WorldWideScience

Sample records for symmetric supergravity theories

  1. Unified Maxwell-Einstein and Yang-Mills-Einstein supergravity theories in five dimensions

    International Nuclear Information System (INIS)

    Guenaydin, Murat; Zagermann, Marco

    2003-01-01

    Unified N = 2 Maxwell-Einstein supergravity theories (MESGTs) are supergravity theories in which all the vector fields, including the graviphoton, transform in an irreducible representation of a simple global symmetry group of the Lagrangian. As was established long time ago, in five dimensions there exist only four unified Maxwell-Einstein supergravity theories whose target manifolds are symmetric spaces. These theories are defined by the four simple euclidean Jordan algebras of degree three. In this paper, we show that, in addition to these four unified MESGTs with symmetric target spaces, there exist three infinite families of unified MESGTs as well as another exceptional one. These novel unified MESGTs are defined by non-compact (minkowskian) Jordan algebras, and their target spaces are in general neither symmetric nor homogeneous. The members of one of these three infinite families can be gauged in such a way as to obtain an infinite family of unified N = 2 Yang-Mills-Einstein supergravity theories, in which all vector fields transform in the adjoint representation of a simple gauge group of the type SU(N,1). The corresponding gaugings in the other two infinite families lead to Yang-Mills-Einstein supergravity theories coupled to tensor multiplets. (author)

  2. The full integration of black hole solutions to symmetric supergravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Chemissany, W., E-mail: wissam.chemissany@uleth.c [University of Lethbridge, Physics Department, Lethbridge Alberta, T1K 3M4 (Canada); Rosseel, J., E-mail: rosseel@to.infn.i [Dipartimento di Fisica Teorica, Universita di Torino and INFN-Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy); Trigiante, M., E-mail: mario.trigiante@polito.i [Dipartimento di Fisica Politecnico di Torino, C.so Duca degli Abruzzi, 24, I-10129 Torino (Italy); Van Riet, T., E-mail: thomas.vanriet@fysast.uu.s [Institutionen foer Fysik och Astronomi, Box 803, SE-751 08 Uppsala (Sweden)

    2010-05-11

    We prove that all stationary and spherical symmetric black hole solutions to theories with symmetric target spaces are integrable and we provide an explicit integration method. This exact integration is based on the description of black hole solutions as geodesic curves on the moduli space of the theory when reduced over the time-like direction. These geodesic equations of motion can be rewritten as a specific Lax pair equation for which mathematicians have provided the integration algorithms when the initial conditions are described by a diagonalizable Lax matrix. On the other hand, solutions described by nilpotent Lax matrices, which originate from extremal regular (small) D=4 black holes can be obtained as suitable limits of solutions obtained in the diagonalizable case, as we show on the generating geodesic (i.e. most general geodesic modulo global symmetries of the D=3 model) corresponding to regular (and small) D=4 black holes. As a byproduct of our analysis we give the explicit form of the 'Wick rotation' connecting the orbits of BPS and non-BPS solutions in maximally supersymmetric supergravity and its STU truncation.

  3. Supergravity theories

    International Nuclear Information System (INIS)

    Uehara, S.

    1985-01-01

    Of all supergravity theories, the maximal, i.e., N = 8 in 4-dimension or N = 1 in 11-dimension, theory should perform the unification since it owns the highest degree of symmetry. As to the N = 1 in d = 11 theory, it has been investigated how to compactify to the d = 4 theories. From the phenomenological point of view, local SUSY GUTs, i.e., N = 1 SUSY GUTs with soft breaking terms, have been studied from various angles. The structures of extended supergravity theories are less understood than those of N = 1 supergravity theories, and matter couplings in N = 2 extended supergravity theories are under investigation. The harmonic superspace was recently proposed which may be useful to investigate the quantum effects of extended supersymmetry and supergravity theories. As to the so-called Kaluza-Klein supergravity, there is another possibility. (Mori, K.)

  4. A cosmological problem for maximally symmetric supergravity

    International Nuclear Information System (INIS)

    German, G.; Ross, G.G.

    1986-01-01

    Under very general considerations it is shown that inflationary models of the universe based on maximally symmetric supergravity with flat potentials are unable to resolve the cosmological energy density (Polonyi) problem. (orig.)

  5. Supersymmetric and supergravity theories

    International Nuclear Information System (INIS)

    Pernici, M.

    1986-01-01

    The author addressed problems in Kaluza-Klein supergravity, in supersymmetric theories and in string theories. They constructed the following supergravity theories in higher dimensions: the maximal gauged supergravities in five and seven dimensions, both related to the respective ungauged theory, though the latter cannot be obtained by putting the coupling constant of the gauged version to zero (gauge discontinuity); the ten-dimensional N = 2 non-chiral and the six-dimensional N = 4 supergravities, through trivial dimensional reduction of higher dimensional theories. They studied the Kaluza-Klein compactifications of the seven-dimensional supergravity theories and of the ten-dimensional, N = 2 non-chiral supergravity. They obtained the non-compact gaugings and the critical points of the potential of the maximal gauged supergravity in seven dimensions. They computed the non-abelian chiral anomaly in super Yang-Mills theories, using a variation of the Fujikawa method. The covariant action of the SU(2) spinning string is obtained together with its extension to non-linear sigma models. A covariant action for the free open spinning string field theory is constructed by analyzing the BRST transformations

  6. General study of ground states in gauged N=2 supergravity theories with symmetric scalar manifolds in 5 dimensions

    International Nuclear Information System (INIS)

    Oegetbil, O.

    2007-01-01

    After reviewing the existing results we give an extensive analysis of the critical points of the potentials of the gauged N=2 Yang-Mills/Einstein supergravity theories coupled to tensor multiplets and hypermultiplets. Our analysis includes all the possible gaugings of all N=2 Maxwell-Einstein supergravity theories whose scalar manifolds are symmetric spaces. In general, the scalar potential gets contributions from R-symmetry gauging, tensor couplings, and hypercouplings. We show that the coupling of a hypermultiplet into a theory whose potential has a nonzero value at its critical point, and gauging a compact subgroup of the hyperscalar isometry group will only rescale the value of the potential at the critical point by a positive factor, and therefore will not change the nature of an existing critical point. However this is not the case for noncompact SO(1,1) gaugings. An SO(1,1) gauging of the hyperisometry will generally lead to de Sitter vacua, which is analogous to the ground states found by simultaneously gauging SO(1,1) symmetry of the real scalar manifold with U(1) R in earlier literature. SO(m,1) gaugings with m>1, which give contributions to the scalar potential only in the magical Jordan family theories, on the other hand, do not lead to de Sitter vacua. Anti-de Sitter vacua are generically obtained when the U(1) R symmetry is gauged. We also show that it is possible to embed certain generic Jordan family theories into the magical Jordan family preserving the nature of the ground states. However the magical Jordan family theories have additional ground states which are not found in the generic Jordan family theories

  7. Consistent classical supergravity theories

    International Nuclear Information System (INIS)

    Muller, M.

    1989-01-01

    This book offers a presentation of both conformal and Poincare supergravity. The consistent four-dimensional supergravity theories are classified. The formulae needed for further modelling are included

  8. Supergravity duals of matrix string theory

    International Nuclear Information System (INIS)

    Morales, Jose F.; Samtleben, Henning

    2002-01-01

    We study holographic duals of type II and heterotic matrix string theories described by warped AdS 3 supergravities. By explicitly solving the linearized equations of motion around near horizon D-string geometries, we determine the spectrum of Kaluza-Klein primaries for type I, II supergravities on warped AdS 3 xS 7 . The results match those coming from the dual two-dimensional gauge theories living on the D-string worldvolumes. We briefly discuss the connections with the N=(8,8), N=(8,0) orbifold superconformal field theories to which type IIB/heterotic matrix strings flow in the infrared. In particular, we associate the dimension (h,h-bar) (32,32) twisted operator which brings the matrix string theories out from the conformal point (R; 8 ) N /S N with the dilaton profile in the supergravity background. The familiar dictionary between masses and 'scaling' dimensions of field and operators are modified by the presence of non-trivial warp factors and running dilatons. These modifications are worked out for the general case of domain wall/QFT correspondences between supergravities on warped AdS d+1 xS q geometries and super Yang-Mills theories with 16 supercharges. (author)

  9. Supergravity field theories and the art of constructing them

    International Nuclear Information System (INIS)

    Freedman, D.Z.

    1977-01-01

    The review of supergravity field theories includes global supersymmetry, supergravity, extended supergravity, minimal gauge coupling for spin-3/2 fields, and the general strategy of supergravity constructions. 39 references

  10. Background metric in supergravity theories

    International Nuclear Information System (INIS)

    Yoneya, T.

    1978-01-01

    In supergravity theories, we investigate the conformal anomaly of the path-integral determinant and the problem of fermion zero modes in the presence of a nontrivial background metric. Except in SO(3) -invariant supergravity, there are nonvanishing conformal anomalies. As a consequence, amplitudes around the nontrivial background metric contain unpredictable arbitrariness. The fermion zero modes which are explicitly constructed for the Euclidean Schwarzschild metric are interpreted as an indication of the supersymmetric multiplet structure of a black hole. The degree of degeneracy of a black hole is 2/sup 4n/ in SO(n) supergravity

  11. 3D gauged supergravity from SU(2) reduction of $N=1$ 6D supergravity

    CERN Document Server

    Gava, Edi; Narain, K S

    2010-01-01

    We obtain Yang-Mills $SU(2)\\times G$ gauged supergravity in three dimensions from $SU(2)$ group manifold reduction of (1,0) six dimensional supergravity coupled to an anti-symmetric tensor multiplet and gauge vector multiplets in the adjoint of $G$. The reduced theory is consistently truncated to $N=4$ 3D supergravity coupled to $4(1+\\textrm{dim}\\, G)$ bosonic and $4(1+\\textrm{dim}\\, G)$ fermionic propagating degrees of freedom. This is in contrast to the reduction in which there are also massive vector fields. The scalar manifold is $\\mathbf{R}\\times \\frac{SO(3,\\, \\textrm{dim}\\, G)}{SO(3)\\times SO(\\textrm{dim}\\, G)}$, and there is a $SU(2)\\times G$ gauge group. We then construct $N=4$ Chern-Simons $(SO(3)\\ltimes \\mathbf{R}^3)\\times (G\\ltimes \\mathbf{R}^{\\textrm{dim}G})$ three dimensional gauged supergravity with scalar manifold $\\frac{SO(4,\\,1+\\textrm{dim}G)}{SO(4)\\times SO(1+\\textrm{dim}G)}$ and explicitly show that this theory is on-shell equivalent to the Yang-Mills $SO(3)\\times G$ gauged supergravity the...

  12. Generalized IIB supergravity from exceptional field theory

    Energy Technology Data Exchange (ETDEWEB)

    Baguet, Arnaud; Magro, Marc; Samtleben, Henning [Laboratoire de Physique, Université Claude Bernard Lyon 1, Ens de Lyon, CNRS,F-69342 Lyon (France)

    2017-03-20

    The background underlying the η-deformed AdS{sub 5}×S{sup 5} sigma-model is known to satisfy a generalization of the IIB supergravity equations. Their solutions are related by T-duality to solutions of type IIA supergravity with non-isometric linear dilaton. We show how the generalized IIB supergravity equations can be naturally obtained from exceptional field theory. Within this manifestly duality covariant formulation of maximal supergravity, the generalized IIB supergravity equations emerge upon imposing on the fields a simple Scherk-Schwarz ansatz which respects the section constraint.

  13. A worldsheet theory for supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, Tim; Casali, Eduardo; Skinner, David [Department of Applied Mathematics & Theoretical Physics, University of Cambridge,Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2015-02-18

    We present a worldsheet theory that describes maps into a curved target space equipped with a B-field and dilaton. The conditions for the theory to be consistent at the quantum level can be computed exactly, and are that the target space fields obey the nonlinear d=10 supergravity equations of motion, with no higher curvature terms. The path integral is constrained to obey a generalization of the scattering equations to curved space. Remarkably, the supergravity field equations emerge as quantum corrections to these curved space scattering equations.

  14. The antigravitation phenomenon in supergravity theories

    International Nuclear Information System (INIS)

    Kotrla, M.

    1984-01-01

    The supergravity theories describe the interaction of particles by means of the local field theory, contain the gravitational field and are invariant relative to local supersymmetry. In supergravity models gravitational interaction is mediated not only by the usual tensor field with spin two but also by a vector field and possibly by a scalar field. This results in the fact that in supergravity theories the gravitational force between a particle and an antiparticle may increase over small distances, and the gravitational force between two particles or two antiparticles may disappear. The properties of the model may be summed up by saying that the model is generally covariant but leads to the disturbance of the weak principle of equivalence, the gravitational law differs from Newton's law at small distances, and particles and antiparticles do not have the same mass. (B.S.)

  15. Matter couplings in supergravity theories

    International Nuclear Information System (INIS)

    Bagger, J.A.

    1983-01-01

    The N = 1 supersymmetric nonlinear sigma model is coupled to supergravity. The results are expressed in the language of Kahler geometry. Topological considerations constrain the scalar fields to lie on a Kahler manifold of restricted type, or a Hodge manifold. For topologically nontrivial manifolds, this leads to the quantization of Newton's constant in terms of the scalar self-coupling. The isometries of the N = 1 model are gauged. This gives a geometrical picture of what might be called the gauge invariant supersymmetric nonlinear sigma model. It also provides a new interpretation of the Fayet-Iliopoulos D-term. The gauge invariant supersymmetric nonlinear sigma model is coupled to N = 1 supergravity. This leads to a deeper understanding of the connections between supergravity, R-invariance and the Fayet-Iliopoulos D-term. It also provides a foundation for phenomenological studies of supergravity theories. Finally, the N = 2 supersymmetric nonlinear sigma model is coupled to supergravity. The scalar fields are found to lie on a negatively curved quaternionic manifold. This implies that matter self-couplings that are allowed in N = 2 supersymmetry are forbidden in N = 2 supergravity, and vice versa

  16. Perturbative and global anomalies in supergravity theories

    International Nuclear Information System (INIS)

    Sezgin, E.

    1986-09-01

    Perturbative and global anomalies in supergravity theories are reviewed. The existence of a matter and gauge coupled supergravity theory in six dimensions with E 6 xE 7 xU(1) symmetry and highly nontrivial anomaly cancellations is emphasised. The possible string origin of this theory is posed as an open problem, study of which may lead to discovery of new ways to construct/compactify heterotic superstrings. (author)

  17. Off shell N=1 supergravity theory in six dimensions

    International Nuclear Information System (INIS)

    Smith, A.W.

    1983-01-01

    The off shell N=1 supergravity theory in six dimensions shows beneath the extreme simplicity of theories in higher dimensions useful properties for the study of a unification of normal gauge theories with the supergravity theory via dimensional reduction and yields a geometrical interpretation for the quantum numbers of internal symmtries of the reduced theory. Furthermore this theory permits a better understanding of ultraviolet divergences than a theory in four dimensions. This six-dimensional supergravity theory is constructed here in the corresponding superspace the importance of which was clained otherwise because a precisely defined mathematical formalism for this exists: Differential geometry in the superspace. We establish constraining conditions for the torsion components and give a complete solution of the Bianchi identities. In the formulation of the conditions for the torsions exists a certain freedom, because different conditions lead to the same solution. Therefore only the analysis of the Bianchi identities will show wether the conditions are too restrictive or not. Furthermore the dimensional reduction of D=6 to the four-dimensional space-time is performed. We show here that the reduced theory yields the conformal N=2 supergravity theory. In the last part of this thesis a Langrangian is presented by which the supergravity is coupled to a matter multiplet. In the analysis of the supersymmetry transformations of the component fields we see that the matter multiplet cannot be consistently brought to vanish. That means that a pure supergravity theory cannot be written manifestly Lorentz covariant. (orig.) [de

  18. A superstring field theory for supergravity

    Science.gov (United States)

    Reid-Edwards, R. A.; Riccombeni, D. A.

    2017-09-01

    A covariant closed superstring field theory, equivalent to classical tendimensional Type II supergravity, is presented. The defining conformal field theory is the ambitwistor string worldsheet theory of Mason and Skinner. This theory is known to reproduce the scattering amplitudes of Cachazo, He and Yuan in which the scattering equations play an important role and the string field theory naturally incorporates these results. We investigate the operator formalism description of the ambitwsitor string and propose an action for the string field theory of the bosonic and supersymmetric theories. The correct linearised gauge symmetries and spacetime actions are explicitly reproduced and evidence is given that the action is correct to all orders. The focus is on the NeveuSchwarz sector and the explicit description of tree level perturbation theory about flat spacetime. Application of the string field theory to general supergravity backgrounds and the inclusion of the Ramond sector are briefly discussed.

  19. Supergravity and the quest for a unified theory

    International Nuclear Information System (INIS)

    Ferrara, S.

    1995-01-01

    The foundation of supergravity and research in its subsequent developments is described. Special emphasis is placed on the impact of supergravity on the search for a unified theory of fundamental interactions. (author)

  20. Generating geodesic flows and supergravity solutions

    NARCIS (Netherlands)

    Bergshoeff, E.; Chemissany, W.; Ploegh, A.; Trigiante, M.; Van Riet, T.

    2009-01-01

    We consider the geodesic motion on the symmetric moduli spaces that arise after timelike and spacellike reductions of supergravity theories. The geodesics correspond to timelike respectively spacelike p-brane Solutions when they are lifted over a p-dimensional flat space. In particular, we consider

  1. Supergravity

    CERN Document Server

    Freedman, Daniel Z

    2012-01-01

    Supergravity, together with string theory, is one of the most significant developments in theoretical physics. Written by two of the most respected workers in the field, this is the first-ever authoritative and systematic account of supergravity. The book starts by reviewing aspects of relativistic field theory in Minkowski spacetime. After introducing the relevant ingredients of differential geometry and gravity, some basic supergravity theories (D=4 and D=11) and the main gauge theory tools are explained. In the second half of the book, complex geometry and N=1 and N=2 supergravity theories are covered. Classical solutions and a chapter on AdS/CFT complete the book. Numerous exercises and examples make it ideal for Ph.D. students, and with applications to model building, cosmology and solutions of supergravity theories, it is also invaluable to researchers.

  2. An N=2 gauge theory and its supergravity dual

    CERN Document Server

    Brandhuber, A

    2000-01-01

    We study flows on the scalar manifold of N=8 gauged supergravity in five dimensions which are dual to certain mass deformations of N=4 super Yang-Mill theory. In particular, we consider a perturbation of the gauge theory by a mass term for the adjoint hyper-multiplet, giving rise to an N=2 theory. The exact solution of the 5-dim gauged supergravity equations of motion is found and the metric is uplifted to a ten-dimensional background of type-IIB supergravity. Using these geometric data and the AdS/CFT correspondence we analyze the spectra of certain operators as well as Wilson loops on the dual gauge theory side. The physical flows are parametrized by a single non-positive constant and describe part of the Coulomb branch of the N=2 theory at strong coupling.

  3. Composite gravity and composite supergravity

    International Nuclear Information System (INIS)

    Lukierski, J.

    1982-09-01

    It is known that the composite YM H-gauge theory can be constructed from σ-fields taking values in a symmetric Riemannian space G/H. We extend such a framework to graded σ-fields taking values in supercosets. We show that from supercoset σ-fields one can construct composite gravity, and from supercoset σ-superfields the composite supergravity models. (author)

  4. Group manifold approach to gravity and supergravity theories

    International Nuclear Information System (INIS)

    d'Auria, R.; Fre, P.; Regge, T.

    1981-05-01

    Gravity theories are presented from the point of view of group manifold formulation. The differential geometry of groups and supergroups is discussed first; the notion of connection and related Yang-Mills potentials is introduced. Then ordinary Einstein gravity is discussed in the Cartan formulation. This discussion provides a first example which will then be generalized to more complicated theories, in particular supergravity. The distinction between ''pure'' and ''impure' theories is also set forth. Next, the authors develop an axiomatic approach to rheonomic theories related to the concept of Chevalley cohomology on group manifolds, and apply these principles to N = 1 supergravity. Then the panorama of so far constructed pure and impure group manifold supergravities is presented. The pure d = 5 N = 2 case is discussed in some detail, and N = 2 and N = 3 in d = 4 are considered as examples of the impure theories. The way a pure theory becomes impure after dimensional reduction is illustrated. Next, the role of kinematical superspace constraints as a subset of the group-manifold equations of motion is discussed, and the use of this approach to obtain the auxiliary fields is demonstrated. Finally, the application of the group manifold method to supersymmetric Super Yang-Mills theories is addressed

  5. On the consistency of classical and quantum supergravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Thomas-Paul [II. Institute for Theoretical Physics, University of Hamburg (Germany); Makedonski, Mathias [Department of Mathematical Sciences, University of Copenhagen (Denmark); Schenkel, Alexander [Department of Stochastics, University of Wuppertal (Germany)

    2012-07-01

    It is known that pure N=1 supergravity in d=4 spacetime dimensions is consistent at a classical and quantum level, i.e. that in a particular gauge the field equations assume a hyperbolic form - ensuring causal propagation of the degrees of freedom - and that the associated canonical quantum field theory satisfies unitarity. It seems, however, that it is yet unclear whether these properties persist if one considers the more general and realistic case of N=1, d=4 supergravity theories including arbitrary matter fields. We partially clarify the issue by introducing novel hyperbolic gauges for the gravitino field and proving that they commute with the resulting equations of motion. Moreover, we review recent partial results on the unitarity of these general supergravity theories and suggest first steps towards a comprehensive unitarity proof.

  6. Differential and integral forms in supergauge theories and supergravity

    International Nuclear Information System (INIS)

    Zupnik, B.M.; Pak, D.G.

    1989-01-01

    D = 3, 4, N = 1 supergauge theories and D = 3, N = 1 supergravity are considered in the superfield formalism by using differential and integral forms. A special map of the space of differential forms into the space of integral forms is proposed. By means of this map we find the superfield Chern-Simons terms in D = 3, N = 1 Yang-Mills theory and supergravity. The integral forms corresponding to superfield invariants of D = 4, N = 1 supergauge theory have also been constructed. (Author)

  7. On the construction of supergravity theories

    International Nuclear Information System (INIS)

    Holten, J.W. van.

    1980-01-01

    A precise and technical definition of supersymmetry is given. The theory of SO(2) supergravity is presented. The linearized version of the full multiplet, including auxiliary fields, of this theory as well as of certain matter multiplets, are constructed. These results are extended to all orders in the coupling constant kappa. Finally, the quantization procedure for theories with local gauge invariance and its generalization for theories with non-closing, or open, gauge algebras is presented. (Auth.)

  8. Dimensional reduction in field theory and hidden symmetries in extended supergravity

    International Nuclear Information System (INIS)

    Kremmer, E.

    1985-01-01

    Dimensional reduction in field theories is discussed both in theories which do not include gravity and in gravity theories. In particular, 11-dimensional supergravity and its reduction to 4 dimensions is considered. Hidden symmetries of supergravity with N=8 in 4 dimensions, global E 7 and local SU(8)-invariances in particular are detected. The hidden symmmetries permit to interpret geometrically the scalar fields

  9. Topics in supergravity and string theory

    International Nuclear Information System (INIS)

    Eastaugh, A.G.

    1987-01-01

    The first topic covered in this dissertation concerns the harmonic expansion technique and its application to the dimensional compactification of higher dimensional supergravity. A simple example is given to explain the method and then the method is applied to the problem of obtaining the mass spectrum of the squashed seven-sphere compactification of eleven dimensional supergravity. The second topic concerns the application of Fujikawa's method of anomaly calculation to the calculation of the critical dimension of various string models. The third topic is a study and explicit calculation of the Fock space representation of the vertex in Witten's formulation of the interacting open bosonic string field theory

  10. Gauged supergravities from M-theory reductions

    Science.gov (United States)

    Katmadas, Stefanos; Tomasiello, Alessandro

    2018-04-01

    In supergravity compactifications, there is in general no clear prescription on how to select a finite-dimensional family of metrics on the internal space, and a family of forms on which to expand the various potentials, such that the lower-dimensional effective theory is supersymmetric. We propose a finite-dimensional family of deformations for regular Sasaki-Einstein seven-manifolds M 7, relevant for M-theory compactifications down to four dimensions. It consists of integrable Cauchy-Riemann structures, corresponding to complex deformations of the Calabi-Yau cone M 8 over M 7. The non-harmonic forms we propose are the ones contained in one of the Kohn-Rossi cohomology groups, which is finite-dimensional and naturally controls the deformations of Cauchy-Riemann structures. The same family of deformations can be also described in terms of twisted cohomology of the base M 6, or in terms of Milnor cycles arising in deformations of M 8. Using existing results on SU(3) structure compactifications, we briefly discuss the reduction of M-theory on our class of deformed Sasaki-Einstein manifolds to four-dimensional gauged supergravity.

  11. Helical Phase Inflation and Monodromy in Supergravity Theory

    Directory of Open Access Journals (Sweden)

    Tianjun Li

    2015-01-01

    Full Text Available We study helical phase inflation which realizes “monodromy inflation” in supergravity theory. In the model, inflation is driven by the phase component of a complex field whose potential possesses helicoid structure. We construct phase monodromy based on explicitly breaking global U(1 symmetry in the superpotential. By integrating out heavy fields, the phase monodromy from single complex scalar field is realized and the model fulfills natural inflation. The phase-axion alignment is achieved from explicitly symmetry breaking and gives super-Planckian phase decay constant. The F-term scalar potential provides strong field stabilization for all the scalars except inflaton, which is protected by the approximate global U(1 symmetry. Besides, we show that helical phase inflation can be naturally realized in no-scale supergravity with SU(2,1/SU(2×U(1 symmetry since the supergravity setup needed for phase monodromy is automatically provided in the no-scale Kähler potential. We also demonstrate that helical phase inflation can be reduced to another well-known supergravity inflation model with shift symmetry. Helical phase inflation is free from the UV-sensitivity problem although there is super-Planckian field excursion, and it suggests that inflation can be effectively studied based on supersymmetric field theory while a UV-completed framework is not prerequisite.

  12. Introduction to supergravity

    CERN Document Server

    Tanii, Yoshiaki

    2014-01-01

    This book is a pedagogical introduction to supergravity, a gravitational field theory that includes supersymmetry (symmetry between bosons and fermions) and is a generalization of Einstein's general relativity. Supergravity provides a low-energy effective theory of superstring theory, which has attracted much attention as a candidate for the unified theory of fundamental particles, and it is a useful tool for studying non-perturbative properties of superstring theory such as D-branes and string duality. This work considers classical supergravities in four and higher spacetime dimensions with their applications to superstring theory in mind. More concretely, it discusses classical Lagrangians (or field equations) and symmetry properties of supergravities. Besides local symmetries, supergravities often have global non-compact symmetries, which play a crucial role in their applications to superstring theory. One of the main features of this book is its detailed discussion of these non-compact symmetries. The aim...

  13. Kac-Moody symmetries of ten-dimensional non-maximal supergravity theories

    International Nuclear Information System (INIS)

    Schnakenburg, Igor; West, Peter

    2004-01-01

    A description of the bosonic sector of ten-dimensional N=1 supergravity as a non-linear realisation is given. We show that if a suitable extension of this theory were invariant under a Kac-Moody algebra, then this algebra would have to contain a rank eleven Kac-Moody algebra, that can be identified to be a particular real form of very-extended D 8 . We also describe the extension of N=1 supergravity coupled to an abelian vector gauge field as a non-linear realisation, and find the Kac-Moody algebra governing the symmetries of this theory to be very-extended B 8 . Finally, we discuss the related points for the N=1 supergravity coupled to an arbitrary number of abelian vector gauge fields. (author)

  14. Supersymmetry and supergravity

    International Nuclear Information System (INIS)

    West, P.

    1986-01-01

    This book presents a pedagogical introduction of supersymmetry, supergravity and string theories and deals with advanced related topics. Contents: Introduction, The Supersymmetry Algebras; Alternative Approach to the Supersymmetry Algebra; Immediate Consequences of the Supersymmetry Algebra; The Wess-Zumino Model; N = 1 Super QED; N = 1 Super Yang-Mills Theory and the Noether Procedure; Irreducible Representations of Supersymmetry; Simple Supergravity; Invariance of Simple Supergravity; Tensor Calculus of Rigid Supersymmetry; Theories of Extended Rigid Supersymmetry; Local Tensor Calculus and the Coupling of Supergravity to Matter; Superspace; Superspace Formulations of Rigid Supersymmetric Theories; Superspace Formulation of N = 1 Supergravity; N = 1 Super-Feynman Rules; Ultraviolet Properties of the Extended Rigid Supersymmetry Theories; Spontaneous Breaking of Supersymmetry and Realistic Models; Currents in Supersymmetric Theories; Two-Dimensional Supersymmetry Models; Gauge Covariant Formulation of Strings; Appendix A: An Explanation of Our Choices of Conventions; Appendix B: A List of Reviews and Books

  15. Supersymmetric Yang-Mills theory on conformal supergravity backgrounds in ten dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Paul de; Figueroa-O’Farrill, José [Maxwell Institute and School of Mathematics, The University of Edinburgh,James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom)

    2016-03-14

    We consider bosonic supersymmetric backgrounds of ten-dimensional conformal supergravity. Up to local conformal isometry, we classify the maximally supersymmetric backgrounds, determine their conformal symmetry superalgebras and show how they arise as near-horizon geometries of certain half-BPS backgrounds or as a plane-wave limit thereof. We then show how to define Yang-Mills theory with rigid supersymmetry on any supersymmetric conformal supergravity background and, in particular, on the maximally supersymmetric backgrounds. We conclude by commenting on a striking resemblance between the supersymmetric backgrounds of ten-dimensional conformal supergravity and those of eleven-dimensional Poincaré supergravity.

  16. A natural solution to the μ-problem in supergravity theories

    International Nuclear Information System (INIS)

    Giudice, G.F.; Masiero, A.

    1988-01-01

    We propose a 'natural' way to avoid the introduction by hand of a small mass scale μ in the observable sector of N=1 supergravity theories. In our approach, μ automatically arises from the general couplings of broken supergravity. In this way, all low energy mass parameters arise only from supergravity breaking and, in particular, SU(2)xU(1) is left unbroken in the limit of exact supersymmetry. Our solution of the μ-problem presents interesting connections with the strong CP puzzle through the implementation of symmetries a la Peccei and Quinn. (orig.)

  17. Supergravity and superstrings

    International Nuclear Information System (INIS)

    Gell-Mann, M.

    1985-01-01

    The ''standard'' SU/sub 3/ x SU/sub 2/ x U/sub 1/ theory has three independent coupling constants and numerous dimensionless parameters determining mass ratios, the weak coupling matrix, etc. While N=1 supergravity, generalizing Einstein's gravity theory, is not necessarily very divergent itself, it is terribly divergent when coupled to external N=1 supermatter, such as N=1 super-Yang-Mills theory with N=1 supermultiplets of spin one-half and spin zero. Three paths are being explored in the search for the ultimate unified theory of physics. The first path involves N > 1 supergravity in four dimensions, without external supermatter, particularly the largest such theory, N=8 supergravity, where there is no room for external supermatter. The N=8 supergravity supermultiplet itself contains all the haplons (fundamental fields of the theory). During the last couple of years Michael Green and John Schwarz have found that there are two more 10-dimensional superstring theories IIA and IIB, with only closed strings. They reduce, on truncation to the initially massless actor, to N=2A and N=2B supergravity, respectively, in ten dimensions. But the superstring theories are finite to one loop instead of divergent like the corresponding supergravities. The author discusses that IIA and IIB superstrings, when truncated to the initially massless sector and trivially reduced to four dimensions, yield N=8 supergravity. All three superstring theories, although they have the traditional description as ''S-matrix'' theories on the mass shell, can also be written as field theories (with fields as functionals of strings instead of functions of points) with local couplings. So far, the field description is not covariant. This paper discusses various superstrings theories

  18. On eleven-dimensional supergravity and Chern-Simons theory

    Energy Technology Data Exchange (ETDEWEB)

    Izaurieta, Fernando, E-mail: fizaurie@ucsc.cl [Departamento de Matematica y Fisica Aplicadas, Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, 4090541 Concepcion (Chile); Instituto de Matematicas, Universidad Nacional Autonoma de Mexico, Av. Insurgentes Sur s/n, D.F. (Mexico); Departament de Fisica Teorica, Universitat de Valencia, C/ Dr. Moliner 50, 46100 Burjassot, Valencia (Spain); Rodriguez, Eduardo, E-mail: edurodriguez@ucsc.cl [Departamento de Matematica y Fisica Aplicadas, Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, 4090541 Concepcion (Chile)

    2012-02-11

    We probe in some depth into the structure of eleven-dimensional, osp(32|1)-based Chern-Simons supergravity, as put forward by Troncoso and Zanelli (TZ) in 1997. We find that the TZ Lagrangian may be cast as a polynomial in 1/l, where l is a length, and compute explicitly the first three dominant terms. The term proportional to 1/l{sup 9} turns out to be essentially the Lagrangian of the standard 1978 supergravity theory of Cremmer, Julia and Scherk, thus establishing a previously unknown relation between the two theories. The computation is nontrivial because, when written in a sufficiently explicit way, the TZ Lagrangian has roughly one thousand non-explicitly Lorentz-covariant terms. Specially designed algebraic techniques are used to accomplish the results.

  19. Duality transformations in supersymmetric Yang-Mills theories coupled to supergravity

    CERN Document Server

    Ceresole, Anna T; Ferrara, Sergio; Van Proeyen, A; Ceresole, A; D'Auria, R; Ferrara, S; Van Proeyen, A

    1995-01-01

    We consider duality transformations in N=2, d=4 Yang-Mills theory coupled to N=2 supergravity. A symplectic and coordinate covariant framework is established, which allows one to discuss stringy `classical and quantum duality symmetries' (monodromies), incorporating T and S dualities. In particular, we shall be able to study theories (like N=2 heterotic strings) which are formulated in symplectic basis where a `holomorphic prepotential' F does not exist, and yet give general expressions for all relevant physical quantities. Duality transformations and symmetries for the N=1 matter coupled Yang--Mills supergravity system are also exhibited. The implications of duality symmetry on all N>2 extended supergravities are briefly mentioned. We finally give the general form of the central charge and the N=2 semiclassical spectrum of the dyonic BPS saturated states (as it comes by truncation of the N=4 spectrum).

  20. New set of auxiliary fields for supergravity theories

    International Nuclear Information System (INIS)

    Oliveira Rivelles, V. de.

    1983-02-01

    A brief introduction on supersymmetry is given. The problems with the obtainment of the auxiliary fields in supergravity theories are discussed, after a short presentation of the supersymmetry algebra representations. (L.C.) [pt

  1. A Note on Supergravity Duals of Noncommutative Yang-Mills Theory

    International Nuclear Information System (INIS)

    Das, Sumit R.; Ghosh, Banhiman

    2000-01-01

    A class of supergravity backgrounds have been proposed as dual descriptions of strong coupling large-N noncommutative Yang-Mills (NCYM) theories in 3+1 dimensions. However calculations of correlation functions in supergravity from an evaluation of relevant classical actions appear ambiguous. We propose a resolution of this ambiguity. Assuming that holographic description exists - regardless of whether it is the NCYM theory - we argue that there should be operators in the holographic boundary theory which create normalized states of definite energy and momenta. An operator version of the dual correspondence then provides a calculation of correlators of these operators in terms of bulk Green's functions. We show that in the low energy limit the correlators reproduce expected answers of the ordinary Yang-Mills theory. (author)

  2. Construction of N=8 supergravity theories by dimensional reduction

    International Nuclear Information System (INIS)

    Boucher, W.

    1985-01-01

    In this paper I ask which N=8 supergravity theories in four dimensions can be obtained by dimensional reduction of the N=1 supergravity theory in eleven dimensions. Several years ago Scherk and Schwarz produced a particular class of N = 8 theories by giving a dimensional reduction scheme on the restricted class of coset spaces, G/H, with dim H=0 (and therefore dim G=7). I generalize their considerations by looking at arbitrary (seven-dimensional) coset spaces. Also, instead of giving a particular ansatz which happens to work, I set about the distinctly more difficult task of determining all ansatzes which produce N=8 theories. The basic ingredient of my dimensional reduction scheme is the demand that certain symmetries, including supersymmetry, be truncated consistently. I find the surprising result that the only N=8 theories obtainable within the contexts of my scheme are those theories already written down by Scherk and Schwarz. In particular dim H=0 and dim G=7. Independently of these considerations, I prove that any dimensional reduction scheme which consistently truncates supersymmetry must also be consistent with the equations of motion. I discuss Lorentz-invariant solutions of the theories of Scherk and Schwarz, pointing out that since the ansatz of Scherk and Schwarz consistently truncates supersymmetry, any solution of these theories is also a solution of the N=1 supergravity theory in eleven dimensions and, hence, in particular that there is a Freund-Rubin-type ansatz for these theories. However I demonstrate that for most gauge groups the ansatz must be trivial which implies that for these theories the cosmological constant of any Lorentz-invariant solution must be zero (classically). Finally, I make some comparisons with work by Manton on dimensional reduction. (orig.)

  3. Supergravity duals of supersymmetric four dimensional gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Bigazzi, F [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Cotrone, A L [Centre de Physique Theorique, Ecole Polytechnique, Palaiseau Cedex (France); [INFN, Rome (Italy); Petrini, M [Centre de Physique Theorique, Ecole Polytechnique, Palaiseau (France); Zaffaroni, A [Universita di Milano-Bicocca and INFN, Milan (Italy)

    2002-03-01

    This article contains an overview of some recent attempts of understanding supergravity and string duals of four dimensional gauge theories using the AdS/CFT correspondence. We discuss the general philosophy underlying the various ways to realize Super Yang-Mills theories in terms of systems of branes. We then review some of the existing duals for N=2 and N=1 theories. We also discuss differences and similarities with realistic theories. (author)

  4. Black-Hole Attractors in N=1 Supergravity

    CERN Document Server

    Andrianopoli, L; Ferrara, Sergio; Trigiante, M; Andrianopoli, Laura; Auria, Riccardo D'; Ferrara, Sergio; Trigiante, Mario

    2007-01-01

    We study the attractor mechanism for N=1 supergravity coupled to vector and chiral multiplets and compute the attractor equations of these theories. These equations may have solutions depending on the choice of the holomorphic symmetric matrix f_{\\Lambda\\Sigma} which appears in the kinetic lagrangian of the vector sector. Models with non trivial electric-magnetic duality group which have or have not attractor behavior are exhibited. For a particular class of models, based on an N=1 reduction of homogeneous special geometries, the attractor equations are related to the theory of pure spinors.

  5. Representations of algebras of extended supersymmetry and linearised supergravity theories

    International Nuclear Information System (INIS)

    Tejlor, Dzh.

    1985-01-01

    In the lecture an attempt is made to acquaint the reader with the theory of extended supersymmetry, to characterize the corresponding particle spectrum and to explain how it can be used in supersymmetry with the least difficulties. Superalgebras are classified, their irreducible representations are given. Superfields and superspace are introduced, their role in the superalgebra realization is analyzed. Examples of linearized Lagrangians and auxiliary fields for the theories of supergravity with N=1 and N=2 are presented. Methods of spin reduction with the central charges are considered. The possibility to construct supergravity model with N>=3 off mass shell is considered

  6. Non-renormalisation conditions in type II string theory and maximal supergravity

    International Nuclear Information System (INIS)

    Green, Michael B.; Russo, Jorge G.; Vanhove, Pierre

    2007-01-01

    This paper considers general features of the derivative expansion of Feynman diagram contributions to the four-graviton scattering amplitude in eleven-dimensional supergravity compactified on a two-torus. These are translated into statements about interactions of the form D 2k R 4 in type II superstring theories, assuming the standard M-theory/string theory duality relationships, which provide powerful constraints on the effective interactions. In the ten-dimensional IIA limit we find that there can be no perturbative contributions beyond k string loops (for k>0). Furthermore, the genus h = k contributions are determined exactly by the one-loop eleven-dimensional supergravity amplitude for all values of k. A plausible interpretation of these observations is that the sum of h-loop Feynman diagrams of maximally extended supergravity is less divergent than might be expected and could be ultraviolet finite in dimensions d<4+6/h - the same bound as for N = 4 Yang-Mills

  7. Non-renormalisation conditions in type II string theory and maximal supergravity

    Science.gov (United States)

    Green, Michael B.; Russo, Jorge G.; Vanhove, Pierre

    2007-02-01

    This paper considers general features of the derivative expansion of Feynman diagram contributions to the four-graviton scattering amplitude in eleven-dimensional supergravity compactified on a two-torus. These are translated into statements about interactions of the form D2kR4 in type II superstring theories, assuming the standard M-theory/string theory duality relationships, which provide powerful constraints on the effective interactions. In the ten-dimensional IIA limit we find that there can be no perturbative contributions beyond k string loops (for k>0). Furthermore, the genus h = k contributions are determined exactly by the one-loop eleven-dimensional supergravity amplitude for all values of k. A plausible interpretation of these observations is that the sum of h-loop Feynman diagrams of maximally extended supergravity is less divergent than might be expected and could be ultraviolet finite in dimensions d<4+6/h - the same bound as for N = 4 Yang-Mills.

  8. Strong coupling effects in non-commutative spaces from OM theory and supergravity

    International Nuclear Information System (INIS)

    Russo, J.G.; Sheikh-Jabbari, M.M.

    2000-11-01

    We show that a four-parameter class of 3+1 dimensional NCOS theories can be obtained by dimensional reduction on a general 2-torus from OM theory. Compactifying two spatial directions of NCOS theory on a 2-torus, we study the transformation properties under the SO(2,2; Z) T-duality group. We then discuss non-perturbative configurations of non-commutative super Yang-Mills theory. In particular, we calculate the tension for magnetic monopoles and (p,q) dyons and exhibit their six-dimensional origin, and construct a supergravity solution representing an instanton in the gauge theory. We also compute the potential for a monopole-antimonopole in the supergravity approximation. (author)

  9. Euclidean supergravity

    Science.gov (United States)

    de Wit, Bernard; Reys, Valentin

    2017-12-01

    Supergravity with eight supercharges in a four-dimensional Euclidean space is constructed at the full non-linear level by performing an off-shell time-like reduction of five-dimensional supergravity. The resulting four-dimensional theory is realized off-shell with the Weyl, vector and tensor supermultiplets and a corresponding multiplet calculus. Hypermultiplets are included as well, but they are themselves only realized with on-shell supersymmetry. We also briefly discuss the non-linear supermultiplet. The off-shell reduction leads to a full understanding of the Euclidean theory. A complete multiplet calculus is presented along the lines of the Minkowskian theory. Unlike in Minkowski space, chiral and anti-chiral multiplets are real and supersymmetric actions are generally unbounded from below. Precisely as in the Minkowski case, where one has different formulations of Poincaré supergravity upon introducing different compensating supermultiplets, one can also obtain different versions of Euclidean supergravity.

  10. Conformal invariance in supergravity

    International Nuclear Information System (INIS)

    Bergshoeff, E.A.

    1983-01-01

    In this thesis the author explains the role of conformal invariance in supergravity. He presents the complete structure of extended conformal supergravity for N <= 4. The outline of this work is as follows. In chapter 2 he briefly summarizes the essential properties of supersymmetry and supergravity and indicates the use of conformal invariance in supergravity. The idea that the introduction of additional symmetry transformations can make clear the structure of a field theory is not reserved to supergravity only. By means of some simple examples it is shown in chapter 3 how one can always introduce additional gauge transformations in a theory of massive vector fields. Moreover it is shown how the gauge invariant formulation sometimes explains the quantum mechanical properties of the theory. In chapter 4 the author defines the conformal transformations and summarizes their main properties. He explains how these conformal transformations can be used to analyse the structure of gravity. The supersymmetric extension of these results is discussed in chapter 5. Here he describes as an example how N=1 supergravity can be reformulated in a conformally-invariant way. He also shows that beyond N=1 the gauge fields of the superconformal symmetries do not constitute an off-shell field representation of extended conformal supergravity. Therefore, in chapter 6, a systematic method to construct the off-shell formulation of all extended conformal supergravity theories with N <= 4 is developed. As an example he uses this method to construct N=1 conformal supergravity. Finally, in chapter 7 N=4 conformal supergravity is discussed. (Auth.)

  11. Newton-Cartan supergravity with torsion and Schrodinger supergravity

    NARCIS (Netherlands)

    Bergshoeff, Eric; Rosseel, Jan; Zojer, Thomas

    2015-01-01

    We derive a torsionfull version of three-dimensional N - 2 Newton-Cartan supergravity using a non-relativistic notion of the superconformal tensor calculus. The "superconformal" theory that we start with is Schrodinger supergravity which we obtain by gauging the Schrodinger superalgebra. We present

  12. Scale invariant Volkov–Akulov supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, S., E-mail: sergio.ferrara@cern.ch [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); INFN – Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati (Italy); Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Porrati, M., E-mail: mp9@nyu.edu [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); CCPP, Department of Physics, NYU, 4 Washington Pl., New York, NY 10003 (United States); Sagnotti, A., E-mail: sagnotti@sns.it [Th-Ph Department, CERN, CH-1211 Geneva 23 (Switzerland); Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2015-10-07

    A scale invariant goldstino theory coupled to supergravity is obtained as a standard supergravity dual of a rigidly scale-invariant higher-curvature supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a massless scalaron and a massive axion in a de Sitter Universe.

  13. R{sup 2} supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Physics Department, Theory Unit, CERN,CH 1211, Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy, University of California,Los Angeles, CA 90095-1547 (United States); Kehagias, Alex [Physics Division, National Technical University of Athens,15780 Zografou, Athens (Greece); Porrati, Massimo [Physics Department, Theory Unit, CERN,CH 1211, Geneva 23 (Switzerland); CCPP, Department of Physics,NYU 4 Washington Pl. New York NY 10003 (United States)

    2015-08-03

    We formulate R{sup 2} pure supergravity as a scale invariant theory built only in terms of superfields describing the geometry of curved superspace. The standard supergravity duals are obtained in both “old' and “new' minimal formulations of auxiliary fields. These theories have massless fields in de Sitter space as they do in their non supersymmetric counterpart. Remarkably, the dual theory of R{sup 2} supergravity in the new minimal formulation is an extension of the Freedman model, describing a massless gauge field and a massless chiral multiplet in de Sitter space, with inverse radius proportional to the Fayet-Iliopoulos term. This model can be interpreted as the “de-Higgsed' phase of the dual companion theory of R+R{sup 2} supergravity.

  14. Scale invariant Volkov–Akulov supergravity

    Directory of Open Access Journals (Sweden)

    S. Ferrara

    2015-10-01

    Full Text Available A scale invariant goldstino theory coupled to supergravity is obtained as a standard supergravity dual of a rigidly scale-invariant higher-curvature supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a massless scalaron and a massive axion in a de Sitter Universe.

  15. Supersymmetric black holes in N = 2 supergravity theory

    International Nuclear Information System (INIS)

    Aichelburg, P.C.

    1982-01-01

    We present an exact, asymptotically flat, stationary solution of the field equations of O(2) extended supergravity theory. This solution has a mass, central electric charge as well as a supercharge and constitutes the first exact, supersymmetric generalization of the black hole geometries. The solution generalizes the extreme Reissner-Nordstroem black holes. (Author)

  16. Supergravity, Non-Conformal Field Theories and Brane-Worlds

    CERN Document Server

    Gherghetta, Tony; Gherghetta, Tony; Oz, Yaron

    2002-01-01

    We consider the supergravity dual descriptions of non-conformal super Yang-Mills theories realized on the world-volume of Dp-branes. We use the dual description to compute stress-energy tensor and current correlators. We apply the results to the study of dilatonic brane-worlds described by non-conformal field theories coupled to gravity. We find that brane-worlds based on D4 and D5 branes exhibit a localization of gauge and gravitational fields. We calculate the corrections to the Newton and Coulomb laws in these theories.

  17. Gauge theory of gravity and supergravity on a group manifold

    International Nuclear Information System (INIS)

    Ne'eman, Y.; Regge, T.

    1977-12-01

    The natural arena for the physics of gravity, supergravity and their enlargements appears to be the group manifold of the Poincare group P, the graded Poincare group GP of supersymmetry, and the corresponding enlargements. The dynamics of these theories correspond to geometrical algorithms in P and GP. Differential geometry on Lie groups is reviewed and results applied to P and GP. Curvature, gauge transformations and factorization are introduced. Also reviewed is the general coordinate transformation group and a hybrid gauge transformation, the anholonomized G.C.T. gauge. A study is made of the construction of an action, including the introduction of a set of special 2 forms, the ''pseudo curvatures.'' The possibilities of factorization in supersymmetry are analyzed. The version of supergravity is present which has now become a completely geometrical theory

  18. Supersymmetry and supergravity

    International Nuclear Information System (INIS)

    Wess, J.; Bagger, J.

    1992-01-01

    The first edition of this book appeared in 1983 and was based on a series of lectures given at Princeton in 1983 by Julius Wess. Since the appearance of the first edition much work has been done on the development of phenomenological models of particle behavior based on the supergravity multiplet. Some experimental searches have been carried out and others are planned for the future. For this reason the second edition of the book goes substantially beyond the first. Six new chapters have been added for a total of twenty-six and five new appendices for a total of seven. The new chapters and appendices are primarily aimed at deriving the most general supersymmetric gauge invariant theory of chiral fields interacting with supergravity and expressing it in component form. The book is divided into three sections. After a brief introduction, the first part of the book deals with a description of N=1 supersymmetric non-abelian rigid gauge theory of chiral fields. The second part of the book develops a local supersymmetric theory which is supergravity. The final part describes the coupling of supersymmetric chiral fields to supergravity in a gauge invariant way. The book may be recommended as a pedagogical introduction to the theory of N=1 supergravity. Together with the appendices is is completely self-contained, both in notation and in the concepts used, requiring only some knowledge of field theory as a background

  19. N ≥ 4 Supergravity Amplitudes from Gauge Theory at Two Loops

    International Nuclear Information System (INIS)

    Boucher-Veronneau, Camille

    2012-01-01

    We present the full two-loop four-graviton amplitudes in N = 4, 5, 6 supergravity. These results were obtained using the double-copy structure of gravity, which follows from the recently conjectured color-kinematics duality in gauge theory. The two-loop four-gluon scattering amplitudes in N = 0, 1, 2 supersymmetric gauge theory are a second essential ingredient. The gravity amplitudes have the expected infrared behavior: the two-loop divergences are given in terms of the squares of the corresponding one-loop amplitudes. The finite remainders are presented in a compact form. The finite remainder for N = 8 supergravity is also presented, in a form that utilizes a pure function with a very simple symbol.

