symmetry breaking are presented. A first mathematical model deals with the smooth action of compact Lie groups on real manifolds, a second model considers linear action of any group on real or complex finite dimensional vector spaces. Application of the mathematical models to particle physics is considered. (B.R.H.)
Topological symmetry breakdown in cholesterics, nematics, and 3He
International Nuclear Information System (INIS)
Balachandran, A.P.; Lizzi, F.; Rodgers, V.G.J.
1984-01-01
Cholesterics, uniaxial and biaxial nematics, and the dipole-free A phase of superfluid 3 He are characterized by order parameters which are left invariant by suitable ''symmetry'' groups H. We show that in the presence of defects, the full group H may not be implementable on the states because of topological obstructions. Thus H is topologically broken in the presence of suitable defects
Symmetry broken and restored coupled-cluster theory: I. Rotational symmetry and angular momentum
International Nuclear Information System (INIS)
Duguet, T
2015-01-01
We extend coupled-cluster (CC) theory performed on top of a Slater determinant breaking rotational symmetry to allow for the exact restoration of the angular momentum at any truncation order. The main objective relates to the description of near-degenerate finite quantum systems with an open-shell character. As such, the newly developed many-body formalism offers a wealth of potential applications and further extensions dedicated to the ab initio description of, e.g., doubly open-shell atomic nuclei and molecule dissociation. The formalism, which encompasses both single-reference CC theory and projected Hartree–Fock theory as particular cases, permits the computation of usual sets of connected diagrams while consistently incorporating static correlations through the highly non-perturbative restoration of rotational symmetry. Interestingly, the yrast spectroscopy of the system, i.e. the lowest energy associated with each angular momentum, is accessed within a single calculation. A key difficulty presently overcome relates to the necessity to handle generalized energy and norm kernels for which naturally terminating CC expansions could be eventually obtained. The present work focuses on SU(2) but can be extended to any (locally) compact Lie group and to discrete groups, such as most point groups. In particular, the formalism will be soon generalized to U(1) symmetry associated with particle number conservation. This is relevant to Bogoliubov CC theory that was recently applied to singly open-shell nuclei. (paper)
Effects of Initial Symmetry on the Global Symmetry of One-Dimensional Legal Cellular Automata
Directory of Open Access Journals (Sweden)
Ikuko Tanaka
2015-09-01
Full Text Available To examine the development of pattern formation from the viewpoint of symmetry, we applied a two-dimensional discrete Walsh analysis to a one-dimensional cellular automata model under two types of regular initial conditions. The amount of symmetropy of cellular automata (CA models under regular and random initial conditions corresponds to three Wolfram’s classes of CAs, identified as Classes II, III, and IV. Regular initial conditions occur in two groups. One group that makes a broken, regular pattern formation has four types of symmetry, whereas the other group that makes a higher hierarchy pattern formation has only two types. Additionally, both final pattern formations show an increased amount of symmetropy as time passes. Moreover, the final pattern formations are affected by iterations of base rules of CA models of chaos dynamical systems. The growth design formations limit possibilities: the ratio of developing final pattern formations under a regular initial condition decreases in the order of Classes III, II, and IV. This might be related to the difference in degree in reference to surrounding conditions. These findings suggest that calculations of symmetries of the structures of one-dimensional cellular automata models are useful for revealing rules of pattern generation for animal bodies.
International Nuclear Information System (INIS)
Kastner, Ruth E.
2011-01-01
This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.
Kastner, Ruth E.
2011-11-01
This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.
Renormalizable models with broken symmetries
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1975-10-01
The results of the renormalized perturbation theory, in the absence of massless quanta, are summarized. The global symmetry breaking is studied and the associated currents are discussed in terms of the coupling with a classical Yang Mills field. Gauge theories are discussed; it is most likely that the natural set up should be the theory of fiber bundles and that making a choice of field coordinates makes the situation obscure. An attempt is made in view of clarifying the meaning of the Slavnov symmetry which characterizes gauge field theories [fr
Symmetry analysis of cellular automata
International Nuclear Information System (INIS)
García-Morales, V.
2013-01-01
By means of B-calculus [V. García-Morales, Phys. Lett. A 376 (2012) 2645] a universal map for deterministic cellular automata (CAs) has been derived. The latter is shown here to be invariant upon certain transformations (global complementation, reflection and shift). When constructing CA rules in terms of rules of lower range a new symmetry, “invariance under construction” is uncovered. Modular arithmetic is also reformulated within B-calculus and a new symmetry of certain totalistic CA rules, which calculate the Pascal simplices modulo an integer number p, is then also uncovered.
Symmetry of intramolecular quantum dynamics
Burenin, Alexander V
2012-01-01
The main goal of this book is to give a systematic description of intramolecular quantum dynamics on the basis of only the symmetry principles. In this respect, the book has no analogs in the world literature. The obtained models lead to a simple, purely algebraic, scheme of calculation and are rigorous in the sense that their correctness is limited only to the correct choice of symmetry of the internal dynamics. The book is basically intended for scientists working in the field of molecular spectroscopy, quantum and structural chemistry.
Chiral symmetry on the lattice
International Nuclear Information System (INIS)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model
Cosmological Reflection of Particle Symmetry
Directory of Open Access Journals (Sweden)
Maxim Khlopov
2016-08-01
Full Text Available The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetry and the mechanisms of its breaking are the subject of the present review.
Optical metamaterials with quasicrystalline symmetry: symmetry-induced optical isotropy
International Nuclear Information System (INIS)
Kruk, S.S.; Decker, M.; Helgert, Ch.; Neshev, D.N.; Kivshar, Y.S.; Staude, I.; Powell, D.A.; Pertsch, Th.; Menzel, Ch.; Helgert, Ch.; Etrich, Ch.; Rockstuhl, C.; Menzel, Ch.
2013-01-01
Taking advantage of symmetry considerations, we have analyzed the potential of various metamaterials to affect the polarization state of light upon oblique illumination. We have shown that depending on the angle of illumination, metamaterials are able to support specific polarization states. The presented methodology that using ellipticity and circular dichroism, provides an unambiguous language for discussing the impact of the inherent symmetry of the metamaterial lattices on their far-field response. Our findings allow the quantification analysis of the impact of inter-element coupling and lattice symmetry on the optical properties of metamaterials, and to separate this contribution from the response associated with a single meta-atom. In addition, we have studied the concept of optical quasicrystalline metamaterials, revealing that the absence of translational symmetry (periodicity) of quasicrystalline metamaterials causes an isotropic optical response, while the long-range positional order preserves the resonance properties. Our findings constitute an important step towards the design of optically isotropic metamaterials and metasurfaces. (authors)
Dynamical symmetry enhancement near IIA horizons
International Nuclear Information System (INIS)
Gran, University; Gutowski, J.; Kayani, University; Papadopoulos, G.
2015-01-01
We show that smooth type IIA Killing horizons with compact spatial sections preserve an even number of supersymmetries, and that the symmetry algebra of horizons with non-trivial fluxes includes an sl(2,ℝ) subalgebra. This confirms the conjecture of http://dx.doi.org/10.1007/JHEP11(2013)104 for type IIA horizons. As an intermediate step in the proof, we also demonstrate new Lichnerowicz type theorems for spin bundle connections whose holonomy is contained in a general linear group.
The master symmetry and time dependent symmetries of the differential–difference KP equation
International Nuclear Information System (INIS)
Khanizadeh, Farbod
2014-01-01
We first obtain the master symmetry of the differential–difference KP equation. Then we show how this master symmetry, through sl(2,C)-representation of the equation, can construct generators of time dependent symmetries. (paper)
International Nuclear Information System (INIS)
Kotel'nikov, G.A.
1994-01-01
An algorithm id proposed for research the symmetries of mathematical physics equation. The application of this algorithm to the Schroedinger equation permitted to establish, that in addition to the known symmetry the Schroedinger equation possesses also the relativistic symmetry
How does symmetry impact the flexibility of proteins?
Schulze, Bernd; Sljoka, Adnan; Whiteley, Walter
2014-02-13
It is well known that (i) the flexibility and rigidity of proteins are central to their function, (ii) a number of oligomers with several copies of individual protein chains assemble with symmetry in the native state and (iii) added symmetry sometimes leads to added flexibility in structures. We observe that the most common symmetry classes of protein oligomers are also the symmetry classes that lead to increased flexibility in certain three-dimensional structures-and investigate the possible significance of this coincidence. This builds on the well-developed theory of generic rigidity of body-bar frameworks, which permits an analysis of the rigidity and flexibility of molecular structures such as proteins via fast combinatorial algorithms. In particular, we outline some very simple counting rules and possible algorithmic extensions that allow us to predict continuous symmetry-preserving motions in body-bar frameworks that possess non-trivial point-group symmetry. For simplicity, we focus on dimers, which typically assemble with twofold rotational axes, and often have allosteric function that requires motions to link distant sites on the two protein chains.
Folded Sheet Versus Transparent Sheet Models for Human Symmetry Judgments
Directory of Open Access Journals (Sweden)
Jacques Ninio
2011-07-01
Full Text Available As a contribution to the mysteries of human symmetry perception, reaction time data were collected on the detection of symmetry or repetition violations, in the context of short term visual memory studies. The histograms for reaction time distributions are rather narrow in the case of symmetry judgments. Their analysis was performed in terms of a simple kinetic model of a mental process in two steps, a slow one for the construction of the representation of the images to be compared, and a fast one, in the 50 ms range, for the decision. There was no need for an additional ‘mental rotation’ step. Symmetry seems to facilitate the construction step. I also present here original stimuli showing a color equalization effect across a symmetry axis, and its counterpart in periodic patterns. According to a “folded sheet model”, when a shape is perceived, the brain automatically constructs a mirror-image representation of the shape. Based in part on the reaction time analysis, I present here an alternative “transparent sheet” model in which the brain constructs a single representation, which can be accessed from two sides, thus generating simultaneously a pattern and its mirror-symmetric partner. Filtering processes, implied by current models of symmetry perception could intervene at an early stage, by nucleating the propagation of similar perceptual groupings in the two symmetric images.
