WorldWideScience

Sample records for symmetric markov processes

  1. Markov Jump Processes Approximating a Non-Symmetric Generalized Diffusion

    International Nuclear Information System (INIS)

    Limić, Nedžad

    2011-01-01

    Consider a non-symmetric generalized diffusion X(⋅) in ℝ d determined by the differential operator A(x) = -Σ ij ∂ i a ij (x)∂ j + Σ i b i (x)∂ i . In this paper the diffusion process is approximated by Markov jump processes X n (⋅), in homogeneous and isotropic grids G n ⊂ℝ d , which converge in distribution in the Skorokhod space D([0,∞),ℝ d ) to the diffusion X(⋅). The generators of X n (⋅) are constructed explicitly. Due to the homogeneity and isotropy of grids, the proposed method for d≥3 can be applied to processes for which the diffusion tensor {a ij (x)} 11 dd fulfills an additional condition. The proposed construction offers a simple method for simulation of sample paths of non-symmetric generalized diffusion. Simulations are carried out in terms of jump processes X n (⋅). For piece-wise constant functions a ij on ℝ d and piece-wise continuous functions a ij on ℝ 2 the construction and principal algorithm are described enabling an easy implementation into a computer code.

  2. Markov processes

    CERN Document Server

    Kirkwood, James R

    2015-01-01

    Review of ProbabilityShort HistoryReview of Basic Probability DefinitionsSome Common Probability DistributionsProperties of a Probability DistributionProperties of the Expected ValueExpected Value of a Random Variable with Common DistributionsGenerating FunctionsMoment Generating FunctionsExercisesDiscrete-Time, Finite-State Markov ChainsIntroductionNotationTransition MatricesDirected Graphs: Examples of Markov ChainsRandom Walk with Reflecting BoundariesGambler’s RuinEhrenfest ModelCentral Problem of Markov ChainsCondition to Ensure a Unique Equilibrium StateFinding the Equilibrium StateTransient and Recurrent StatesIndicator FunctionsPerron-Frobenius TheoremAbsorbing Markov ChainsMean First Passage TimeMean Recurrence Time and the Equilibrium StateFundamental Matrix for Regular Markov ChainsDividing a Markov Chain into Equivalence ClassesPeriodic Markov ChainsReducible Markov ChainsSummaryExercisesDiscrete-Time, Infinite-State Markov ChainsRenewal ProcessesDelayed Renewal ProcessesEquilibrium State f...

  3. Markov Chains and Markov Processes

    OpenAIRE

    Ogunbayo, Segun

    2016-01-01

    Markov chain, which was named after Andrew Markov is a mathematical system that transfers a state to another state. Many real world systems contain uncertainty. This study helps us to understand the basic idea of a Markov chain and how is been useful in our daily lives. For some times there had been suspense on distinct predictions and future existences. Also in different games there had been different expectations or results involved. That is the reason why we need Markov chains to predict o...

  4. Markov processes and controlled Markov chains

    CERN Document Server

    Filar, Jerzy; Chen, Anyue

    2002-01-01

    The general theory of stochastic processes and the more specialized theory of Markov processes evolved enormously in the second half of the last century. In parallel, the theory of controlled Markov chains (or Markov decision processes) was being pioneered by control engineers and operations researchers. Researchers in Markov processes and controlled Markov chains have been, for a long time, aware of the synergies between these two subject areas. However, this may be the first volume dedicated to highlighting these synergies and, almost certainly, it is the first volume that emphasizes the contributions of the vibrant and growing Chinese school of probability. The chapters that appear in this book reflect both the maturity and the vitality of modern day Markov processes and controlled Markov chains. They also will provide an opportunity to trace the connections that have emerged between the work done by members of the Chinese school of probability and the work done by the European, US, Central and South Ameri...

  5. Semi-Markov processes

    CERN Document Server

    Grabski

    2014-01-01

    Semi-Markov Processes: Applications in System Reliability and Maintenance is a modern view of discrete state space and continuous time semi-Markov processes and their applications in reliability and maintenance. The book explains how to construct semi-Markov models and discusses the different reliability parameters and characteristics that can be obtained from those models. The book is a useful resource for mathematicians, engineering practitioners, and PhD and MSc students who want to understand the basic concepts and results of semi-Markov process theory. Clearly defines the properties and

  6. Process Algebra and Markov Chains

    NARCIS (Netherlands)

    Brinksma, Hendrik; Hermanns, H.; Brinksma, Hendrik; Hermanns, H.; Katoen, Joost P.

    This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

  7. Process algebra and Markov chains

    NARCIS (Netherlands)

    Brinksma, E.; Hermanns, H.; Brinksma, E.; Hermanns, H.; Katoen, J.P.

    2001-01-01

    This paper surveys and relates the basic concepts of process algebra and the modelling of continuous time Markov chains. It provides basic introductions to both fields, where we also study the Markov chains from an algebraic perspective, viz. that of Markov chain algebra. We then proceed to study

  8. Nonlinear Markov processes: Deterministic case

    International Nuclear Information System (INIS)

    Frank, T.D.

    2008-01-01

    Deterministic Markov processes that exhibit nonlinear transition mechanisms for probability densities are studied. In this context, the following issues are addressed: Markov property, conditional probability densities, propagation of probability densities, multistability in terms of multiple stationary distributions, stability analysis of stationary distributions, and basin of attraction of stationary distribution

  9. Reviving Markov processes and applications

    International Nuclear Information System (INIS)

    Cai, H.

    1988-01-01

    In this dissertation we study a procedure which restarts a Markov process when the process is killed by some arbitrary multiplicative functional. The regenerative nature of this revival procedure is characterized through a Markov renewal equation. An interesting duality between the revival procedure and the classical killing operation is found. Under the condition that the multiplicative functional possesses an intensity, the generators of the revival process can be written down explicitly. An intimate connection is also found between the perturbation of the sample path of a Markov process and the perturbation of a generator (in Kato's sense). The applications of the theory include the study of the processes like piecewise-deterministic Markov process, virtual waiting time process and the first entrance decomposition (taboo probability)

  10. A relation between non-Markov and Markov processes

    International Nuclear Information System (INIS)

    Hara, H.

    1980-01-01

    With the aid of a transformation technique, it is shown that some memory effects in the non-Markov processes can be eliminated. In other words, some non-Markov processes are rewritten in a form obtained by the random walk process; the Markov process. To this end, two model processes which have some memory or correlation in the random walk process are introduced. An explanation of the memory in the processes is given. (orig.)

  11. Markov Processes in Image Processing

    Science.gov (United States)

    Petrov, E. P.; Kharina, N. L.

    2018-05-01

    Digital images are used as an information carrier in different sciences and technologies. The aspiration to increase the number of bits in the image pixels for the purpose of obtaining more information is observed. In the paper, some methods of compression and contour detection on the basis of two-dimensional Markov chain are offered. Increasing the number of bits on the image pixels will allow one to allocate fine object details more precisely, but it significantly complicates image processing. The methods of image processing do not concede by the efficiency to well-known analogues, but surpass them in processing speed. An image is separated into binary images, and processing is carried out in parallel with each without an increase in speed, when increasing the number of bits on the image pixels. One more advantage of methods is the low consumption of energy resources. Only logical procedures are used and there are no computing operations. The methods can be useful in processing images of any class and assignment in processing systems with a limited time and energy resources.

  12. Markov Decision Processes in Practice

    NARCIS (Netherlands)

    Boucherie, Richardus J.; van Dijk, N.M.

    2017-01-01

    It is over 30 years ago since D.J. White started his series of surveys on practical applications of Markov decision processes (MDP), over 20 years after the phenomenal book by Martin Puterman on the theory of MDP, and over 10 years since Eugene A. Feinberg and Adam Shwartz published their Handbook

  13. Markov processes characterization and convergence

    CERN Document Server

    Ethier, Stewart N

    2009-01-01

    The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists."[A]nyone who works with Markov processes whose state space is uncountably infinite will need this most impressive book as a guide and reference."-American Scientist"There is no question but that space should immediately be reserved for [this] book on the library shelf. Those who aspire to mastery of the contents should also reserve a large number of long winter evenings."-Zentralblatt f?r Mathematik und ihre Grenzgebiete/Mathematics Abstracts"Ethier and Kurtz have produced an excellent treatment of the modern theory of Markov processes that [is] useful both as a reference work and as a graduate textbook."-Journal of Statistical PhysicsMarkov Proce...

  14. Markov Decision Process Measurement Model.

    Science.gov (United States)

    LaMar, Michelle M

    2018-03-01

    Within-task actions can provide additional information on student competencies but are challenging to model. This paper explores the potential of using a cognitive model for decision making, the Markov decision process, to provide a mapping between within-task actions and latent traits of interest. Psychometric properties of the model are explored, and simulation studies report on parameter recovery within the context of a simple strategy game. The model is then applied to empirical data from an educational game. Estimates from the model are found to correlate more strongly with posttest results than a partial-credit IRT model based on outcome data alone.

  15. Markov process of muscle motors

    International Nuclear Information System (INIS)

    Kondratiev, Yu; Pechersky, E; Pirogov, S

    2008-01-01

    We study a Markov random process describing muscle molecular motor behaviour. Every motor is either bound up with a thin filament or unbound. In the bound state the motor creates a force proportional to its displacement from the neutral position. In both states the motor spends an exponential time depending on the state. The thin filament moves at a velocity proportional to the average of all displacements of all motors. We assume that the time which a motor stays in the bound state does not depend on its displacement. Then one can find an exact solution of a nonlinear equation appearing in the limit of an infinite number of motors

  16. Inhomogeneous Markov point processes by transformation

    DEFF Research Database (Denmark)

    Jensen, Eva B. Vedel; Nielsen, Linda Stougaard

    2000-01-01

    We construct parametrized models for point processes, allowing for both inhomogeneity and interaction. The inhomogeneity is obtained by applying parametrized transformations to homogeneous Markov point processes. An interesting model class, which can be constructed by this transformation approach......, is that of exponential inhomogeneous Markov point processes. Statistical inference For such processes is discussed in some detail....

  17. Timed Comparisons of Semi-Markov Processes

    DEFF Research Database (Denmark)

    Pedersen, Mathias Ruggaard; Larsen, Kim Guldstrand; Bacci, Giorgio

    2018-01-01

    -Markov processes, and investigate the question of how to compare two semi-Markov processes with respect to their time-dependent behaviour. To this end, we introduce the relation of being “faster than” between processes and study its algorithmic complexity. Through a connection to probabilistic automata we obtain...

  18. Generated dynamics of Markov and quantum processes

    CERN Document Server

    Janßen, Martin

    2016-01-01

    This book presents Markov and quantum processes as two sides of a coin called generated stochastic processes. It deals with quantum processes as reversible stochastic processes generated by one-step unitary operators, while Markov processes are irreversible stochastic processes generated by one-step stochastic operators. The characteristic feature of quantum processes are oscillations, interference, lots of stationary states in bounded systems and possible asymptotic stationary scattering states in open systems, while the characteristic feature of Markov processes are relaxations to a single stationary state. Quantum processes apply to systems where all variables, that control reversibility, are taken as relevant variables, while Markov processes emerge when some of those variables cannot be followed and are thus irrelevant for the dynamic description. Their absence renders the dynamic irreversible. A further aim is to demonstrate that almost any subdiscipline of theoretical physics can conceptually be put in...

  19. Maximizing Entropy over Markov Processes

    DEFF Research Database (Denmark)

    Biondi, Fabrizio; Legay, Axel; Nielsen, Bo Friis

    2013-01-01

    The channel capacity of a deterministic system with confidential data is an upper bound on the amount of bits of data an attacker can learn from the system. We encode all possible attacks to a system using a probabilistic specification, an Interval Markov Chain. Then the channel capacity...... as a reward function, a polynomial algorithm to verify the existence of an system maximizing entropy among those respecting a specification, a procedure for the maximization of reward functions over Interval Markov Chains and its application to synthesize an implementation maximizing entropy. We show how...... to use Interval Markov Chains to model abstractions of deterministic systems with confidential data, and use the above results to compute their channel capacity. These results are a foundation for ongoing work on computing channel capacity for abstractions of programs derived from code....

  20. Maximizing entropy over Markov processes

    DEFF Research Database (Denmark)

    Biondi, Fabrizio; Legay, Axel; Nielsen, Bo Friis

    2014-01-01

    The channel capacity of a deterministic system with confidential data is an upper bound on the amount of bits of data an attacker can learn from the system. We encode all possible attacks to a system using a probabilistic specification, an Interval Markov Chain. Then the channel capacity...... as a reward function, a polynomial algorithm to verify the existence of a system maximizing entropy among those respecting a specification, a procedure for the maximization of reward functions over Interval Markov Chains and its application to synthesize an implementation maximizing entropy. We show how...... to use Interval Markov Chains to model abstractions of deterministic systems with confidential data, and use the above results to compute their channel capacity. These results are a foundation for ongoing work on computing channel capacity for abstractions of programs derived from code. © 2014 Elsevier...

  1. Bayesian analysis of Markov point processes

    DEFF Research Database (Denmark)

    Berthelsen, Kasper Klitgaard; Møller, Jesper

    2006-01-01

    Recently Møller, Pettitt, Berthelsen and Reeves introduced a new MCMC methodology for drawing samples from a posterior distribution when the likelihood function is only specified up to a normalising constant. We illustrate the method in the setting of Bayesian inference for Markov point processes...... a partially ordered Markov point process as the auxiliary variable. As the method requires simulation from the "unknown" likelihood, perfect simulation algorithms for spatial point processes become useful....

  2. Finite Markov processes and their applications

    CERN Document Server

    Iosifescu, Marius

    2007-01-01

    A self-contained treatment of finite Markov chains and processes, this text covers both theory and applications. Author Marius Iosifescu, vice president of the Romanian Academy and director of its Center for Mathematical Statistics, begins with a review of relevant aspects of probability theory and linear algebra. Experienced readers may start with the second chapter, a treatment of fundamental concepts of homogeneous finite Markov chain theory that offers examples of applicable models.The text advances to studies of two basic types of homogeneous finite Markov chains: absorbing and ergodic ch

  3. On the entropy of a hidden Markov process.

    Science.gov (United States)

    Jacquet, Philippe; Seroussi, Gadiel; Szpankowski, Wojciech

    2008-05-01

    We study the entropy rate of a hidden Markov process (HMP) defined by observing the output of a binary symmetric channel whose input is a first-order binary Markov process. Despite the simplicity of the models involved, the characterization of this entropy is a long standing open problem. By presenting the probability of a sequence under the model as a product of random matrices, one can see that the entropy rate sought is equal to a top Lyapunov exponent of the product. This offers an explanation for the elusiveness of explicit expressions for the HMP entropy rate, as Lyapunov exponents are notoriously difficult to compute. Consequently, we focus on asymptotic estimates, and apply the same product of random matrices to derive an explicit expression for a Taylor approximation of the entropy rate with respect to the parameter of the binary symmetric channel. The accuracy of the approximation is validated against empirical simulation results. We also extend our results to higher-order Markov processes and to Rényi entropies of any order.

  4. Markov processes an introduction for physical scientists

    CERN Document Server

    Gillespie, Daniel T

    1991-01-01

    Markov process theory is basically an extension of ordinary calculus to accommodate functions whos time evolutions are not entirely deterministic. It is a subject that is becoming increasingly important for many fields of science. This book develops the single-variable theory of both continuous and jump Markov processes in a way that should appeal especially to physicists and chemists at the senior and graduate level.Key Features* A self-contained, prgamatic exposition of the needed elements of random variable theory* Logically integrated derviations of the Chapman-Kolmogorov e

  5. Continuity Properties of Distances for Markov Processes

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Mao, Hua; Larsen, Kim Guldstrand

    2014-01-01

    In this paper we investigate distance functions on finite state Markov processes that measure the behavioural similarity of non-bisimilar processes. We consider both probabilistic bisimilarity metrics, and trace-based distances derived from standard Lp and Kullback-Leibler distances. Two desirable...

  6. A Metrized Duality Theorem for Markov Processes

    DEFF Research Database (Denmark)

    Kozen, Dexter; Mardare, Radu Iulian; Panangaden, Prakash

    2014-01-01

    We extend our previous duality theorem for Markov processes by equipping the processes with a pseudometric and the algebras with a notion of metric diameter. We are able to show that the isomorphisms of our previous duality theorem become isometries in this quantitative setting. This opens the wa...

  7. Markov decision processes in artificial intelligence

    CERN Document Server

    Sigaud, Olivier

    2013-01-01

    Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as Reinforcement Learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in Artificial Intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, Reinforcement Learning, Partially Observable MDPs, Markov games and the use of non-classical criteria). Then it presents more advanced research trends in the domain and gives some concrete examples using illustr

  8. Renewal characterization of Markov modulated Poisson processes

    Directory of Open Access Journals (Sweden)

    Marcel F. Neuts

    1989-01-01

    Full Text Available A Markov Modulated Poisson Process (MMPP M(t defined on a Markov chain J(t is a pure jump process where jumps of M(t occur according to a Poisson process with intensity λi whenever the Markov chain J(t is in state i. M(t is called strongly renewal (SR if M(t is a renewal process for an arbitrary initial probability vector of J(t with full support on P={i:λi>0}. M(t is called weakly renewal (WR if there exists an initial probability vector of J(t such that the resulting MMPP is a renewal process. The purpose of this paper is to develop general characterization theorems for the class SR and some sufficiency theorems for the class WR in terms of the first passage times of the bivariate Markov chain [J(t,M(t]. Relevance to the lumpability of J(t is also studied.

  9. Nonlinearly perturbed semi-Markov processes

    CERN Document Server

    Silvestrov, Dmitrii

    2017-01-01

    The book presents new methods of asymptotic analysis for nonlinearly perturbed semi-Markov processes with a finite phase space. These methods are based on special time-space screening procedures for sequential phase space reduction of semi-Markov processes combined with the systematical use of operational calculus for Laurent asymptotic expansions. Effective recurrent algorithms are composed for getting asymptotic expansions, without and with explicit upper bounds for remainders, for power moments of hitting times, stationary and conditional quasi-stationary distributions for nonlinearly perturbed semi-Markov processes. These results are illustrated by asymptotic expansions for birth-death-type semi-Markov processes, which play an important role in various applications. The book will be a useful contribution to the continuing intensive studies in the area. It is an essential reference for theoretical and applied researchers in the field of stochastic processes and their applications that will cont...

  10. Operational Markov Condition for Quantum Processes

    Science.gov (United States)

    Pollock, Felix A.; Rodríguez-Rosario, César; Frauenheim, Thomas; Paternostro, Mauro; Modi, Kavan

    2018-01-01

    We derive a necessary and sufficient condition for a quantum process to be Markovian which coincides with the classical one in the relevant limit. Our condition unifies all previously known definitions for quantum Markov processes by accounting for all potentially detectable memory effects. We then derive a family of measures of non-Markovianity with clear operational interpretations, such as the size of the memory required to simulate a process or the experimental falsifiability of a Markovian hypothesis.

  11. Modeling nonhomogeneous Markov processes via time transformation.

    Science.gov (United States)

    Hubbard, R A; Inoue, L Y T; Fann, J R

    2008-09-01

    Longitudinal studies are a powerful tool for characterizing the course of chronic disease. These studies are usually carried out with subjects observed at periodic visits giving rise to panel data. Under this observation scheme the exact times of disease state transitions and sequence of disease states visited are unknown and Markov process models are often used to describe disease progression. Most applications of Markov process models rely on the assumption of time homogeneity, that is, that the transition rates are constant over time. This assumption is not satisfied when transition rates depend on time from the process origin. However, limited statistical tools are available for dealing with nonhomogeneity. We propose models in which the time scale of a nonhomogeneous Markov process is transformed to an operational time scale on which the process is homogeneous. We develop a method for jointly estimating the time transformation and the transition intensity matrix for the time transformed homogeneous process. We assess maximum likelihood estimation using the Fisher scoring algorithm via simulation studies and compare performance of our method to homogeneous and piecewise homogeneous models. We apply our methodology to a study of delirium progression in a cohort of stem cell transplantation recipients and show that our method identifies temporal trends in delirium incidence and recovery.

  12. Exact solution of the hidden Markov processes

    Science.gov (United States)

    Saakian, David B.

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .

  13. Dynamical fluctuations for semi-Markov processes

    Czech Academy of Sciences Publication Activity Database

    Maes, C.; Netočný, Karel; Wynants, B.

    2009-01-01

    Roč. 42, č. 36 (2009), 365002/1-365002/21 ISSN 1751-8113 R&D Projects: GA ČR GC202/07/J051 Institutional research plan: CEZ:AV0Z10100520 Keywords : nonequilibrium fluctuations * semi-Markov processes Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.577, year: 2009 http://www.iop.org/EJ/abstract/1751-8121/42/36/365002

  14. Risk aversion and risk seeking in multicriteria forest management: a Markov decision process approach

    Science.gov (United States)

    Joseph Buongiorno; Mo Zhou; Craig Johnston

    2017-01-01

    Markov decision process models were extended to reflect some consequences of the risk attitude of forestry decision makers. One approach consisted of maximizing the expected value of a criterion subject to an upper bound on the variance or, symmetrically, minimizing the variance subject to a lower bound on the expected value.  The other method used the certainty...

  15. Markov chains of nonlinear Markov processes and an application to a winner-takes-all model for social conformity

    Energy Technology Data Exchange (ETDEWEB)

    Frank, T D [Center for the Ecological Study of Perception and Action, Department of Psychology, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269 (United States)

    2008-07-18

    We discuss nonlinear Markov processes defined on discrete time points and discrete state spaces using Markov chains. In this context, special attention is paid to the distinction between linear and nonlinear Markov processes. We illustrate that the Chapman-Kolmogorov equation holds for nonlinear Markov processes by a winner-takes-all model for social conformity. (fast track communication)

  16. Markov chains of nonlinear Markov processes and an application to a winner-takes-all model for social conformity

    International Nuclear Information System (INIS)

    Frank, T D

    2008-01-01

    We discuss nonlinear Markov processes defined on discrete time points and discrete state spaces using Markov chains. In this context, special attention is paid to the distinction between linear and nonlinear Markov processes. We illustrate that the Chapman-Kolmogorov equation holds for nonlinear Markov processes by a winner-takes-all model for social conformity. (fast track communication)

  17. Neyman, Markov processes and survival analysis.

    Science.gov (United States)

    Yang, Grace

    2013-07-01

    J. Neyman used stochastic processes extensively in his applied work. One example is the Fix and Neyman (F-N) competing risks model (1951) that uses finite homogeneous Markov processes to analyse clinical trials with breast cancer patients. We revisit the F-N model, and compare it with the Kaplan-Meier (K-M) formulation for right censored data. The comparison offers a way to generalize the K-M formulation to include risks of recovery and relapses in the calculation of a patient's survival probability. The generalization is to extend the F-N model to a nonhomogeneous Markov process. Closed-form solutions of the survival probability are available in special cases of the nonhomogeneous processes, like the popular multiple decrement model (including the K-M model) and Chiang's staging model, but these models do not consider recovery and relapses while the F-N model does. An analysis of sero-epidemiology current status data with recurrent events is illustrated. Fix and Neyman used Neyman's RBAN (regular best asymptotic normal) estimates for the risks, and provided a numerical example showing the importance of considering both the survival probability and the length of time of a patient living a normal life in the evaluation of clinical trials. The said extension would result in a complicated model and it is unlikely to find analytical closed-form solutions for survival analysis. With ever increasing computing power, numerical methods offer a viable way of investigating the problem.

  18. A Markov Process Inspired Cellular Automata Model of Road Traffic

    OpenAIRE

    Wang, Fa; Li, Li; Hu, Jianming; Ji, Yan; Yao, Danya; Zhang, Yi; Jin, Xuexiang; Su, Yuelong; Wei, Zheng

    2008-01-01

    To provide a more accurate description of the driving behaviors in vehicle queues, a namely Markov-Gap cellular automata model is proposed in this paper. It views the variation of the gap between two consequent vehicles as a Markov process whose stationary distribution corresponds to the observed distribution of practical gaps. The multiformity of this Markov process provides the model enough flexibility to describe various driving behaviors. Two examples are given to show how to specialize i...

  19. Learning Markov Decision Processes for Model Checking

    DEFF Research Database (Denmark)

    Mao, Hua; Chen, Yingke; Jaeger, Manfred

    2012-01-01

    . The proposed learning algorithm is adapted from algorithms for learning deterministic probabilistic finite automata, and extended to include both probabilistic and nondeterministic transitions. The algorithm is empirically analyzed and evaluated by learning system models of slot machines. The evaluation......Constructing an accurate system model for formal model verification can be both resource demanding and time-consuming. To alleviate this shortcoming, algorithms have been proposed for automatically learning system models based on observed system behaviors. In this paper we extend the algorithm...... on learning probabilistic automata to reactive systems, where the observed system behavior is in the form of alternating sequences of inputs and outputs. We propose an algorithm for automatically learning a deterministic labeled Markov decision process model from the observed behavior of a reactive system...