  20. One-loop divergences in the quantum theory of supergravity

    International Nuclear Information System (INIS)

    Nieuwenhuizen, P. van; Vermaseren, J.A.M.

    1976-01-01

    Supergravity does not lead to a finite quantum theory of gravitation when coupled to the spin 1, 1/2 matter multiplet. The S-matrix of photon-photon scattering diverges; its divergences are proportional to the square of the photon energy-momentum tensor, in agreement with electro-magnetic duality and chiral invariance. The graviton self-energy corrections are divergent in pure supergravity as well as in the coupled Maxwell-Einstein system and satisfy their Ward identity because the supersymmetry ghost field is commuting. The photon-graviton vertex corrections diverge, as expected from the non-invariance of the action under local scale transformations, and satisfy the equivalence principle at the quantum level. The photon self-energy is divergent. (Auth.)

  1. On N=8 supergravity in AdS5 and N=4 superconformal Yang-Mills theory

    International Nuclear Information System (INIS)

    Ferrara, S.; Zaffaroni, A.; Froensdal, C.

    1998-01-01

    We discuss the spectrum of states of IIB supergravity on AdS 5 x S 5 in a manifest SU(2,2/4) invariant setting. The boundary fields are described in terms of N=4 superconformal Yang-Mills theory and the proposed correspondence between supergravity in AdS 5 and superconformal invariant singleton theory at the boundary is formulated in a N=4 superfield covariant language. (orig.)

  2. One-loop infinities in dimensionally reduced supergravities

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Tseytlin, A.A.

    1983-11-01

    It is proved explicitly in the paper that d=4 theory following via reduction from N=1, d=10 supergravities is not finite at one loop while the version of N=8 supergravity directly following from N=1, d=11 theory is one-loop finite. The method used is based on quantization of initial higher dimensional theory as a first step. The results also suggest possible existence of non-standard (higher N) d>4 supergravities which reduce to d=4 theories with finite N=8 supergravity sector. (author)

  3. Asymptotic freedom in extended conformal supergravities

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Tseytlin, A.A.

    1982-01-01

    We present the calculation of the one-loop β-function in extended conformal supergravities. N = 1, 2, 3 theories (free or coupled to the Einstein supergravities) are found to the asymptotically free (like the N = 0 Weyl theory) while the N = 4 theory becomes finite under some plausible hypothesis. The results support the possibility to solve the problem of ghosts in these theories. The obtained sequence of SU(N) β-functions appears to be in remarkable correspondence with that for gauged O(N) supergravity theories. (orig.)

  4. Flatspace chiral supergravity

    Science.gov (United States)

    Bagchi, Arjun; Basu, Rudranil; Detournary, Stéphane; Parekh, Pulastya

    2018-05-01

    We propose a holographic duality between a 2 dimensional (2d) chiral superconformal field theory and a certain theory of supergravity in 3d with flatspace boundary conditions that is obtained as a double scaling limit of a parity breaking theory of supergravity. We show how the asymptotic symmetries of the bulk theory reduce from the "despotic" super Bondi-Metzner-Sachs algebra (or equivalently the inhomogeneous super Galilean conformal algebra) to a single copy of the super-Virasoro algebra in this limit and also reproduce the same reduction from a study of null vectors in the putative 2d dual field theory.

  5. Group-geometric methods in supergravity and superstring theories

    International Nuclear Information System (INIS)

    Castellani, L.

    1992-01-01

    The purpose of this paper is to give a brief and pedagogical account of the group-geometric approach to (super)gravity and superstring theories. The authors summarize the main ideas and apply them to selected examples. Group geometry provides a natural and unified formulation of gravity and gauge theories. The invariance of both are interpreted as diffeomorphisms on a suitable group manifold. This geometrical framework has a fruitful output, in that it provides a systematic algorithm for the gauging of Lie algebras and the construction of (super)gravity or (super)string Lagrangians. The basic idea is to associate fundamental fields to the group generators. This is done by considering first a basis of tangent vectors on the group manifold. These vectors close on the same algebra as the abstract group generators. The dual basis, i.e. the vielbeins (cotangent basis of one-forms) is then identified with the set of fundamental fields. Thus, for example, the vielbein V a and the spin connection ω ab of ordinary Einstein-Cartan gravity are seen as the duals of the tangent vectors corresponding to translations and Lorentz rotations, respectively

  6. Stable de Sitter vacua in four-dimensional supergravity originating from five dimensions

    International Nuclear Information System (INIS)

    Oegetbil, O.

    2008-01-01

    The five-dimensional stable de Sitter ground states in N=2 supergravity obtained by gauging SO(1,1) symmetry of the real symmetric scalar manifold (in particular, a generic Jordan family manifold of the vector multiplets) simultaneously with a subgroup R s of the R-symmetry group descend to four-dimensional de Sitter ground states under certain conditions. First, the holomorphic section in four dimensions has to be chosen carefully by using the symplectic freedom in four dimensions; second, a group contraction is necessary to bring the potential into a desired form. Under these conditions, stable de Sitter vacua can be obtained in dimensionally reduced theories (from 5D to 4D) if the semidirect product of SO(1,1) with R (1,1) together with a simultaneous R s is gauged. We review the stable de Sitter vacua in four dimensions found in earlier literature for N=2 Yang-Mills Einstein supergravity with the SO(2,1)xR s gauge group in a symplectic basis that comes naturally after dimensional reduction. Although this particular gauge group does not descend directly from five dimensions, we show that its contraction does. Hence, two different theories overlap in certain limits. Examples of stable de Sitter vacua are given for the cases: (i) R s =U(1) R , (ii) R s =SU(2) R , and (iii) N=2 Yang-Mills/Einstein supergravity theory coupled to a universal hypermultiplet. We conclude with a discussion regarding the extension of our results to supergravity theories with more general homogeneous scalar manifolds.

  7. The effective supergravity of little string theory

    Science.gov (United States)

    Antoniadis, Ignatios; Delgado, Antonio; Markou, Chrysoula; Pokorski, Stefan

    2018-02-01

    In this work we present the minimal supersymmetric extension of the five-dimensional dilaton-gravity theory that captures the main properties of the holographic dual of little string theory. It is described by a particular gauging of N=2 supergravity coupled with one vector multiplet associated with the string dilaton, along the U(1) subgroup of SU(2) R-symmetry. The linear dilaton in the fifth coordinate solution of the equations of motion (with flat string frame metric) breaks half of the supersymmetries to N=1 in four dimensions. Interest in the linear dilaton model has lately been revived in the context of the clockwork mechanism, which has recently been proposed as a new source of exponential scale separation in field theory.

  8. The effective supergravity of little string theory

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios [Sorbonne Universite, CNRS, Laboratoire de Physique Theorique et Hautes Energies, LPTHE, Paris (France); University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Delgado, Antonio [University of Notre Dame, Department of Physics, Notre Dame, IN (United States); Markou, Chrysoula [Sorbonne Universite, CNRS, Laboratoire de Physique Theorique et Hautes Energies, LPTHE, Paris (France); Pokorski, Stefan [University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland)

    2018-02-15

    In this work we present the minimal supersymmetric extension of the five-dimensional dilaton-gravity theory that captures the main properties of the holographic dual of little string theory. It is described by a particular gauging of N = 2 supergravity coupled with one vector multiplet associated with the string dilaton, along the U(1) subgroup of SU(2) R-symmetry. The linear dilaton in the fifth coordinate solution of the equations of motion (with flat string frame metric) breaks half of the supersymmetries to N = 1 in four dimensions. Interest in the linear dilaton model has lately been revived in the context of the clockwork mechanism, which has recently been proposed as a new source of exponential scale separation in field theory. (orig.)

  9. Asymptomatic freedom in renormalisable gravity and supergravity

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Tseytlin, A.A.

    1984-01-01

    This chapter demonstrates that renormalizable supergravity, which is a superextension of renormalizable quantum gravity, can be the basis for a natural ''induced supergravity'' theory. A perturbatively operational unified theory is needed for a description of the early stages of the Universe, and renormalizable quantum gravity is well suited for unification with the renormalizable Grand Unified Models of matter. Topics considered include one-loop counter-terms and renormalization group (RG) equations for pure renormalizable gravity; the consequences of asymptotic freedom; the inclusion of matter; conformal supergravities; and renormalizable supergravity models. It is concluded that the presented lagrangian, which contains a locally superconformal extension of the Yang-Mills and massless spinor lagrangians and the conformal supergravity term, shows that conformal supergravity may play an important role in a fundamental theory

  10. Applied supersymmetry and supergravity

    International Nuclear Information System (INIS)

    Nanopoulos, D.V.

    1986-01-01

    The structure and physical consequences of global and local supersymmetric (SUSY) gauge theories are reviewed. Motivation for SUSY theories, supersymmetry and its physical properties, the observable consequences of SUSY at low energies and super-high energies, physical structure of simple (N=1) supergravity, physics with simple (N=1) supergravity, and the experimental evidence for supersymmetry, are all discussed. (UK)

  11. Higher curvature supergravity and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Th-Ph Department, CERN, Geneva (Switzerland); U.C.L.A., Los Angeles, CA (United States); INFN - LNF, Frascati (Italy); Sagnotti, Augusto [Scuola Normale Superiore, Pisa (Italy); INFN, Pisa (Italy)

    2016-04-15

    In this contribution we describe dual higher-derivative formulations of some cosmological models based on supergravity. Work in this direction started with the R + R{sup 2} Starobinsky model, whose supersymmetric extension was derived in the late 80's and was recently revived in view of new CMB data. Models dual to higher-derivative theories are subject to more restrictions than their bosonic counterparts or standard supergravity. The three sections are devoted to a brief description of R + R{sup 2} supergravity, to a scale invariant R{sup 2} supergravity and to theories with a nilpotent curvature, whose duals describe non-linear realizations (in the form of a Volkov-Akulov constrained superfield) coupled to supergravity. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Equivalent D = 3 supergravity amplitudes from double copies of three-algebra and two-algebra gauge theories.

    Science.gov (United States)

    Huang, Yu-tin; Johansson, Henrik

    2013-04-26

    We show that three-dimensional supergravity amplitudes can be obtained as double copies of either three-algebra super-Chern-Simons matter theory or two-algebra super-Yang-Mills theory when either theory is organized to display the color-kinematics duality. We prove that only helicity-conserving four-dimensional gravity amplitudes have nonvanishing descendants when reduced to three dimensions, implying the vanishing of odd-multiplicity S-matrix elements, in agreement with Chern-Simons matter theory. We explicitly verify the double-copy correspondence at four and six points for N = 12,10,8 supergravity theories and discuss its validity for all multiplicity.

  13. Studies in gravity and supergravity

    International Nuclear Information System (INIS)

    Castellani, L.

    1981-01-01

    The canonical treatment for theories with local gauge invariances is reviewed and an algorithm for the construction of all the gauge generators is found. This algorithm is then applied to Yang-Mills theories and to (metric) gravity. The first part of the work is concluded with a complete treatment of hamiltonian first order tetrad gravity. In the second part, the geometrical aspects of (super)gravity theories are concentrated on. After an interlude with path integrals in curved space (equivalence is shown with canonical quantization), N = 2 supergravity in superspace, and conformal supergravity in the group manifold scenario are studied. A progress report is added, regarding a study on higher divergences in quantum field theory

  14. ${ \\mathcal P }{ \\mathcal T }$-symmetric interpretation of unstable effective potentials

    CERN Document Server

    Bender, Carl M.; Mavromatos, Nick E.; Sarkar, Sarben

    2016-01-01

    The conventional interpretation of the one-loop effective potentials of the Higgs field in the Standard Model and the gravitino condensate in dynamically broken supergravity is that these theories are unstable at large field values. A ${ \\mathcal P }{ \\mathcal T }$-symmetric reinterpretation of these models at a quantum-mechanical level eliminates these instabilities and suggests that these instabilities may also be tamed at the quantum-field-theory level.

  15. Is supergravity well-posed?

    International Nuclear Information System (INIS)

    Isenberg, J.; Bao, D.; Yasskin, P.B.

    1983-01-01

    One rather fundamental question concerning supergravity remains unresolved: Is supergravity a well-posed field theory? That is, does a set of certain (Cauchy) data specified on some initial spacelike surface determine a unique, causally propagating spacetime solution of the supergravity field equations (at least in some finite neighborhood of the initial surface)? In this paper, the authors give a very brief report on work directed towards answering this question. (Auth.)

  16. On the OSp(1,4) renormalisable theory of supergravity with higher derivatives

    International Nuclear Information System (INIS)

    Namazie, M.A.

    1980-01-01

    Supergravity Langrangian invariant under local orthosymplectic and general coordinate transformations is presented. It is conjectured that the Lagrangian describes a renormalisable theory. New features in this formulation are the introduction of a group invariant metric tensor and the corresponding connection. As in other higher-derivative theories metric ghosts are present. (author)

  17. Introduction to supersymmetry and supergravity

    International Nuclear Information System (INIS)

    West, P.

    1986-01-01

    This book gives views of supersymmetry and supergravity. The contents include; alternative approach to supersymmetry algebra; immediate consequences of supersymmetry algebra; Wess-Zumino model. N=1 Super QED. N=1 super Yang Mills theory and the Noether procedure; irreducible representations of supersymmetry; invariance of simple supergravity and theories of extended rigid supersymmetry

  18. Topics in N = 1 supergravity in four dimensions and superstring effective field theories beyond tree-level

    International Nuclear Information System (INIS)

    Saririan, K.

    1997-05-01

    In this thesis, the author presents some works in the direction of studying quantum effects in locally supersymmetric effective field theories that appear in the low energy limit of superstring theory. After reviewing the Kaehler covariant formulation of supergravity, he shows the calculation of the divergent one-loop contribution to the effective boson Lagrangian for supergravity, including the Yang-Mills sector and the helicity-odd operators that arise from integration over fermion fields. The only restriction is on the Yang-Mills kinetic energy normalization function, which is taken diagonal in gauge indices, as in models obtained from superstrings. He then presents the full result for the divergent one-loop contribution to the effective boson Lagrangian for supergravity coupled to chiral and Yang-Mills supermultiplets. He also considers the specific case of dilaton couplings in effective supergravity Lagrangians from superstrings, for which the one-loop result is considerably simplified. He studies gaugino condensation in the presence of an intermediate mass scale in the hidden sector. S-duality is imposed as an approximate symmetry of the effective supergravity theory. Furthermore, the author includes in the Kaehler potential the renormalization of the gauge coupling and the one-loop threshold corrections at the intermediate scale. It is shown that confinement is indeed achieved. Furthermore, a new running behavior of the dilaton arises which he attributes to S-duality. He also discusses the effects of the intermediate scale, and possible phenomenological implications of this model

  19. Quantum field theories coupled to supergravity. AdS/CFT and local couplings

    International Nuclear Information System (INIS)

    Grosse, J.

    2006-01-01

    This dissertation is devoted to the investigation of the interplay of supersymmetric Yang-Mills theories (SYM) and supergravity (SUGRA). The topic is studied from two points of view: Firstly from the point of view of AdS/CFT correspondence, which realises the coupling of four dimensional superconformal N=4 SYM theory and ten dimensional type IIB SUGRA in a holographic way. In order to arrive at theories that resemble quantum chromodynamics (QCD) more closely, fundamental fields are introduced using probe D7-branes and nontrivial background configuration are considered. In particular supergravity solutions that are only asymptotically anti-de Sitter and break supersymmetry are used. This allows the description of spontaneous chiral symmetry breaking. The meson spectrum is calculated and the existence of an associated Goldstone mode is demonstrated. Moreover it is shown that highly radially excited mesons are not degenerate. Additionally instanton configurations on the D7-branes are investigated, which lead to a holographic description of the dual field theory's Higgs branch. Finally a holographic description of heavy-light mesons is developed, which are mesons consisting of quarks with a large mass difference, such that a treatment of B mesons can be achieved. The second approach to the topic of this thesis is the technique of socalled space-time dependent couplings (also known as ''local couplings''), where coupling constants are promoted to external sources. This allows to explore the conformal anomaly of quantum field theories coupled to a classical gravity background. The technique is extended to the superfield description of N=1 supergravity, a complete basis for the anomaly is given and the consistency conditions that arise from a cohomological treatment are calculated. Possible implications for an extension of Zamolodchikov's c-theorem to four dimensional supersymmetric quantum field theories are discussed. (orig.)

  20. Quantum field theories coupled to supergravity. AdS/CFT and local couplings

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, J.

    2006-08-03

    This dissertation is devoted to the investigation of the interplay of supersymmetric Yang-Mills theories (SYM) and supergravity (SUGRA). The topic is studied from two points of view: Firstly from the point of view of AdS/CFT correspondence, which realises the coupling of four dimensional superconformal N=4 SYM theory and ten dimensional type IIB SUGRA in a holographic way. In order to arrive at theories that resemble quantum chromodynamics (QCD) more closely, fundamental fields are introduced using probe D7-branes and nontrivial background configuration are considered. In particular supergravity solutions that are only asymptotically anti-de Sitter and break supersymmetry are used. This allows the description of spontaneous chiral symmetry breaking. The meson spectrum is calculated and the existence of an associated Goldstone mode is demonstrated. Moreover it is shown that highly radially excited mesons are not degenerate. Additionally instanton configurations on the D7-branes are investigated, which lead to a holographic description of the dual field theory's Higgs branch. Finally a holographic description of heavy-light mesons is developed, which are mesons consisting of quarks with a large mass difference, such that a treatment of B mesons can be achieved. The second approach to the topic of this thesis is the technique of socalled space-time dependent couplings (also known as ''local couplings''), where coupling constants are promoted to external sources. This allows to explore the conformal anomaly of quantum field theories coupled to a classical gravity background. The technique is extended to the superfield description of N=1 supergravity, a complete basis for the anomaly is given and the consistency conditions that arise from a cohomological treatment are calculated. Possible implications for an extension of Zamolodchikov's c-theorem to four dimensional supersymmetric quantum field theories are discussed. (orig.)

  1. On E(11) of M-theory: 1. Hidden Symmetries of Maximal Supergravities and Lego of Dynkin Diagrams

    International Nuclear Information System (INIS)

    Nurmagambetov, A.J.

    2007-01-01

    We review a graphical way of classifying hidden symmetry algebras and groups of D=11, 10 maximal supergravities in terms of Dynkin diagrams, the shapes of which are determined by the bosonic field content of supergravities supermultiplets. The approach we follow is tightly related to the West's conjecture on a hidden symmetry of M-theory, and we discuss benefits of the approach in compare to other ways of searching for hidden symmetries of String Theory

  2. Gauged supergravities in various spacetime dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, M.

    2006-12-15

    In this thesis we study the gaugings of extended supergravity theories in various space-time dimensions. These theories describe the low-energy limit of non-trivial string compactifications. For each theory under consideration we work out all possible gaugings that are compatible with supersymmetry. They are parameterized by the so-called embedding tensor which is a group theoretical object that has to satisfy certain representation constraints. This embedding tensor determines all couplings in the gauged theory that are necessary to preserve gauge invariance and supersymmetry. The concept of the embedding tensor and the general structure of the gauged supergravities are explained in detail. The methods are then applied to the half-maximal (N=4) supergravities in d=4 and d=5 and to the maximal supergravities in d=2 and d=7. Examples of particular gaugings are given. Whenever possible, the higher-dimensional origin of these theories is identified and it is shown how the compactification parameters like fluxes and torsion are contained in the embedding tensor. (orig.)

  3. Newton-Cartan supergravity with torsion and Schrödinger supergravity

    International Nuclear Information System (INIS)

    Bergshoeff, Eric; Rosseel, Jan; Zojer, Thomas

    2015-01-01

    We derive a torsionfull version of three-dimensional N=2 Newton-Cartan supergravity using a non-relativistic notion of the superconformal tensor calculus. The “superconformal” theory that we start with is Schrödinger supergravity which we obtain by gauging the Schrödinger superalgebra. We present two non-relativistic N=2 matter multiplets that can be used as compensators in the superconformal calculus. They lead to two different off-shell formulations which, in analogy with the relativistic case, we call “old minimal” and “new minimal” Newton-Cartan supergravity. We find similarities but also point out some differences with respect to the relativistic case.

  4. Newton-Cartan supergravity with torsion and Schrödinger supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Rosseel, Jan [Institute for Theoretical Physics, Vienna University of Technology,Wiedner Hauptstr. 8-10/136, A-1040 Vienna (Austria); Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Zojer, Thomas [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2015-11-25

    We derive a torsionfull version of three-dimensional N=2 Newton-Cartan supergravity using a non-relativistic notion of the superconformal tensor calculus. The “superconformal” theory that we start with is Schrödinger supergravity which we obtain by gauging the Schrödinger superalgebra. We present two non-relativistic N=2 matter multiplets that can be used as compensators in the superconformal calculus. They lead to two different off-shell formulations which, in analogy with the relativistic case, we call “old minimal” and “new minimal” Newton-Cartan supergravity. We find similarities but also point out some differences with respect to the relativistic case.

  5. The potentials of the gauged N=8 supergravity theories

    International Nuclear Information System (INIS)

    Hull, C.M.

    1985-01-01

    The potentials of the SO(p,q) gaugings of N=8 supergravity are investigated for critical points. The SO(7,1) gauging has no G 2 -invariant critical points, the SO(6,2) theory has no SU(3) invariant critical points and the SO(5,3) gauging has only one SO(5)-invariant critical point, with positive cosmological constant, SO(5) x SO(3) symmetry and no supersymmetry. (orig.)

  6. Yang-Mills-Chern-Simons supergravity

    International Nuclear Information System (INIS)

    Lue, H; Pope, C N; Sezgin, E

    2004-01-01

    N = (1, 0) supergravity in six dimensions admits AdS 3 x S 3 as a vacuum solution. We extend our recent results presented in Lue et al (2002 Preprint hep-th/0212323), by obtaining the complete N = 4 Yang-Mills-Chern-Simons supergravity in D = 3, up to quartic fermion terms, by S 3 group manifold reduction of the six-dimensional theory. The SU(2) gauge fields have Yang-Mills kinetic terms as well as topological Chern-Simons mass terms. There is in addition a triplet of matter vectors. After diagonalization, these fields describe two triplets of topologically-massive vector fields of opposite helicities. The model also contains six scalars, described by a GL(3, R)/SO(3) sigma model. It provides the first example of a three-dimensional gauged supergravity that can be obtained by a consistent reduction of string theory or M-theory and that admits AdS 3 as a vacuum solution. There are unusual features in the reduction from six-dimensional supergravity, owing to the self-duality condition on the 3-form field. The structure of the full equations of motion in N = (1, 0) supergravity in D = 6 is also elucidated, and the role of the self-dual field strength as torsion is exhibited

  7. Super-BMS{sub 3} invariant boundary theory from three-dimensional flat supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Barnich, Glenn; Donnay, Laura [Physique Théorique et Mathématique, Université Libre de Bruxelles andInternational Solvay Institutes,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Matulich, Javier; Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Casilla 1469, Valdivia (Chile)

    2017-01-09

    The two-dimensional super-BMS{sub 3} invariant theory dual to three-dimensional asymptotically flat N=1 supergravity is constructed. It is described by a constrained or gauged chiral Wess-Zumino-Witten action based on the super-Poincaré algebra in the Hamiltonian, respectively the Lagrangian formulation, whose reduced phase space description corresponds to a supersymmetric extension of flat Liouville theory.

  8. New techniques for classic and quantum investigations on supersymmetry and supergravity theories

    International Nuclear Information System (INIS)

    Carvalho, F.A.B.R. de.

    1986-01-01

    Aspects on supersymmetry and supergravity are studied. The superfield Feynman rules are obtained, where global supersymmetry is spontaneously broken by F-terms. The complete superspace dependence of superpropagators is factored out, which are used to discuss corrections for the effective action and the non-renormalization theorems. The external gauge superfield coupling, taking in account the finite matter contributions to the gauging mass and the Fayet-Illiopoulos term, is discussed. By considering, the arbitrary globally supersymmetric Abelian gauge theory, the most general shifts on the matter and gauge superfields are carried out. The superpropagators are derived and used to discuss the structure of the terms generated into the effective action. An algorithm to obtain the minimal set of auxiliary field for the femionic of supergravity theories. Explicit examples are shown as illustrations and the N=1, N=10, studied in detail. (M.C.K.) [pt

  9. Euclidean supergravity and multi-centered solutions

    Directory of Open Access Journals (Sweden)

    W.A. Sabra

    2017-04-01

    Full Text Available In ungauged supergravity theories, the no-force condition for BPS states implies the existence of stable static multi-centered solutions. The first solutions to Einstein–Maxwell theory with a positive cosmological constant describing an arbitrary number of charged black holes were found by Kastor and Traschen. Generalisations to five and higher dimensional theories were obtained by London. Multi-centered solutions in gauged supergravity, even with time-dependence allowed, have yet to be constructed. In this letter we construct supersymmetry-preserving multi-centered solutions for the case of D=5, N=2 Euclidean gauged supergravity coupled to an arbitrary number of vector multiplets. Higher dimensional Einstein–Maxwell multi-centered solutions are also presented.

  10. Supergravity solitons

    International Nuclear Information System (INIS)

    Aichelburg, P.C.; Embacher, F.

    1987-01-01

    In previous work solitons of N = 2 supergravity were described as test particles in an external supergravity field. In the present paper we derive the effective interaction of two solitons by inserting a classical soliton configuration for the background into the Lagrangian and apply a slow-motion and large-distance approximation. We obtain the interaction potential to lowest order that incorporates the effect of the supercharge. The resulting classical system is quantized and, as a final step, an effective quantum field theory is formulated. (Author)

  11. Supergravity and Yang-Mills theories as generalized topological fields with constraints

    International Nuclear Information System (INIS)

    Ling Yi; Tung Rohsuan; Guo Hanying

    2004-01-01

    We present a general approach to construct a class of generalized topological field theories with constraints by means of generalized differential calculus and its application to connection theory. It turns out that not only the ordinary BF formulations of general relativity and Yang-Mills theories, but also the N=1,2 chiral supergravities can be reformulated as these constrained generalized topological field theories once the free parameters in the Lagrangian are specially chosen. We also show that the Chern-Simons action on the boundary may naturally be induced from the generalized topological action in the bulk, rather than introduced by hand

  12. Anti-de Sitter black holes in gauged supergravity. Supergravity flow, thermodynamics and phase transitions

    NARCIS (Netherlands)

    Toldo, C.

    2014-01-01

    This thesis is devoted to the analysis of asymptotically Anti-de Sitter (AdS) black holes arising as solutions of theories of gauged Supergravity in four spacetime dimensions. After a brief recap of the main features of gauged supergravity, the first part of the thesis deals with the explicit

  13. On running couplings in gauge theories from type-IIB supergravity

    CERN Document Server

    Kehagias, A A

    1999-01-01

    We construct an explicit solution of type-IIB supergravity describing the strong coupling regime of a non-supersymmetric gauge theory. The latter has a running coupling with an ultraviolet stable fixed point corresponding to the N=4 SU(N) super-Yang-Mills theory at large N. The running coupling has a power law behaviour, argued to be universal, that is consistent with holography. Around the critical point, our solution defines an asymptotic expansion for the gauge coupling beta-function. We also calculate the first correction to the Coulombic quark-antiquark potential.

  14. Constrained superfields in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Dall’Agata, Gianguido; Farakos, Fotis [Dipartimento di Fisica ed Astronomia “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy)

    2016-02-16

    We analyze constrained superfields in supergravity. We investigate the consistency and solve all known constraints, presenting a new class that may have interesting applications in the construction of inflationary models. We provide the superspace Lagrangians for minimal supergravity models based on them and write the corresponding theories in component form using a simplifying gauge for the goldstino couplings.

  15. Matter and gauge couplings of N=2 supergravity in six dimensions

    International Nuclear Information System (INIS)

    Nishino, H.; Sezgin, E.

    1984-04-01

    We construct the couplings of a single anti-symmetric tensor multiplet, the non-compact HP(n-1,1) identical Sp(n,1)/Sp(n)xSp(1) σ-model and a Yang-Mills multiplet with the local gauge group Sp(n)xSp(1) to N=2 supergravity in d=6. The theory has a positive definite potential. If only the Sp(n) group is gauged, we can use the global Sp(1) invariance to realize a super-Higgs effect a la Scherk and Schwarz. [Nucl. Phys. B153, 61(1979)]. (author)

  16. BOOK REVIEW: Supergravity Supergravity

    Science.gov (United States)

    Gregory, Ruth

    2013-02-01

    Supergravity is an essential ingredient in so many areas of ultra high energy physics, yet it is rarely taught systematically, even at the graduate level. Students most often have to learn along with applying, and must use the now classic older texts. For such core material, it is surprising that there are so few good texts on the subject. It is not necessarily that supergravity is so much more conceptually complex, rather that it is technical and therefore easy for a text to become dry, dense and rather indigestible. This book, written by two experts in the field, is therefore a breath of fresh air. It not only represents a comprehensive modern overview of the subject, but achieves this with clarity, accessibility, and even humour! To paraphrase the authors, if you are not impressed by this book, you should put it down and watch television instead. It starts by reviewing, or overviewing, aspects of field theory, basic supersymmetry and gravity that will be needed for the rest of the book. This first third or so of the book is very condensed, and will not be easy to follow for those who have not encountered the material before. However, the authors acknowledge this and give plenty of suggestions for more pedagogical texts in the relevant areas, thus it does not feel overly brief. The middle section deals with the construction of supergravity, starting with basic N = 1 supergravity in 4 and 11 dimensions and gradually extending the discussion to include matter multiplets. This part of the book systematically builds up understanding and construction of models, before moving on to superconformal methods. The purpose is not to cover all supergravity theories, but to focus on a few examples in detail, and to give sufficient expertise and information for the reader to be able to deal with any other models they might need. The final part of the book deals with applications, and includes two chapters on applications in adS/CFT, which will be of most interest to new

  17. Covariant field equations in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Vanhecke, Bram [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium); Ghent University, Faculty of Physics, Gent (Belgium); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)

    2017-12-15

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Covariant field equations in supergravity

    International Nuclear Information System (INIS)

    Vanhecke, Bram; Proeyen, Antoine van

    2017-01-01

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Canonical formulation of supergravity and the quantization of the ultralocal theory of gravity

    International Nuclear Information System (INIS)

    Pilati, M.L.

    1980-01-01

    This thesis consists of two parts whose only common feature is that they are Hamiltonian field theories of geometric interest. The first part is concerned with the canonical formulation of supergravity and other geometrical, supersymmetric theories. The Hamiltonian for supergravity and the spinning membrane are computed, and the possible usefulness of the Hamiltonian formalism for finding the underlying geometry described. The second part attempts to give the quantization of the ultralocal theory of gravity. Classically the ultralocal theory corresponds to dropping g/sup 1/2//sup (3)/R from the Hamiltonian. The speed of light in this theory is zero; there is no propagation of information. It is desired to have the quantum version of this theory play the role that Fock space plays in ordinary quantum field theory, i.e., to the theory about which perturbations are made to obtain the full quantum theory of gravity. The quantum theory is begun by choosing variables consistent with the three-dimensional metric's having positive-definite spectrum. The representation of these operators is then given; it is an exponential representation. The operators script-H/sub perpendicular/ and script-H/sub i/ are constructed in this representation, the properties of script-H/sub i/ implying that the theory is coordinate invariant. It is found that script-H/sub perpendicular/ cannot be realized as a constraint in this theory in the way that one expects of a quantum theory of gravity

  20. Gauged Supergravities and Spontaneous Supersymmetry Breaking from the Double Copy Construction

    Science.gov (United States)

    Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R.

    2018-04-01

    Supergravities with gauged R symmetry and Minkowski vacua allow for spontaneous supersymmetry breaking and, as such, provide a framework for building supergravity models of phenomenological relevance. In this Letter, we initiate the study of double copy constructions for these supergravities. We argue that, on general grounds, we expect their scattering amplitudes to be described by a double copy of the type (spontaneously broken gauge theory)⊗ (gauge theory with broken supersymmetry). We present a simple realization in which the resulting supergravity has U (1 )R gauge symmetry, spontaneously broken N =2 supersymmetry, and massive gravitini. This is the first instance of a double copy construction of a gauged supergravity and of a theory with spontaneously broken supersymmetry. The construction extends in a straightforward manner to a large family of gauged Yang-Mills-Einstein supergravity theories with or without spontaneous gauge-symmetry breaking.

  1. Two Ramond-Ramond corrections to type II supergravity via field-theory amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiarizadeh, Hamid R. [Sirjan University of Technology, Department of Physics, Sirjan (Iran, Islamic Republic of)

    2017-12-15

    Motivated by the standard form of the string-theory amplitude, we calculate the field-theory amplitude to complete the higher-derivative terms in type II supergravity theories in their conventional form. We derive explicitly the O(α{sup '3}) interactions for the RR (Ramond-Ramond) fields with graviton, B-field and dilaton in the low-energy effective action of type II superstrings. We check our results by comparison with previous work that has been done by the other methods, and we find exact agreement. (orig.)

  2. New compactifications in seven and eleven dimensional supergravity theories

    International Nuclear Information System (INIS)

    Pernici, M.; Sezgin, E.

    1984-08-01

    It is found that the N=4 gauged supergravity in d=7 spontaneously compactifies on direct product of anti-deSitter space (AdS) with a 3-sphere (non-supersymmetric: N=0), or with 3-hyperboloid (N=2). Similarly the N=2 gauged supergravity in d=7 compactifies on AdSxH 3 (N=1). The possibility of σ-model induced compactification of ungauged d=7 N=2 supergravity coupled to one vector multiplet on (Minkowski) 4 x Tear Drop x S 1 is discussed. The case of d=11 supergravity is also studied, and two new compactifications are found: AdS x non-Einstein squashed S 7 (n=0) and AdS x non-Einstein SU(2) bundle over CP 2 (N=0). (author)

  3. N=1 supergravity off-shell in six dimensions

    International Nuclear Information System (INIS)

    Smith, A.W.

    1983-01-01

    It is shown that the N=1 supergravity in six dimensions showns useful characteristics to study the unification of a gauge theory together with the supergravity, via dimensinal reduction, giving a geometrical interpretation for the internal quantum numbers in the reduced theory. (L.C.) [pt

  4. Supersymmetry, supergravity, and unification

    CERN Document Server

    Nath, Pran

    2017-01-01

    This unique book gives a modern account of particle physics and gravity based on supersymmetry and supergravity, two of the most significant developments in theoretical physics since general relativity. The book begins with a brief overview of the history of unification and then goes into a detailed exposition of both fundamental and phenomenological topics. The topics in fundamental physics include Einstein gravity, Yang-Mills theory, anomalies, the standard model, supersymmetry and supergravity, and the construction of supergravity couplings with matter and gauge fields, as well as computational techniques for SO(10) couplings. The topics of phenomenological interest include implications of supergravity models at colliders, CP violation, and proton stability, as well as topics in cosmology such as inflation, leptogenesis, baryogenesis, and dark matter. The book is intended for graduate students and researchers seeking to master the techniques for building grand unified models.

  5. Symmetries of supergravity black holes

    International Nuclear Information System (INIS)

    Chow, David D K

    2010-01-01

    We investigate Killing tensors for various black hole solutions of supergravity theories. Rotating black holes of an ungauged theory, toroidally compactified heterotic supergravity, with NUT parameters and two U(1) gauge fields are constructed. If both charges are set equal, then the solutions simplify, and then there are concise expressions for rank-2 conformal Killing-Staeckel tensors. These are induced by rank-2 Killing-Staeckel tensors of a conformally related metric that possesses a separability structure. We directly verify the separation of the Hamilton-Jacobi equation on this conformally related metric and of the null Hamilton-Jacobi and massless Klein-Gordon equations on the 'physical' metric. Similar results are found for more general solutions; we mainly focus on those with certain charge combinations equal in gauged supergravity but also consider some other solutions.

  6. Geometric construction of extended supergravity

    International Nuclear Information System (INIS)

    Kostelecky, V.A.

    1982-01-01

    This work describes the explict construction of the locally SO(4)-invariant, on-shell de Sitter supergravity. First, aspects of classical differential geometry used in the construction of local gauge theories are reviewed. Emphasis is placed on fiber bundles and their uses in Yang-Mills and Einstein theories. Next, the extension of the formalism to differential supergeometry is outlined. Applications to extended supergravities are discussed. Finally, the O(4) deSitter supergravity is obtained by considering a bundle of frames constructed using the orthosymplectic superalgebra osp(4/4). The structure group of this bundle is Sl(2C) x SO(4) and the tangent space to the base supermanifold is homeomorphic to the coset osp(4/4)/sl(2C) x so(4). Constraints taken into the Bianchi identifies yield a realization of the superalgebra in the function space of connections, vielbeins, curvatures and torsions of the bundle. Auxiliary fields, transformation laws and equations of motion are determined. Consistency of the realization is verified, proving closure of the algebra. The associated Poincare supergravity is obtained by a contraction

  7. Inoenue-Wigner contraction and D = 2 + 1 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Concha, P.K.; Rodriguez, E.K. [Universidad Adolfo Ibanez, Departamento de Ciencias, Facultad de Artes Liberales, Vina del Mar (Chile); Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Fierro, O. [Universidad Catolica de la Santisima Concepcion, Departamento de Matematica y Fisica Aplicadas, Concepcion (Chile)

    2017-01-15

    We present a generalization of the standard Inoenue-Wigner contraction by rescaling not only the generators of a Lie superalgebra but also the arbitrary constants appearing in the components of the invariant tensor. The procedure presented here allows one to obtain explicitly the Chern-Simons supergravity action of a contracted superalgebra. In particular we show that the Poincare limit can be performed to a D = 2 + 1 (p,q) AdS Chern-Simons supergravity in presence of the exotic form. We also construct a new three-dimensional (2,0) Maxwell Chern-Simons supergravity theory as a particular limit of (2,0) AdS-Lorentz supergravity theory. The generalization for N = p + q gravitinos is also considered. (orig.)

  8. The no-hair conjecture in 2D dilaton supergravity

    International Nuclear Information System (INIS)

    Gamboa, J.; Georgelin, Y.

    1993-06-01

    Two dimensional dilaton gravity and supergravity are studied following Hamiltonian methods. The structure of constraints of 2D dilaton gravity and the 2D dilaton supergravity theory is discussed taking the square root of the bosonic constraints. The equations of motion are integrated in both cases, and it is shown that the solutions of the equation of motion of 2D dilaton supergravity differs from the solutions of 2D dilaton gravity only by boundary conditions on the fermionic variables, i.e. the black holes of 2D dilaton supergravity theory are exactly the same black holes of 2D bosonic dilaton gravity modulo supersymmetry transformations. This result is the bidimensional analogue of the no-hair theorem for supergravity. (authors). 28 refs

  9. Extremal Black Holes in Supergravity and the Bekenstein-Hawking Entropy

    Directory of Open Access Journals (Sweden)

    R. D'Auria

    2002-03-01

    Full Text Available Abstract: We review some results on the connection among supergravity central charges, BPS states and Bekenstein-Hawking entropy. In particular, N = 2 super-gravity in four dimensions is studied in detail. For higher N supergravities we just give an account of the general theory specializing the discussion to the N = 8 case when one half of supersymmetry is preserved. We stress the fact that for extremal supergravity black holes the entropy formula is topological, that is the entropy turns out to be a moduli independent quantity and can be written in terms of invariants of the duality group of the supergravity theory.

  10. Quantum supergravity, supergravity anomalies and string phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Mary K., E-mail: mkgaillard@lbl.gov

    2016-11-15

    I discuss the role of quantum effects in the phenomenology of effective supergravity theories from compactification of the weakly coupled heterotic string. An accurate incorporation of these effects requires a regularization procedure that respects local supersymmetry and BRST invariance and that retains information associated with the cut-off scale, which has physical meaning in an effective theory. I briefly outline the Pauli–Villars regularization procedure, describe some applications, and comment on what remains to be done to fully define the effective quantum field theory.

  11. Spontaneous symmetry breaking in N=3 supergravity

    International Nuclear Information System (INIS)

    Zinov'ev, Yu.M.

    1986-01-01

    The possibility of the spontaneous symmetry breaking without a cosmological term in N=3 supergravity is investigated. A new, dual version of N=3 supergravity - U(3)-supergravity is constructed. Such a theory is shown to admit a spontaneous supersymmetry breaking without a cosmological term and with three arbitrary scales, including partial super-Higgs effect N=3 → N=2 and N=3 → N=1

  12. The domain walls of gauged maximal supergravities and their M-theory origin

    International Nuclear Information System (INIS)

    Bergshoe, Eric; Nielsen, Mikkel; Roest, Diederik

    2004-01-01

    We consider gauged maximal supergravities with CSO(p,q,r) gauge groups and their relation to the branes of string and M-theory. The gauge groups are characterised by n mass parameters, where n is the transverse dimension of the brane. We give the scalar potentials and construct the corresponding domain wall solutions. In addition, we show the higher-dimensional origin of the domain walls in terms of (distributions of) branes. We put particular emphasis on the CSO(p,q,r) gauged supergravities in D = 9 and D = 8, which are related to the D7-brane and D6-brane, respectively. In these cases, twisted and group manifold reductions are shown to play a crucial role. We also discuss salient features of the corresponding brane distributions. (author)

  13. More gaugings of N=8 supergravity

    International Nuclear Information System (INIS)

    Hull, C.M.

    1984-01-01

    New non-compact gaugings of N = 8 supergravity are constructed. The gauge groups are SO(p,q) (with p + q = 8) and the group contraction of SO(p,q) about SO(p). The SO(4,4) gauging and the corresponding contraction truncate to gauged N = 4 supergravity theories. (orig.)

  14. Nilpotent orbits in real symmetric pairs and stationary black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Heiko [School of Mathematical Sciences, Monash University, VIC (Australia); De Graaf, Willem A. [Department of Mathematics, University of Trento, Povo (Italy); Ruggeri, Daniele [Universita di Torino, Dipartimento di Fisica (Italy); INFN, Sezione di Torino (Italy); Trigiante, Mario [DISAT, Politecnico di Torino (Italy)

    2017-02-15

    In the study of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determine the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of (SL{sub 2}(R)){sup 4} acting on the fourth tensor power of the natural 2-dimensional SL{sub 2}(R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Nilpotent orbits in real symmetric pairs and stationary black holes

    International Nuclear Information System (INIS)

    Dietrich, Heiko; De Graaf, Willem A.; Ruggeri, Daniele; Trigiante, Mario

    2017-01-01

    In the study of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determine the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of (SL 2 (R)) 4 acting on the fourth tensor power of the natural 2-dimensional SL 2 (R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Physical processes of gravitions and gray quarks in the interior of cosomod and supergravity cosmic stellar entities

    International Nuclear Information System (INIS)

    Narayana, K.L.

    1986-01-01

    Supergravity theories indicate drastic modifications and entirely new thoughts of approach for study of the physical processes. In a separate paper, the author has emphasized the importance of SU(8) symmetric group within the frame work of a U(10,2) supergravity theory. This has also been cited in literature, subsequently, for a spinorial theoretic formulation of light and classification of photon and W-meson multiplets. The object of the present paper is to present an example of a specific gauge-gravity theory that employs SL(2,C) infinitesional group together with a SU(2) group. The reason of the choice is its close analogy with the Einstein's theory, that leads to automatically the important physical quantities. The difference, however, arises in a relevant version of quantized theory. At first, he emphasizes the basic structure of the model, discusses the symmetry breaking patterns which ensures ISL(2,C) X SU(2) as the low energy symmetry. He next points out the new interactions present in the extended framework and obtain the reasonable physical processes that may play an important role in the super gravity cosmic entities

  17. Structure of a supergravity group

    International Nuclear Information System (INIS)

    Ogievetsky, V.; Sokatchev, E.

    1978-01-01

    The supergravity group is found to be the direct product of general covariance groups in complex conjugated left and right handed superspaces. The ordinary space-time coordinate and the axial gravitational superfield are the real and imaginary parts of the complex coordinate, respectively. It is pointed out that a number of questions concerning the formalism remains open. For instance how to define superfields with external indices, supercovariant derivatives and invariants of the group, etc. However, the extremely simple and clear geometrical picture of the supergravity group given here will provide an adequate basis for the supergravity theory

  18. Experimental limits on antigravity in extended supergravity

    OpenAIRE

    Bellucci, S.; Faraoni, V.

    1995-01-01

    The available tests of the equivalence principle constrain the mass of the Higgs-like boson appearing in extended supergravity theories. We determine the constraints imposed by the present and future high precision experiments on the antigravity fields arising from $N=2,8$ supergravity.

  19. Grand unification and supergravity

    International Nuclear Information System (INIS)

    Nanopoulos, D.V.

    Grand Unified Theories (GUTs) are very successful, but they suffer from fine-tuning or hierarchy problems. It seems that more symmetry beyond the gauge symmetry is needed and indeed supersymmetric GUTs may provide the correct framework in solving the hierarchy problems. These are reviewed. From the results discussed, it is seen that for the first time in particle physics, gravity seems to play a dominant role. It may be responsible for GUT breaking, SU(2) x U(1) breaking, fermion masses, proton decay and a consistent cosmological picture. Supergravity seems to offer a consistent, effective theory for energies below the Planck scale to N=1 local SUSY but also, in the context of N=8 extended supergravity with a dynamically realized SU(8), there may be a consistent fundamental unified theory of all interactions. (U.K.)

  20. Kaluza-Klein theories and supergravity

    CERN Document Server

    CERN. Geneva. Audiovisual Unit

    1986-01-01

    In all recent attempts at a unified description of all fundamental interactions, the idea of introducing extra dimensions has played an important role. This idea becomes even more attractive when combined with the more recent concepts of supersymmetry and supergravity. These topics as well as more recent developments will be reviewed at an introductory level in these lectures.

  1. D=3 unification of curious supergravities

    Energy Technology Data Exchange (ETDEWEB)

    Duff, M.J. [Theoretical Physics, Blackett Laboratory, Imperial College London,London SW7 2AZ (United Kingdom); Mathematical Institute University of Oxford, Andrew Wiles Building,Woodstock Road, Radcliffe Observatory Quarter, Oxford, OX2 6GG (United Kingdom); Ferrara, S. [Theoretical Physics Department, CERN,CH-1211 Geneva (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy andMani L. Bhaumik Institute for Theoretical Physics, UCLA,Los Angeles CA 90095-1547 (United States); Marrani, A. [Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”,Via Panisperna 89A, I-00184, Roma (Italy); Dipartimento di Fisica e Astronomia “Galileo Galilei”,Università di Padova and INFN, Sez. di Padova,Via Marzolo 8, I-35131 Padova (Italy); Theoretical Physics Department, CERN,CH-1211 Geneva (Switzerland)

    2017-01-09

    We consider the dimensional reduction to D=3 of four maximal-rank supergravities which preserve minimal supersymmetry in D=11, 7, 5 and 4. Such “curious” theories were investigated some time ago, and the four-dimensional one corresponds to an N=1 supergravity with 7 chiral multiplets spanning the seven-disk manifold. Recently, this latter theory provided cosmological models for α-attractors, which are based on the disk geometry with possible restrictions on the parameter α. A unified picture emerges in D=3, where the Ehlers group of General Relativity merges with the S-, T- and U- dualities of the D=4 parent theories.

  2. Aspects of Weyl Supergravity arXiv

    CERN Document Server

    Ferrara, Sergio; Lust, Dieter

    In this paper we study the spectrum of all conformal, ${\\cal N}$-extended supergravities (${\\cal N}=1,2,3,4$) in four space-time dimensions. When these theories are obtained as massless limit of Einstein plus Weyl$^2$supergravity, the appropriate counting of the enhanced gauge symmetries allow us to derive the massless spectrum which consist of a dipole ghost graviton multiplet, a ${\\cal N}$-fold tripole ghost gravitino, the third state belonging to a spin 3/2 multiplet and a residual vector multiplet present for non-maximal ${\\cal N}<4$ theories. These theories are not expected to have a standard gravity holographic dual in five dimensions.

  3. D = 3 Unification of Curious Supergravities

    CERN Document Server

    Duff, M.J.; Marrani, A.

    2017-01-09

    We consider the dimensional reduction to D = 3 of four maximal-rank supergravities which preserve minimal supersymmetry in D = 11, 7, 5 and 4. Such "curious" theories were investigated some time ago, and the four-dimensional one corresponds to an N = 1 supergravity with 7 chiral multiplets spanning the seven-disk manifold. Recently, this latter theory was considered to provide cosmological models for alpha-attractors, which are based on the disk geometry with possible restrictions on the parameter alpha. A unified picture emerges in D = 3, where the Ehlers group of General Relativity merges with the S-, T- and U- dualities of the D = 4 parent theories.

  4. Scattering amplitudes in N=2 Maxwell-Einstein and Yang-Mills/Einstein supergravity

    International Nuclear Information System (INIS)

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; Roiban, Radu

    2015-01-01

    We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N=2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N=2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian and Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which through the double copy are responsible for the non-abelian vector interactions in the supergravity theory. As a demonstration of the power of this structure, we present explicit computations at tree-level and one loop. The double-copy construction allows us to obtain compact expressions for the supergravity superamplitudes, which are naturally organized as polynomials in the gauge coupling constant.

  5. Higher derivative couplings and massive supergravity in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Kuzenko, Sergei M.; Novak, Joseph [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Tartaglino-Mazzucchelli, Gabriele [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Instituut voor Theoretische Fysica, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2015-09-14

    We develop geometric superspace settings to construct arbitrary higher derivative couplings (including R{sup n} terms) in three-dimensional supergravity theories with N≤3 by realising them as conformal supergravity coupled to certain compensators. For all known off-shell supergravity formulations, we construct supersymmetric invariants with up to and including four derivatives. As a warming-up exercise, we first give a new and completely geometric derivation of such invariants in N=1 supergravity. Upon reduction to components, they agree with those given in http://arxiv.org/abs/0907.4658 and http://arxiv.org/abs/1005.3952. We then carry out a similar construction in the case of N=2 supergravity for which there exist two minimal formulations that differ by the choice of compensating multiplet: (i) a chiral scalar multipet; (ii) a vector multiplet. For these formulations all four derivative invariants are constructed in completely general and gauge independent form. For a general supergravity model (in the N=1 and minimal N=2 cases) with curvature-squared and lower order terms, we derive the superfield equations of motion, linearise them about maximally supersymmetric backgrounds and obtain restrictions on the parameters that lead to models for massive supergravity. We use the non-minimal formulation for N=2 supergravity (which corresponds to a complex linear compensator) to construct a novel consistent theory of massive supergravity. In the case of N=3 supergravity, we employ the off-shell formulation with a vector multiplet as compensator to construct for the first time various higher derivative invariants. These invariants may be used to derive models for N=3 massive supergravity. As a bi-product of our analysis, we also present superfield equations for massive higher spin multiplets in (1,0), (1,1) and (2,0) anti-de Sitter superspaces.