Chemical potential and reaction electronic flux in symmetry controlled reactions.
Vogt-Geisse, Stefan; Toro-Labbé, Alejandro
2016-07-15
In symmetry controlled reactions, orbital degeneracies among orbitals of different symmetries can occur along a reaction coordinate. In such case Koopmans' theorem and the finite difference approximation provide a chemical potential profile with nondifferentiable points. This results in an ill-defined reaction electronic flux (REF) profile, since it is defined as the derivative of the chemical potential with respect to the reaction coordinate. To overcome this deficiency, we propose a new way for the calculation of the chemical potential based on a many orbital approach, suitable for reactions in which symmetry is preserved. This new approach gives rise to a new descriptor: symmetry adapted chemical potential (SA-CP), which is the chemical potential corresponding to a given irreducible representation of a symmetry group. A corresponding symmetry adapted reaction electronic flux (SA-REF) is also obtained. Using this approach smooth chemical potential profiles and well defined REFs are achieved. An application of SA-CP and SA-REF is presented by studying the Cs enol-keto tautomerization of thioformic acid. Two SA-REFs are obtained, JA'(ξ) and JA'' (ξ). It is found that the tautomerization proceeds via an in-plane delocalized 3-center 4-electron O-H-S hypervalent bond which is predicted to exist only in the transition state (TS) region. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Invariant renormalization method for nonlinear realizations of dynamical symmetries
International Nuclear Information System (INIS)
Kazakov, D.I.; Pervushin, V.N.; Pushkin, S.V.
1977-01-01
The structure of ultraviolet divergences is investigated for the field theoretical models with nonlinear realization of the arbitrary semisimple Lie group, with spontaneously broken symmetry of vacuum. An invariant formulation of the background field method of renormalization is proposed which gives the manifest invariant counterterms off mass shell. A simple algorithm for construction of counterterms is developed. It is based on invariants of the group of dynamical symmetry in terms of the Cartan forms. The results of one-loop and two-loop calculations are reported
Equivariant topological quantum field theory and symmetry protected topological phases
Energy Technology Data Exchange (ETDEWEB)
Kapustin, Anton [Division of Physics, California Institute of Technology,1200 E California Blvd, Pasadena, CA, 91125 (United States); Turzillo, Alex [Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY, 11794 (United States)
2017-03-01
Short-Range Entangled topological phases of matter are closely related to Topological Quantum Field Theory. We use this connection to classify Symmetry Protected Topological phases in low dimensions, including the case when the symmetry involves time-reversal. To accomplish this, we generalize Turaev’s description of equivariant TQFT to the unoriented case. We show that invertible unoriented equivariant TQFTs in one or fewer spatial dimensions are classified by twisted group cohomology, in agreement with the proposal of Chen, Gu, Liu and Wen. We also show that invertible oriented equivariant TQFTs in spatial dimension two or fewer are classified by ordinary group cohomology.
Dynamical symmetries of the Klein-Gordon equation
International Nuclear Information System (INIS)
Zhang Fulin; Chen Jingling
2009-01-01
The dynamical symmetries of the two-dimensional Klein-Gordon equations with equal scalar and vector potentials (ESVPs) are studied. The dynamical symmetries are considered in the plane and the sphere, respectively. The generators of the SO(3) group corresponding to the Coulomb potential and the SU(2) group corresponding to the harmonic oscillator potential are derived. Moreover, the generators in the sphere construct the Higgs algebra. With the help of the Casimir operators, the energy levels of the Klein-Gordon systems are yielded naturally
Lie symmetries of a generalized Kuznetsov-Zabolotskaya-Khoklov equation
Gungor, F.; Ozemir, C.
2014-01-01
We consider a class of generalized Kuznetsov--Zabolotskaya--Khokhlov (gKZK) equations and determine its equivalence group, which is then used to give a complete symmetry classification of this class. The infinite-dimensional symmetry is used to reduce such equations to (1+1)-dimensional PDEs. Special attention is paid to group-theoretical properties of a class of generalized dispersionless KP (gdKP) or Zabolotskaya--Khokhlov equations as a subclass of gKZK equations. The conditions are determ...
Charge symmetry at the partonic level
Energy Technology Data Exchange (ETDEWEB)
Londergan, J. T.; Peng, J. C.; Thomas, A. W.
2010-07-01
This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.
A model of intrinsic symmetry breaking
International Nuclear Information System (INIS)
Ge, Li; Li, Sheng; George, Thomas F.; Sun, Xin
2013-01-01
Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry
From symmetries to number theory
International Nuclear Information System (INIS)
Tempesta, P.
2009-01-01
It is shown that the finite-operator calculus provides a simple formalism useful for constructing symmetry-preserving discretizations of quantum-mechanical integrable models. A related algebraic approach can also be used to define a class of Appell polynomials and of L series.
Superdeformations and fermion dynamical symmetries
International Nuclear Information System (INIS)
Wu, Cheng-Li
1990-01-01
In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU 3 of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU 3 fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU 3 symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting γ-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs
Negative energy solutions and symmetries
International Nuclear Information System (INIS)
Sidharth, B.G.
2011-01-01
We revisit the negative energy solutions of the Dirac (and Klein–Gordon) equation, which become relevant at very high energies in the context of the Feshbach–Villars formulation, and study several symmetries which follow therefrom. Significant consequences are briefly examined. (author)
On four dimensional mirror symmetry
International Nuclear Information System (INIS)
Losev, A.; Nekrasov, N.; Shatashvili, S.
2000-01-01
A conjecture relating instanton calculus in four dimensional supersymmetric theories and the deformation theory of Lagrangian submanifolds in C 2r invariant under a (subgroup of) Sp(2r,Z) is formulated. This is a four dimensional counterpart of the mirror symmetry of topological strings (relating Gromov-Witten invariants and generalized variations of Hodge structure). (orig.)
Strong coupling electroweak symmetry breaking
International Nuclear Information System (INIS)
Barklow, T.L.; Burdman, G.; Chivukula, R.S.
1997-04-01
The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models
Strong coupling electroweak symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics
1997-04-01
The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.
Symmetry breaking in string theory
International Nuclear Information System (INIS)
Potting, R.
1998-01-01
A mechanism for a spontaneous breakdown of CPT symmetry appears in string theory, with possible implications for particle models. A realistic string theory might exhibit CPT violation at levels detectable in current or future experiments. A possible new mechanism for baryogenesis in the early Universe is also discussed
Dark Energy and Spacetime Symmetry
Directory of Open Access Journals (Sweden)
Irina Dymnikova
2017-03-01
Full Text Available The Petrov classification of stress-energy tensors provides a model-independent definition of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which makes vacuum fluid essentially anisotropic and allows it to be evolving and clustering. The relevant solutions to the Einstein equations describe regular cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter vacuum interiors—which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry. In the cosmological context spacetime symmetry provides a mechanism for relaxing cosmological constant to a needed non-zero value.
Instantons and chiral symmetry breaking
International Nuclear Information System (INIS)
Carneiro, C.E.I.; McDougall, N.A.
1984-01-01
A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation. (orig.)
Instantons and chiral symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Carneiro, C.E.I.; McDougall, N.A. (Oxford Univ. (UK). Dept. of Theoretical Physics)
1984-10-22
A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation.
Chiral symmetry in perturbative QCD
International Nuclear Information System (INIS)
Trueman, T.L.
1979-04-01
The chiral symmetry of quantum chromodynamics with massless quarks is unbroken in perturbation theory. Dimensional regularization is used. The ratio of the vector and axial vector renormalization constante is shown to be independent of the renormalization mass. The general results are explicitly verified to fourth order in g, the QCD coupling constant
'Oblique corrections' and symmetry breaking
International Nuclear Information System (INIS)
Ramirez, C.A.
1991-11-01
Low Energy Parameters (Peskin-Takeuchi) are computed for two Symmetry Braking Schemes (heavy Higgs and techni-ρ). The differences between them are found comparable to the experimental uncertainties (in agreement with previous calculations for the Technicolor Models). Some constraints are obtained for the techni-ρ case. (author). 22 refs, 11 figs
Experimental tests of fundamental symmetries
Jungmann, K. P.
2014-01-01
Ongoing experiments and projects to test our understanding of fundamental inter- actions and symmetries in nature have progressed significantly in the past few years. At high energies the long searched for Higgs boson has been found; tests of gravity for antimatter have come closer to reality;
Analysis of the Symmetries and Conservation Laws of the Nonlinear Jaulent-Miodek Equation
Directory of Open Access Journals (Sweden)
Mehdi Nadjafikhah
2014-01-01
Full Text Available Lie symmetry method is performed for the nonlinear Jaulent-Miodek equation. We will find the symmetry group and optimal systems of Lie subalgebras. The Lie invariants associated with the symmetry generators as well as the corresponding similarity reduced equations are also pointed out. And conservation laws of the J-M equation are presented with two steps: firstly, finding multipliers for computation of conservation laws and, secondly, symbolic computation of conservation laws will be applied.
New and old symmetries of the Maxwell and Dirac equations
International Nuclear Information System (INIS)
Fushchich, V.I.; Nikitin, A.G.