  20. Recombination Processes and Nonlinear Markov Chains.

    Science.gov (United States)

    Pirogov, Sergey; Rybko, Alexander; Kalinina, Anastasia; Gelfand, Mikhail

    2016-09-01

    Bacteria are known to exchange genetic information by horizontal gene transfer. Since the frequency of homologous recombination depends on the similarity between the recombining segments, several studies examined whether this could lead to the emergence of subspecies. Most of them simulated fixed-size Wright-Fisher populations, in which the genetic drift should be taken into account. Here, we use nonlinear Markov processes to describe a bacterial population evolving under mutation and recombination. We consider a population structure as a probability measure on the space of genomes. This approach implies the infinite population size limit, and thus, the genetic drift is not assumed. We prove that under these conditions, the emergence of subspecies is impossible.

  1. Derivation of Markov processes that violate detailed balance

    Science.gov (United States)

    Lee, Julian

    2018-03-01

    Time-reversal symmetry of the microscopic laws dictates that the equilibrium distribution of a stochastic process must obey the condition of detailed balance. However, cyclic Markov processes that do not admit equilibrium distributions with detailed balance are often used to model systems driven out of equilibrium by external agents. I show that for a Markov model without detailed balance, an extended Markov model can be constructed, which explicitly includes the degrees of freedom for the driving agent and satisfies the detailed balance condition. The original cyclic Markov model for the driven system is then recovered as an approximation at early times by summing over the degrees of freedom for the driving agent. I also show that the widely accepted expression for the entropy production in a cyclic Markov model is actually a time derivative of an entropy component in the extended model. Further, I present an analytic expression for the entropy component that is hidden in the cyclic Markov model.

  2. Pathwise duals of monotone and additive Markov processes

    Czech Academy of Sciences Publication Activity Database

    Sturm, A.; Swart, Jan M.

    -, - (2018) ISSN 0894-9840 R&D Projects: GA ČR GAP201/12/2613 Institutional support: RVO:67985556 Keywords : pathwise duality * monotone Markov process * additive Markov process * interacting particle system Subject RIV: BA - General Mathematics Impact factor: 0.854, year: 2016 http://library.utia.cas.cz/separaty/2016/SI/swart-0465436.pdf

  3. Process Modeling for Energy Usage in “Smart House” System with a Help of Markov Discrete Chain

    Directory of Open Access Journals (Sweden)

    Victor Kravets

    2016-05-01

    Full Text Available Method for evaluating economic efficiency of technical systems using discrete Markov chains modelling illustrated by the system of “Smart house”, consisting, for example, of the three independently functioning elements. Dynamic model of a random power consumption process in the form of a symmetrical state graph of heterogeneous discrete Markov chain is built. The corresponding mathematical model of a random Markov process of power consumption in the “smart house” system in recurrent matrix form is being developed. Technique of statistical determination of probability of random transition elements of the system and the corresponding to the transition probability matrix of the discrete inhomogeneous Markov chain are developed. Statistically determined random transitions of system elements power consumption and the corresponding distribution laws are introduced. The matrix of transition prices, expectations for the possible states of a system price transition and, eventually, the cost of Markov process of power consumption throughout the day.

  4. Markov processes from K. Ito's perspective (AM-155)

    CERN Document Server

    Stroock, Daniel W

    2003-01-01

    Kiyosi Itô''s greatest contribution to probability theory may be his introduction of stochastic differential equations to explain the Kolmogorov-Feller theory of Markov processes. Starting with the geometric ideas that guided him, this book gives an account of Itô''s program. The modern theory of Markov processes was initiated by A. N. Kolmogorov. However, Kolmogorov''s approach was too analytic to reveal the probabilistic foundations on which it rests. In particular, it hides the central role played by the simplest Markov processes: those with independent, identically distributed incremen

  5. NonMarkov Ito Processes with 1- state memory

    Science.gov (United States)

    McCauley, Joseph L.

    2010-08-01

    A Markov process, by definition, cannot depend on any previous state other than the last observed state. An Ito process implies the Fokker-Planck and Kolmogorov backward time partial differential eqns. for transition densities, which in turn imply the Chapman-Kolmogorov eqn., but without requiring the Markov condition. We present a class of Ito process superficially resembling Markov processes, but with 1-state memory. In finance, such processes would obey the efficient market hypothesis up through the level of pair correlations. These stochastic processes have been mislabeled in recent literature as 'nonlinear Markov processes'. Inspired by Doob and Feller, who pointed out that the ChapmanKolmogorov eqn. is not restricted to Markov processes, we exhibit a Gaussian Ito transition density with 1-state memory in the drift coefficient that satisfies both of Kolmogorov's partial differential eqns. and also the Chapman-Kolmogorov eqn. In addition, we show that three of the examples from McKean's seminal 1966 paper are also nonMarkov Ito processes. Last, we show that the transition density of the generalized Black-Scholes type partial differential eqn. describes a martingale, and satisfies the ChapmanKolmogorov eqn. This leads to the shortest-known proof that the Green function of the Black-Scholes eqn. with variable diffusion coefficient provides the so-called martingale measure of option pricing.

  6. Filtering of a Markov Jump Process with Counting Observations

    International Nuclear Information System (INIS)

    Ceci, C.; Gerardi, A.

    2000-01-01

    This paper concerns the filtering of an R d -valued Markov pure jump process when only the total number of jumps are observed. Strong and weak uniqueness for the solutions of the filtering equations are discussed

  7. Continuous-time Markov decision processes theory and applications

    CERN Document Server

    Guo, Xianping

    2009-01-01

    This volume provides the first book entirely devoted to recent developments on the theory and applications of continuous-time Markov decision processes (MDPs). The MDPs presented here include most of the cases that arise in applications.

  8. Generalization bounds of ERM-based learning processes for continuous-time Markov chains.

    Science.gov (United States)

    Zhang, Chao; Tao, Dacheng

    2012-12-01

    Many existing results on statistical learning theory are based on the assumption that samples are independently and identically distributed (i.i.d.). However, the assumption of i.i.d. samples is not suitable for practical application to problems in which samples are time dependent. In this paper, we are mainly concerned with the empirical risk minimization (ERM) based learning process for time-dependent samples drawn from a continuous-time Markov chain. This learning process covers many kinds of practical applications, e.g., the prediction for a time series and the estimation of channel state information. Thus, it is significant to study its theoretical properties including the generalization bound, the asymptotic convergence, and the rate of convergence. It is noteworthy that, since samples are time dependent in this learning process, the concerns of this paper cannot (at least straightforwardly) be addressed by existing methods developed under the sample i.i.d. assumption. We first develop a deviation inequality for a sequence of time-dependent samples drawn from a continuous-time Markov chain and present a symmetrization inequality for such a sequence. By using the resultant deviation inequality and symmetrization inequality, we then obtain the generalization bounds of the ERM-based learning process for time-dependent samples drawn from a continuous-time Markov chain. Finally, based on the resultant generalization bounds, we analyze the asymptotic convergence and the rate of convergence of the learning process.

  9. On mean reward variance in semi-Markov processes

    Czech Academy of Sciences Publication Activity Database

    Sladký, Karel

    2005-01-01

    Roč. 62, č. 3 (2005), s. 387-397 ISSN 1432-2994 R&D Projects: GA ČR(CZ) GA402/05/0115; GA ČR(CZ) GA402/04/1294 Institutional research plan: CEZ:AV0Z10750506 Keywords : Markov and semi-Markov processes with rewards * variance of cumulative reward * asymptotic behaviour Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.259, year: 2005

  10. Monte Carlo Simulation of Markov, Semi-Markov, and Generalized Semi- Markov Processes in Probabilistic Risk Assessment

    Science.gov (United States)

    English, Thomas

    2005-01-01

    A standard tool of reliability analysis used at NASA-JSC is the event tree. An event tree is simply a probability tree, with the probabilities determining the next step through the tree specified at each node. The nodal probabilities are determined by a reliability study of the physical system at work for a particular node. The reliability study performed at a node is typically referred to as a fault tree analysis, with the potential of a fault tree existing.for each node on the event tree. When examining an event tree it is obvious why the event tree/fault tree approach has been adopted. Typical event trees are quite complex in nature, and the event tree/fault tree approach provides a systematic and organized approach to reliability analysis. The purpose of this study was two fold. Firstly, we wanted to explore the possibility that a semi-Markov process can create dependencies between sojourn times (the times it takes to transition from one state to the next) that can decrease the uncertainty when estimating time to failures. Using a generalized semi-Markov model, we studied a four element reliability model and were able to demonstrate such sojourn time dependencies. Secondly, we wanted to study the use of semi-Markov processes to introduce a time variable into the event tree diagrams that are commonly developed in PRA (Probabilistic Risk Assessment) analyses. Event tree end states which change with time are more representative of failure scenarios than are the usual static probability-derived end states.

  11. Quantum Markov processes and applications in many-body systems

    International Nuclear Information System (INIS)

    Temme, P. K.

    2010-01-01

    This thesis is concerned with the investigation of quantum as well as classical Markov processes and their application in the field of strongly correlated many-body systems. A Markov process is a special kind of stochastic process, which is determined by an evolution that is independent of its history and only depends on the current state of the system. The application of Markov processes has a long history in the field of statistical mechanics and classical many-body theory. Not only are Markov processes used to describe the dynamics of stochastic systems, but they predominantly also serve as a practical method that allows for the computation of fundamental properties of complex many-body systems by means of probabilistic algorithms. The aim of this thesis is to investigate the properties of quantum Markov processes, i.e. Markov processes taking place in a quantum mechanical state space, and to gain a better insight into complex many-body systems by means thereof. Moreover, we formulate a novel quantum algorithm which allows for the computation of the thermal and ground states of quantum many-body systems. After a brief introduction to quantum Markov processes we turn to an investigation of their convergence properties. We find bounds on the convergence rate of the quantum process by generalizing geometric bounds found for classical processes. We generalize a distance measure that serves as the basis for our investigations, the chi-square divergence, to non-commuting probability spaces. This divergence allows for a convenient generalization of the detailed balance condition to quantum processes. We then devise the quantum algorithm that can be seen as the natural generalization of the ubiquitous Metropolis algorithm to simulate quantum many-body Hamiltonians. By this we intend to provide further evidence, that a quantum computer can serve as a fully-fledged quantum simulator, which is not only capable of describing the dynamical evolution of quantum systems, but

  12. Bisimulation on Markov Processes over Arbitrary Measurable Spaces

    DEFF Research Database (Denmark)

    Bacci, Giorgio; Bacci, Giovanni; Larsen, Kim Guldstrand

    2014-01-01

    We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates with a mea......We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates...

  13. Embedding a State Space Model Into a Markov Decision Process

    DEFF Research Database (Denmark)

    Nielsen, Lars Relund; Jørgensen, Erik; Højsgaard, Søren

    2011-01-01

    In agriculture Markov decision processes (MDPs) with finite state and action space are often used to model sequential decision making over time. For instance, states in the process represent possible levels of traits of the animal and transition probabilities are based on biological models...

  14. Critical Age-Dependent Branching Markov Processes and their ...

    Indian Academy of Sciences (India)

    This paper studies: (i) the long-time behaviour of the empirical distribution of age and normalized position of an age-dependent critical branching Markov process conditioned on non-extinction; and (ii) the super-process limit of a sequence of age-dependent critical branching Brownian motions.

  15. Lectures from Markov processes to Brownian motion

    CERN Document Server

    Chung, Kai Lai

    1982-01-01

    This book evolved from several stacks of lecture notes written over a decade and given in classes at slightly varying levels. In transforming the over­ lapping material into a book, I aimed at presenting some of the best features of the subject with a minimum of prerequisities and technicalities. (Needless to say, one man's technicality is another's professionalism. ) But a text frozen in print does not allow for the latitude of the classroom; and the tendency to expand becomes harder to curb without the constraints of time and audience. The result is that this volume contains more topics and details than I had intended, but I hope the forest is still visible with the trees. The book begins at the beginning with the Markov property, followed quickly by the introduction of option al times and martingales. These three topics in the discrete parameter setting are fully discussed in my book A Course In Probability Theory (second edition, Academic Press, 1974). The latter will be referred to throughout this book ...

  16. Hidden Markov processes theory and applications to biology

    CERN Document Server

    Vidyasagar, M

    2014-01-01

    This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are t

  17. Berman-Konsowa principle for reversible Markov jump processes

    NARCIS (Netherlands)

    Hollander, den W.Th.F.; Jansen, S.

    2013-01-01

    In this paper we prove a version of the Berman-Konsowa principle for reversible Markov jump processes on Polish spaces. The Berman-Konsowa principle provides a variational formula for the capacity of a pair of disjoint measurable sets. There are two versions, one involving a class of probability

  18. Testing the Adequacy of a Semi-Markov Process

    Science.gov (United States)

    2015-09-17

    classical Brownian motion are two common examples of martingales. Submartingales and supermartingales are two extended classes of martingales. They... movements using Semi-Markov processes,” Tourism Management, Vol. 32, No. 4, 2011, pp. 844–851. [4] Titman, A. C. and Sharples, L. D., “Model

  19. Elements of the theory of Markov processes and their applications

    CERN Document Server

    Bharucha-Reid, A T

    2010-01-01

    This graduate-level text and reference in probability, with numerous applications to several fields of science, presents nonmeasure-theoretic introduction to theory of Markov processes. The work also covers mathematical models based on the theory, employed in various applied fields. Prerequisites are a knowledge of elementary probability theory, mathematical statistics, and analysis. Appendixes. Bibliographies. 1960 edition.

  20. Envelopes of Sets of Measures, Tightness, and Markov Control Processes

    International Nuclear Information System (INIS)

    Gonzalez-Hernandez, J.; Hernandez-Lerma, O.

    1999-01-01

    We introduce upper and lower envelopes for sets of measures on an arbitrary topological space, which are then used to give a tightness criterion. These concepts are applied to show the existence of optimal policies for a class of Markov control processes

  1. Cascade probabilistic function and the Markov's processes. Chapter 1

    International Nuclear Information System (INIS)

    2002-01-01

    In the Chapter 1 the physical and mathematical descriptions of radiation processes are carried out. The relation of the cascade probabilistic functions (CPF) for electrons, protons, alpha-particles and ions with Markov's chain is shown. The algorithms for CPF calculation with accounting energy losses are given

  2. On Characterisation of Markov Processes Via Martingale Problems

    Indian Academy of Sciences (India)

    This extension is used to improve on a criterion for a probability measure to be invariant for the semigroup associated with the Markov process. We also give examples of martingale problems that are well-posed in the class of solutions which are continuous in probability but for which no r.c.l.l. solution exists.

  3. Markov LIMID processes for representing and solving renewal problems

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Kristensen, Anders Ringgaard; Nilsson, Dennis

    2014-01-01

    to model a Markov Limid Process, where each TemLimid represents a macro action. Algorithms are presented to find optimal plans for a sequence of such macro actions. Use of algorithms is illustrated based on an extended version of an example from pig production originally used to introduce the Limid concept...

  4. Active Learning of Markov Decision Processes for System Verification

    DEFF Research Database (Denmark)

    Chen, Yingke; Nielsen, Thomas Dyhre

    2012-01-01

    deterministic Markov decision processes from data by actively guiding the selection of input actions. The algorithm is empirically analyzed by learning system models of slot machines, and it is demonstrated that the proposed active learning procedure can significantly reduce the amount of data required...... demanding process, and this shortcoming has motivated the development of algorithms for automatically learning system models from observed system behaviors. Recently, algorithms have been proposed for learning Markov decision process representations of reactive systems based on alternating sequences...... of input/output observations. While alleviating the problem of manually constructing a system model, the collection/generation of observed system behaviors can also prove demanding. Consequently we seek to minimize the amount of data required. In this paper we propose an algorithm for learning...

  5. Reggeon field theory and Markov processes

    International Nuclear Information System (INIS)

    Grassberger, P.; Sundermeyer, K.

    1978-01-01

    Reggeon field theory with a quartic coupling in addition to the standard cubic one is shown to be mathematically equivalent to a chemical process where a radical can undergo diffusion, absorption, recombination, and autocatalytic production. Physically, these 'radicals' are wee partons. (Auth.)

  6. Identification of Optimal Policies in Markov Decision Processes

    Czech Academy of Sciences Publication Activity Database

    Sladký, Karel

    46 2010, č. 3 (2010), s. 558-570 ISSN 0023-5954. [International Conference on Mathematical Methods in Economy and Industry. České Budějovice, 15.06.2009-18.06.2009] R&D Projects: GA ČR(CZ) GA402/08/0107; GA ČR GA402/07/1113 Institutional research plan: CEZ:AV0Z10750506 Keywords : finite state Markov decision processes * discounted and average costs * elimination of suboptimal policies Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/E/sladky-identification of optimal policies in markov decision processes.pdf

  7. A Partially Observed Markov Decision Process for Dynamic Pricing

    OpenAIRE

    Yossi Aviv; Amit Pazgal

    2005-01-01

    In this paper, we develop a stylized partially observed Markov decision process (POMDP) framework to study a dynamic pricing problem faced by sellers of fashion-like goods. We consider a retailer that plans to sell a given stock of items during a finite sales season. The objective of the retailer is to dynamically price the product in a way that maximizes expected revenues. Our model brings together various types of uncertainties about the demand, some of which are resolvable through sales ob...

  8. Mean-Variance Optimization in Markov Decision Processes

    OpenAIRE

    Mannor, Shie; Tsitsiklis, John N.

    2011-01-01

    We consider finite horizon Markov decision processes under performance measures that involve both the mean and the variance of the cumulative reward. We show that either randomized or history-based policies can improve performance. We prove that the complexity of computing a policy that maximizes the mean reward under a variance constraint is NP-hard for some cases, and strongly NP-hard for others. We finally offer pseudo-polynomial exact and approximation algorithms.

  9. Semi adiabatic theory of seasonal Markov processes

    Energy Technology Data Exchange (ETDEWEB)

    Talkner, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The dynamics of many natural and technical systems are essentially influenced by a periodic forcing. Analytic solutions of the equations of motion for periodically driven systems are generally not known. Simulations, numerical solutions or in some limiting cases approximate analytic solutions represent the known approaches to study the dynamics of such systems. Besides the regime of weak periodic forces where linear response theory works, the limit of a slow driving force can often be treated analytically using an adiabatic approximation. For this approximation to hold all intrinsic processes must be fast on the time-scale of a period of the external driving force. We developed a perturbation theory for periodically driven Markovian systems that covers the adiabatic regime but also works if the system has a single slow mode that may even be slower than the driving force. We call it the semi adiabatic approximation. Some results of this approximation for a system exhibiting stochastic resonance which usually takes place within the semi adiabatic regime are indicated. (author) 1 fig., 8 refs.

  10. The explicit form of the rate function for semi-Markov processes and its contractions

    Science.gov (United States)

    Sughiyama, Yuki; Kobayashi, Testuya J.

    2018-03-01

    We derive the explicit form of the rate function for semi-Markov processes. Here, the ‘random time change trick’ plays an essential role. Also, by exploiting the contraction principle of large deviation theory to the explicit form, we show that the fluctuation theorem (Gallavotti-Cohen symmetry) holds for semi-Markov cases. Furthermore, we elucidate that our rate function is an extension of the level 2.5 rate function for Markov processes to semi-Markov cases.

  11. The semi-Markov process. Generalizations and calculation rules for application in the analysis of systems

    International Nuclear Information System (INIS)

    Hirschmann, H.

    1983-06-01

    The consequences of the basic assumptions of the semi-Markov process as defined from a homogeneous renewal process with a stationary Markov condition are reviewed. The notion of the semi-Markov process is generalized by its redefinition from a nonstationary Markov renewal process. For both the nongeneralized and the generalized case a representation of the first order conditional state probabilities is derived in terms of the transition probabilities of the Markov renewal process. Some useful calculation rules (regeneration rules) are derived for the conditional state probabilities of the semi-Markov process. Compared to the semi-Markov process in its usual definition the generalized process allows the analysis of a larger class of systems. For instance systems with arbitrarily distributed lifetimes of their components can be described. There is also a chance to describe systems which are modified during time by forces or manipulations from outside. (Auth.)

  12. The cascade probabilistic functions and the Markov's processes. Chapter 1

    International Nuclear Information System (INIS)

    2003-01-01

    In the Chapter 1 the physical and mathematical descriptions of radiation processes are carried out. The relation of the cascade probabilistic functions (CPF) with Markov's chain is shown. The CPF calculation for electrons with the energy losses taking into account are given. The calculation of the CPF on the computer was carried out. The estimation of energy losses contribution in the CPFs and radiation defects concentration are made. Besides calculation of the primarily knock-on atoms and radiation defects at electron irradiation with use of the CPF with taking into account energy losses are conducted

  13. Variance reduction techniques in the simulation of Markov processes

    International Nuclear Information System (INIS)

    Lessi, O.

    1987-01-01

    We study a functional r of the stationary distribution of a homogeneous Markov chain. It is often difficult or impossible to perform the analytical calculation of r and so it is reasonable to estimate r by a simulation process. A consistent estimator r(n) of r is obtained with respect to a chain with a countable state space. Suitably modifying the estimator r(n) of r one obtains a new consistent estimator which has a smaller variance than r(n). The same is obtained in the case of finite state space

  14. Markov modulated Poisson process models incorporating covariates for rainfall intensity.

    Science.gov (United States)

    Thayakaran, R; Ramesh, N I

    2013-01-01

    Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.

  15. The application of Markov decision process in restaurant delivery robot

    Science.gov (United States)

    Wang, Yong; Hu, Zhen; Wang, Ying

    2017-05-01

    As the restaurant delivery robot is often in a dynamic and complex environment, including the chairs inadvertently moved to the channel and customers coming and going. The traditional path planning algorithm is not very ideal. To solve this problem, this paper proposes the Markov dynamic state immediate reward (MDR) path planning algorithm according to the traditional Markov decision process. First of all, it uses MDR to plan a global path, then navigates along this path. When the sensor detects there is no obstructions in front state, increase its immediate state reward value; when the sensor detects there is an obstacle in front, plan a global path that can avoid obstacle with the current position as the new starting point and reduce its state immediate reward value. This continues until the target is reached. When the robot learns for a period of time, it can avoid those places where obstacles are often present when planning the path. By analyzing the simulation experiment, the algorithm has achieved good results in the global path planning under the dynamic environment.

  16. Stochastic model of milk homogenization process using Markov's chain

    Directory of Open Access Journals (Sweden)

    A. A. Khvostov

    2016-01-01

    Full Text Available The process of development of a mathematical model of the process of homogenization of dairy products is considered in the work. The theory of Markov's chains was used in the development of the mathematical model, Markov's chain with discrete states and continuous parameter for which the homogenisation pressure is taken, being the basis for the model structure. Machine realization of the model is implemented in the medium of structural modeling MathWorks Simulink™. Identification of the model parameters was carried out by minimizing the standard deviation calculated from the experimental data for each fraction of dairy products fat phase. As the set of experimental data processing results of the micrographic images of fat globules of whole milk samples distribution which were subjected to homogenization at different pressures were used. Pattern Search method was used as optimization method with the Latin Hypercube search algorithm from Global Optimization Тoolbox library. The accuracy of calculations averaged over all fractions of 0.88% (the relative share of units, the maximum relative error was 3.7% with the homogenization pressure of 30 MPa, which may be due to the very abrupt change in properties from the original milk in the particle size distribution at the beginning of the homogenization process and the lack of experimental data at homogenization pressures of below the specified value. The mathematical model proposed allows to calculate the profile of volume and mass distribution of the fat phase (fat globules in the product, depending on the homogenization pressure and can be used in the laboratory and research of dairy products composition, as well as in the calculation, design and modeling of the process equipment of the dairy industry enterprises.

  17. Pavement maintenance optimization model using Markov Decision Processes

    Science.gov (United States)

    Mandiartha, P.; Duffield, C. F.; Razelan, I. S. b. M.; Ismail, A. b. H.