  6. Constraining supergravity models from gluino production

    International Nuclear Information System (INIS)

    Barbieri, R.; Gamberini, G.; Giudice, G.F.; Ridolfi, G.

    1988-01-01

    The branching ratios for gluino decays g tilde → qanti qΧ, g tilde → gΧ into a stable undetected neutralino are computed as functions of the relevant parameters of the underlying supergravity theory. A simple way of constraining supergravity models from gluino production emerges. The effectiveness of hadronic versus e + e - colliders in the search for supersymmetry can be directly compared. (orig.)

  7. Generalized supersymmetric cosmological term in N=1 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Concha, P.K.; Rodríguez, E.K. [Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino,Via Pietro Giuria 1, 10125 Torino (Italy); Salgado, P. [Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile)

    2015-08-04

    An alternative way of introducing the supersymmetric cosmological term in a supergravity theory is presented. We show that the AdS-Lorentz superalgebra allows to construct a geometrical formulation of supergravity containing a generalized supersymmetric cosmological constant. The N=1, D=4 supergravity action is built only from the curvatures of the AdS-Lorentz superalgebra and corresponds to a MacDowell-Mansouri like action. The extension to a generalized AdS-Lorentz superalgebra is also analyzed.

  8. Scattering amplitudes in N=2 Maxwell-Einstein and Yang-Mills/Einstein supergravity

    CERN Document Server

    Chiodaroli, Marco; Johansson, Henrik; Roiban, Radu

    2015-01-01

    We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N=2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N=2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian and Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which th...

  9. Equations of motion for the new D=10 N=1 supergravity-Yang-Mills theory

    International Nuclear Information System (INIS)

    Vashakidze, Sh.I.

    1988-01-01

    An on-shell superfield formulation of the dual (type IB) ten-dimensional N=1 supergravity coupled to Yang-Mills theory is presented. The coupling is completely specified in superspace by A-tensor supercurrent which, at the same time, takes into account all superstring corrections in the slope parameter expansion. The complete set of equations of motion is derived

  10. Supergravities and superstrings

    International Nuclear Information System (INIS)

    Ferrara, S.

    1988-01-01

    In this paper supergavity theories emerging as the point-field limit of various superstring compactifications are considered, and the higher-order corrections to the standard supergravity Lagrangians are discussed. The structure of the effective Lagrangian for the recently constructed four-dimensional superstring models is also reported

  11. The large N limit of superconformal field theories and supergravity

    International Nuclear Information System (INIS)

    Maldacena, J.

    1999-01-01

    We show that the large N limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of Anti-deSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large N. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the super-Poincare group). The close-quote t Hooft limit of 3+1N=4 super-Yang-Mills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various Anti-deSitter spacetimes is dual to various conformal field theories. This leads to a new proposal for a definition of M-theory which could be extended to include five non-compact dimensions. copyright 1999 American Institute of Physics

  12. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamenta...

  13. Anti-D3 branes and moduli in non-linear supergravity

    Science.gov (United States)

    Garcia del Moral, Maria P.; Parameswaran, Susha; Quiroz, Norma; Zavala, Ivonne

    2017-10-01

    Anti-D3 branes and non-perturbative effects in flux compactifications spontaneously break supersymmetry and stabilise moduli in a metastable de Sitter vacua. The low energy 4D effective field theory description for such models would be a supergravity theory with non-linearly realised supersymmetry. Guided by string theory modular symmetry, we compute this non-linear supergravity theory, including dependence on all bulk moduli. Using either a constrained chiral superfield or a constrained vector field, the uplifting contribution to the scalar potential from the anti-D3 brane can be parameterised either as an F-term or Fayet-Iliopoulos D-term. Using again the modular symmetry, we show that 4D non-linear supergravities that descend from string theory have an enhanced protection from quantum corrections by non-renormalisation theorems. The superpotential giving rise to metastable de Sitter vacua is robust against perturbative string-loop and α' corrections.

  14. Supersymmetric gauge theories from string theory

    International Nuclear Information System (INIS)

    Metzger, St.

    2005-12-01

    This thesis presents various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain sub-cycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. The second part of this work covers the generation of four-dimensional super-symmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on G 2 -manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called 'anomaly inflow'. Unfortunately, no explicit metric of a compact G 2 -manifold is known. Here we construct families of metrics on compact weak G 2 -manifolds, which contain two conical singularities. Weak G 2 -manifolds have properties that are similar to the ones of proper G 2 -manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E 8 x E 8 -heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the classical action. (author)

  15. Super-BMS{sub 3} algebras from N=2 flat supergravities

    Energy Technology Data Exchange (ETDEWEB)

    Lodato, Ivano [Indian Institute of Science Education and Research,Homi Bhabha Road, Pashan, Pune 411 008 (India); Merbis, Wout [Institute for Theoretical Physics, Vienna University of Technology,Wiedner Hauptstrasse 8-10/136, A-1040 Vienna (Austria)

    2016-11-24

    We consider two possible flat space limits of three dimensional N=(1,1) AdS supergravity. They differ by how the supercharges are scaled with the AdS radius ℓ: the first limit (democratic) leads to the usual super-Poincaré theory, while a novel ‘twisted’ theory of supergravity stems from the second (despotic) limit. We then propose boundary conditions such that the asymptotic symmetry algebras at null infinity correspond to supersymmetric extensions of the BMS algebras previously derived in connection to non- and ultra-relativistic limits of the N=(1,1) Virasoro algebra in two dimensions. Finally, we study the supersymmetric energy bounds and find the explicit form of the asymptotic and global Killing spinors of supersymmetric solutions in both flat space supergravity theories.

  16. Off-shell Poincaré supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Daniel Z. [SITP and Department of Physics, Stanford University,Stanford, California 94305 (United States); Center for Theoretical Physics and Department of Mathematics,Massachusetts Institute of Technology,Cambridge, Massachusetts 02139 (United States); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Proeyen, Antoine Van [KU Leuven, Institute for Theoretical Physics,Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2017-02-21

    We present the action and transformation rules of Poincaré supergravity coupled to chiral multiplets (z{sup α},χ{sup α},h{sup α}) with off-shell auxiliary fields. Starting from the geometric formulation of the superconformal theory with auxiliary fields, we derive the Poincaré counterpart by gauge-fixing the Weyl and chiral symmetry and S-supersymmetry. We show how this transition is facilitated by retaining explicit target-space covariance. Our results form a convenient starting point to study models with constrained superfields, including general matter-coupled de Sitter supergravity.

  17. Scattering equations, supergravity integrands, and pure spinors

    Energy Technology Data Exchange (ETDEWEB)

    Adamo, Tim; Casali, Eduardo [Department of Applied Mathematics & Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2015-05-25

    The tree-level S-matrix of type II supergravity can be computed in scattering equation form by correlators in a worldsheet theory analogous to a chiral, infinite tension limit of the pure spinor formalism. By defining a non-minimal version of this theory, we give a prescription for computing correlators on higher genus worldsheets which manifest space-time supersymmetry. These correlators are conjectured to provide the loop integrands of supergravity scattering amplitudes, supported on the scattering equations. We give non-trivial evidence in support of this conjecture at genus one and two with four external states. Throughout, we find a close correspondence with the pure spinor formalism of superstring theory, particularly regarding regulators and zero-mode counting.

  18. Scattering equations, supergravity integrands, and pure spinors

    International Nuclear Information System (INIS)

    Adamo, Tim; Casali, Eduardo

    2015-01-01

    The tree-level S-matrix of type II supergravity can be computed in scattering equation form by correlators in a worldsheet theory analogous to a chiral, infinite tension limit of the pure spinor formalism. By defining a non-minimal version of this theory, we give a prescription for computing correlators on higher genus worldsheets which manifest space-time supersymmetry. These correlators are conjectured to provide the loop integrands of supergravity scattering amplitudes, supported on the scattering equations. We give non-trivial evidence in support of this conjecture at genus one and two with four external states. Throughout, we find a close correspondence with the pure spinor formalism of superstring theory, particularly regarding regulators and zero-mode counting.

  19. Compactifications of IIA supergravity on SU(2)-structure manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Spanjaard, B.

    2008-07-15

    In this thesis, we study compactifications of type IIA supergravity on six-dimensional manifolds with an SU(2)-structure. A general study of six-dimensional manifolds with SU(2)-structure shows that IIA supergravity compactified on such a manifold should yield a four-dimensional gauged N=4 supergravity. We explicitly derive the bosonic spectrum, gauge transformations and action for IIA supergravity compactified on two different manifolds with SU(2)-structure, one of which also has an H{sup (3)}{sub 10}-flux, and confirm that the resulting four-dimensional theories are indeed N=4 gauged supergravities. In the second chapter, we study an explicit construction of a set of SU(2)-structure manifolds. This construction involves a Scherk-Schwarz duality twist reduction of the half-maximal six-dimensional supergravity obtained by compactifying IIA supergravity on a K3. This reduction results in a gauged N=4 four-dimensional supergravity, where the gaugings can be divided into three classes of parameters. We relate two of the classes to parameters we found before, and argue that the third class of parameters could be interpreted as a mirror flux. (orig.)

  20. Zero curvature condition of OSp(2/2) and the associated supergravity theory

    International Nuclear Information System (INIS)

    Das, A.; Huang, W.J.; Roy, S.

    1992-01-01

    In this paper, the N = 2 fermionic extensions of the KdV equations are derived from the zero curvature condition associated with the graded Lie algebra of OSp(2/2). These equations lead to two bi-Hamiltonian systems, one of which is supersymmetric. The authors also derive the one-parameter family of N = 2 supersymmetric KdV equations without a bi-Hamiltonian structure in this approach. Following the authors' earlier proposal, the authors interpret the zero curvature conditions as a gauge anomaly equation which brings out the underlying current algebra for the corresponding 2D supergravity theory. This current algebra is then used to obtain the operator product expansions of various fields of this theory

  1. Stable supergravity dual of nonsupersymmetric glue

    International Nuclear Information System (INIS)

    Babington, James; Crooks, David E.; Evans, Nick

    2003-01-01

    We study nonsupersymmetric fermion mass and condensate deformations of the AdS conformal field theory correspondence. The five dimensional supergravity flows are lifted to a complete and remarkably simple ten dimensional background. A brane probe analysis shows that when all the fermions have an equal mass a positive mass is generated for all six scalar fields leaving nonsupersymmetric Yang-Mills theory in the deep infrared. We numerically determine the potential, produced by the background, in the Schroedinger equation relevant to the study of O ++ glueballs. The potential is a bounded well, providing evidence of stability and for a discrete, confined spectrum. The geometry can also describe the supergravity background around an (unstable) fuzzy 5-brane

  2. Supergravity

    International Nuclear Information System (INIS)

    Witt, B. de

    2002-01-01

    It is a comprehensive introduction to supergravities in different dimensions and with various numbers of supersymmetries. Topics covered include the allowed low-energy couplings, duality symmetries, compactification and supersymmetries in curved backgrounds. This document is made up of 7 chapters: 1) introduction, 2) supersymmetry in various dimensions, 3) supergravity, 4) homogeneous spaces and non-linear sigma models, 5) gauged maximal supergravity in 4 and 5 dimensions, 6) supersymmetry in anti-Sitter space, and 7) superconformal symmetry. (A.C.)

  3. Unconstrained N=2 matter, Yang-Mills and supergravity theories in harmonic superspace

    International Nuclear Information System (INIS)

    Galperin, A.; Kalitzin, S.; Sokatchev, E.

    1984-04-01

    A new approach to N=2 supersymmetry based on the concept of harmonic superspace is proposed and is used to give an unconstrained superfield geometric description of N=2 super Yang-Mills and supergravity theories as well as of matter N=2 hypermultiplets. The harmonic N=2 superspace has as independent coordinates, in addition to the usual ones, the isospinor harmonics Usub(i)sup(+-) on the sphere SU(2)/U(1). The role of Usub(i)sup(+-) is to relate the SU(2) group realized on the component fields to a U(1) group acting on the relevant superfields. Their introduction makes it possible to SU(2)-covariantize the notion of Grassmann analyticity. Crucial for our construction is the existence of an analytic subspace of the general harmonic N=2 superspace. The hypermultiplet superfields and the true prepotentials (pre-prepotentials) of N=2 super Yang-Mills and supergravity are unconstrained superfunctions over this analytic subspace. The pre-prepotentials have a clear geometric interpretation as gauge connections with respect to the internal SU(2)/U(1)-directions. A radically new feature arises: the number of gauge and auxiliary degrees of freedom becomes infinite while the number of physical degrees of freedom remains finite. Other new results are the massive N=2 Yang-Mills theory and various off-shell self-interactions of hypermultiplets. The propagators for matter and Yang-Mills superfields are given. (author)

  4. Kaluza-Klein supergravity in ten dimensions

    International Nuclear Information System (INIS)

    Huq, M.; Namazie, M.A.

    1983-11-01

    We construct a massive version of N=2 supergravity in ten dimensions by compactification of the eleven dimensional, N=1 theory. This theory describes the usual N=2 massless super-multiplet, in addition to which there is an infinite tower of massive, charged N=2 supermultiplets. (author)

  5. Graded-Lie-algebra cohomology and supergravity

    International Nuclear Information System (INIS)

    D'Auria, R.; Fre, P.; Regge, T.

    1980-01-01

    Detailed explanations of the cohomology invoked in the group-manifold approach to supergravity is given. The Chevalley cohomology theory of Lie algebras is extended to graded Lie algebras. The scheme of geometrical theories is enlarged so to include cosmological terms and higher powers of the curvature. (author)

  6. Introduction to supergravity

    International Nuclear Information System (INIS)

    Wit, B. de.

    1984-06-01

    These lectures aim at introducing supergravity in its most simple and direct form. After explaining the main features of graviton and gravitino fields the invariance of simple supergravity in d=4 dimension are proved. The complications for higher-dimensional supergravity are explained and d=11 supergravity is presented. The author discusses supersymmetry in anti-de Sitter space, which allows him to introduce the concept of isometries and Killing spinors and vectors. The breaking of supersymmetry (super-Brout-Englert-Higgs effect), off-shell aspects of supergravity and the superconformal multiplet calculus are dealt with. This is first done for gravity, but also for the structure of simple d=4 conformal supergravity. Finally, the coupling of scalar fields to N=1 and N=2 supergravity as an application of this formalism is discussed. (Auth.)

  7. Introduction to supersymmetry and supergravity

    International Nuclear Information System (INIS)

    West, P.

    1990-01-01

    This book discusses two-dimensional supersymmetry algebras, and their irreducible representations as well as rigid and local (supergravity) theories of supersymmetry both in x-space and superspace. These theories include the actions for the superstring and the heterotic string. A discussion on superconformal algebras in two dimensions and an account of super operator product expansion are included

  8. Invariant Killing spinors in 11D and type II supergravities

    International Nuclear Information System (INIS)

    Gran, U; Gutowski, J; Papadopoulos, G

    2009-01-01

    We present all isotropy groups and associated Σ groups, up to discrete identifications of the component connected to the identity, of spinors of 11-dimensional and type II supergravities. The Σ groups are products of a Spin group and an R-symmetry group of a suitable lower dimensional supergravity theory. Using the case of SU(4)-invariant spinors as a paradigm, we demonstrate that the Σ groups, and so the R-symmetry groups of lower dimensional supergravity theories arising from compactifications, have disconnected components. These lead us to discrete symmetry groups reminiscent of R-parity. We examine the role of disconnected components of the Σ groups in the choice of Killing spinor representatives and in the context of compactifications.

  9. Hidden symmetries in five-dimensional supergravity

    International Nuclear Information System (INIS)

    Poessel, M.

    2003-05-01

    This thesis is concerned with the study of hidden symmetries in supergravity, which play an important role in the present picture of supergravity and string theory. Concretely, the appearance of a hidden G 2(+2) /SO(4) symmetry is studied in the dimensional reduction of d=5, N=2 supergravity to three dimensions - a parallel model to the more famous E 8(+8) /SO(16) case in eleven-dimensional supergravity. Extending previous partial results for the bosonic part, I give a derivation that includes fermionic terms. This sheds new light on the appearance of the local hidden symmetry SO(4) in the reduction, and shows up an unusual feature which follows from an analysis of the R-symmetry associated with N=4 supergravity and of the supersymmetry variations, and which has no parallel in the eleven-dimensional case: The emergence of an additional SO(3) as part of the enhanced local symmetry, invisible in the dimensional reduction of the gravitino, and corresponding to the fact that, of the SO(4) used in the coset model, only the diagonal SO(3) is visible immediately upon dimensional reduction. The uncovering of the hidden symmetries proceeds via the construction of the proper coset gravity in three dimensions, and matching it with the Lagrangian obtained from the reduction. (orig.)

  10. Noncompact N=2 supergravity

    International Nuclear Information System (INIS)

    Wit, B. de; Lauwers, P.G.; Philippe, R.; Van Proeyen, A.

    1983-10-01

    A massive spin-1 multiplet with central charge is coupled to N=2 supergravity. Compared to conventional gauge fields the anomalous magnetic moment of the spin-1 particles is of opposite sign. The construction of this theory is based on an N=2 supersymmetric gauge theory associated with the noncompact group SO(2,1). As a byproduct we present a convenient expression for the N=2 Einstein-Yang-Mills lagrangian. (Auth.)

  11. On-shell diagrams for N=8 supergravity amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Heslop, Paul; Lipstein, Arthur E. [Department of Mathematical Sciences, Durham University,Lower Mountjoy, Stockton Road, Durham, DH1 3LE (United Kingdom)

    2016-06-10

    We define recursion relations for N=8 supergravity amplitudes using a generalization of the on-shell diagrams developed for planar N=4 super-Yang-Mills. Although the recursion relations generically give rise to non-planar on-shell diagrams, we show that at tree-level the recursion can be chosen to yield only planar diagrams, the same diagrams occurring in the planar N=4 theory. This implies non-trivial identities for non-planar diagrams as well as interesting relations between the N=4 and N=8 theories. We show that the on-shell diagrams of N=8 supergravity obey equivalence relations analogous to those of N=4 super-Yang-Mills, and we develop a systematic algorithm for reading off Grassmannian integral formulae directly from the on-shell diagrams. We also show that the 1-loop 4-point amplitude of N=8 supergravity can be obtained from on-shell diagrams.

  12. Supersymmetric gauge theories from string theory; Theorie de jauge supersymetrique de la theorie des cordes

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, St

    2005-12-15

    This thesis presents various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain sub-cycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. The second part of this work covers the generation of four-dimensional super-symmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on G{sub 2}-manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called 'anomaly inflow'. Unfortunately, no explicit metric of a compact G{sub 2}-manifold is known. Here we construct families of metrics on compact weak G{sub 2}-manifolds, which contain two conical singularities. Weak G{sub 2}-manifolds have properties that are similar to the ones of proper G{sub 2}-manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E{sub 8} x E{sub 8}-heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the

  13. Deformed N = 8 supergravity from IIA strings and its Chern-Simons duals

    Energy Technology Data Exchange (ETDEWEB)

    Guarino, Adolfo [Nikhef Theory Group, Amsterdam (Netherlands); Jafferis, Daniel L. [Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA (United States); Varela, Oscar [Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA (United States); Centre de Physique Theorique, Ecole Polytechnique, CNRS UMR 7644, Palaiseau (France)

    2016-04-15

    Do electric/magnetic deformations of N = 8 supergravity enjoy a string/M-theory origin, or are they just a fourdimensional artefact? We address this question for the gauging of a group closely related to SO(8): its contraction ISO(7). We argue that the deformed ISO(7) supergravity arises from consistent truncation of massive IIA supergravity on S{sup 6}, and its electric/magnetic deformation parameter descends directly from the Romans mass. The critical points of the supergravity uplift to AdS{sub 4} massive type IIA vacua and the corresponding CFT{sub 3} duals are identified as super-Chern-Simons-matter theories with gauge group SU(N) and level k given also by the Romans mass. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. R-current six-point correlators in AdS5 supergravity

    International Nuclear Information System (INIS)

    Bartels, J.; Kotanski, J.; Mischler, A.M.

    2009-12-01

    Within the conjectured duality between N=4 super Yang-Mills and Anti-deSitter string theory, the BFKL Pomeron of the gauge theory corresponds to the graviton mode of the dual string. As a first step towards analyzing multigraviton exchange, we investigate R-current six-point functions within the supergravity approximation. We compute the analogue of diffractive scattering, and we analyze the triple Regge limit. In the supergravity approximation the triple graviton vertex is found to vanish. (orig.)

  15. The neutron electric dipole moment in left-right symmetric low energy supergravity

    International Nuclear Information System (INIS)

    Ahn, Y.J.

    1984-01-01

    We compute the neutron electric dipole moment in low energy supergravity based on the gauge group SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L). We find the electric dipole moment dsub(n) -25 e cm x (CP violating phase) provided the left-right symmetry breaking scale > or approx. 10 3 GeV. (orig.)

  16. General dimensional reduction of ten-dimensional supergravity and superstring

    International Nuclear Information System (INIS)

    Ferrara, S.; Porrati, M.

    1986-01-01

    Dimensional reductions of supergravity theories are shown to yield to specific glasses of four-dimensional no-scale models with N=4, 2 or 1 residual supersymmetry. N=1 ''maximal'' supergravity lagrangian, corresponding to the ''untwisted'' sector of orbifold compactification of superstrings, contains nine families and has a no-scale structure based on the Kaehler manifold [SU(3, 3+3n)/SU(3)xSU(3+3n)]x[SU(1, 1)/U(1)]. The quantum consistency of the resulting theories give information on the non Kaluza-Klein (string) ''twisted'' sector. (orig.)

  17. Low-energy supergravities from heterotic compactification on reduced structure backgrounds

    International Nuclear Information System (INIS)

    Martinez Pedrera, Danny Manuel

    2009-10-01

    In this thesis, the compactification of heterotic supergravity on six-dimensional manifolds with SU(2) and SU(3) structure is studied. For the SU(2)-structure backgrounds, the spectrum and the bosonic action of the effective theory in four dimensions are obtained. The results are gauged versions of the ungauged N=2 supergravity obtained after compactification on K3 x T 2 . The gauge algebra and the Killing prepotentials are also computed. For the SU(3)-structure backgrounds, the couplings of the resulting N=1 supergravity are computed by reducing terms on the heterotic supergravity action involving fermionic fields, and are further checked by computing the supersymmetry variations of the fermions. (orig.)

  18. Ultraviolet Behavior of N = 8 Supergravity

    International Nuclear Information System (INIS)

    Dixon, Lance J.

    2010-01-01

    In these lectures the author describes the remarkable ultraviolet behavior of N = 8 supergravity, which through four loops is no worse than that of N = 4 super-Yang-Mills theory (a finite theory). I also explain the computational tools that allow multi-loop amplitudes to be evaluated in this theory - the KLT relations and the unitarity method - and sketch how ultraviolet divergences are extracted from the amplitudes.

  19. Brane inflation: A field theory approach in background supergravity

    International Nuclear Information System (INIS)

    Choudhury, Sayantan; Pal, Supratik

    2012-01-01

    We propose a model of inflation in the framework of brane cosmology driven by background supergravity. Starting from bulk supergravity we construct the inflaton potential on the brane and employ it to investigate for the consequences to inflationary paradigm. To this end, we derive the expressions for the important parameters in brane inflation, which are somewhat different from their counterparts in standard cosmology, using the one loop radiative corrected potential. We further estimate the observable parameters and find them to fit well with recent observational data. We have studied extensively reheating phenomenology, which explains the thermal history of the universe and leptogenesis through the production of thermal gravitino pertaining to the particle physics phenomenology of the early universe.

  20. Cartan's geometrical structure of supergravity

    International Nuclear Information System (INIS)

    Baaklini, N.S.

    1977-06-01

    The geometrical partnership of the vierbein and the spin-3/2 field in the structure of the supergravity Lagrangian is emphasized. Both fields are introduced as component of the same matrix differential form. The only local symmetry of the theory is SL(2,C)

  1. Null half-supersymmetric solutions in five-dimensional supergravity

    International Nuclear Information System (INIS)

    Grover, Jai; Gutowski, Jan B.; Sabra, Wafic

    2008-01-01

    We classify half-supersymmetric solutions of gauged N = 2, D = 5 supergravity coupled to an arbitrary number of abelian vector multiplets for which all of the Killing spinors generate null Killing vectors. We show that there are four classes of solutions, and in each class we find the metric, scalars and gauge field strengths. When the scalar manifold is symmetric, the solutions correspond to a class of local near horizon geometries recently found by Kunduri and Lucietti.

  2. Complex superspaces and prepotentials for N = 2 supergravity

    International Nuclear Information System (INIS)

    Sokatchev, E.

    1981-01-01

    A prepotential formulation of N=2 supergravity is constructed as a generalization of the non-minimal N=1 case. The non-minimal and minimal prepotential formulations of N=1 supergravity are briefly reviewed, the non-minimal case is then generalized to from the basis of the N=2 theory. The action of the Lorentz structure group is extracted from the transformation law of the spinar derivatives. Vielbeins and connections are defined and expressed in terms of the prepotentials. In evaluation of the torsion components the normal gauge technique is applied. The possibility of using the invariant volume of the chiral superspaces as an action for the N=2 supergravity is considered. (author)

  3. Formulation of 11-dimensional supergravity in superspace

    International Nuclear Information System (INIS)

    Cremmer, E.; Ferrara, S.

    1980-01-01

    We formulate on-shell 11-dimensional supergravity in superspace and express its equations of motion in terms of purely geometrical quantities. All torsion and curvature components are solved in terms of a single superfield Wsub(rstu), totally antisymmetric in its (flat vector) indices. The dimensional reduction of this formulation is expected to be related to the superspace formulation of N = 8 extended supergravity and might explain the origin of the hidden (local) SU(8) and (global) E 7 symmetries present in this theory. (orig.)

  4. d=8 supergravity

    International Nuclear Information System (INIS)

    Salam, A.; Sezgin, E.

    1984-10-01

    SU(2) gauged N=2 supergravity in d=8 is constructed by generalized dimensional reduction of d=11 supergravity on SU(2) group manifold. The relation between the field equations of the d=8 and those of d=11 supergravities is established. As a byproduct of this, it is shown that certain compactifications of d=11 supergravity give rise to anti-de Sitter space-time (AdS)xS 4 or AdSxCP 2 (with or without SU(2) instanton) or AdSxS 2 xS 2 compactifications of d=8 supergravity. The latter two solutions have no supersymmetry, while AdSxS 4 has N=0 or N=1 supersymmetry. (author)

  5. Supergravity constraints on monojets

    International Nuclear Information System (INIS)

    Nandi, S.

    1986-01-01

    In the standard model, supplemented by N = 1 minimal supergravity, all the supersymmetric particle masses can be expressed in terms of a few unknown parameters. The resulting mass relations, and the laboratory and the cosmological bounds on these superpartner masses are used to put constraints on the supersymmetric origin of the CERN monojets. The latest MAC data at PEP excludes the scalar quarks, of masses up to 45 GeV, as the origin of these monojets. The cosmological bounds, for a stable photino, excludes the mass range necessary for the light gluino-heavy squark production interpretation. These difficulties can be avoided by going beyond the minimal supergravity theory. Irrespective of the monojets, the importance of the stable γ as the source of the cosmological dark matter is emphasized

  6. Generalized Attractor Points in Gauged Supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Kallosh, Renata; /Stanford U., Phys. Dept.; Shmakova, Marina; /KIPAC, Menlo Park /SLAC /Stanford U., Phys. Dept.

    2011-08-15

    The attractor mechanism governs the near-horizon geometry of extremal black holes in ungauged 4D N=2 supergravity theories and in Calabi-Yau compactifications of string theory. In this paper, we study a natural generalization of this mechanism to solutions of arbitrary 4D N=2 gauged supergravities. We define generalized attractor points as solutions of an ansatz which reduces the Einstein, gauge field, and scalar equations of motion to algebraic equations. The simplest generalized attractor geometries are characterized by non-vanishing constant anholonomy coefficients in an orthonormal frame. Basic examples include Lifshitz and Schroedinger solutions, as well as AdS and dS vacua. There is a generalized attractor potential whose critical points are the attractor points, and its extremization explains the algebraic nature of the equations governing both supersymmetric and non-supersymmetric attractors.

  7. Effects of the gravivector and graviscalar fields in N = 2,8 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Faraoni, V. [Victoria Univ., BC (Canada). Dept. of Physics and Astronomy

    1996-05-01

    The available tests of the equivalence principle constrain the mass of the Higgs-like boson appearing in extended supergravity theories. The authors determine the constraints imposed by high precision experiments on the antigravity fields (gravivector and graviscalar) arising from N = 2,8 supergravity.

  8. Extremal black hole/CFT correspondence in (gauged) supergravities

    International Nuclear Information System (INIS)

    Chow, David D. K.; Cvetic, M.; Lue, H.; Pope, C. N.

    2009-01-01

    We extend the investigation of the recently proposed Kerr/conformal field theory correspondence to large classes of rotating black hole solutions in gauged and ungauged supergravities. The correspondence, proposed originally for four-dimensional Kerr black holes, asserts that the quantum states in the near-horizon region of an extremal rotating black hole are holographically dual to a two-dimensional chiral theory whose Virasoro algebra arises as an asymptotic symmetry of the near-horizon geometry. In fact, in dimension D there are [(D-1)/2] commuting Virasoro algebras. We consider a general canonical class of near-horizon geometries in arbitrary dimension D, and show that in any such metric the [(D-1)/2] central charges each imply, via the Cardy formula, a microscopic entropy that agrees with the Bekenstein-Hawking entropy of the associated extremal black hole. In the remainder of the paper we show for most of the known rotating black hole solutions of gauged supergravity, and for the ungauged supergravity solutions with four charges in D=4 and three charges in D=5, that their extremal near-horizon geometries indeed lie within the canonical form. This establishes that, in all these examples, the microscopic entropies of the dual conformal field theories agree with the Bekenstein-Hawking entropies of the extremal rotating black holes.

  9. Relating double field theory to the scalar potential of N=2 gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, München, 80805 (Germany); Font, Anamaria [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, München, 80805 (Germany); Arnold Sommerfeld Center for Theoretical Physics, LMU,Theresienstr. 37, München, 80333 (Germany); Plauschinn, Erik [Arnold Sommerfeld Center for Theoretical Physics, LMU,Theresienstr. 37, München, 80333 (Germany)

    2015-12-18

    The double field theory action in the flux formulation is dimensionally reduced on a Calabi-Yau three-fold equipped with non-vanishing type IIB geometric and non-geometric fluxes. First, we rewrite the metric-dependent reduced DFT action in terms of quantities that can be evaluated without explicitly knowing the metric on the Calabi-Yau manifold. Second, using properties of special geometry we obtain the scalar potential of N=2 gauged supergravity. After an orientifold projection, this potential is consistent with the scalar potential arising from the flux-induced superpotential, plus an additional D-term contribution.

  10. BFV-BRST quantization of 2D supergravity

    International Nuclear Information System (INIS)

    Fujiwara, T.; Igarashi, Y.; Kuriki, R.; Tabei, T.

    1995-02-01

    Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin-Fradkin (BF) formalism, the anomaly-canceling super-Liouville fields are introduced to identify the original second-class constrained system with a gauge-fixed version of a first-class system. The BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A local effective action constructed in the configuration space contains two super-Liouville actions; one is a noncovariant but local functional written only in terms of 2D supergravity fields, and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields for the Liouville and the gravity super-multiplets are introduced to make the BRST algebra close off-shell. Inclusion of them turns out to be essentially important especially in the super-lightcone gauge-fixing, where the super-curvature equations (δ - 3 g ++ =δ - 2 χ ++ =0) are obtained as a result of BRST invariance of the theory. Our approach reveals the origin of the OSp (1,2) current algebra symmetry in a transparent manner. (author)

  11. Inverse dualization and non-local dualities between Einstein gravity and supergravities

    International Nuclear Information System (INIS)

    Chen Chiangmei; Gal'tsov, Dmitri V; Sharakin, Sergei A

    2002-01-01

    We investigate non-local dualities between suitably compactified higher dimensional Einstein gravity and supergravities which can be revealed if one reinterprets the dualized Kaluza-Klein 2-forms in D>4 as antisymmetric forms belonging to supergravities. We find several examples of such a correspondence including one between the six-dimensional Einstein gravity and the four-dimensional Einstein-Maxwell-dilaton-axion theory (truncated N=4 supergravity), and others between the compactified eleven- and ten-dimensional supergravities and the eight- or ten-dimensional pure gravity. The Killing spinor equation of the D=11 supergravity is shown to be equivalent to the geometric Killing spinor equation in the dual gravity. We give several examples of using new dualities for solution generation and demonstrate how p-branes can be interpreted as non-local duals of pure gravity solutions. New supersymmetric solutions are presented including M2 subset of 5-brane with two rotation parameters

  12. Supersymmetric couplings and trajectories in N = 1 supergravity

    International Nuclear Information System (INIS)

    Castagnino, M.; Umerez, N.; Domenech, G.; Levinas, M.

    1989-01-01

    The present work deals with the classical behaviour of matter represented by chiral multiplets in a background of N = 1 supergravity. The WKB method is used. It is shown that supersymmetric coupling leads, at the lowest order, to a non-geodesic motion law for spin-1/2 matter. This result permits us to establish physical differences with respect to gravitational theories with minimal coupled matter Lagrangians. Deviations from the Newton law are found, allowing us to speculate about low-energy effects for testing supergravity. (author)

  13. Geometrical interpretation of extended supergravity

    International Nuclear Information System (INIS)

    Townsend, P.K.; Nieuwenhuizen, P.van

    1977-01-01

    SO 2 extended supergravity is shown to be a geometrical theory, whose underlying gauge group is OSp(4,2). The couplings which gauge the SO 2 symmetry as well as the accompanying cosmological and masslike terms are directly obtained, and the usual SO 2 model is obtained after a Wigner-Inoenue group contraction. (Auth.)

  14. Vacua of maximal gauged D=3 supergravities

    International Nuclear Information System (INIS)

    Fischbacher, T; Nicolai, H; Samtleben, H

    2002-01-01

    We analyse the scalar potentials of maximal gauged three-dimensional supergravities which reveal a surprisingly rich structure. In contrast to maximal supergravities in dimensions D≥4, all these theories possess a maximally supersymmetric (N=16) ground state with negative cosmological constant Λ 2 gauged theory, whose maximally supersymmetric groundstate has Λ = 0. We compute the mass spectra of bosonic and fermionic fluctuations around these vacua and identify the unitary irreducible representations of the relevant background (super)isometry groups to which they belong. In addition, we find several stationary points which are not maximally supersymmetric, and determine their complete mass spectra as well. In particular, we show that there are analogues of all stationary points found in higher dimensions, among them are de Sitter (dS) vacua in the theories with noncompact gauge groups SO(5, 3) 2 and SO(4, 4) 2 , as well as anti-de Sitter (AdS) vacua in the compact gauged theory preserving 1/4 and 1/8 of the supersymmetries. All the dS vacua have tachyonic instabilities, whereas there do exist nonsupersymmetric AdS vacua which are stable, again in contrast to the D≥4 theories

  15. Off-shell supergravity in five dimensions and supersymmetric brane world scenarios

    International Nuclear Information System (INIS)

    Zucker, M.

    2000-08-01

    In order to supersymmetrize the Randall-Sundrum setup it proves useful to start with an off-shell formulation of five dimensional supergravity. So far, this theory has only been known on-shell. The first part of this thesis is concerned with the construction of five dimensional N=2 off-shell supergravity. We develop the complete local tensor calculus. The basic building block is the minimal multiplet which contains the propagating fields of supergravity. The minimal multiplet is completed by several auxiliary fields, extending the field content to (40+40) components. The supersymmetry transformation laws for all matter multiplets with (8 + 8) components are given. Using these results, action formulas for all multiplets are presented. In particular, we give three different off-shell formulations of supergravity and gauged supergravity. Next, gauged supergravity on the orbifold S 1 /Z 2 is constructed. Consistent implementation of the Z 2 transformation shows that the minimal multiplet projected to the fixpoints of the orbifold forms a non-minimal N=1 supergravity multiplet in four dimensions. We use this observation to supersymmetrize the Randall-Sundrum scenario. This result is extended to matter located at the fixpoints which we couple in a manifestly supersymmetric way to the supergravity in the bulk. We consider chiral and super Yang-Mills multiplets at the fixpoints. (orig.)

  16. c-Map for Born–Infeld theories

    Directory of Open Access Journals (Sweden)

    L. Andrianopoli

    2016-07-01

    Full Text Available The c-map of four dimensional non-linear theories of electromagnetism is considered both in the rigid case and in its coupling to gravity. In this way theories with antisymmetric tensors and scalars are obtained, and the three non-linear representations of N = 2 supersymmetry partially broken to N = 1 related. The manifest Sp(2n and U(n covariance of these theories in their multifield extensions is also exhibited. This construction extends to H-invariant non-linear theories of Born–Infeld type with non-dynamical scalars spanning a symmetric coset manifold G/H and the vector field strengths and their duals in a symplectic representation of G as is the case for extended supergravity.

  17. No-scale supergravity and cosmology

    International Nuclear Information System (INIS)

    Deruelle, N.

    1988-01-01

    The confrontation of current unified theories with cosmoly may prove to be very fruteful. Indeed the demand that the cosmological models they induce match the standard scenario and be free of manifest pathologies imposes severe constraints on them. We thus show that no-scale supergravity (at least its simplest incarnation) may not provide acceptable models of the early universe [fr

  18. Z(3)-symmetric effective theory for pure gauge QCD at high temperature

    International Nuclear Information System (INIS)

    Vuorinen, A.

    2007-01-01

    We review the construction and basic properties of a three-dimensional effective field theory for high-temperature SU(3) Yang-Mills theory, which respects its center symmetry and was introduced in Ref. [A. Vuorinen, L.G. Yaffe, Z(3)-symmetric effective theory for SU(3) Yang-Mills theory at high, Phys. Rev. D 74 (2006) 025011, hep-ph/0604100]. We explain why the phase diagram of the new theory is expected to closely resemble the one of the full theory and argue that this implies that it is applicable down to considerably lower temperatures than the usual non-Z(3)-symmetric 3d effective theory EQCD

  19. Ward identities of local supersymmetry and spontaneous breaking of extended supergravity

    International Nuclear Information System (INIS)

    Cecotti, S.; Girardello, L.; Porrati, M.

    1985-01-01

    It is a general agreement that any extended supergravity theory, in order to lead to a viable model with acceptable phenomenological implications, should admit spontaneous breaking to N = 1 local supersymmetry in a Minkowski background. It is then important to understand the possible patterns of partial breaking of extended local supersymmetry. These patterns strongly depend on the theory being formulated directly in 4-D or in higher-D. In general, the higher-D theories lead to partial breaking in 4-D anti-de Sitter spaces. Examples are known with partial breaking in flat space. They result respectively from a generalized dimensional reduction of the N = 1 theory in 11-D or from the spontaneous compactification of the 10-D low-energy theory from the superstring theory and of a 6-D Maxwell-Einstein supergravity model. We will comment later on this example. In this paper we will discuss some considerations which apply to theories formulated in 4-D

  20. On moduli spaces in AdS{sub 4} supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Alwis, Senarath de [Colorado Univ., Boulder, CO (United States). Dept. of Physics; Louis, Jan [Hamburg Univ. (Germany). Fachbereich 12 - Physik; Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik; McAllister, Liam [Cornell Univ., Ithaca, NY (United States). Dept. of Physics; Triendl, Hagen [CERN, Geneva (Switzerland). Theory Division, Physics Dept.; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie

    2013-12-15

    We study the structure of the supersymmetric moduli spaces of N=1 and N=2 supergravity theories in AdS{sub 4} backgrounds. In the N=1 case, the moduli space cannot be a complex submanifold of the Kaehler field space, but is instead real with respect to the inherited complex structure. In N=2 supergravity the same result holds for the vector multiplet moduli space, while the hypermultiplet moduli space is a Kaehler submanifold of the quaternionic-Kaehler field space. These findings are in agreement with AdS/CFT considerations.

  1. Minimal N=4 topologically massive supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Kuzenko, Sergei M. [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Novak, Joseph [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, D-14476 Golm (Germany); Sachs, Ivo [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität,Theresienstraße 37, D-80333 München (Germany)

    2017-03-21

    Using the superconformal framework, we construct a new off-shell model for N=4 topologically massive supergravity which is minimal in the sense that it makes use of a single compensating vector multiplet and involves no free parameter. As such, it provides a counterexample to the common lore that two compensating multiplets are required within the conformal approach to supergravity with eight supercharges in diverse dimensions. This theory is an off-shell N=4 supersymmetric extension of chiral gravity. All of its solutions correspond to non-conformally flat superspaces. Its maximally supersymmetric solutions include the so-called critical (4,0) anti-de Sitter superspace introduced in https://www.doi.org/10.1007/JHEP08(2012)024, and well as warped critical (4,0) anti-de Sitter superspaces. We also propose a dual formulation for the theory in which the vector multiplet is replaced with an off-shell hypermultiplet. Upon elimination of the auxiliary fields belonging to the hypermultiplet and imposing certain gauge conditions, the dual action reduces to the one introduced in https://www.doi.org/10.1103/PhysRevD.94.065028.

  2. Gauge fixing of Chern-Simons N-extended supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Ney, W G [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Centro Federal de Educacao Tecnologica (CEFET), Campos dos Goytacazes, RJ (Brazil); Piguet, O [Universidade Federal do Espirito Santo (UFES), ES 29000-001, Vitoria (Brazil); Spalenza, W [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2004-08-01

    We treat N-extended supergravity in 2+1 space-time dimensions as a Yang-Mills gauge field with Chern-Simons action associated to the N-extended Poincare supergroup. We fix the gauge of this theory within the Batalin-Vilkovisky scheme. (orig.)

  3. Gauge fixing of Chern-Simons N-extended supergravity

    International Nuclear Information System (INIS)

    Ney, W.G.; Piguet, O.; Spalenza, W.

    2004-01-01

    We treat N-extended supergravity in 2+1 space-time dimensions as a Yang-Mills gauge field with Chern-Simons action associated to the N-extended Poincare supergroup. We fix the gauge of this theory within the Batalin-Vilkovisky scheme. (orig.)

  4. Unlocking the axion-dilaton in 5D supergravity

    Czech Academy of Sciences Publication Activity Database

    Raeymaekers, Joris; Van den Bleeken, D.

    2014-01-01

    Roč. 11, Nov (2014), s. 1-54 ISSN 1029-8479 R&D Projects: GA ČR(CZ) GA14-31689S Institutional support: RVO:68378271 Keywords : supergravity models * d-branes * m-theory * black holes in string theory Subject RIV: BE - Theoretical Physics Impact factor: 6.111, year: 2014 http://link.springer.com/article/10.1007%2FJHEP11%282014%29029

  5. Minimal constrained supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Cribiori, N. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dall' Agata, G., E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Farakos, F. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Porrati, M. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2017-01-10

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  6. Minimal constrained supergravity

    International Nuclear Information System (INIS)

    Cribiori, N.; Dall'Agata, G.; Farakos, F.; Porrati, M.

    2017-01-01

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  7. b → s+γ and b → s+g in N=1 supergravity theories

    International Nuclear Information System (INIS)

    Masiero, A.; Ridolfi, G.

    1988-01-01

    We compute the b → s+γ and b → s+g decay rates in a spontaneously broken N=1 supergravity theory with radiative electroweak breaking. We find that the ARGUS result BR (B 0 → K 0* +γ) -4 implies lower bounds on the masses of the gluinos and the lightest down squark which are in the same region as those provided by the direct (unsuccessful) searches of UA1. An improvement on the existing limit of BR (b → s+γ) by an order of magnitude can certainly rule out values of squark and gluino masses which are still allowed by the UA1 bounds. (orig.)

  8. Minimal constrained supergravity

    Directory of Open Access Journals (Sweden)

    N. Cribiori

    2017-01-01

    Full Text Available We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  9. Geometric supergravity in D = 11 and its hidden supergroup

    International Nuclear Information System (INIS)

    D'Auria, R.; Fre, P.

    1982-01-01

    In this paper we address two questions: the geometrical formulation of D=11 supergravity and the derivation of the super Lie algebra it is based on. The solutions of the two problems are intimately related and are obtained via the introduction of the new concept of a Cartan integrable system described in this paper. The previously developed group manifold framework can be naturally extended to a Cartan integrable system manifold approach. Within this scheme we obtain a geometric action for D=11 supergravity based on a suitable Cartan system. This latter turns out to be compact description of a two-element class of supergroups containing besides Lorentz Jsub(ab), translation Psub(a) and ordinary supersymmetry Q, the following extra generators: two- and five-index skew-symmetric tensors Zsub(a1a2)Zsub(a1...a5) and a further spinorial charge Q'. Q' commutes with itself and everyhting else except Jsub(ab). It appears in the commutators of Q with Psub(a),Zsub(a1a2),Zsub(a1...a5). (orig.)

  10. Forced fluid dynamics from blackfolds in general supergravity backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Armas, Jay [Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Gath, Jakob [Centre de Physique Théorique, École Polytechnique,CNRS UMR 7644, Université Paris-Saclay,F-91128 Palaiseau (France); Niarchos, Vasilis [Crete Center for Theoretical Physics, Institute of Theoretical and Computational Physics,Crete Center for Quantum Complexity and Nanotechnology,Department of Physics, University of Crete,Heraklion, 71303 (Greece); Obers, Niels A.; Pedersen, Andreas Vigand [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark)

    2016-10-27

    We present a general treatment of the leading order dynamics of the collective modes of charged dilatonic p-brane solutions of (super)gravity theories in arbitrary backgrounds. To this end we employ the general strategy of the blackfold approach which is based on a long-wavelength derivative expansion around an exact or approximate solution of the (super)gravity equations of motion. The resulting collective mode equations are formulated as forced hydrodynamic equations on dynamically embedded hypersurfaces. We derive them in full generality (including all possible asymptotic fluxes and dilaton profiles) in a far-zone analysis of the (super)gravity equations and in representative examples in a near-zone analysis. An independent treatment based on the study of external couplings in hydrostatic partition functions is also presented. Special emphasis is given to the forced collective mode equations that arise in type IIA/B and eleven-dimensional supergravities, where besides the standard Lorentz force couplings our analysis reveals additional couplings to the background, including terms that arise from Chern-Simons interactions. We also present a general overview of the blackfold approach and some of the key conceptual issues that arise when applied to arbitrary backgrounds.

  11. Supersymmetric AdS6 solutions of type IIB supergravity

    International Nuclear Information System (INIS)

    Kim, Hyojoong; Kim, Nakwoo; Suh, Minwoo

    2015-01-01

    We study the general requirement for supersymmetric AdS 6 solutions in type IIB supergravity. We employ the Killing spinor technique and study the differential and algebraic relations among various Killing spinor bilinears to find the canonical form of the solutions. Our result agrees precisely with the work of Apruzzi et al. (JHEP 1411:099, 2014), which used the pure spinor technique. Hoping to identify the geometry of the problem, we also computed four-dimensional theory through the dimensional reduction of type IIB supergravity on AdS 6 . This effective action is essentially a non-linear sigma model with five scalar fields parametrizing SL(3,ℝ)/SO(2,1), modified by a scalar potential and coupled to Einstein gravity in Euclidean signature. We argue that the scalar potential can be explained by a subgroup CSO(1,1,1) ⊂SL(3,ℝ) in a way analogous to gauged supergravity

  12. New gauged N = 8, D = 4 supergravities

    International Nuclear Information System (INIS)

    Hull, C M

    2003-01-01

    New gaugings of four-dimensional N = 8 supergravity are constructed, including one which has a Minkowski space vacuum that preserves N = 2 supersymmetry and in which the gauge group is broken to SU(3) x U(1) 2 . Previous gaugings used the form of the ungauged action which is invariant under a rigid SL (8,R) symmetry and promoted a 28-dimensional subgroup (SO(8), SO(p, 8 - p) or the non-semi-simple contraction CSO(p, q, 8 - p - q)) to a local gauge group. Here, a dual form of the ungauged action is used which is invariant under SU*(8) instead of SL (8,R) and new theories are obtained by gauging 28-dimensional subgroups of SU*(8). The gauge groups are non-semi-simple and are different real forms of the CSO(2p, 8 - 2p) groups, denoted as CSO*(2p, 8 - 2p), and the new theories have a rigid SU(2) symmetry. The five-dimensional gauged N = 8 supergravities are dimensionally reduced to D = 4. The D = 5, SO(p, 6 - p) gauge theories reduce, after a duality transformation, to the D = 4, CSO(p, 6 - p, 2) gauging while the SO*(6) gauge theory reduces to the D = 4, CSO*(6, 2) gauge theory. The new theories are related to the old ones via an analytic continuation. The non-semi-simple gaugings can be dualized to forms with different gauge groups

  13. (Super-)Gravities of a different sort

    International Nuclear Information System (INIS)

    Edelstein, Jose D; Zanelli, Jorge

    2006-01-01

    We review the often forgotten fact that gravitation theories invariant under local de Sitter, anti-de Sitter or Poincare transformations can be constructed in all odd dimensions. These theories belong to the Chern-Simons family and are particular cases of the so-called Lovelock gravities, constructed as the dimensional continuations of the lower dimensional Euler classes. The supersymmetric extensions of these theories exist for the AdS and Poincare groups, and the fields are components of a single connection for the corresponding Lie algebras. In 11 dimensions these supersymmetric theories are gauge theories for the osp(1/32) and the M algebra, respectively. The relation between these new supergravities and the standard theories, as well as some of their dynamical features are also discussed

  14. Supergravity Unification

    CERN Document Server

    Chamseddine, A H; Nath, Pran; Chamseddine, Ali H.; Nath, Pran

    2001-01-01

    A review is given of the historical developments of 1982 that lead to the supergravity unified model (SUGRA)with gravity mediated breaking of supersymmetry. Further developments and applications of the model in the period 1982-85 are also discussed. The supergravity unified model and its minimal version (mSUGRA) are currently among the leading candidates for physics beyond the Standard Model. A brief note on the developments from the present vantage point is included.

  15. Non-supersymmetric membrane flows from fake supergravity and multi-trace deformations

    International Nuclear Information System (INIS)

    Papadimitriou, I.; Hamburg Univ.