1983-01-01
The symmetry properties of Maxwell's equations for the electromagnetic field and also of the Dirac and Kemmer-Duffin-Petiau equations are analyzed. In the framework of a ''non-Lie'' approach it is shown that, besides the well-known invariance with respect to the conformal group and the Heaviside-Larmor-Rainich transformations, Maxwell's equations have an additional symmetry with respect to the group U(2)xU(2) and with respect to the 23-dimensional Lie algebra A 23 . The transformations of the additional symmetry are given by nonlocal (integro-differential) operators. The symmetry of the Dirac equation in the class of differential and integro-differential transformations is investigated. It is shown that this equation is invariant with respect to an 18-parameter group, which includes the Poincare group as a subgroup. A 28-parameter invariance group of the Kemmer-Duffin-Petiau equation is found. Finite transformations of the conformal group for a massless field with arbitrary spin are obtained. The explicit form of conformal transformations for the electromagnetic field and also for the Dirac and Weyl fields is given
On new and old symmetries of Maxwell and Dirac equations
International Nuclear Information System (INIS)
Fushchich, V.I.; Nikitin, A.G.
1983-01-01
Symmetry properties of the Maxwell equation for the electromagnetic field are analysed as well as of the Dirac and Kemmer-Duffin-Petiau one. In the frame of the non-geometrical approach it is demonstrated, that besides to the well-known invariance under the conformal group and Heaviside-Larmor-Rainich transformation, Maxwell equation possess the additional symmetry under the group U(2)xU(2) and under the 23-dimensional Lie algebra A 23 . The additional symmetry transformations are realized by the non-local (integro-differential) operators. The symmetry of the Dirac. equation under the differential and integro-differential transformations is investio.ated. It is shown that this equation is invariant under the 18-parametrical group, which includes the Poincare group as a subgroup. The 28-parametrical invariance group of the Kemmer-Duffin-Petiau equation is found. The finite conformal group transformations for a massless field of any spin are obtained. The explicit form of the conformal transformations for the electromagnetic field as well as for the Dirac and Weyl fields is given
International Nuclear Information System (INIS)
Leivo, H.P.
1992-01-01
The algebraic approach to quantum groups is generalized to include what may be called an anyonic symmetry, reflecting the appearance of phases more general than ±1 under transposition. (author). 6 refs
Symmetries in nature the scientific heritage of Louis Michel
Todorov, Ivan; Zhilinskii, Boris
2014-01-01
Reflecting the oeuvre of “a man of two cultures: the culture of pure mathematics and the culture of theoretical physics” (in the words of his long time friend and co-author, Kameshwar Wali), this volume is centred around the notion of symmetry and its breaking. Starting with particle physics, the content proceeds to symmetries of matter, defects, and crystals. The mathematics of group extensions, non-linear group action, critical orbits and phase transitions is developed along the way. The symmetry principles and general mathematical tools provide unity in the treatment of different topics. The papers and lecture notes are preceded by a lively biography of Louis Michel and a commentary that relates his selected works both to the physics of his time and to contemporary trends. This book should be of interest to theoretical physicists, chemists, applied mathematicians and historians of science, and is accessible to graduate (and advanced undergraduate) students.
Itinerant ferromagnetism in fermionic systems with SP (2 N) symmetry
Yang, Wang; Wu, Congjun
The Ginzburg-Landau free energy of systems with SP (2 N) symmetry describes a second order phase transition on the mean field level, since the Casimir invariants of the SP (2 N) group can be only of even order combinations of the generators of the SP (2 N) group. This is in contrast with systems having the SU (N) symmetry, where the allowance of cubic term generally makes the phase transition into first order. In this work, we consider the Hertz-Millis type itinerant ferromagnetism in an interacting fermionic system with SP (2 N) symmetry, where the ferromagnetic orders are enriched by the multi-component nature of the system. The quantum criticality is discussed near the second order phase transition point.
Low-energy restoration of parity and maximal symmetry
International Nuclear Information System (INIS)
Raychaudhuri, A.; Sarkar, U.
1982-01-01
The maximal symmetry of fermions of one generation, SU(16), which includes the left-right-symmetric Pati-Salam group, SU(4)/sub c/ x SU(2) /sub L/ x SU(2)/sub R/, as a subgroup, allows the possibility of a low-energy (M/sub R/approx.100 GeV) breaking of the left-right symmetry. It is known that such a low-energy restoration of parity can be consistent with weak-interaction phenomenology. We examine different chains of descent of SU(16) that admit a low value of M/sub R/ and determine the other intermediate symmetry-breaking mass scales associated with each of these chains. These additional mass scales provide an alternative to the ''great desert'' expected in some grand unifying models. The contributions of the Higgs fields in the renormalization-group equations are retained and are found to be important
Lepton mixing predictions from Δ(6n2) family symmetry
International Nuclear Information System (INIS)
King, Stephen F.; Neder, Thomas; Stuart, Alexander J.
2013-01-01
We obtain predictions of lepton mixing parameters for direct models based on Δ(6n 2 ) family symmetry groups for arbitrarily large n in which the full Klein symmetry is identified as a subgroup of the family symmetry. After reviewing and developing the group theory associated with Δ(6n 2 ), we find many new candidates for large n able to yield reactor angle predictions within 3σ of recent global fits. We show that such Δ(6n 2 ) models with Majorana neutrinos predict trimaximal mixing with reactor angle θ 13 fixed up to a discrete choice, an oscillation phase of either zero or π and the atmospheric angle sum rules θ 23 =45°∓θ 13 /√(2), respectively, which are consistent with recent global fits and will be tested in the near future
The Graph, Geometry and Symmetries of the Genetic Code with Hamming Metric
Directory of Open Access Journals (Sweden)
Reijer Lenstra
2015-07-01
Full Text Available The similarity patterns of the genetic code result from similar codons encoding similar messages. We develop a new mathematical model to analyze these patterns. The physicochemical characteristics of amino acids objectively quantify their differences and similarities; the Hamming metric does the same for the 64 codons of the codon set. (Hamming distances equal the number of different codon positions: AAA and AAC are at 1-distance; codons are maximally at 3-distance. The CodonPolytope, a 9-dimensional geometric object, is spanned by 64 vertices that represent the codons and the Euclidian distances between these vertices correspond one-to-one with intercodon Hamming distances. The CodonGraph represents the vertices and edges of the polytope; each edge equals a Hamming 1-distance. The mirror reflection symmetry group of the polytope is isomorphic to the largest permutation symmetry group of the codon set that preserves Hamming distances. These groups contain 82,944 symmetries. Many polytope symmetries coincide with the degeneracy and similarity patterns of the genetic code. These code symmetries are strongly related with the face structure of the polytope with smaller faces displaying stronger code symmetries. Splitting the polytope stepwise into smaller faces models an early evolution of the code that generates this hierarchy of code symmetries. The canonical code represents a class of 41,472 codes with equivalent symmetries; a single class among an astronomical number of symmetry classes comprising all possible codes.
Emergent symmetries in the canonical tensor model
Obster, Dennis; Sasakura, Naoki
2018-04-01
The canonical tensor model (CTM) is a tensor model proposing a classically and quantum mechanically consistent description of gravity, formulated as a first-class constraint system with structural similarities to the ADM formalism of general relativity. The classical CTM produces a general relativistic system in a formal continuum limit, the emergence of which should be explained by the quantum CTM. In this paper we study the symmetry properties of a wave function that exactly solves the quantum constraints of the CTM. We have found that it has strong peaks at configurations invariant under some Lie groups, as predicted by a mechanism described in our previous paper. A surprising result is the preference for configurations invariant not only under Lie groups with positive definite signature, but also with Lorentzian signature. Such symmetries could characterize the global structures of spacetimes, and our results are encouraging towards showing spacetime emergence in the CTM. To verify the asymptotic convergence of the wave function we have also analyzed the asymptotic behavior, which for the most part seems to be well under control.
Mixed symmetry tensors in the worldline formalism
Energy Technology Data Exchange (ETDEWEB)
Corradini, Olindo [Dipartimento di Scienze Fisiche, Informatiche e Matematiche,Università degli Studi di Modena e Reggio Emilia, via Campi 213/A, I-41125 Modena (Italy); INFN - Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Edwards, James P. [Department of Mathematical Sciences, University of Bath,Claverton Down, Bath BA2 7AY (United Kingdom)
2016-05-10
We consider the first quantised approach to quantum field theory coupled to a non-Abelian gauge field. Representing the colour degrees of freedom with a single family of auxiliary variables the matter field transforms in a reducible representation of the gauge group which — by adding a suitable Chern-Simons term to the particle action — can be projected onto a chosen fully (anti-)symmetric representation. By considering F families of auxiliary variables, we describe how to extend the model to arbitrary tensor products of F reducible representations, which realises a U(F) “flavour” symmetry on the worldline particle model. Gauging this symmetry allows the introduction of constraints on the Hilbert space of the colour fields which can be used to project onto an arbitrary irreducible representation, specified by a certain Young tableau. In particular the occupation numbers of the wavefunction — i.e. the lengths of the columns (rows) of the Young tableau — are fixed through the introduction of Chern-Simons terms. We verify this projection by calculating the number of colour degrees of freedom associated to the matter field. We suggest that, using the worldline approach to quantum field theory, this mechanism will allow the calculation of one-loop scattering amplitudes with the virtual particle in an arbitrary representation of the gauge group.
Molecular Eigensolution Symmetry Analysis and Fine Structure
Directory of Open Access Journals (Sweden)
William G. Harter
2013-01-01
Full Text Available Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES. Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES used in Born-Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v, then applied to families of Oh clusters in SF6 spectra and to extreme clusters.
Global spacetime symmetries in the functional Schroedinger picture
International Nuclear Information System (INIS)
Halliwell, J.J.