    2017-09-01

    This paper presents an optimization model for selection of pavement maintenance intervention using a theory of Markov Decision Processes (MDP). There are some particular characteristics of the MDP developed in this paper which distinguish it from other similar studies or optimization models intended for pavement maintenance policy development. These unique characteristics include a direct inclusion of constraints into the formulation of MDP, the use of an average cost method of MDP, and the policy development process based on the dual linear programming solution. The limited information or discussions that are available on these matters in terms of stochastic based optimization model in road network management motivates this study. This paper uses a data set acquired from road authorities of state of Victoria, Australia, to test the model and recommends steps in the computation of MDP based stochastic optimization model, leading to the development of optimum pavement maintenance policy.

  18. The exit-time problem for a Markov jump process

    Science.gov (United States)

    Burch, N.; D'Elia, M.; Lehoucq, R. B.

    2014-12-01

    The purpose of this paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. This calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.

  19. Rate estimation in partially observed Markov jump processes with measurement errors

    OpenAIRE

    Amrein, Michael; Kuensch, Hans R.

    2010-01-01

    We present a simulation methodology for Bayesian estimation of rate parameters in Markov jump processes arising for example in stochastic kinetic models. To handle the problem of missing components and measurement errors in observed data, we embed the Markov jump process into the framework of a general state space model. We do not use diffusion approximations. Markov chain Monte Carlo and particle filter type algorithms are introduced, which allow sampling from the posterior distribution of t...

  20. Perturbation approach to scaled type Markov renewal processes with infinite mean

    OpenAIRE

    Pajor-Gyulai, Zsolt; Szász, Domokos

    2010-01-01

    Scaled type Markov renewal processes generalize classical renewal processes: renewal times come from a one parameter family of probability laws and the sequence of the parameters is the trajectory of an ergodic Markov chain. Our primary interest here is the asymptotic distribution of the Markovian parameter at time t \\to \\infty. The limit, of course, depends on the stationary distribution of the Markov chain. The results, however, are essentially different depending on whether the expectation...

  1. Control Design for Untimed Petri Nets Using Markov Decision Processes

    Directory of Open Access Journals (Sweden)

    Cherki Daoui

    2017-01-01

    Full Text Available Design of control sequences for discrete event systems (DESs has been presented modelled by untimed Petri nets (PNs. PNs are well-known mathematical and graphical models that are widely used to describe distributed DESs, including choices, synchronizations and parallelisms. The domains of application include, but are not restricted to, manufacturing systems, computer science and transportation networks. We are motivated by the observation that such systems need to plan their production or services. The paper is more particularly concerned with control issues in uncertain environments when unexpected events occur or when control errors disturb the behaviour of the system. To deal with such uncertainties, a new approach based on discrete time Markov decision processes (MDPs has been proposed that associates the modelling power of PNs with the planning power of MDPs. Finally, the simulation results illustrate the benefit of our method from the computational point of view. (original abstract

  2. Accelerated decomposition techniques for large discounted Markov decision processes

    Science.gov (United States)

    Larach, Abdelhadi; Chafik, S.; Daoui, C.

    2017-12-01

    Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorithm, which is a variant of Tarjan's algorithm that simultaneously finds the SCCs and their belonging levels. Second, a new definition of the restricted MDPs is presented to ameliorate some hierarchical solutions in discounted MDPs using value iteration (VI) algorithm based on a list of state-action successors. Finally, a robotic motion-planning example and the experiment results are presented to illustrate the benefit of the proposed decomposition algorithms.

  3. Simulation-based algorithms for Markov decision processes

    CERN Document Server

    Chang, Hyeong Soo; Fu, Michael C; Marcus, Steven I

    2013-01-01

    Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences.  Many real-world problems modeled by MDPs have huge state and/or action spaces, giving an opening to the curse of dimensionality and so making practical solution of the resulting models intractable.  In other cases, the system of interest is too complex to allow explicit specification of some of the MDP model parameters, but simulation samples are readily available (e.g., for random transitions and costs). For these settings, various sampling and population-based algorithms have been developed to overcome the difficulties of computing an optimal solution in terms of a policy and/or value function.  Specific approaches include adaptive sampling, evolutionary policy iteration, evolutionary random policy search, and model reference adaptive search. This substantially enlarged new edition reflects the latest developments in novel ...

  4. Parallel coupling of symmetric and asymmetric exclusion processes

    International Nuclear Information System (INIS)

    Tsekouras, K; Kolomeisky, A B

    2008-01-01

    A system consisting of two parallel coupled channels where particles in one of them follow the rules of totally asymmetric exclusion processes (TASEP) and in another one move as in symmetric simple exclusion processes (SSEP) is investigated theoretically. Particles interact with each other via hard-core exclusion potential, and in the asymmetric channel they can only hop in one direction, while on the symmetric lattice particles jump in both directions with equal probabilities. Inter-channel transitions are also allowed at every site of both lattices. Stationary state properties of the system are solved exactly in the limit of strong couplings between the channels. It is shown that strong symmetric couplings between totally asymmetric and symmetric channels lead to an effective partially asymmetric simple exclusion process (PASEP) and properties of both channels become almost identical. However, strong asymmetric couplings between symmetric and asymmetric channels yield an effective TASEP with nonzero particle flux in the asymmetric channel and zero flux on the symmetric lattice. For intermediate strength of couplings between the lattices a vertical-cluster mean-field method is developed. This approximate approach treats exactly particle dynamics during the vertical transitions between the channels and it neglects the correlations along the channels. Our calculations show that in all cases there are three stationary phases defined by particle dynamics at entrances, at exits or in the bulk of the system, while phase boundaries depend on the strength and symmetry of couplings between the channels. Extensive Monte Carlo computer simulations strongly support our theoretical predictions. Theoretical calculations and computer simulations predict that inter-channel couplings have a strong effect on stationary properties. It is also argued that our results might be relevant for understanding multi-particle dynamics of motor proteins

  5. Prediction and generation of binary Markov processes: Can a finite-state fox catch a Markov mouse?

    Science.gov (United States)

    Ruebeck, Joshua B.; James, Ryan G.; Mahoney, John R.; Crutchfield, James P.

    2018-01-01

    Understanding the generative mechanism of a natural system is a vital component of the scientific method. Here, we investigate one of the fundamental steps toward this goal by presenting the minimal generator of an arbitrary binary Markov process. This is a class of processes whose predictive model is well known. Surprisingly, the generative model requires three distinct topologies for different regions of parameter space. We show that a previously proposed generator for a particular set of binary Markov processes is, in fact, not minimal. Our results shed the first quantitative light on the relative (minimal) costs of prediction and generation. We find, for instance, that the difference between prediction and generation is maximized when the process is approximately independently, identically distributed.

  6. Bayesian inference for Markov jump processes with informative observations.

    Science.gov (United States)

    Golightly, Andrew; Wilkinson, Darren J

    2015-04-01

    In this paper we consider the problem of parameter inference for Markov jump process (MJP) representations of stochastic kinetic models. Since transition probabilities are intractable for most processes of interest yet forward simulation is straightforward, Bayesian inference typically proceeds through computationally intensive methods such as (particle) MCMC. Such methods ostensibly require the ability to simulate trajectories from the conditioned jump process. When observations are highly informative, use of the forward simulator is likely to be inefficient and may even preclude an exact (simulation based) analysis. We therefore propose three methods for improving the efficiency of simulating conditioned jump processes. A conditioned hazard is derived based on an approximation to the jump process, and used to generate end-point conditioned trajectories for use inside an importance sampling algorithm. We also adapt a recently proposed sequential Monte Carlo scheme to our problem. Essentially, trajectories are reweighted at a set of intermediate time points, with more weight assigned to trajectories that are consistent with the next observation. We consider two implementations of this approach, based on two continuous approximations of the MJP. We compare these constructs for a simple tractable jump process before using them to perform inference for a Lotka-Volterra system. The best performing construct is used to infer the parameters governing a simple model of motility regulation in Bacillus subtilis.

  7. On the record process of time-reversible spectrally-negative Markov additive processes

    NARCIS (Netherlands)

    J. Ivanovs; M.R.H. Mandjes (Michel)

    2009-01-01

    htmlabstractWe study the record process of a spectrally-negative Markov additive process (MAP). Assuming time-reversibility, a number of key quantities can be given explicitly. It is shown how these key quantities can be used when analyzing the distribution of the all-time maximum attained by MAPs

  8. Discounted semi-Markov decision processes : linear programming and policy iteration

    NARCIS (Netherlands)

    Wessels, J.; van Nunen, J.A.E.E.

    1975-01-01

    For semi-Markov decision processes with discounted rewards we derive the well known results regarding the structure of optimal strategies (nonrandomized, stationary Markov strategies) and the standard algorithms (linear programming, policy iteration). Our analysis is completely based on a primal

  9. Discounted semi-Markov decision processes : linear programming and policy iteration

    NARCIS (Netherlands)

    Wessels, J.; van Nunen, J.A.E.E.

    1974-01-01

    For semi-Markov decision processes with discounted rewards we derive the well known results regarding the structure of optimal strategies (nonrandomized, stationary Markov strategies) and the standard algorithms (linear programming, policy iteration). Our analysis is completely based on a primal

  10. Students' Progress throughout Examination Process as a Markov Chain

    Science.gov (United States)

    Hlavatý, Robert; Dömeová, Ludmila

    2014-01-01

    The paper is focused on students of Mathematical methods in economics at the Czech university of life sciences (CULS) in Prague. The idea is to create a model of students' progress throughout the whole course using the Markov chain approach. Each student has to go through various stages of the course requirements where his success depends on the…

  11. Simulation on a computer the cascade probabilistic functions and theirs relation with Markov's processes

    International Nuclear Information System (INIS)

    Kupchishin, A.A.; Kupchishin, A.I.; Shmygaleva, T.A.

    2002-01-01

    Within framework of the cascade-probabilistic (CP) method the radiation and physical processes are studied, theirs relation with Markov's processes are found. The conclusion that CP-function for electrons, protons, alpha-particles and ions are describing by unhomogeneous Markov's chain is drawn. The algorithms are developed, the CP-functions calculations for charged particles, concentration of radiation defects in solids at ion irradiation are carried out as well. Tables for CPF different parameters and radiation defects concentration at charged particle interaction with solids are given. The book consists of the introduction and two chapters: (1) Cascade probabilistic function and the Markov's processes; (2) Radiation defects formation in solids as a part of the Markov's processes. The book is intended for specialists on the radiation defects mathematical stimulation, solid state physics, elementary particles physics and applied mathematics

  12. A Method for Speeding Up Value Iteration in Partially Observable Markov Decision Processes

    OpenAIRE

    Zhang, Nevin Lianwen; Lee, Stephen S.; Zhang, Weihong

    2013-01-01

    We present a technique for speeding up the convergence of value iteration for partially observable Markov decisions processes (POMDPs). The underlying idea is similar to that behind modified policy iteration for fully observable Markov decision processes (MDPs). The technique can be easily incorporated into any existing POMDP value iteration algorithms. Experiments have been conducted on several test problems with one POMDP value iteration algorithm called incremental pruning. We find that th...

  13. On Markov processes in the hadron-nuclear and nuclear-nuclear collisions at superhigh energies

    International Nuclear Information System (INIS)

    Lebedeva, A.A.; Rus'kin, V.I.

    2001-01-01

    In the article the possibility of the Markov processes use as simulation method for mean characteristics of hadron-nuclear and nucleus-nuclear collisions at superhigh energies is discussed. The simple (hadron-nuclear collisions) and non-simple (nucleus-nuclear collisions) non-uniform Markov process of output constant spectrum and absorption in a nucleon's nucleus-target with rapidity y are considered. The expression allowing to simulate the different collision modes were obtained

  14. Simulation based sequential Monte Carlo methods for discretely observed Markov processes

    OpenAIRE

    Neal, Peter

    2014-01-01

    Parameter estimation for discretely observed Markov processes is a challenging problem. However, simulation of Markov processes is straightforward using the Gillespie algorithm. We exploit this ease of simulation to develop an effective sequential Monte Carlo (SMC) algorithm for obtaining samples from the posterior distribution of the parameters. In particular, we introduce two key innovations, coupled simulations, which allow us to study multiple parameter values on the basis of a single sim...

  15. Properly quantized history-dependent Parrondo games, Markov processes, and multiplexing circuits

    Energy Technology Data Exchange (ETDEWEB)

    Bleiler, Steven A. [Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, PO Box 751, Portland, OR 97207 (United States); Khan, Faisal Shah, E-mail: faisal.khan@kustar.ac.a [Khalifa University of Science, Technology and Research, PO Box 127788, Abu Dhabi (United Arab Emirates)

    2011-05-09

    Highlights: History-dependent Parrondo games are viewed as Markov processes. Quantum mechanical analogues of these Markov processes are constructed. These quantum analogues restrict to the original process on measurement. Relationship between these analogues and a quantum circuits is exhibited. - Abstract: In the context of quantum information theory, 'quantization' of various mathematical and computational constructions is said to occur upon the replacement, at various points in the construction, of the classical randomization notion of probability distribution with higher order randomization notions from quantum mechanics such as quantum superposition with measurement. For this to be done 'properly', a faithful copy of the original construction is required to exist within the new quantum one, just as is required when a function is extended to a larger domain. Here procedures for extending history-dependent Parrondo games, Markov processes and multiplexing circuits to their quantum versions are analyzed from a game theoretic viewpoint, and from this viewpoint, proper quantizations developed.

  16. Road maintenance optimization through a discrete-time semi-Markov decision process

    International Nuclear Information System (INIS)

    Zhang Xueqing; Gao Hui

    2012-01-01

    Optimization models are necessary for efficient and cost-effective maintenance of a road network. In this regard, road deterioration is commonly modeled as a discrete-time Markov process such that an optimal maintenance policy can be obtained based on the Markov decision process, or as a renewal process such that an optimal maintenance policy can be obtained based on the renewal theory. However, the discrete-time Markov process cannot capture the real time at which the state transits while the renewal process considers only one state and one maintenance action. In this paper, road deterioration is modeled as a semi-Markov process in which the state transition has the Markov property and the holding time in each state is assumed to follow a discrete Weibull distribution. Based on this semi-Markov process, linear programming models are formulated for both infinite and finite planning horizons in order to derive optimal maintenance policies to minimize the life-cycle cost of a road network. A hypothetical road network is used to illustrate the application of the proposed optimization models. The results indicate that these linear programming models are practical for the maintenance of a road network having a large number of road segments and that they are convenient to incorporate various constraints on the decision process, for example, performance requirements and available budgets. Although the optimal maintenance policies obtained for the road network are randomized stationary policies, the extent of this randomness in decision making is limited. The maintenance actions are deterministic for most states and the randomness in selecting actions occurs only for a few states.

  17. Markov decision processes: a tool for sequential decision making under uncertainty.

    Science.gov (United States)

    Alagoz, Oguzhan; Hsu, Heather; Schaefer, Andrew J; Roberts, Mark S

    2010-01-01

    We provide a tutorial on the construction and evaluation of Markov decision processes (MDPs), which are powerful analytical tools used for sequential decision making under uncertainty that have been widely used in many industrial and manufacturing applications but are underutilized in medical decision making (MDM). We demonstrate the use of an MDP to solve a sequential clinical treatment problem under uncertainty. Markov decision processes generalize standard Markov models in that a decision process is embedded in the model and multiple decisions are made over time. Furthermore, they have significant advantages over standard decision analysis. We compare MDPs to standard Markov-based simulation models by solving the problem of the optimal timing of living-donor liver transplantation using both methods. Both models result in the same optimal transplantation policy and the same total life expectancies for the same patient and living donor. The computation time for solving the MDP model is significantly smaller than that for solving the Markov model. We briefly describe the growing literature of MDPs applied to medical decisions.

  18. The application of Markov decision process with penalty function in restaurant delivery robot

    Science.gov (United States)

    Wang, Yong; Hu, Zhen; Wang, Ying

    2017-05-01

    As the restaurant delivery robot is often in a dynamic and complex environment, including the chairs inadvertently moved to the channel and customers coming and going. The traditional Markov decision process path planning algorithm is not save, the robot is very close to the table and chairs. To solve this problem, this paper proposes the Markov Decision Process with a penalty term called MDPPT path planning algorithm according to the traditional Markov decision process (MDP). For MDP, if the restaurant delivery robot bumps into an obstacle, the reward it receives is part of the current status reward. For the MDPPT, the reward it receives not only the part of the current status but also a negative constant term. Simulation results show that the MDPPT algorithm can plan a more secure path.

  19. Continuous strong Markov processes in dimension one a stochastic calculus approach

    CERN Document Server

    Assing, Sigurd

    1998-01-01

    The book presents an in-depth study of arbitrary one-dimensional continuous strong Markov processes using methods of stochastic calculus. Departing from the classical approaches, a unified investigation of regular as well as arbitrary non-regular diffusions is provided. A general construction method for such processes, based on a generalization of the concept of a perfect additive functional, is developed. The intrinsic decomposition of a continuous strong Markov semimartingale is discovered. The book also investigates relations to stochastic differential equations and fundamental examples of irregular diffusions.

  20. An integrated Markov decision process and nested logit consumer response model of air ticket pricing

    NARCIS (Netherlands)

    Lu, J.; Feng, T.; Timmermans, H.P.J.; Yang, Z.

    2017-01-01

    The paper attempts to propose an optimal air ticket pricing model during the booking horizon by taking into account passengers' purchasing behavior of air tickets. A Markov decision process incorporating a nested logit consumer response model is established to modeling the dynamic pricing process.

  1. Efficient tests for equivalence of hidden Markov processes and quantum random walks

    NARCIS (Netherlands)

    U. Faigle; A. Schönhuth (Alexander)

    2011-01-01

    htmlabstractWhile two hidden Markov process (HMP) resp.~quantum random walk (QRW) parametrizations can differ from one another, the stochastic processes arising from them can be equivalent. Here a polynomial-time algorithm is presented which can determine equivalence of two HMP parametrizations

  2. Markov Processes: Exploring the Use of Dynamic Visualizations to Enhance Student Understanding

    Science.gov (United States)

    Pfannkuch, Maxine; Budgett, Stephanie

    2016-01-01

    Finding ways to enhance introductory students' understanding of probability ideas and theory is a goal of many first-year probability courses. In this article, we explore the potential of a prototype tool for Markov processes using dynamic visualizations to develop in students a deeper understanding of the equilibrium and hitting times…

  3. Data-based inference of generators for Markov jump processes using convex optimization

    NARCIS (Netherlands)

    D.T. Crommelin (Daan); E. Vanden-Eijnden (Eric)

    2009-01-01

    textabstractA variational approach to the estimation of generators for Markov jump processes from discretely sampled data is discussed and generalized. In this approach, one first calculates the spectrum of the discrete maximum likelihood estimator for the transition matrix consistent with

  4. Strategy Complexity of Finite-Horizon Markov Decision Processes and Simple Stochastic Games

    DEFF Research Database (Denmark)

    Ibsen-Jensen, Rasmus; Chatterjee, Krishnendu

    2012-01-01

    Markov decision processes (MDPs) and simple stochastic games (SSGs) provide a rich mathematical framework to study many important problems related to probabilistic systems. MDPs and SSGs with finite-horizon objectives, where the goal is to maximize the probability to reach a target state in a given...

  5. Spectral analysis of multi-dimensional self-similar Markov processes

    International Nuclear Information System (INIS)

    Modarresi, N; Rezakhah, S

    2010-01-01

    In this paper we consider a discrete scale invariant (DSI) process {X(t), t in R + } with scale l > 1. We consider a fixed number of observations in every scale, say T, and acquire our samples at discrete points α k , k in W, where α is obtained by the equality l = α T and W = {0, 1, ...}. We thus provide a discrete time scale invariant (DT-SI) process X(.) with the parameter space {α k , k in W}. We find the spectral representation of the covariance function of such a DT-SI process. By providing the harmonic-like representation of multi-dimensional self-similar processes, spectral density functions of them are presented. We assume that the process {X(t), t in R + } is also Markov in the wide sense and provide a discrete time scale invariant Markov (DT-SIM) process with the above scheme of sampling. We present an example of the DT-SIM process, simple Brownian motion, by the above sampling scheme and verify our results. Finally, we find the spectral density matrix of such a DT-SIM process and show that its associated T-dimensional self-similar Markov process is fully specified by {R H j (1), R j H (0), j = 0, 1, ..., T - 1}, where R H j (τ) is the covariance function of jth and (j + τ)th observations of the process.

  6. Reliability analysis of nuclear component cooling water system using semi-Markov process model

    International Nuclear Information System (INIS)

    Veeramany, Arun; Pandey, Mahesh D.

    2011-01-01

    Research highlights: → Semi-Markov process (SMP) model is used to evaluate system failure probability of the nuclear component cooling water (NCCW) system. → SMP is used because it can solve reliability block diagram with a mixture of redundant repairable and non-repairable components. → The primary objective is to demonstrate that SMP can consider Weibull failure time distribution for components while a Markov model cannot → Result: the variability in component failure time is directly proportional to the NCCW system failure probability. → The result can be utilized as an initiating event probability in probabilistic safety assessment projects. - Abstract: A reliability analysis of nuclear component cooling water (NCCW) system is carried out. Semi-Markov process model is used in the analysis because it has potential to solve a reliability block diagram with a mixture of repairable and non-repairable components. With Markov models it is only possible to assume an exponential profile for component failure times. An advantage of the proposed model is the ability to assume Weibull distribution for the failure time of components. In an attempt to reduce the number of states in the model, it is shown that usage of poly-Weibull distribution arises. The objective of the paper is to determine system failure probability under these assumptions. Monte Carlo simulation is used to validate the model result. This result can be utilized as an initiating event probability in probabilistic safety assessment projects.

  7. Non-parametric Bayesian inference for inhomogeneous Markov point processes

    DEFF Research Database (Denmark)

    Berthelsen, Kasper Klitgaard; Møller, Jesper; Johansen, Per Michael

    is a shot noise process, and the interaction function for a pair of points depends only on the distance between the two points and is a piecewise linear function modelled by a marked Poisson process. Simulation of the resulting posterior using a Metropolis-Hastings algorithm in the "conventional" way...

  8. Bearing Degradation Process Prediction Based on the Support Vector Machine and Markov Model

    Directory of Open Access Journals (Sweden)

    Shaojiang Dong

    2014-01-01

    Full Text Available Predicting the degradation process of bearings before they reach the failure threshold is extremely important in industry. This paper proposed a novel method based on the support vector machine (SVM and the Markov model to achieve this goal. Firstly, the features are extracted by time and time-frequency domain methods. However, the extracted original features are still with high dimensional and include superfluous information, and the nonlinear multifeatures fusion technique LTSA is used to merge the features and reduces the dimension. Then, based on the extracted features, the SVM model is used to predict the bearings degradation process, and the CAO method is used to determine the embedding dimension of the SVM model. After the bearing degradation process is predicted by SVM model, the Markov model is used to improve the prediction accuracy. The proposed method was validated by two bearing run-to-failure experiments, and the results proved the effectiveness of the methodology.

  9. A Correlated Random Effects Model for Non-homogeneous Markov Processes with Nonignorable Missingness.

    Science.gov (United States)

    Chen, Baojiang; Zhou, Xiao-Hua

    2013-05-01

    Life history data arising in clusters with prespecified assessment time points for patients often feature incomplete data since patients may choose to visit the clinic based on their needs. Markov process models provide a useful tool describing disease progression for life history data. The literature mainly focuses on time homogeneous process. In this paper we develop methods to deal with non-homogeneous Markov process with incomplete clustered life history data. A correlated random effects model is developed to deal with the nonignorable missingness, and a time transformation is employed to address the non-homogeneity in the transition model. Maximum likelihood estimate based on the Monte-Carlo EM algorithm is advocated for parameter estimation. Simulation studies demonstrate that the proposed method works well in many situations. We also apply this method to an Alzheimer's disease study.

  10. Choice of the parameters of the cusum algorithms for parameter estimation in the markov modulated poisson process

    OpenAIRE

    Burkatovskaya, Yuliya Borisovna; Kabanova, T.; Khaustov, Pavel Aleksandrovich

    2016-01-01

    CUSUM algorithm for controlling chain state switching in the Markov modulated Poissonprocess was investigated via simulation. Recommendations concerning the parameter choice were givensubject to characteristics of the process. Procedure of the process parameter estimation was described.

  11. The Langevin Approach: An R Package for Modeling Markov Processes

    Directory of Open Access Journals (Sweden)

    Philip Rinn

    2016-08-01

    Full Text Available We describe an 'R' package developed by the research group 'Turbulence, Wind energy' 'and Stochastics' (TWiSt at the Carl von Ossietzky University of Oldenburg, which extracts the (stochastic evolution equation underlying a set of data or measurements. The method can be directly applied to data sets with one or two stochastic variables. Examples for the one-dimensional and two-dimensional cases are provided. This framework is valid under a small set of conditions which are explicitly presented and which imply simple preliminary test procedures to the data. For Markovian processes involving Gaussian white noise, a stochastic differential equation is derived straightforwardly from the time series and captures the full dynamical properties of the underlying process. Still, even in the case such conditions are not fulfilled, there are alternative versions of this method which we discuss briefly and provide the user with the necessary bibliography.