    2006-06-01

    We use fake supergravity as a solution generating technique to obtain a continuum of non-supersymmetric asymptotically AdS 4 x S 7 domain wall solutions of eleven-dimensional supergravity with non-trivial scalars in the SL(8,R)/SO(8) coset. These solutions are continuously connected to the supersymmetric domain walls describing a uniform sector of the Coulomb branch of the M2-brane theory. We also provide a general argument that identifies the fake superpotential with the exact large-N quantum effective potential of the dual theory, thus arriving at a very general description of multi-trace deformations in the AdS/CFT correspondence, which strongly motivates further study of fake supergravity as a solution generating method. This identification allows us to interpret our non-supersymmetric solutions as a family of marginal triple-trace deformations of the Coulomb branch that completely break supersymmetry and to calculate the exact large-N anomalous dimensions of the operators involved. The holographic one- and two-point functions for these solutions are also computed. (Orig.)

  16. Non-supersymmetric membrane flows from fake supergravity and multi-trace deformations

    Energy Technology Data Exchange (ETDEWEB)

    Papadimitriou, I. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik

    2006-06-15

    We use fake supergravity as a solution generating technique to obtain a continuum of non-supersymmetric asymptotically AdS{sub 4} x S{sup 7} domain wall solutions of eleven-dimensional supergravity with non-trivial scalars in the SL(8,R)/SO(8) coset. These solutions are continuously connected to the supersymmetric domain walls describing a uniform sector of the Coulomb branch of the M2-brane theory. We also provide a general argument that identifies the fake superpotential with the exact large-N quantum effective potential of the dual theory, thus arriving at a very general description of multi-trace deformations in the AdS/CFT correspondence, which strongly motivates further study of fake supergravity as a solution generating method. This identification allows us to interpret our non-supersymmetric solutions as a family of marginal triple-trace deformations of the Coulomb branch that completely break supersymmetry and to calculate the exact large-N anomalous dimensions of the operators involved. The holographic one- and two-point functions for these solutions are also computed. (Orig.)

  17. Observations on BI from N=2 supergravity and the general Ward identity

    Energy Technology Data Exchange (ETDEWEB)

    Andrianopoli, Laura [DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino,Torino (Italy); Concha, Patrick [DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino,Torino (Italy); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); D’Auria, Riccardo [DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino,Torino (Italy); Rodriguez, Evelyn [DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino,Torino (Italy); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Trigiante, Mario [DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Turin (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino,Torino (Italy)

    2015-11-09

    The multi-vector generalization of a rigid, partially-broken N=2 supersymmetric theory is presented as a rigid limit of a suitable gauged N=2 supergravity with electric, magnetic charges and antisymmetric tensor fields. This on the one hand generalizes a known result by Ferrara, Girardello and Porrati while on the other hand allows to recover the multi-vector BI models of http://dx.doi.org/10.1007/JHEP12(2014)065 from N=2 supergravity as the end-point of a hierarchical limit in which the Planck mass first and then the supersymmetry breaking scale are sent to infinity. We define, in the parent supergravity model, a new symplectic frame in which, in the rigid limit, manifest symplectic invariance is preserved and the electric and magnetic Fayet-Iliopoulos terms are fully originated from the dyonic components of the embedding tensor. The supergravity origin of several features of the resulting rigid supersymmetric theory are then elucidated, such as the presence of a traceless SU(2)- Lie algebra term in the Ward identity and the existence of a central charge in the supersymmetry algebra which manifests itself as a harmless gauge transformation on the gauge vectors of the rigid theory; we show that this effect can be interpreted as a kind of “superspace non-locality” which does not affect the rigid theory on space-time. To set the stage of our analysis we take the opportunity in this paper to provide and prove the relevant identities of the most general dyonic gauging of Special-Kaehler and Quaternionic-Kaehler isometries in a generic N=2 model, which include the supersymmetry Ward identity, in a fully symplectic-covariant formalism.

  18. Long range supergravity coupling strengths

    International Nuclear Information System (INIS)

    Kenyon, I.R.

    1991-01-01

    A limit of 2x10 -13 has recently been deduced for the fractional difference between the gravitational masses of the K 0 and anti K 0 mesons. This limit is applied here to put stringent limits on the strengths of the long range vector-scalar gravitational couplings envisaged in supergravity theories. A weaker limit is inferred from the general relativistic fit to the precession of the orbit of the pulsar PSR1913+16. (orig.)

  19. Manifesting enhanced cancellations in supergravity: integrands versus integrals

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Zvi; Enciso, Michael; Parra-Martinez, Julio; Zeng, Mao [Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy,University of California at Los Angeles,Los Angeles, CA 90095 (United States)

    2017-05-25

    Examples of ‘enhanced ultraviolet cancellations’ with no known standard-symmetry explanation have been found in a variety of supergravity theories. By examining one- and two-loop examples in four- and five-dimensional half-maximal supergravity, we argue that enhanced cancellations in general cannot be exhibited prior to integration. In light of this, we explore reorganizations of integrands into parts that are manifestly finite and parts that have poor power counting but integrate to zero due to integral identities. At two loops we find that in the large loop-momentum limit the required integral identities follow from Lorentz and SL(2) relabeling symmetry. We carry out a nontrivial check at four loops showing that the identities generated in this way are a complete set. We propose that at L loops the combination of Lorentz and SL(L) symmetry is sufficient for displaying enhanced cancellations when they happen, whenever the theory is known to be ultraviolet finite up to (L−1) loops.

  20. A short review of supergravity

    International Nuclear Information System (INIS)

    Scherk, J.

    1980-01-01

    The perennial question: 'Why fermions' finally answered. A dictionnary of Superwords. The Superalgebras used by Supersymmetrists. The representations of the Super Poincare algebra. What is Super about Supergravity. Extra spatial dimensions and Supergravity. Physical content of the N=8 model. General features of a Supersymmetric World. Antigravity and Supergravity: a crazy idea. Conclusion left to a well-known physicist

  1. The geometrical theory of diffraction for axially symmetric reflectors

    DEFF Research Database (Denmark)

    Rusch, W.; Sørensen, O.

    1975-01-01

    The geometrical theory of diffraction (GTD) (cf. [1], for example) may be applied advantageously to many axially symmetric reflector antenna geometries. The material in this communication presents analytical, computational, and experimental results for commonly encountered reflector geometries...

  2. General supersymmetric solutions of five-dimensional supergravity

    International Nuclear Information System (INIS)

    Gutowski, Jan B.; Sabra, Wafic

    2005-01-01

    The classification of 1/4-supersymmetric solutions of five dimensional gauged supergravity coupled to arbitrary many abelian vector multiplets, which was initiated elsewhere, is completed. The structure of all solutions for which the Killing vector constructed from the Killing spinor is null is investigated in both the gauged and the ungauged theories and some new solutions are constructed

  3. Local supertwistors and N=2 conformal supergravity

    International Nuclear Information System (INIS)

    Merkulov, S.A.

    1989-01-01

    N = 2 sypersymmetric extension of the local twistor theory is formulated. A supertwistor superconnection determined by the superconformal structure of the base superspace is introduced on the bundle of N = 2 local supertwistors. It is proved that the Yang - Mills equations for this superconnection coincide exactly with the Bach equations describing the dynamics of N 2 conformal supergravity

  4. Motivations for AdS/QCD from 10D supergravity solutions

    International Nuclear Information System (INIS)

    De Paula, Wayne

    2016-01-01

    We discuss some attempts for the construction of gravity duals of QCD-like theories. It is analysed some properties of solutions of 10D Type IIB supergravity theory that attempt to be dual to N= 1 gauge theories, in particular the solutions that belong to Papadoulos-Tseytlin ansatz. We argue that one could obtain 5D effective theories from 10d solutions and it motivates the use of phenomenological AdS/QCD models. (paper)

  5. Relation between linear and nonlinear N=3,4 supergravity theories

    International Nuclear Information System (INIS)

    Sevrin, A.; Thielemans, K.; Troost, W.

    1993-01-01

    The effective actions for d=2, N=3,4 chiral supergravities with a linear and a nonlinear gauge algebra are related to each other by a quantum reduction; the latter is obtained from the former by putting quantum currents equal to zero. This implies that the renormalization factors for the quantum actions are identical

  6. N=2 supergravity in superspace: the invariant action

    International Nuclear Information System (INIS)

    Gal'perin, A.S.; Sokachev, E.

    1987-01-01

    This paper continues the formulation of harmonic superspace supergravity. We write down the invariant action for the first off-shell version of the theory. The proof of the invariance relies on the existence of a new 'hybrid' basis in harmonic superspace in which semi-chirality combined with analyticity are manifest

  7. The supergravity fields for a D-brane with a travelling wave from string amplitudes

    International Nuclear Information System (INIS)

    Black, William; Russo, Rodolfo; Turton, David

    2010-01-01

    We calculate the supergravity fields sourced by a D-brane with a null travelling wave from disk amplitudes in type IIB string theory compactified on T 4 xS 1 . The amplitudes reproduce all the non-trivial features of the previously known two-charge supergravity solutions in the D-brane/momentum duality frame, providing a direct link between the microscopic bound states and their macroscopic descriptions.

  8. Background geometries in string and M-theory

    International Nuclear Information System (INIS)

    Jeschek, C.

    2005-01-01

    In this thesis we consider background geometries resulting from string theory compactifications. In particular, we investigate supersymmetric vacuum spaces of supergravity theories and topological twisted sigma models by means of classical and generalised G-structures. In the first part we compactify 11d supergravity on seven-dimensional manifolds due to phenomenological reasons. A certain amount of supersymmetry forces the internal background to admit a classical SU(3)- or G 2 -structure. Especially, in the case that the four-dimensional space is maximally symmetric and four form fluxes are present we calculate the relation to the intrinsic torsion. The second and main part is two-fold. Firstly, we realise that generalised geometries on six-dimensional manifolds are a natural framework to study T-duality and mirror symmetry, in particular if the B-field is non-vanishing. An explicit mirror map is given and we apply this idea to the generalised formulation of a topological twisted sigma model. Implications of mirror symmetry are studied, e.g. observables and topological A- and B-branes. Secondly, we show that seven-dimensional NS-NS backgrounds in type II supergravity theories can be described by generalised G 2 -geometries. A compactification on six manifolds leads to a new structure. We call this geometry a generalised SU(3)-structure. We study the relation between generalised SU(3)- and G 2 -structures on six- and seven-manifolds and generalise the Hitchin-flow equations. Finally, we further develop the generalised SU(3)- and G 2 -structures via a constrained variational principle to incorporate also the remaining physical R-R fields. (Orig.)

  9. S-matrix for the theories that admit closure of the algebra with the aid of auxiliary fields. Auxiliary fields in supergravity. [Word identities

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E S; Vasiliev, M A [AN SSSR, Moscow. Fizicheskij Inst.

    1978-08-19

    A minimal set of auxiliary fields (scalarpseudoscalar and pseudovector) providing the closed algebra in supergravity is constructed. A compact scheme for the generating functional with closed gauge algebra is proposed. The S-matrix and the Ward identities for arbitrary theory that admits the closing of the algebra by introducing auxiliary fields is obtained.

  10. Higgs mechanism and cosmological constant in N = 1 supergravity with inflaton in a vector multiplet

    Energy Technology Data Exchange (ETDEWEB)

    Aldabergenov, Yermek [Tokyo Metropolitan University, Department of Physics, Tokyo (Japan); Ketov, Sergei V. [Tokyo Metropolitan University, Department of Physics, Tokyo (Japan); The University of Tokyo, Kavli Institute for the Physics and Mathematics of the Universe (IPMU), Chiba (Japan); Tomsk Polytechnic University, Institute of Physics and Technology, Tomsk (Russian Federation)

    2017-04-15

    The N = 1 supergravity models of cosmological inflation with an inflaton belonging to a massive vector multiplet and spontaneous SUSY breaking after inflation are reformulated as the supersymmetric U(1) gauge theories of a massless vector superfield interacting with the Higgs and Polonyi chiral superfields, all coupled to supergravity. The U(1) gauge sector is identified with the U(1) gauge fields of the super-GUT coupled to supergravity, whose gauge group has a U(1) factor. A positive cosmological constant (dark energy) is included. The scalar potential is calculated, and its de Sitter vacuum solution is found to be stable. (orig.)

  11. Advances in geometry and Lie algebras from supergravity

    CERN Document Server

    Frè, Pietro Giuseppe

    2018-01-01

    This book aims to provide an overview of several topics in advanced Differential Geometry and Lie Group Theory, all of them stemming from mathematical problems in supersymmetric physical theories. It presents a mathematical illustration of the main development in geometry and symmetry theory that occurred under the fertilizing influence of supersymmetry/supergravity. The contents are mainly of mathematical nature, but each topic is introduced by historical information and enriched with motivations from high energy physics, which help the reader in getting a deeper comprehension of the subject. .

  12. On gauged maximal d  =  8 supergravities

    Science.gov (United States)

    Lasso Andino, Óscar; Ortín, Tomás

    2018-04-01

    We study the gauging of maximal d  =  8 supergravity using the embedding tensor formalism. We focus on SO(3) gaugings, study all the possible choices of gauge fields and construct explicitly the bosonic actions (including the complicated Chern–Simons terms) for all these choices, which are parametrized by a parameter associated to the 8-dimensional SL(2, {R}) duality group that relates all the possible choices which are, ultimately, equivalent from the purely 8-dimensional point of view. Our result proves that the theory constructed by Salam and Sezgin by Scherk–Schwarz compactification of d  =  11 supergravity and the theory constructed in Alonso-Alberca (2001 Nucl. Phys. B 602 329) by dimensional reduction of the so called ‘massive 11-dimensional supergravity’ proposed by Meessen and Ortín in (1999 Nucl. Phys. B 541 195) are indeed related by an SL(2, {R}) duality even though they have two completely different 11-dimensional origins.

  13. Gravitino problem in minimal supergravity inflation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Fuminori [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Mukaida, Kyohei [Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Nakayama, Kazunori [Department of Physics, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo 133-0033 (Japan); Terada, Takahiro, E-mail: terada@kias.re.kr [School of Physics, Korea Institute for Advanced Study (KIAS), Seoul 02455 (Korea, Republic of); Yamada, Yusuke [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2017-04-10

    We study non-thermal gravitino production in the minimal supergravity inflation. In this minimal model utilizing orthogonal nilpotent superfields, the particle spectrum includes only graviton, gravitino, inflaton, and goldstino. We find that a substantial fraction of the cosmic energy density can be transferred to the longitudinal gravitino due to non-trivial change of its sound speed. This implies either a breakdown of the effective theory after inflation or a serious gravitino problem.

  14. Gravitino problem in minimal supergravity inflation

    Directory of Open Access Journals (Sweden)

    Fuminori Hasegawa

    2017-04-01

    Full Text Available We study non-thermal gravitino production in the minimal supergravity inflation. In this minimal model utilizing orthogonal nilpotent superfields, the particle spectrum includes only graviton, gravitino, inflaton, and goldstino. We find that a substantial fraction of the cosmic energy density can be transferred to the longitudinal gravitino due to non-trivial change of its sound speed. This implies either a breakdown of the effective theory after inflation or a serious gravitino problem.

  15. Supergravity, Dark Energy and the Fate of the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Shmakova, Marina

    2002-09-27

    We propose a description of dark energy and acceleration of the universe in extended supergravities with de Sitter (dS) solutions. Some of them are related to M-theory with non-compact internal spaces. Masses of ultra-light scalars in these models are quantized in units of the Hubble constant: m{sup 2} = nH{sup 2}. If dS solution corresponds to a minimum of the effective potential, the universe eventually becomes dS space. If dS solution corresponds to a maximum or a saddle point, which is the case in all known models based on N = 8 supergravity, the flat universe eventually stops accelerating and collapses to a singularity. We show that in these models, as well as in the simplest models of dark energy based on N = 1 supergravity, the typical time remaining before the global collapse is comparable to the present age of the universe, t = O(10{sup 10}) years. We discuss the possibility of distinguishing between various models and finding our destiny using cosmological observations.

  16. Spontaneously generated field theories, zero-center modules, colored singletons and the virtues of N = 6 supergravity

    International Nuclear Information System (INIS)

    Flato, M.; Fronsdal, C.

    1986-01-01

    Attention is called to an interesting property of the space of one-particle states in some especially important massless field theories: the appearance of a one-particle ghost with zero energy. It appears in conformal as well as de Sitter electrodynamics, in the physical sectors of the field mode representations of the respective symmetry groups. It appears again in super de Sitter electrodynamics based on the superalgebra osp(4/1) and in super conformal electrodynamics based on su(2,2/1). The authors next construct two families of extended super QED, incorporating this property, based on osp(4/N) and on su(2,2/N). There is precisely one osp(4/N) theory and one su(2,2/N) theory of this type for each value of N. The osp(4/6) theory is the same as N = 6 extended supergravity, this is the only one among this family of osp(4/N) theories in which the highest spin is 2. All the one particle states are massless, and in the osp(4/N) theories they can be interpreted as states of two colored singletons. The authors also critically examine the concept of the Witten index in flat space as well as in de Sitter supersymmetric field theories. (Auth.)

  17. Non-geometric five-branes in heterotic supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Shin; Yata, Masaya [Department of Physics, Kitasato University,Sagamihara 252-0373 (Japan); Department of Physics, National University of Singapore,2, Science Drive 3, Singapore 117542 (Singapore)

    2016-11-10

    We study T-duality chains of five-branes in heterotic supergravity where the first order α{sup ′}-corrections are present. By performing the α{sup ′}-corrected T-duality transformations of the heterotic NS5-brane solutions, we obtain the KK5-brane and the exotic 5{sub 2}{sup 2}-brane solutions associated with the symmetric, the neutral and the gauge NS5-branes. We find that the Yang-Mills gauge field in these solutions satisfies the self-duality condition in the three- and two-dimensional transverse spaces to the brane world-volumes. The O(2,2) monodromy structures of the 5{sub 2}{sup 2}-brane solutions are investigated by the α{sup ′}-corrected generalized metric. Our analysis shows that the symmetric 5{sub 2}{sup 2}-brane solution, which satisfies the standard embedding condition, is a T-fold and it exhibits the non-geometric nature. We also find that the neutral 5{sub 2}{sup 2}-brane solution is a T-fold at least at O(α{sup ′}). On the other hand, the gauge 5{sub 2}{sup 2}-brane solution is not a T-fold but show unusual structures of space-time.

  18. Classical solutions in supergravity

    International Nuclear Information System (INIS)

    Baaklini, N.S.; Ferrara, S.; Nieuwenhuizen Van, P.

    1977-06-01

    Classical solutions of supergravity are obtained by making finite global supersymmetry rotation on known solutions of the field equations of the bosonic sector. The Schwarzschild and the Reissner-Nordstoem solutions of general relativity are extended to various supergravity systems and the modification to the perihelion precession of planets is discussed

  19. Higher Curvature Supergravity, Supersymmetry Breaking and Inflation

    CERN Document Server

    Ferrara, Sergio

    2017-01-01

    In these lectures, after a short introduction to cosmology, we discuss the supergravity embedding of higher curvature models of inflation. The supergravity description of such models is presented for the two different formulations of minimal supergravity.

  20. Charged rotating black holes in four-dimensional gauged and ungauged supergravities

    International Nuclear Information System (INIS)

    Chong, Z.-W.; Cvetic, M.; Lue, H.; Pope, C.N.

    2005-01-01

    We study four-dimensional non-extremal charged rotating black holes in ungauged and gauged supergravity. In the ungauged case, we obtain rotating black holes with four independent charges, as solutions of N=2 supergravity coupled to three Abelian vector multiplets. This is done by reducing the theory along the time direction to three dimensions, where it has an O(4,4) global symmetry. Applied to the reduction of the uncharged Kerr metric, O(1,1) 4 is a subject of O(4,4) transformations generate new solutions that correspond, after lifting back to four dimensions, to the introduction of four independent electromagnetic charges. In the case where these charges are set pairwise equal, we then generalise the four-dimensional rotating black holes to solutions of gauged N=4 supergravity, with mass, angular momentum and two independent electromagnetic charges. The dilaton and axion fields are non-constant. We also find generalisations of the gauged and ungauged solutions to include the NUT parameter, and for the ungauged solutions, the acceleration parameter too. The solutions in gauged supergravity provide new gravitational backgrounds for a further study of the AdS 4 /CFT 3 correspondence at non-zero temperature

  1. The SU(3)xU(1) invariant breaking of gauged N=8 supergravity

    International Nuclear Information System (INIS)

    Nicolai, H.; Warner, N.P.

    1985-01-01

    The SU(3) x U(1) invariant stationary point of N=8 supergravity is described in some detail. This vacuum has N=2 supersymmetry, and it is shown how the fields of N=8 supergravity may be collected into multiplets of SU(3) x Osp(2, 4). A new kind of shortened massive multiplet is described, and the multiplet shortening conditions for this and other multiplets are used to determine, by the use of group theory alone, the masses of many of the fields in the vacuum. The remaining masses are determined by explicit calculation. The critical point realizes Gell-Mann's scheme for relating the spin-1/2 fermions of the theory to the observed quarks and leptons. (orig.)

  2. A deformation of Sasakian structure in the presence of torsion and supergravity solutions

    International Nuclear Information System (INIS)

    Houri, Tsuyoshi; Takeuchi, Hiroshi; Yasui, Yukinori

    2013-01-01

    A deformation of Sasakian structure in the presence of totally skew-symmetric torsion is discussed on odd-dimensional manifolds whose metric cones are Kähler with torsion. It is shown that such a geometry inherits similar properties to those of Sasakian geometry. As their example, we present an explicit expression of local metrics. It is also demonstrated that our example of the metrics admits the existence of hidden symmetry described by non-trivial odd-rank generalized closed conformal Killing–Yano tensors. Furthermore, using these metrics as an ansatz, we construct exact solutions in five-dimensional minimal gauged/ungauged supergravity and 11-dimensional supergravity. Finally, the global structures of the solutions are discussed. We obtain regular metrics on compact manifolds in five dimensions, which give natural generalizations of Sasaki–Einstein manifolds Y p,q and L a,b,c . We also briefly discuss regular metrics on non-compact manifolds in 11 dimensions. (paper)

  3. On maximal massive 3D supergravity

    OpenAIRE

    Bergshoeff , Eric A; Hohm , Olaf; Rosseel , Jan; Townsend , Paul K

    2010-01-01

    ABSTRACT We construct, at the linearized level, the three-dimensional (3D) N = 4 supersymmetric " general massive supergravity " and the maximally supersymmetric N = 8 " new massive supergravity ". We also construct the maximally supersymmetric linearized N = 7 topologically massive supergravity, although we expect N = 6 to be maximal at the non-linear level. (Bergshoeff, Eric A) (Hohm, Olaf) (Rosseel, Jan) P.K.Townsend@da...

  4. From supergravity to antigravity

    International Nuclear Information System (INIS)

    Scherk, J.

    1979-01-01

    All known extended supergravity models are shown to lead to a short range cancellation of the gravitational attraction between pairs of particles, a phenomenon known by the name 'Antigravity'. A phenomenological model of antigravity based on supergravity models is proposed where the carrier of the antigravitational force is a spin 1 particle (graviphoton). (Auth.)

  5. Supergravity and field space democracy

    International Nuclear Information System (INIS)

    Gayduk, A.V.; Romanov, V.N.; Schwarz, A.S.

    1980-01-01

    Supergravity is presented in which field and space variables are on an equal footing. The action functional of supergravity is characterized as the functional, defined on the space of (4,4)-dimensional submanifolds of complex (4,2)-dimensional superspace, which is invariant with respect to supervolume preserving analytic transformations. It is shown how the Lagrangian of the supergravity in the Ogievetsky-Sokatchev form can be obtained by means of this characterization and describe natural multi-dimensional generalizations of this Lagrangian. These generalizations are based on the notion of perfect action functional

  6. Bosonic construction of the Lie algebras of some non-compact groups appearing in supergravity theories and their oscillator-like unitary representations

    International Nuclear Information System (INIS)

    Guenaydin, M.; Saclioglu, C.

    1981-06-01

    We give a construction of the Lie algebras of the non-compact groups appearing in four dimensional supergravity theories in terms of boson operators. Our construction parallels very closely their emergence in supergravity and is an extension of the well-known construction of the Lie algebras of the non-compact groups Sp(2n,IR) and SO(2n) from boson operators transforming like a fundamental representation of their maximal compact subgroup U(n). However this extension is non-trivial only for n >= 4 and stops at n = 8 leading to the Lie algebras of SU(4) x SU(1,1), SU(5,1), SO(12) and Esub(7(7)). We then give a general construction of an infinite class of unitary irreducible representations of the respective non-compact groups (except for Esub(7(7)) and SO(12) obtained from the extended construction). We illustrate our construction with the examples of SU(5,1) and SO(12). (orig.)

  7. Cylindrically symmetric solutions of a scalar--tensor theory of gravitation

    International Nuclear Information System (INIS)

    Singh, T.

    1975-01-01

    The cylindrically symmetric solutions for the Einstein--Rosen metric of a scalar--tensor theory proposed by Dunn have been obtained. A method has been given by which one can obtain, under certain conditions, solutions of this scalar--tensor theory from known solutions of the empty space field equations of Einstein's theory of gravitation. It is also found that one of the solutions of the scalar--tensor theory is nonsingular in the sense of Bonnor. Further some special solutions are obtained which reduce to the well-known solution of Levi-Civita and a time dependent solution obtained by Misra and Radhakrishna

  8. Coupling brane fields to bulk supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Theoretical Physics; Schmidt, Jonas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    In this note we present a simple, general prescription for coupling brane localized fields to bulk supergravity. We illustrate the procedure by considering 6D N=2 bulk supergravity on a 2D orbifold, with brane fields localized at the fixed points. The resulting action enjoys the full 6D N=2 symmetries in the bulk, and those of 4D N=1 supergravity at the brane positions. (orig.)

  9. Supersymmetric Janus solutions of dyonic ISO(7)-gauged N = 8 supergravity

    Science.gov (United States)

    Suh, Minwoo

    2018-04-01

    We study supersymmetric Janus solutions of dyonic ISO(7)-gauged N = 8 supergravity. We mostly find Janus solutions flowing to 3d N = 8 SYM phase which is the worldvolume theory on D2-branes and non-conformal. There are also solutions flowing from the critical points which are dual to 3d SCFTs from deformations of the D2-brane theory.

  10. On Type IIB moduli stabilization and N=4,8 supergravities

    Energy Technology Data Exchange (ETDEWEB)

    Aldazabal, Gerardo [Centro Atomico Bariloche, Instituto Balseiro (CNEA-UNC) and CONICET, 8400 S.C. de Bariloche (Argentina); Marques, Diego [Institut de Physique Theorique, CEA/ Saclay, 91191 Gif-sur-Yvette Cedex (France); Nunez, Carmen, E-mail: carmen@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and Departamento de Fisica, FCEN, Universidad de Buenos Aires, C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina); Rosabal, Jose A. [Centro Atomico Bariloche, Instituto Balseiro (CNEA-UNC) and CONICET, 8400 S.C. de Bariloche (Argentina)

    2011-08-01

    We analyze D=4 compactifications of Type IIB theory with generic, geometric and non-geometric, dual fluxes turned on. In particular, we study N=1 toroidal orbifold compactifications that admit an embedding of the untwisted sector into gauged N=4,8 supergravities. Truncations, spontaneous breaking of supersymmetry and the inclusion of sources are discussed. The algebraic identities satisfied by the supergravity gaugings are used to implement the full set of consistency constraints on the background fluxes. This allows to perform a generic study of N=1 vacua and identify large regions of the parameter space that do not admit complete moduli stabilization. Illustrative examples of AdS and Minkowski vacua are presented.

  11. Quantum work relations and response theory in parity-time-symmetric quantum systems

    Science.gov (United States)

    Wei, Bo-Bo

    2018-01-01

    In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extends to a parity-time- (PT -) symmetric quantum system with unbroken PT symmetry, which is a consequence of microscopic reversibility. The quantum Jarzynski equality, linear response theory, and Onsager reciprocal relations for the PT -symmetric quantum system are recovered as special cases of the universal quantum work relation in a PT -symmetric quantum system. In the regime of broken PT symmetry, the universal quantum work relation does not hold because the norm is not preserved during the dynamics.

  12. Perturbation theory of a symmetric center within Liénard equations

    Science.gov (United States)

    Françoise, Jean-Pierre; Xiao, Dongmei

    2015-09-01

    In this article, we introduce the use of Lambert function to develop further the global perturbation theory of an integrable Liénard equation which displays a symmetric center. We prove a global Morse lemma for the first integral and deduce the existence of an associated Picard-Fuchs system. We revisit previous contributions to first-order perturbation theory with the help of these new analytic techniques and in particular, we check that the fundamental integrals are linearly independent. The Lambert function allows to find an expansion formula for these integrals. We also study the possibility to develop a higher-order perturbation theory. The algorithm of the successive derivatives works in general in the class of analytic functions on the domain D where the level sets of the first integral are ovals. We end the article with some results on the first integral of a symmetric Liénard equation deduced from the algorithm of successive derivatives.

  13. Gauged N=8 supergravity in five dimensions

    International Nuclear Information System (INIS)

    Guenaydin, M.; Romans, L.J.; Warner, N.P.

    1985-01-01

    We construct gauged N=8 supergravity theories in five dimensions. Instead of the twenty-seven vector fields of the ungauged theory, the gauged theories contain fifteen vector fields and twelve second-rank antisymmetric tensor fields satisfying self-dual field equations. The fifteen vector fields can be used to gauge any of the fifteen-dimensional semisimple subgroups of SL(6, R), sepcifically SO(p, 6-p) for p=0, 1, 2, 3. The gauged theories also have a physical global SU(1,1) symmetry which survives from the Esub(6(6)) symmetry of the ungauged theory. This SU(1, 1) for the SO(6) gauging is presumably related to that of the chiral N=2 theory in ten dimensions. In our formalism we maintain a composite local USp(8) symmetry analogous to SU(8) in four dimensions. (orig.)

  14. On matter couplings in N=1 supergravities

    International Nuclear Information System (INIS)

    Galperin, A.; Ogievskiy, V.; Sokatchev, E.

    1983-01-01

    A flexible version of N=1 supergravity is proposed. It contains 28+28 fields and is an extension of the new minimal supergravity version. Matter couplings in various N=1 supergravity versions are discussed. The chiral densities are constructed for non-minimal and flexible versions. Therefore these versions admit a general R-non-invariant matter coupling as the minimal supergravity does. A modified Fayet-Iliopoulos type mechanism is conjectured which apparently can work in the non-minimal and flexible versions without R-symmetry of the superpotential unlike the minimal and new minimal ones

  15. Supersymmetry and supergravity: Phenomenology and grand unification

    International Nuclear Information System (INIS)

    Arnowitt, R.; Nath, P.

    1993-01-01

    A survey is given of supersymmetry and supergravity and their phenomenology. Some of the topics discussed are the basic ideas of global supersymmetry, the minimal supersymmetric Standard Model (MSSM) and its phenomenology, the basic ideas of local supersymmetry (supergravity), grand unification, supersymmetry breaking in supergravity grand unified models, radiative breaking of SU(2) x U(1), proton decay, cosmological constraints, and predictions of supergravity grand unified models. While the number of detailed derivations are necessarily limited, a sufficient number of results are given so that a reader can get a working knowledge of this field

  16. The supersymmetric generalized modified KdV hierarchy and odd minimal superconformal field theories coupled to 2D supergravity: 2

    International Nuclear Information System (INIS)

    Awada, M.A.

    1990-01-01

    We further study the universal equations of the supersymmetric modified KdV (MKdV) hierarchy in its generalized form. We show that these equations describe the dynamical quantum equations of the odd series of N = 1 minimal (p,q) superconformal field theory coupled to N = 1 supergravity in particular those unitary series with p = 2k + 3, and q = 2k = 1. The string susceptibility of these models is γ sstr. (0) = -2/2k + 1. We demonstrate explicitly the cases k = 2; and k = 3. 10 refs

  17. Minimal $R+R^2$ Supergravity Models of Inflation Coupled to Matter

    CERN Document Server

    Ferrara, S

    2014-01-01

    The supersymmetric extension of "Starobinsky" $R+\\alpha R^2$ models of inflation is particularly simple in the "new minimal" formalism of supergravity, where the inflaton has no scalar superpartners. This paper is devoted to matter couplings in such supergravity models. We show how in the new minimal formalism matter coupling presents certain features absent in other formalisms. In particular, for the large class of matter couplings considered in this paper, matter must possess an R-symmetry, which is gauged by the vector field which becomes dynamical in the "new minimal" completion of the $R+\\alpha R^2$ theory. Thus, in the dual formulation of the theory, where the gauge vector is part of a massive vector multiplet, the inflaton is the superpartner of the massive vector of a nonlinearly realized R-symmetry. The F-term potential of this theory is of no-scale type, while the inflaton potential is given by the D-term of the gauged R-symmetry. The absolute minimum of the potential is always exactly supersymmetri...

  18. The enhancon mechanism in string theory

    International Nuclear Information System (INIS)

    Jarv, Laur

    2002-01-01

    The enhancon mechanism is a specific phenomenon in string theory which resolves a certain naked spacetime singularity arising in the supergravity description related to N = 2 supersymmetric pure gauge theory. After reviewing the problem of singularities in general relativity as well as in string theory, and discussing the prototypical enhancon example constructed by wrapping D6-branes on a K3 surface, the thesis presents three generalisations to this static spherically symmetric case pertaining to large N SU(N) gauge theory. First we will use orientifolds to show how the enhancon mechanism also works in similar situations related to SO(2N+1), USp(2N) and SO(2N) gauge theories. Second we will wrap D-brane distributions on K3 to obtain the enhancon in oblate, toroidal and prolate shapes. Third we will study a rotating enhancon configuration and consider its implications for the black hole entropy and the second law of thermodynamics. (author)

  19. Rotating D0-branes and consistent truncations of supergravity

    International Nuclear Information System (INIS)

    Anabalón, Andrés; Ortiz, Thomas; Samtleben, Henning

    2013-01-01

    The fluctuations around the D0-brane near-horizon geometry are described by two-dimensional SO(9) gauged maximal supergravity. We work out the U(1) 4 truncation of this theory whose scalar sector consists of five dilaton and four axion fields. We construct the full non-linear Kaluza–Klein ansatz for the embedding of the dilaton sector into type IIA supergravity. This yields a consistent truncation around a geometry which is the warped product of a two-dimensional domain wall and the sphere S 8 . As an application, we consider the solutions corresponding to rotating D0-branes which in the near-horizon limit approach AdS 2 ×M 8 geometries, and discuss their thermodynamical properties. More generally, we study the appearance of such solutions in the presence of non-vanishing axion fields

  20. Gauge and matter fields coupled to N=2 supergravity

    International Nuclear Information System (INIS)

    Wit, B. de; Lauwers, P.G.; Philippe, R.; Su, S.-Q.; Proeyen, A. van.

    1983-07-01

    The authors consider the potential of a general matter system of N=2 vector and scalar multiplets coupled to supergravity. For lagrangians that are initially quadratic in the matter fields the potential is proved to be either positive or unbounded from below. The results have been obtained in the framework of a superconformal multiplet calculus, and it has been verified that they can be derived from each of the three off-shell representations. As an example the authors consider SO(6) Yang-Mills theory coupled to scalar multiplets in the 10+10 representation, which, for suitably chosen parameters, leads to the potential of gauged N=8 supergravity. Finally, a discussion of the possibility to set residual nonabelian symmetry groups after breaking of N=8 supersymmetry to N=1 or 2 is presented. (Auth.)

  1. Spin-four N=7 W-Supergravity: S-fold and Double Copy Construction arXiv

    CERN Document Server

    Ferrara, Sergio

    In the present investigation we consider the possibility of having new massive, higher spin W-supergravity theories, which do not exist as four-dimensional perturbative models. These theories are based on a double copy construction of two supersymmetric field theories, where at least one factor is given by a N=3 field theory, which is a non-perturbative S-fold of N=4 super Yang-Mills theory. In this way, we can obtain as S-folds a new N=7 (corresponding to 28 supercharges) W-supergravity and its N=7 W-superstring counterpart, which both do not exist as four-dimensional perturbative models with an (effective) Langrangian description. The resulting field resp. string theory does not contain any massless states, but instead a massive higher spin-four supermultiplet of the N=7 supersymmetry algebra. Furthermore we also construct a four-dimensional heterotic S-fold with N=3 supersymmetry. It again does not exist as perturbative heterotic string model and can be considered as the heterotic counterpart of the N=3 su...

  2. On the Gauged Kahler Isometry in Minimal Supergravity Models of Inflation

    CERN Document Server

    Ferrara, Sergio; Sorin, Alexander S.

    2014-01-01

    In this paper we address the question how to discriminate whether the gauged isometry group G_Sigma of the Kahler manifold Sigma that produces a D-type inflaton potential in a Minimal Supergravity Model is elliptic, hyperbolic or parabolic. We show that the classification of isometries of symmetric cosets can be extended to non symmetric Sigma.s if these manifolds satisfy additional mathematical restrictions. The classification criteria established in the mathematical literature are coherent with simple criteria formulated in terms of the asymptotic behavior of the Kahler potential K(C) = 2 J(C) where the real scalar field C encodes the inflaton field. As a by product of our analysis we show that all phenomenologically admissible potentials for the description of inflation and in particular alpha-attractors are mostly obtained from the gauging of a parabolic isometry. The requirement of regularity of the manifold Sigma poses strong constraints on the alpha-attractors and reduces their space considerably. Curi...

  3. 'Semi-realistic'F-term inflation model building in supergravity

    International Nuclear Information System (INIS)

    Kain, Ben

    2008-01-01

    We describe methods for building 'semi-realistic' models of F-term inflation. By semi-realistic we mean that they are built in, and obey the requirements of, 'semi-realistic' particle physics models. The particle physics models are taken to be effective supergravity theories derived from orbifold compactifications of string theory, and their requirements are taken to be modular invariance, absence of mass terms and stabilization of moduli. We review the particle physics models, their requirements and tools and methods for building inflation models

  4. N=1,2 supergravities in 2+1 dimensions as Chern-Simons theories

    International Nuclear Information System (INIS)

    Li Miao.

    1988-12-01

    In this letter we report the results on the explanation of the Lagrangians of 2+1 supergravities as graded Chern-Simons terms, which are derived from inspiration of Witten's recent work on exact solvability of 2+1 Einstein gravity. Further implications will be considered elsewhere. (author). 8 refs

  5. Classical solutions and extended supergravity

    International Nuclear Information System (INIS)

    de Alfaro, V.; Fubini, S.; Furlan, G.

    1980-03-01

    The existence and properties of classical solutions for gravity coupled to matter fields have been investigated previously with the limitation to conformally flat solutions. In the search for a guiding criterion to determine the form of the coupling among the fields, one is led to consider supersymmetric theories, and the question arises whether classical solutions persist in these models. It is found that a discrepancy persists between supergravity and standard meron solutions. Owing to the appearance of the scalar field, a new set of meron solutions exists for particular Lagrangian models. In conclusion, the form of solutions in Minkowski space is discussed

  6. Phase behaviour of the symmetric binary mixture from thermodynamic perturbation theory.

    Science.gov (United States)

    Dorsaz, N; Foffi, G

    2010-03-17

    We study the phase behaviour of symmetric binary mixtures of hard core Yukawa (HCY) particles via thermodynamic perturbation theory (TPT). We show that all the topologies of phase diagram reported for the symmetric binary mixtures are correctly reproduced within the TPT approach. In a second step we use the capability of TPT to be straightforwardly extended to mixtures that are nonsymmetric in size. Starting from mixtures that belong to the different topologies of symmetric binary mixtures we investigate the effect on the phase behaviour when an asymmetry in the diameters of the two components is introduced. Interestingly, when the energy of interaction between unlike particles is weaker than the interaction between like particles, the propensity for the solution to demix is found to increase strongly with size asymmetry.

  7. Supergravity and matter

    International Nuclear Information System (INIS)

    Adamietz, P.; Binetruy, P.; Girardi, G.; Grimm, R.

    1992-07-01

    The properties of a linear multiplet in interaction with supergravity and matter are presented, with a special emphasis on the coupling of Chern-Simons forms, relevant for the problem of the chiral and conformal anomalies in relation with Kaehler transformations and the corresponding anomaly cancellations. The linear supermultiplet describes an antisymmetric tensor gauge field together with a dilaton and a Majorana spinor. In particular, these fields are found among the massless modes of superstring theories. The general properties of this supermultiplet is reviewed in the Kaehler superspace formalism and the complete supersymmetric action is constructed. This includes the classically Kaehler invariant component field action for all the kinetic terms as well as a Green-Schwarz type action which exhibits a non-holomorphic gauge coupling function. (author) 32 refs

  8. Are both symmetric and buckled dimers on Si(100) minima? Density functional and multireference perturbation theory calculations

    International Nuclear Information System (INIS)

    Jung, Yousung; Shao, Yihan; Gordon, Mark S.; Doren, Douglas J.; Head-Gordon, Martin

    2003-01-01

    We report a spin-unrestricted density functional theory (DFT) solution at the symmetric dimer structure for cluster models of Si(100). With this solution, it is shown that the symmetric structure is a minimum on the DFT potential energy surface, although higher in energy than the buckled structure. In restricted DFT calculations the symmetric structure is a saddle point connecting the two buckled minima. To further assess the effects of electron correlation on the relative energies of symmetric versus buckled dimers on Si(100), multireference second order perturbation theory (MRMP2) calculations are performed on these DFT optimized minima. The symmetric structure is predicted to be lower in energy than the buckled structure via MRMP2, while the reverse order is found by DFT. The implications for recent experimental interpretations are discussed

  9. Non-Abelian black holes in D=5 maximal gauged supergravity

    International Nuclear Information System (INIS)

    Cvetic, M.; Lue, H.; Pope, C. N.

    2010-01-01

    We investigate static non-Abelian black hole solutions of anti-de Sitter (AdS) Einstein-Yang-Mills-dilaton gravity, which is obtained as a consistent truncation of five-dimensional maximal gauged supergravity. If the dilaton is (consistently) set to zero, the remaining equations of motion, with a spherically-symmetric ansatz, may be derived from a superpotential. The associated first-order equations admit an explicit solution supported by a non-Abelian SU(2) gauge potential, which has a logarithmically growing mass term. In an extremal limit the horizon geometry becomes AdS 2 xS 3 . If the dilaton is also excited, the equations of motion cannot easily be solved explicitly, but we obtain the asymptotic form of the more general non-Abelian black holes in this case. An alternative consistent truncation, in which the Yang-Mills fields are set to zero, also admits a description in terms of a superpotential. This allows us to construct explicit wormhole solutions (neutral spherically-symmetric domain walls). These solutions may be generalized to dimensions other than five.

  10. N=2 no-scale supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Itoyama, H.; McLerran, L.; Taylor, T.R.; Van der Bij, J.J.

    1987-01-12

    N=2 extended supergravity is discussed and an assessment is made of the problems encountered in applying it to the construction of phenomenological models of particle physics. A specific class of so-called no-scale models is discussed, in which the two supersymmetries are spontaneously broken in flat space-time, with naturally vanishing cosmological constant and the symmetry breaking undetermined at the classical level. Supergravity-induced supersymmetry breaking generates effective mass terms for spin-1/2 components of the vector gauge multiplets and spin-0 components of the scalar matter multiplets. For finite globally supersymmetric models, this supersymmetry breaking preserves the finiteness. Possible connections of N=2 no-scale supergravity with superstrings and finite range antigravity are mentioned.

  11. N=2 no-scale supergravity

    International Nuclear Information System (INIS)

    Itoyama, H.; McLerran, L.; Taylor, T.R.; Van der Bij, J.J.

    1987-01-01

    N=2 extended supergravity is discussed and an assessment is made of the problems encountered in applying it to the construction of phenomenological models of particle physics. A specific class of so-called no-scale models is discussed, in which the two supersymmetries are spontaneously broken in flat space-time, with naturally vanishing cosmological constant and the symmetry breaking undetermined at the classical level. Supergravity-induced supersymmetry breaking generates effective mass terms for spin-1/2 components of the vector gauge multiplets and spin-0 components of the scalar matter multiplets. For finite globally supersymmetric models, this supersymmetry breaking preserves the finiteness. Possible connections of N=2 no-scale supergravity with superstrings and finite range antigravity are mentioned. (orig.)

  12. Rotating D0-branes and consistent truncations of supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS École Normale Supérieure de Lyon 46, allée d' Italie, F-69364 Lyon cedex 07 (France); Ortiz, Thomas; Samtleben, Henning [Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS École Normale Supérieure de Lyon 46, allée d' Italie, F-69364 Lyon cedex 07 (France)

    2013-12-18

    The fluctuations around the D0-brane near-horizon geometry are described by two-dimensional SO(9) gauged maximal supergravity. We work out the U(1){sup 4} truncation of this theory whose scalar sector consists of five dilaton and four axion fields. We construct the full non-linear Kaluza–Klein ansatz for the embedding of the dilaton sector into type IIA supergravity. This yields a consistent truncation around a geometry which is the warped product of a two-dimensional domain wall and the sphere S{sup 8}. As an application, we consider the solutions corresponding to rotating D0-branes which in the near-horizon limit approach AdS{sub 2}×M{sub 8} geometries, and discuss their thermodynamical properties. More generally, we study the appearance of such solutions in the presence of non-vanishing axion fields.

  13. C-deformation of supergravity

    International Nuclear Information System (INIS)

    Hatanaka, Tomoya; Ketov, Sergei V

    2006-01-01

    A four-dimensional supergravity toy model in an arbitrary self-dual gravi-photon background is constructed in Euclidean space, by freezing out the gravi-photon field strength in the standard N = (1, 1) extended supergravity with two non-chiral gravitini. Our model has local N = (1/2, 0) supersymmetry. Consistency of the model requires the background gravi-photon field strength to be equal to the self-dual (bilinear) anti-chiral gravitino condensate. (letter to the editor)

  14. Supergravity couplings to Noncommutative Branes, Open Wilson Lines and Generalised Star Products

    International Nuclear Information System (INIS)

    Das, S.R.; Trivedi, S.P.

    2001-01-01

    Noncommutative gauge theories can be constructed from ordinary U(∞) gauge theories in lower dimensions. Using this construction we identify the operators on noncommutative D-branes which couple to linearized supergravity backgrounds, from a knowledge of such couplings to lower dimensional D-branes with no B field. These operators belong to a class of gauge invariant observables involving open Wilson lines. Assuming a DBI form of the coupling we show, to second order in the gauge potential but to all orders of the noncommutativity parameter, that our proposal agrees with the operator obtained in terms of ordinary gauge fields by considering brane actions in backgrounds and then using the Seiberg-Witten map to rewrite this in terms of noncommutative gauge fields. Our result clarify why a certain commutative but non-associative 'generalized star product' appears both in the expansion of the open Wilson line, as well as in string amplitude computations of open string-closed string couplings. We outline how our procedure can be used to obtain operators in the noncommutative theory which are holographically dual to supergravity modes. (author)

  15. Top-down approach to unified supergravity models

    International Nuclear Information System (INIS)

    Hempfling, R.

    1994-03-01

    We introduce a new approach for studying unified supergravity models. In this approach all the parameters of the grand unified theory (GUT) are fixed by imposing the corresponding number of low energy observables. This determines the remaining particle spectrum whose dependence on the low energy observables can now be investigated. We also include some SUSY threshold corrections that have previously been neglected. In particular the SUSY threshold corrections to the fermion masses can have a significant impact on the Yukawa coupling unification. (orig.)

  16. Regge limit of R-current correlators in AdS supergravity

    International Nuclear Information System (INIS)

    Bartels, J.; Kotanski, J.; Mischler, A.M.; Schomerus, V.

    2009-08-01

    Four-point functions of R-currents are discussed within Anti-de Sitter supergravity. In particular, we compute Witten diagrams with graviton and gauge boson exchange in the high energy Regge limit. Assuming validity of the AdS/CFT correspondence, our results apply to R-current four-point functions of N=4 super Yang-Mills theory at strong coupling. (orig.)

  17. Antigravitating black hole solitons with scalar hair in N=4 supergravity

    International Nuclear Information System (INIS)

    Gibbons, G.W.

    1982-01-01

    We present some new solutions of the equations of the N = 4 supergravity theory which represent black holes with scalar, electric and magnetic charges. The solutions are parameterized by the mass and 6 electric and 6 magnetic charges which can be assembled into a complex 6-vector, Zsup(N). One can act on the solutions with SO(6) x U(1) to obtain new solutions with the same mass M but charges Zsup(N) related by SO(6) x U(1) transformations, the U(1) factor corresponding to the duality subgroup of the hidden SU(1, 1) symmetry of the N = 4 model. In a certain limiting case the black holes have zero temperature and behave like solitons. In this case multisoliton solutions are exhibited which antigravitate, i.e. are in static equilibrium. We also present some solutions of the Kaluza-Klein theory which were anticipated by Scherk which also antigravitate. However, these latter solutions contain naked singularities. A discussion is also given of the relation of these solutions to dimensional reduction which has relevance for the black holes in the N = 8 supergravity theory. (orig.)

  18. N=2 vacua in electrically gauged N=4 supergravities

    Energy Technology Data Exchange (ETDEWEB)

    Horst, Christoph

    2013-06-15

    In this thesis we study N= 2 vacua in gauged N=4 supergravity theories in fourdimensional spacetime. Using the embedding tensor formalism that describes general consistent magnetic gaugings of an ungauged N=4 matter-coupled supergravity theory in a symplectic frame with SO(1,1) x SO(6,n) off-shell symmetry we formulate necessary conditions for partial supersymmetry breaking and find that the Killing spinor equations can be solved for the embedding tensor components. Subsequently, we show that the classification of theories that allow for vacua with partial supersymmetry amounts to solving a system of purely algebraic quadratic equations. Then, we restrict ourselves to the class of purely electric gaugings and explicitly construct a class of consistent super-Higgs mechanisms and study its properties. In particular, we find that the spectrum fills complete N=2 supermultiplets that are either massless or BPS. Furthermore, we demonstrate that (modulo an abelian Lie algebra) arbitrary unbroken gauge Lie algebras can be realized provided that the number of N=4 vector multiplets is sufficiently large. Finally, we compute the relevant terms of the effective action below the scale of partial supersymmetry breaking and argue that the special Kaehler manifold for the scalars of the N=2 vector multiplets has to be in the unique series of special Kaehler product manifolds.