1991-01-01
In the conventional functional Schroedinger quantization of field theory, the background spacetime manifold is foliated into a set of three-surfaces and the quantum state of the field is represented by a wave functional of the field configurations on each three-surface. Although this procedure may be covariantly described, the wave functionals generally fail to carry a representation of the complete spacetime symmetry group of the background, such as the Poincare group in Minkowski spacetime, because spacetime symmetries generally involve distortions or motions of the three-surfaces themselves within that spacetime. In this paper, we show that global spacetime symmetries in the functional Schroedinger picture may be represented by parametrizing the field theory---raising to the status of dynamical variables the embedding variables describing the spacetime location of each three-surface. In particular, we show that the embedding variables provide a connection between the purely geometrical operation of an isometry group on the spacetime and the operation of the usual global symmetry generators (constructed from the energy-momentum tensor) on the wave functionals of the theory. We study the path-integral representation of the wave functionals of the parametrized field theory. We show how to construct, from the path integral, wave functionals that are annihilated by the global symmetry generators, i.e., that are invariant under global spacetime symmetry groups. The invariance of the class of histories summed over in the path integral is identified as the source of the invariance of the wave functionals. We apply this understanding to a study of vacuum states in the de Sitter spacetime. We make mathematically precise a previously given heuristic argument for the de Sitter invariance of the matter wave functionals defined by the no-boundary proposal of Hartle and Hawking
Projective unitary-antiunitary representations of the Shubnikov space groups
International Nuclear Information System (INIS)
Broek, P.M. van den.
1979-01-01
Some mathematical aspects of the symmetry of a physical system in quantum mechanics are examined with special emphasis on the symmetry groups of charged particles in crystalline solids, the Shuknikov space groups. (Auth.)
Symmetry and electromagnetism. Simetria y electromagnetismo
Energy Technology Data Exchange (ETDEWEB)
Fuentes Cobas, L.E.; Font Hernandez, R.
1993-01-01
An analytical treatment of electrostatic and magnetostatic field symmetry, as a function of charge and current distribution symmetry, is proposed. The Newmann Principle, related to the cause-effect symmetry relation, is presented and applied to the characterization of simple configurations. (Author) 5 refs.
Symmetries, Integrals and Solutions of Ordinary Differential ...
Indian Academy of Sciences (India)
Second-and third-order scalar ordinary differential equations of maximal symmetry in the traditional sense of point, respectively contact, symmetry are examined for the mappings they produce in solutions and fundamental first integrals. The properties of the `exceptional symmetries', i.e. those not considered to be generic to ...
The symmetry of the Hubbard model
International Nuclear Information System (INIS)
Grosse, H.
1988-01-01
The spectrum of the Hubbard model shows permanent degeneracy of levels with different symmetry, if one considers only symmetry operators independent of the coupling constant. This suggests the existence of symmetry operators which depend on the coupling constant. We find these highly nontrivial operators and show that they explain the degeneracies in the energy spectrum. 5 refs. (Author)
Prediction of human eye fixations using symmetry
Kootstra, Gert; Schomaker, Lambert
2009-01-01
Humans are very sensitive to symmetry in visual patterns. Reaction time experiments show that symmetry is detected and recognized very rapidly. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of
Dynamical symmetry breaking in barium isotopes
International Nuclear Information System (INIS)
Rawat, Bir Singh; Chattopadhyay, P.K.
1997-01-01
The isotopes of Xe with mass numbers 124, 126, 128, 130 and the isotopes of barium with mass numbers 128, 130, 132, 134 were shown to correspond to the O(6) dynamical symmetry of IBM. In the investigation of the dynamical symmetry breaking in this region, the barium isotopes for departures from O(6) symmetry have been studied
On the characterization of infinitesimal symmetries of the relativistic phase space
International Nuclear Information System (INIS)
Janyška, Josef; Vitolo, Raffaele
2012-01-01
The phase space of relativistic particle mechanics is defined as the first jet space of motions regarded as time-like one-dimensional submanifolds of spacetime. A Lorentzian metric and an electromagnetic 2-form define naturally a generalized contact structure on the odd-dimensional phase space. In the paper, infinitesimal symmetries of the phase structures are characterized. More precisely, it is proved that all phase infinitesimal symmetries are special Hamiltonian lifts of distinguished conserved quantities on the phase space. It is proved that generators of infinitesimal symmetries constitute a Lie algebra with respect to a special bracket. A momentum map for groups of symmetries of the geometric structures is provided. (paper)
Conformal invariance and conserved quantities of Appell systems under second-class Mei symmetry
International Nuclear Information System (INIS)
Yi-Ping, Luo; Jing-Li, Fu
2010-01-01
In this paper we introduce the new concept of the conformal invariance and the conserved quantities for Appell systems under second-class Mei symmetry. The one-parameter infinitesimal transformation group and infinitesimal transformation vector of generator are described in detail. The conformal factor in the determining equations under second-class Mei symmetry is found. The relationship between Appell system's conformal invariance and Mei symmetry are discussed. And Appell system's conformal invariance under second-class Mei symmetry may lead to corresponding Hojman conserved quantities when the conformal invariance satisfies some conditions. Lastly, an example is provided to illustrate the application of the result. (general)
An introduction to non-Abelian discrete symmetries for particle physicists
Ishimori, Hajime; Ohki, Hiroshi; Okada, Hiroshi; Shimizu, Yusuke; Tanimoto, Morimitsu
2012-01-01
These lecture notes provide a tutorial review of non-Abelian discrete groups and show some applications to issues in physics where discrete symmetries constitute an important principle for model building in particle physics. While Abelian discrete symmetries are often imposed in order to control couplings for particle physics - in particular model building beyond the standard model - non-Abelian discrete symmetries have been applied to understand the three-generation flavor structure in particular. Indeed, non-Abelian discrete symmetries are considered to be the most attractive choice for the flavor sector: model builders have tried to derive experimental values of quark and lepton masses, and mixing angles by assuming non-Abelian discrete flavor symmetries of quarks and leptons, yet, lepton mixing has already been intensively discussed in this context, as well. The possible origins of the non-Abelian discrete symmetry for flavors is another topic of interest, as they can arise from an underlying theory -...
Lie and conditional symmetries of the three-component diffusive Lotka–Volterra system
International Nuclear Information System (INIS)
Cherniha, Roman; Davydovych, Vasyl’
2013-01-01
Lie and Q-conditional symmetries of the classical three-component diffusive Lotka–Volterra system in the case of one space variable are studied. The group-classification problems for finding Lie symmetries and Q-conditional symmetries of the first type are completely solved. Notably, non-Lie symmetries (Q-conditional symmetry operators) for a multi-component nonlinear reaction–diffusion system are constructed for the first time. The results are compared with those derived for the two-component diffusive Lotka–Volterra system. The conditional symmetry obtained for the non-Lie reduction of the three-component system used for modeling competition between three species in population dynamics is applied and the relevant exact solutions are found. Particularly, the exact solution describing different scenarios of competition between three species is constructed. (paper)
Dynamical interpretation of nonrelativistic conformal groups
International Nuclear Information System (INIS)
Andrzejewski, K.; Gonera, J.
2013-01-01
It is shown that N-Galilean conformal algebra with N odd and nontrivial central charge is the maximal symmetry algebra for higher derivative free theory both on classical and quantum levels. By maximal symmetry algebra the Lie algebra of the maximal group of space–time symmetry transformations is understood which preserves higher order free dynamics
Soft Terms from Broken Symmetries
Buican, Matthew
2010-01-01
In theories of phyiscs beyond the Standard Model (SM), visible sector fields often carry quantum numbers under additional gauge symmetries. One could then imagine a scenario in which these extra gauge symmetries play a role in transmitting supersymmetry breaking from a hidden sector to the Supersymmetric Standard Model (SSM). In this paper we present a general formalism for studying the resulting hidden sectors and calculating the corresponding gauge mediated soft parameters. We find that a large class of generic models features a leading universal contribution to the soft scalar masses that only depends on the scale of Higgsing, even if the model is strongly coupled. As a by-product of our analysis, we elucidate some IR aspects of the correlation functions in General Gauge Mediation. We also discuss possible phenomenological applications.
Physics of chiral symmetry breaking
International Nuclear Information System (INIS)
Shuryak, E.V.
1991-01-01
This subsection of the 'Modeling QCD' Workshop has included five talks. E. Shuryak spoke on 'Recent Progress in Understanding Chiral Symmetry Breaking'; below it is split into two parts: (i) a mini-review of the field and (ii) a brief presentation of the status of the theory of interacting instantons. The next sections correspond to the following talks: (iii) K. Goeke et al., 'Chiral Restoration and Medium Corrections to Nucleon in the NJL Model'; (iv) M. Takizawa and K. Kubodera, 'Study of Meson Properties and Quark Condensates in the NJL Model with Instanton Effects'; (v) G. Klein and A. G. Williams, 'Dynamical Chiral Symmetry Breaking in Dual QCD'; and (vi) R. D. Ball, 'Skyrmions and Baryons.' (orig.)
Symmetry realization of texture zeros
International Nuclear Information System (INIS)
Grimus, W.; Joshipura, A.S.; Lavoura, L.; Tanimoto, M.
2004-01-01
We show that it is possible to enforce texture zeros in arbitrary entries of the fermion mass matrices by means of Abelian symmetries; in this way, many popular mass-matrix textures find a symmetry justification. We propose two alternative methods which allow one to place zeros in any number of elements of the mass matrices that one wants. They are applicable simultaneously in the quark and lepton sectors. They are also applicable in grand unified theories. The number of scalar fields required by our methods may be large; still, in many interesting cases this number can be reduced considerably. The larger the desired number of texture zeros is, the simpler are the models which reproduce the texture. (orig.)