  12. The Markov process admits a consistent steady-state thermodynamic formalism

    Science.gov (United States)

    Peng, Liangrong; Zhu, Yi; Hong, Liu

    2018-01-01

    The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.

  13. A fast exact simulation method for a class of Markov jump processes.

    Science.gov (United States)

    Li, Yao; Hu, Lili

    2015-11-14

    A new method of the stochastic simulation algorithm (SSA), named the Hashing-Leaping method (HLM), for exact simulations of a class of Markov jump processes, is presented in this paper. The HLM has a conditional constant computational cost per event, which is independent of the number of exponential clocks in the Markov process. The main idea of the HLM is to repeatedly implement a hash-table-like bucket sort algorithm for all times of occurrence covered by a time step with length τ. This paper serves as an introduction to this new SSA method. We introduce the method, demonstrate its implementation, analyze its properties, and compare its performance with three other commonly used SSA methods in four examples. Our performance tests and CPU operation statistics show certain advantages of the HLM for large scale problems.

  14. Description of quantum-mechanical motion by using the formalism of non-Markov stochastic process

    International Nuclear Information System (INIS)

    Skorobogatov, G.A.; Svertilov, S.I.

    1999-01-01

    The principle possibilities of mathematical modeling of quantum mechanical motion by the theory of a real stochastic processes is considered. The set of equations corresponding to the simplest case of a two-level system undergoing transitions under the influence of electromagnetic field are obtained. It is shown that quantum-mechanical processes are purely discrete processes of non-Markovian type. They are continuous processes in the space of probability amplitudes and posses the properties of quantum Markovity. The formulation of quantum mechanics in terms of the theory of stochastic processes is necessary for its generalization on small space-time intervals [ru

  15. Scalable approximate policies for Markov decision process models of hospital elective admissions.

    Science.gov (United States)

    Zhu, George; Lizotte, Dan; Hoey, Jesse

    2014-05-01

    To demonstrate the feasibility of using stochastic simulation methods for the solution of a large-scale Markov decision process model of on-line patient admissions scheduling. The problem of admissions scheduling is modeled as a Markov decision process in which the states represent numbers of patients using each of a number of resources. We investigate current state-of-the-art real time planning methods to compute solutions to this Markov decision process. Due to the complexity of the model, traditional model-based planners are limited in scalability since they require an explicit enumeration of the model dynamics. To overcome this challenge, we apply sample-based planners along with efficient simulation techniques that given an initial start state, generate an action on-demand while avoiding portions of the model that are irrelevant to the start state. We also propose a novel variant of a popular sample-based planner that is particularly well suited to the elective admissions problem. Results show that the stochastic simulation methods allow for the problem size to be scaled by a factor of almost 10 in the action space, and exponentially in the state space. We have demonstrated our approach on a problem with 81 actions, four specialities and four treatment patterns, and shown that we can generate solutions that are near-optimal in about 100s. Sample-based planners are a viable alternative to state-based planners for large Markov decision process models of elective admissions scheduling. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Transient Properties of Probability Distribution for a Markov Process with Size-dependent Additive Noise

    Science.gov (United States)

    Yamada, Yuhei; Yamazaki, Yoshihiro

    2018-04-01

    This study considered a stochastic model for cluster growth in a Markov process with a cluster size dependent additive noise. According to this model, the probability distribution of the cluster size transiently becomes an exponential or a log-normal distribution depending on the initial condition of the growth. In this letter, a master equation is obtained for this model, and derivation of the distributions is discussed.

  17. Assistive system for people with Apraxia using a Markov decision process.

    Science.gov (United States)

    Jean-Baptiste, Emilie M D; Russell, Martin; Rothstein, Pia

    2014-01-01

    CogWatch is an assistive system to re-train stroke survivors suffering from Apraxia or Action Disorganization Syndrome (AADS) to complete activities of daily living (ADLs). This paper describes the approach to real-time planning based on a Markov Decision Process (MDP), and demonstrates its ability to improve task's performance via user simulation. The paper concludes with a discussion of the remaining challenges and future enhancements.

  18. «Concurrency» in M-L-Parallel Semi-Markov Process

    Directory of Open Access Journals (Sweden)

    Larkin Eugene

    2017-01-01

    Full Text Available This article investigates the functioning of a swarm of robots, each of which receives instructions from the external human operator and autonomously executes them. An abstract model of functioning of a robot, a group of robots and multiple groups of robots was obtained using the notion of semi-Markov process. The concepts of aggregated initial and aggregated absorbing states were introduced. Correspondences for calculation of time parameters of concurrency were obtained.

  19. The Green-Kubo formula for general Markov processes with a continuous time parameter

    International Nuclear Information System (INIS)

    Yang Fengxia; Liu Yong; Chen Yong

    2010-01-01

    For general Markov processes, the Green-Kubo formula is shown to be valid under a mild condition. A class of stochastic evolution equations on a separable Hilbert space and three typical infinite systems of locally interacting diffusions on Z d (irreversible in most cases) are shown to satisfy the Green-Kubo formula, and the Einstein relations for these stochastic evolution equations are shown explicitly as a corollary.

  20. Generalization of the Wide-Sense Markov Concept to a Widely Linear Processing

    International Nuclear Information System (INIS)

    Espinosa-Pulido, Juan Antonio; Navarro-Moreno, Jesús; Fernández-Alcalá, Rosa María; Ruiz-Molina, Juan Carlos; Oya-Lechuga, Antonia; Ruiz-Fuentes, Nuria

    2014-01-01

    In this paper we show that the classical definition and the associated characterizations of wide-sense Markov (WSM) signals are not valid for improper complex signals. For that, we propose an extension of the concept of WSM to a widely linear (WL) setting and the study of new characterizations. Specifically, we introduce a new class of signals, called widely linear Markov (WLM) signals, and we analyze some of their properties based either on second-order properties or on state-space models from a WL processing standpoint. The study is performed in both the forwards and backwards directions of time. Thus, we provide two forwards and backwards Markovian representations for WLM signals. Finally, different estimation recursive algorithms are obtained for these models

  1. A reward semi-Markov process with memory for wind speed modeling

    Science.gov (United States)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    -order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. The primary goal of this analysis is the study of the time history of the wind in order to assess its reliability as a source of power and to determine the associated storage levels required. In order to assess this issue we use a probabilistic model based on indexed semi-Markov process [4] to which a reward structure is attached. Our model is used to calculate the expected energy produced by a given turbine and its variability expressed by the variance of the process. Our results can be used to compare different wind farms based on their reward and also on the risk of missed production due to the intrinsic variability of the wind speed process. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and backtesting procedure is used to compare results on first and second oder moments of rewards between real and synthetic data. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic gen- eration of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Re- newable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribu- tion, Renewable Energy 28 (2003) 1787-1802. [4]F. Petroni, G. D'Amico, F. Prattico, Indexed semi-Markov process for wind speed modeling. To be submitted.

  2. Availability Control for Means of Transport in Decisive Semi-Markov Models of Exploitation Process

    Science.gov (United States)

    Migawa, Klaudiusz

    2012-12-01

    The issues presented in this research paper refer to problems connected with the control process for exploitation implemented in the complex systems of exploitation for technical objects. The article presents the description of the method concerning the control availability for technical objects (means of transport) on the basis of the mathematical model of the exploitation process with the implementation of the decisive processes by semi-Markov. The presented method means focused on the preparing the decisive for the exploitation process for technical objects (semi-Markov model) and after that specifying the best control strategy (optimal strategy) from among possible decisive variants in accordance with the approved criterion (criteria) of the activity evaluation of the system of exploitation for technical objects. In the presented method specifying the optimal strategy for control availability in the technical objects means a choice of a sequence of control decisions made in individual states of modelled exploitation process for which the function being a criterion of evaluation reaches the extreme value. In order to choose the optimal control strategy the implementation of the genetic algorithm was chosen. The opinions were presented on the example of the exploitation process of the means of transport implemented in the real system of the bus municipal transport. The model of the exploitation process for the means of transports was prepared on the basis of the results implemented in the real transport system. The mathematical model of the exploitation process was built taking into consideration the fact that the model of the process constitutes the homogenous semi-Markov process.

  3. The Logic of Adaptive Behavior - Knowledge Representation and Algorithms for the Markov Decision Process Framework in First-Order Domains

    NARCIS (Netherlands)

    van Otterlo, M.

    2008-01-01

    Learning and reasoning in large, structured, probabilistic worlds is at the heart of artificial intelligence. Markov decision processes have become the de facto standard in modeling and solving sequential decision making problems under uncertainty. Many efficient reinforcement learning and dynamic

  4. Reduced equations of motion for quantum systems driven by diffusive Markov processes.

    Science.gov (United States)

    Sarovar, Mohan; Grace, Matthew D

    2012-09-28

    The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Förster resonance transfer in Rydberg atoms with nonperturbative position fluctuations.

  5. The second order extended Kalman filter and Markov nonlinear filter for data processing in interferometric systems

    International Nuclear Information System (INIS)

    Ermolaev, P; Volynsky, M

    2014-01-01

    Recurrent stochastic data processing algorithms using representation of interferometric signal as output of a dynamic system, which state is described by vector of parameters, in some cases are more effective, compared with conventional algorithms. Interferometric signals depend on phase nonlinearly. Consequently it is expedient to apply algorithms of nonlinear stochastic filtering, such as Kalman type filters. An application of the second order extended Kalman filter and Markov nonlinear filter that allows to minimize estimation error is described. Experimental results of signals processing are illustrated. Comparison of the algorithms is presented and discussed.

  6. A hierarchical Markov decision process modeling feeding and marketing decisions of growing pigs

    DEFF Research Database (Denmark)

    Pourmoayed, Reza; Nielsen, Lars Relund; Kristensen, Anders Ringgaard

    2016-01-01

    Feeding is the most important cost in the production of growing pigs and has a direct impact on the marketing decisions, growth and the final quality of the meat. In this paper, we address the sequential decision problem of when to change the feed-mix within a finisher pig pen and when to pick pigs...... for marketing. We formulate a hierarchical Markov decision process with three levels representing the decision process. The model considers decisions related to feeding and marketing and finds the optimal decision given the current state of the pen. The state of the system is based on information from on...

  7. Markov-modulated infinite-server queues driven by a common background process

    OpenAIRE

    Mandjes , Michel; De Turck , Koen

    2016-01-01

    International audience; This paper studies a system with multiple infinite-server queues which are modulated by a common background process. If this background process, being modeled as a finite-state continuous-time Markov chain, is in state j, then the arrival rate into the i-th queue is λi,j, whereas the service times of customers present in this queue are exponentially distributed with mean µ −1 i,j ; at each of the individual queues all customers present are served in parallel (thus refl...

  8. A Multi-stage Representation of Cell Proliferation as a Markov Process.

    Science.gov (United States)

    Yates, Christian A; Ford, Matthew J; Mort, Richard L

    2017-12-01

    The stochastic simulation algorithm commonly known as Gillespie's algorithm (originally derived for modelling well-mixed systems of chemical reactions) is now used ubiquitously in the modelling of biological processes in which stochastic effects play an important role. In well-mixed scenarios at the sub-cellular level it is often reasonable to assume that times between successive reaction/interaction events are exponentially distributed and can be appropriately modelled as a Markov process and hence simulated by the Gillespie algorithm. However, Gillespie's algorithm is routinely applied to model biological systems for which it was never intended. In particular, processes in which cell proliferation is important (e.g. embryonic development, cancer formation) should not be simulated naively using the Gillespie algorithm since the history-dependent nature of the cell cycle breaks the Markov process. The variance in experimentally measured cell cycle times is far less than in an exponential cell cycle time distribution with the same mean.Here we suggest a method of modelling the cell cycle that restores the memoryless property to the system and is therefore consistent with simulation via the Gillespie algorithm. By breaking the cell cycle into a number of independent exponentially distributed stages, we can restore the Markov property at the same time as more accurately approximating the appropriate cell cycle time distributions. The consequences of our revised mathematical model are explored analytically as far as possible. We demonstrate the importance of employing the correct cell cycle time distribution by recapitulating the results from two models incorporating cellular proliferation (one spatial and one non-spatial) and demonstrating that changing the cell cycle time distribution makes quantitative and qualitative differences to the outcome of the models. Our adaptation will allow modellers and experimentalists alike to appropriately represent cellular

  9. Graph theoretical calculation of systems reliability with semi-Markov processes

    International Nuclear Information System (INIS)

    Widmer, U.

    1984-06-01

    The determination of the state probabilities and related quantities of a system characterized by an SMP (or a homogeneous MP) can be performed by means of graph-theoretical methods. The calculation procedures for semi-Markov processes based on signal flow graphs are reviewed. Some methods from electrotechnics are adapted in order to obtain a representation of the state probabilities by means of trees. From this some formulas are derived for the asymptotic state probabilities and for the mean life-time in reliability considerations. (Auth.)

  10. Pitch angle scattering of relativistic electrons from stationary magnetic waves: Continuous Markov process and quasilinear theory

    International Nuclear Information System (INIS)

    Lemons, Don S.

    2012-01-01

    We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density - a regime that may govern pitch angle scattering of high-energy electrons into the geomagnetic loss cone.

  11. Detection of Text Lines of Handwritten Arabic Manuscripts using Markov Decision Processes

    Directory of Open Access Journals (Sweden)

    Youssef Boulid

    2016-09-01

    Full Text Available In a character recognition systems, the segmentation phase is critical since the accuracy of the recognition depend strongly on it. In this paper we present an approach based on Markov Decision Processes to extract text lines from binary images of Arabic handwritten documents. The proposed approach detects the connected components belonging to the same line by making use of knowledge about features and arrangement of those components. The initial results show that the system is promising for extracting Arabic handwritten lines.

  12. Conditions for the Solvability of the Linear Programming Formulation for Constrained Discounted Markov Decision Processes

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, F., E-mail: dufour@math.u-bordeaux1.fr [Institut de Mathématiques de Bordeaux, INRIA Bordeaux Sud Ouest, Team: CQFD, and IMB (France); Prieto-Rumeau, T., E-mail: tprieto@ccia.uned.es [UNED, Department of Statistics and Operations Research (Spain)

    2016-08-15

    We consider a discrete-time constrained discounted Markov decision process (MDP) with Borel state and action spaces, compact action sets, and lower semi-continuous cost functions. We introduce a set of hypotheses related to a positive weight function which allow us to consider cost functions that might not be bounded below by a constant, and which imply the solvability of the linear programming formulation of the constrained MDP. In particular, we establish the existence of a constrained optimal stationary policy. Our results are illustrated with an application to a fishery management problem.

  13. Effective degree Markov-chain approach for discrete-time epidemic processes on uncorrelated networks.

    Science.gov (United States)

    Cai, Chao-Ran; Wu, Zhi-Xi; Guan, Jian-Yue

    2014-11-01

    Recently, Gómez et al. proposed a microscopic Markov-chain approach (MMCA) [S. Gómez, J. Gómez-Gardeñes, Y. Moreno, and A. Arenas, Phys. Rev. E 84, 036105 (2011)PLEEE81539-375510.1103/PhysRevE.84.036105] to the discrete-time susceptible-infected-susceptible (SIS) epidemic process and found that the epidemic prevalence obtained by this approach agrees well with that by simulations. However, we found that the approach cannot be straightforwardly extended to a susceptible-infected-recovered (SIR) epidemic process (due to its irreversible property), and the epidemic prevalences obtained by MMCA and Monte Carlo simulations do not match well when the infection probability is just slightly above the epidemic threshold. In this contribution we extend the effective degree Markov-chain approach, proposed for analyzing continuous-time epidemic processes [J. Lindquist, J. Ma, P. Driessche, and F. Willeboordse, J. Math. Biol. 62, 143 (2011)JMBLAJ0303-681210.1007/s00285-010-0331-2], to address discrete-time binary-state (SIS) or three-state (SIR) epidemic processes on uncorrelated complex networks. It is shown that the final epidemic size as well as the time series of infected individuals obtained from this approach agree very well with those by Monte Carlo simulations. Our results are robust to the change of different parameters, including the total population size, the infection probability, the recovery probability, the average degree, and the degree distribution of the underlying networks.

  14. Non-homogeneous Markov process models with informative observations with an application to Alzheimer's disease.

    Science.gov (United States)

    Chen, Baojiang; Zhou, Xiao-Hua

    2011-05-01

    Identifying risk factors for transition rates among normal cognition, mildly cognitive impairment, dementia and death in an Alzheimer's disease study is very important. It is known that transition rates among these states are strongly time dependent. While Markov process models are often used to describe these disease progressions, the literature mainly focuses on time homogeneous processes, and limited tools are available for dealing with non-homogeneity. Further, patients may choose when they want to visit the clinics, which creates informative observations. In this paper, we develop methods to deal with non-homogeneous Markov processes through time scale transformation when observation times are pre-planned with some observations missing. Maximum likelihood estimation via the EM algorithm is derived for parameter estimation. Simulation studies demonstrate that the proposed method works well under a variety of situations. An application to the Alzheimer's disease study identifies that there is a significant increase in transition rates as a function of time. Furthermore, our models reveal that the non-ignorable missing mechanism is perhaps reasonable. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Singular Perturbation for the Discounted Continuous Control of Piecewise Deterministic Markov Processes

    International Nuclear Information System (INIS)

    Costa, O. L. V.; Dufour, F.

    2011-01-01

    This paper deals with the expected discounted continuous control of piecewise deterministic Markov processes (PDMP’s) using a singular perturbation approach for dealing with rapidly oscillating parameters. The state space of the PDMP is written as the product of a finite set and a subset of the Euclidean space ℝ n . The discrete part of the state, called the regime, characterizes the mode of operation of the physical system under consideration, and is supposed to have a fast (associated to a small parameter ε>0) and a slow behavior. By using a similar approach as developed in Yin and Zhang (Continuous-Time Markov Chains and Applications: A Singular Perturbation Approach, Applications of Mathematics, vol. 37, Springer, New York, 1998, Chaps. 1 and 3) the idea in this paper is to reduce the number of regimes by considering an averaged model in which the regimes within the same class are aggregated through the quasi-stationary distribution so that the different states in this class are replaced by a single one. The main goal is to show that the value function of the control problem for the system driven by the perturbed Markov chain converges to the value function of this limit control problem as ε goes to zero. This convergence is obtained by, roughly speaking, showing that the infimum and supremum limits of the value functions satisfy two optimality inequalities as ε goes to zero. This enables us to show the result by invoking a uniqueness argument, without needing any kind of Lipschitz continuity condition.

  16. Detection of bursts in extracellular spike trains using hidden semi-Markov point process models.

    Science.gov (United States)

    Tokdar, Surya; Xi, Peiyi; Kelly, Ryan C; Kass, Robert E

    2010-08-01

    Neurons in vitro and in vivo have epochs of bursting or "up state" activity during which firing rates are dramatically elevated. Various methods of detecting bursts in extracellular spike trains have appeared in the literature, the most widely used apparently being Poisson Surprise (PS). A natural description of the phenomenon assumes (1) there are two hidden states, which we label "burst" and "non-burst," (2) the neuron evolves stochastically, switching at random between these two states, and (3) within each state the spike train follows a time-homogeneous point process. If in (2) the transitions from non-burst to burst and burst to non-burst states are memoryless, this becomes a hidden Markov model (HMM). For HMMs, the state transitions follow exponential distributions, and are highly irregular. Because observed bursting may in some cases be fairly regular-exhibiting inter-burst intervals with small variation-we relaxed this assumption. When more general probability distributions are used to describe the state transitions the two-state point process model becomes a hidden semi-Markov model (HSMM). We developed an efficient Bayesian computational scheme to fit HSMMs to spike train data. Numerical simulations indicate the method can perform well, sometimes yielding very different results than those based on PS.

  17. Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes

    Directory of Open Access Journals (Sweden)

    Tomoaki Nakamura

    2017-12-01

    Full Text Available Humans divide perceived continuous information into segments to facilitate recognition. For example, humans can segment speech waves into recognizable morphemes. Analogously, continuous motions are segmented into recognizable unit actions. People can divide continuous information into segments without using explicit segment points. This capacity for unsupervised segmentation is also useful for robots, because it enables them to flexibly learn languages, gestures, and actions. In this paper, we propose a Gaussian process-hidden semi-Markov model (GP-HSMM that can divide continuous time series data into segments in an unsupervised manner. Our proposed method consists of a generative model based on the hidden semi-Markov model (HSMM, the emission distributions of which are Gaussian processes (GPs. Continuous time series data is generated by connecting segments generated by the GP. Segmentation can be achieved by using forward filtering-backward sampling to estimate the model's parameters, including the lengths and classes of the segments. In an experiment using the CMU motion capture dataset, we tested GP-HSMM with motion capture data containing simple exercise motions; the results of this experiment showed that the proposed GP-HSMM was comparable with other methods. We also conducted an experiment using karate motion capture data, which is more complex than exercise motion capture data; in this experiment, the segmentation accuracy of GP-HSMM was 0.92, which outperformed other methods.

  18. Programming list processes. SLIP: symmetric list processor - applications

    International Nuclear Information System (INIS)

    Broudin, Y.

    1966-06-01

    Modern aspects of programming languages are essentially turned towards list processing. The ordinary methods of sequential treatment become inadequate and we must substitute list processes for them, where the cells of a group have no neighbourhood connection, but where the address of one cell is contained in the preceding one. These methods are required in 'time sharing' solving problems. They also allow us to treat new problems and to solve others in the shortest time. Many examples are presented after an abstract of the most usual list languages and a detailed study of one of them : SLIP. Among these examples one should note: locating of words in a dictionary or in a card index, treatment of non numerical symbols, formal derivation. The problems are treated in Fortran II on an IBM 7094 machine. The subroutines which make up the language are presented in an appendix. (author) [fr

  19. Combining experimental and simulation data of molecular processes via augmented Markov models.

    Science.gov (United States)

    Olsson, Simon; Wu, Hao; Paul, Fabian; Clementi, Cecilia; Noé, Frank

    2017-08-01

    Accurate mechanistic description of structural changes in biomolecules is an increasingly important topic in structural and chemical biology. Markov models have emerged as a powerful way to approximate the molecular kinetics of large biomolecules while keeping full structural resolution in a divide-and-conquer fashion. However, the accuracy of these models is limited by that of the force fields used to generate the underlying molecular dynamics (MD) simulation data. Whereas the quality of classical MD force fields has improved significantly in recent years, remaining errors in the Boltzmann weights are still on the order of a few [Formula: see text], which may lead to significant discrepancies when comparing to experimentally measured rates or state populations. Here we take the view that simulations using a sufficiently good force-field sample conformations that are valid but have inaccurate weights, yet these weights may be made accurate by incorporating experimental data a posteriori. To do so, we propose augmented Markov models (AMMs), an approach that combines concepts from probability theory and information theory to consistently treat systematic force-field error and statistical errors in simulation and experiment. Our results demonstrate that AMMs can reconcile conflicting results for protein mechanisms obtained by different force fields and correct for a wide range of stationary and dynamical observables even when only equilibrium measurements are incorporated into the estimation process. This approach constitutes a unique avenue to combine experiment and computation into integrative models of biomolecular structure and dynamics.

  20. Data-Driven Markov Decision Process Approximations for Personalized Hypertension Treatment Planning

    Directory of Open Access Journals (Sweden)

    Greggory J. Schell PhD

    2016-10-01

    Full Text Available Background: Markov decision process (MDP models are powerful tools. They enable the derivation of optimal treatment policies but may incur long computational times and generate decision rules that are challenging to interpret by physicians. Methods: In an effort to improve usability and interpretability, we examined whether Poisson regression can approximate optimal hypertension treatment policies derived by an MDP for maximizing a patient’s expected discounted quality-adjusted life years. Results: We found that our Poisson approximation to the optimal treatment policy matched the optimal policy in 99% of cases. This high accuracy translates to nearly identical health outcomes for patients. Furthermore, the Poisson approximation results in 104 additional quality-adjusted life years per 1000 patients compared to the Seventh Joint National Committee’s treatment guidelines for hypertension. The comparative health performance of the Poisson approximation was robust to the cardiovascular disease risk calculator used and calculator calibration error. Limitations: Our results are based on Markov chain modeling. Conclusions: Poisson model approximation for blood pressure treatment planning has high fidelity to optimal MDP treatment policies, which can improve usability and enhance transparency of more personalized treatment policies.