  19. Massive Supergravity and Deconstruction

    CERN Document Server

    Gregoire, T; Shadmi, Y; Gregoire, Thomas; Schwartz, Matthew D; Shadmi, Yael

    2004-01-01

    We present a simple superfield Lagrangian for massive supergravity. It comprises the minimal supergravity Lagrangian with interactions as well as mass terms for the metric superfield and the chiral compensator. This is the natural generalization of the Fierz-Pauli Lagrangian for massive gravity which comprises mass terms for the metric and its trace. We show that the on-shell bosonic and fermionic fields are degenerate and have the appropriate spins: 2, 3/2, 3/2 and 1. We then study this interacting Lagrangian using goldstone superfields. We find that a chiral multiplet of goldstones gets a kinetic term through mixing, just as the scalar goldstone does in the non-supersymmetric case. This produces Planck scale (Mpl) interactions with matter and all the discontinuities and unitarity bounds associated with massive gravity. In particular, the scale of strong coupling is (Mpl m^4)^1/5, where m is the multiplet's mass. Next, we consider applications of massive supergravity to deconstruction. We estimate various qu...

  20. A double copy for N=2 supergravity: a linearised tale told on-shell

    International Nuclear Information System (INIS)

    Cardoso, G.L.; Nagy, S.; Nampuri, S.

    2016-01-01

    We construct the on-shell double copy dictionary for linearised four-dimensional N=2 supergravity coupled to one vector multiplet with a quadratic prepotential. We apply this dictionary to the weak-field approximation of dyonic BPS black holes in this theory.

  1. A double copy for N=2 supergravity: a linearised tale told on-shell

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, G.L.; Nagy, S.; Nampuri, S. [Center for Mathematical Analysis, Geometry and Dynamical Systems, Department of Mathematics, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2016-10-24

    We construct the on-shell double copy dictionary for linearised four-dimensional N=2 supergravity coupled to one vector multiplet with a quadratic prepotential. We apply this dictionary to the weak-field approximation of dyonic BPS black holes in this theory.

  2. Null cone superspace supergravity

    International Nuclear Information System (INIS)

    Downes-Martin, S.G.

    1980-03-01

    The null cone formalism is used to derive a 2(N-1) parameter family of constraints for O(N) extended superspace supergravity. The invariance groups of these constraints is analysed and is found to be [subgroup U submanifold] contains GL(4,R) for N = 1, the submanifold being eliminated for N > 1. The invariance group defines non-Weyl rotations on the superbein which combine to form Weyl transformations on the supertangent space metric. The invariance of the supergravity Lagrangian under these transformations is discussed. (Auth.)

  3. Three-forms in supergravity and flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Farakos, Fotis; Lanza, Stefano; Martucci, Luca; Sorokin, Dmitri [Univ. degli Studi di Padova (Italy). Dipt. di Fisica e Astronomia ' ' Galileo Galilei' ' ; I.N.F.N., Sezione di Padova (Italy)

    2017-09-15

    We present a duality procedure that relates conventional four-dimensional matter-coupled N = 1 supergravities to dual formulations in which auxiliary fields are replaced by field strengths of gauge three-forms. The duality promotes specific coupling constants appearing in the superpotential to vacuum expectation values of the field strengths. We then apply this general duality to type IIA string compactifications on Calabi-Yau orientifolds with RR fluxes. This gives a new supersymmetric formulation of the corresponding effective four-dimensional theories which includes gauge three-forms. (orig.)

  4. Spherically symmetric solutions in abelian Kaluza-Klein theories

    International Nuclear Information System (INIS)

    Angus, I.G.

    1986-01-01

    We present the most general spherically symmetric solution to the field equations of the truncated five-dimensional Kaluza-Klein theory. We also detail some of the special forms of this solution. With the exception of the Gross-Perry-Sorkin monopole and the Schwarzschild solutions we find that most, and we conjecture all, of the solutions have naked curvature singularities. We then proceed to consider higher-dimensional theories with toroidal compactification and we exhibit a class of nonsingular monopole solutions which are the natural generalization of the Gross-Perry-Sorkin monopole to more than five dimensions. We also present some selected solutions including a solution pertaining to a model with a Ricci-flat, but not curvature-flat, internal manifold. All of these other solutions have naked curvature singularities. (orig.)

  5. Representation of mathematical expectation of symmetrical functionals in the particle transport theory

    International Nuclear Information System (INIS)

    Uchajkin, V.V.

    1977-01-01

    The two-dimensional functional is used to show that the mathematical expectation of symmetrical functionals may be represented as a nonlinear functional obtained from the solution of the Boltzman equations (Green's function). For the highest moments of additive detector readings, which are a particular case of symmetrical functionals, a similar result was obtained by the author previously when he studied particles transport with and without multiplication. In physical terms such a concept is conditioned by the absence of moving particles with one another, the assumption of which is the basis of the linear transport theory

  6. Properties of Nilpotent Supergravity

    CERN Document Server

    Dudas, E.; Kehagias, A.; Sagnotti, A.

    2015-09-30

    We construct Supergravity models where the goldstino multiplet has a gravitational origin, being dual to the chiral curvature superfield. Supersymmetry is nonlinearly realized due to a nilpotent constraint, while the goldstino arises from $\\gamma$-traces of the gauge-invariant gravitino field strength. After duality transformations one recovers, as expected, the standard Volkov-Akulov Lagrangian coupled to Supergravity, but the gravitational origin of the goldstino multiplet restricts the available types of matter couplings. We also construct explicitly some inflationary models of this type, which contain both the inflaton and the nilpotent superfield.

  7. N-flation in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kumar, E-mail: kumar.das@saha.ac.in; Dutta, Koushik, E-mail: koushik.dutta@saha.ac.in

    2014-11-10

    We have constructed a large field N-flation model in the supergravity framework. In this simple set-up, N fields collectively drive inflation where each field traverses sub-Planckian field values. This has been realised with a generalisation of the single-field chaotic inflation in supergravity. Interestingly, despite the presence of the field interactions, the dynamics can be described in terms of an effective single field. The observable predictions of our model, i.e., tensor-to-scalar ratio r and scalar spectral index n{sub s}, are akin to the chaotic inflation.

  8. Properties of nilpotent supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Dudas, E. [Centre de Physique Théorique, École Polytéchnique,F-91128 Palaiseau (France); Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany); Ferrara, S. [Th-Ph Department, CERN,CH-1211 Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, 00044 Frascati (Italy); Department of Physics and Astronomy, University of California,Los Angeles, CA 90095-1547 (United States); Kehagias, A. [Th-Ph Department, CERN,CH-1211 Geneva 23 (Switzerland); Physics Division, National Technical University of Athens,15780 Zografou, Athens (Greece); Sagnotti, A. [Th-Ph Department, CERN,CH-1211 Geneva 23 (Switzerland); Scuola Normale Superiore and INFN,Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2015-09-30

    We construct supergravity models where the goldstino multiplet has a gravitational origin, being dual to the chiral curvature superfield. Supersymmetry is nonlinearly realized due to a nilpotent constraint, while the goldstino arises from γ-traces of the gauge-invariant gravitino field strength. After duality transformations one recovers, as expected, the standard Volkov-Akulov Lagrangian coupled to Supergravity, but the gravitational origin of the goldstino multiplet restricts the available types of matter couplings. We also construct explicitly some inflationary models of this type, which contain both the inflaton and the nilpotent superfield.

  9. The theory of spherically symmetric thin shells in conformal gravity

    Science.gov (United States)

    Berezin, Victor; Dokuchaev, Vyacheslav; Eroshenko, Yury

    The spherically symmetric thin shells are the nearest generalizations of the point-like particles. Moreover, they serve as the simple sources of the gravitational fields both in General Relativity and much more complex quadratic gravity theories. We are interested in the special and physically important case when all the quadratic in curvature tensor (Riemann tensor) and its contractions (Ricci tensor and scalar curvature) terms are present in the form of the square of Weyl tensor. By definition, the energy-momentum tensor of the thin shell is proportional to Diracs delta-function. We constructed the theory of the spherically symmetric thin shells for three types of gravitational theories with the shell: (1) General Relativity; (2) Pure conformal (Weyl) gravity where the gravitational part of the total Lagrangian is just the square of the Weyl tensor; (3) Weyl-Einstein gravity. The results are compared with these in General Relativity (Israel equations). We considered in detail the shells immersed in the vacuum. Some peculiar properties of such shells are found. In particular, for the traceless ( = massless) shell, it is shown that their dynamics cannot be derived from the matching conditions and, thus, is completely arbitrary. On the contrary, in the case of the Weyl-Einstein gravity, the trajectory of the same type of shell is completely restored even without knowledge of the outside solution.

  10. Hypermultiplet gaugings and supersymmetric solutions from 11D and massive IIA supergravity on H^{(p,q)} spaces

    Science.gov (United States)

    Guarino, Adolfo

    2018-03-01

    Supersymmetric {AdS}4, {AdS}2 × Σ 2 and asymptotically AdS4 black hole solutions are studied in the context of non-minimal N=2 supergravity models involving three vector multiplets (STU-model) and Abelian gaugings of the universal hypermultiplet moduli space. Such models correspond to consistent subsectors of the {SO}(p,q) and {ISO}(p,q) gauged maximal supergravities that arise from the reduction of 11D and massive IIA supergravity on {H}^{(p,q)} spaces down to four dimensions. A unified description of all the models is provided in terms of a square-root prepotential and the gauging of a duality-hidden symmetry pair of the universal hypermultiplet. Some aspects of M-theory and massive IIA holography are mentioned in passing.

  11. Dual formulation of covariant nonlinear duality-symmetric action of kappa-symmetric D3-brane

    Science.gov (United States)

    Vanichchapongjaroen, Pichet

    2018-02-01

    We study the construction of covariant nonlinear duality-symmetric actions in dual formulation. Essentially, the construction is the PST-covariantisation and nonlinearisation of Zwanziger action. The covariantisation made use of three auxiliary scalar fields. Apart from these, the construction proceed in a similar way to that of the standard formulation. For example, the theories can be extended to include interactions with external fields, and that the theories possess two local PST symmetries. We then explicitly demonstrate the construction of covariant nonlinear duality-symmetric actions in dual formulation of DBI theory, and D3-brane. For each of these theories, the twisted selfduality condition obtained from duality-symmetric actions are explicitly shown to match with the duality relation between field strength and its dual from the one-potential actions. Their on-shell actions between the duality-symmetric and the one-potential versions are also shown to match. We also explicitly prove kappa-symmetry of the covariant nonlinear duality-symmetric D3-brane action in dual formulation.

  12. Black holes in ω-deformed gauged N=8 supergravity

    International Nuclear Information System (INIS)

    Anabalón, Andrés; Astefanesei, Dumitru

    2014-01-01

    Motivated by the recently found 4-dimensional ω-deformed gauged supergravity, we investigate the black hole solutions within the single scalar field consistent truncations of this theory. We construct black hole solutions that have spherical, toroidal, and hyperbolic horizon topologies. The scalar field is regular everywhere outside the curvature singularity and the stress–energy tensor satisfies the null energy condition. When the parameter ω does not vanish, there is a degeneracy in the spectrum of black hole solutions for boundary conditions that preserve the asymptotic Anti-de Sitter symmetries. These boundary conditions correspond to multi-trace deformations in the dual field theory.

  13. Black holes in ω-deformed gauged N=8 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés, E-mail: andres.anabalon@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS, École Normale Supérieure de Lyon, 46 allé d' Italie, F-69364 Lyon Cedex 07 (France); Astefanesei, Dumitru, E-mail: dumitru.astefanesei@ucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)

    2014-05-01

    Motivated by the recently found 4-dimensional ω-deformed gauged supergravity, we investigate the black hole solutions within the single scalar field consistent truncations of this theory. We construct black hole solutions that have spherical, toroidal, and hyperbolic horizon topologies. The scalar field is regular everywhere outside the curvature singularity and the stress–energy tensor satisfies the null energy condition. When the parameter ω does not vanish, there is a degeneracy in the spectrum of black hole solutions for boundary conditions that preserve the asymptotic Anti-de Sitter symmetries. These boundary conditions correspond to multi-trace deformations in the dual field theory.

  14. de Sitter space from dilatino condensates in massive IIA supergravity

    Science.gov (United States)

    Souères, Bertrand; Tsimpis, Dimitrios

    2018-02-01

    We use the superspace formulation of (massive) IIA supergravity to obtain the explicit form of the dilatino terms, and we find that the quartic-dilatino term is positive. The theory admits a ten-dimensional de Sitter solution, obtained by assuming a nonvanishing quartic-dilatino condensate which generates a positive cosmological constant. Moreover, in the presence of dilatino condensates, the theory admits formal four-dimensional de Sitter solutions of the form d S4×M6, where M6 is a six-dimensional Kähler-Einstein manifold of positive scalar curvature.

  15. Supersymmetry, superfields and supergravity: An introduction

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1986-01-01

    This book is a self-contained introduction to the subject of supersymmetry. The algebras of supersymmetry and the R-symmetry generators are explained using a simple field theory model. The realisations of this algebra on one-particle states and on a supermultiplet of component fields are then discussed. There is a detailed description of the Wess-Zumino model, with discussion of the realisation of R-symmetry and supermultiplets of currents and anomalies. Detailed treatment of the realisation of the algebra on superspace and superfields is applied to the Yang-Mills theory in interaction with matter. The possibility of spontaneously broken symmetries is introduced before non-Abelian supersymmetric gauge theories are constructed. Superfield propagators are derived as the Green functions of the corresponding equations of motion and the power of superfield perturbation theory is illustrated. Finally local supersymmetry and the supergravity Lagrangian are introduced with a discussion of gravity-induced supersymmetry breaking and the super-Higgs effect. Emphasis is placed on developing a physical understanding of the mathematical formalism and numerous problems are included to help develop the reader's understanding

  16. N=1 domain wall solutions of massive type II supergravity as generalized geometries

    International Nuclear Information System (INIS)

    Louis, J.

    2006-05-01

    We study N=1 domain wall solutions of type IIB supergravity compactified on a Calabi-Yau manifold in the presence of RR and NS electric and magnetic fluxes. We show that the dynamics of the scalar fields along the direction transverse to the domain wall is described by gradient flow equations controlled by a superpotential W. We then provide a geometrical interpretation of the gradient flow equations in terms of the mirror symmetric compactification of type IIA. They correspond to a set of generalized Hitchin flow equations of a manifold with SU(3) x SU(3)structure which is fibered over the direction transverse to the domain wall. (Orig.)

  17. Spontaneous SUSY breaking without R symmetry in supergravity

    Science.gov (United States)

    Maekawa, Nobuhiro; Omura, Yuji; Shigekami, Yoshihiro; Yoshida, Manabu

    2018-03-01

    We discuss spontaneous supersymmetry (SUSY) breaking in a model with an anomalous U (1 )A symmetry. In this model, the size of the each term in the superpotential is controlled by the U (1 )A charge assignment and SUSY is spontaneously broken via the Fayet-Iliopoulos of U (1 )A at the metastable vacuum. In the global SUSY analysis, the gaugino masses become much smaller than the sfermion masses, because an approximate R symmetry appears at the SUSY breaking vacuum. In this paper, we show that gaugino masses can be as large as gravitino mass, taking the supergravity effect into consideration. This is because the R symmetry is not imposed so that the constant term in the superpotential, which is irrelevant to the global SUSY analysis, largely contributes to the soft SUSY breaking terms in the supergravity. As the mediation mechanism, we introduce the contributions of the field not charged under U (1 )A and the moduli field to cancel the anomaly of U (1 )A. We comment on the application of our SUSY breaking scenario to the grand unified theory.

  18. Coupling of Yang-Mills to N=4, d=4 supergravity

    International Nuclear Information System (INIS)

    Bergshoeff, E.; Koh, I.G.; Sezgin, E.

    1985-01-01

    We couple N=4, d=4 supersymmetric Yang-Mills theory to supergravity. The scalars of the theory parametrize the coset (SO(n,6)/[SO(n)xSO(6)])xSU(1,1)/U(1)). Keeping the composite local SO(n)xSO(6)xU(1) invariance intact, we gauge an (n+6) parameter subgroup of SO(n,6) which is either (i) SU(2)xSU(2)xH(dim H=n), (ii) SO(4,1)xH(dim H=n-4) or (iii) SO(6,1)xH(dim H=n-15). In all these cases the theory has an indefinite potential. (orig.)

  19. Coupling of Yang-Mills to N=4, d=4 supergravity

    International Nuclear Information System (INIS)

    Bergshoeff, E.; Koh, I.G.; Sezgin, E.

    1985-01-01

    We couple N=4, d=4 supersymmetric Yang-Mills theory to supergravity. The scalars of the theory parametrize the coset ((SO(n,6)/SO(n)xSO(6))x((SU(1,1)/U(1)). Keeping the composite local SO(n)xSO(6)xU(1) invariance intact, we gauge an (n+6) parameter subgroup of SO(n,6) which is either (i) SU(2)xSU(2)xH (dim H=n), (ii) SO(4,1)xH (dim H=n-4) or (iii) SO(6,1)xH (dim H=n-15). In all these cases the theory has an indefinite potential. (author)

  20. Black string first order flow in N=2, d=5 abelian gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, Dietmar; Petri, Nicolò; Rabbiosi, Marco [Dipartimento di Fisica, Università di Milano andINFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy)

    2017-01-25

    We derive both BPS and non-BPS first-order flow equations for magnetically charged black strings in five-dimensional N=2 abelian gauged supergravity, using the Hamilton-Jacobi formalism. This is first done for the coupling to vector multiplets only and U(1) Fayet-Iliopoulos (FI) gauging, and then generalized to the case where also hypermultiplets are present, and abelian symmetries of the quaternionic hyperscalar target space are gauged. We then use these results to derive the attractor equations for near-horizon geometries of extremal black strings, and solve them explicitely for the case where the constants appearing in the Chern-Simons term of the supergravity action satisfy an adjoint identity. This allows to compute in generality the central charge of the two-dimensional conformal field theory that describes the black strings in the infrared, in terms of the magnetic charges, the CY intersection numbers and the FI constants. Finally, we extend the r-map to gauged supergravity and use it to relate our flow equations to those in four dimensions.

  1. The integral form of supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Castellani, L. [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale,Viale T. Michel, 11, 15121 Alessandria (Italy); INFN - Sezione di Torino,via P. Giuria 1, 10125 Torino (Italy); Catenacci, R. [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale,Viale T. Michel, 11, 15121 Alessandria (Italy); Gruppo Nazionale di Fisica Matematica, INdAM,P.le Aldo Moro 5, 00185 Roma (Italy); Grassi, P.A. [Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale,Viale T. Michel, 11, 15121 Alessandria (Italy); INFN - Sezione di Torino,via P. Giuria 1, 10125 Torino (Italy)

    2016-10-11

    By using integral forms we derive the superspace action of D=3,N=1 supergravity as an integral on a supermanifold. The construction is based on target space picture changing operators, here playing the rôle of Poincaré duals to the lower-dimensional spacetime surfaces embedded into the supermanifold. We show how the group geometrical action based on the group manifold approach interpolates between the superspace and the component supergravity actions, thus providing another proof of their equivalence.

  2. Non-renormalisation theorems in string theory

    International Nuclear Information System (INIS)

    Vanhove, P.

    2007-10-01

    In this thesis we describe various non renormalisation theorems for the string effective action. These results are derived in the context of the M theory conjecture allowing to connect the four gravitons string theory S matrix elements with that of eleven dimensional supergravity. These theorems imply that N = 8 supergravity theory has the same UV behaviour as the N = 4 supersymmetric Yang Mills theory at least up to three loops, and could be UV finite in four dimensions. (author)

  3. A geometric theory of swimming: Purcell's swimmer and its symmetrized cousin

    International Nuclear Information System (INIS)

    Avron, J E; Raz, O

    2008-01-01

    We develop a qualitative geometric approach to swimming at low Reynolds numbers which avoids solving differential equations and uses instead landscape figures describing the swimming and dissipation. This approach gives complete information about swimmers that swim on a line without rotations and gives the main qualitative features of general swimmers that can also rotate. We illustrate this approach for a symmetric version of Purcell's swimmer, which we solve by elementary analytical means within slender body theory. We then apply the theory to derive the basic qualitative properties of Purcell's swimmer

  4. A New Semi-Symmetric Unified Field Theory of the Classical Fields of Gravity and Electromagnetism

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2007-10-01

    Full Text Available We attempt to present a classical theoretical framework in which the gravitational and electromagnetic fields are unified as intrinsic geometric objects in the space-time manifold. For this purpose, we first present the preliminary geometric considerations dealing with the metric differential geometry of Cartan connections. The unified field theory is then developed as an extension of the general theory of relativity based on a semi- symmetric Cartan connection which is meant to be as close as possible structurally to the symmetric connection of the Einstein-Riemann space-time.

  5. Causality violations in Lovelock theories

    Science.gov (United States)

    Brustein, Ram; Sherf, Yotam

    2018-04-01

    Higher-derivative gravity theories, such as Lovelock theories, generalize Einstein's general relativity (GR). Modifications to GR are expected when curvatures are near Planckian and appear in string theory or supergravity. But can such theories describe gravity on length scales much larger than the Planck cutoff length scale? Here we find causality constraints on Lovelock theories that arise from the requirement that the equations of motion (EOM) of perturbations be hyperbolic. We find a general expression for the "effective metric" in field space when Lovelock theories are perturbed around some symmetric background solution. In particular, we calculate explicitly the effective metric for a general Lovelock theory perturbed around cosmological Friedman-Robertson-Walker backgrounds and for some specific cases when perturbed around Schwarzschild-like solutions. For the EOM to be hyperbolic, the effective metric needs to be Lorentzian. We find that, unlike for GR, the effective metric is generically not Lorentzian when the Lovelock modifications are significant. So, we conclude that Lovelock theories can only be considered as perturbative extensions of GR and not as truly modified theories of gravity. We compare our results to those in the literature and find that they agree with and reproduce the results of previous studies.

  6. Conformal supergravity in five dimensions: new approach and applications

    Science.gov (United States)

    Butter, Daniel; Kuzenko, Sergei M.; Novak, Joseph; Tartaglino-Mazzucchelli, Gabriele

    2015-02-01

    We develop a new off-shell formulation for five-dimensional (5D) conformal supergravity obtained by gauging the 5D superconformal algebra in superspace. An important property of the conformal superspace introduced is that it reduces to the super-conformal tensor calculus (formulated in the early 2000's) upon gauging away a number of superfluous fields. On the other hand, a different gauge fixing reduces our formulation to the SU(2) superspace of arXiv:0802.3953, which is suitable to describe the most general off-shell supergravity-matter couplings. Using the conformal superspace approach, we show how to reproduce practically all off-shell constructions derived so far, including he supersymmetric extensions of R 2 terms, thus demonstrating the power of our formulation. Furthermore, we construct for the first time a supersymmetric completion of the Ricci tensor squared term using the standard Weyl multiplet coupled to an off-shell vector multiplet. In addition, we present several procedures to generate higher-order off-shell invariants in supergravity, including higher-derivative ones. The covariant projective multiplets proposed in arXiv:0802.3953 are lifted to conformal superspace, and a manifestly superconformal action principle is given. We also introduce unconstrained prepotentials for the vector multiplet, the multiplet (i.e., the linear multiplet without central charge) and multiplets, with n = 0 , 1 , . . . Superform formulations are given for the BF action and the non-abelian Chern-Simons action. Finally, we describe locally supersymmetric theories with gauged central charge in conformal superspace.

  7. Lectures from the European RTN Winter School on Strings, Supergravity and Gauge Theories, CERN, 16 20 January, 2006

    Science.gov (United States)

    Derendinger, J.-P.; Scrucca, C. A.; Uranga, A. M.

    2006-11-01

    This special issue is devoted to the proceedings of the conference 'Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, from the 16 to the 20 of January 2006. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools which have become a traditional rendezvous for young researchers of the community. The previous one was held at SISSA, in Trieste, Italy, in February 2005, and the next one will take place again at CERN, in January 2007. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of five general lectures of four hours each, whose notes are published in the present proceedings, and five working group discussion sessions, focused on specific topics of the network research program. It was attended by approximately 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress and to the open problems in string theory. String theory is expected to provide insights into the description of systems where the role of gravity is crucial. One prominent example of such systems are time-dependent backgrounds with big bang singularities, whose status in string theory is reviewed in the lecture notes by Ben Craps. In another main problem in quantum gravity, string theory gives a fascinating microscopic description of black holes and their properties. The lectures by Shiraz Minwalla review the thermal properties of black holes from their microscopic description in terms of a holographically dual large N field theory. Progress in the description of black hole microstates, and its interplay with the macroscopic description in terms of supergravity solutions via the

  8. Plane symmetric cosmological micro model in modified theory of Einstein’s general relativity

    Directory of Open Access Journals (Sweden)

    Panigrahi U.K.

    2003-01-01

    Full Text Available In this paper, we have investigated an anisotropic homogeneous plane symmetric cosmological micro-model in the presence of massless scalar field in modified theory of Einstein's general relativity. Some interesting physical and geometrical aspects of the model together with singularity in the model are discussed. Further, it is shown that this theory is valid and leads to Ein­stein's theory as the coupling parameter λ →>• 0 in micro (i.e. quantum level in general.

  9. Tensor calculus for supergravity on a manifold with boundary

    International Nuclear Information System (INIS)

    Belyaev, Dmitry V.; Nieuwenhuizen, Peter van

    2008-01-01

    Using the simple setting of 3D N = 1 supergravity, we show how the tensor calculus of supergravity can be extended to manifolds with boundary. We present an extension of the standard F-density formula which yields supersymmetric bulk-plus-boundary actions. To construct additional separately supersymmetric boundary actions, we decompose bulk supergravity and bulk matter multiplets into co-dimension one submultiplets. As an illustration we obtain the supersymmetric extension of the York-Gibbons-Hawking extrinsic curvature boundary term. We emphasize that our construction does not require any boundary conditions on off-shell fields. This gives a significant improvement over the existing orbifold supergravity tensor calculus

  10. Plane symmetric cosmological model with thick domain walls in Brans-Dicke theory of gravitation

    International Nuclear Information System (INIS)

    Pawar, D.; Bayaskar, S.; Patil, V.

    2009-01-01

    We have investigated plane symmetric cosmological model in presence of thick domain walls in Brans-Dicke theory of gravitation, some geometrical and physical behavior of the model are discussed. (authors)

  11. Geometries inherent to N=1 supergravities

    International Nuclear Information System (INIS)

    Galperin, A.S.; Ogievetsky, V.I.; Sokatchev, E.S.

    1981-01-01

    The first part of the talk is devoted to a consideration of linearized N=1 supergravities. The second main part deals with complex geometries inherent to different N=1 supergravities. A special attention is paid to a new version with local symmetry. It is connected to the special nonminimal case (n=0) having a remarkable property of supervolume preservation in Csup(4.4) superspace. Therefore the superdeterminant of change of variables from left to right-handed Rsup(4.4) parametrization is a dimensionless scalar. This geometric invariant has to be constrained to obtain an action. Solving such a constraint on vector and spinor prepotentials in Wess-Zumino gauge one obtains the new supergravity with 12+12 fields and local symmetry. A possible relaxation of this constraint is briefly considered (16+16 fields version) [ru

  12. Supergravity solitons

    International Nuclear Information System (INIS)

    Aichelburg, P.C.; Embacher, F.

    1987-01-01

    The Langrangian for a single free soliton in N = 2 supergravity as proposed in an earlier paper, is studied. We analyze the algebra of constraints and discuss the local gauge symmetry due to the existence of first class constraints. The classical motion as well as a Gupta-Bleuler type quantization are given. (Author)

  13. Residual supersymmetry of compactified d = 10 supergravity

    International Nuclear Information System (INIS)

    Wit, B. de; Smit, D.J.; Hari Dass, N.D.

    1986-05-01

    The conditions for residual supersymmetry in compactified ten-dimensional supergravity theories are investigated, including the effect of a non-constant 'warp factor'. The analysis is based on on-shell transformation laws which implies that certain linear combinations of classical field equations must be satisfied. The conditions for superysymmetry are, in general, not very restrictive. When, in addition, one assumes the validity of Bianchi identities, two independent contractions of the Einstein equation are implied. These equations exclude d=4 de Sitter space; for compactifications to d=4 Minkowski space they only allow purely metric Ricci-flat field configurations with constant warp factor. (Auth.)

  14. Invariants for minimal conformal supergravity in six dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Butter, Daniel [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); Kuzenko, Sergei M. [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Novak, Joseph; Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, D-14476 Golm (Germany)

    2016-12-15

    We develop a new off-shell formulation for six-dimensional conformal supergravity obtained by gauging the 6D N=(1,0) superconformal algebra in superspace. This formulation is employed to construct two invariants for 6D N=(1,0) conformal supergravity, which contain C{sup 3} and C◻C terms at the component level. Using a conformal supercurrent analysis, we prove that these exhaust all such invariants in minimal conformal supergravity. Finally, we show how to construct the supersymmetric F◻F invariant in curved superspace.

  15. Towards a worldsheet description of N=8 supergravity

    International Nuclear Information System (INIS)

    Lipstein, Arthur; Schomerus, Volker

    2015-10-01

    In this note we address the worldsheet description of 4-dimensional N=8 supergravity using ambitwistors. After gauging an appropriate current algebra, we argue that the only physical vertex operators correspond to the N=8 supermultiplet. It has previously been shown that worldsheet correlators give rise to supergravity tree level scattering amplitudes. We extend this work by proposing a definition for genus-one amplitudes that passes several consistency checks such as exhibiting modular invariance and reproducing the expected infrared behavior of 1-loop supergravity amplitudes.

  16. Quantization of anomaly coefficients in 6D $\\mathcal{N}=(1,0)$ supergravity

    OpenAIRE

    Monnier, Samuel; Moore, Gregory W.; Park, Daniel S.

    2017-01-01

    We obtain new constraints on the anomaly coefficients of 6D $\\mathcal{N}=(1,0)$ supergravity theories using local and global anomaly cancellation conditions. We show how these constraints can be strengthened if we assume that the theory is well-defined on any spin space-time with an arbitrary gauge bundle. We distinguish the constraints depending on the gauge algebra only from those depending on the global structure of the gauge group. Our main constraint states that the coefficients of the a...

  17. Effective potential in N=1, d=4 supergravity coupled to the Volkov-Akulov field

    International Nuclear Information System (INIS)

    Jasinschi, R.S.; Smith, A.W.

    1984-01-01

    The only-loop effective potential for N=1, d=4 supergravity theory coupled to the Volkov-Akulov field is calculated. Then it is shown that after an ajustment of some parameters the local supersymmetry is dynamically broken and as a consequence the gravitino acquires mass. (Author) [pt

  18. Modified Dynamical Supergravity Breaking and Off-Diagonal Super-Higgs Effects

    CERN Document Server

    Gheorghiu, Tamara; Vacaru, Sergiu

    2015-01-01

    We argue that generic off-diagonal vacuum and nonvacuum solutions for Einstein manifolds mimic physical effects in modified gravity theories (MGTs) and encode certain models of $f(R,T,...)$, Ho\\vrava type with dynamical Lorentz symmetry breaking, induced effective mass for graviton etc. Our main goal is to investigate the dynamical breaking of local supersymmetry determined by off--diagonal solutions in MGTs encoded as effective Einstein spaces. This includes the Deser-Zumino super--Higgs effect, for instance, for an one--loop potential in a (simple but representative) model of $\\mathcal{N}=1, D=4$ supergravity. We develop and apply a new geometric techniques which allows us to decouple the gravitational field equations and integrate them in very general forms with metrics and vierbein fields depending on all spacetime coordinates via various generating and integration functions and parameters. We study how solutions in MGTs may be related to dynamical generation of a gravitino mass and supergravity breaking.

  19. Gravity mediation in 6d brane-world supergravity

    International Nuclear Information System (INIS)

    Lee, H.M.

    2005-09-01

    We consider the gravity-mediated SUSY breaking within the effective theory of six-dimensional brane-world supergravity. We construct the supersymmetric bulk-brane action by Noether method and find the nontrivial moduli coupling of the brane F- and D-terms. We find that the low energy Kaehler potential is not of sequestered form, so gravity mediation may occur at tree level. In moduli stabilization with anomaly effects included, the scalar soft mass squared can be positive at tree level and it can be comparable to the anomaly mediation. (orig.)

  20. Minimal set of auxiliary fields and S-matrix for extended supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E S; Vasiliev, M A [Physical Lebedev Institute - Moscow

    1979-05-19

    Minimal set of auxiliary fields for linearized SO(2) supergravity and one-parameter extension of the minimal auxiliary fields in the SO(1) supergravity are constructed. The expression for the S-matrix in SO(2) supergravity are given.

  1. Inflaton decay in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Endo, M.; Takahashi, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yanagida, T.T. [Tokyo Univ. (Japan). Dept. of Physics]|[Tokyo Univ. (Japan). Research Center for the Early Universe

    2007-06-15

    We discuss inflaton decay in supergravity, taking account of the gravitational effects. It is shown that, if the inflaton has a nonzero vacuum expectation value, it generically couples to any matter fields that appear in the superpotential at the tree level, and to any gauge sectors through anomalies in the supergravity. Through these processes, the inflaton generically decays into the supersymmetry breaking sector, producing many gravitinos. The inflaton also directly decays into a pair of the gravitinos. We derive constraints on both inflation models and supersymmetry breaking scenarios for avoiding overproduction of the gravitinos. Furthermore, the inflaton naturally decays into the visible sector via the top Yukawa coupling and SU(3){sub C} gauge interactions. (orig.)

  2. Inflaton decay in supergravity

    International Nuclear Information System (INIS)

    Endo, M.; Takahashi, F.; Yanagida, T.T.; Tokyo Univ.

    2007-06-01

    We discuss inflaton decay in supergravity, taking account of the gravitational effects. It is shown that, if the inflaton has a nonzero vacuum expectation value, it generically couples to any matter fields that appear in the superpotential at the tree level, and to any gauge sectors through anomalies in the supergravity. Through these processes, the inflaton generically decays into the supersymmetry breaking sector, producing many gravitinos. The inflaton also directly decays into a pair of the gravitinos. We derive constraints on both inflation models and supersymmetry breaking scenarios for avoiding overproduction of the gravitinos. Furthermore, the inflaton naturally decays into the visible sector via the top Yukawa coupling and SU(3) C gauge interactions. (orig.)

  3. Comments on AdS2 solutions of D = 11 supergravity

    International Nuclear Information System (INIS)

    Kim, Nakwoo; Park, Jong-Dae

    2006-01-01

    We study the supersymmetric solutions of 11-dimensional supergravity with a factor of AdS 2 made of M2-branes. Such solutions can provide gravity duals of superconformal quantum mechanics, or through double Wick rotation, the generic bubbling geometry of M-theory which are 1/16-BPS. We show that, when the internal manifold is compact, it should take the form of a warped U(1)-fibration over an 8-dimensional Kaehler space

  4. Massive type IIA supergravity and E10

    International Nuclear Information System (INIS)

    Henneaux, M.; Kleinschmidt, A.; Persson, D.; Jamsin, E.

    2009-01-01

    In this talk we investigate the symmetry under E 10 of Romans' massive type IIA supergravity. We show that the dynamics of a spinning particle in a non-linear sigma model on the coset space E 10 /K(E 10 ) reproduces the bosonic and fermionic dynamics of massive IIA supergravity, in the standard truncation. In particular, we identify Romans' mass with a generator of E 10 that is beyond the realm of the generators of E 10 considered in the eleven-dimensional analysis, but using the same, underformed sigma model. As a consequence, this work provides a dynamical unification of the massless and massive versions of type IIA supergravity inside E 10 . (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  5. Soliton supermultiplets and Kaluza-Klein theory

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Perry, M.J.

    1984-01-01

    We show that the monopoles of five-dimensional Kaluza-Klein theory, considered as solutions of the N=8 supergravity theory in five dimensions, fit into the same supermultiplets as the original fields in that theory. We show that there is an electric-magnetic duality between these magnetic monopoles and the electrically charged antigravitating objects anticipated by Scherk. We formulate a Bogomolny inequality for N=8 supergravity, and we speculate on the wider significance of these monopoles. (orig.)

  6. Symmetric eikonal expansion

    International Nuclear Information System (INIS)

    Matsuki, Takayuki

    1976-01-01

    Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)

  7. Conformal supergravity in five dimensions: new approach and applications

    Energy Technology Data Exchange (ETDEWEB)

    Butter, Daniel [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); Kuzenko, Sergei M.; Novak, Joseph; Tartaglino-Mazzucchelli, Gabriele [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia)

    2015-02-17

    We develop a new off-shell formulation for five-dimensional (5D) conformal supergravity obtained by gauging the 5D superconformal algebra in superspace. An important property of the conformal superspace introduced is that it reduces to the superconformal tensor calculus (formulated in the early 2000’s) upon gauging away a number of superfluous fields. On the other hand, a different gauge fixing reduces our formulation to the SU(2) superspace of arXiv:0802.3953, which is suitable to describe the most general off-shell supergravity-matter couplings. Using the conformal superspace approach, we show how to reproduce practically all off-shell constructions derived so far, including the supersymmetric extensions of R{sup 2} terms, thus demonstrating the power of our formulation. Furthermore, we construct for the first time a supersymmetric completion of the Ricci tensor squared term using the standard Weyl multiplet coupled to an off-shell vector multiplet. In addition, we present several procedures to generate higher-order off-shell invariants in supergravity, including higher-derivative ones. The covariant projective multiplets proposed in arXiv:0802.3953 are lifted to conformal superspace, and a manifestly superconformal action principle is given. We also introduce unconstrained prepotentials for the vector multiplet, the O(2) multiplet (i.e., the linear multiplet without central charge) and O(4+n) multiplets, with n=0,1,… Superform formulations are given for the BF action and the non-abelian Chern-Simons action. Finally, we describe locally supersymmetric theories with gauged central charge in conformal superspace.

  8. Theory of superconductivity with non-Hermitian and parity-time reversal symmetric Cooper pairing symmetry

    Science.gov (United States)

    Ghatak, Ananya; Das, Tanmoy

    2018-01-01

    Recently developed parity (P ) and time-reversal (T ) symmetric non-Hermitian systems govern a rich variety of new and characteristically distinct physical properties, which may or may not have a direct analog in their Hermitian counterparts. We study here a non-Hermitian, PT -symmetric superconducting Hamiltonian that possesses a real quasiparticle spectrum in the PT -unbroken region of the Brillouin zone. Within a single-band mean-field theory, we find that real quasiparticle energies are possible when the superconducting order parameter itself is either Hermitian or anti-Hermitian. Within the corresponding Bardeen-Cooper-Schrieffer (BCS) theory, we find that several properties are characteristically distinct and novel in the non-Hermitian pairing case than its Hermitian counterpart. One of our significant findings is that while a Hermitian superconductor gives a second-order phase transition, the non-Hermitian one produces a robust first-order phase transition. The corresponding thermodynamic properties and the Meissner effect are also modified accordingly. Finally, we discuss how such a PT -symmetric pairing can emerge from an antisymmetric potential, such as the Dzyloshinskii-Moriya interaction, but with an external bath, or complex potential, among others.

  9. Role(s) of anti-symmetrical background field in string theory

    International Nuclear Information System (INIS)

    Fidanza, St.

    2003-11-01

    In the first chapter (titled: non-commutative D-branes), we show that the B anti-symmetrical background fields can be embedded in the non-commutativity of branes and can distort gauge theories that branes convey. We know how to describe this transformation in the Abelian case thanks to the Kontsevic quantification formula. Moreover this formula combined to the Seiberg-Witter transformation allows one to compute more rapidly the explicit terms. For the non-Abelian case the situation is less clear. In the chapter 2 (titled: non-Abelian M5-branes), we have tackled the issue of the fields of a packet of N M5-branes. The direct approach based on a 6 dimensional super-symmetric multiplets has led to a stunning dead end, we have not been able to reproduce the expected anomaly in N 3 . We have presented in a unified manner different gauge theories. We have shown that we can get a number of freedom degrees in the magnitude order of N 3 from computations based on geometrical configurations of M2 membranes. In the chapter 3 (titled: systematizing mirror symmetry) we have shown that if the presence of a non-trivial Neveu-Schwarz flux constrains the compactification manifold geometry to shift from the Calabi-Yau case, we can yet specify a mirror symmetry that mixes geometry and background fields. (A.C.)

  10. Goldstino superfields in N=2 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Kuzenko, Sergei M.; McArthur, Ian N. [School of Physics and Astrophysics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Tartaglino-Mazzucchelli, Gabriele [Instituut voor Theoretische Fysica, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2017-05-11

    We present off-shell N=2 supergravity actions, which exhibit spontaneously broken local supersymmetry and allow for de Sitter vacua for certain values of the parameters. They are obtained by coupling the standard N=2 supergravity-matter systems to the Goldstino superfields introduced in arXiv:1105.3001 and arXiv:1607.01277 in the rigid supersymmetric case. These N=2 Goldstino superfields include nilpotent chiral and linear supermultiplets. We also describe a new reducible N=1 Goldstino supermultiplet.

  11. Kaluza-Klein theories without truncation

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Robbins, Daniel

    2015-01-01

    In this note we will present a closed expression for the space-time effective action for all bosonic fields (massless and massive) obtained from the compactification of gravity or supergravity theories (such as type II or eleven-dimensional supergravities) from D to d space-time dimensions.

  12. Kaluza-Klein theories without truncation

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Katrin; Becker, Melanie; Robbins, Daniel [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, TX 77843-4242 (United States)

    2015-02-23

    In this note we will present a closed expression for the space-time effective action for all bosonic fields (massless and massive) obtained from the compactification of gravity or supergravity theories (such as type II or eleven-dimensional supergravities) from D to d space-time dimensions.

  13. The electroweak phase transition in minimal supergravity models

    CERN Document Server

    Nanopoulos, Dimitri V

    1994-01-01

    We have explored the electroweak phase transition in minimal supergravity models by extending previous analysis of the one-loop Higgs potential to include finite temperature effects. Minimal supergravity is characterized by two higgs doublets at the electroweak scale, gauge coupling unification, and universal soft-SUSY breaking at the unification scale. We have searched for the allowed parameter space that avoids washout of baryon number via unsuppressed anomalous Electroweak sphaleron processes after the phase transition. This requirement imposes strong constraints on the Higgs sector. With respect to weak scale baryogenesis, we find that the generic MSSM is {\\it not} phenomenologically acceptable, and show that the additional experimental and consistency constraints of minimal supergravity restricts the mass of the lightest CP-even Higgs even further to $m_h\\lsim 32\\GeV$ (at one loop), also in conflict with experiment. Thus, if supergravity is to allow for baryogenesis via any other mechanism above the weak...

  14. Observations on Integral and Continuous U-duality Orbits in N=8 Supergravity

    CERN Document Server

    Borsten, L; Duff, M J; Ferrara, S; Marrani, A; Rubens, W

    2010-01-01

    One would often like to know when two a priori distinct extremal black p-brane solutions are in fact U-duality related. In the classical supergravity limit the answer for a large class of theories has been known for some time. However, in the full quantum theory the U-duality group is broken to a discrete subgroup and the question of U-duality orbits in this case is a nuanced matter. In the present work we address this issue in the context of N=8 supergravity in four, five and six dimensions. The purpose of this note is to present and clarify what is currently known about these discrete orbits while at the same time filling in some of the details not yet appearing in the literature. To this end we exploit the mathematical framework of integral Jordan algebras and Freudenthal triple systems. The charge vector of the dyonic black string in D=6 is SO(5,5;Z) related to a two-charge reduced canonical form uniquely specified by a set of two arithmetic U-duality invariants. Similarly, the black hole (string) charge ...

  15. Double field theory at SL(2) angles

    Energy Technology Data Exchange (ETDEWEB)

    Ciceri, Franz [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); Dibitetto, Giuseppe [Institutionen för fysik och astronomi, University of Uppsala, Box 803, SE-751 08 Uppsala (Sweden); Fernandez-Melgarejo, J.J. [Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); Jefferson Physical Laboratory, Harvard University,Cambridge, MA 02138 (United States); Guarino, Adolfo [Physique Théorique et Mathématique, Université Libre de Bruxellesand International Solvay Institutes,ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Inverso, Gianluca [Center for Mathematical Analysis, Geometry and Dynamical Systems,Department of Mathematics, Instituto Superior Tecnico,Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2017-05-05

    An extended field theory is presented that captures the full SL(2)×O(6,6+n) duality group of four-dimensional half-maximal supergravities. The theory has section constraints whose two inequivalent solutions correspond to minimal D=10 supergravity and chiral half-maximal D=6 supergravity, respectively coupled to vector and tensor multiplets. The relation with O(6,6+n) (heterotic) double field theory is thoroughly discussed. Non-Abelian interactions as well as background fluxes are captured by a deformation of the generalised diffeomorphisms. Finally, making use of the SL(2) duality structure, it is shown how to generate gaugings with non-trivial de Roo-Wagemans angles via generalised Scherk-Schwarz ansätze. Such gaugings allow for moduli stabilisation including the SL(2) dilaton.

  16. Dualities in D=5, N=2 supergravity, black hole entropy, and AdS central charges

    International Nuclear Information System (INIS)

    Klemm, D.

    2001-01-01

    The issue of microstate counting for general black holes in D=5, N=2 supergravity coupled to vector multiplets is discussed from various viewpoints. The statistical entropy is computed for the near-extremal case by using the central charge appearing in the asymptotic symmetry algebra of AdS 2 . Furthermore, we show that the considered supergravity theory enjoys a duality invariance which connects electrically charged black holes and magnetically charged black strings. The near-horizon geometry of the latter turns out to be AdS 3 x S 2 , which allows a microscopic calculation of their entropy using the Brown-Hennaux central charges in Cardy's formula. In both approaches we find perfect agreement between statistical and thermodynamical entropy. (orig.)

  17. Symmetric energy-momentum tensor in Maxwell, Yang-Mills, and Proca theories obtained using only Noether's theorem

    International Nuclear Information System (INIS)

    Montesinos, M.; Flores, E.

    2006-01-01

    The symmetric and gauge-invariant energy-momentum tensors for source-free Maxwell and Yang-Mills theories are obtained by means of translations in spacetime via a systematic implementation of Noether's theorem. For the source-free neutral Proca field, the same procedure yields also the symmetric energy-momentum tensor. In all cases, the key point to get the right expressions for the energy-momentum tensors is the appropriate handling of their equations of motion and the Bianchi identities. It must be stressed that these results are obtained without using Belinfante's symmetrization techniques which are usually employed to this end. (Author)

  18. Stationary axially symmetric exterior solutions in the five-dimensional representation of the Brans-Dicke-Jordan theory of gravitation

    International Nuclear Information System (INIS)

    Bruckman, W.

    1986-01-01

    The inverse scattering method of Belinsky and Zakharov is used to investigate axially symmetric stationary vacuum soliton solutions in the five-dimensional representation of the Brans-Dicke-Jordan theory of gravitation, where the scalar field of the theory is an element of a five-dimensional metric. The resulting equations for the spacetime metric are similar to those of solitons in general relativity, while the scalar field generated is the product of a simple function of the coordinates and an already known scalar field solution. A family of solutions is considered that reduce, in the absence of rotation, to the five-dimensional form of a well-known Weyl-Levi Civita axially symmetric static vacuum solution. With a suitable choice of parameters, this static limit becomes equivalent to the spherically symmetric solution of the Brans-Dicke theory. An exact metric, in which the Kerr-scalar McIntosh solution is a special case, is given explicitly

  19. Primordial two-component maximally symmetric inflation

    Science.gov (United States)

    Enqvist, K.; Nanopoulos, D. V.; Quirós, M.; Kounnas, C.

    1985-12-01

    We propose a two-component inflation model, based on maximally symmetric supergravity, where the scales of reheating and the inflation potential at the origin are decoupled. This is possible because of the second-order phase transition from SU(5) to SU(3)×SU(2)×U(1) that takes place when φ≅φcinflation at the global minimum, and leads to a reheating temperature TR≅(1015-1016) GeV. This makes it possible to generate baryon asymmetry in the conventional way without any conflict with experimental data on proton lifetime. The mass of the gravitinos is m3/2≅1012 GeV, thus avoiding the gravitino problem. Monopoles are diluted by residual inflation in the broken phase below the cosmological bounds if φcUSA.

  20. Development of New Open-Shell Perturbation and Coupled-Cluster Theories Based on Symmetric Spin Orbitals

    Science.gov (United States)

    Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.

  1. Hairy black holes in N=2 gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Faedo, Federico [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133 Milano (Italy); Klemm, Dietmar; Nozawa, Masato [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133 Milano (Italy); INFN, Sezione di Milano, Via Celoria 16, 20133 Milano (Italy)

    2015-11-06

    We construct black holes with scalar hair in a wide class of four-dimensional N=2 Fayet-Iliopoulos gauged supergravity theories that are characterized by a prepotential containing one free parameter. Considering the truncated model in which only a single real scalar survives, the theory is reduced to an Einstein-scalar system with a potential, which admits at most two AdS critical points and is expressed in terms of a real superpotential. Our solution is static, admits maximally symmetric horizons, asymptotically tends to AdS space corresponding to an extremum of the superpotential, but is disconnected from the Schwarzschild-AdS family. The condition under which the spacetime admits an event horizon is addressed for each horizon topology. It turns out that for hyperbolic horizons the black holes can be extremal. In this case, the near-horizon geometry is AdS{sub 2}×H{sup 2}, where the scalar goes to the other, non-supersymmetric, critical point of the potential. Our solution displays fall-off behaviours different from the standard one, due to the fact that the mass parameter m{sup 2}=−2ℓ{sup −2} at the supersymmetric vacuum lies in a characteristic range m{sub BF}{sup 2}≤m{sup 2}

  2. Axially symmetric stationary black-hole states of the Einstein gravitational theory

    Energy Technology Data Exchange (ETDEWEB)

    Meinhardt, R [Chile Univ., Santiago. Departamento de Fisica

    1976-01-01

    Some aspects of the theory of black-hole states of the Einstein gravitational theory are reviewed in this paper. First explicit vacuum solutions of Einstein's field equations are searched for when the space-time admits 2 isometries (axially symmetric and stationary), which could be considered as candidates for black holes. Then the Liapounov stability of these solutions is studied. A generalization of the Ernst potential is introduced for solutions of Einstein's vacuum field equations with axial symmetry only, and this allows to construct a dynamical system. Using the theory of ''multiple integrals in the calculus of variations'' it is possible to show that the weakest casuality condition (chronology) is a necessary condition for the Liapounov stability. Finally, it is shown that the Kerr solution is Liapounov stable under a given topology.