Steering particles by breaking symmetries
Bet, Bram; Samin, Sela; Georgiev, Rumen; Burak Eral, Huseyin; van Roij, René
2018-06-01
We derive general equations of motions for highly-confined particles that perform quasi-two-dimensional motion in Hele-Shaw channels, which we solve analytically, aiming to derive design principles for self-steering particles. Based on symmetry properties of a particle, its equations of motion can be simplified, where we retrieve an earlier-known equation of motion for the orientation of dimer particles consisting of disks (Uspal et al 2013 Nat. Commun. 4), but now in full generality. Subsequently, these solutions are compared with particle trajectories that are obtained numerically. For mirror-symmetric particles, excellent agreement between the analytical and numerical solutions is found. For particles lacking mirror symmetry, the analytic solutions provide means to classify the motion based on particle geometry, while we find that taking the side-wall interactions into account is important to accurately describe the trajectories.
Anomaly-free gauged R-symmetry in local supersymmetry
International Nuclear Information System (INIS)
Chamseddine, A.H.; Dreiner, H.
1996-01-01
We discuss local R-symmetry as a potentially powerful new model building tool. We first review and clarify that a U(1) R-symmetry can only be gauged in local and not in global supersymmetry. We determine the anomaly-cancellation conditions for the gauged R-symmetry. For the standard superpotential these equations have no solution, independently of how many Standard Model singlets are added to the model. There is also no solution when we increase the number of families and the number of pairs of Higgs doublets. When the Green-Schwarz mechanism is employed to cancel the anomalies, solutions only exist for a large number of singlets. We find many anomaly-free family-independent models with an extra SU(3) c octet chiral superfield. We consider in detail the conditions for an anomaly-free family-dependent U(1) R and find solutions with one, two, three and four extra singlets. Only with three and four extra singlets do we naturally obtain sfermion masses of the order of the weak scale. For these solutions we consider the spontaneous breaking of supersymmetry and the R-symmetry in the context of local supersymmetry. In general the U(1) R gauge group is broken at or close to the Planck scale. We consider the effects of the R-symmetry on baryon- and lepton-number violation in supersymmetry. There is no logical connection between a conserved R-symmetry and a conserved R-parity. For conserved R-symmetry we have models for all possibilities of conserved or broken R-parity. Most models predict dominant effects which could be observed at HERA. (orig.)
Models of electroweak symmetry breaking
Pomarol, Alex
2015-01-01
This chapter present models of electroweak symmetry breaking arising from strongly interacting sectors, including both Higgsless models and mechanisms involving a composite Higgs. These scenarios have also been investigated in the framework of five-dimensional warped models that, according to the AdS/CFT correspondence, have a four-dimensional holographic interpretation in terms of strongly coupled field theories. We explore the implications of these models at the LHC.
International Nuclear Information System (INIS)
Schrader, D.M.
2004-01-01
We work out the complete symmetry and spin problem for diatomic positronium Ps 2 for the ground and singly excited states of zero orbital angular momentum. The general form of the wave function for each state is given, with due regard to charge conjugation parity. Annihilation rates are discussed, and correlations to dissociation products are deduced. We indicate how the approach is extensible to larger aggregates: i.e., PsPs n , n>2
Symmetries of the dual metrics
International Nuclear Information System (INIS)
Baleanu, D.
1998-01-01
The geometric duality between the metric g μν and a Killing tensor K μν is studied. The conditions were found when the symmetries of the metric g μν and the dual metric K μν are the same. Dual spinning space was constructed without introduction of torsion. The general results are applied to the case of Kerr-Newmann metric
Kink-induced symmetry breaking patterns in brane-world SU(3)3 trinification models
International Nuclear Information System (INIS)
Demaria, Alison; Volkas, Raymond R.
2005-01-01
The trinification grand unified theory (GUT) has gauge group SU(3) 3 and a discrete symmetry permuting the SU(3) factors. In common with other GUTs, the attractive nature of the fermionic multiplet assignments is obviated by the complicated multiparameter Higgs potential apparently needed for phenomenological reasons, and also by vacuum expectation value (VEV) hierarchies within a given multiplet. This motivates the rigorous consideration of Higgs potentials, symmetry breaking patterns, and alternative symmetry breaking mechanisms in models with this gauge group. Specifically, we study the recently proposed 'clash of symmetries' brane-world mechanism to see if it can help with the symmetry breaking conundrum. This requires a detailed analysis of Higgs potential global minima and kink or domain wall solutions interpolating between the disconnected global minima created through spontaneous discrete symmetry breaking. Sufficiently long-lived metastable kinks can also be considered. We develop what we think is an interesting, albeit speculative, brane-world scheme whereby the hierarchical symmetry breaking cascade, trinification to left-right symmetry to the standard model to color cross electromagnetism, may be induced without an initial hierarchy in vacuum expectation values. Another motivation for this paper is simply to continue the exploration of the rich class of kinks arising in models that are invariant under both discrete and continuous symmetries
Symmetries of cosmological Cauchy horizons
International Nuclear Information System (INIS)
Moncrief, V.; Isenberg, J.
1983-01-01
We consider analytic vacuum and electrovacuum spacetimes which contain a compact null hypersurface ruled by closed null generators. We prove that each such spacetime has a non-trivial Killing symmetry. We distinguish two classes of null surfaces, degenerate and non-degenerate ones, characterized by the zero or non-zero value of a constant analogous to the ''surface gravity'' of stationary black holes. We show that the non-degenerate null surfaces are always Cauchy heizons across which the Killing fields change from spacelike (in the globally hyperbolic regions) to timelike (in the acausal, analytic extensions). For the special case of a null surface diffeomorphic to T 3 we characterize the degenerate vacuum solutions completely. These consists of an infinite dimensional family of ''plane wave'' spacetimes which are entirely foliated by compact null surfaces. Previous work by one of us has shown that, when one dimensional Killing symmetries are allowed, then infinite dimensional families of non-degenerate, vacuum solutions exist. We recall these results for the case of Cauchy horizons diffeomorphic to T 3 and prove the generality of the previously constructed non-degenerate solutions. We briefly discuss the possibility of removing the assumptions of closed generators and analyticity and proving an appropriate generalization of our main results. Such a generalization would provide strong support for the cosmic censorship conjecture by showing that causality violating, cosmological solutions of Einstein's equations are essentially an artefact of symmetry. (orig.)
Dark matter and global symmetries
Directory of Open Access Journals (Sweden)
Yann Mambrini
2016-09-01
Full Text Available General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left–Right, Singlet Fermionic, Zee–Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i global symmetries are broken at the Planck scale, that (ii the non-renormalizable operators mediating dark matter decay have O(1 couplings, that (iii the dark matter is a singlet field, and that (iv the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV–TeV, including the WIMP regime.
Infinitesimal symmetries: a computational approach
International Nuclear Information System (INIS)
Kersten, P.H.M.
1985-01-01
This thesis is concerned with computational aspects in the determination of infinitesimal symmetries and Lie-Baecklund transformations of differential equations. Moreover some problems are calculated explicitly. A brief introduction to some concepts in the theory of symmetries and Lie-Baecklund transformations, relevant for this thesis, are given. The mathematical formalism is shortly reviewed. The jet bundle formulation is chosen, in which, by its algebraic nature, objects can be described very precisely. Consequently it is appropriate for implementation. A number of procedures are discussed, which enable to carry through computations with the help of a computer. These computations are very extensive in practice. The Lie algebras of infinitesimal symmetries of a number of differential equations in Mathematical Physics are established and some of their applications are discussed, i.e., Maxwell equations, nonlinear diffusion equation, nonlinear Schroedinger equation, nonlinear Dirac equations and self dual SU(2) Yang-Mills equations. Lie-Baecklund transformations of Burgers' equation, Classical Boussinesq equation and the Massive Thirring Model are determined. Furthermore, nonlocal Lie-Baecklund transformations of the last equation are derived. (orig.)
Schr\\"odinger group and quantum finance
Romero, Juan M.; Lavana, Ulises; Martínez, Elio
2013-01-01
Using the one dimensional free particle symmetries, the quantum finance symmetries are obtained. Namely, it is shown that Black-Scholes equation is invariant under Schr\\"odinger group. In order to do this, the one dimensional free non-relativistic particle and its symmetries are revisited. To get the Black-Scholes equation symmetries, the particle mass is identified as the inverse of square of the volatility. Furthermore, using financial variables, a Schr\\"odinger algebra representation is co...
Internal space-time symmetries of massive and massless particles and their unification
International Nuclear Information System (INIS)
Kim, Y.S.
2001-01-01
It is noted that the internal space-time symmetries of relativistic particles are dictated by Wigner's little groups. The symmetry of massive particles is like the three-dimensional rotation group, while the symmetry of massless particles is locally isomorphic to the two-dimensional Euclidean group. It is noted also that, while the rotational degree of freedom for a massless particle leads to its helicity, the two translational degrees of freedom correspond to its gauge degrees of freedom. It is shown that the E(2)-like symmetry of of massless particles can be obtained as an infinite-momentum and/or zero-mass limit of the O(3)-like symmetry of massive particles. This mechanism is illustrated in terms of a sphere elongating into a cylinder. In this way, the helicity degree of freedom remains invariant under the Lorentz boost, but the transverse rotational degrees of freedom become contracted into the gauge degree of freedom
A review on symmetries for certain Aedes aegypti models
Freire, Igor Leite; Torrisi, Mariano
2015-04-01
We summarize our results related with mathematical modeling of Aedes aegypti and its Lie symmetries. Moreover, some explicit, group-invariant solutions are also shown. Weak equivalence transformations of more general reaction diffusion systems are also considered. New classes of solutions are obtained.