  1. A Novel Analytical Model for Network-on-Chip using Semi-Markov Process

    Directory of Open Access Journals (Sweden)

    WANG, J.

    2011-02-01

    Full Text Available Network-on-Chip (NoC communication architecture is proposed to resolve the bottleneck of Multi-processor communication in a single chip. In this paper, a performance analytical model using Semi-Markov Process (SMP is presented to obtain the NoC performance. More precisely, given the related parameters, SMP is used to describe the behavior of each channel and the header flit routing time on each channel can be calculated by analyzing the SMP. Then, the average packet latency in NoC can be calculated. The accuracy of our model is illustrated through simulation. Indeed, the experimental results show that the proposed model can be used to obtain NoC performance and it performs better than the state-of-art models. Therefore, our model can be used as a useful tool to guide the NoC design process.

  2. Numerical construction of the p(fold) (committor) reaction coordinate for a Markov process.

    Science.gov (United States)

    Krivov, Sergei V

    2011-10-06

    To simplify the description of a complex multidimensional dynamical process, one often projects it onto a single reaction coordinate. In protein folding studies, the folding probability p(fold) is an optimal reaction coordinate which preserves many important properties of the dynamics. The construction of the coordinate is difficult. Here, an efficient numerical approach to construct the p(fold) reaction coordinate for a Markov process (satisfying the detailed balance) is described. The coordinate is obtained by optimizing parameters of a chosen functional form to make a generalized cut-based free energy profile the highest. The approach is illustrated by constructing the p(fold) reaction coordinate for the equilibrium folding simulation of FIP35 protein reported by Shaw et al. (Science 2010, 330, 341-346). © 2011 American Chemical Society

  3. Impulsive Control for Continuous-Time Markov Decision Processes: A Linear Programming Approach

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, F., E-mail: dufour@math.u-bordeaux1.fr [Bordeaux INP, IMB, UMR CNRS 5251 (France); Piunovskiy, A. B., E-mail: piunov@liv.ac.uk [University of Liverpool, Department of Mathematical Sciences (United Kingdom)

    2016-08-15

    In this paper, we investigate an optimization problem for continuous-time Markov decision processes with both impulsive and continuous controls. We consider the so-called constrained problem where the objective of the controller is to minimize a total expected discounted optimality criterion associated with a cost rate function while keeping other performance criteria of the same form, but associated with different cost rate functions, below some given bounds. Our model allows multiple impulses at the same time moment. The main objective of this work is to study the associated linear program defined on a space of measures including the occupation measures of the controlled process and to provide sufficient conditions to ensure the existence of an optimal control.

  4. First Passage Moments of Finite-State Semi-Markov Processes

    Energy Technology Data Exchange (ETDEWEB)

    Warr, Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cordeiro, James [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States)

    2014-03-31

    In this paper, we discuss the computation of first-passage moments of a regular time-homogeneous semi-Markov process (SMP) with a finite state space to certain of its states that possess the property of universal accessibility (UA). A UA state is one which is accessible from any other state of the SMP, but which may or may not connect back to one or more other states. An important characteristic of UA is that it is the state-level version of the oft-invoked process-level property of irreducibility. We adapt existing results for irreducible SMPs to the derivation of an analytical matrix expression for the first passage moments to a single UA state of the SMP. In addition, consistent point estimators for these first passage moments, together with relevant R code, are provided.

  5. Modeling treatment of ischemic heart disease with partially observable Markov decision processes.

    Science.gov (United States)

    Hauskrecht, M; Fraser, H

    1998-01-01

    Diagnosis of a disease and its treatment are not separate, one-shot activities. Instead they are very often dependent and interleaved over time, mostly due to uncertainty about the underlying disease, uncertainty associated with the response of a patient to the treatment and varying cost of different diagnostic (investigative) and treatment procedures. The framework of Partially observable Markov decision processes (POMDPs) developed and used in operations research, control theory and artificial intelligence communities is particularly suitable for modeling such a complex decision process. In the paper, we show how the POMDP framework could be used to model and solve the problem of the management of patients with ischemic heart disease, and point out modeling advantages of the framework over standard decision formalisms.

  6. Planning treatment of ischemic heart disease with partially observable Markov decision processes.

    Science.gov (United States)

    Hauskrecht, M; Fraser, H

    2000-03-01

    Diagnosis of a disease and its treatment are not separate, one-shot activities. Instead, they are very often dependent and interleaved over time. This is mostly due to uncertainty about the underlying disease, uncertainty associated with the response of a patient to the treatment and varying cost of different diagnostic (investigative) and treatment procedures. The framework of partially observable Markov decision processes (POMDPs) developed and used in the operations research, control theory and artificial intelligence communities is particularly suitable for modeling such a complex decision process. In this paper, we show how the POMDP framework can be used to model and solve the problem of the management of patients with ischemic heart disease (IHD), and demonstrate the modeling advantages of the framework over standard decision formalisms.

  7. A high-fidelity weather time series generator using the Markov Chain process on a piecewise level

    Science.gov (United States)

    Hersvik, K.; Endrerud, O.-E. V.

    2017-12-01

    A method is developed for generating a set of unique weather time-series based on an existing weather series. The method allows statistically valid weather variations to take place within repeated simulations of offshore operations. The numerous generated time series need to share the same statistical qualities as the original time series. Statistical qualities here refer mainly to the distribution of weather windows available for work, including durations and frequencies of such weather windows, and seasonal characteristics. The method is based on the Markov chain process. The core new development lies in how the Markov Process is used, specifically by joining small pieces of random length time series together rather than joining individual weather states, each from a single time step, which is a common solution found in the literature. This new Markov model shows favorable characteristics with respect to the requirements set forth and all aspects of the validation performed.

  8. Mathematical Model of Induction Heating Processes in Axial Symmetric Inductor-Detail Systems

    Directory of Open Access Journals (Sweden)

    Maik Streblau

    2014-05-01

    Full Text Available The wide variety of models for analysis of processes in the inductor-detail systems makes it necessary to summarize them. This is a difficult task because of the variety of inductor-detail system configurations. This paper aims to present a multi physics mathematical model for complex analysis of electromagnetic and thermal fields in axial symmetric systems inductor-detail.

  9. Dynamic Request Routing for Online Video-on-Demand Service: A Markov Decision Process Approach

    Directory of Open Access Journals (Sweden)

    Jianxiong Wan

    2014-01-01

    Full Text Available We investigate the request routing problem in the CDN-based Video-on-Demand system. We model the system as a controlled queueing system including a dispatcher and several edge servers. The system is formulated as a Markov decision process (MDP. Since the MDP formulation suffers from the so-called “the curse of dimensionality” problem, we then develop a greedy heuristic algorithm, which is simple and can be implemented online, to approximately solve the MDP model. However, we do not know how far it deviates from the optimal solution. To address this problem, we further aggregate the state space of the original MDP model and use the bounded-parameter MDP (BMDP to reformulate the system. This allows us to obtain a suboptimal solution with a known performance bound. The effectiveness of two approaches is evaluated in a simulation study.

  10. Sieve estimation in a Markov illness-death process under dual censoring.

    Science.gov (United States)

    Boruvka, Audrey; Cook, Richard J

    2016-04-01

    Semiparametric methods are well established for the analysis of a progressive Markov illness-death process observed up to a noninformative right censoring time. However, often the intermediate and terminal events are censored in different ways, leading to a dual censoring scheme. In such settings, unbiased estimation of the cumulative transition intensity functions cannot be achieved without some degree of smoothing. To overcome this problem, we develop a sieve maximum likelihood approach for inference on the hazard ratio. A simulation study shows that the sieve estimator offers improved finite-sample performance over common imputation-based alternatives and is robust to some forms of dependent censoring. The proposed method is illustrated using data from cancer trials. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Wind Farm Reliability Modelling Using Bayesian Networks and Semi-Markov Processes

    Directory of Open Access Journals (Sweden)

    Robert Adam Sobolewski

    2015-09-01

    Full Text Available Technical reliability plays an important role among factors affecting the power output of a wind farm. The reliability is determined by an internal collection grid topology and reliability of its electrical components, e.g. generators, transformers, cables, switch breakers, protective relays, and busbars. A wind farm reliability’s quantitative measure can be the probability distribution of combinations of operating and failed states of the farm’s wind turbines. The operating state of a wind turbine is its ability to generate power and to transfer it to an external power grid, which means the availability of the wind turbine and other equipment necessary for the power transfer to the external grid. This measure can be used for quantitative analysis of the impact of various wind farm topologies and the reliability of individual farm components on the farm reliability, and for determining the expected farm output power with consideration of the reliability. This knowledge may be useful in an analysis of power generation reliability in power systems. The paper presents probabilistic models that quantify the wind farm reliability taking into account the above-mentioned technical factors. To formulate the reliability models Bayesian networks and semi-Markov processes were used. Using Bayesian networks the wind farm structural reliability was mapped, as well as quantitative characteristics describing equipment reliability. To determine the characteristics semi-Markov processes were used. The paper presents an example calculation of: (i probability distribution of the combination of both operating and failed states of four wind turbines included in the wind farm, and (ii expected wind farm output power with consideration of its reliability.

  12. Effects of stochastic interest rates in decision making under risk: A Markov decision process model for forest management

    Science.gov (United States)

    Mo Zhou; Joseph Buongiorno

    2011-01-01

    Most economic studies of forest decision making under risk assume a fixed interest rate. This paper investigated some implications of this stochastic nature of interest rates. Markov decision process (MDP) models, used previously to integrate stochastic stand growth and prices, can be extended to include variable interest rates as well. This method was applied to...

  13. Simulating the formation of keratin filament networks by a piecewise-deterministic Markov process.

    Science.gov (United States)

    Beil, Michael; Lück, Sebastian; Fleischer, Frank; Portet, Stéphanie; Arendt, Wolfgang; Schmidt, Volker

    2009-02-21

    Keratin intermediate filament networks are part of the cytoskeleton in epithelial cells. They were found to regulate viscoelastic properties and motility of cancer cells. Due to unique biochemical properties of keratin polymers, the knowledge of the mechanisms controlling keratin network formation is incomplete. A combination of deterministic and stochastic modeling techniques can be a valuable source of information since they can describe known mechanisms of network evolution while reflecting the uncertainty with respect to a variety of molecular events. We applied the concept of piecewise-deterministic Markov processes to the modeling of keratin network formation with high spatiotemporal resolution. The deterministic component describes the diffusion-driven evolution of a pool of soluble keratin filament precursors fueling various network formation processes. Instants of network formation events are determined by a stochastic point process on the time axis. A probability distribution controlled by model parameters exercises control over the frequency of different mechanisms of network formation to be triggered. Locations of the network formation events are assigned dependent on the spatial distribution of the soluble pool of filament precursors. Based on this modeling approach, simulation studies revealed that the architecture of keratin networks mostly depends on the balance between filament elongation and branching processes. The spatial distribution of network mesh size, which strongly influences the mechanical characteristics of filament networks, is modulated by lateral annealing processes. This mechanism which is a specific feature of intermediate filament networks appears to be a major and fast regulator of cell mechanics.

  14. The impulse cutoff an entropy functional measure on trajectories of Markov diffusion process integrating in information path functional

    OpenAIRE

    Lerner, Vladimir S.

    2012-01-01

    The impulses, cutting entropy functional (EF) measure on trajectories Markov diffusion process, integrate information path functional (IPF) composing discrete information Bits extracted from observing random process. Each cut brings memory of the cutting entropy, which provides both reduction of the process entropy and discrete unit of the cutting entropy a Bit. Consequently, information is memorized entropy cutting in random observations which process interactions. The origin of information ...

  15. Irreversible Local Markov Chains with Rapid Convergence towards Equilibrium

    Science.gov (United States)

    Kapfer, Sebastian C.; Krauth, Werner

    2017-12-01

    We study the continuous one-dimensional hard-sphere model and present irreversible local Markov chains that mix on faster time scales than the reversible heat bath or Metropolis algorithms. The mixing time scales appear to fall into two distinct universality classes, both faster than for reversible local Markov chains. The event-chain algorithm, the infinitesimal limit of one of these Markov chains, belongs to the class presenting the fastest decay. For the lattice-gas limit of the hard-sphere model, reversible local Markov chains correspond to the symmetric simple exclusion process (SEP) with periodic boundary conditions. The two universality classes for irreversible Markov chains are realized by the totally asymmetric SEP (TASEP), and by a faster variant (lifted TASEP) that we propose here. We discuss how our irreversible hard-sphere Markov chains generalize to arbitrary repulsive pair interactions and carry over to higher dimensions through the concept of lifted Markov chains and the recently introduced factorized Metropolis acceptance rule.

  16. Mapping absorption processes onto a Markov chain, conserving the mean first passage time

    International Nuclear Information System (INIS)

    Biswas, Katja

    2013-01-01

    The dynamics of a multidimensional system is projected onto a discrete state master equation using the transition rates W(k → k′; t, t + dt) between a set of states {k} represented by the regions {ζ k } in phase or discrete state space. Depending on the dynamics Γ i (t) of the original process and the choice of ζ k , the discretized process can be Markovian or non-Markovian. For absorption processes, it is shown that irrespective of these properties of the projection, a master equation with time-independent transition rates W-bar (k→k ' ) can be obtained, which conserves the total occupation time of the partitions of the phase or discrete state space of the original process. An expression for the transition probabilities p-bar (k ' |k) is derived based on either time-discrete measurements {t i } with variable time stepping Δ (i+1)i = t i+1 − t i or the theoretical knowledge at continuous times t. This allows computational methods of absorbing Markov chains to be used to obtain the mean first passage time (MFPT) of the system. To illustrate this approach, the procedure is applied to obtain the MFPT for the overdamped Brownian motion of particles subject to a system with dichotomous noise and the escape from an entropic barrier. The high accuracy of the simulation results confirms with the theory. (paper)

  17. Spontaneous Symmetric Breaking Mechanism in the Evolution of Strategic Alliance Based on Markov Switching Model%基于马尔科夫状态转换的战略联盟自发性对称破缺机制

    Institute of Scientific and Technical Information of China (English)

    宋波; 徐飞

    2013-01-01

    This paper focused on the spontaneous symmetry breaking in the evolution of strategic alliance, from systematic perspective, viewed strategic alliance as a complex social economic system, from time, space, material, information and energy five dimensions. And the Markov random model was introduced into the study on the status switching of strategic alliance, and then the spontaneous symmetric breaking mechanism of strategic alliance was illustrated based on the Markov switching model, in order to predict the equilibrium status of strategic alliance. This paper provides a new theory perspective for the research on the stability and evolution of strategic alliance.%针对企业战略联盟演变过程中的自发性对称破缺现象,以系统观的视角,将战略联盟视作一个复杂社会经济系统,从时间、空间、物质、信息和能量5个维度描述战略联盟系统的状态,并将马尔科夫过程的状态随机转换模型引入战略联盟状态迁移的研究,深入阐述联盟自发性对称破缺机制,从而预测联盟的平衡状态,为战略联盟演变及稳定性的研究提供了新的理论视角.

  18. Clarification of basic factorization identity is for the almost semi-continuous latticed Poisson processes on the Markov chain

    Directory of Open Access Journals (Sweden)

    Gerich M. S.

    2012-12-01

    Full Text Available Let ${xi(t, x(t}$ be a homogeneous semi-continuous lattice Poisson process on the Markov chain.The jumps of one sign are geometrically distributed, and jumps of the opposite sign are arbitrary latticed distribution. For a suchprocesses the relations for the components of two-sided matrix factorization are established.This relations define the moment genereting functions for extremumf of the process and their complements.

  19. Markov-CA model using analytical hierarchy process and multiregression technique

    International Nuclear Information System (INIS)

    Omar, N Q; Sanusi, S A M; Hussin, W M W; Samat, N; Mohammed, K S

    2014-01-01

    The unprecedented increase in population and rapid rate of urbanisation has led to extensive land use changes. Cellular automata (CA) are increasingly used to simulate a variety of urban dynamics. This paper introduces a new CA based on an integration model built-in multi regression and multi-criteria evaluation to improve the representation of CA transition rule. This multi-criteria evaluation is implemented by utilising data relating to the environmental and socioeconomic factors in the study area in order to produce suitability maps (SMs) using an analytical hierarchical process, which is a well-known method. Before being integrated to generate suitability maps for the periods from 1984 to 2010 based on the different decision makings, which have become conditioned for the next step of CA generation. The suitability maps are compared in order to find the best maps based on the values of the root equation (R 2 ). This comparison can help the stakeholders make better decisions. Thus, the resultant suitability map derives a predefined transition rule for the last step for CA model. The approach used in this study highlights a mechanism for monitoring and evaluating land-use and land-cover changes in Kirkuk city, Iraq owing changes in the structures of governments, wars, and an economic blockade over the past decades. The present study asserts the high applicability and flexibility of Markov-CA model. The results have shown that the model and its interrelated concepts are performing rather well

  20. Analyses of Markov decision process structure regarding the possible strategic use of interacting memory systems

    Directory of Open Access Journals (Sweden)

    Eric A Zilli

    2008-12-01

    Full Text Available Behavioral tasks are often used to study the different memory systems present in humans and animals. Such tasks are usually designed to isolate and measure some aspect of a single memory system. However, it is not necessarily clear that any given task actually does isolate a system or that the strategy used by a subject in the experiment is the one desired by the experimenter. We have previously shown that when tasks are written mathematically as a form of partially-observable Markov decision processes, the structure of the tasks provide information regarding the possible utility of certain memory systems. These previous analyses dealt with the disambiguation problem: given a specific ambiguous observation of the environment, is there information provided by a given memory strategy that can disambiguate that observation to allow a correct decisionµ Here we extend this approach to cases where multiple memory systems can be strategically combined in different ways. Specifically, we analyze the disambiguation arising from three ways by which episodic-like memory retrieval might be cued (by another episodic-like memory, by a semantic association, or by working memory for some earlier observation. We also consider the disambiguation arising from holding earlier working memories, episodic-like memories or semantic associations in working memory. From these analyses we can begin to develop a quantitative hierarchy among memory systems in which stimulus-response memories and semantic associations provide no disambiguation while the episodic memory system provides the most flexible

  1. Markov model of fatigue of a composite material with the poisson process of defect initiation

    Science.gov (United States)

    Paramonov, Yu.; Chatys, R.; Andersons, J.; Kleinhofs, M.

    2012-05-01

    As a development of the model where only one weak microvolume (WMV) and only a pulsating cyclic loading are considered, in the current version of the model, we take into account the presence of several weak sites where fatigue damage can accumulate and a loading with an arbitrary (but positive) stress ratio. The Poisson process of initiation of WMVs is considered, whose rate depends on the size of a specimen. The cumulative distribution function (cdf) of the fatigue life of every individual WMV is calculated using the Markov model of fatigue. For the case where this function is approximated by a lognormal distribution, a formula for calculating the cdf of fatigue life of the specimen (modeled as a chain of WMVs) is obtained. Only a pulsating cyclic loading was considered in the previous version of the model. Now, using the modified energy method, a loading cycle with an arbitrary stress ratio is "transformed" into an equivalent cycle with some other stress ratio. In such a way, the entire probabilistic fatigue diagram for any stress ratio with a positive cycle stress can be obtained. Numerical examples are presented.

  2. Composition of web services using Markov decision processes and dynamic programming.

    Science.gov (United States)

    Uc-Cetina, Víctor; Moo-Mena, Francisco; Hernandez-Ucan, Rafael

    2015-01-01

    We propose a Markov decision process model for solving the Web service composition (WSC) problem. Iterative policy evaluation, value iteration, and policy iteration algorithms are used to experimentally validate our approach, with artificial and real data. The experimental results show the reliability of the model and the methods employed, with policy iteration being the best one in terms of the minimum number of iterations needed to estimate an optimal policy, with the highest Quality of Service attributes. Our experimental work shows how the solution of a WSC problem involving a set of 100,000 individual Web services and where a valid composition requiring the selection of 1,000 services from the available set can be computed in the worst case in less than 200 seconds, using an Intel Core i5 computer with 6 GB RAM. Moreover, a real WSC problem involving only 7 individual Web services requires less than 0.08 seconds, using the same computational power. Finally, a comparison with two popular reinforcement learning algorithms, sarsa and Q-learning, shows that these algorithms require one or two orders of magnitude and more time than policy iteration, iterative policy evaluation, and value iteration to handle WSC problems of the same complexity.

  3. Robust path planning for flexible needle insertion using Markov decision processes.

    Science.gov (United States)

    Tan, Xiaoyu; Yu, Pengqian; Lim, Kah-Bin; Chui, Chee-Kong

    2018-05-11

    Flexible needle has the potential to accurately navigate to a treatment region in the least invasive manner. We propose a new planning method using Markov decision processes (MDPs) for flexible needle navigation that can perform robust path planning and steering under the circumstance of complex tissue-needle interactions. This method enhances the robustness of flexible needle steering from three different perspectives. First, the method considers the problem caused by soft tissue deformation. The method then resolves the common needle penetration failure caused by patterns of targets, while the last solution addresses the uncertainty issues in flexible needle motion due to complex and unpredictable tissue-needle interaction. Computer simulation and phantom experimental results show that the proposed method can perform robust planning and generate a secure control policy for flexible needle steering. Compared with a traditional method using MDPs, the proposed method achieves higher accuracy and probability of success in avoiding obstacles under complicated and uncertain tissue-needle interactions. Future work will involve experiment with biological tissue in vivo. The proposed robust path planning method can securely steer flexible needle within soft phantom tissues and achieve high adaptability in computer simulation.

  4. A test of multiple correlation temporal window characteristic of non-Markov processes

    Science.gov (United States)

    Arecchi, F. T.; Farini, A.; Megna, N.

    2016-03-01

    We introduce a sensitive test of memory effects in successive events. The test consists of a combination K of binary correlations at successive times. K decays monotonically from K = 1 for uncorrelated events as a Markov process. For a monotonic memory fading, K1 temporal window in cognitive tasks consisting of the visual identification of the front face of the Necker cube after a previous presentation of the same. We speculate that memory effects provide a temporal window with K>1 and this experiment could be a possible first step towards a better comprehension of this phenomenon. The K>1 behaviour is maximal at an inter-measurement time τ around 2s with inter-subject differences. The K>1 persists over a time window of 1s around τ; outside this window the K1 window in pairs of successive perceptions suggests that, at variance with single visual stimuli eliciting a suitable response, a pair of stimuli shortly separated in time displays mutual correlations.

  5. Strategic level proton therapy patient admission planning: a Markov decision process modeling approach.

    Science.gov (United States)

    Gedik, Ridvan; Zhang, Shengfan; Rainwater, Chase

    2017-06-01

    A relatively new consideration in proton therapy planning is the requirement that the mix of patients treated from different categories satisfy desired mix percentages. Deviations from these percentages and their impacts on operational capabilities are of particular interest to healthcare planners. In this study, we investigate intelligent ways of admitting patients to a proton therapy facility that maximize the total expected number of treatment sessions (fractions) delivered to patients in a planning period with stochastic patient arrivals and penalize the deviation from the patient mix restrictions. We propose a Markov Decision Process (MDP) model that provides very useful insights in determining the best patient admission policies in the case of an unexpected opening in the facility (i.e., no-shows, appointment cancellations, etc.). In order to overcome the curse of dimensionality for larger and more realistic instances, we propose an aggregate MDP model that is able to approximate optimal patient admission policies using the worded weight aggregation technique. Our models are applicable to healthcare treatment facilities throughout the United States, but are motivated by collaboration with the University of Florida Proton Therapy Institute (UFPTI).

  6. Performance Evaluation and Optimal Management of Distance-Based Registration Using a Semi-Markov Process

    Directory of Open Access Journals (Sweden)

    Jae Joon Suh

    2017-01-01

    Full Text Available We consider the distance-based registration (DBR which is a kind of dynamic location registration scheme in a mobile communication network. In the DBR, the location of a mobile station (MS is updated when it enters a base station more than or equal to a specified distance away from the base station where the location registration for the MS was done last. In this study, we first investigate the existing performance-evaluation methods on the DBR with implicit registration (DBIR presented to improve the performance of the DBR and point out some problems of the evaluation methods. We propose a new performance-evaluation method for the DBIR scheme using a semi-Markov process (SMP which can resolve the controversial issues of the existing methods. The numerical results obtained with the proposed SMP model are compared with those from previous models. It is shown that the SMP model should be considered to get an accurate performance of the DBIR scheme.