  3. The description of N=1, d=4 supergravity using twisted supersymmetric fields

    CERN Document Server

    Baulieu, Laurent

    2015-01-01

    This chapter describes how the method of twisted supersymmetric fields used for describing global supersymmetry, as in the context of topological field theories, can be extended to the description of local supersymmetry. As an example, the method is applied to the case of N = 1 Euclidean supergravity on a 4-manifold with an almost complex structure, with its couplings to scalar and vector multiplets.

  4. On higher-order corrections in M theory

    International Nuclear Information System (INIS)

    Howe, P.S.; Tsimpis, D.

    2003-01-01

    A theoretical analysis of higher-order corrections to D=11 supergravity is given in a superspace framework. It is shown that any deformation of D=11 supergravity for which the lowest-dimensional component of the four-form G 4 vanishes is trivial. This implies that the equations of motion of D=11 supergravity are specified by an element of a certain spinorial cohomology group and generalises previous results obtained using spinorial or pure spinor cohomology to the fully non-linear theory. The first deformation of the theory is given by an element of a different spinorial cohomology group with coefficients which are local tensorial functions of the massless supergravity fields. The four-form Bianchi Identities are solved, to first order and at dimension -{1/2}, in the case that the lowest-dimensional component of G 4 is non-zero. Moreover, it is shown how one can calculate the first-order correction to the dimension-zero torsion and thus to the supergravity equations of motion given an explicit expression for this object in terms of the supergravity fields. The version of the theory with both a four-form and a seven-form is discussed in the presence of the five-brane anomaly-cancelling term. It is shown that the supersymmetric completion of this term exists and it is argued that it is the unique anomaly-cancelling invariant at this dimension which is at least quartic in the fields. This implies that the first deformation of the theory is completely determined by the anomaly term from which one can, in principle, read off the corrections to all of the superspace field strength tensors. (author)

  5. Background harmonic superfields in N=2 supergravity

    International Nuclear Information System (INIS)

    Zupnik, B.M.

    1998-01-01

    A modification of the harmonic superfield formalism in D=4, N=2 supergravity using a subsidiary condition of covariance under the background supersymmetry with a central charge (B-covariance) is considered. Conservation of analyticity together with the B-covariance leads to the appearance of linear gravitational superfields. Analytic prepotentials arise in a decomposition of the background linear superfields in terms of spinor coordinates and transform in a nonstandard way under the background supersymmetry. The linear gravitational superfields can be written via spinor derivatives of nonanalytic spinor prepotentials. The perturbative expansion of supergravity action in terms of the B-covariant superfields and the corresponding version of the differential-geometric formalism are considered. We discuss the dual harmonic representation of the linearized extended supergravity, which corresponds to the dynamical condition of Grassmann analyticity

  6. Spherically Symmetric Solutions of the Einstein-Bach Equations and a Consistent Spin-2 Field Theory

    International Nuclear Information System (INIS)

    Janda, A.

    2006-01-01

    We briefly present a relationship between General Relativity coupled to certain spin-0 and spin-2 field theories and higher derivatives metric theories of gravity. In a special case, described by the Einstein-Bach equations, the spin-0 field drops out from the theory and we obtain a consistent spin-two field theory interacting gravitationally, which overcomes a well known inconsistency of the theory for a linear spin-two field coupled to the Einstein's gravity. Then we discuss basic properties of static spherically symmetric solutions of the Einstein-Bach equations. (author)

  7. Precision holography for N={2}^{\\ast } on S 4 from type IIB supergravity

    Science.gov (United States)

    Bobev, Nikolay; Gautason, Friðrik Freyr; van Muiden, Jesse

    2018-04-01

    We find a new supersymmetric solution of type IIB supergravity which is holographically dual to the planar limit of the four-dimensional N={2}^{\\ast } supersymmetric Yang-Mills theory on S 4. We study a probe fundamental string in this background which is dual to a supersymmetric Wilson loop in the N={2}^{\\ast } theory. Using holography we calculate the expectation value of this line operator to leading order in the 't Hooft coupling. The result is a non-trivial function of the mass parameter of the N={2}^{\\ast } theory that precisely matches the result from supersymmetric localization.

  8. Exceptional versus superPoincaré algebra as the defining symmetry of maximal supergravity

    International Nuclear Information System (INIS)

    Ananth, Sudarshan; Brink, Lars; Majumdar, Sucheta

    2016-01-01

    We describe how one may use either the superPoincaré algebra or the exceptional algebra to construct maximal supergravity theories in the light-cone formalism. The d=4 construction shows both symmetries albeit in a non-linearly realized manner. In d=11, we find that we have to choose which of these two symmetries to use, in constructing the theory. In order to understand the other “unused" symmetry, one has to perform a highly non-trivial field redefinition. We argue that this shows that one cannot trust counterterm arguments that do not take the full symmetry of the theory into account. Finally we discuss possible consequences for Superstring theory and M-theory.

  9. The goldstino brane, the constrained superfields and matter in N=1 supergravity

    International Nuclear Information System (INIS)

    Bandos, Igor; Heller, Markus; Kuzenko, Sergei M.; Martucci, Luca; Sorokin, Dmitri

    2016-01-01

    We show that different (brane and constrained superfield) descriptions for the Volkov-Akulov goldstino coupled to N=1, D=4 supergravity with matter produce similar wide classes of models with spontaneously broken local supersymmetry and discuss the relation between the different formulations. As with the formulations with irreducible constrained superfields, the geometric goldstino brane approach has the advantage of being manifestly off-shell supersymmetric without the need to introduce auxiliary fields. It provides an explicit solution of the nilpotent superfield constraints and avoids issues with non-Gaussian integration of auxiliary fields. We describe general couplings of the supersymmetry breaking sector, including the goldstino and other non-supersymmetric matter, to supergravity and matter supermultiplets. Among various examples, we discuss a goldstino brane contribution to the gravitino mass term and the supersymmetrization of the anti-D3-brane contribution to the effective theory of type IIB warped flux compactifications.

  10. The goldstino brane, the constrained superfields and matter in N=1 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bandos, Igor [Department of Theoretical Physics, University of the Basque Country UPV/EHU,P.O. Box 644, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science,48011, Bilbao (Spain); Heller, Markus [Dipartimento di Fisica e Astronomia “Galileo Galilei' , Università degli Studi di Padova,Via Marzolo 8, 35131 Padova (Italy); Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, 69120 Heidelberg (Germany); Kuzenko, Sergei M. [School of Physics M013, The University of Western Australia35 Stirling Highway, Crawley W.A. 6009 (Australia); Martucci, Luca [Dipartimento di Fisica e Astronomia “Galileo Galilei' , Università degli Studi di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN - Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Sorokin, Dmitri [INFN - Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Dipartimento di Fisica e Astronomia “Galileo Galilei' , Università degli Studi di Padova,Via Marzolo 8, 35131 Padova (Italy)

    2016-11-21

    We show that different (brane and constrained superfield) descriptions for the Volkov-Akulov goldstino coupled to N=1, D=4 supergravity with matter produce similar wide classes of models with spontaneously broken local supersymmetry and discuss the relation between the different formulations. As with the formulations with irreducible constrained superfields, the geometric goldstino brane approach has the advantage of being manifestly off-shell supersymmetric without the need to introduce auxiliary fields. It provides an explicit solution of the nilpotent superfield constraints and avoids issues with non-Gaussian integration of auxiliary fields. We describe general couplings of the supersymmetry breaking sector, including the goldstino and other non-supersymmetric matter, to supergravity and matter supermultiplets. Among various examples, we discuss a goldstino brane contribution to the gravitino mass term and the supersymmetrization of the anti-D3-brane contribution to the effective theory of type IIB warped flux compactifications.

  11. Single-centered black hole microstate degeneracies from instantons in supergravity

    Science.gov (United States)

    Murthy, Sameer; Reys, Valentin

    2016-04-01

    We obtain holographic constraints on the microscopic degeneracies of black holes by computing the exact macroscopic quantum entropy using localization, including the effects of string worldsheet instantons in the supergravity effective action. For 1/4 -BPS black holes in type II string theory on K3 × T 2, the constraints can be explicitly checked against expressions for the microscopic BPS counting functions that are known in terms of certain mock modular forms. We find that the effect of including the infinite sum over instantons in the holomorphic prepotential of the supergravity leads to a sum over Bessel functions with successively sub-leading arguments as in the Rademacher expansion of Jacobi forms — but begins to disagree with such a structure near an order where the mock modular nature becomes relevant. This leads to a systematic method to recover the polar terms of the microscopic degeneracies from the degeneracy of instantons (the Gromov-Witten invariants). We check explicitly that our formula agrees with the known microscopic answer for the first seven values of the magnetic charge invariant.

  12. Single-centered black hole microstate degeneracies from instantons in supergravity

    International Nuclear Information System (INIS)

    Murthy, Sameer; Reys, Valentin

    2016-01-01

    We obtain holographic constraints on the microscopic degeneracies of black holes by computing the exact macroscopic quantum entropy using localization, including the effects of string worldsheet instantons in the supergravity effective action. For (1/4)-BPS black holes in type II string theory on K3×T 2 , the constraints can be explicitly checked against expressions for the microscopic BPS counting functions that are known in terms of certain mock modular forms. We find that the effect of including the infinite sum over instantons in the holomorphic prepotential of the supergravity leads to a sum over Bessel functions with successively sub-leading arguments as in the Rademacher expansion of Jacobi forms — but begins to disagree with such a structure near an order where the mock modular nature becomes relevant. This leads to a systematic method to recover the polar terms of the microscopic degeneracies from the degeneracy of instantons (the Gromov-Witten invariants). We check explicitly that our formula agrees with the known microscopic answer for the first seven values of the magnetic charge invariant.

  13. Extended Thermodynamics: a Theory of Symmetric Hyperbolic Field Equations

    Science.gov (United States)

    Müller, Ingo

    2008-12-01

    Extended thermodynamics is based on a set of equations of balance which are supplemented by local and instantaneous constitutive equations so that the field equations are quasi-linear first order differential equations. If the constitutive functions are subject to the requirements of the entropy principle, one may write them in symmetric hyperbolic form by a suitable choice of fields. The kinetic theory of gases, or the moment theories based on the Boltzmann equation provide an explicit example for extended thermodynamics. The theory proves its usefulness and practicality in the successful treatment of light scattering in rarefied gases. This presentation is based upon the book [1] of which the author of this paper is a co-author. For more details about the motivation and exploitation of the basic principles the interested reader is referred to that reference. It would seem that extended thermodynamics is worthy of the attention of mathematicians. It may offer them a non-trivial field of study concerning hyperbolic equations, if ever they get tired of the Burgers equation. Physicists may prefer to appreciate the success of extended thermodynamics in light scattering and to work on the open problems concerning the modification of the Navier-Stokes-Fourier theory in rarefied gases as predicted by extended thermodynamics of 13, 14, and more moments.

  14. Super-geometrodynamics [Journal of High Energy Physics (Online), ISSN 1029-8479, 5 Mar 2015, v. 2015(03)

    International Nuclear Information System (INIS)

    Cvetič, M.; Gibbons, G.W.; Pope, C.N.

    2015-01-01

    We present explicit solutions of the time-symmetric initial value constraints, expressed in terms of freely specifiable harmonic functions for examples of supergravity theories, which emerge as effective theories of compactified string theory. These results are a prerequisite for the study of the time-evolution of topologically non-trivial initial data for supergravity theories, thus generalising the “Geometrodynamics” program of Einstein-Maxwell theory to that of supergravity theories. Specifically, we focus on examples of multiple electric Maxwell and scalar fields, and analyse the initial data problem for the general Einstein-Maxwell-Dilaton theory both with one and two Maxwell fields, and the STU model. The solutions are given in terms of up to eight arbitrary harmonic functions in the STU model. As a by-product, in order compare our results with known static solutions, the metric in isotropic coordinates and all the sources of the non-extremal black holes are expressed entirely in terms of harmonic functions. We also comment on generalizations to time-nonsymmetric initial data and their relation to cosmological solutions of gauged so-called fake supergravities with positive cosmological constant.

  15. Standard model fermions and N=8 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Hermann [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, Potsdam-Golm (Germany)

    2016-07-01

    In a scheme originally proposed by Gell-Mann, and subsequently shown to be realized at the SU(3) x U(1) stationary point of maximal gauged SO(8) supergravity, the 48 spin-1/2 fermions of the theory remaining after the removal of eight Goldstinos can be identified with the 48 quarks and leptons (including right-chiral neutrinos) of the Standard model, provided one identifies the residual SU(3) with the diagonal subgroup of the color group SU(3){sub c} and a family symmetry SU(3){sub f}. However, there remained a systematic mismatch in the electric charges by a spurion charge of ± 1/6. We here identify the ''missing'' U(1) that rectifies this mismatch, and that takes a surprisingly simple, though unexpected form, and show how it is related to the conjectured R symmetry K(E10) of M Theory.

  16. Starobinsky-type Inflation in Dynamical Supergravity Breaking Scenarios

    CERN Document Server

    Alexandre, Jean; Mavromatos, Nick E.

    2014-01-27

    In the context of dynamical breaking of local supersymmetry (supergravity), including the Deser-Zumino super-Higgs effect, for the simple but quite representative cases of N=1, D=4 supergravity, we discuss the emergence of Starobinsky-type inflation, due to quantum corrections in the effective action arising from integrating out gravitino fields in their massive phase. This type of inflation may occur after a first-stage small-field inflation that characterises models near the origin of the one-loop effective potential, and it may occur at the non-trivial minima of the latter. Phenomenologically realistic scenarios, compatible with the Planck data, may be expected for the conformal supergravity variants of the basic model.

  17. Well-posedness of (N = 1) classical supergravity

    International Nuclear Information System (INIS)

    Bao, D.; Choquet-Bruhat, Y.; Isenberg, J.; Yasskin, P.B.

    1985-01-01

    In this paper we investigate whether classical (N = 1) supergravity has a well-posed locally causal Cauchy problem. We define well-posedness to mean that any choice of initial data (from an appropriate function space) which satisfies the supergravity constraint equations and a set of gauge conditions can be continuously developed into a space-time solution of the supergravity field equations around the initial surface. Local causality means that the domains of dependence of the evolution equations coincide with those determined by the light cones. We show that when the fields of classical supergravity are treated as formal objects, the field equations are (under certain gauge conditions) equivalent to a coupled system of quasilinear nondiagonal second-order partial differential equations which is formally nonstrictly hyperbolic (in the sense of Leray--Ohya). Hence, if the fields were numerical valued, there would be an applicable existence theorem leading to well-posedness. We shall observe that well-posedness is assured if the fields are taken to be Grassmann (i.e., exterior algebra) valued, for then the second-order system decouples into the vacuum Einstein equation and a sequence of numerical valued linear diagonal strictly hyperbolic partial differential equations which can be solved successively

  18. Attractor horizons in six-dimensional type IIB supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Astefanesei, Dumitru, E-mail: dumitru.astefanesei@ucv.cl [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Miskovic, Olivera, E-mail: olivera.miskovic@ucv.cl [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Olea, Rodrigo, E-mail: rodrigo.olea@unab.cl [Universidad Andres Bello, Departamento de Ciencias Fisicas, Republica 220, Santiago (Chile)

    2012-08-14

    We consider near horizon geometries of extremal black holes in six-dimensional type IIB supergravity. In particular, we use the entropy function formalism to compute the charges and thermodynamic entropy of these solutions. We also comment on the role of attractor mechanism in understanding the entropy of the Hopf T-dual solutions in type IIA supergravity.

  19. All gaugings and stable de Sitter in D=7 half-maximal supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Dibitetto, Giuseppe [Institutionen för fysik och astronomi, University of Uppsala, Box 803, SE-751 08 Uppsala (Sweden); Fernández-Melgarejo, Jose J. [Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138 (United States); Marqués, Diego [Instituto de Astronomía y Física del Espacio (CONICET-UBA) C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina)

    2015-11-05

    We study the general formulation of gauged supergravity in seven dimensions with sixteen supercharges keeping duality covariance by means of the embedding tensor formalism. We first classify all inequivalent duality orbits of consistent deformations. Secondly, we analyse the complete set of critical points in a systematic way. Interestingly, we find the first examples of stable de Sitter solutions within a theory with such a large amount of supersymmetry.

  20. Supergravity contributions to inflation in models with non-minimal coupling to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kumar; Dutta, Koushik [Theory Division, Saha Institute of Nuclear Physics, 1/AF Saltlake, Kolkata 700064 (India); Domcke, Valerie, E-mail: kumar.das@saha.ac.in, E-mail: valerie.domcke@apc.univ-paris7.fr, E-mail: koushik.dutta@saha.ac.in [AstroParticule et Cosmologie (APC), Paris Centre for Cosmological Physics (PCCP), Université Paris Diderot, 75013 Paris (France)

    2017-03-01

    This paper provides a systematic study of supergravity contributions relevant for inflationary model building in Jordan frame supergravity. In this framework, canonical kinetic terms in the Jordan frame result in the separation of the Jordan frame scalar potential into a tree-level term and a supergravity contribution which is potentially dangerous for sustaining inflation. We show that if the vacuum energy necessary for driving inflation originates dominantly from the F-term of an auxiliary field (i.e. not the inflaton), the supergravity corrections to the Jordan frame scalar potential are generically suppressed. Moreover, these supergravity contributions identically vanish if the superpotential vanishes along the inflationary trajectory. On the other hand, if the F-term associated with the inflaton dominates the vacuum energy, the supergravity contributions are generically comparable to the globally supersymmetric contributions. In addition, the non-minimal coupling to gravity inherent to Jordan frame supergravity significantly impacts the inflationary model depending on the size and sign of this coupling. We discuss the phenomenology of some representative inflationary models, and point out the relation to the recently much discussed cosmological 'attractor' models.

  1. Supergravity contributions to inflation in models with non-minimal coupling to gravity

    International Nuclear Information System (INIS)

    Das, Kumar; Dutta, Koushik; Domcke, Valerie

    2017-01-01

    This paper provides a systematic study of supergravity contributions relevant for inflationary model building in Jordan frame supergravity. In this framework, canonical kinetic terms in the Jordan frame result in the separation of the Jordan frame scalar potential into a tree-level term and a supergravity contribution which is potentially dangerous for sustaining inflation. We show that if the vacuum energy necessary for driving inflation originates dominantly from the F-term of an auxiliary field (i.e. not the inflaton), the supergravity corrections to the Jordan frame scalar potential are generically suppressed. Moreover, these supergravity contributions identically vanish if the superpotential vanishes along the inflationary trajectory. On the other hand, if the F-term associated with the inflaton dominates the vacuum energy, the supergravity contributions are generically comparable to the globally supersymmetric contributions. In addition, the non-minimal coupling to gravity inherent to Jordan frame supergravity significantly impacts the inflationary model depending on the size and sign of this coupling. We discuss the phenomenology of some representative inflationary models, and point out the relation to the recently much discussed cosmological 'attractor' models.

  2. The general class of the vacuum spherically symmetric equations of the general relativity theory

    International Nuclear Information System (INIS)

    Karbanovski, V. V.; Sorokin, O. M.; Nesterova, M. I.; Bolotnyaya, V. A.; Markov, V. N.; Kairov, T. V.; Lyash, A. A.; Tarasyuk, O. R.

    2012-01-01

    The system of the spherical-symmetric vacuum equations of the General Relativity Theory is considered. The general solution to a problem representing two classes of line elements with arbitrary functions g 00 and g 22 is obtained. The properties of the found solutions are analyzed.

  3. Marginal deformations of vacua with massive boson-fermion degeneracy symmetry

    International Nuclear Information System (INIS)

    Florakis, Ioannis; Kounnas, Costas; Toumbas, Nicolaos

    2010-01-01

    Two-dimensional string vacua with Massive Spectrum boson-fermion Degeneracy Symmetry, [MSDS] d=2 , are explicitly constructed in Type II and Heterotic superstring theories. The study of their moduli space indicates the existence of large marginal deformations that connect continuously the initial [MSDS] d=2 vacua to higher-dimensional conventional superstring vacua, where spacetime supersymmetry is spontaneously broken by geometrical fluxes. We find that the maximally symmetric, [Max:MSDS] d=2 , Type II vacuum, is in correspondence with the maximal, N=8, d=4 'gauged supergravity', where the supergravity gauging is induced by the fluxes. This correspondence is extended to less symmetric cases where the initial MSDS symmetry is reduced by orbifolds: [Z orb :MSDS] d=2 ↔[N≤8:SUGRA] d=4,fluxes . We also exhibit and analyse thermal interpretations of some Euclidean versions of the models and identify classes of MSDS vacua that remain tachyon-free under arbitrary marginal deformations about the extended symmetry point. The connection between the two-dimensional MSDS vacua and the resulting four-dimensional effective supergravities arises naturally within the context of an adiabatic cosmological evolution, where the very early Universe is conjectured to be described by an MSDS vacuum, while at late cosmological times it is described by an effective N=1 supergravity theory with spontaneously broken supersymmetry.

  4. The Bianchi classification of maximal D = 8 gauged supergravities

    NARCIS (Netherlands)

    Bergshoeff, Eric; Gran, Ulf; Linares, Román; Nielsen, Mikkel; Ortín, Tomás; Roest, Diederik

    2003-01-01

    We perform the generalized dimensional reduction of D = 11 supergravity over three-dimensional group manifolds as classified by Bianchi. Thus, we construct 11 different maximal D = 8 gauged supergravities, two of which have an additional parameter. One class of group manifolds (class B) leads to

  5. The Bianchi classification of maximal D=8 gauged supergravities

    NARCIS (Netherlands)

    Bergshoeff, E; Gran, U; Linares, R; Nielsen, M; Ortin, T; Roest, D

    2003-01-01

    We perform the generalized dimensional reduction of D = 11 supergravity over three-dimensional group manifolds as classified by Bianchi. Thus, we construct 11 different maximal D = 8 gauged supergravities, two of which have an additional parameter. One class of group manifolds (class B) leads to

  6. Critical N = (1, 1) general massive supergravity

    Science.gov (United States)

    Deger, Nihat Sadik; Moutsopoulos, George; Rosseel, Jan

    2018-04-01

    In this paper we study the supermultiplet structure of N = (1, 1) General Massive Supergravity at non-critical and critical points of its parameter space. To do this, we first linearize the theory around its maximally supersymmetric AdS3 vacuum and obtain the full linearized Lagrangian including fermionic terms. At generic values, linearized modes can be organized as two massless and 2 massive multiplets where supersymmetry relates them in the standard way. At critical points logarithmic modes appear and we find that in three of such points some of the supersymmetry transformations are non-invertible in logarithmic multiplets. However, in the fourth critical point, there is a massive logarithmic multiplet with invertible supersymmetry transformations.

  7. Field theory and strings

    International Nuclear Information System (INIS)

    Bonara, L.; Cotta-Ramusino, P.; Rinaldi, M.

    1987-01-01

    It is well-known that type I and heterotic superstring theories have a zero mass spectrum which correspond to the field content of N=1 supergravity theory coupled to supersymmetric Yang-Mills theory in 10-D. The authors study the field theory ''per se'', in the hope that simple consistency requirements will determine the theory completely once one knows the field content inherited from string theory. The simplest consistency requirements are: N=1 supersymmetry; and absence of chiral anomalies. This is what the authors discuss in this paper here leaving undetermined the question of the range of validity of the resulting field theory. As is known, a model of N=1 supergravity (SUGRA) coupled to supersymmetric Yang-Mills (SYM) theory was known in the form given by Chapline and Manton. The coupling of SUGRA to SYM was determined by the definition of the ''field strength'' 3-form H in this paper

  8. On minimal coupling of the ABC-superparticle to supergravity background

    OpenAIRE

    Galajinsky, A. V.; Gitman, D. M.

    1998-01-01

    By rigorous application of the Hamiltonian methods we show that the ABC-formulation of the Siegel superparticle admits consistent minimal coupling to external supergravity. The consistency check proves to involve all the supergravity constraints.

  9. Construction of the superalgebras for N=1 supergravity

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Niederle, J.

    1984-11-01

    It is shown that the infinite parameter gauge superalgebras of the conformal and of the N=1 Einstein supergravities can be obtained as the closures of various two finite-parameter superalgebras. In the conformal case the standard, minimal and Einsteinian closures are studied. In the case of the N=1 Einstein supergravities the minimal and non-minimal closures are discussed. (author)

  10. Brane induced supersymmetry breaking and de Sitter supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bandos, Igor [Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Martucci, Luca [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Sorokin, Dmitri [I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); Tonin, Mario [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2016-02-12

    We obtain a four-dimensional supergravity with spontaneously broken supersymmetry allowing for de Sitter vacua by coupling a superspace action of minimal N=1, D=4 supergravity to a locally supersymmetric generalization of the Volkov-Akulov goldstino action describing the dynamics of a space-filling non-BPS 3-brane in N=1, D=4 superspace. To the quadratic order in the goldstino field the obtained action coincides with earlier constructions of supergravities with nilpotent superfields, while matching the higher-order contributions will require a non-linear redefinition of fields. In the unitary gauge, in which the goldstino field is set to zero, the action coincides with that of Volkov and Soroka. We also show how a nilpotency constraint on a chiral curvature superfield emerges in this formulation.

  11. High energy scattering in gravity and supergravity

    CERN Document Server

    Giddings, Steven B; Andersen, Jeppe R

    2010-01-01

    We investigate features of perturbative gravity and supergravity by studying scattering in the ultraplanckian limit, and sharpen arguments that the dynamics is governed by long-distance physics. A simple example capturing aspects of the eikonal resummation suggests why short distance phenomena and in particular divergences or nonrenormalizability do not necessarily play a central role in this regime. A more profound problem is apparently unitarity. These considerations can be illustrated by showing that known gravity and supergravity amplitudes have the same long-distance behavior, despite the extra light states of supergravity, and this serves as an important check on long-range dynamics in a context where perturbative amplitudes are finite. We also argue that these considerations have other important implications: they obstruct probing the conjectured phenomenon of asymptotic safety through a physical scattering process, and gravity appears not to reggeize. These arguments sharpen the need to find a nonpert...

  12. Consistent Kaluza-Klein truncations via exceptional field theory

    Energy Technology Data Exchange (ETDEWEB)

    Hohm, Olaf [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Samtleben, Henning [Université de Lyon, Laboratoire de Physique, UMR 5672, CNRS,École Normale Supérieure de Lyon, 46, allée d’Italie, F-69364 Lyon cedex 07 (France)

    2015-01-26

    We present the generalized Scherk-Schwarz reduction ansatz for the full supersymmetric exceptional field theory in terms of group valued twist matrices subject to consistency equations. With this ansatz the field equations precisely reduce to those of lower-dimensional gauged supergravity parametrized by an embedding tensor. We explicitly construct a family of twist matrices as solutions of the consistency equations. They induce gauged supergravities with gauge groups SO(p,q) and CSO(p,q,r). Geometrically, they describe compactifications on internal spaces given by spheres and (warped) hyperboloides H{sup p,q}, thus extending the applicability of generalized Scherk-Schwarz reductions beyond homogeneous spaces. Together with the dictionary that relates exceptional field theory to D=11 and IIB supergravity, respectively, the construction defines an entire new family of consistent truncations of the original theories. These include not only compactifications on spheres of different dimensions (such as AdS{sub 5}×S{sup 5}), but also various hyperboloid compactifications giving rise to a higher-dimensional embedding of supergravities with non-compact and non-semisimple gauge groups.

  13. Harmonic analysis on symmetric spaces

    CERN Document Server

    Terras, Audrey

    This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards’s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random  matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.

  14. Canonical theory of spherically symmetric spacetimes with cross-streaming null dusts

    Science.gov (United States)

    Bičák, Jiří; Hájíček, Petr

    2003-11-01

    The Hamiltonian dynamics of two-component spherically symmetric null dust is studied with regard to the quantum theory of gravitational collapse. The components—the ingoing and outgoing dusts—are assumed to interact only through gravitation. Different kinds of singularities, naked or “clothed,” which can form during collapse processes are described. The general canonical formulation of the one-component null-dust dynamics by Bičák and Kuchař is restricted to the spherically symmetric case and used to construct an action for the two components. The transformation from a metric variable to the quasilocal mass is shown to simplify the mathematics. The action is reduced by a choice of gauge and the corresponding true Hamiltonian is written down. Asymptotic coordinates and energy densities of dust shells are shown to form a complete set of Dirac observables. The action of the asymptotic time translation on the observables is defined but it has been calculated explicitly only in the case of one-component dust (Vaidya metric).

  15. Generation of composite operators in supergravity

    International Nuclear Information System (INIS)

    Abdalla, E.

    1984-07-01

    The author discusses the generation of quantum composite operators in two and higher dimensions. In two dimensions the problem is discussed in detail, and the supergravity fields, trivial at the beginning, acquire the status of independent fields, non trivial features being obtained as consequence. In higher dimensions one is led to non compact symmetry groups when dealing with supergravity. The symmetry SU(p,q) is discussed; quantization presents several problems. In one case, p=q, it is possible to obtain a prescription leading to finite results, with a quantization procedure breaking the symmetry to SU(p) X SU(q). (Auth.)

  16. Symmetry enhancement of extremal horizons in D  =  5 supergravity

    Science.gov (United States)

    Kayani, U.

    2018-06-01

    We consider the near-horizon geometry of supersymmetric extremal black holes in un-gauged and gauged 5-dimensional supergravity, coupled to abelian vector multiplets. By analyzing the global properties of the Killing spinors, we prove that the near-horizon geometries undergo a supersymmetry enhancement. This follows from a set of generalized Lichnerowicz-type theorems we establish, together with an index theory argument. As a consequence, these solutions always admit a symmetry group.

  17. Superstrings: a theory of everything

    International Nuclear Information System (INIS)

    Anthony, S.

    1985-01-01

    The paper concerns the ''superstrings'' theory, a theory which may be capable of describing all physical phenomena. Superstring theories and its consequences are discussed, as well as quantum mechanics, general relativity and supergravity. (U.K.)

  18. Supersymmetry, supergravity and particle physics

    International Nuclear Information System (INIS)

    Nilles, H.P.

    1984-01-01

    We give a short introduction to N=1 supersymmetry and supergravity and review the attempts to construct models in which the breakdown scale of the weak interactions is related to supersymmetry breaking. (orig.)

  19. Glueball masses for the deformed conifold theory

    International Nuclear Information System (INIS)

    Caceres, Elena; Hernandez, Rafael

    2000-11-01

    We obtain the spectrum of glueball masses for the N=1 non-conformal cascade theory whose supergravity dual was recently constructed by Klebanov and Strassler. The glueball masses are calculated by solving the supergravity equations of motion for the dilaton and the two-form in the deformed conifold background. (author)

  20. Multiparty symmetric sum types

    DEFF Research Database (Denmark)

    Nielsen, Lasse; Yoshida, Nobuko; Honda, Kohei

    2010-01-01

    This paper introduces a new theory of multiparty session types based on symmetric sum types, by which we can type non-deterministic orchestration choice behaviours. While the original branching type in session types can represent a choice made by a single participant and accepted by others...... determining how the session proceeds, the symmetric sum type represents a choice made by agreement among all the participants of a session. Such behaviour can be found in many practical systems, including collaborative workflow in healthcare systems for clinical practice guidelines (CPGs). Processes...... with the symmetric sums can be embedded into the original branching types using conductor processes. We show that this type-driven embedding preserves typability, satisfies semantic soundness and completeness, and meets the encodability criteria adapted to the typed setting. The theory leads to an efficient...

  1. Symmetric energy-momentum tensor in Maxwell, Yang-Mills, and Proca theories obtained using only Noether's theorem

    Energy Technology Data Exchange (ETDEWEB)

    Montesinos, M. [CINVESTAV-IPN, 07360 Mexico D.F. (Mexico); Flores, E. [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)]. E-mail: merced@fis.cinvestav.mx

    2006-07-01

    The symmetric and gauge-invariant energy-momentum tensors for source-free Maxwell and Yang-Mills theories are obtained by means of translations in spacetime via a systematic implementation of Noether's theorem. For the source-free neutral Proca field, the same procedure yields also the symmetric energy-momentum tensor. In all cases, the key point to get the right expressions for the energy-momentum tensors is the appropriate handling of their equations of motion and the Bianchi identities. It must be stressed that these results are obtained without using Belinfante's symmetrization techniques which are usually employed to this end. (Author)

  2. On the gauged Kaehler isometry in minimal supergravity models of inflation

    International Nuclear Information System (INIS)

    Ferrara, S.; Fre, P.; Sorin, A.S.

    2014-01-01

    In this paper we address the question how to discriminate whether the gauged isometry group G Σ of the Kaehler manifold Σ that produces a D-type inflaton potential in a Minimal Supergravity Model is elliptic, hyperbolic or parabolic. We show that the classification of isometries of symmetric cosets can be extended to non symmetric Σ.s if these manifolds satisfy additional mathematical restrictions. The classification criteria established in the mathematical literature are coherent with simple criteria formulated in terms of the asymptotic behavior of the Kaehler potential K(C) = 2 J(C) where the real scalar field C encodes the inflaton field. As a by product of our analysis we show that phenomenologically admissible potentials for the description of inflation and in particular α-attractors are mostly obtained from the gauging of a parabolic isometry, this being, in particular the case of the Starobinsky model. Yet at least one exception exists of an elliptic α-attractor, so that neither type of isometry can be a priori excluded. The requirement of regularity of the manifold Σ poses instead strong constraints on the α-attractors and reduces their space considerably. Curiously there is a unique integrable α-attractor corresponding to a particular value of this parameter. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction

    International Nuclear Information System (INIS)

    Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.

    2004-01-01

    It has recently been shown that a non-Hermitian Hamiltonian H possessing an unbroken PT symmetry (i) has a real spectrum that is bounded below, and (ii) defines a unitary theory of quantum mechanics with positive norm. The proof of unitarity requires a linear operator C, which was originally defined as a sum over the eigenfunctions of H. However, using this definition to calculate C is cumbersome in quantum mechanics and impossible in quantum field theory. An alternative method is devised here for calculating C directly in terms of the operator dynamical variables of the quantum theory. This method is general and applies to a variety of quantum mechanical systems having several degrees of freedom. More importantly, this method is used to calculate the C operator in quantum field theory. The C operator is a time-independent observable in PT-symmetric quantum field theory

  4. Supergravity solitons

    International Nuclear Information System (INIS)

    Aichelburg, P.C.; Embacher, F.

    1987-01-01

    The motion of a soliton in a supergravity background configuration is studied. The dynamics of the soliton is desribed by a trajectory in curved N = 2 superspace. For the proposed Langrangian the moments, the constraints and the generators of local supertranslations are displayed. An additional local gauge symmetry is exhibited. Special emphasis is laid on the classical equations of motion. These turn out to be a supersymmetric generalization of Papapetrou's equation of motion for a spinning particle in a gravitational field. (Author)

  5. Axially symmetric stationary black-hole states of the Einstein gravitational theory

    International Nuclear Information System (INIS)

    Meinhardt, R.

    1976-01-01

    Some aspects of the thepry of black-hole states of the Einstein gravitational theory are reviewed in this paper. First explicit vacuum solutions of Einstein's field equations are searched for when the space-time admits 2 isometries (axially symmetric and stationary), which could be considered as candidates for black holes. Then the Liapounov stability of these solutions is studied. A generalization of the Ernst potential is introduced for solutions of Einstein's vacuum field equations with axial symmetry only, and this allows to construct a dynamical system. Using the theory of ''multiple integrals in the calculus of variations'' it is possible to show that the weakest casuality condition (chronology) is a necessary condition for the Liapounov stability. Finally, it is shown that the Kerr solution is Liapounov stable under a given topology

  6. Full component Lagrangian in the linear multiplet formulation of string-inspired effective supergravity

    International Nuclear Information System (INIS)

    Giedt, Joel

    2003-01-01

    We compute the component field four-dimensional N = 1 supergravity Lagrangian that is obtained from a superfield Lagrangian in the U(1) K formalism with a linear dilaton multiplet. All fermionic terms are presented. In a variety of important ways, our results generalize those that have been reported previously, and are flexible enough to accommodate many situations of phenomenological interest in string-inspired effective supergravity, especially models based on orbifold compactifications of the weakly coupled heterotic string. We provide for an effective theory of hidden gaugino and matter condensation. We include supersymmetric Green-Schwarz counterterms associated with the cancellation of U(1) and modular duality anomalies; the modular duality counterterm is of a rather general form. Our assumed form for the dilaton Kaehler potential is quite general and can accommodate Kaehler stabilization methods. We note possible applications of our results. We also discuss the usefulness of the linear dilaton formulation as a complement to the chiral dilaton approach

  7. Breaking E8 to SO(16) in M-theory and F-theory

    International Nuclear Information System (INIS)

    Aldabe, F.

    1998-01-01

    M-theory on an 11-dimensional manifold with a boundary must have E 8 gauge groups at each boundary in order to cancel anomalies. The type IA supergravity must have SO(16) gauge group at each boundary in order to be a consistent theory. The latter action can be obtained from the former one via dimensional reduction. Here we make use of the current algebra of the open membrane which couples to the former action to explain why the gauge group E 8 breaks down to SO(16) in going from M-theory to type IA supergravity. We also use the same current algebra to explain why F-theory has an E 8 x E 8 gauge group in its strong coupling limit while it has an SO(16) x SO(16) gauge group in its weak coupling limit. (orig.)

  8. Production and detection at SSC of Higgs bosons in left-right symmetric theories

    International Nuclear Information System (INIS)

    Gunion, J.; Kayser, B.; Mohapatra, R.N.; Deshpande, N.G.; Grifols, J.; Mendez, A.; Olness, F.; Pal, P.B.

    1986-12-01

    We discuss the production and detection at SSC of charged and neutral Higgs bosons of the left-right symmetric theories. The H + , which is largely a member of a left-right ''bidoublet,'' should be detectable. The H 2 0 , a more unusual Higgs particle which, apart from mixing, is in a right-handed triplet and does not couple to quarks, may be detectable too

  9. Spherically Symmetric Geometries in f(T) and f(R) Gravitational Theories

    International Nuclear Information System (INIS)

    Nashed, Gamal G. L.

    2015-01-01

    Using the well know relation between Ricci scalar, R, and torsion scalar, T, that is, R=-T-2∇_αT"α, we show that, for any spherically symmetric spacetime whose (i) scalar torsion vanishing, that is, T=T_μ_ν"αS_α"μ"ν=0 or (ii) total derivative term, that is, ∇_αT"α with T"α is the contraction of the torsion, vanishing, or (iii) the combination of scalar torsion and total derivative term vanishing, could be solution for f(T) and f(R) gravitational theories.

  10. Cylindrically symmetric, static strings with a cosmological constant in Brans-Dicke theory

    International Nuclear Information System (INIS)

    Delice, Oezguer

    2006-01-01

    The static cylindrically symmetric vacuum solutions with a cosmological constant in the framework of the Brans-Dicke theory are investigated. Some of these solutions admitting Lorentz boost invariance along the symmetry axis correspond to local, straight cosmic strings with a cosmological constant. Some physical properties of such solutions are studied. These strings apply attractive or repulsive forces on the test particles. A smooth matching is also performed with a recently introduced interior thick string solution with a cosmological constant

  11. Fermion loops in the effective potential of N = 1 supergravity, with application to no-scale models

    International Nuclear Information System (INIS)

    Burton, J.W.

    1990-01-01

    Powerful and quite general arguments suggest that N = 1 supergravity, and in particular the superstring-inspired no-scale models, may describe the physics of the four-dimensional vacuum at energy densities below the Planck scale. These models are not renormalizable, since they arise as effective theories after the large masses have been integrated out of the fundamental theory; thus, they have divergences in their loop amplitudes that must be regulated by imposing a cutoff. Before physics at experimental energies can be extracted from these models, the true vacuum state or states must be identified: at tree level, the ground states of the effective theories are highly degenerate. Radiative corrections at the one-loop level have been shown to break the degeneracy sufficiently to identify the states of vanishing vacuum energy. As the concluding step in a program to calculate these corrections within a self-consistent cutoff prescription, all fermionic one-loop divergent corrections to the scalar effective potential are evaluated. (The corresponding bosonic contributions have been found elsewhere.) The total effective scalar Lagrange density for N = 1 supergravity is written down, and comments are made about cancellations between the fermionic and bosonic loops. Finally, the result is specialized to a toy no-scale model with a single generation of matter fields, and prospects for eventual phenomenological constraints on theories of this type are briefly discussed. 48 refs

  12. Testing theories of gravity and supergravity with inflation and observations of the cosmic microwave background

    Science.gov (United States)

    Chakravarty, G. K.; Mohanty, S.; Lambiase, G.

    Cosmological and astrophysical observations lead to the emerging picture of a universe that is spatially flat and presently undertaking an accelerated expansion. The observations supporting this picture come from a range of measurements encompassing estimates of galaxy cluster masses, the Hubble diagram derived from type-Ia supernovae observations, the measurements of Cosmic Microwave Background radiation anisotropies, etc. The present accelerated expansion of the universe can be explained by admitting the existence of a cosmic fluid, with negative pressure. In the simplest scenario, this unknown component of the universe, the Dark Energy, is represented by the cosmological constant (Λ), and accounts for about 70% of the global energy budget of the universe. The remaining 30% consist of a small fraction of baryons (4%) with the rest being Cold Dark Matter (CDM). The Lambda Cold Dark Matter (ΛCDM) model, i.e. General Relativity with cosmological constant, is in good agreement with observations. It can be assumed as the first step towards a new standard cosmological model. However, despite the satisfying agreement with observations, the ΛCDM model presents lack of congruence and shortcomings and therefore theories beyond Einstein’s General Relativity are called for. Many extensions of Einstein’s theory of gravity have been studied and proposed with various motivations like the quest for a quantum theory of gravity to extensions of anomalies in observations at the solar system, galactic and cosmological scales. These extensions include adding higher powers of Ricci curvature R, coupling the Ricci curvature with scalar fields and generalized functions of R. In addition, when viewed from the perspective of Supergravity (SUGRA), many of these theories may originate from the same SUGRA theory, but interpreted in different frames. SUGRA therefore serves as a good framework for organizing and generalizing theories of gravity beyond General Relativity. All these

  13. Gauge theory and gravitation

    International Nuclear Information System (INIS)

    Kikkawa, Keiji; Nakanishi, Noboru; Nariai, Hidekazu

    1983-01-01

    These proceedings contain the articles presented at the named symposium. They deal with geometrical aspects of gauge theory and gravitation, special problems in gauge theories, quantum field theory in curved space-time, quantum gravity, supersymmetry including supergravity, and grand unification. See hints under the relevant topics. (HSI)

  14. Constraints on the minimal N=1 supergravity theory from electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Giudice, G.F.; Ridolfi, G.

    1988-01-01

    We reanalyze the constraints on the minimal N=1 supergravity extension of the standard model arising from the requirement of a correct spontaneous breakdown of the electroweak symmetry. Driven by recent experimental results, we devote special attention to the case of a top quark much heavier than the conventional choice of 40 GeV, used in previous analyses. Our results are stated in a space of phenomenologically meaningful parameters, providing a direct comparison between the constraints from SU(2) x U(1) breaking and the predictions for supersymmetric particle production. Moreover, an upper bound for the ratio of the two Higgs vacuum expectation values is given, for any value of the top quark mass. (orig.)

  15. HKT geometry and de Sitter supergravity

    International Nuclear Information System (INIS)

    Grover, Jai; Gutowski, Jan B.; Herdeiro, Carlos A.R.; Sabra, Wafic

    2009-01-01

    Solutions of five-dimensional minimal de Sitter supergravity admitting Killing spinors are considered. It is shown that the 'timelike' solutions are determined in terms of a four-dimensional hyper-Kaehler torsion (HKT) manifold. If the HKT manifold is conformally hyper-Kaehler the most general solution can be obtained from a sub-class of supersymmetric solutions of minimal N=2 ungauged supergravity, by means of a simple transformation. Examples include a multi-BMPV de Sitter solution, describing multiple rotating black holes co-moving with the expansion of the universe. If the HKT manifold is not conformally hyper-Kaehler, examples admitting a tri-holomorphic Killing vector field are constructed in terms of certain solutions of three-dimensional Einstein-Weyl geometry

  16. Dynamical self-arrest in symmetric and asymmetric diblock copolymer melts using a replica approach within a local theory.

    Science.gov (United States)

    Wu, Sangwook

    2009-03-01

    We investigate dynamical self-arrest in a diblock copolymer melt using a replica approach within a self-consistent local method based on dynamical mean-field theory (DMFT). The local replica approach effectively predicts (chiN)_{A} for dynamical self-arrest in a block copolymer melt for symmetric and asymmetric cases. We discuss the competition of the cubic and quartic interactions in the Landau free energy for a block copolymer melt in stabilizing a glassy state depending on the chain length. Our local replica theory provides a universal value for the dynamical self-arrest in block copolymer melts with (chiN)_{A} approximately 10.5+64N;{-3/10} for the symmetric case.

  17. Two-Field Analysis of No-Scale Supergravity Inflation

    CERN Document Server

    Ellis, John; Nanopoulos, Dimitri V; Olive, Keith A

    2015-01-01

    Since the building-blocks of supersymmetric models include chiral superfields containing pairs of effective scalar fields, a two-field approach is particularly appropriate for models of inflation based on supergravity. In this paper, we generalize the two-field analysis of the inflationary power spectrum to supergravity models with arbitrary K\\"ahler potential. We show how two-field effects in the context of no-scale supergravity can alter the model predictions for the scalar spectral index $n_s$ and the tensor-to-scalar ratio $r$, yielding results that interpolate between the Planck-friendly Starobinsky model and BICEP2-friendly predictions. In particular, we show that two-field effects in a chaotic no-scale inflation model with a quadratic potential are capable of reducing $r$ to very small values $\\ll 0.1$. We also calculate the non-Gaussianity measure $f_{\\rm NL}$, finding that is well below the current experimental sensitivity.

  18. 2D supergravity and its connection to integrable models

    International Nuclear Information System (INIS)

    Arnaudov, L.N.; Prodanov, E.M.; Rashkov, R.C.

    1993-05-01

    In the recent work two different approaches for obtaining the covariant W 2 -action of 2-d quantum supergravity are considered. The first one is based on Hamiltonian reduction of flat Osp(2/1) connection in holomorphic polarization. Adding extra degrees of freedom with the help of gauging procedure the W 2 -action and the superconformal identities are obtained. It is shown that the super Virasoro transformations preserve the form of the Lax connection and therefore are symmetries of the sKdV equations. In the second approach starting with Chern-Simons theory and using non-canonical polarization the zero-curvature condition entails the same results. (author). 7 refs

  19. Direction: unified theory of interactions

    International Nuclear Information System (INIS)

    Valko, P.

    1987-01-01

    Briefly characterized are the individual theories, namely, the general relativity theory, the Kaluza-Klein theory, the Weyl theory, the unified theory of electromagnetic and weak interactions, the supergravity theory, and the superstring theory. The history is recalled of efforts aimed at creating a unified theory of interactions, and future prospects are outlined. (M.D.). 2 figs

  20. Anomalies of hidden local chiral symmetries in sigma-models and extended supergravities

    International Nuclear Information System (INIS)

    Vecchia, P. di; Ferrara, S.; Girardello, L.

    1985-01-01

    Non-linear sigma-models with hidden gauge symmetries are anomalous, at the quantum level, when coupled to chiral fermions in not anomaly free representations of the hidden chiral symmetry. These considerations generally apply to supersymmetric kaehlerian sigma-models on coset spaces with hidden chiral symmetries as well as to extended supergravities in four dimensions with local SU(N) symmetry. The presence of the anomaly implies that the scenario of dynamical generation of gauge vector bosons has to be reconsidered in these theories. (orig.)

  1. Ambitwistor pure spinor string in a type II supergravity background

    Energy Technology Data Exchange (ETDEWEB)

    Chandia, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile); Vallilo, Brenno Carlini [Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andres Bello,República 220, Santiago (Chile)

    2015-06-30

    We construct the ambitwistor pure spinor string in a general type II supergravity background in the semi-classical regime. Almost all supergravity constraints are obtained from nilpotency of the BRST charge and further consistency conditions from additional world-sheet the case of AdS{sub 5}×S{sup 5} background.

  2. Direct gauge mediation of uplifted metastable supersymmetry breaking in supergravity

    International Nuclear Information System (INIS)

    Maru, Nobuhito

    2010-01-01

    We propose a direct gauge mediation model based on an uplifted metastable supersymmetry (SUSY) breaking coupled to supergravity. A constant superpotential plays an essential role to fix the moduli as well as breaking SUSY and R symmetry and the cancellation of the cosmological constant. Gaugino masses are generated at leading order of SUSY breaking scale, and comparable to the sfermion masses as in the ordinary gauge mediation. The Landau pole problem for QCD coupling can be easily solved since more than half of messengers become superheavy, which are heavier than the grand unified theory (GUT) scale.

  3. Left-right gauge symmetry breaking by radiative corrections in supergravity

    International Nuclear Information System (INIS)

    Moxhay, P.; Yamamoto, K.

    1984-01-01

    A supersymmetric SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) gauge theory coupled to N = 1 supergravity is investigated. The scale of left-right gauge symmetry breaking is determined as Msub(R) proportional Msub(P) esup(-1/α) by radiative corrections through the logarithmic evolution of soft supersymmetry breakings. SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) may be embedded in SO(10) grand unification. Cosmological implications intrinsic to the present model are also discussed, which may give a constraint Msub(R) approx.= 10 9-12 GeV. (orig.)

  4. Structure of N = 2 supergravity in N = 1 superfields

    Energy Technology Data Exchange (ETDEWEB)

    Awada, M.A.; Mokhtari, S. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.)

    1985-01-01

    A formulation of N = 2 supergravity in N = 1 superspace is presented. The authors solve up to all orders the N = 2 supergravity constraints in terms of unconstrained N = 1 superfields. The structure of the N = 2 action in N = 1 superspace is examined. The proposed action coincides in the quadratic limit of the spin (3/2,1) matter fields with the action given by previous workers.