Chiral-symmetry breakdown in large-N chromodynamics
International Nuclear Information System (INIS)
Coleman, S.; Witten, E.
1980-01-01
Chromodynamics with n flavors of massless quarks is invariant under chiral U(n) x U(n). It is shown that in the limit of a large number of colors, under reasonable assumptions, this symmetry group must spontaneously break down to diagonal U
Integrating Symmetry in Stereochemical Analysis in Introductory Organic Chemistry
Taagepera, Mare; Arasasingham, Ramesh D.; King, Susan; Potter, Frank; Martorell, Ingrid; Ford, David; Wu, Jason; Kearney, Aaron M.
2011-01-01
We report a comparative study using "knowledge space theory" (KAT) to assess the impact of a hands-on laboratory exercise that used molecular model kits to emphasize the connections between a plane of symmetry, Charity, and isomerism in an introductory organic chemistry course. The experimental design compared three groups of…
Master formula approach to broken chiral U(3)xU(3) symmetry
Energy Technology Data Exchange (ETDEWEB)
Hiroyuki Kamano
2010-04-01
The master formula approach to chiral symmetry breaking proposed by Yamagishi and Zahed is extended to the U_R(3)xU_L(3) group, in which effects of the U_A(1) anomaly and the flavor symmetry breaking m_u \
Symmetries in eleven dimensional supergravity compactified on a parallelized seven sphere
Englert, F; Spindel, P
1983-01-01
We analyse, in eleven-dimensional supergravity compactified on S7, the spontaneous symmetry breaking induced by a spontaneous parallelization of the sphere. The eight supersymmetries are broken at a common scale and the SO(8) gauge group is reduced to Spin (7). Such a large residual symmetry has a simple geometrical significance revealed through use of octonions; this is explained in elementary terms.
Towards the establishment of nonlinear hidden symmetries of the Skyrme model
International Nuclear Information System (INIS)
Herrera-Aguilar, A.; Kanakoglou, K.; Paschalis, J. E.
2006-01-01
We present a preliminary attempt to establish the existence of hidden nonlinear symmetries of the SU(N) Skyrme model which could, in principle, lead to the further integration of the system. An explicit illustration is given for the SU(2) symmetry group
Strong evidence for spontaneous chiral symmetry breaking in (quenched) QCD
International Nuclear Information System (INIS)
Barbour, I.M.; Gibbs, P.; Schierholz, G.; Teper, M.; Gilchrist, J.P.; Schneider, H.
1983-09-01
We calculate the chiral condensate for all quark masses using Kogut-Susskind fermions in lattice-regularized quenched QCD. The large volume behaviour of at small quark masses demonstrates that the explicit U(1) chiral symmetry is spontaneously broken. We perform the calculation for β = 5.1 to 5.9 and find very good continuum renormalization group behaviour. We infer that the spontaneous breaking we observe belongs to continuum QCD. This constitutes the first unambiguous demonstration of spontaneous chiral symmetry breaking in continuum quenched QCD. (orig.)
Neutrino masses and spontaneously broken flavor symmetries
International Nuclear Information System (INIS)
Staudt, Christian
2014-01-01
We study the phenomenology of supersymmetric flavor models. We show how the predictions of models based on spontaneously broken non-Abelian discrete flavor symmetries are altered when we include so-called Kaehler corrections. Furthermore, we discuss anomaly-free discrete R symmetries which are compatible with SU(5) unification. We find a set of symmetries compatible with suppressed Dirac neutrino masses and a unique symmetry consistent with the Weinberg operator. We also study a pseudo-anomalous U(1) R symmetry which explains the fermion mass hierarchies and, when amended with additional singlet fields, ameliorates the fine-tuning problem.
Symmetry, from Euclid to Pierre Curie
International Nuclear Information System (INIS)
Sivardiere, J.
1997-01-01
A historical review of the principles of symmetry is presented, starting with Egyptian pavements and Euclid regular polyhedrons, 2 and 3 dimensional paving studies with Kepler in the 17. century, modern crystallography with the constant angle law and the rational truncations law in the 18. century, the identification of the various crystal symmetries (19. century), the discovery of liquid crystals, the relations between the symmetry and the physical and optical properties of systems, molecules, etc.. Finally, P. Curie has determined the general principle of symmetry, linking symmetry and its effects
Low energy theorems of hidden local symmetries
International Nuclear Information System (INIS)
Harada, Masayasu; Kugo, Taichiro; Yamawaki, Koichi.
1994-01-01
We prove to all orders of the loop expansion the low energy theorems of hidden local symmetries in four-dimensional nonlinear sigma models based on the coset space G/H, with G and H being arbitrary compact groups. Although the models are non-renormalizable, the proof is done in an analogous manner to the renormalization proof of gauge theories and two-dimensional nonlinear sigma models by restricting ourselves to the operators with two derivatives (counting a hidden gauge boson field as one derivative), i.e., with dimension 2, which are the only operators relevant to the low energy limit. Through loop-wise mathematical induction based on the Ward-Takahashi identity for the BRS symmetry, we solve renormalization equation for the effective action up to dimension-2 terms plus terms with the relevant BRS sources. We then show that all the quantum corrections to the dimension-2 operators, including the finite parts as well as the divergent ones, can be entirely absorbed into a re-definition (renormalization) of the parameters and the fields in the dimension-2 part of the tree-level Lagrangian. (author)
Symmetry structure of the periodic system of elements
International Nuclear Information System (INIS)
Kitagawara, Y.
1983-01-01
Two different, exactly soluble, quantum mechanical many-body problems are presented and their symmetry properties are analyzed. One is based on the Demkov-Ostrovskii problem which models the (n + 1)-filling rule of the atomic Aufbau principle. The invariance properties of the model differential equation are studied in detail. Contrary to commonly known quantum problems, the degeneracy structure within the quantum number (n + 1) is not described by the representation of a Lie algebra. However, it is described by a symmetry algebra which does not quite close under the commutation relations. The properties of this new algebra are closely examined. It is shown that the characteristic 'period doubling' in Aufbau chart is due to the structure of this algebra. To attain a better physical understanding of the symmetry of the periodic system of elements, the Demkov-Ostrovskii equation is transformed into a new equation, without changing some of its symmetry properites. It is found that the quantum states of the transformed equation provide reasonable approximations to the correspinding Hartree-Fock-Slater atomic orbitals. Thus the symmetry of the periodic system is approximately described by the degeneracy algebra which is obtained in this thesis. In the second part of this work, a group theoretical investigation is developed for a class of Coulomb-type N-body quantum systems in three dimensions. The dynamical algebra for these systems is found to be SO(3N + 1,2)
Symmetry-based reciprocity: evolutionary constraints on a proximate mechanism.
Campennì, Marco; Schino, Gabriele
2016-01-01
Background. While the evolution of reciprocal cooperation has attracted an enormous attention, the proximate mechanisms underlying the ability of animals to cooperate reciprocally are comparatively neglected. Symmetry-based reciprocity is a hypothetical proximate mechanism that has been suggested to be widespread among cognitively unsophisticated animals. Methods. We developed two agent-based models of symmetry-based reciprocity (one relying on an arbitrary tag and the other on interindividual proximity) and tested their ability both to reproduce significant emergent features of cooperation in group living animals and to promote the evolution of cooperation. Results. Populations formed by agents adopting symmetry-based reciprocity showed differentiated "social relationships" and a positive correlation between cooperation given and received: two common aspects of animal cooperation. However, when reproduction and selection across multiple generations were added to the models, agents adopting symmetry-based reciprocity were outcompeted by selfish agents that never cooperated. Discussion. In order to evolve, hypothetical proximate mechanisms must be able to stand competition from alternative strategies. While the results of our simulations require confirmation using analytical methods, we provisionally suggest symmetry-based reciprocity is to be abandoned as a possible proximate mechanism underlying the ability of animals to reciprocate cooperative interactions.
BIRS Workshop on Calabi-Yau Varieties and Mirror Symmetry
Yau, Shing-Tung; Lewis, James D; Mirror Symmetry V
2006-01-01
Since its discovery in the early 1990s, mirror symmetry, or more generally, string theory, has exploded onto the mathematical landscape. This topic touches upon many branches of mathematics and mathematical physics, and has revealed deep connections between subjects previously considered unrelated. The papers in this volume treat mirror symmetry from the perspectives of both mathematics and physics. The articles can be roughly grouped into four sub-categories within the topic of mirror symmetry: arithmetic aspects, geometric aspects, differential geometric and mathematical physics aspects, and geometric analytic aspects. In these works, the reader will find mathematics addressing, and in some cases solving, problems inspired and influenced by string theory. - See more at: http://bookstore.ams.org/amsip-38#sthash.imkmWYgJ.dpuf
Noether and Lie symmetries for charged perfect fluids
International Nuclear Information System (INIS)
Kweyama, M C; Govinder, K S; Maharaj, S D
2011-01-01
We study the underlying nonlinear partial differential equation that governs the behaviour of spherically symmetric charged fluids in general relativity. We investigate the conditions for the equation to admit a first integral or be reduced to quadratures using symmetry methods for differential equations. A general Noether first integral is found. We also undertake a comprehensive group analysis of the underlying equation using Lie point symmetries. The existence of a Lie symmetry is subject to solving an integro-differential equation in general; we investigate the conditions under which it can be reduced to quadratures. Earlier results for uncharged fluids and particular first integrals for charged matter are regained as special cases of our treatment.