  7. Balancing Long Lifetime and Satisfying Fairness in WBAN Using a Constrained Markov Decision Process

    Directory of Open Access Journals (Sweden)

    Yingqi Yin

    2015-01-01

    Full Text Available As an important part of the Internet of Things (IOT and the special case of device-to-device (D2D communication, wireless body area network (WBAN gradually becomes the focus of attention. Since WBAN is a body-centered network, the energy of sensor nodes is strictly restrained since they are supplied by battery with limited power. In each data collection, only one sensor node is scheduled to transmit its measurements directly to the access point (AP through the fading channel. We formulate the problem of dynamically choosing which sensor should communicate with the AP to maximize network lifetime under the constraint of fairness as a constrained markov decision process (CMDP. The optimal lifetime and optimal policy are obtained by Bellman equation in dynamic programming. The proposed algorithm defines the limiting performance in WBAN lifetime under different degrees of fairness constraints. Due to the defect of large implementation overhead in acquiring global channel state information (CSI, we put forward a distributed scheduling algorithm that adopts local CSI, which saves the network overhead and simplifies the algorithm. It was demonstrated via simulation that this scheduling algorithm can allocate time slot reasonably under different channel conditions to balance the performances of network lifetime and fairness.

  8. A markov decision process model for the optimal dispatch of military medical evacuation assets.

    Science.gov (United States)

    Keneally, Sean K; Robbins, Matthew J; Lunday, Brian J

    2016-06-01

    We develop a Markov decision process (MDP) model to examine aerial military medical evacuation (MEDEVAC) dispatch policies in a combat environment. The problem of deciding which aeromedical asset to dispatch to each service request is complicated by the threat conditions at the service locations and the priority class of each casualty event. We assume requests for MEDEVAC support arrive sequentially, with the location and the priority of each casualty known upon initiation of the request. The United States military uses a 9-line MEDEVAC request system to classify casualties as being one of three priority levels: urgent, priority, and routine. Multiple casualties can be present at a single casualty event, with the highest priority casualty determining the priority level for the casualty event. Moreover, an armed escort may be required depending on the threat level indicated by the 9-line MEDEVAC request. The proposed MDP model indicates how to optimally dispatch MEDEVAC helicopters to casualty events in order to maximize steady-state system utility. The utility gained from servicing a specific request depends on the number of casualties, the priority class for each of the casualties, and the locations of both the servicing ambulatory helicopter and casualty event. Instances of the dispatching problem are solved using a relative value iteration dynamic programming algorithm. Computational examples are used to investigate optimal dispatch policies under different threat situations and armed escort delays; the examples are based on combat scenarios in which United States Army MEDEVAC units support ground operations in Afghanistan.

  9. Markov decision processes and the belief-desire-intention model bridging the gap for autonomous agents

    CERN Document Server

    Simari, Gerardo I

    2011-01-01

    In this work, we provide a treatment of the relationship between two models that have been widely used in the implementation of autonomous agents: the Belief DesireIntention (BDI) model and Markov Decision Processes (MDPs). We start with an informal description of the relationship, identifying the common features of the two approaches and the differences between them. Then we hone our understanding of these differences through an empirical analysis of the performance of both models on the TileWorld testbed. This allows us to show that even though the MDP model displays consistently better behavior than the BDI model for small worlds, this is not the case when the world becomes large and the MDP model cannot be solved exactly. Finally we present a theoretical analysis of the relationship between the two approaches, identifying mappings that allow us to extract a set of intentions from a policy (a solution to an MDP), and to extract a policy from a set of intentions.

  10. A sow replacement model using Bayesian updating in a three-level hierarchic Markov process. I. Biological model

    DEFF Research Database (Denmark)

    Kristensen, Anders Ringgaard; Søllested, Thomas Algot

    2004-01-01

    that really uses all these methodological improvements. In this paper, the biological model describing the performance and feed intake of sows is presented. In particular, estimation of herd specific parameters is emphasized. The optimization model is described in a subsequent paper......Several replacement models have been presented in literature. In other applicational areas like dairy cow replacement, various methodological improvements like hierarchical Markov processes and Bayesian updating have been implemented, but not in sow models. Furthermore, there are methodological...... improvements like multi-level hierarchical Markov processes with decisions on multiple time scales, efficient methods for parameter estimations at herd level and standard software that has been hardly implemented at all in any replacement model. The aim of this study is to present a sow replacement model...

  11. An open Markov chain scheme model for a credit consumption portfolio fed by ARIMA and SARMA processes

    Science.gov (United States)

    Esquível, Manuel L.; Fernandes, José Moniz; Guerreiro, Gracinda R.

    2016-06-01

    We introduce a schematic formalism for the time evolution of a random population entering some set of classes and such that each member of the population evolves among these classes according to a scheme based on a Markov chain model. We consider that the flow of incoming members is modeled by a time series and we detail the time series structure of the elements in each of the classes. We present a practical application to data from a credit portfolio of a Cape Verdian bank; after modeling the entering population in two different ways - namely as an ARIMA process and as a deterministic sigmoid type trend plus a SARMA process for the residues - we simulate the behavior of the population and compare the results. We get that the second method is more accurate in describing the behavior of the populations when compared to the observed values in a direct simulation of the Markov chain.

  12. Nuclide transport of decay chain in the fractured rock medium: a model using continuous time Markov process

    International Nuclear Information System (INIS)

    Younmyoung Lee; Kunjai Lee

    1995-01-01

    A model using continuous time Markov process for nuclide transport of decay chain of arbitrary length in the fractured rock medium has been developed. Considering the fracture in the rock matrix as a finite number of compartments, the transition probability for nuclide from the transition intensity between and out of the compartments is represented utilizing Chapman-Kolmogorov equation, with which the expectation and the variance of nuclide distribution for the fractured rock medium could be obtained. A comparison between continuous time Markov process model and available analytical solutions for the nuclide transport of three decay chains without rock matrix diffusion has been made showing comparatively good agreement. Fittings with experimental breakthrough curves obtained with nonsorbing materials such as NaLS and uranine in the artificial fractured rock are also made. (author)

  13. Projected metastable Markov processes and their estimation with observable operator models

    International Nuclear Information System (INIS)

    Wu, Hao; Prinz, Jan-Hendrik; Noé, Frank

    2015-01-01

    The determination of kinetics of high-dimensional dynamical systems, such as macromolecules, polymers, or spin systems, is a difficult and generally unsolved problem — both in simulation, where the optimal reaction coordinate(s) are generally unknown and are difficult to compute, and in experimental measurements, where only specific coordinates are observable. Markov models, or Markov state models, are widely used but suffer from the fact that the dynamics on a coarsely discretized state spaced are no longer Markovian, even if the dynamics in the full phase space are. The recently proposed projected Markov models (PMMs) are a formulation that provides a description of the kinetics on a low-dimensional projection without making the Markovianity assumption. However, as yet no general way of estimating PMMs from data has been available. Here, we show that the observed dynamics of a PMM can be exactly described by an observable operator model (OOM) and derive a PMM estimator based on the OOM learning

  14. Double-observer line transect surveys with Markov-modulated Poisson process models for animal availability.

    Science.gov (United States)

    Borchers, D L; Langrock, R

    2015-12-01

    We develop maximum likelihood methods for line transect surveys in which animals go undetected at distance zero, either because they are stochastically unavailable while within view or because they are missed when they are available. These incorporate a Markov-modulated Poisson process model for animal availability, allowing more clustered availability events than is possible with Poisson availability models. They include a mark-recapture component arising from the independent-observer survey, leading to more accurate estimation of detection probability given availability. We develop models for situations in which (a) multiple detections of the same individual are possible and (b) some or all of the availability process parameters are estimated from the line transect survey itself, rather than from independent data. We investigate estimator performance by simulation, and compare the multiple-detection estimators with estimators that use only initial detections of individuals, and with a single-observer estimator. Simultaneous estimation of detection function parameters and availability model parameters is shown to be feasible from the line transect survey alone with multiple detections and double-observer data but not with single-observer data. Recording multiple detections of individuals improves estimator precision substantially when estimating the availability model parameters from survey data, and we recommend that these data be gathered. We apply the methods to estimate detection probability from a double-observer survey of North Atlantic minke whales, and find that double-observer data greatly improve estimator precision here too. © 2015 The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  15. Mathematical model of the loan portfolio dynamics in the form of Markov chain considering the process of new customers attraction

    Science.gov (United States)

    Bozhalkina, Yana

    2017-12-01

    Mathematical model of the loan portfolio structure change in the form of Markov chain is explored. This model considers in one scheme both the process of customers attraction, their selection based on the credit score, and loans repayment. The model describes the structure and volume of the loan portfolio dynamics, which allows to make medium-term forecasts of profitability and risk. Within the model corrective actions of bank management in order to increase lending volumes or to reduce the risk are formalized.

  16. A competitive Markov decision process model for the energy–water–climate change nexus

    International Nuclear Information System (INIS)

    Nanduri, Vishnu; Saavedra-Antolínez, Ivan

    2013-01-01

    Highlights: • Developed a CMDP model for the energy–water–climate change nexus. • Solved the model using a reinforcement learning algorithm. • Study demonstrated on 30-bus IEEE electric power network using DCOPF formulation. • Sixty percentage drop in CO 2 and 40% drop in H 2 O use when coal replaced by wind (over 10 years). • Higher profits for nuclear and wind as well as higher LMPs under CO 2 and H 2 O taxes. - Abstract: Drought-like conditions in some parts of the US and around the world are causing water shortages that lead to power failures, becoming a source of concern to independent system operators. Water shortages can cause significant challenges in electricity production and thereby a direct socioeconomic impact on the surrounding region. Our paper presents a new, comprehensive quantitative model that examines the electricity–water–climate change nexus. We investigate the impact of a joint water and carbon tax proposal on the operation of a transmission-constrained power network operating in a wholesale power market setting. We develop a competitive Markov decision process (CMDP) model for the dynamic competition in wholesale electricity markets, and solve the model using reinforcement learning. Several cases, including the impact of different tax schemes, integration of stochastic wind energy resources, and capacity disruptions due to droughts are investigated. Results from the analysis on the sample power network show that electricity prices increased with the adoption of water and carbon taxes compared with locational marginal prices without taxes. As expected, wind energy integration reduced both CO 2 emissions and water usage. Capacity disruptions also caused locational marginal prices to increase. Other detailed analyses and results obtained using a 30-bus IEEE network are discussed in detail

  17. Learning to maximize reward rate: a model based on semi-Markov decision processes.

    Science.gov (United States)

    Khodadadi, Arash; Fakhari, Pegah; Busemeyer, Jerome R

    2014-01-01

    WHEN ANIMALS HAVE TO MAKE A NUMBER OF DECISIONS DURING A LIMITED TIME INTERVAL, THEY FACE A FUNDAMENTAL PROBLEM: how much time they should spend on each decision in order to achieve the maximum possible total outcome. Deliberating more on one decision usually leads to more outcome but less time will remain for other decisions. In the framework of sequential sampling models, the question is how animals learn to set their decision threshold such that the total expected outcome achieved during a limited time is maximized. The aim of this paper is to provide a theoretical framework for answering this question. To this end, we consider an experimental design in which each trial can come from one of the several possible "conditions." A condition specifies the difficulty of the trial, the reward, the penalty and so on. We show that to maximize the expected reward during a limited time, the subject should set a separate value of decision threshold for each condition. We propose a model of learning the optimal value of decision thresholds based on the theory of semi-Markov decision processes (SMDP). In our model, the experimental environment is modeled as an SMDP with each "condition" being a "state" and the value of decision thresholds being the "actions" taken in those states. The problem of finding the optimal decision thresholds then is cast as the stochastic optimal control problem of taking actions in each state in the corresponding SMDP such that the average reward rate is maximized. Our model utilizes a biologically plausible learning algorithm to solve this problem. The simulation results show that at the beginning of learning the model choses high values of decision threshold which lead to sub-optimal performance. With experience, however, the model learns to lower the value of decision thresholds till finally it finds the optimal values.

  18. Decision Making under Uncertainty: A Neural Model based on Partially Observable Markov Decision Processes

    Directory of Open Access Journals (Sweden)

    Rajesh P N Rao

    2010-11-01

    Full Text Available A fundamental problem faced by animals is learning to select actions based on noisy sensory information and incomplete knowledge of the world. It has been suggested that the brain engages in Bayesian inference during perception but how such probabilistic representations are used to select actions has remained unclear. Here we propose a neural model of action selection and decision making based on the theory of partially observable Markov decision processes (POMDPs. Actions are selected based not on a single optimal estimate of state but on the posterior distribution over states (the belief state. We show how such a model provides a unified framework for explaining experimental results in decision making that involve both information gathering and overt actions. The model utilizes temporal difference (TD learning for maximizing expected reward. The resulting neural architecture posits an active role for the neocortex in belief computation while ascribing a role to the basal ganglia in belief representation, value computation, and action selection. When applied to the random dots motion discrimination task, model neurons representing belief exhibit responses similar to those of LIP neurons in primate neocortex. The appropriate threshold for switching from information gathering to overt actions emerges naturally during reward maximization. Additionally, the time course of reward prediction error in the model shares similarities with dopaminergic responses in the basal ganglia during the random dots task. For tasks with a deadline, the model learns a decision making strategy that changes with elapsed time, predicting a collapsing decision threshold consistent with some experimental studies. The model provides a new framework for understanding neural decision making and suggests an important role for interactions between the neocortex and the basal ganglia in learning the mapping between probabilistic sensory representations and actions that maximize

  19. A study on the stochastic model for nuclide transport in the fractured porous rock using continuous time Markov process

    International Nuclear Information System (INIS)

    Lee, Youn Myoung

    1995-02-01

    As a newly approaching model, a stochastic model using continuous time Markov process for nuclide decay chain transport of arbitrary length in the fractured porous rock medium has been proposed, by which the need for solving a set of partial differential equations corresponding to various sets of side conditions can be avoided. Once the single planar fracture in the rock matrix is represented by a series of finite number of compartments having region wise constant parameter values in them, the medium is continuous in view of various processes associated with nuclide transport but discrete in medium space and such geologic system is assumed to have Markov property, since the Markov process requires that only the present value of the time dependent random variable be known to determine the future value of random variable, nuclide transport in the medium can then be modeled as a continuous time Markov process. Processes that are involved in nuclide transport are advective transport due to groundwater flow, diffusion into the rock matrix, adsorption onto the wall of the fracture and within the pores in the rock matrix, and radioactive decay chain. The transition probabilities for nuclide from the transition intensities between and out of the compartments are represented utilizing Chapman-Kolmogorov equation, through which the expectation and the variance of nuclide distribution for each compartment or the fractured rock medium can be obtained. Some comparisons between Markov process model developed in this work and available analytical solutions for one-dimensional layered porous medium, fractured medium with rock matrix diffusion, and porous medium considering three member nuclide decay chain without rock matrix diffusion have been made showing comparatively good agreement for all cases. To verify the model developed in this work another comparative study was also made by fitting the experimental data obtained with NaLS and uranine running in the artificial fractured

  20. An integral equation approach to the interval reliability of systems modelled by finite semi-Markov processes

    International Nuclear Information System (INIS)

    Csenki, A.

    1995-01-01

    The interval reliability for a repairable system which alternates between working and repair periods is defined as the probability of the system being functional throughout a given time interval. In this paper, a set of integral equations is derived for this dependability measure, under the assumption that the system is modelled by an irreducible finite semi-Markov process. The result is applied to the semi-Markov model of a two-unit system with sequential preventive maintenance. The method used for the numerical solution of the resulting system of integral equations is a two-point trapezoidal rule. The system of implementation is the matrix computation package MATLAB on the Apple Macintosh SE/30. The numerical results are discussed and compared with those from simulation

  1. Certified policy synthesis for general Markov decision processes : an application in building automation systems

    NARCIS (Netherlands)

    Haesaert, S.; Cauchi, N.; Abate, A.

    2017-01-01

    In this paper, we present an industrial application of new approximate similarity relations for Markov models, and show that they are key for the synthesis of control strategies. Typically, modern engineering systems are modelled using complex and high-order models which make the correct-by-design

  2. Applying a Markov approach as a Lean Thinking analysis of waste elimination in a Rice Production Process

    Directory of Open Access Journals (Sweden)

    Eldon Glen Caldwell Marin

    2015-01-01

    Full Text Available The Markov Chains Model was proposed to analyze stochastic events when recursive cycles occur; for example, when rework in a continuous flow production affects the overall performance. Typically, the analysis of rework and scrap is done through a wasted material cost perspective and not from the perspective of waste capacity that reduces throughput and economic value added (EVA. Also, we can not find many cases of this application in agro-industrial production in Latin America, given the complexity of the calculations and the need for robust applications. This scientific work presents the results of a quasi-experimental research approach in order to explain how to apply DOE methods and Markov analysis in a rice production process located in Central America, evaluating the global effects of a single reduction in rework and scrap in a part of the whole line. The results show that in this case it is possible to evaluate benefits from Global Throughput and EVA perspective and not only from the saving costs perspective, finding a relationship between operational indicators and corporate performance. However, it was found that it is necessary to analyze the markov chains configuration with many rework points, also it is still relevant to take into account the effects on takt time and not only scrap´s costs.

  3. Markov Tail Chains

    OpenAIRE

    janssen, Anja; Segers, Johan

    2013-01-01

    The extremes of a univariate Markov chain with regularly varying stationary marginal distribution and asymptotically linear behavior are known to exhibit a multiplicative random walk structure called the tail chain. In this paper we extend this fact to Markov chains with multivariate regularly varying marginal distributions in Rd. We analyze both the forward and the backward tail process and show that they mutually determine each other through a kind of adjoint relation. In ...

  4. Markov Chain Monte Carlo Methods

    Indian Academy of Sciences (India)

    Keywords. Markov chain; state space; stationary transition probability; stationary distribution; irreducibility; aperiodicity; stationarity; M-H algorithm; proposal distribution; acceptance probability; image processing; Gibbs sampler.

  5. Using Markov Decision Processes with Heterogeneous Queueing Systems to Examine Military MEDEVAC Dispatching Policies

    Science.gov (United States)

    2017-03-23

    POLICIES THESIS Presented to the Faculty Department of Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology...dispatching policy and three practitioner-friendly myopic baseline policies. Two computational experiments, a two-level, five-factor screening design and a...over, an open question exists concerning the best exact solution approach for solving Markov decision problems due to recent advances in performance by

  6. Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach.

    Science.gov (United States)

    Bennett, Casey C; Hauser, Kris

    2013-01-01

    In the modern healthcare system, rapidly expanding costs/complexity, the growing myriad of treatment options, and exploding information streams that often do not effectively reach the front lines hinder the ability to choose optimal treatment decisions over time. The goal in this paper is to develop a general purpose (non-disease-specific) computational/artificial intelligence (AI) framework to address these challenges. This framework serves two potential functions: (1) a simulation environment for exploring various healthcare policies, payment methodologies, etc., and (2) the basis for clinical artificial intelligence - an AI that can "think like a doctor". This approach combines Markov decision processes and dynamic decision networks to learn from clinical data and develop complex plans via simulation of alternative sequential decision paths while capturing the sometimes conflicting, sometimes synergistic interactions of various components in the healthcare system. It can operate in partially observable environments (in the case of missing observations or data) by maintaining belief states about patient health status and functions as an online agent that plans and re-plans as actions are performed and new observations are obtained. This framework was evaluated using real patient data from an electronic health record. The results demonstrate the feasibility of this approach; such an AI framework easily outperforms the current treatment-as-usual (TAU) case-rate/fee-for-service models of healthcare. The cost per unit of outcome change (CPUC) was $189 vs. $497 for AI vs. TAU (where lower is considered optimal) - while at the same time the AI approach could obtain a 30-35% increase in patient outcomes. Tweaking certain AI model parameters could further enhance this advantage, obtaining approximately 50% more improvement (outcome change) for roughly half the costs. Given careful design and problem formulation, an AI simulation framework can approximate optimal

  7. Semi-Markov Chains and Hidden Semi-Markov Models toward Applications Their Use in Reliability and DNA Analysis

    CERN Document Server

    Barbu, Vlad

    2008-01-01

    Semi-Markov processes are much more general and better adapted to applications than the Markov ones because sojourn times in any state can be arbitrarily distributed, as opposed to the geometrically distributed sojourn time in the Markov case. This book concerns with the estimation of discrete-time semi-Markov and hidden semi-Markov processes

  8. Risk-Sensitive and Mean Variance Optimality in Markov Decision Processes

    Czech Academy of Sciences Publication Activity Database

    Sladký, Karel

    2013-01-01

    Roč. 7, č. 3 (2013), s. 146-161 ISSN 0572-3043 R&D Projects: GA ČR GAP402/10/0956; GA ČR GAP402/11/0150 Grant - others:AVČR a CONACyT(CZ) 171396 Institutional support: RVO:67985556 Keywords : Discrete-time Markov decision chains * exponential utility functions * certainty equivalent * mean-variance optimality * connections between risk -sensitive and risk -neutral models Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/E/sladky-0399099.pdf

  9. On some Filtration Procedure for Jump Markov Process Observed in White Gaussian Noise

    OpenAIRE

    Khas'minskii, Rafail Z.; Lazareva, Betty V.

    1992-01-01

    The importance of optimal filtration problem for Markov chain with two states observed in Gaussian white noise (GWN) for a lot of concrete technical problems is well known. The equation for a posterior probability $\\pi(t)$ of one of the states was obtained many years ago. The aim of this paper is to study a simple filtration method. It is shown that this simplified filtration is asymptotically efficient in some sense if the diffusion constant of the GWN goes to 0. Some advantages of this proc...

  10. Evolution of lateral ordering in symmetric block copolymer thin films upon rapid thermal processing

    International Nuclear Information System (INIS)

    Ceresoli, Monica; Ferrarese Lupi, Federico; Seguini, Gabriele; Perego, Michele; Sparnacci, Katia; Gianotti, Valentina; Antonioli, Diego; Laus, Michele; Boarino, Luca

    2014-01-01

    This work reports experimental findings about the evolution of lateral ordering of lamellar microdomains in symmetric PS-b-PMMA thin films on featureless substrates. Phase separation and microdomain evolution are explored in a rather wide range of temperatures (190–340 °C) using a rapid thermal processing (RTP) system. The maximum processing temperature that enables the ordering of block copolymers without introducing any significant degradation of macromolecules is identified. The reported results clearly indicate that the range of accessible temperatures in the processing of these self-assembling materials is mainly limited by the thermal instability of the grafted random copolymer layer, which starts to degrade at T > 300 °C, inducing detachment of the block copolymer thin film. For T ⩽ 290 °C, clear dependence of correlation length (ξ) values on temperature is observed. The highest level of lateral order achievable in the current system in a quasi-equilibrium condition was obtained at the upper processing temperature limit after an annealing time as short as 60 s. (paper)

  11. On the Laws of Total Local Times for -Paths and Bridges of Symmetric Lévy Processes

    Directory of Open Access Journals (Sweden)

    Masafumi Hayashi

    2013-01-01

    Full Text Available The joint law of the total local times at two levels for -paths of symmetric Lévy processes is shown to admit an explicit representation in terms of the laws of the squared Bessel processes of dimensions two and zero. The law of the total local time at a single level for bridges is also discussed.

  12. Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model

    Science.gov (United States)

    Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan

    2016-12-01

    The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.

  13. Modeling dyadic processes using Hidden Markov Models: A time series approach to mother-infant interactions during infant immunization.

    Science.gov (United States)

    Stifter, Cynthia A; Rovine, Michael

    2015-01-01

    The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at two and six months of age, used hidden Markov modeling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a 4-state model for the dyadic responses to a two-month inoculation whereas a 6-state model best described the dyadic process at six months. Two of the states at two months and three of the states at six months suggested a progression from high intensity crying to no crying with parents using vestibular and auditory soothing methods. The use of feeding and/or pacifying to soothe the infant characterized one two-month state and two six-month states. These data indicate that with maturation and experience, the mother-infant dyad is becoming more organized around the soothing interaction. Using hidden Markov modeling to describe individual differences, as well as normative processes, is also presented and discussed.

  14. Post processing of optically recognized text via second order hidden Markov model

    Science.gov (United States)

    Poudel, Srijana

    In this thesis, we describe a postprocessing system on Optical Character Recognition(OCR) generated text. Second Order Hidden Markov Model (HMM) approach is used to detect and correct the OCR related errors. The reason for choosing the 2nd order HMM is to keep track of the bigrams so that the model can represent the system more accurately. Based on experiments with training data of 159,733 characters and testing of 5,688 characters, the model was able to correct 43.38 % of the errors with a precision of 75.34 %. However, the precision value indicates that the model introduced some new errors, decreasing the correction percentage to 26.4%.