  5. The c-map, Tits Satake subalgebras and the search for N = 2 inflaton potentials

    Energy Technology Data Exchange (ETDEWEB)

    Fre, P. [Dipartimento di Fisica, Universita di Torino (Italy); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); INFN, Torino (Italy); Sorin, A.S. [Bogoliubov Laboratory of Theoretical Physics and Laboratory of High Energy Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Trigiante, M. [Department of Applied Science and Technology, Politecnico di Torino, Torino (Italy)

    2015-04-01

    In this paper we address the general problem of including inflationary models exhibiting Starobinsky-like potentials into (symmetric) N = 2 supergravities. This is done by gauging suitable abelian isometries of the hypermultiplet sector and then truncating the resulting theory to a single scalar field. By using the characteristic properties of the global symmetry groups of the N = 2 supergravities we are able to make a general statement on the possible α-attractor models which can obtained upon truncation. We find that in symmetric N = 2 models group theoretical constraints restrict the allowed values of the parameter α to be α = 1, (2)/(3), (1)/(3). This confirms and generalizes results recently obtained in the literature. Our analysis heavily relies on the mathematical structure of symmetric N = 2 supergravities, in particular on the so called c-map connection between Quaternionic Kaehler manifolds starting from Special Kaehler ones. A general statement on the possible consistent truncations of the gauged models, leading to Starobinsky-like potentials, requires the essential help of Tits Satake universality classes. The paper is mathematically selfcontained and aims at presenting the involved mathematical structures to a public not only of physicists but also of mathematicians. To this end the main mathematical structures and the general gauging procedure of N = 2 supergravities is reviewed in some detail. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Nilpotent algebras of the generalized differential forms and the geometry of superfield theories

    International Nuclear Information System (INIS)

    Zupnik, B.M.

    1991-01-01

    We consider a new algebraic approach in the geometry of supergauge theories and supergravity. An introduction of nilpotent algebras simplifies significantly the analysis of D = 3, 4, N = 1 supergravity constraints. Different terms in the invariant action functionals of SG- and SYM-theories are constructed as the integrals of corresponding generalized differential forms. (orig.)

  7. Supergravity and the knitting of the Kalb-Ramond two-form in eight-dimensional topological gravity

    Energy Technology Data Exchange (ETDEWEB)

    Baulieu, Laurent; Bellon, Marc; Tanzini, Alessandro

    2003-07-17

    Topological Euclidean gravity is built in eight dimensions for manifolds with Spin(7) subset of SO(8) holonomy. In a previous work, we considered the construction of an eight-dimensional topological theory describing the graviton and one graviphoton. Here we solve the question of determining a topological model for the combined system of a metric and a Kalb-Ramond two-form gauge field. We then recover the complete N=1, D=8 supergravity theory in a twisted form. We observe that the generalized self-duality conditions of our model correspond to the octonionic string equations.

  8. Problems in unification and supergravity

    International Nuclear Information System (INIS)

    Farrar, G.; Henyey, F.

    1984-01-01

    Problems in unification of the various gauge groups, quantum gravity, supersymmetry and supergravity, compact dimensions of space-time, and conditions at the beginning of the universe are discussed. Separate entries were prepared for the data base for the 15 papers presented

  9. Some no-go theorems for string duals of non-relativistic Lifshitz-like theories

    International Nuclear Information System (INIS)

    Li Wei; Takayanagi, Tadashi; Nishioka, Tatsuma

    2009-01-01

    We study possibilities of string theory embeddings of the gravity duals for non-relativistic Lifshitz-like theories with anisotropic scale invariance. We search classical solutions in type IIA and eleven-dimensional supergravities which are expected to be dual to (2+1)-dimensional Lifshitz-like theories. Under reasonable ansaetze, we prove that such gravity duals in the supergravities are not possible. We also discuss a possible physical reason behind this.

  10. On electromagnetic duality in locally supersymmetric N = 2 Yang-Mills theory

    CERN Document Server

    Ceresole, Anna; Ferrara, S.; Van Proeyen, Antoine; Ceresole, A; D'Auria, R; Ferrara, S; Van Proeyen, A

    1995-01-01

    We consider duality transformations in N=2 Yang--Mills theory coupled to N=2 supergravity, in a manifestly symplectic and coordinate covariant setting. We give the essential of the geometrical framework which allows one to discuss stringy classical and quantum monodromies, the form of the spectrum of BPS saturated states and the Picard--Fuchs identities encoded in the special geometry of N=2 supergravity theories.

  11. EDITORIAL: Lectures from the European RTN Winter School on Strings, Supergravity and Gauge Theories, CERN, 21 25 January 2008

    Science.gov (United States)

    Derendinger, J.-P.; Orlando, D.; Uranga, A.

    2008-11-01

    This special issue is devoted to the proceedings of the conference 'RTN Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, on the 21 25 January 2008. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools, which represents what is by now a well established tradition. The previous ones have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006. The next one will again take place at CERN, in February 2009. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in the present proceedings, and five working group discussion sessions, focused on specific topics of the network research program. It was attended by approximatively 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years is the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti-de Sitter spacetimes with gauge theories. The duality relates the weak coupling regime of one system to the strongly coupled regime of the other, and is therefore very non-trivial to test beyond the supersymmetry-protected BPS sector. One of the key ideas to quantitatively match several quantities on both sides is the use of integrability, both in the gauge theory and the string side. The lecture notes by Nick Dorey provide a pedagogical introduction to the fascinating topic of integrability in AdS/CFT. On the string theory side, progress has

  12. Fermilab Tevatron and CERN LEP II probes of minimal and string-motivated supergravity models

    International Nuclear Information System (INIS)

    Baer, H.; Gunion, J.F.; Kao, C.; Pois, H.

    1995-01-01

    We explore the ability of the Fermilab Tevatron to probe minimal supersymmetry with high-energy-scale boundary conditions motivated by supersymmetry breaking in the context of minimal and string-motivated supergravity theory. A number of boundary condition possibilities are considered: dilatonlike string boundary conditions applied at the standard GUT unification scale or alternatively at the string scale; and extreme (''no-scale'') minimal supergravity boundary conditions imposed at the GUT scale or string scale. For numerous specific cases within each scenario the sparticle spectra are computed and then fed into ISAGET 7.07 so that explicit signatures can be examined in detail. We find that, for some of the boundary condition choices, large regions of parameter space can be explored via same-sign dilepton and isolated trilepton signals. For other choices, the mass reach of Tevatron collider experiments is much more limited. We also compare the mass reach of Tevatron experiments with the corresponding reach at CERN LEP 200

  13. Supergravity tensor calculus in 5D from 6D

    International Nuclear Information System (INIS)

    Kugo, Taichiro; Ohashi, Keisuke

    2000-01-01

    Supergravity tensor calculus in five spacetime dimensions is derived by dimensional reduction from the d=6 superconformal tensor calculus. In particular, we obtain an off-shell hypermultiplet in 5D from the on-shell hypermultiplet in 6D. Our tensor calculus retains the dilatation gauge symmetry, so that it is a trivial gauge fixing to make the Einstein term canonical in a general matter-Yang-Mills-supergravity coupled system. (author)

  14. Supersymmetrical dual string theories and their field theory limits: A review

    International Nuclear Information System (INIS)

    Green, M.B.

    1985-01-01

    This paper outlines the construction and properties of supersymmetric string theories. Such theories, which describe the quantum mechanics of relativistic strings in ten-space time dimensions contain both N=4 Yang-Mills and N=8 supergravity field theories as special limits in which the string tension becomes infinite. Calculations of one-loop S-matrix elements reveal remarkable finiteness properties

  15. Absence of U(1) anomalous superamplitudes in N≥5 supergravities

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Daniel Z. [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,Stanford, CA 94305 (United States); Center for Theoretical Physics and Department of Mathematics,Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Kallosh, Renata; Murli, Divyanshu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,Stanford, CA 94305 (United States); Proeyen, Antoine Van [KU Leuven, Institute for Theoretical Physics,Celestijnenlaan 200D, B-3001, Leuven (Belgium); Yamada, Yusuke [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,Stanford, CA 94305 (United States)

    2017-05-12

    We list all potential candidates for U(1) anomalous non-local 1-loop 4-point amplitudes and higher loop UV divergences in N≥5 supergravities. The relevant chiral superinvariants are constructed from linearized chiral superfields and define the corresponding superamplitudes. The anomalous amplitudes, of the kind present in N=4, are shown to be absent in N≥5. In N=6 supergravity the result is deduced from the double-copy (N=4){sub YM}×(N=2){sub YM} model, whereas in N=5,8 the result on absence of anomalous amplitudes is derived in supergravities as well as in the (N=4){sub YM}×(N−4){sub YM} double-copy models.

  16. Problems in unification and supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, G.; Henyey, F. (eds.)

    1984-01-01

    Problems in unification of the various gauge groups, quantum gravity, supersymmetry and supergravity, compact dimensions of space-time, and conditions at the beginning of the universe are discussed. Separate entries were prepared for the data base for the 15 papers presented. (WHK)

  17. G-theory: The generator of M-theory and supersymmetry

    Science.gov (United States)

    Sepehri, Alireza; Pincak, Richard

    2018-04-01

    In string theory with ten dimensions, all Dp-branes are constructed from D0-branes whose action has two-dimensional brackets of Lie 2-algebra. Also, in M-theory, with 11 dimensions, all Mp-branes are built from M0-branes whose action contains three-dimensional brackets of Lie 3-algebra. In these theories, the reason for difference between bosons and fermions is unclear and especially in M-theory there is not any stable object like stable M3-branes on which our universe would be formed on it and for this reason it cannot help us to explain cosmological events. For this reason, we construct G-theory with M dimensions whose branes are formed from G0-branes with N-dimensional brackets. In this theory, we assume that at the beginning there is nothing. Then, two energies, which differ in their signs only, emerge and produce 2M degrees of freedom. Each two degrees of freedom create a new dimension and then M dimensions emerge. M-N of these degrees of freedom are removed by symmetrically compacting half of M-N dimensions to produce Lie-N-algebra. In fact, each dimension produces a degree of freedom. Consequently, by compacting M-N dimensions from M dimensions, N dimensions and N degrees of freedom is emerged. These N degrees of freedoms produce Lie-N-algebra. During this compactification, some dimensions take extra i and are different from other dimensions, which are known as time coordinates. By this compactification, two types of branes, Gp and anti-Gp-branes, are produced and rank of tensor fields which live on them changes from zero to dimension of brane. The number of time coordinates, which are produced by negative energy in anti-Gp-branes, is more sensible to number of times in Gp-branes. These branes are compactified anti-symmetrically and then fermionic superpartners of bosonic fields emerge and supersymmetry is born. Some of gauge fields play the role of graviton and gravitino and produce the supergravity. The question may arise that what is the physical reason

  18. Gauge theories of gravity

    International Nuclear Information System (INIS)

    Ne'eman, Y.

    1998-01-01

    The relatively simple Fibre-Bundle geometry of a Yang-Mills gauge theory - mainly the clear distinction between base and fibre - made it possible, between 1953 and 1971, to construct a fully quantized version and prove that theory's renormalizability; moreover, nonperturbative (topological) solutions were subsequently found in both the fully symmetric and the spontaneously broken modes (instantons, monopoles). Though originally constructed as a model formalism, it became in 1974 the mathematical mold holding the entire Standard Model (i.e. QCD and the Electroweak theory). On the other hand, between 1974 and 1984, Einstein's theory was shown to be perturbatively nonrenormalizable. Since 1974, the search for Quantum Gravity has therefore provided the main motivation for the construction of Gauge Theories of Gravity. Earlier, however, in 1958-76 several such attempts were initiated, for aesthetic or heuristic reasons, to provide a better understanding of the algebraic structure of GR. A third motivation has come from the interest in Unification, making it necessary to bring GR into a form compatible with an enlargement of the Standard Model. Models can be classified according to the relevant structure group in the fibre. Within the Poincare group, this has been either the R 4 translations, or the Lorentz group SL(2, C) - or the entire Poincare SL(2, C) x R 4 . Enlarging the group has involved the use of the Conformal SU(2, 2), the special Affine SA(4, R) = SL(4, R) x R 4 or Affine A(4, R) groups. Supergroups have included supersymmetry, i.e. the graded-Poincare group (n =1...8 m its extensions) or the superconformal SU(2, 2/n). These supergravity theories have exploited the lessons of the aesthetic-heuristic models - Einstein-Cartan etc. - and also achieved the Unification target. Although perturbative renormalizability has been achieved in some models, whether they satisfy unitarity is not known. The nonperturbative Ashtekar program has exploited the understanding of

  19. Generalized Lie superalgebras and a supergravity with a positive cosmological constant

    International Nuclear Information System (INIS)

    Vasil'ev, M.A.

    1984-01-01

    A new law for forming the Hermitian conjugation makes it possible to construct a Hermitian action for a supergravity with a positive cosmological constant Λ. This modified conjugation leads to generalized (Z 2 x Z 2 -gauge) Lie superalgebras that correspond to a supergravity with Λ>0

  20. Left--right symmetric gauge theories of weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Sidhu, D.P.

    1978-01-01

    We review the recent progress in spontaneously broken left-right symmetric gauge theories of weak and electromagnetic interactions. Recently gauge theories based on the group SU(2)/Sub L/ x SU(2)/sub R/ x U(1) have been proposed as serious candidates for a unified description of the weak and electromagnetic interactions. Such theories have a number of attractive features which are not shared by the standard SU(2) x U(1) theories. Parity violation as well as CP-violation are spontaneous in origin and, therefore, theories are parity conserving before spontaneous breakdown of the symmetry and also afterwards at asymptotic energies. The asymmetry in low energy charged current weak interaction, i.e., predominance of left-handed charged current interactions over the right-handed ones, is a consequence of the symmetry breaking thus leading to a conceptually different picture of weak interaction at low energies. Another appealing feature of these theories is the beauty and richness of the structure of weak neutral current interactions. One can have a parity conserving structure of the neutral currents (one neutral boson (Z/sub V/) has pure vector and the other (Z/sub A/) pure axial vector coupling to quarks and leptons) which is natural in the technical sense of the word. Models of this type provide the most elegant explanation of the failure to find parity violation in atoms at the level predicted on the basis of the Weinberg-Salam model. In spite of manifestly parity conserving neutral current interactions, ν/sub μ/N and anti ν/sub μ/N (also ν/sub μ/e and anti ν/sub μ/e) neutral current cross-sections have to be unequal in these theories because of the definite parity and charge conjugation of the Z-bosons

  1. A complete solution of the Bianchi identities in superspace with supergravity constraints

    International Nuclear Information System (INIS)

    Grimm, R.; Wess, J.; Zumino, B.

    1979-01-01

    A short discussion of the superspace formulation of supergravity is given and the Bianchi identities are derived. The supergravity constraints are imposed and the identities are solved in terms of superfields and their covariant derivatives. (Auth.)

  2. d=3 Chern-Simons action, supergravity and quantization

    International Nuclear Information System (INIS)

    Dayi, O.F.

    1989-01-01

    An interpretation of three-dimensional simple supergravity as a pure Chern-Simons gauge action is shown to be valid up to the one loop level. Canonical quantization of this system does not lead to an explicit definition of the physical Hilbert space. Hence another formulation of the N = 1 three-dimensional supergravity is introduced. In this formalism an explicit definition of the physical Hilbert space is possible, but still one has to solve the problems of showing that there exists a global set of coordinates and of defining the inner product. (author). 10 refs

  3. Constraints on modular inflation in supergravity and string theory

    International Nuclear Information System (INIS)

    Covi, L.; Palma, G.A.; Gomez-Reino, M.; Gross, C.; Louis, J.; Hamburg Univ.; Scrucca, C.A.

    2008-05-01

    We perform a general algebraic analysis on the possibility of realising slow-roll inflation in the moduli sector of string models. This problem turns out to be very closely related to the characterisation of models admitting metastable vacua with non-negative cosmological constant. In fact, we show that the condition for the existence of viable inflationary trajectories is a deformation of the condition for the existence of metastable de Sitter vacua. This condition depends on the ratio between the scale of inflation and the gravitino mass and becomes stronger as this parameter grows. After performing a general study within arbitrary supergravity models, we analyse the implications of our results in several examples. More concretely, in the case of heterotic and orientifold string compactifications on a Calabi-Yau in the large volume limit we show that there may exist fully viable models, allowing both for inflation and stabilisation. Additionally, we show that subleading corrections breaking the no-scale property shared by these models always allow for slow-roll inflation but with an inflationary scale suppressed with respect to the gravitino scale. A scale of inflation larger than the gravitino scale can also be achieved under more restrictive circumstances and only for certain types of compactifications. (orig.)

  4. Supergravity one-loop corrections on AdS7 and AdS3, higher spins and AdS/CFT

    Directory of Open Access Journals (Sweden)

    Matteo Beccaria

    2015-03-01

    Full Text Available As was shown earlier, the one-loop correction in 10d supergravity on AdS5×S5 corresponds to the contributions to the vacuum energy and 4d boundary conformal anomaly which are minus the values for one N=4 Maxwell supermultiplet, thus reproducing the subleading term in the N2−1 coefficient in the dual SU(N SYM theory. We perform similar one-loop computations in 11d supergravity on AdS7×S4 and 10d supergravity on AdS3×S3×T4. In the AdS7 case we find that the corrections to the 6d conformal anomaly a-coefficient and the vacuum energy are again minus the ones for one (2,0 tensor multiplet, suggesting that the total a-anomaly coefficient for the dual (2,0 theory is 4N3−9/4N−7/4 and thus vanishes for N=1. In the AdS3 case the one-loop correction to the vacuum energy or 2d central charge turns out to be equal to that of one free (4,4 scalar multiplet, i.e. is c=+6. This reproduces the subleading term in the central charge c=6(Q1Q5+1 of the dual 2d CFT describing decoupling limit of D5–D1 system. We also present the expressions for the 6d a-anomaly coefficient and vacuum energy contributions of general-symmetry higher spin field in AdS7 and consider their application to tests of vectorial AdS/CFT with the boundary conformal 6d theory represented by free scalars, spinors or rank-2 antisymmetric tensors.

  5. 24 +24 real scalar multiplet in four dimensional N =2 conformal supergravity

    Science.gov (United States)

    Hegde, Subramanya; Lodato, Ivano; Sahoo, Bindusar

    2018-03-01

    Starting from the 48 +48 component multiplet of supercurrents for a rigid N =2 tensor multiplet in four spacetime dimensions, we obtain the transformation of the linearized supergravity multiplet which couples to this supercurrent multiplet. At the linearized level, this 48 +48 component supergravity multiplet decouples into the 24 +24 component linearized standard Weyl multiplet and a 24 +24 component irreducible matter multiplet containing a real scalar field. By a consistent application of the supersymmetry algebra with field-dependent structure constants appropriate to N =2 conformal supergravity, we find the full transformation law for this multiplet in a conformal supergravity background. By performing a suitable field redefinition, we find that the multiplet is a generalization of the flat space multiplet, obtained by Howe et al. in Nucl. Phys. B214, 519 (1983), 10.1016/0550-3213(83)90249-3, to a conformal supergravity background. We also present a set of constraints which can be consistently imposed on this multiplet to obtain a restricted minimal 8 +8 off-shell matter multiplet. We also show, as an example, the precise embedding of the tensor multiplet inside this multiplet.

  6. Pole inflation in Jordan frame supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Saikawa, Ken' ichi [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yamaguchi, Masahide [Tokyo Institute of Technology, Ookayama (Japan). Dept. of Physics; Yamashita, Yasuho [Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics; Yoshida, Daisuke [Montreal Univ., QC (Canada). Dept. of Physics

    2017-09-15

    We investigate inflation models in Jordan frame supergravity, in which an inflaton non-minimally couples to the scalar curvature. By imposing the condition that an inflaton would have the canonical kinetic term in the Jordan frame, we construct inflation models with asymptotically flat potential through pole inflation technique and discuss their relation to the models based on Einstein frame supergravity. We also show that the model proposed by Ferrara et al. has special position and the relation between the Kaehler potential and the frame function is uniquely determined by requiring that scalars take the canonical kinetic terms in the Jordan frame and that a frame function consists only of a holomorphic term (and its anti-holomorphic counterpart) for symmetry breaking terms. Our case corresponds to relaxing the latter condition.

  7. Pole inflation in Jordan frame supergravity

    International Nuclear Information System (INIS)

    Saikawa, Ken'ichi; Yamaguchi, Masahide; Yamashita, Yasuho; Yoshida, Daisuke

    2017-09-01

    We investigate inflation models in Jordan frame supergravity, in which an inflaton non-minimally couples to the scalar curvature. By imposing the condition that an inflaton would have the canonical kinetic term in the Jordan frame, we construct inflation models with asymptotically flat potential through pole inflation technique and discuss their relation to the models based on Einstein frame supergravity. We also show that the model proposed by Ferrara et al. has special position and the relation between the Kaehler potential and the frame function is uniquely determined by requiring that scalars take the canonical kinetic terms in the Jordan frame and that a frame function consists only of a holomorphic term (and its anti-holomorphic counterpart) for symmetry breaking terms. Our case corresponds to relaxing the latter condition.

  8. Nonlinear self-duality and supergravity

    International Nuclear Information System (INIS)

    Kuzenko, Sergei M.; McCarthy, Shane A.

    2003-01-01

    The concept of self-dual supersymmetric nonlinear electrodynamics is generalized to a curved superspace of N=1 supergravity, for both the old minimal and the new minimal versions of N=1 supergravity. We derive the self-duality equation, which has to be satisfied by the action functional of any U(1) duality invariant model of a massless vector multiplet, and construct a family of self-dual nonlinear models. This family includes a curved superspace extension of the N=1 super Born-Infeld action. The supercurrent and supertrace in such models are proved to be duality invariant. The most interesting and unexpected result is that the requirement of nonlinear self-duality yields nontrivial couplings of the vector multiplet to Kaehler sigma models. We explicitly derive the couplings to general Kaehler sigma models in the case when the matter chiral multiplets are inert under the duality rotations, and more specifically to the dilaton-axion chiral multiplet when the group of duality rotations is enhanced to SL(2,R). (author)

  9. Higher-Derivative Supergravity and Moduli Stabilization

    International Nuclear Information System (INIS)

    Ciupke, David; Westphal, Alexander; Louis, Jan; Hamburg Univ.

    2015-05-01

    We review the ghost-free four-derivative terms for chiral superfields in N=1 supersymmetry and supergravity. These terms induce cubic polynomial equations of motion for the chiral auxiliary fields and correct the scalar potential. We discuss the different solutions and argue that only one of them is consistent with the principles of effective field theory. Special attention is paid to the corrections along flat directions which can be stabilized or destabilized by the higher-derivative terms. We then compute these higher-derivative terms explicitly for the type IIB string compactified on a Calabi-Yau orientifold with fluxes via Kaluza-Klein reducing the (α') 3 R 4 corrections in ten dimensions for the respective N=1 Kaehler moduli sector. We prove that together with flux and the known (α') 3 -corrections the higher-derivative term stabilizes all Calabi-Yau manifolds with positive Euler number, provided the sign of the new correction is negative.

  10. Solution of N=2 supergravity constraints in terms of N=1 superfields

    Energy Technology Data Exchange (ETDEWEB)

    Awada, M.A.; Mokhtari, S. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.)

    1984-08-30

    The constraints of N=2 supergravity are given in terms of N=1 supergravity and matter fields. We exhibit the solution of these constraints to all orders in terms of N=1 superfields; and we propose a structure for the action.

  11. Unconstrained multiplet in N=2 conformal supergravity

    International Nuclear Information System (INIS)

    Hayashi, Masahito; Uehara, Shozo.

    1985-02-01

    An unconstrained (general) multiplet was studied in N = 2 conformal supergravity. Transformation law, embedding formula and multiplication rule are explicitly presented at the linearized level. (author)

  12. Non-linear realizations and higher curvature supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Farakos, F. [Dipartimento di Fisica e Astronomia ' ' Galileo Galilei' ' , Universita di Padova (Italy); INFN, Sezione di Padova (Italy); Ferrara, S. [Department of Theoretical Physics, Geneva (Switzerland); INFN - Laboratori Nazionali di Frascati, Frascati (Italy); Department of Physics and Astronomy, Mani L. Bhaumik Institute for Theoretical Physics, U.C.L.A., Los Angeles, CA (United States); Kehagias, A. [Physics Division, National Technical University of Athens (Greece); Luest, D. [Arnold Sommerfeld Center for Theoretical Physics, Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2017-12-15

    We focus on non-linear realizations of local supersymmetry as obtained by using constrained superfields in supergravity. New constraints, beyond those of rigid supersymmetry, are obtained whenever curvature multiplets are affected as well as higher derivative interactions are introduced. In particular, a new constraint, which removes a very massive gravitino is introduced, and in the rigid limit it merely reduces to an explicit supersymmetry breaking. Higher curvature supergravities free of ghosts and instabilities are also obtained in this way. Finally, we consider direct coupling of the goldstino multiplet to the super Gauss-Bonnet multiplet and discuss the emergence of a new scalar degree of freedom. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. High energy scattering in gravity and supergravity

    DEFF Research Database (Denmark)

    B. Giddings, Steven; Schmidt-Sommerfeld, Maximilian; Andersen, Jeppe Rosenkrantz

    2010-01-01

    We investigate features of perturbative gravity and supergravity by studying scattering in the ultraplanckian limit, and sharpen arguments that the dynamics is governed by long-distance physics. A simple example capturing aspects of the eikonal resummation suggests why short distance phenomena...... and in particular divergences or nonrenormalizability do not necessarily play a central role in this regime. A more profound problem is apparently unitarity. These considerations can be illustrated by showing that known gravity and supergravity amplitudes have the same long-distance behavior, despite the extra...... a physical scattering process, and ultraplanckian scattering exhibiting Regge behavior. These arguments sharpen the need to find a nonperturbative completion of gravity with mechanisms which restore unitarity in the strong gravity regime....

  14. (Non-)decoupled supersymmetric field theories

    International Nuclear Information System (INIS)

    Pietro, Lorenzo Di; Dine, Michael; Komargodski, Zohar

    2014-01-01

    We study some consequences of coupling supersymmetric theories to (super)gravity. To linear order, the couplings are determined by the energy-momentum supermultiplet. At higher orders, the couplings are determined by contact terms in correlation functions of the energy-momentum supermultiplet. We focus on the couplings of one particular field in the supergravity multiplet, the auxiliary field M. We discuss its linear and quadratic (seagull) couplings in various supersymmetric theories. In analogy to the local renormalization group formalism (http://dx.doi.org/10.1016/0370-2693(89)90729-6; http://dx.doi.org/10.1016/0550-3213(90)90584-Z; http://dx.doi.org/10.1016/0550-3213(91)80030-P), we provide a prescription for how to fix the quadratic couplings. They generally arise at two-loops in perturbation theory. We check our prescription by explicitly computing these couplings in several examples such as mass-deformed N=4 and in the Coulomb phase of some theories. These couplings affect the Lagrangians of rigid supersymmetric theories in curved space. In addition, our analysis leads to a transparent derivation of the phenomenon known as Anomaly Mediation. In contrast to previous approaches, we obtain both the gaugino and scalar masses of Anomaly Mediation by relying just on classical, minimal supergravity and a manifestly local and supersymmetric Wilsonian point of view. Our discussion naturally incorporates the connection between Anomaly Mediation and supersymmetric AdS 4 Lagrangians. This note can be read without prior familiarity with Anomaly Mediated Supersymmetry Breaking (AMSB)

  15. Effective Gravitational Theories in String Theory and the AdS/CFT Correspondence

    DEFF Research Database (Denmark)

    Pedersen, Andreas Vigand

    an effective theory for higher dimensional extended black holes in a uid/elastic perturbative derivative expansion. Moreover, we show that the approach is quite universal and can be extended to various supergravities. Finally, we consider a new generalization of the method, which allows us to treat (SUGRA...... as low/high spin. As a byproduct of our analysis, we find a new stationary dipole-charged black hole solution on the AdS S backgrounds of type IIB/M-theory. We finally consider, via a double scaling extremal limit, a novel null-wave zero-temperature giant graviton exhibiting a BPS spectrum. Finally......We consider various aspects of effective gravitational theories, including supergravity, within the framework of the blackfold approach. The thesis is naturally split into three parts. In the first part of the thesis, we explore the blackfold approach and explain how it is possible to write down...

  16. Quantum creation of the universe in N = 8 supergravity

    International Nuclear Information System (INIS)

    Goncharov, Yu.P.; Bytsenko, A.A.

    1988-01-01

    We discuss the possibility of quantum creation of an inflationary universe filled with the fields of maximal extended N = 8 supergravity. If the created universe has spatial topology (S 1 ) 3 and after the creation Starobinskii's inflationary scenario through the topological Casimir effect in N = 8 supergravity is realized, the probability of creation of such a universe can be estimated in the semiclassical approximation. The estimate shows that the creation of a universe with a more isotropic topology is more probable

  17. Diagrams for symmetric product orbifolds

    International Nuclear Information System (INIS)

    Pakman, Ari; Rastelli, Leonardo; Razamat, Shlomo S.

    2009-01-01

    We develop a diagrammatic language for symmetric product orbifolds of two-dimensional conformal field theories. Correlation functions of twist operators are written as sums of diagrams: each diagram corresponds to a branched covering map from a surface where the fields are single-valued to the base sphere where twist operators are inserted. This diagrammatic language facilitates the study of the large N limit and makes more transparent the analogy between symmetric product orbifolds and free non-abelian gauge theories. We give a general algorithm to calculate the leading large N contribution to four-point correlators of twist fields.

  18. Simplifications of Einstein supergravity

    International Nuclear Information System (INIS)

    Ferrara, S.; van Nieuwenhuizen, P.

    1979-01-01

    Using a new symmetry of the Einstein supergravity action and defining a new spin connection, the axial-vector auxiliary field cancels in the gauge action and in the gauge algebra. This explains why in some models a first-order formalism with minimal coupling of the spin connection and tensor calculus agree, while in other models only the tensor calculus gives the correct result but torsion does not

  19. Kicking the rugby ball: perturbations of 6D gauged chiral supergravity

    Science.gov (United States)

    Burgess, C. P.; de Rham, C.; Hoover, D.; Mason, D.; Tolley, A. J.

    2007-02-01

    We analyse the axially symmetric scalar perturbations of 6D chiral gauged supergravity compactified on the general warped geometries in the presence of two source branes. We find that all of the conical geometries are marginally stable for normalizable perturbations (in disagreement with some recent calculations) and the non-conical ones for regular perturbations, even though none of them are supersymmetric (apart from the trivial Salam Sezgin solution, for which there are no source branes). The marginal direction is the one whose presence is required by the classical scaling property of the field equations, and all other modes have positive squared mass. In the special case of the conical solutions, including (but not restricted to) the unwarped 'rugby-ball' solutions, we find closed-form expressions for the mode functions in terms of Legendre and hypergeometric functions. In so doing we show how to match the asymptotic near-brane form for the solution to the physics of the source branes, and thereby how to physically interpret perturbations which can be singular at the brane positions.

  20. Hagedorn Behavior of Little String Theories from string corrections to NS5-branes

    DEFF Research Database (Denmark)

    Harmark, Troels; Obers, N. A.

    2000-01-01

    We examine the Hagedorn behavior of little string theory using its conjectured duality with near-horizon NS5-branes. In particular, by studying the string-corrected NS5-brane supergravity solution, it is shown that tree-level corrections to the temperature vanish, while the leading one-loop string...... correction generates the correct temperature dependence of the entropy near the Hagedorn temperature. Finally, the Hagedorn behavior of ODp-brane theories, which are deformed versions of little string theory, is considered via their supergravity duals....

  1. The structure of N = 2 supergravity in N = 1 superfields

    International Nuclear Information System (INIS)

    Awada, M.A.; Mokhtari, S.

    1985-01-01

    A formulation of N = 2 supergravity in N = 1 superspace is presented. The authors solve up to all orders the N = 2 supergravity constraints in terms of unconstrained N = 1 superfields. The structure of the N = 2 action in N = 1 superspace is examined. The proposed action coincides in the quadratic limit of the spin (3/2,1) matter fields with the action given by previous workers. (author)

  2. Topologically massive supergravity

    Directory of Open Access Journals (Sweden)

    S. Deser

    1983-01-01

    Full Text Available The locally supersymmetric extension of three-dimensional topologically massive gravity is constructed. Its fermionic part is the sum of the (dynamically trivial Rarita-Schwinger action and a gauge-invariant topological term, of second derivative order, analogous to the gravitational one. It is ghost free and represents a single massive spin 3/2 excitation. The fermion-gravity coupling is minimal and the invariance is under the usual supergravity transformations. The system's energy, as well as that of the original topological gravity, is therefore positive.

  3. The component structure of conformal supergravity invariants in six dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Butter, Daniel [Nikhef Theory Group,Science Park 105, 1098 XG Amsterdam (Netherlands); George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843 (United States); Novak, Joseph [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm (Germany); Tartaglino-Mazzucchelli, Gabriele [Instituut voor Theoretische Fysica, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2017-05-24

    In the recent paper https://arxiv.org/abs/1606.02921, the two invariant actions for 6D N=(1,0) conformal supergravity were constructed in superspace, corresponding to the supersymmetrization of C{sup 3} and C◻C. In this paper, we provide the translation from superspace to the component formulation of superconformal tensor calculus, and we give the full component actions of these two invariants. As a second application, we build the component form for the supersymmetric F◻F action coupled to conformal supergravity. Exploiting the fact that the N=(2,0) Weyl multiplet has a consistent truncation to N=(1,0), we then verify that there is indeed only a single N=(2,0) conformal supergravity invariant and reconstruct most of its bosonic terms by uplifting a certain linear combination of N=(1,0) invariants.

  4. Geometrical Lagrangian for a Supersymmetric Yang-Mills Theory on the Group Manifold

    International Nuclear Information System (INIS)

    Borges, M. F.

    2002-01-01

    Perhaps one of the main features of Einstein's General Theory of Relativity is that spacetime is not flat itself but curved. Nowadays, however, many of the unifying theories like superstrings on even alternative gravity theories such as teleparalell geometric theories assume flat spacetime for their calculations. This article, an extended account of an earlier author's contribution, it is assumed a curved group manifold as a geometrical background from which a Lagrangian for a supersymmetric N=2, d=5 Yang-Mills - SYM, N=2, d=5 - is built up. The spacetime is a hypersurface embedded in this geometrical scenario, and the geometrical action here obtained can be readily coupled to the five-dimensional supergravity action. The essential idea that underlies this work has its roots in the Einstein-Cartan formulation of gravity and in the 'group manifold approach to gravity and supergravity theories'. The group SYM, N=2, d=5, turns out to be the direct product of supergravity and a general gauge group G:G=GxSU(2,2/1)-bar

  5. Hamiltonian formalism, quantization and S matrix for supergravity. [S matrix, canonical constraints

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E S; Vasiliev, M A [AN SSSR, Moscow. Fizicheskij Inst.

    1977-12-05

    The canonical formalism for supergravity is constructed. The algebra of canonical constraints is found. The correct expression for the S matrix is obtained. Usual 'covariant methods' lead to an incorrect S matrix in supergravity since a new four-particle interaction of ghostfields survives in the Lagrangian expression of the S matrix.

  6. Is PT -symmetric quantum theory false as a fundamental theory?

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2016-01-01

    Roč. 56, č. 3 (2016), s. 254-257 ISSN 1210-2709 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum mechanics * PT-symmetric representations of observables * masurement outcomes Subject RIV: BE - Theoretical Physics

  7. Geometric symmetries and topological terms in F-theory and field theory

    Energy Technology Data Exchange (ETDEWEB)

    Kapfer, Andreas

    2016-08-25

    In this thesis we investigate topological aspects and arithmetic structures in quantum field theory and string theory. Particular focus is put on consistent truncations of supergravity and compactifications of F-theory. The first part treats settings of supersymmetry breaking in five dimensions. We focus on an N=4 to N=2 breaking in gauged supergravity. For certain classes of embedding tensors we can analyze the theory around the vacuum to a great extent. Importantly, one-loop corrections to Chern-Simons terms are generically induced which are independent of the supersymmetry-breaking scale. We investigate concrete examples of consistent truncations of supergravity and M-theory which show this N=4 to N=2 breaking pattern in five dimensions. In particular, we analyze necessary conditions for these consistent truncations to be used as effective theories for phenomenology by demanding consistency of the scale-independent corrections to Chern-Simons couplings. The second part is devoted to the study of anomalies and large gauge transformations in circle-reduced gauge theories and F-theory. We consider four- and six-dimensional matter-coupled gauge theories on the circle and classify all large gauge transformations that preserve the boundary conditions of the matter fields. Enforcing that they act consistently on one-loop Chern-Simons couplings in three and five dimensions explicitly yields all higher-dimensional gauge anomaly cancelation conditions. In the context of F-theory compactifications we identify the classified large gauge transformations along the circle with arithmetic structures on elliptically fibered Calabi-Yau manifolds via the dual M-theory setting. Integer Abelian large gauge transformations correspond to free basis shifts in the Mordell-Weil lattice of rational sections while special fractional non-Abelian large gauge transformations are matched to torsional shifts in the Mordell-Weil group. For integer non-Abelian large gauge transformations we

  8. Massive IIA string theory and Matrix theory compactification

    International Nuclear Information System (INIS)

    Lowe, David A.; Nastase, Horatiu; Ramgoolam, Sanjaye

    2003-01-01

    We propose a Matrix theory approach to Romans' massive Type IIA supergravity. It is obtained by applying the procedure of Matrix theory compactifications to Hull's proposal of the massive Type IIA string theory as M-theory on a twisted torus. The resulting Matrix theory is a super-Yang-Mills theory on large N three-branes with a space-dependent noncommutativity parameter, which is also independently derived by a T-duality approach. We give evidence showing that the energies of a class of physical excitations of the super-Yang-Mills theory show the correct symmetry expected from massive Type IIA string theory in a lightcone quantization

  9. Alternative approaches to maximally supersymmetric field theories

    International Nuclear Information System (INIS)

    Broedel, Johannes

    2010-01-01

    The central objective of this work is the exploration and application of alternative possibilities to describe maximally supersymmetric field theories in four dimensions: N=4 super Yang-Mills theory and N=8 supergravity. While twistor string theory has been proven very useful in the context of N=4 SYM, no analogous formulation for N=8 supergravity is available. In addition to the part describing N=4 SYM theory, twistor string theory contains vertex operators corresponding to the states of N=4 conformal supergravity. Those vertex operators have to be altered in order to describe (non-conformal) Einstein supergravity. A modified version of the known open twistor string theory, including a term which breaks the conformal symmetry for the gravitational vertex operators, has been proposed recently. In a first part of the thesis structural aspects and consistency of the modified theory are discussed. Unfortunately, the majority of amplitudes can not be constructed, which can be traced back to the fact that the dimension of the moduli space of algebraic curves in twistor space is reduced in an inconsistent manner. The issue of a possible finiteness of N=8 supergravity is closely related to the question of the existence of valid counterterms in the perturbation expansion of the theory. In particular, the coefficient in front of the so-called R 4 counterterm candidate has been shown to vanish by explicit calculation. This behavior points into the direction of a symmetry not taken into account, for which the hidden on-shell E 7(7) symmetry is the prime candidate. The validity of the so-called double-soft scalar limit relation is a necessary condition for a theory exhibiting E 7(7) symmetry. By calculating the double-soft scalar limit for amplitudes derived from an N=8 supergravity action modified by an additional R 4 counterterm, one can test for possible constraints originating in the E 7(7) symmetry. In a second part of the thesis, the appropriate amplitudes are calculated

  10. (Non-)decoupled supersymmetric field theories

    Energy Technology Data Exchange (ETDEWEB)

    Pietro, Lorenzo Di [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 76100 (Israel); Dine, Michael [Santa Cruz Institute for Particle Physics and Department of Physics,Santa Cruz CA 95064 (United States); Komargodski, Zohar [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 76100 (Israel)

    2014-04-10

    We study some consequences of coupling supersymmetric theories to (super)gravity. To linear order, the couplings are determined by the energy-momentum supermultiplet. At higher orders, the couplings are determined by contact terms in correlation functions of the energy-momentum supermultiplet. We focus on the couplings of one particular field in the supergravity multiplet, the auxiliary field M. We discuss its linear and quadratic (seagull) couplings in various supersymmetric theories. In analogy to the local renormalization group formalism (http://dx.doi.org/10.1016/0370-2693(89)90729-6; http://dx.doi.org/10.1016/0550-3213(90)90584-Z; http://dx.doi.org/10.1016/0550-3213(91)80030-P), we provide a prescription for how to fix the quadratic couplings. They generally arise at two-loops in perturbation theory. We check our prescription by explicitly computing these couplings in several examples such as mass-deformed N=4 and in the Coulomb phase of some theories. These couplings affect the Lagrangians of rigid supersymmetric theories in curved space. In addition, our analysis leads to a transparent derivation of the phenomenon known as Anomaly Mediation. In contrast to previous approaches, we obtain both the gaugino and scalar masses of Anomaly Mediation by relying just on classical, minimal supergravity and a manifestly local and supersymmetric Wilsonian point of view. Our discussion naturally incorporates the connection between Anomaly Mediation and supersymmetric AdS{sub 4} Lagrangians. This note can be read without prior familiarity with Anomaly Mediated Supersymmetry Breaking (AMSB)

  11. Lattice simulation of a center symmetric three dimensional effective theory for SU(2) Yang-Mills

    International Nuclear Information System (INIS)

    Smith, Dominik

    2010-01-01

    We present lattice simulations of a center symmetric dimensionally reduced effective field theory for SU(2) Yang Mills which employ thermal Wilson lines and three-dimensional magnetic fields as fundamental degrees of freedom. The action is composed of a gauge invariant kinetic term, spatial gauge fields and a potential for theWilson line which includes a ''fuzzy'' bag term to generate non-perturbative fluctuations between Z(2) degenerate ground states. The model is studied in the limit where the gauge fields are set to zero as well as the full model with gauge fields. We confirm that, at moderately weak coupling, the ''fuzzy'' bag term leads to eigenvalue repulsion in a finite region above the deconfining phase transition which shrinks in the extreme weak-coupling limit. A non-trivial Z(N) symmetric vacuum arises in the confined phase. The effective potential for the Polyakov loop in the theory with gauge fields is extracted from the simulations including all modes of the loop as well as for cooled configurations where the hard modes have been averaged out. The former is found to exhibit a non-analytic contribution while the latter can be described by a mean-field like ansatz with quadratic and quartic terms, plus a Vandermonde potential which depends upon the location within the phase diagram. Other results include the exact location of the phase boundary in the plane spanned by the coupling parameters, correlation lengths of several operators in the magnetic and electric sectors and the spatial string tension. We also present results from simulations of the full 4D Yang-Mills theory and attempt to make a qualitative comparison to the 3D effective theory. (orig.)

  12. Covariant currents in N=2 super-Liouville theory

    International Nuclear Information System (INIS)

    Gomis, J.; Suzuki, Hiroshi

    1993-01-01

    Based on a path-integral prescription for anomaly calculation, we analyze an effective theory of the two-dimensional N=2 supergravity, i.e. N=2 super-Liouville theory. We calculate the anomalies associated with the BRST supercurrent and the ghost-number supercurrent. From those expressions of anomalies, we construct covariant BRST and ghost-number supercurrents in the effective theory. We then show that the (super-)coordinate BRST current algebra forms a superfield extension of the topological conformal algebra for an arbitrary type of conformal matter or, in terms of the string theory, for an arbitrary number of space-time dimensions. This fact is in great contrast with N=0 and N=1 (super-)Liouville theory, where the topological algebra singles out a particular value of dimensions. Our observation suggests a topological nature of the two-dimensional N=2 supergravity as a quantum theory. (orig.)

  13. The solution of N=2 supergravity constraints in terms of N=1 superfields

    International Nuclear Information System (INIS)

    Awada, M.A.; Mokhtari, S.

    1984-01-01

    The constraints of N=2 supergravity are given in terms of N=1 supergravity and matter fields. We exhibit the solution of these constraints to all orders in terms of N=1 superfields; and we propose a structure for the action. (orig.)

  14. Boomerang RG flows in M-theory with intermediate scaling

    Science.gov (United States)

    Donos, Aristomenis; Gauntlett, Jerome P.; Rosen, Christopher; Sosa-Rodriguez, Omar

    2017-07-01

    We construct novel RG flows of D=11 supergravity that asymptotically approach AdS 4 × S 7 in the UV with deformations that break spatial translations in the dual field theory. In the IR the solutions return to exactly the same AdS 4 × S 7 vacuum, with a renormalisation of relative length scales, and hence we refer to the flows as `boomerang RG flows'. For sufficiently large deformations, on the way to the IR the solutions also approach two distinct intermediate scaling regimes, each with hyperscaling violation. The first regime is Lorentz invariant with dynamical exponent z = 1 while the second has z = 5/2. Neither ofthe two intermediatescaling regimesare associatedwith exact hyperscaling violation solutions of D = 11 supergravity. The RG flow solutions are constructed using the four dimensional N = 2 STU gauged supergravity theory with vanishing gauge fields, but non-vanishing scalar and pseudoscalar fields. In the ABJM dual field theory the flows are driven by spatially modulated deformation parameters for scalar and fermion bilinear operators.

  15. Topics in Theories of Quantum Gravity

    International Nuclear Information System (INIS)

    Perelstein, M.

    2005-01-01

    In this thesis, the author addresses several issues involving gravity. The first half of the thesis is devoted to studying quantum properties of Einstein gravity and its supersymmetric extensions in the perturbative regime. String theory suggests that perturbative scattering amplitudes in the theories of gravity are related to the amplitudes in gauge theories. This connection has been studied at classical (tree) level by Kawai, Lewellen and Tye. Here, they will explore the relationship between gravity and gauge theory at quantum (loop) level. This relationship, together with the cut-based approach to computing loop amplitudes, allow us to obtain new non-trivial results for quantum gravity. IN particular, they present two infinite sequences of one-loop n-graviton scattering amplitudes: the maximally helicity violating amplitudes in N = 8 supergravity, and the ''all-plus'' helicity amplitudes in Einstein gravity with any minimally coupled massless matter content. The results for n (le) 6 will be obtained by an explicit calculation, while those for n > 6 is inferred from the soft and collinear properties of the amplitudes. They also present an explicit expression for the two-loop contribution to the four-particle scattering amplitude in N = 8 supergravity, and observe a simple relation between this result and its counterpart in N = 4 super-Yang-Mills theory. Furthermore, the simple structure of the two-particle unitarity cuts in these theories suggests that similar relations exist to all loop orders. If this is the case, the first ultraviolet divergence in N = 8 supergravity should appear at five loops, contrary to the earlier expectation of a three-loop counterterm

  16. Geometric characteristics of aberrations of plane-symmetric optical systems

    International Nuclear Information System (INIS)

    Lu Lijun; Deng Zhiyong

    2009-01-01

    The geometric characteristics of aberrations of plane-symmetric optical systems are studied in detail with a wave-aberration theory. It is dealt with as an extension of the Seidel aberrations to realize a consistent aberration theory from axially symmetric to plane-symmetric systems. The aberration distribution is analyzed with the spot diagram of a ray and an aberration curve. Moreover, the root-mean-square value and the centroid of aberration distribution are discussed. The numerical results are obtained with the focusing optics of a toroidal mirror at grazing incidence.

  17. Braneworld Inflation in Supergravity with a Shift Symmetric Kähler ...

    Indian Academy of Sciences (India)

    Recently, the supersymmetric hybrid model and its extensions have been proposed to assure the natural inflationary scenario (Lyth & Stewart 1996; Enqvist &. McDonald 1998; Clesse et al. 2014), since it provides an interesting possibility of occurring inflation in the grand unified theories (Civiletti et al. 2014), which pro-.

  18. PREFACE: Lectures from the CERN Winter School on Strings, Supergravity and Gauge Theories, CERN, 9-13 February 2009 Lectures from the CERN Winter School on Strings, Supergravity and Gauge Theories, CERN, 9-13 February 2009

    Science.gov (United States)

    Uranga, A. M.

    2009-11-01

    This special section is devoted to the proceedings of the conference `Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland 9-13 February 2009. This event is part of a yearly series of scientific schools, which represents a well established tradition. Previous events have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006, January 2007 and January 2008, and were funded by the European Mobility Research and Training Network `Constituents, Fundamental Forces and Symmetries of the Universe'. The next event will take place again at CERN, in January 2010. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in this special section, and six working group discussion sessions, focused on specific topics of the network research program. It was well attended by over 200 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years has been the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti de Sitter spacetimes with certain quantum (gauge) field theories. The duality has recently been applied to understanding the hydrodynamical properties of a hot plasma in gauge theories (like the quark-gluon plasma created in heavy ion collisions at the RHIC experiment at Brookhaven, and soon at the LHC at CERN) in terms of a dual gravitational AdS theory in the presence of a black hole. These developments were reviewed in the lecture notes by M Rangamani. In addition, the AdS/CFT duality has been proposed as a tool to study interesting physical properties in other

  19. Thermodynamic Analysis of the Static Spherically Symmetric Field Equations in Rastall Theory

    International Nuclear Information System (INIS)

    Moradpour, Hooman; Salako, Ines G.

    2016-01-01

    The restrictions on the Rastall theory due to application of the Newtonian limit to the theory are derived. In addition, we use the zero-zero component of the Rastall field equations as well as the unified first law of thermodynamics to find the Misner-Sharp mass content confined to the event horizon of the spherically symmetric static spacetimes in the Rastall framework. The obtained relation is calculated for the Schwarzschild and de-Sitter back holes as two examples. Bearing the obtained relation for the Misner-Sharp mass in mind together with recasting the one-one component of the Rastall field equations into the form of the first law of thermodynamics, we obtain expressions for the horizon entropy and the work term. Finally, we also compare the thermodynamic quantities of system, including energy, entropy, and work, with their counterparts in the Einstein framework to have a better view about the role of the Rastall hypothesis on the thermodynamics of system.

  20. Minimal Higgs branch for the breaking of half of the supersymmetries in N=2 supergravity

    CERN Document Server

    Ferrara, Sergio; Porrati, Massimo

    1996-01-01

    It is shown that the minimal Higgs sector of a generic N=2 supergravity theory with unbroken N=1 supersymmetry must contain a Higgs hypermultiplet and a vector multiplet. When the multiplets parametrize the quaternionic manifold SO(4,1)/SO(4), and the special Kahler manifold SU(1,1)/U(1), respectively, a vanishing vacuum energy with a sliding massive spin 3/2 multiplet is obtained. Potential applications to N=2 low energy effective actions of superstrings are briefly discussed.

  1. Gauged R-symmetry and its anomalies in 4D N=1 supergravity and phenomenological implications

    CERN Document Server

    Antoniadis, I.; Knoops, R.

    2015-01-01

    We consider a class of models with gauged U(1)_R symmetry in 4D N=1 supergravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if these properties are maintained under the addition of visible sector (MSSM-like) and hidden sector state(s), where the latter may be needed for quantum consistency. We then discuss the anomaly cancellation conditions in supergravity as derived by Freedman, Elvang and K\\"ors and apply their results to the special case of a U(1)_R symmetry, in the presence of the Fayet-Iliopoulos term ($\\xi$) and Green-Schwarz mechanism(s). We investigate the relation of these anomaly cancellation conditions to the "naive" field theory approach in global SUSY, in which case U(1)_R cannot even be gauged. We show the two approaches give similar conditions. Their induced constraints at the phenomenological level, on the above models, remain strong even if one lifted the GUT-like conditi...