Reduced modular symmetries of threshold corrections and gauge coupling unification
Energy Technology Data Exchange (ETDEWEB)
Bailin, David; Love, Alex [Department of Physics & Astronomy, University of Sussex,Brighton, BN1 9QH (United Kingdom)
2015-04-01
We revisit the question of gauge coupling unification at the string scale in orbifold compactifications of the heterotic string for the supersymmetric Standard Model. In the presence of discrete Wilson lines threshold corrections with modular symmetry that is a subgroup of the full modular group arise. We find that reduced modular symmetries not previously reported are possible. We conjecture that the effects of such threshold corrections can be simulated using sums of terms built from Dedekind eta functions to obtain the appropriate modular symmetry. For the cases of the ℤ{sub 8}-I orbifold and the ℤ{sub 3}×ℤ{sub 6} orbifold it is easily possible to obtain gauge coupling unification at the “observed” scale with Kähler moduli T of approximately one.
Permutational symmetries for coincidence rates in multimode multiphotonic interferometry
Khalid, Abdullah; Spivak, Dylan; Sanders, Barry C.; de Guise, Hubert
2018-06-01
We obtain coincidence rates for passive optical interferometry by exploiting the permutational symmetries of partially distinguishable input photons, and our approach elucidates qualitative features of multiphoton coincidence landscapes. We treat the interferometer input as a product state of any number of photons in each input mode with photons distinguished by their arrival time. Detectors at the output of the interferometer count photons from each output mode over a long integration time. We generalize and prove the claim of Tillmann et al. [Phys. Rev. X 5, 041015 (2015), 10.1103/PhysRevX.5.041015] that coincidence rates can be elegantly expressed in terms of immanants. Immanants are functions of matrices that exhibit permutational symmetries and the immanants appearing in our coincidence-rate expressions share permutational symmetries with the input state. Our results are obtained by employing representation theory of the symmetric group to analyze systems of an arbitrary number of photons in arbitrarily sized interferometers.
Chiral-symmetry restoration in baryon-rich environments
International Nuclear Information System (INIS)
Kogut, J.; Matsuoka, H.; Stone, M.; Wyld, H.W.; Shenker, S.; Shigemitsu, J.; Sinclair, D.K.
1983-04-01
Chiral symmetry restoration in an environment rich in baryons is studied by computer simulation methods in SU(2) and SU(3) gauge theories in the quenched approximation. The basic theory of symmetry restoration as a function of chemical potential is illustrated and the implementation of the ideas on a lattice is made explicit. A simple mean field model is presented to guide one's expectations. The second order conjugate-gradient iterative method and the pseudo-fermion Monte Carlo procedure are convergent methods of calculating the fermion propagator in an environment rich in baryons. Computer simulations of SU(3) gauge theory show an abrupt chiral symmetry restoring transition and the critical chemical potential and induced baryon density are estimated crudely. A smoother transition is observed for the color group SU(2)
Soliton surfaces and generalized symmetries of integrable systems
International Nuclear Information System (INIS)
Grundland, A M; Riglioni, D; Post, S
2014-01-01
In this paper, we discuss some specific features of symmetries of integrable systems which can be used to construct the Fokas–Gel’fand formula for the immersion of 2D-soliton surfaces, associated with such systems, in Lie algebras. We establish a sufficient condition for the applicability of this formula. This condition requires the existence of two vector fields which generate a common symmetry of the initial system and its corresponding linear spectral problem. This means that these two fields have to be group-related and we determine an explicit form of this relation. It provides a criterion for the selection of symmetries suitable for use in the Fokas–Gel’fand formula. We include some examples illustrating its application. (paper)
Dynamical study of symmetries: breaking and restauration
International Nuclear Information System (INIS)
Schuck, P.
1986-09-01
First symmetry breaking (spontaneous) is explained and the physical implication discussed for infinite systems. The relation with phase transitions is indicated. Then the specific aspects of symmetry breaking in finite systems is treated and illustrated in detail for the case of translational invariance with the help of an oversimplified but exactly solvable model. The method of projection (restauration of symmetry) is explained for the static case and also applied to the model. Symmetry breaking in the dynamical case and for instance the notion of a soft mode responsible for the symmetry breaking is discussed in the case of superfluidity and another exactly solvable model is introduced. The Goldstone mode is treated in detail. Some remarks on analogies with the breaking of chiral symmetry are made. Some recent developments in the theory of symmetry restauration are briefly outlined [fr
Leptonic Dirac CP violation predictions from residual discrete symmetries
Directory of Open Access Journals (Sweden)
I. Girardi
2016-01-01
Full Text Available Assuming that the observed pattern of 3-neutrino mixing is related to the existence of a (lepton flavour symmetry, corresponding to a non-Abelian discrete symmetry group Gf, and that Gf is broken to specific residual symmetries Ge and Gν of the charged lepton and neutrino mass terms, we derive sum rules for the cosine of the Dirac phase δ of the neutrino mixing matrix U. The residual symmetries considered are: i Ge=Z2 and Gν=Zn, n>2 or Zn×Zm, n,m≥2; ii Ge=Zn, n>2 or Zn×Zm, n,m≥2 and Gν=Z2; iii Ge=Z2 and Gν=Z2; iv Ge is fully broken and Gν=Zn, n>2 or Zn×Zm, n,m≥2; and v Ge=Zn, n>2 or Zn×Zm, n,m≥2 and Gν is fully broken. For given Ge and Gν, the sum rules for cosδ thus derived are exact, within the approach employed, and are valid, in particular, for any Gf containing Ge and Gν as subgroups. We identify the cases when the value of cosδ cannot be determined, or cannot be uniquely determined, without making additional assumptions on unconstrained parameters. In a large class of cases considered the value of cosδ can be unambiguously predicted once the flavour symmetry Gf is fixed. We present predictions for cosδ in these cases for the flavour symmetry groups Gf=S4, A4, T′ and A5, requiring that the measured values of the 3-neutrino mixing parameters sin2θ12, sin2θ13 and sin2θ23, taking into account their respective 3σ uncertainties, are successfully reproduced.
Tensor network decompositions in the presence of a global symmetry
International Nuclear Information System (INIS)
Singh, Sukhwinder; Pfeifer, Robert N. C.; Vidal, Guifre
2010-01-01
Tensor network decompositions offer an efficient description of certain many-body states of a lattice system and are the basis of a wealth of numerical simulation algorithms. We discuss how to incorporate a global symmetry, given by a compact, completely reducible group G, in tensor network decompositions and algorithms. This is achieved by considering tensors that are invariant under the action of the group G. Each symmetric tensor decomposes into two types of tensors: degeneracy tensors, containing all the degrees of freedom, and structural tensors, which only depend on the symmetry group. In numerical calculations, the use of symmetric tensors ensures the preservation of the symmetry, allows selection of a specific symmetry sector, and significantly reduces computational costs. On the other hand, the resulting tensor network can be interpreted as a superposition of exponentially many spin networks. Spin networks are used extensively in loop quantum gravity, where they represent states of quantum geometry. Our work highlights their importance in the context of tensor network algorithms as well, thus setting the stage for cross-fertilization between these two areas of research.
Detection and correction of underassigned rotational symmetry prior to structure deposition
International Nuclear Information System (INIS)
Poon, Billy K.; Grosse-Kunstleve, Ralf W.; Zwart, Peter H.; Sauter, Nicholas K.
2010-01-01
An X-ray structural model can be reassigned to a higher symmetry space group using the presented framework if its noncrystallographic symmetry operators are close to being exact crystallographic relationships. About 2% of structures in the Protein Data Bank can be reclassified in this way. Up to 2% of X-ray structures in the Protein Data Bank (PDB) potentially fit into a higher symmetry space group. Redundant protein chains in these structures can be made compatible with exact crystallographic symmetry with minimal atomic movements that are smaller than the expected range of coordinate uncertainty. The incidence of problem cases is somewhat difficult to define precisely, as there is no clear line between underassigned symmetry, in which the subunit differences are unsupported by the data, and pseudosymmetry, in which the subunit differences rest on small but significant intensity differences in the diffraction pattern. To help catch symmetry-assignment problems in the future, it is useful to add a validation step that operates on the refined coordinates just prior to structure deposition. If redundant symmetry-related chains can be removed at this stage, the resulting model (in a higher symmetry space group) can readily serve as an isomorphous replacement starting point for re-refinement using re-indexed and re-integrated raw data. These ideas are implemented in new software tools available at http://cci.lbl.gov/labelit
Symmetries and symmetry breaking beyond the electroweak theory
International Nuclear Information System (INIS)
Grojean, Ch.
1999-01-01
The Glashow-Salam-Weinberg theory describing electroweak interactions is one of the best successes of quantum field theory; it has passed all the experimental tests of particles physics with a high accuracy. However, this theory suffers from some deficiencies in the sense that some parameters, especially those involved in the generation of the mass of the elementary particles, are fixed to unnatural values. Moreover gravitation whose quantization cannot be achieved in ordinary quantum filed theory is hot taken into account. The aim of this PhD dissertation is to study some theories beyond the Standard Model and inspired by superstring theories. My endeavour has been to develop theoretical aspects of an effective dynamical description of one of the soltonic states of the strongly coupled strings. An important part of my results is also devoted to a more phenomenological analysis of the low energy effects of the symmetries that assure the coherence of the theories at high energy: these symmetries could explain the fermion mass hierarchy and could be directly observable in collider experiments. It is also shown how the geometrical properties of compactified spaces characterize the vacuum of string theory in a non-perturbative regime; such a vacuum can be used to construct a unified theory of gauge and gravitational interactions with a supersymmetry softy broken at a TcV scale. (author)
Reflection symmetry-integrated image segmentation.