  15. MARKOV PROCESSES IN MODELING LAND USE AND LAND COVER CHANGES IN SINTRA-CASCAIS, PORTUGAL

    Directory of Open Access Journals (Sweden)

    PEDRO CABRAL

    2009-01-01

    Full Text Available En este artículo los procesos de alteración de la utilización y ocupación del suelo (LUCC son investigados recorriendo-se a técnicas de teledetección y a cadenas de Markov en lasmunicipalidades de Sintra y Cascais (Portugal entre los anos de 1989 y 2000. El papel del Parque Natural de Sintra-Cascais (PNSC es evaluado.Los resultados demuestran que, dentro del PNSC, el LUCC presente depende del pasadoinmediato del uso y ocupación del suelo siguiendo un comportamiento Markoviano. Fuera del PNSC, LUCC es aleatorio y no sigue un proceso Markoviano. Estimativas del LUCC para el ano de 2006 son presentadas para el área dentro del PNSC. Estos resultados refuerzan el papel del PNSC como una herramienta indispensable para preservar la estabilidad del LUCC y garantizar sus funciones.

  16. Multi-state reliability for pump group in system based on UGF and semi-Markov process

    International Nuclear Information System (INIS)

    Shang Yanlong; Cai Qi; Zhao Xinwen; Chen Ling

    2012-01-01

    In this paper, multi-state reliability value of pump group in nuclear power system is obtained by the combination method of the universal generating function (UGF) and Semi-Markov process. UGF arithmetic model of multi-state system reliability is studied, and the performance state probability expression of multi-state component is derived using semi-Markov theory. A quantificational model is defined to express the performance rate of the system and component. Different availability results by multi-state and binary state analysis method are compared under the condition whether the performance rate can satisfy the demanded value, and the mean value of system instantaneous output performance is also obtained. It shows that this combination method is an effective and feasible one which can quantify the effect of the partial failure on the system reliability, and the result of multi-state system reliability by this method deduces the modesty of the reliability value obtained by binary reliability analysis method. (authors)

  17. Numerical modeling of axi-symmetrical cold forging process by ``Pseudo Inverse Approach''

    Science.gov (United States)

    Halouani, A.; Li, Y. M.; Abbes, B.; Guo, Y. Q.

    2011-05-01

    The incremental approach is widely used for the forging process modeling, it gives good strain and stress estimation, but it is time consuming. A fast Inverse Approach (IA) has been developed for the axi-symmetric cold forging modeling [1-2]. This approach exploits maximum the knowledge of the final part's shape and the assumptions of proportional loading and simplified tool actions make the IA simulation very fast. The IA is proved very useful for the tool design and optimization because of its rapidity and good strain estimation. However, the assumptions mentioned above cannot provide good stress estimation because of neglecting the loading history. A new approach called "Pseudo Inverse Approach" (PIA) was proposed by Batoz, Guo et al.. [3] for the sheet forming modeling, which keeps the IA's advantages but gives good stress estimation by taking into consideration the loading history. Our aim is to adapt the PIA for the cold forging modeling in this paper. The main developments in PIA are resumed as follows: A few intermediate configurations are generated for the given tools' positions to consider the deformation history; the strain increment is calculated by the inverse method between the previous and actual configurations. An incremental algorithm of the plastic integration is used in PIA instead of the total constitutive law used in the IA. An example is used to show the effectiveness and limitations of the PIA for the cold forging process modeling.

  18. Generalized Boolean logic Driven Markov Processes: A powerful modeling framework for Model-Based Safety Analysis of dynamic repairable and reconfigurable systems

    International Nuclear Information System (INIS)

    Piriou, Pierre-Yves; Faure, Jean-Marc; Lesage, Jean-Jacques

    2017-01-01

    This paper presents a modeling framework that permits to describe in an integrated manner the structure of the critical system to analyze, by using an enriched fault tree, the dysfunctional behavior of its components, by means of Markov processes, and the reconfiguration strategies that have been planned to ensure safety and availability, with Moore machines. This framework has been developed from BDMP (Boolean logic Driven Markov Processes), a previous framework for dynamic repairable systems. First, the contribution is motivated by pinpointing the limitations of BDMP to model complex reconfiguration strategies and the failures of the control of these strategies. The syntax and semantics of GBDMP (Generalized Boolean logic Driven Markov Processes) are then formally defined; in particular, an algorithm to analyze the dynamic behavior of a GBDMP model is developed. The modeling capabilities of this framework are illustrated on three representative examples. Last, qualitative and quantitative analysis of GDBMP models highlight the benefits of the approach.

  19. Effect of Stacking Layup on Spring-back Deformation of Symmetrical Flat Laminate Composites Manufactured through Autoclave Processing

    Science.gov (United States)

    Nasir, M. N. M.; Seman, M. A.; Mezeix, L.; Aminanda, Y.; Rivai, A.; Ali, K. M.

    2017-03-01

    The residual stresses that develop within fibre-reinforced laminate composites during autoclave processing lead to dimensional warpage known as spring-back deformation. A number of experiments have been conducted on flat laminate composites with unidirectional fibre orientation to examine the effects of both the intrinsic and extrinsic parameters on the warpage. This paper extends the study on to the symmetrical layup effect on spring-back for flat laminate composites. Plies stacked at various symmetrical sequences were fabricated to observe the severity of the resulting warpage. Essentially, the experimental results demonstrated that the symmetrical layups reduce the laminate stiffness in its principal direction compared to the unidirectional laminate thus, raising the spring-back warpage with the exception of the [45/-45]S layup due to its quasi-isotropic property.

  20. Phasic Triplet Markov Chains.

    Science.gov (United States)

    El Yazid Boudaren, Mohamed; Monfrini, Emmanuel; Pieczynski, Wojciech; Aïssani, Amar

    2014-11-01

    Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain hidden Markov chains to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data.

  1. A sow replacement model using Bayesian updating in a three-level hierarchic Markov process. II. Optimization model

    DEFF Research Database (Denmark)

    Kristensen, Anders Ringgaard; Søllested, Thomas Algot

    2004-01-01

    improvements. The biological model of the replacement model is described in a previous paper and in this paper the optimization model is described. The model is developed as a prototype for use under practical conditions. The application of the model is demonstrated using data from two commercial Danish sow......Recent methodological improvements in replacement models comprising multi-level hierarchical Markov processes and Bayesian updating have hardly been implemented in any replacement model and the aim of this study is to present a sow replacement model that really uses these methodological...... herds. It is concluded that the Bayesian updating technique and the hierarchical structure decrease the size of the state space dramatically. Since parameter estimates vary considerably among herds it is concluded that decision support concerning sow replacement only makes sense with parameters...

  2. Tokunaga and Horton self-similarity for level set trees of Markov chains

    International Nuclear Information System (INIS)

    Zaliapin, Ilia; Kovchegov, Yevgeniy

    2012-01-01

    Highlights: ► Self-similar properties of the level set trees for Markov chains are studied. ► Tokunaga and Horton self-similarity are established for symmetric Markov chains and regular Brownian motion. ► Strong, distributional self-similarity is established for symmetric Markov chains with exponential jumps. ► It is conjectured that fractional Brownian motions are Tokunaga self-similar. - Abstract: The Horton and Tokunaga branching laws provide a convenient framework for studying self-similarity in random trees. The Horton self-similarity is a weaker property that addresses the principal branching in a tree; it is a counterpart of the power-law size distribution for elements of a branching system. The stronger Tokunaga self-similarity addresses so-called side branching. The Horton and Tokunaga self-similarity have been empirically established in numerous observed and modeled systems, and proven for two paradigmatic models: the critical Galton–Watson branching process with finite progeny and the finite-tree representation of a regular Brownian excursion. This study establishes the Tokunaga and Horton self-similarity for a tree representation of a finite symmetric homogeneous Markov chain. We also extend the concept of Horton and Tokunaga self-similarity to infinite trees and establish self-similarity for an infinite-tree representation of a regular Brownian motion. We conjecture that fractional Brownian motions are also Tokunaga and Horton self-similar, with self-similarity parameters depending on the Hurst exponent.

  3. Markov counting and reward processes for analysing the performance of a complex system subject to random inspections

    International Nuclear Information System (INIS)

    Ruiz-Castro, Juan Eloy

    2016-01-01

    In this paper, a discrete complex reliability system subject to internal failures and external shocks, is modelled algorithmically. Two types of internal failure are considered: repairable and non-repairable. When a repairable failure occurs, the unit goes to corrective repair. In addition, the unit is subject to external shocks that may produce an aggravation of the internal degradation level, cumulative damage or extreme failure. When a damage threshold is reached, the unit must be removed. When a non-repairable failure occurs, the device is replaced by a new, identical one. The internal performance and the external damage are partitioned in performance levels. Random inspections are carried out. When an inspection takes place, the internal performance of the system and the damage caused by external shocks are observed and if necessary the unit is sent to preventive maintenance. If the inspection observes minor state for the internal performance and/or external damage, then these states remain in memory when the unit goes to corrective or preventive maintenance. Transient and stationary analyses are performed. Markov counting and reward processes are developed in computational form to analyse the performance and profitability of the system with and without preventive maintenance. These aspects are implemented computationally with Matlab. - Highlights: • A multi-state device is modelled in an algorithmic and computational form. • The performance is partitioned in multi-states and degradation levels. • Several types of failures with repair times according to degradation levels. • Preventive maintenance as response to random inspection is introduced. • The performance-profitable is analysed through Markov counting and reward processes.

  4. Composable Markov Building Blocks

    NARCIS (Netherlands)

    Evers, S.; Fokkinga, M.M.; Apers, Peter M.G.; Prade, H.; Subrahmanian, V.S.

    2007-01-01

    In situations where disjunct parts of the same process are described by their own first-order Markov models and only one model applies at a time (activity in one model coincides with non-activity in the other models), these models can be joined together into one. Under certain conditions, nearly all

  5. Composable Markov Building Blocks

    NARCIS (Netherlands)

    Evers, S.; Fokkinga, M.M.; Apers, Peter M.G.

    2007-01-01

    In situations where disjunct parts of the same process are described by their own first-order Markov models, these models can be joined together under the constraint that there can only be one activity at a time, i.e. the activities of one model coincide with non-activity in the other models. Under

  6. Fermionic Markov Chains

    OpenAIRE

    Fannes, Mark; Wouters, Jeroen

    2012-01-01

    We study a quantum process that can be considered as a quantum analogue for the classical Markov process. We specifically construct a version of these processes for free Fermions. For such free Fermionic processes we calculate the entropy density. This can be done either directly using Szeg\\"o's theorem for asymptotic densities of functions of Toeplitz matrices, or through an extension of said theorem to rates of functions, which we present in this article.

  7. A Markov decision process for managing habitat for Florida scrub-jays

    Science.gov (United States)

    Johnson, Fred A.; Breininger, David R.; Duncan, Brean W.; Nichols, James D.; Runge, Michael C.; Williams, B. Ken

    2011-01-01

    Florida scrub-jays Aphelocoma coerulescens are listed as threatened under the Endangered Species Act due to loss and degradation of scrub habitat. This study concerned the development of an optimal strategy for the restoration and management of scrub habitat at Merritt Island National Wildlife Refuge, which contains one of the few remaining large populations of scrub-jays in Florida. There are documented differences in the reproductive and survival rates of scrubjays among discrete classes of scrub height (Markov models to estimate annual transition probabilities among the four scrub-height classes under three possible management actions: scrub restoration (mechanical cutting followed by burning), a prescribed burn, or no intervention. A strategy prescribing the optimal management action for management units exhibiting different proportions of scrub-height classes was derived using dynamic programming. Scrub restoration was the optimal management action only in units dominated by mixed and tall scrub, and burning tended to be the optimal action for intermediate levels of short scrub. The optimal action was to do nothing when the amount of short scrub was greater than 30%, because short scrub mostly transitions to optimal height scrub (i.e., that state with the highest demographic success of scrub-jays) in the absence of intervention. Monte Carlo simulation of the optimal policy suggested that some form of management would be required every year. We note, however, that estimates of scrub-height transition probabilities were subject to several sources of uncertainty, and so we explored the management implications of alternative sets of transition probabilities. Generally, our analysis demonstrated the difficulty of managing for a species that requires midsuccessional habitat, and suggests that innovative management tools may be needed to help ensure the persistence of scrub-jays at Merritt Island National Wildlife Refuge. The development of a tailored monitoring

  8. On structural properties of the value function for an unbounded jump Markov process with an application to a processor-sharing retrial queue

    NARCIS (Netherlands)

    Bhulai, S.; Brooms, A.C.; Spieksma, F.M.

    2014-01-01

    The derivation of structural properties for unbounded jump Markov processes cannot be done using standard mathematical tools, since the analysis is hindered due to the fact that the system is not uniformizable. We present a promising technique, a smoothed rate truncation method, to overcome the

  9. A Monte Carlo approach to the ship-centric Markov decision process for analyzing decisions over converting a containership to LNG power

    NARCIS (Netherlands)

    Kana, A.A.; Harrison, B.M.

    2017-01-01

    A Monte Carlo approach to the ship-centric Markov decision process (SC-MDP) is presented for analyzing whether a container ship should convert to LNG power in the face of evolving Emission Control Area regulations. The SC-MDP model was originally developed as a means to analyze uncertain,

  10. A Markov decision process for managing habitat for Florida scrub-jays

    Science.gov (United States)

    Johnson, Fred A.; Breininger, David R.; Duncan, Brean W.; Nichols, James D.; Runge, Michael C.; Williams, B. Ken

    2011-01-01

    Florida scrub-jays Aphelocoma coerulescens are listed as threatened under the Endangered Species Act due to loss and degradation of scrub habitat. This study concerned the development of an optimal strategy for the restoration and management of scrub habitat at Merritt Island National Wildlife Refuge, which contains one of the few remaining large populations of scrub-jays in Florida. There are documented differences in the reproductive and survival rates of scrubjays among discrete classes of scrub height (strategy that would maximize the long-term growth rate of the resident scrub-jay population. We used aerial imagery with multistate Markov models to estimate annual transition probabilities among the four scrub-height classes under three possible management actions: scrub restoration (mechanical cutting followed by burning), a prescribed burn, or no intervention. A strategy prescribing the optimal management action for management units exhibiting different proportions of scrub-height classes was derived using dynamic programming. Scrub restoration was the optimal management action only in units dominated by mixed and tall scrub, and burning tended to be the optimal action for intermediate levels of short scrub. The optimal action was to do nothing when the amount of short scrub was greater than 30%, because short scrub mostly transitions to optimal height scrub (i.e., that state with the highest demographic success of scrub-jays) in the absence of intervention. Monte Carlo simulation of the optimal policy suggested that some form of management would be required every year. We note, however, that estimates of scrub-height transition probabilities were subject to several sources of uncertainty, and so we explored the management implications of alternative sets of transition probabilities. Generally, our analysis demonstrated the difficulty of managing for a species that requires midsuccessional habitat, and suggests that innovative management tools may be needed to

  11. Confluence reduction for Markov automata

    NARCIS (Netherlands)

    Timmer, Mark; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette

    Markov automata are a novel formalism for specifying systems exhibiting nondeterminism, probabilistic choices and Markovian rates. Recently, the process algebra MAPA was introduced to efficiently model such systems. As always, the state space explosion threatens the analysability of the models

  12. Confluence Reduction for Markov Automata

    NARCIS (Netherlands)

    Timmer, Mark; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette; Braberman, Victor; Fribourg, Laurent

    Markov automata are a novel formalism for specifying systems exhibiting nondeterminism, probabilistic choices and Markovian rates. Recently, the process algebra MAPA was introduced to efficiently model such systems. As always, the state space explosion threatens the analysability of the models

  13. A statistical model for prediction of fuel element failure using the Markov process and entropy minimax principles

    International Nuclear Information System (INIS)

    Choi, K.Y.; Yoon, Y.K.; Chang, S.H.

    1991-01-01

    This paper reports on a new statistical fuel failure model developed to take into account the effects of damaging environmental conditions and the overall operating history of the fuel elements. The degradation of material properties and damage resistance of the fuel cladding is mainly caused by the combined effects of accumulated dynamic stresses, neutron irradiation, and chemical and stress corrosion at operating temperature. Since the degradation of material properties due to these effects can be considered as a stochastic process, a dynamic reliability function is derived based on the Markov process. Four damage parameters, namely, dynamic stresses, magnitude of power increase from the preceding power level and with ramp rate, and fatigue cycles, are used to build this model. The dynamic reliability function and damage parameters are used to obtain effective damage parameters. The entropy maximization principle is used to generate a probability density function of the effective damage parameters. The entropy minimization principle is applied to determine weighting factors for amalgamation of the failure probabilities due to the respective failure modes. In this way, the effects of operating history, damaging environmental conditions, and damage sequence are taken into account

  14. Two-boundary first exit time of Gauss-Markov processes for stochastic modeling of acto-myosin dynamics.

    Science.gov (United States)

    D'Onofrio, Giuseppe; Pirozzi, Enrica

    2017-05-01

    We consider a stochastic differential equation in a strip, with coefficients suitably chosen to describe the acto-myosin interaction subject to time-varying forces. By simulating trajectories of the stochastic dynamics via an Euler discretization-based algorithm, we fit experimental data and determine the values of involved parameters. The steps of the myosin are represented by the exit events from the strip. Motivated by these results, we propose a specific stochastic model based on the corresponding time-inhomogeneous Gauss-Markov and diffusion process evolving between two absorbing boundaries. We specify the mean and covariance functions of the stochastic modeling process taking into account time-dependent forces including the effect of an external load. We accurately determine the probability density function (pdf) of the first exit time (FET) from the strip by solving a system of two non singular second-type Volterra integral equations via a numerical quadrature. We provide numerical estimations of the mean of FET as approximations of the dwell-time of the proteins dynamics. The percentage of backward steps is given in agreement to experimental data. Numerical and simulation results are compared and discussed.

  15. Dual Sticky Hierarchical Dirichlet Process Hidden Markov Model and Its Application to Natural Language Description of Motions.

    Science.gov (United States)

    Hu, Weiming; Tian, Guodong; Kang, Yongxin; Yuan, Chunfeng; Maybank, Stephen

    2017-09-25

    In this paper, a new nonparametric Bayesian model called the dual sticky hierarchical Dirichlet process hidden Markov model (HDP-HMM) is proposed for mining activities from a collection of time series data such as trajectories. All the time series data are clustered. Each cluster of time series data, corresponding to a motion pattern, is modeled by an HMM. Our model postulates a set of HMMs that share a common set of states (topics in an analogy with topic models for document processing), but have unique transition distributions. For the application to motion trajectory modeling, topics correspond to motion activities. The learnt topics are clustered into atomic activities which are assigned predicates. We propose a Bayesian inference method to decompose a given trajectory into a sequence of atomic activities. On combining the learnt sources and sinks, semantic motion regions, and the learnt sequence of atomic activities, the action represented by the trajectory can be described in natural language in as automatic a way as possible. The effectiveness of our dual sticky HDP-HMM is validated on several trajectory datasets. The effectiveness of the natural language descriptions for motions is demonstrated on the vehicle trajectories extracted from a traffic scene.

  16. Regeneration and general Markov chains

    Directory of Open Access Journals (Sweden)

    Vladimir V. Kalashnikov

    1994-01-01

    Full Text Available Ergodicity, continuity, finite approximations and rare visits of general Markov chains are investigated. The obtained results permit further quantitative analysis of characteristics, such as, rates of convergence, continuity (measured as a distance between perturbed and non-perturbed characteristics, deviations between Markov chains, accuracy of approximations and bounds on the distribution function of the first visit time to a chosen subset, etc. The underlying techniques use the embedding of the general Markov chain into a wide sense regenerative process with the help of splitting construction.

  17. Markov chains theory and applications

    CERN Document Server

    Sericola, Bruno

    2013-01-01

    Markov chains are a fundamental class of stochastic processes. They are widely used to solve problems in a large number of domains such as operational research, computer science, communication networks and manufacturing systems. The success of Markov chains is mainly due to their simplicity of use, the large number of available theoretical results and the quality of algorithms developed for the numerical evaluation of many metrics of interest.The author presents the theory of both discrete-time and continuous-time homogeneous Markov chains. He carefully examines the explosion phenomenon, the

  18. Characterization results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes

    DEFF Research Database (Denmark)

    Häggström, Olle; Lieshout, Marie-Colette van; Møller, Jesper

    1999-01-01

    The area-interaction process and the continuum random-cluster model are characterized in terms of certain functional forms of their respective conditional intensities. In certain cases, these two point process models can be derived from a bivariate point process model which in many respects...... is simpler to analyse and simulate. Using this correspondence we devise a two-component Gibbs sampler, which can be used for fast and exact simulation by extending the recent ideas of Propp and Wilson. We further introduce a Swendsen-Wang type algorithm. The relevance of the results within spatial statistics...

  19. Partially Observable Markov Decision Process-Based Transmission Policy over Ka-Band Channels for Space Information Networks

    Directory of Open Access Journals (Sweden)

    Jian Jiao

    2017-09-01

    Full Text Available The Ka-band and higher Q/V band channels can provide an appealing capacity for the future deep-space communications and Space Information Networks (SIN, which are viewed as a primary solution to satisfy the increasing demands for high data rate services. However, Ka-band channel is much more sensitive to the weather conditions than the conventional communication channels. Moreover, due to the huge distance and long propagation delay in SINs, the transmitter can only obtain delayed Channel State Information (CSI from feedback. In this paper, the noise temperature of time-varying rain attenuation at Ka-band channels is modeled to a two-state Gilbert–Elliot channel, to capture the channel capacity that randomly ranging from good to bad state. An optimal transmission scheme based on Partially Observable Markov Decision Processes (POMDP is proposed, and the key thresholds for selecting the optimal transmission method in the SIN communications are derived. Simulation results show that our proposed scheme can effectively improve the throughput.

  20. A multi-level hierarchic Markov process with Bayesian updating for herd optimization and simulation in dairy cattle.

    Science.gov (United States)

    Demeter, R M; Kristensen, A R; Dijkstra, J; Oude Lansink, A G J M; Meuwissen, M P M; van Arendonk, J A M

    2011-12-01

    Herd optimization models that determine economically optimal insemination and replacement decisions are valuable research tools to study various aspects of farming systems. The aim of this study was to develop a herd optimization and simulation model for dairy cattle. The model determines economically optimal insemination and replacement decisions for individual cows and simulates whole-herd results that follow from optimal decisions. The optimization problem was formulated as a multi-level hierarchic Markov process, and a state space model with Bayesian updating was applied to model variation in milk yield. Methodological developments were incorporated in 2 main aspects. First, we introduced an additional level to the model hierarchy to obtain a more tractable and efficient structure. Second, we included a recently developed cattle feed intake model. In addition to methodological developments, new parameters were used in the state space model and other biological functions. Results were generated for Dutch farming conditions, and outcomes were in line with actual herd performance in the Netherlands. Optimal culling decisions were sensitive to variation in milk yield but insensitive to energy requirements for maintenance and feed intake capacity. We anticipate that the model will be applied in research and extension. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Generalized Markov branching models

    OpenAIRE

    Li, Junping

    2005-01-01

    In this thesis, we first considered a modified Markov branching process incorporating both state-independent immigration and resurrection. After establishing the criteria for regularity and uniqueness, explicit expressions for the extinction probability and mean extinction time are presented. The criteria for recurrence and ergodicity are also established. In addition, an explicit expression for the equilibrium distribution is presented.\\ud \\ud We then moved on to investigate the basic proper...

  2. Distinguishing Hidden Markov Chains

    OpenAIRE

    Kiefer, Stefan; Sistla, A. Prasad

    2015-01-01

    Hidden Markov Chains (HMCs) are commonly used mathematical models of probabilistic systems. They are employed in various fields such as speech recognition, signal processing, and biological sequence analysis. We consider the problem of distinguishing two given HMCs based on an observation sequence that one of the HMCs generates. More precisely, given two HMCs and an observation sequence, a distinguishing algorithm is expected to identify the HMC that generates the observation sequence. Two HM...

  3. Pemodelan Markov Switching Autoregressive

    OpenAIRE

    Ariyani, Fiqria Devi; Warsito, Budi; Yasin, Hasbi

    2014-01-01

    Transition from depreciation to appreciation of exchange rate is one of regime switching that ignored by classic time series model, such as ARIMA, ARCH, or GARCH. Therefore, economic variables are modeled by Markov Switching Autoregressive (MSAR) which consider the regime switching. MLE is not applicable to parameters estimation because regime is an unobservable variable. So that filtering and smoothing process are applied to see the regime probabilities of observation. Using this model, tran...

  4. Relative entropy and waiting time for continuous-time Markov processes

    NARCIS (Netherlands)

    Chazottes, J.R.; Giardinà, C.; Redig, F.H.J.