  2. R4 terms in supergravities via T -duality constraint

    Science.gov (United States)

    Razaghian, Hamid; Garousi, Mohammad R.

    2018-05-01

    It has been speculated in the literature that the effective actions of string theories at any order of α' should be invariant under the Buscher rules plus their higher covariant-derivative corrections. This may be used as a constraint to find effective actions at any order of α', in particular, the metric, the B -field, and the dilaton couplings in supergravities at order α'3 up to an overall factor. For the simple case of zero B -field and diagonal metric in which we have done the calculations explicitly, we have found that the constraint fixes almost all of the seven independent Riemann curvature couplings. There is only one term which is not fixed, because when metric is diagonal, the reduction of two R4 terms becomes identical. The Riemann curvature couplings that the T -duality constraint produces for both type II and heterotic theories are fully consistent with the existing couplings in the literature which have been found by the S-matrix and by the sigma-model approaches.

  3. CERN theorist gets a Heineman

    CERN Document Server

    2006-01-01

    A CERN theorist is among the recipients of the American Physical Society's annual Dannie Heineman Prize for Mathematical Physics. The 2006 recipients of the Dannie Heineman Prize. From left to right : Peter van Nieuwenhuizen of the Stony Brook University (New York), Sergio Ferrara of CERN and Daniel Freedman of the Massachusetts Institute of Technology. Picture taken in Rome in June 2005. The 2006 prize recognises the development of supergravity by Sergio Ferrara of CERN, Daniel Freedman of the Massachusetts Institute of Technology and Peter van Nieuwenhuizen of the State University of New York, Stony Brook. The trio won the award for constructing and developing the first super-symmetric extension of Einstein's theory of general relativity. By providing a special class of field theories for the low-energy manifestation of superstrings, supergravity has played an important role in theoretical physics in the last thirty years. This is not the first time that supergravity has won an award. In 1993, the trio ...

  4. Simplifying Multi-loop Integrands of Gauge Theory and Gravity Amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Z.; Carrasco, J.J.M.; Dixon, L.J.; Johansson, H.; Roiban, R.

    2012-02-15

    We use the duality between color and kinematics to simplify the construction of the complete four-loop four-point amplitude of N = 4 super-Yang-Mills theory, including the nonplanar contributions. The duality completely determines the amplitude's integrand in terms of just two planar graphs. The existence of a manifestly dual gauge-theory amplitude trivializes the construction of the corresponding N = 8 supergravity integrand, whose graph numerators are double copies (squares) of the N = 4 super-Yang-Mills numerators. The success of this procedure provides further nontrivial evidence that the duality and double-copy properties hold at loop level. The new form of the four-loop four-point supergravity amplitude makes manifest the same ultraviolet power counting as the corresponding N = 4 super-Yang-Mills amplitude. We determine the amplitude's ultraviolet pole in the critical dimension of D = 11/2, the same dimension as for N = 4 super-Yang-Mills theory. Strikingly, exactly the same combination of vacuum integrals (after simplification) describes the ultraviolet divergence of N = 8 supergravity as the subleading-in-1/N{sub c}{sup 2} single-trace divergence in N = 4 super-Yang-Mills theory.

  5. Hidden role of Maxwell superalgebras in the free differential algebras of D = 4 and D = 11 supergravity

    Science.gov (United States)

    Ravera, Lucrezia

    2018-03-01

    The purpose of this paper is to show that the so-called Maxwell superalgebra in four dimensions, which naturally involves the presence of a nilpotent fermionic generator, can be interpreted as a hidden superalgebra underlying N=1, {D}=4 supergravity extended to include a 2-form gauge potential associated to a 2-index antisymmetric tensor. In this scenario, the theory is appropriately discussed in the context of Free Differential Algebras (an extension of the Maurer-Cartan equations to involve higher-degree differential forms). The study is then extended to the Free Differential Algebra describing D = 11 supergravity, showing that, also in this case, there exists a super-Maxwell algebra underlying the theory. The same extra spinors dual to the nilpotent fermionic generators whose presence is crucial for writing a supersymmetric extension of the Maxwell algebras, both in the D = 4 and in the D = 11 case, turn out to be fundamental ingredients also to reproduce the D = 4 and D = 11 Free Differential Algebras on ordinary superspace, whose basis is given by the supervielbein. The analysis of the gauge structure of the supersymmetric Free Differential Algebras is carried on taking into account the gauge transformations from the hidden supergroup-manifold associated with the Maxwell superalgebras.

  6. Invariance of actions, rheonomy, and the new minimal N = 1 supergravity in the group manifold approach

    International Nuclear Information System (INIS)

    D'Auria, R.; Fre, P.; Townsend, P.K.; van Nieuwenhuizen, P.

    1984-01-01

    A new definition of rheonomy is proposed based on Bianchi identifies instead of field equations. For theories with auxiliary fields, the transformation rules are obtained in a completely geometrical way and invariance of the action is equilivalent to d'L = 0, which means surface-independence of the action integral. For theories without auxiliary fields, the transformation rules are found by requiring that the action be invariant, just as in the component approach. Previous methods of obtaining the transformation rules which start from rhenomy of field equations and use certain recipes to find the off-shell extensions of the rules are abandoned. New minimal supergravity is worked out in detail; it is the gauge theory based on a free differential algebra which includes the auxiliary fields

  7. The tensor calculus and matter coupling of the alternative minimal auxiliary field formulation of N = 1 supergravity

    International Nuclear Information System (INIS)

    Sohnius, M.; West, P.

    1982-01-01

    The tensor calculus for the new alternative minimal auxiliary field formulation of N = 1 supergravity is given. It is used to construct the couplings of this formulation of supergravity to matter. These couplings are found to be different, in several respects to those of the old minimal formulation of N = 1 supergravity. (orig.)

  8. Axion-dilaton domain walls and fake supergravity

    International Nuclear Information System (INIS)

    Sonner, Julian; Townsend, Paul K

    2007-01-01

    Dynamical systems methods are used to investigate domain-wall solutions of a two-parameter family of models in which gravity is coupled to an axion and to a dilaton with an exponential potential of either sign. A complete global analysis is presented for (i) constant axion and (ii) flat walls, including a study of bifurcations and a new exact domain-wall solution with non-constant axion. We reconsider 'fake-supergravity' issues in light of these results. We show, by example, how domain walls determine multi-valued superpotentials that branch at stationary points that are not stationary points of the potential, and we apply this result to potentials with anti-de Sitter vacua. We also show by example that 'adapted' truncation to a single-scalar model may be inconsistent, and we propose a 'generalized' fake-supergravity formalism that applies in some such cases

  9. Lattice simulation of a center symmetric three dimensional effective theory for SU(2) Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Dominik

    2010-11-17

    We present lattice simulations of a center symmetric dimensionally reduced effective field theory for SU(2) Yang Mills which employ thermal Wilson lines and three-dimensional magnetic fields as fundamental degrees of freedom. The action is composed of a gauge invariant kinetic term, spatial gauge fields and a potential for theWilson line which includes a ''fuzzy'' bag term to generate non-perturbative fluctuations between Z(2) degenerate ground states. The model is studied in the limit where the gauge fields are set to zero as well as the full model with gauge fields. We confirm that, at moderately weak coupling, the ''fuzzy'' bag term leads to eigenvalue repulsion in a finite region above the deconfining phase transition which shrinks in the extreme weak-coupling limit. A non-trivial Z(N) symmetric vacuum arises in the confined phase. The effective potential for the Polyakov loop in the theory with gauge fields is extracted from the simulations including all modes of the loop as well as for cooled configurations where the hard modes have been averaged out. The former is found to exhibit a non-analytic contribution while the latter can be described by a mean-field like ansatz with quadratic and quartic terms, plus a Vandermonde potential which depends upon the location within the phase diagram. Other results include the exact location of the phase boundary in the plane spanned by the coupling parameters, correlation lengths of several operators in the magnetic and electric sectors and the spatial string tension. We also present results from simulations of the full 4D Yang-Mills theory and attempt to make a qualitative comparison to the 3D effective theory. (orig.)

  10. Scanning of the supersymmetry breaking scale and the gravitino mass in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Farakos, Fotis [Dipartimento di Fisica “Galileo Galilei”, Universita di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Racco, Davide; Riotto, Antonio [Department of Theoretical Physics and Center for Astroparticle Physics (CAP),24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)

    2016-06-21

    We consider the minimal three-form N=1 supergravity coupled to nilpotent three-form chiral superfields. The supersymmetry breaking is sourced by the three-forms of the chiral multiplets, while the value of the gravitino mass is controlled by the three-form of the supergravity multiplet. The three-forms can nucleate membranes which scan both the supersymmetry breaking scale and the gravitino mass. The peculiar supergravity feature that the cosmological constant is the sum of a positive contribution from the supersymmetry breaking scale and a negative contribution from the gravitino mass makes the cosmological constant jump. This can lead to a phenomenologically allowed small value of the cosmological constant even though the supersymmetry breaking scale and the gravitino mass are dynamically large.

  11. Half-supersymmetric solutions in five-dimensional supergravity

    International Nuclear Information System (INIS)

    Gutowski, Jan B.; Sabra, Wafic

    2007-01-01

    We present a systematic classification of half-supersymmetric solutions of gauged N = 2, D = 5 supergravity coupled to an arbitrary number of abelian vector multiplets for which at least one of the Killing spinors generate a time-like Killing vector

  12. Complete D =11 embedding of SO(8) supergravity

    Science.gov (United States)

    Varela, Oscar

    2018-02-01

    The truncation formulas of D =11 supergravity on S7 to D =4 N =8 SO(8)-gauged supergravity are completed to include the full nonlinear dependence of the D =11 three-form potential A^ (3 ) on the D =4 fields, and their consistency is shown. The full embedding into A^ (3 ) is naturally expressed in terms of a restricted version, still N =8 but only SL(8)-covariant, of the D =4 tensor hierarchy. The redundancies introduced by this approach are removed at the level of the field strength F^ (4 ) by exploiting D =4 duality relations. Finally, new expressions for the full consistent truncation formulas are given that are explicit in all D =11 and D =4 fields.

  13. 6D supergravity. Warped solution and gravity mediated supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Luedeling, C

    2006-07-15

    We consider compactified six-dimensional gauged supergravity and find the general warped solution with four-dimensional maximal symmetry. Important features of the solution such as the number and position of singularities are determined by a free holomorphic function. Furthermore, in a particular torus compactification we derive the supergravity coupling of brane fields by the Noether procedure and investigate gravity-mediated supersymmetry breaking. The effective Kaehler potential is not sequestered, yet tree level gravity mediation is absent as long as the superpotential is independent of the radius modulus. (orig.)

  14. 6D supergravity. Warped solution and gravity mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Luedeling, C.

    2006-07-01

    We consider compactified six-dimensional gauged supergravity and find the general warped solution with four-dimensional maximal symmetry. Important features of the solution such as the number and position of singularities are determined by a free holomorphic function. Furthermore, in a particular torus compactification we derive the supergravity coupling of brane fields by the Noether procedure and investigate gravity-mediated supersymmetry breaking. The effective Kaehler potential is not sequestered, yet tree level gravity mediation is absent as long as the superpotential is independent of the radius modulus. (orig.)

  15. Topics in Theories of Quantum Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Perelstein, M.

    2005-04-05

    In this thesis, the author addresses several issues involving gravity. The first half of the thesis is devoted to studying quantum properties of Einstein gravity and its supersymmetric extensions in the perturbative regime. String theory suggests that perturbative scattering amplitudes in the theories of gravity are related to the amplitudes in gauge theories. This connection has been studied at classical (tree) level by Kawai, Lewellen and Tye. Here, they will explore the relationship between gravity and gauge theory at quantum (loop) level. This relationship, together with the cut-based approach to computing loop amplitudes, allow us to obtain new non-trivial results for quantum gravity. IN particular, they present two infinite sequences of one-loop n-graviton scattering amplitudes: the maximally helicity violating amplitudes in N = 8 supergravity, and the ''all-plus'' helicity amplitudes in Einstein gravity with any minimally coupled massless matter content. The results for n {le} 6 will be obtained by an explicit calculation, while those for n > 6 is inferred from the soft and collinear properties of the amplitudes. They also present an explicit expression for the two-loop contribution to the four-particle scattering amplitude in N = 8 supergravity, and observe a simple relation between this result and its counterpart in N = 4 super-Yang-Mills theory. Furthermore, the simple structure of the two-particle unitarity cuts in these theories suggests that similar relations exist to all loop orders. If this is the case, the first ultraviolet divergence in N = 8 supergravity should appear at five loops, contrary to the earlier expectation of a three-loop counterterm.

  16. Theories at 10-17 and 10-33 cm

    International Nuclear Information System (INIS)

    Bars, I.

    1985-01-01

    Rapid progress is reported in the areas of Superstring Theory, Composite Quarks and Leptons, Supergravity and Kaluza-Klein Theories. We have shifted our interest heavily toward the Superstring Theory since it has become the most promising unified theory for solving the fundamental questions in the standard model as well as quantum gravity. 23 refs

  17. Impacts of supersymmetric higher derivative terms on inflation models in supergravity

    International Nuclear Information System (INIS)

    Aoki, Shuntaro; Yamada, Yusuke

    2015-01-01

    We show the effects of supersymmetric higher derivative terms on inflation models in supergravity. The results show that such terms generically modify the effective kinetic coefficient of the inflaton during inflation if the cut off scale of the higher derivative operators is sufficiently small. In such a case, the η-problem in supergravity does not occur, and we find that the effective potential of the inflaton generically becomes a power type potential with a power smaller than two

  18. Negative energy in string theory and cosmic censorship violation

    International Nuclear Information System (INIS)

    Hertog, Thomas; Horowitz, Gary T.; Maeda, Kengo

    2004-01-01

    We find asymptotically anti-de Sitter solutions in N=8 supergravity which have a negative total energy. This is possible since the boundary conditions required for the positive energy theorem are stronger than those required for a finite mass (and allowed by string theory). But the stability of the anti-de Sitter vacuum is still ensured by the positivity of a modified energy, which includes an extra surface term. Some of the negative energy solutions describe the classical evolution of nonsingular initial data to naked singularities. Since there is an open set of such solutions, cosmic censorship is violated generically in supergravity. Using the dual field theory description, we argue that these naked singularities will be resolved in the full string theory

  19. Particle physics models of inflation in supergravity and grand unification

    International Nuclear Information System (INIS)

    Kostka, Philipp Manuel

    2010-01-01

    In the first part of this thesis, we study classes of hybrid and chaotic inflation models in four-dimensional N=1 supergravity. Therein, the η-problem can be resolved relying on fundamental symmetries in the Kaehler potential. Concretely, we investigate explicit realizations of superpotentials, in which the flatness of the inflaton potential is protected at tree level by a shift symmetry or a Heisenberg symmetry in the Kaehler potential. In the latter case, the associated modulus field can be stabilized during inflation by supergravity effects. In the context of hybrid inflation, a novel class of models, to which we refer as ''tribrid inflation,'' turns out to be particularly compatible with such symmetry solutions to the η-problem. Radiative corrections due to operators in the superpotential, which break the respective symmetry, generate the required small slope of the inflaton potential. Additional effective operators in the Kaehler potential can reduce the predicted spectral index so that it agrees with latest observational data. Within a model of chaotic inflation in supergravity with a quadratic potential, we apply the Heisenberg symmetry to allow for viable inflation with super-Planckian field values, while the associated modulus is stabilized. We show that radiative corrections are negligible in this context. In the second part, the tribrid inflation models are extended to realize gauge non-singlet inflation. This is applied to the matter sector of supersymmetric Grand Unified Theories based on the Pati-Salam gauge group. For the specific scenario in which the right-handed sneutrino is the inflaton, we study the scalar potential in a D-flat valley. We show that despite potentially dangerous two-loop corrections, the required flatness of the potential can be maintained. The reason for this is the strong suppression of gauge interactions of the inflaton field due to its symmetry breaking vacuum expectation value. In addition, the production of stable

  20. Particle physics models of inflation in supergravity and grand unification

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Philipp Manuel

    2010-12-03

    In the first part of this thesis, we study classes of hybrid and chaotic inflation models in four-dimensional N=1 supergravity. Therein, the {eta}-problem can be resolved relying on fundamental symmetries in the Kaehler potential. Concretely, we investigate explicit realizations of superpotentials, in which the flatness of the inflaton potential is protected at tree level by a shift symmetry or a Heisenberg symmetry in the Kaehler potential. In the latter case, the associated modulus field can be stabilized during inflation by supergravity effects. In the context of hybrid inflation, a novel class of models, to which we refer as ''tribrid inflation,'' turns out to be particularly compatible with such symmetry solutions to the {eta}-problem. Radiative corrections due to operators in the superpotential, which break the respective symmetry, generate the required small slope of the inflaton potential. Additional effective operators in the Kaehler potential can reduce the predicted spectral index so that it agrees with latest observational data. Within a model of chaotic inflation in supergravity with a quadratic potential, we apply the Heisenberg symmetry to allow for viable inflation with super-Planckian field values, while the associated modulus is stabilized. We show that radiative corrections are negligible in this context. In the second part, the tribrid inflation models are extended to realize gauge non-singlet inflation. This is applied to the matter sector of supersymmetric Grand Unified Theories based on the Pati-Salam gauge group. For the specific scenario in which the right-handed sneutrino is the inflaton, we study the scalar potential in a D-flat valley. We show that despite potentially dangerous two-loop corrections, the required flatness of the potential can be maintained. The reason for this is the strong suppression of gauge interactions of the inflaton field due to its symmetry breaking vacuum expectation value. In addition, the

  1. Role(s) of anti-symmetrical background field in string theory; Role(s) du champ de fond antisymetrique en theorie des cordes

    Energy Technology Data Exchange (ETDEWEB)

    Fidanza, St

    2003-11-15

    In the first chapter (titled: non-commutative D-branes), we show that the B anti-symmetrical background fields can be embedded in the non-commutativity of branes and can distort gauge theories that branes convey. We know how to describe this transformation in the Abelian case thanks to the Kontsevic quantification formula. Moreover this formula combined to the Seiberg-Witter transformation allows one to compute more rapidly the explicit terms. For the non-Abelian case the situation is less clear. In the chapter 2 (titled: non-Abelian M5-branes), we have tackled the issue of the fields of a packet of N M5-branes. The direct approach based on a 6 dimensional super-symmetric multiplets has led to a stunning dead end, we have not been able to reproduce the expected anomaly in N{sup 3}. We have presented in a unified manner different gauge theories. We have shown that we can get a number of freedom degrees in the magnitude order of N{sup 3} from computations based on geometrical configurations of M2 membranes. In the chapter 3 (titled: systematizing mirror symmetry) we have shown that if the presence of a non-trivial Neveu-Schwarz flux constrains the compactification manifold geometry to shift from the Calabi-Yau case, we can yet specify a mirror symmetry that mixes geometry and background fields. (A.C.)

  2. Crossing symmetric solution of the Chew-Low equation

    International Nuclear Information System (INIS)

    McLeod, R.J.; Ernst, D.J.

    1982-01-01

    An N/D dispersion theory is developed which solves crossing symmetric Low equations. The method is used to generate crossing symmetric solutions to the Chew-Low model. We show why the technique originally proposed by Chew and Low was incapable of producing solutions. (orig.)

  3. Building a better minimal supergravity: WIMP dark matter without flavor violation

    International Nuclear Information System (INIS)

    Craig, Nathaniel J.; Green, Daniel

    2009-01-01

    The appearance of a natural dark matter candidate, the neutralino, is among the principal successes of minimal supergravity (mSUGRA) and its descendents. In lieu of a suitable ultraviolet completion, however, theories of gravity-mediated supersymmetry breaking such as mSUGRA suffer from arbitrary degrees of flavor violation. Though theories of gauge-mediated supersymmetry breaking are free from such prohibitive flavor violation, they typically lack natural neutralino dark matter candidates. Yet this conventional dichotomy breaks down when the hidden sector is strongly coupled; in models of gauge-mediated supersymmetry breaking, the neutralino may be the lightest supersymmetric particle if the fields of the hidden sector possess large anomalous dimensions. In fact, general models of so-called 'sequestered' gauge mediation possess the full richness of neutralino dark matter found in mSUGRA without corresponding flavor problems. Here we explore generalized models of sequestered gauge mediation and the rich variety of neutralino dark matter they exhibit.

  4. 10D massive type IIA supergravities as the uplift of parabolic M2-brane torus bundles

    Energy Technology Data Exchange (ETDEWEB)

    Garcia del Moral, Maria Pilar [Universidad de Antofagasta (Chile). Dept. de Fisica; Restuccia, Alvaro [Universidad de Antofagasta (Chile). Dept. de Fisica; Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of). Dept. de Fisica

    2016-04-15

    We remark that the two 10D massive deformations of the N = 2 maximal type IIA supergravity (Romans and HLW supergravity) are associated to the low energy limit of the uplift to 10D of M2-brane torus bundles with parabolic monodromy linearly and non-linearly realized respectively. Romans supergravity corresponds to M2-brane compactified on a twice-punctured torus bundle. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Scrutinizing supergravity models through neutrino telescopes

    CERN Document Server

    Gandhi, R; Nanopoulos, Dimitri V; Yuan, K; Zichichi, Antonino; Gandhi, Raj; Lopez, Jorge L.; Yuan, Kajia

    1994-01-01

    Galactic halo neutralinos ($\\chi$) captured by the Sun or Earth produce high-energy neutrinos as end-products of various annihilation modes. These neutrinos can travel from the Sun or Earth cores to the neighborhood of underground detectors (``neutrino telescopes") where they can interact and produce upwardly-moving muons. We compute these muon fluxes in the context of the minimal $SU(5)$ supergravity model, and the no-scale and dilaton $SU(5)\\times U(1)$ supergravity models. At present, with the Kamiokande 90\\% C.L. upper limits on the flux, only a small fraction of the parameter space of the $SU(5)\\times U(1)$ models is accessible for $m_\\chi\\sim m_{\\rm Fe}$, which in turn implies constraints for the lightest chargino mass around 100 GeV for a range of $\\tan\\beta$ values. We also delineate the regions of parameter space that would be accessible with the improvements of experimental sensitivity expected in the near future at Gran Sasso, Super-Kamiokande, and other facilities such as DUMAND and AMANDA, curren...

  6. Physics of superheavy dark matter in supergravity

    Science.gov (United States)

    Addazi, Andrea; Marciano, Antonino; Ketov, Sergei V.; Khlopov, Maxim Yu.

    New trends in inflationary model building and dark matter production in supergravity are considered. Starobinsky inflation is embedded into 𝒩 = 1 supergravity, avoiding instability problems, when the inflaton belongs to a vector superfield associated with a U(1) gauge symmetry, instead of a chiral superfield. This gauge symmetry can be spontaneously broken by the super-Higgs mechanism resulting in a massive vector supermultiplet including the (real scalar) inflaton field. Both supersymmetry (SUSY) and the R-symmetry can also be spontaneously broken by the Polonyi mechanism at high scales close to the inflationary scale. In this case, Polonyi particles and gravitinos become superheavy, and can be copiously produced during inflation by the Schwinger mechanism sourced by the universe expansion. The Polonyi mass slightly exceeds twice the gravitino mass, so that Polonyi particles are unstable and decay into gravitinos. Considering the mechanisms of superheavy gravitino production, we find that the right amount of cold dark matter composed of gravitinos can be achieved. In our scenario, the parameter space of the inflaton potential is directly related to the dark matter one, providing a new unifying framework of inflation and dark matter genesis. A multi-superfield extension of the supergravity framework with a single (inflaton) superfield can result in a formation of primordial nonlinear structures like mini- and stellar-mass black holes, primordial nongaussianity, and the running spectral index of density fluctuations. This framework can be embedded into the SUSY GUTs inspired by heterotic string compactifications on Calabi-Yau three-folds, thus unifying particle physics with quantum gravity.

  7. Topics in field theory

    International Nuclear Information System (INIS)

    Velasco, E.S.

    1986-01-01

    This dissertation deals with several topics of field theory. Chapter I is a brief outline of the work presented in the next chapters. In chapter II, the Gauss-Bonnet-Chern theorem for manifolds with boundary is computed using the path integral representation of the Witten index for supersymmetric quantum mechanical systems. In chapter III the action of N = 2 (Poincare) supergravity is obtained in terms of N = 1 superfields. In chapter IV, N = 2 supergravity coupled to the (abelian) vector multiplet is projected into N - 1 superspace. There, the resulting set of constraints is solved in terms of unconstrained prepotential and the action in terms of N = 1 superfields is constructed. In chapter V the set of constraints for N = 2 conformal supergravity is projected into N = 1 superspace and solved in terms of N = 1 conformal supergravity fields a d matter prepotentials. In chapter VI the role of magnetic monopoles in the phase structure of the change one fixed length abelian Higgs model ins the latticer is investigated using analytic and numerical methods. The technique of monopole suppression is used to determine the phase transition lines that are monopole driven. Finally in chapter VII, the role of the charge of the Higgs field in the abelian Higgs model in the lattice is investigated

  8. The gravitational sector of 2d (0,2) F-theory vacua

    International Nuclear Information System (INIS)

    Lawrie, Craig; Schäfer-Nameki, Sakura; Weigand, Timo

    2017-01-01

    F-theory compactifications on Calabi-Yau fivefolds give rise to two-dimensional N=(0,2) supersymmetric field theories coupled to gravity. We explore the dilaton supergravity defined by the moduli sector of such compactifications. The massless moduli spectrum is found by uplifting Type IIB compactifications on Calabi-Yau fourfolds. This spectrum matches expectations from duality with M-theory on the same elliptic fibration. The latter defines an N=2 Supersymmetric Quantum Mechanics related to the 2d (0,2) F-theory supergravity via circle reduction. Using our recent results on the gravitational anomalies of duality twisted D3-branes wrapping curves in Calabi-Yau fivefolds we show that the F-theory spectrum is anomaly free. We match the classical Chern-Simons terms of the M-theory Super Quantum Mechanics to one-loop contributions to the effective action by S 1 reduction of the dual F-theory.

  9. The gravitational sector of 2d (0,2) F-theory vacua

    Energy Technology Data Exchange (ETDEWEB)

    Lawrie, Craig [Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, Heidelberg, 69120 (Germany); Schäfer-Nameki, Sakura [Mathematical Institute, University of Oxford,Woodstock Road, Oxford, OX2 6GG (United Kingdom); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität,Philosophenweg 19, Heidelberg, 69120 (Germany)

    2017-05-19

    F-theory compactifications on Calabi-Yau fivefolds give rise to two-dimensional N=(0,2) supersymmetric field theories coupled to gravity. We explore the dilaton supergravity defined by the moduli sector of such compactifications. The massless moduli spectrum is found by uplifting Type IIB compactifications on Calabi-Yau fourfolds. This spectrum matches expectations from duality with M-theory on the same elliptic fibration. The latter defines an N=2 Supersymmetric Quantum Mechanics related to the 2d (0,2) F-theory supergravity via circle reduction. Using our recent results on the gravitational anomalies of duality twisted D3-branes wrapping curves in Calabi-Yau fivefolds we show that the F-theory spectrum is anomaly free. We match the classical Chern-Simons terms of the M-theory Super Quantum Mechanics to one-loop contributions to the effective action by S{sup 1} reduction of the dual F-theory.

  10. Supersymmetric black holes in 2D dilaton supergravity: baldness and extremality

    Energy Technology Data Exchange (ETDEWEB)

    Bergamin, L; Grumiller, D; Kummer, W [Institut fuer Theoretische Physik, Technische Universitaet Wien, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)

    2004-03-26

    We present a systematic discussion of supersymmetric solutions of 2D dilaton supergravity. In particular those solutions which retain at least half of the supersymmetries are ground states with respect to the bosonic Casimir function (essentially the ADM mass). Nevertheless, by tuning the prepotential appropriately, black-hole solutions may emerge with an arbitrary number of Killing horizons. The absence of dilatino and gravitino hair is proved. Moreover, the impossibility of supersymmetric dS ground states and of nonextremal black holes is confirmed, even in the presence of a dilaton. In these derivations, knowledge of the general analytic solution of 2D dilaton supergravity plays an important role. The latter result is addressed in the more general context of gPSMs which have no supergravity interpretation. Finally it is demonstrated that the inclusion of non-minimally coupled matter, a step which is already nontrivial by itself, does not change these features in an essential way.

  11. Supersymmetric black holes in 2D dilaton supergravity: baldness and extremality

    International Nuclear Information System (INIS)

    Bergamin, L; Grumiller, D; Kummer, W

    2004-01-01

    We present a systematic discussion of supersymmetric solutions of 2D dilaton supergravity. In particular those solutions which retain at least half of the supersymmetries are ground states with respect to the bosonic Casimir function (essentially the ADM mass). Nevertheless, by tuning the prepotential appropriately, black-hole solutions may emerge with an arbitrary number of Killing horizons. The absence of dilatino and gravitino hair is proved. Moreover, the impossibility of supersymmetric dS ground states and of nonextremal black holes is confirmed, even in the presence of a dilaton. In these derivations, knowledge of the general analytic solution of 2D dilaton supergravity plays an important role. The latter result is addressed in the more general context of gPSMs which have no supergravity interpretation. Finally it is demonstrated that the inclusion of non-minimally coupled matter, a step which is already nontrivial by itself, does not change these features in an essential way

  12. String theory duals of Lifshitz–Chern–Simons gauge theories

    International Nuclear Information System (INIS)

    Balasubramanian, Koushik; McGreevy, John

    2012-01-01

    We propose candidate gravity duals for a class of non-Abelian z = 2 Lifshitz Chern–Simons (LCS) gauge theories studied by Mulligan, Kachru and Nayak. These are nonrelativistic gauge theories in 2+1 dimensions in which parity and time-reversal symmetries are explicitly broken by the presence of a Chern–Simons term. We show that these field theories can be realized as deformations of DLCQ N=4 super Yang–Mills theory. Using the holographic dictionary, we identify the bulk fields of type IIB supergravity that are dual to these deformations. The geometries describing the groundstates of the non-Abelian LCS gauge theories realized here exhibit a mass gap. (paper)

  13. Supersymmetric solutions of N =(1 ,1 ) general massive supergravity

    Science.gov (United States)

    Deger, N. S.; Nazari, Z.; Sarıoǧlu, Ö.

    2018-05-01

    We construct supersymmetric solutions of three-dimensional N =(1 ,1 ) general massive supergravity (GMG). Solutions with a null Killing vector are, in general, pp-waves. We identify those that appear at critical points of the model, some of which do not exist in N =(1 ,1 ) new massive supergravity (NMG). In the timelike case, we find that many solutions are common with NMG, but there is a new class that is genuine to GMG, two members of which are stationary Lifshitz and timelike squashed AdS spacetimes. We also show that in addition to the fully supersymmetric AdS vacuum, there is a second AdS background with a nonzero vector field that preserves 1 /4 supersymmetry.

  14. Coupled dilaton and electromagnetic field in cylindrically symmetric ...

    Indian Academy of Sciences (India)

    The dilaton black hole solutions have attracted considerable attention for the ... theory and study the corresponding cylindrically symmetric spacetime, where .... where Йm and Йe are integration constants to be interpreted later as the ..... feature is apparent for the cylindrically symmetric spacetime in the presence of the dila-.

  15. Holographic RG flow in a new SO(3) × SO(3) sector of ω-deformed SO(8) gauged N = 8 $$ \\mathcal{N}=8 $$ supergravity

    OpenAIRE

    Pang, YiGeorge P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M; University, College Station, TX, 77843, U.S.A.; Pope, C.(George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M; University, College Station, TX, 77843, U.S.A.); Rong, Junchen(George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M; University, College Station, TX, 77843, U.S.A.)

    2015-01-01

    We consider a certain ${\\cal N}=1$ supersymmetric, $SO(3)\\times SO(3)$ invariant, subsector of the $\\omega$-deformed family of $SO(8)$-gauged ${\\cal N}=8$ four-dimensional supergravities. The theory contains two scalar fields and two pseudoscalar fields. We look for stationary points of the scalar potential, corresponding to AdS vacua in the theory. One of these, which breaks all supersymmetries but is nonetheless stable, is new. It exists only when $\\omega\

  16. Potentials in N=2 supergravity

    International Nuclear Information System (INIS)

    Zinov'ev, Yu.M.

    1985-01-01

    The potentials and Yukava interactions, that arise while introducing a gauge interaction of vector and scalar multiplets in N=2 supergravity are presented, in this the gauge group may be either compact or noncompact. The scalar multiplets geometry corresponds to nonlinear σ, models of the form Sp(2,2n)/Sp(2)xSp(2n), SU(2,n)/SU(2)SU(n)xU(1) and O(4,n)/O(4)xO(n)

  17. Complex linear Goldstino superfield and supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Kuzenko, Sergei M. [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia)

    2015-10-01

    The complex linear Goldstino superfield was proposed in http://arxiv.org/abs/1102.3042 for the cases of global and local four-dimensional N=1 supersymmetry. Here we make use of this superfield to construct a supergravity action which is invariant under spontaneously broken local N=1 supersymmetry and has a positive cosmological constant for certain values of the parameters.

  18. Generalized curvature and the equations of D=11 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bandos, Igor A. [Departamento de Fisica Teorica, Universidad de Valencia and IFIC (CSIC-UVEG), 46100-Burjassot (Valencia) (Spain); Institute for Theoretical Physics, NSC ' Kharkov Institute of Physics and Technology' , UA-61108 Kharkov (Ukraine); Azcarraga, Jose A. de [Departamento de Fisica Teorica, Universidad de Valencia and IFIC (CSIC-UVEG), 46100-Burjassot (Valencia) (Spain)]. E-mail: j.a.de.azcarraga@ific.uv.es; Picon, Moises [Departamento de Fisica Teorica, Universidad de Valencia and IFIC (CSIC-UVEG), 46100-Burjassot (Valencia) (Spain); Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-2535 (United States); Varela, Oscar [Departamento de Fisica Teorica, Universidad de Valencia and IFIC (CSIC-UVEG), 46100-Burjassot (Valencia) (Spain); Michigan Center for Theoretical Physics, Randall Laboratory, Department of Physics, University of Michigan, Ann Arbor, MI 48109-1120 (United States)

    2005-05-26

    It is known that, for zero fermionic sector, {psi}{sub {mu}}{sup {alpha}}(x)=0, the bosonic equations of Cremmer-Julia-Scherk eleven-dimensional supergravity can be collected in a compact expression, Rab{alpha}{gamma}{gamma}b{gamma}{beta}=0, which is a condition on the curvature R{alpha}{beta} of the generalized connection w. In this Letter we show that the equation Rbc{alpha}{gamma}{gamma}abc{gamma}{beta}=4i((D-bar {psi}){sub bc}{gamma}{sup [abc{sub {beta}({psi}{sub d}{gamma}{sup d}]){sub {alpha}}), where D-bar is the covariant derivative for the generalized connection w, collects all the bosonic equations of D=11 supergravity when the gravitino is nonvanishing, {psi}{sub {mu}}{sup {alpha}}(x)<>0.

  19. Comments on Nonlinear Sigma Models Coupled to Supergravity arXiv

    CERN Document Server

    Ferrara, Sergio

    2017-12-10

    N=1 , D=4 nonlinear sigma models, parametrized by chiral superfields, usually describe Kählerian geometries, provided that Einstein frame supergravity is used. The sigma model metric is no longer Kähler when local supersymmetry becomes nonlinearly realized through the nilpotency of the supergravity auxiliary fields. In some cases the nonlinear realization eliminates one scalar propagating degree of freedom. This happens when the sigma model conformal-frame metric has co-rank 2. In the geometry of the inflaton, this effect eliminates its scalar superpartner. We show that the sigma model metric remains semidefinite positive in all cases, due the to positivity properties of the conformal-frame sigma model metric.

  20. Vacuum state supersymmetry in d=11 supergravity

    International Nuclear Information System (INIS)

    Vasilevich, D.V.

    1987-01-01

    Supersymmetry of vacuum state in d=11 supergravity is considered. Proceeding on sufficiently general assumptions relatively superformation parameter only Freud-Rubin type solutions may possess supersymmetries. To obtain this result no restrictions on the form of superformation parameter, supealgebra of vacuum global supersymmetry and the form of boson fields were imposed

  1. Extremal black holes in N=2 supergravity

    NARCIS (Netherlands)

    Katmadas, S.

    2011-01-01

    An explanation for the entropy of black holes has been an outstanding problem in recent decades. A special case where this is possible is that of extremal black holes in N=2 supergravity in four and five dimensions. The best developed case is for black holes preserving some supersymmetry (BPS),

  2. Hidden symmetries in minimal five-dimensional supergravity

    International Nuclear Information System (INIS)

    Poessel, Markus; Silva, Sebastian

    2004-01-01

    We study the hidden symmetries arising in the dimensional reduction of d=5, N=2 supergravity to three dimensions. Extending previous partial results for the bosonic part, we give a derivation that includes fermionic terms, shedding light on the appearance of the local hidden symmetry SO(4) in the reduction

  3. Towards a classification of branes in theories with eight supercharges

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Riccioni, Fabio; Romano, Luca

    2014-01-01

    We provide a classification of half-supersymmetric branes in quarter-maximal supergravity theories with scalars parametrising coset manifolds. We show that the results previously obtained for the half-maximal theories give evidence that half-supersymmetric branes correspond to the real longest

  4. Supersymmetric AdS{sub 2} x Σ{sub 2} solutions from tri-sasakian truncation

    Energy Technology Data Exchange (ETDEWEB)

    Karndumri, Parinya [Chulalongkorn University, String Theory and Supergravity Group, Department of Physics, Faculty of Science, Bangkok (Thailand)

    2017-10-15

    A class of AdS{sub 2} x Σ{sub 2}, with Σ{sub 2} being a two-sphere or a hyperbolic space, solutions within four-dimensional N = 4 gauged supergravity coupled to three-vector multiplets with dyonic gauging is identified. The gauged supergravity has a non-semisimple SO(3) x (T{sup 3}, T{sup 3}) gauge group and can be obtained from a consistent truncation of 11-dimensional supergravity on a tri-sasakian manifold. The maximally symmetric vacua contain AdS{sub 4} geometries with N = 1, 3 supersymmetry corresponding to N = 1 and N = 3 superconformal field theories (SCFTs) in three dimensions. We find supersymmetric solutions of the form AdS{sub 2} x Σ{sub 2} preserving two supercharges. These solutions describe twisted compactifications of the dual N = 1 and N = 3 SCFTs and should arise as near horizon geometries of dyonic black holes in asymptotically AdS{sub 4} space-time. Most solutions AdS{sub 2} x Σ{sub 2} geometries with known M-theory origin. (orig.)

  5. Symmetric group representations and Z

    OpenAIRE

    Adve, Anshul; Yong, Alexander

    2017-01-01

    We discuss implications of the following statement about the representation theory of symmetric groups: every integer appears infinitely often as an irreducible character evaluation, and every nonnegative integer appears infinitely often as a Littlewood-Richardson coefficient and as a Kronecker coefficient.

  6. Which compactifications of D=11 supergravity are stable

    International Nuclear Information System (INIS)

    Page, D.N.; Pope, C.N.

    1984-01-01

    We complete the stability analysis of all known Freund-Rubin solutions of eleven-dimensional supergravity by determining the necessary and sufficient conditions for Qsup(pqr) spaces (U(1) bundles over S 2 xS 2 xS 2 ) to be stable. (orig.)

  7. Do three dimensions tell us anything about a theory of everything?

    International Nuclear Information System (INIS)

    Alexandre, Jean; Ellis, John; Mavromatos, Nikolaos E

    2010-01-01

    It has been conjectured that four-dimensional N=8 supergravity may provide a suitable framework for a 'theory of everything', if its composite SU(8) gauge fields become dynamical. We illustrate that supersymmetric three-dimensional coset field theories, motivated by lattice models, provide toy laboratories for aspects of this conjecture. They feature dynamical composite supermultiplets made of constituent holons and spinons. We show how these models may be extended to include N=1 and N=2 supersymmetry, enabling dynamical conjectures to be verified more rigorously. We highlight some special features of these three-dimensional models and mention open questions about their relevance to the dynamics of N=8 supergravity.

  8. Dual vector multiplet coupled to dual N=1 supergravity in 10D

    International Nuclear Information System (INIS)

    Nishino, Hitoshi; Rajpoot, Subhash

    2005-01-01

    We couple in superspace a dual vector multiplet (C m 1 ...m 7 ,λ α ) to the dual version of N=1 supergravity (e m a ,ψ m α ,M m 1 ...m 6 ,χ α ,Φ) in ten dimensions. The 7-form field C has its 8-form field strength H dual to the 2-form field strength F of the conventional vector multiplet. To simplify the computation, we use so-called beta-function-favored superspace constraints for dual supergravity developed for β-function computations. As in a more conventional constraint set, the H-Bianchi identity must have the form N and F, where N is the 7-form field strength in dual supergravity. The potential anomaly for the dual vector multiplet can be cancelled for the particular gauge group U(1) 496 by the Green-Schwarz mechanism. As a by-product, we also give the globally supersymmetric Abelian Dirac-Born-Infeld interactions for the dual vector multiplet for the first time

  9. The Wasteland of Random Supergravities

    OpenAIRE

    Marsh, David; McAllister, Liam; Wrase, Timm

    2011-01-01

    We show that in a general \\cal{N} = 1 supergravity with N \\gg 1 scalar fields, an exponentially small fraction of the de Sitter critical points are metastable vacua. Taking the superpotential and Kahler potential to be random functions, we construct a random matrix model for the Hessian matrix, which is well-approximated by the sum of a Wigner matrix and two Wishart matrices. We compute the eigenvalue spectrum analytically from the free convolution of the constituent spectra and find that in ...

  10. Little string theory from double-scaling limits of field theories

    International Nuclear Information System (INIS)

    Ling, Henry; Shieh, H.-H.; Anders, Greg van

    2007-01-01

    We show that little string theory on S 5 can be obtained as double-scaling limits of the maximally supersymmetric Yang-Mills theories on R x S 2 and R x S 3 /Z k . By matching the gauge theory parameters with those in the dual supergravity solutions found by Lin and Maldacena, we determine the limits in the gauge theories that correspond to decoupling of NS5-brane degrees of freedom. We find that for the theory on R x S 2 , the 't Hooft coupling must be scaled like ln 3 N, and on R x S 3 /Z k , like ln 2 N. Accordingly, taking these limits in these field theories gives Lagrangian definitions of little string theory on S 5

  11. The Axially Symmetric One-Monopole

    International Nuclear Information System (INIS)

    Wong, K.-M.; Teh, Rosy

    2009-01-01

    We present new classical generalized one-monopole solution of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that this solution with θ-winding number m = 1 and φ-winding number n = 1 is an axially symmetric generalization of the 't Hooft-Polyakov one-monopole. We construct this axially symmetric one-monopole solution by generalizing the large distance asymptotic solutions of the 't Hooft-Polyakov one-monopole to the Jacobi elliptic functions and solving the second order equations of motion numerically when the Higgs potential is vanishing. This solution is a non-BPS solution.

  12. Split Attractor Flow in N=2 Minimally Coupled Supergravity

    CERN Document Server

    Ferrara, Sergio; Orazi, Emanuele

    2011-01-01

    We classify the stability region, marginal stability walls (MS) and split attractor flows for two-center extremal black holes in four-dimensional N=2 supergravity minimally coupled to n vector multiplets. It is found that two-center (continuous) charge orbits, classified by four duality invariants, either support a stability region ending on a MS wall or on an anti-marginal stability (AMS) wall, but not both. Therefore, the scalar manifold never contains both walls. Moreover, the BPS mass of the black hole composite (in its stability region) never vanishes in the scalar manifold. For these reasons, the "bound state transformation walls" phenomenon does not necessarily occur in these theories. The entropy of the flow trees also satisfies an inequality which forbids "entropy enigma" decays in these models. Finally, the non-BPS case, due to the existence of a "fake" superpotential satisfying a triangle inequality, can be treated as well, and it can be shown to exhibit a split attractor flow dynamics which, at le...

  13. Universal contributions to scalar masses from five dimensional supergravity

    CERN Document Server

    Dudas, Emilian

    2012-01-01

    We compute the effective Kahler potential for matter fields in warped compactifications, starting from five dimensional gauged supergravity, as a function of the matter fields localization. We show that truncation to zero modes is inconsistent and the tree-level exchange of the massive gravitational multiplet is needed for consistency of the four-dimensional theory. In addition to the standard Kahler coming from dimensional reduction, we find the quartic correction coming from integrating out the gravity multiplet. We apply our result to the computation of scalar masses, by assuming that the SUSY breaking field is a bulk hypermultiplet. In the limit of extreme opposite localization of the matter and the spurion fields, we find zero scalar masses, consistent with sequestering arguments. Surprisingly enough, for all the other cases the scalar masses are tachyonic. This suggests the holographic interpretation that a CFT sector always generates operators contributing in a tachyonic way to scalar masses. Viability...

  14. Spontaneous symmetry breaking in N = 2 supergravity

    International Nuclear Information System (INIS)

    Zinov'ev, Y.M.

    1987-01-01

    A model describing the interaction of N = 2 supergravity with a vector and a linear multiplet is constructed. The model admits the introduction of spontaneous supersymmetry breaking with two arbitrary scales, one of which can be equal to zero, corresponding to the partial super-Higgs effect (N = 2→N = 1). The cosmological term is automatically equal to zero

  15. N=2 supergravity in superspace and the BRS symmetry

    International Nuclear Information System (INIS)

    Kachkachi, M.; Lhallabi, T.

    1989-07-01

    The quantum N = 2 Einstein supergravity action is constructed by requiring the BRS symmetry. This latter is derived by the use of the distorted horizontality conditions in the curved N = 2 harmonic superspace. (author). 16 refs

  16. All the Four-Dimensional Static, Spherically Symmetric Solutions of Abelian Kaluza-Klein Theory

    International Nuclear Information System (INIS)

    Cvetic, M.; Youm, D.

    1995-01-01

    We present the explicit form for all the four-dimensional, static, spherically symmetric solutions in (4+n)-d Abelian Kaluza-Klein theory by performing a subset of SO(2,n) transformations corresponding to four SO(1,1) boosts on the Schwarzschild solution, supplemented by SO(n)/SO(n-2) transformations. The solutions are parametrized by the mass M, Taub-NUT charge a, and n electric rvec Q and n magnetic rvec P charges. Nonextreme black holes (with zero Taub-NUT charge) have either the Reissner-Nordstroem or Schwarzschild global space-time. Supersymmetric extreme black holes have a null or naked singularity, while nonsupersymmetric extreme ones have a global space-time of extreme Reissner-Nordstroem black holes. copyright 1995 The American Physical Society

  17. Towards loop quantum supergravity (LQSG): I. Rarita–Schwinger sector

    International Nuclear Information System (INIS)

    Bodendorfer, N; Thiemann, T; Thurn, A

    2013-01-01

    In our companion papers, we managed to derive a connection formulation of Lorentzian general relativity in D + 1 dimensions with compact gauge group SO(D + 1) such that the connection is Poisson-commuting, which implies that loop quantum gravity quantization methods apply. We also provided the coupling to standard matter. In this paper, we extend our methods to derive a connection formulation of a large class of Lorentzian signature supergravity theories, in particular 11 D SUGRA and 4 D, N = 8 SUGRA, which was in fact the motivation to consider higher dimensions. Starting from a Hamiltonian formulation in the time gauge which yields a Spin(D) theory, a major challenge is to extend the internal gauge group to Spin(D + 1) in the presence of the Rarita–Schwinger field. This is non-trivial because SUSY typically requires the Rarita–Schwinger field to be a Majorana fermion for the Lorentzian Clifford algebra and Majorana representations of the Clifford algebra are not available in the same spacetime dimension for both Lorentzian and Euclidean signatures. We resolve the arising tension and provide a background-independent representation of the non-trivial Dirac antibracket *-algebra for the Majorana field which significantly differs from the analogous construction for Dirac fields already available in the literature. (paper)

  18. Constructive approach to supergravity

    International Nuclear Information System (INIS)

    Milton, K.A.; Urrutia, L.F.; Finkelstein, R.J.

    1980-01-01

    Starting from a first-order formulation of the Lagrangian of noninteracting massless helicity-2 and helicity-3/2 particles, global supersymmetry transformations are deduced. Then, allowing the supersymmetry transformations to become local requires, if supersymmetry is to be maintained, the introduction of a unique primitive interaction through the 'gravitino' stress tensor and torsion. Finally, the imposition of exact supersymmetry invariance leads by a short, constructive process to full supergravity and the complete form of the super-symmetry transformations. In particular, no explicit use is made of general coordinate invariance, and the self-consistency of the gravitational coupling emerges from the local supersymmetry requirement alone. (author)

  19. Tensor calculus for the vector multiplet coupled to supergravity

    International Nuclear Information System (INIS)

    Stelle, K.S.

    1978-01-01

    An invariant coupling of a local vector multiplet to supergravity is constructed in analogy with the D term invariant of global supersymmetry. The rules for combining local vector and chiral scalar multiplets of opposite chirality are given. (Auth.)

  20. Anomaly mediation in superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Conlon, Joseph P. [Rudolf Peierls Center for Theoretical Physics, Oxford (United Kingdom); Balliol College, Oxford (United Kingdom); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Palti, Eran [Centre de Physique Theoretique, Ecole Polytechnique, CNRS, Palaiseau (France)

    2010-08-15

    We study anomaly mediated supersymmetry breaking in type IIB string theory and use our results to test the supergravity formula for anomaly mediated gaugino masses. We compute 1-loop gaugino masses for models of D3-branes on orbifold singularities with 3-form fluxes by calculating the annulus correlator of 3-form flux and two gauginos in the zero momentum limit. Consistent with supergravity expectations we find both anomalous and running contributions to 1-loop gaugino masses. For background Neveu-Schwarz H-flux we find an exact match with the supergravity formula. For Ramond-Ramond flux there is an off-shell ambiguity that precludes a full matching. The anomaly mediated gaugino masses, while determined by the infrared spectrum, arise from an explicit sum over UV open string winding modes. We also calculate brane-to-brane tree-level gravity mediated gaugino masses and show that there are two contributions coming from the dilaton and from the twisted modes, which are suppressed by the full T{sup 6} volume and the untwisted T{sup 2} volume respectively. (orig.)