Sun, Yu; Bhanu, Bir
2012-09-01
This paper presents a new symmetry-integrated region-based image segmentation method. The method is developed to obtain improved image segmentation by exploiting image symmetry. It is realized by constructing a symmetry token that can be flexibly embedded into segmentation cues. Interesting points are initially extracted from an image by the SIFT operator and they are further refined for detecting the global bilateral symmetry. A symmetry affinity matrix is then computed using the symmetry axis and it is used explicitly as a constraint in a region growing algorithm in order to refine the symmetry of the segmented regions. A multi-objective genetic search finds the segmentation result with the highest performance for both segmentation and symmetry, which is close to the global optimum. The method has been investigated experimentally in challenging natural images and images containing man-made objects. It is shown that the proposed method outperforms current segmentation methods both with and without exploiting symmetry. A thorough experimental analysis indicates that symmetry plays an important role as a segmentation cue, in conjunction with other attributes like color and texture.
Crossing symmetry in Alpha space
CERN. Geneva
2017-01-01
The conformal bootstrap program aims to catalog all conformal field theories (second-order phase transitions) in D dimensions. Despite its ambitious scope much progress has been made over the past decade, e.g. in computing critical exponents for the 3D O(N) models to high precision. At this stage, analytic methods to explore the CFT landscape are not as well developed. In this talk I will describe a new mathematical framework for the bootstrap known as "alpha space", which reduces crossing symmetry to a set of integral equations. Based on arXiv:1702.08471 (with Balt van Rees) and arXiv:1703.08159.
Torus knots and mirror symmetry
Brini, Andrea; Marino, Marcos
2012-01-01
We propose a spectral curve describing torus knots and links in the B-model. In particular, the application of the topological recursion to this curve generates all their colored HOMFLY invariants. The curve is obtained by exploiting the full Sl(2, Z) symmetry of the spectral curve of the resolved conifold, and should be regarded as the mirror of the topological D-brane associated to torus knots in the large N Gopakumar-Vafa duality. Moreover, we derive the curve as the large N limit of the matrix model computing torus knot invariants.
Symmetries applied to reactor calculations
International Nuclear Information System (INIS)
Makai, M.
1982-03-01
Three problems of a reactor-calculational model are discussed with the help of symmetry considerations. 1/ A coarse mesh method applicable to any geometry is derived. It is shown that the coarse mesh solution can be constructed from a few standard boundary value problems. 2/ A second stage homogenization method is given based on the Bloch theorem. This ensures the continuity of the current and the flux at the boundary. 3/ The validity of the micro-macro separation is shown for heterogeneous lattices. A formula for the neutron density is derived for cell homogenization. (author)
Hexagonal response matrix using symmetries
International Nuclear Information System (INIS)
Gotoh, Y.
1991-01-01
A response matrix for use in core calculations for nuclear reactors with hexagonal fuel assemblies is presented. It is based on the incoming currents averaged over the half-surface of a hexagonal node by applying symmetry theory. The boundary conditions of the incoming currents on the half-surface of the node are expressed by a complete set of orthogonal vectors which are constructed from symmetrized functions. The expansion coefficients of the functions are determined by the boundary conditions of incoming currents. (author)
Symmetry generators in singular theories
International Nuclear Information System (INIS)
Lavrov, P.M.; Tyutin, I.V.
1989-01-01
It is proved that in the singular nondegenerate theories any symmetry of the lagrangian under non-point transformations of lagrangian variables with the open (in the general case) algebra in the hamiltonian approach generates corresponding transformations of canonical variables the generator of which is the Noether charge with respect to the Dirac brackets. On the surface of all constraints these transformations leave the hamiltonian invariant and the algebra of the Noether charges is closed. As a consequence it is shown that the nilpotent BRST charge operator always exists in gauge theories of the general form (if possible anomalies are not taken into account)
Lectures on homology with internal symmetries
International Nuclear Information System (INIS)
Solovyov, Yu.
1993-09-01
Homology with internal symmetries is a natural generalization of cyclic homology introduced, independently, by Connes and Tsygan, which has turned out to be a very useful tool in a number of problems of algebra, geometry topology, analysis and mathematical physics. It suffices to say cycling homology and cohomology are successfully applied in the index theory of elliptic operators on foliations, in the description of the homotopy type of pseudoisotopy spaces, in the theory of characteristic classes in algebraic K-theory. They are also applied in noncommutative differential geometry and in the cohomology of Lie algebras, the branches of mathematics which brought them to life in the first place. Essentially, we consider dihedral homology, which was successfully applied for the description of the homology type of groups of homeomorphisms and diffeomorphisms of simply connected manifolds. (author). 27 refs
BRST symmetry and de Rham cohomology
Hong, Soon-Tae
2015-01-01
This book provides an advanced introduction to extended theories of quantum field theory and algebraic topology, including Hamiltonian quantization associated with some geometrical constraints, symplectic embedding and Hamilton-Jacobi quantization and Becci-Rouet-Stora-Tyutin (BRST) symmetry, as well as de Rham cohomology. It offers a critical overview of the research in this area and unifies the existing literature, employing a consistent notation. Although the results presented apply in principle to all alternative quantization schemes, special emphasis is placed on the BRST quantization for constrained physical systems and its corresponding de Rham cohomology group structure. These were studied by theoretical physicists from the early 1960s and appeared in attempts to quantize rigorously some physical theories such as solitons and other models subject to geometrical constraints. In particular, phenomenological soliton theories such as Skyrmion and chiral bag models have seen a revival following experiment...
Hidden symmetries of integrable conformal mechanical systems
International Nuclear Information System (INIS)
Hakobyan, Tigran; Krivonos, Sergey; Lechtenfeld, Olaf; Nersessian, Armen
2010-01-01
We split the generic conformal mechanical system into a 'radial' and an 'angular' part, where the latter is defined as the Hamiltonian system on the orbit of the conformal group, with the Casimir function in the role of the Hamiltonian. We reduce the analysis of the constants of motion of the full system to the study of certain differential equations on this orbit. For integrable mechanical systems, the conformal invariance renders them superintegrable, yielding an additional series of conserved quantities originally found by Wojciechowski in the rational Calogero model. Finally, we show that, starting from any N=4 supersymmetric 'angular' Hamiltonian system one may construct a new system with full N=4 superconformal D(1,2;α) symmetry.
Flavor symmetries and fermion masses
International Nuclear Information System (INIS)
Rasin, A.
1994-04-01
We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, V ub /V cb = √m u /m c and V td /V ts = √m d /m s , are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay β → sγ constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tanΒ, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model
Contact symmetries and Hamiltonian thermodynamics
International Nuclear Information System (INIS)
Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.
2015-01-01
It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production
Symmetry breaking and scalar bosons
International Nuclear Information System (INIS)
Gildener, E.; Weinberg, S.
1976-01-01
There are reasons to suspect that the spontaneous breakdown of the gauge symmetries of the observed weak and electromagnetic interactions may be produced by the vacuum expectation values of massless weakly coupled elementary scalar fields. A method is described for finding the broken-symmetry solutions of such theories even when they contain arbitrary numbers of scalar fields with unconstrained couplings. In any such theory, there should exist a number of heavy Higgs bosons, with masses comparable to the intermediate vector bosons, plus one light Higgs boson, or ''scalon'' with mass of order αG/sub F/sub 1/2/. The mass and couplings of the scalon are calculable in terms of other masses, even without knowing all the details of the theory. For an SU(2) direct-product U(1) model with arbitrary numbers of scalar isodoublets, the scalon mass is greater than 5.26 GeV; a likely value is 7--10 GeV. The production and decay of the scalon are briefly considered. Some comments are offered on the relation between the mass scales associated with the weak and strong interactions
International Nuclear Information System (INIS)
Hsu, J.P.
1976-01-01
A new picture of nature is proposed in which there are only two fundamental universal constants anti e (identical with e/c) and dirac constant (identical with dirac constant/c). The theory is developed within the framework of a new four-dimensional symmetry which is constructed on the basis of the Poincare--Einstein principle of relativity for the laws of physics and the Newtonian concept of time. One obtains a new space--light transformation law, a velocity-addition law, and so on. In this symmetry scheme, the speed of light is constant and is completely relative. The new theory is logically self-consistent, and it moreover is in agreement with all previously established experimental facts, such as the ''lifetime dilatation'' of unstable particles, the Michelson--Morley experiment, etc. There is a difference relative to the usual theory, though, in that our theory predicts a new law for the Doppler frequency shift, which can be tested experimentally by measuring the second-order frequency shift
Discrete symmetries with neutral mesons
Bernabéu, José
2018-01-01
Symmetries, and Symmetry Breakings, in the Laws of Physics play a crucial role in Fundamental Science. Parity and Charge Conjugation Violations prompted the consideration of Chiral Fields in the construction of the Standard Model, whereas CP-Violation needed at least three families of Quarks leading to Flavour Physics. In this Lecture I discuss the Conceptual Basis and the present experimental results for a Direct Evidence of Separate Reversal-in-Time T, CP and CPT Genuine Asymmetries in Decaying Particles like Neutral Meson Transitions, using Quantum Entanglement and the Decay as a Filtering Measurement. The eight transitions associated to the Flavour-CP eigenstate decay products of entangled neutral mesons have demonstrated with impressive significance a separate evidence of TRV and CPV in Bd-physics, whereas a CPTV asymmetry shows a 2σ effect interpreted as an upper limit. Novel CPTV observables are discussed for K physics at KLOE-2, including the difference between the semileptonic asymmetries from KL and KS, the ratios of double decay rate Intensities to Flavour-CP eigenstate decay products and the ω-effect. Their observation would lead to a change of paradigm beyond Quantum Field Theory, however there is nothing in Quantum Mechanics forbidding CPTV.