    2006-01-01

    For discrete-time stochastic processes, there is a close connection between return (resp. waiting) times and entropy (resp. relative entropy). Such a connection cannot be straightforwardly extended to the continuous-time setting. Contrarily to the discrete-time case one needs a reference measure on

  5. Distribution of chirality in the quantum walk: Markov process and entanglement

    International Nuclear Information System (INIS)

    Romanelli, Alejandro

    2010-01-01

    The asymptotic behavior of the quantum walk on the line is investigated, focusing on the probability distribution of chirality independently of position. It is shown analytically that this distribution has a longtime limit that is stationary and depends on the initial conditions. This result is unexpected in the context of the unitary evolution of the quantum walk as it is usually linked to a Markovian process. The asymptotic value of the entanglement between the coin and the position is determined by the chirality distribution. For given asymptotic values of both the entanglement and the chirality distribution, it is possible to find the corresponding initial conditions within a particular class of spatially extended Gaussian distributions.

  6. Research on the rolling moment in the symmetrical and asymmetrical rolling process

    Science.gov (United States)

    Alexa, V.; Raţiu, S. A.; Kiss, I.; Cioată, C. G.

    2017-01-01

    Research distribution the rolling moments symmetrical and asymmetrical report presents great importance both in theory and to introduce clarifications to the calculation of rolling resistance line assemblies. Clarifying individuals of metallic material deformation between the rolls single cylinder diameters act of any difference of work and analysis of advance and delay phenomena. Torque drive value for each of the rolling cylinders was done by reducing the thickness of the laminate samples, an experimental facility located in the laboratory of plastic deformation of the Faculty of Engineering Hunedoara. The analysis of research results show that in terms of power consumption for deformation and safety equipment in operation is rational for mills which require such a difference between the work rolls to execute about one cylinder operated.

  7. Symmetric textures

    International Nuclear Information System (INIS)

    Ramond, P.

    1993-01-01

    The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures

  8. Probabilistic parameter estimation of activated sludge processes using Markov Chain Monte Carlo.

    Science.gov (United States)

    Sharifi, Soroosh; Murthy, Sudhir; Takács, Imre; Massoudieh, Arash

    2014-03-01

    One of the most important challenges in making activated sludge models (ASMs) applicable to design problems is identifying the values of its many stoichiometric and kinetic parameters. When wastewater characteristics data from full-scale biological treatment systems are used for parameter estimation, several sources of uncertainty, including uncertainty in measured data, external forcing (e.g. influent characteristics), and model structural errors influence the value of the estimated parameters. This paper presents a Bayesian hierarchical modeling framework for the probabilistic estimation of activated sludge process parameters. The method provides the joint probability density functions (JPDFs) of stoichiometric and kinetic parameters by updating prior information regarding the parameters obtained from expert knowledge and literature. The method also provides the posterior correlations between the parameters, as well as a measure of sensitivity of the different constituents with respect to the parameters. This information can be used to design experiments to provide higher information content regarding certain parameters. The method is illustrated using the ASM1 model to describe synthetically generated data from a hypothetical biological treatment system. The results indicate that data from full-scale systems can narrow down the ranges of some parameters substantially whereas the amount of information they provide regarding other parameters is small, due to either large correlations between some of the parameters or a lack of sensitivity with respect to the parameters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The influence of Markov decision process structure on the possible strategic use of working memory and episodic memory.

    Directory of Open Access Journals (Sweden)

    Eric A Zilli

    2008-07-01

    Full Text Available Researchers use a variety of behavioral tasks to analyze the effect of biological manipulations on memory function. This research will benefit from a systematic mathematical method for analyzing memory demands in behavioral tasks. In the framework of reinforcement learning theory, these tasks can be mathematically described as partially-observable Markov decision processes. While a wealth of evidence collected over the past 15 years relates the basal ganglia to the reinforcement learning framework, only recently has much attention been paid to including psychological concepts such as working memory or episodic memory in these models. This paper presents an analysis that provides a quantitative description of memory states sufficient for correct choices at specific decision points. Using information from the mathematical structure of the task descriptions, we derive measures that indicate whether working memory (for one or more cues or episodic memory can provide strategically useful information to an agent. In particular, the analysis determines which observed states must be maintained in or retrieved from memory to perform these specific tasks. We demonstrate the analysis on three simplified tasks as well as eight more complex memory tasks drawn from the animal and human literature (two alternation tasks, two sequence disambiguation tasks, two non-matching tasks, the 2-back task, and the 1-2-AX task. The results of these analyses agree with results from quantitative simulations of the task reported in previous publications and provide simple indications of the memory demands of the tasks which can require far less computation than a full simulation of the task. This may provide a basis for a quantitative behavioral stoichiometry of memory tasks.

  10. The influence of Markov decision process structure on the possible strategic use of working memory and episodic memory.

    Science.gov (United States)

    Zilli, Eric A; Hasselmo, Michael E

    2008-07-23

    Researchers use a variety of behavioral tasks to analyze the effect of biological manipulations on memory function. This research will benefit from a systematic mathematical method for analyzing memory demands in behavioral tasks. In the framework of reinforcement learning theory, these tasks can be mathematically described as partially-observable Markov decision processes. While a wealth of evidence collected over the past 15 years relates the basal ganglia to the reinforcement learning framework, only recently has much attention been paid to including psychological concepts such as working memory or episodic memory in these models. This paper presents an analysis that provides a quantitative description of memory states sufficient for correct choices at specific decision points. Using information from the mathematical structure of the task descriptions, we derive measures that indicate whether working memory (for one or more cues) or episodic memory can provide strategically useful information to an agent. In particular, the analysis determines which observed states must be maintained in or retrieved from memory to perform these specific tasks. We demonstrate the analysis on three simplified tasks as well as eight more complex memory tasks drawn from the animal and human literature (two alternation tasks, two sequence disambiguation tasks, two non-matching tasks, the 2-back task, and the 1-2-AX task). The results of these analyses agree with results from quantitative simulations of the task reported in previous publications and provide simple indications of the memory demands of the tasks which can require far less computation than a full simulation of the task. This may provide a basis for a quantitative behavioral stoichiometry of memory tasks.

  11. Evaluation of linearly solvable Markov decision process with dynamic model learning in a mobile robot navigation task

    Directory of Open Access Journals (Sweden)

    Ken eKinjo

    2013-04-01

    Full Text Available Linearly solvable Markov Decision Process (LMDP is a class of optimal control problem in whichthe Bellman’s equation can be converted into a linear equation by an exponential transformation ofthe state value function (Todorov, 2009. In an LMDP, the optimal value function and the correspondingcontrol policy are obtained by solving an eigenvalue problem in a discrete state space or an eigenfunctionproblem in a continuous state using the knowledge of the system dynamics and the action, state, andterminal cost functions.In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in whichthe dynamics of the body and the environment have to be learned from experience. We first perform asimulation study of a pole swing-up task to evaluate the effect of the accuracy of the learned dynam-ics model on the derived the action policy. The result shows that a crude linear approximation of thenonlinear dynamics can still allow solution of the task, despite with a higher total cost.We then perform real robot experiments of a battery-catching task using our Spring Dog mobile robotplatform. The state is given by the position and the size of a battery in its camera view and two neck jointangles. The action is the velocities of two wheels, while the neck joints were controlled by a visual servocontroller. We test linear and bilinear dynamic models in tasks with quadratic and Guassian state costfunctions. In the quadratic cost task, the LMDP controller derived from a learned linear dynamics modelperformed equivalently with the optimal linear quadratic controller (LQR. In the non-quadratic task, theLMDP controller with a linear dynamics model showed the best performance. The results demonstratethe usefulness of the LMDP framework in real robot control even when simple linear models are usedfor dynamics learning.

  12. Evaluation of linearly solvable Markov decision process with dynamic model learning in a mobile robot navigation task.

    Science.gov (United States)

    Kinjo, Ken; Uchibe, Eiji; Doya, Kenji

    2013-01-01

    Linearly solvable Markov Decision Process (LMDP) is a class of optimal control problem in which the Bellman's equation can be converted into a linear equation by an exponential transformation of the state value function (Todorov, 2009b). In an LMDP, the optimal value function and the corresponding control policy are obtained by solving an eigenvalue problem in a discrete state space or an eigenfunction problem in a continuous state using the knowledge of the system dynamics and the action, state, and terminal cost functions. In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in which the dynamics of the body and the environment have to be learned from experience. We first perform a simulation study of a pole swing-up task to evaluate the effect of the accuracy of the learned dynamics model on the derived the action policy. The result shows that a crude linear approximation of the non-linear dynamics can still allow solution of the task, despite with a higher total cost. We then perform real robot experiments of a battery-catching task using our Spring Dog mobile robot platform. The state is given by the position and the size of a battery in its camera view and two neck joint angles. The action is the velocities of two wheels, while the neck joints were controlled by a visual servo controller. We test linear and bilinear dynamic models in tasks with quadratic and Guassian state cost functions. In the quadratic cost task, the LMDP controller derived from a learned linear dynamics model performed equivalently with the optimal linear quadratic regulator (LQR). In the non-quadratic task, the LMDP controller with a linear dynamics model showed the best performance. The results demonstrate the usefulness of the LMDP framework in real robot control even when simple linear models are used for dynamics learning.

  13. Approximate quantum Markov chains

    CERN Document Server

    Sutter, David

    2018-01-01

    This book is an introduction to quantum Markov chains and explains how this concept is connected to the question of how well a lost quantum mechanical system can be recovered from a correlated subsystem. To achieve this goal, we strengthen the data-processing inequality such that it reveals a statement about the reconstruction of lost information. The main difficulty in order to understand the behavior of quantum Markov chains arises from the fact that quantum mechanical operators do not commute in general. As a result we start by explaining two techniques of how to deal with non-commuting matrices: the spectral pinching method and complex interpolation theory. Once the reader is familiar with these techniques a novel inequality is presented that extends the celebrated Golden-Thompson inequality to arbitrarily many matrices. This inequality is the key ingredient in understanding approximate quantum Markov chains and it answers a question from matrix analysis that was open since 1973, i.e., if Lieb's triple ma...

  14. Modeling Dyadic Processes Using Hidden Markov Models: A Time Series Approach to Mother-Infant Interactions during Infant Immunization

    Science.gov (United States)

    Stifter, Cynthia A.; Rovine, Michael

    2015-01-01

    The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at 2 and 6?months of age, used hidden Markov modelling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a…

  15. Spectral methods for quantum Markov chains

    Energy Technology Data Exchange (ETDEWEB)

    Szehr, Oleg

    2014-05-08

    The aim of this project is to contribute to our understanding of quantum time evolutions, whereby we focus on quantum Markov chains. The latter constitute a natural generalization of the ubiquitous concept of a classical Markov chain to describe evolutions of quantum mechanical systems. We contribute to the theory of such processes by introducing novel methods that allow us to relate the eigenvalue spectrum of the transition map to convergence as well as stability properties of the Markov chain.

  16. Spectral methods for quantum Markov chains

    International Nuclear Information System (INIS)

    Szehr, Oleg

    2014-01-01

    The aim of this project is to contribute to our understanding of quantum time evolutions, whereby we focus on quantum Markov chains. The latter constitute a natural generalization of the ubiquitous concept of a classical Markov chain to describe evolutions of quantum mechanical systems. We contribute to the theory of such processes by introducing novel methods that allow us to relate the eigenvalue spectrum of the transition map to convergence as well as stability properties of the Markov chain.

  17. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo.

    Science.gov (United States)

    Kapli, P; Lutteropp, S; Zhang, J; Kobert, K; Pavlidis, P; Stamatakis, A; Flouri, T

    2017-06-01

    In recent years, molecular species delimitation has become a routine approach for quantifying and classifying biodiversity. Barcoding methods are of particular importance in large-scale surveys as they promote fast species discovery and biodiversity estimates. Among those, distance-based methods are the most common choice as they scale well with large datasets; however, they are sensitive to similarity threshold parameters and they ignore evolutionary relationships. The recently introduced "Poisson Tree Processes" (PTP) method is a phylogeny-aware approach that does not rely on such thresholds. Yet, two weaknesses of PTP impact its accuracy and practicality when applied to large datasets; it does not account for divergent intraspecific variation and is slow for a large number of sequences. We introduce the multi-rate PTP (mPTP), an improved method that alleviates the theoretical and technical shortcomings of PTP. It incorporates different levels of intraspecific genetic diversity deriving from differences in either the evolutionary history or sampling of each species. Results on empirical data suggest that mPTP is superior to PTP and popular distance-based methods as it, consistently yields more accurate delimitations with respect to the taxonomy (i.e., identifies more taxonomic species, infers species numbers closer to the taxonomy). Moreover, mPTP does not require any similarity threshold as input. The novel dynamic programming algorithm attains a speedup of at least five orders of magnitude compared to PTP, allowing it to delimit species in large (meta-) barcoding data. In addition, Markov Chain Monte Carlo sampling provides a comprehensive evaluation of the inferred delimitation in just a few seconds for millions of steps, independently of tree size. mPTP is implemented in C and is available for download at http://github.com/Pas-Kapli/mptp under the GNU Affero 3 license. A web-service is available at http://mptp.h-its.org . : paschalia.kapli@h-its.org or

  18. On using continuoas Markov processes for unit service life evaluation taking as an example the RBMK-1000 gate-regulating valve

    International Nuclear Information System (INIS)

    Klemin, A.I.; Emel'yanov, V.S.; Rabchun, A.V.

    1984-01-01

    A technique is sugfested for estimating service life indices of equipment based on describing the process of the equipment ageing by continuous Markov diffusion process. It is noted that a number of problems on estimating durability indices of products is reduced to problems of estimating characteristics of the time of the first attainment of the preset boundary (boundaries) by a random process describing the ageing of a product. The methods of statistic estimation of the drift and diffusion coefficient in the continuous Markov diffusion process are considered formulae for their point and interval estimates are presented. A special description is given for a case of a stationary process and determining in this case mathematical expectation and dispersion of the time of the first attainment of a boundary (boundaries). The method of numerical simulation of the diffusion process with constant drift and diffusion coefficients is also described; results obtained on the basis of such a simulation are discussed. An example of using the suggested technique for quantitative estimate of the service life for the RBMK-1000 gate-regulating value is given

  19. Symmetric Atom–Atom and Ion–Atom Processes in Stellar Atmospheres

    Directory of Open Access Journals (Sweden)

    Vladimir A. Srećković

    2017-12-01

    Full Text Available We present the results of the influence of two groups of collisional processes (atom–atom and ion–atom on the optical and kinetic properties of weakly ionized stellar atmospheres layers. The first type includes radiative processes of the photodissociation/association and radiative charge exchange, the second one the chemi-ionisation/recombination processes with participation of only hydrogen and helium atoms and ions. The quantitative estimation of the rate coefficients of the mentioned processes were made. The effect of the radiative processes is estimated by comparing their intensities with those of the known concurrent processes in application to the solar photosphere and to the photospheres of DB white dwarfs. The investigated chemi-ionisation/recombination processes are considered from the viewpoint of their influence on the populations of the excited states of the hydrogen atom (the Sun and an M-type red dwarf and helium atom (DB white dwarfs. The effect of these processes on the populations of the excited states of the hydrogen atom has been studied using the general stellar atmosphere code, which generates the model. The presented results demonstrate the undoubted influence of the considered radiative and chemi- ionisation/recombination processes on the optical properties and on the kinetics of the weakly ionized layers in stellar atmospheres.

  20. Markov stochasticity coordinates

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2017-01-01

    Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.

  1. Decisive Markov Chains

    OpenAIRE

    Abdulla, Parosh Aziz; Henda, Noomene Ben; Mayr, Richard

    2007-01-01

    We consider qualitative and quantitative verification problems for infinite-state Markov chains. We call a Markov chain decisive w.r.t. a given set of target states F if it almost certainly eventually reaches either F or a state from which F can no longer be reached. While all finite Markov chains are trivially decisive (for every set F), this also holds for many classes of infinite Markov chains. Infinite Markov chains which contain a finite attractor are decisive w.r.t. every set F. In part...

  2. Markov stochasticity coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo, E-mail: iddo.eliazar@intel.com

    2017-01-15

    Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.

  3. Determinação da capacidade real necessária de um processo produtivo utilizando cadeia de Markov Determination of necessary real capacity in productive process using Markov chain

    Directory of Open Access Journals (Sweden)

    Francielly Hedler Staudt

    2011-01-01

    Full Text Available Todas as empresas em desenvolvimento passam pelo momento de decidir se há ou não necessidade de realizar novos investimentos para suprir uma demanda crescente. Para tomar tal decisão é imprescindível conhecer se o processo atual tem capacidade de produzir a nova demanda. Porém, são raras as empresas que têm a percepção de que os refugos e retrabalhos também consomem recursos da produção e, portanto, devem ser considerados no cálculo da capacidade produtiva. A proposta deste trabalho consiste em incluir esses fatores na análise de capacidade da fábrica, utilizando uma matriz de transição estocástica da cadeia absorvente de Markov como ferramenta para obtenção do fator de capacidade. Este fator, aliado ao índice de eficiência e a demanda desejada ao fim do processo, resulta na capacidade real necessária. Um estudo de caso exemplifica a metodologia, apresentando resultados que permitem o cálculo do índice de ocupação real de cada centro produtivo. O cálculo desse índice demonstrou que alguns centros de trabalho necessitam de análises sobre investimentos em capacitação, pois ultrapassaram 90% de ocupação.All developing companies must decide once in a while whether it is required to perform new investments to handle a growing demand. In order to make this decision, it is essential to know whether the current productive capacity is able to supply the new demand. However, just few companies realize that refuse and rework use production resources, which must be taken into account in the productive capacity calculation. The aim of this work was to include these factors in factory capacity analysis, using Markov chain stochastic transition matrix as a tool to obtain the capacity factor. This factor - used together with the efficiency index and the required demand in the end of the process - results in the necessary real capacity. A case study exemplifies the proposed methodology, presenting results that allow for the

  4. Quantum Markov Chain Mixing and Dissipative Engineering

    DEFF Research Database (Denmark)

    Kastoryano, Michael James

    2012-01-01

    This thesis is the fruit of investigations on the extension of ideas of Markov chain mixing to the quantum setting, and its application to problems of dissipative engineering. A Markov chain describes a statistical process where the probability of future events depends only on the state...... of the system at the present point in time, but not on the history of events. Very many important processes in nature are of this type, therefore a good understanding of their behaviour has turned out to be very fruitful for science. Markov chains always have a non-empty set of limiting distributions...... (stationary states). The aim of Markov chain mixing is to obtain (upper and/or lower) bounds on the number of steps it takes for the Markov chain to reach a stationary state. The natural quantum extensions of these notions are density matrices and quantum channels. We set out to develop a general mathematical...

  5. A Markov chain approach to modelling charge exchange processes of an ion beam in monotonically increasing or decreasing potentials

    International Nuclear Information System (INIS)

    Shrier, O; Khachan, J; Bosi, S

    2006-01-01

    A Markov chain method is presented as an alternative approach to Monte Carlo simulations of charge exchange collisions by an energetic hydrogen ion beam with a cold background hydrogen gas. This method was used to determine the average energy of the resulting energetic neutrals along the path of the beam. A comparison with Monte Carlo modelling showed a good agreement but with the advantage that it required much less computing time and produced no numerical noise. In particular, the Markov chain method works well for monotonically increasing or decreasing electrostatic potentials. Finally, a good agreement is obtained with experimental results from Doppler shift spectroscopy on energetic beams from a hollow cathode discharge. In particular, the average energy of ions that undergo charge exchange reaches a plateau that can be well below the full energy that might be expected from the applied voltage bias, depending on the background gas pressure. For example, pressures of ∼20 mTorr limit the ion energy to ∼20% of the applied voltage

  6. Multiparty symmetric sum types

    DEFF Research Database (Denmark)

    Nielsen, Lasse; Yoshida, Nobuko; Honda, Kohei

    2010-01-01

    This paper introduces a new theory of multiparty session types based on symmetric sum types, by which we can type non-deterministic orchestration choice behaviours. While the original branching type in session types can represent a choice made by a single participant and accepted by others...... determining how the session proceeds, the symmetric sum type represents a choice made by agreement among all the participants of a session. Such behaviour can be found in many practical systems, including collaborative workflow in healthcare systems for clinical practice guidelines (CPGs). Processes...... with the symmetric sums can be embedded into the original branching types using conductor processes. We show that this type-driven embedding preserves typability, satisfies semantic soundness and completeness, and meets the encodability criteria adapted to the typed setting. The theory leads to an efficient...

  7. The algebra of the general Markov model on phylogenetic trees and networks.

    Science.gov (United States)

    Sumner, J G; Holland, B R; Jarvis, P D

    2012-04-01

    It is known that the Kimura 3ST model of sequence evolution on phylogenetic trees can be extended quite naturally to arbitrary split systems. However, this extension relies heavily on mathematical peculiarities of the associated Hadamard transformation, and providing an analogous augmentation of the general Markov model has thus far been elusive. In this paper, we rectify this shortcoming by showing how to extend the general Markov model on trees to include incompatible edges; and even further to more general network models. This is achieved by exploring the algebra of the generators of the continuous-time Markov chain together with the “splitting” operator that generates the branching process on phylogenetic trees. For simplicity, we proceed by discussing the two state case and then show that our results are easily extended to more states with little complication. Intriguingly, upon restriction of the two state general Markov model to the parameter space of the binary symmetric model, our extension is indistinguishable from the Hadamard approach only on trees; as soon as any incompatible splits are introduced the two approaches give rise to differing probability distributions with disparate structure. Through exploration of a simple example, we give an argument that our extension to more general networks has desirable properties that the previous approaches do not share. In particular, our construction allows for convergent evolution of previously divergent lineages; a property that is of significant interest for biological applications.

  8. Confluence reduction for Markov automata (extended version)

    NARCIS (Netherlands)

    Timmer, Mark; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette

    Markov automata are a novel formalism for specifying systems exhibiting nondeterminism, probabilistic choices and Markovian rates. Recently, the process algebra MAPA was introduced to efficiently model such systems. As always, the state space explosion threatens the analysability of the models

  9. Fields From Markov Chains

    DEFF Research Database (Denmark)

    Justesen, Jørn

    2005-01-01

    A simple construction of two-dimensional (2-D) fields is presented. Rows and columns are outcomes of the same Markov chain. The entropy can be calculated explicitly.......A simple construction of two-dimensional (2-D) fields is presented. Rows and columns are outcomes of the same Markov chain. The entropy can be calculated explicitly....

  10. Semi-Markov Arnason-Schwarz models.

    Science.gov (United States)

    King, Ruth; Langrock, Roland

    2016-06-01

    We consider multi-state capture-recapture-recovery data where observed individuals are recorded in a set of possible discrete states. Traditionally, the Arnason-Schwarz model has been fitted to such data where the state process is modeled as a first-order Markov chain, though second-order models have also been proposed and fitted to data. However, low-order Markov models may not accurately represent the underlying biology. For example, specifying a (time-independent) first-order Markov process involves the assumption that the dwell time in each state (i.e., the duration of a stay in a given state) has a geometric distribution, and hence that the modal dwell time is one. Specifying time-dependent or higher-order processes provides additional flexibility, but at the expense of a potentially significant number of additional model parameters. We extend the Arnason-Schwarz model by specifying a semi-Markov model for the state process, where the dwell-time distribution is specified more generally, using, for example, a shifted Poisson or negative binomial distribution. A state expansion technique is applied in order to represent the resulting semi-Markov Arnason-Schwarz model in terms of a simpler and computationally tractable hidden Markov model. Semi-Markov Arnason-Schwarz models come with only a very modest increase in the number of parameters, yet permit a significantly more flexible state process. Model selection can be performed using standard procedures, and in particular via the use of information criteria. The semi-Markov approach allows for important biological inference to be drawn on the underlying state process, for example, on the times spent in the different states. The feasibility of the approach is demonstrated in a simulation study, before being applied to real data corresponding to house finches where the states correspond to the presence or absence of conjunctivitis. © 2015, The International Biometric Society.

  11. Probability distributions for Markov chain based quantum walks

    Science.gov (United States)

    Balu, Radhakrishnan; Liu, Chaobin; Venegas-Andraca, Salvador E.

    2018-01-01

    We analyze the probability distributions of the quantum walks induced from Markov chains by Szegedy (2004). The first part of this paper is devoted to the quantum walks induced from finite state Markov chains. It is shown that the probability distribution on the states of the underlying Markov chain is always convergent in the Cesaro sense. In particular, we deduce that the limiting distribution is uniform if the transition matrix is symmetric. In the case of a non-symmetric Markov chain, we exemplify that the limiting distribution of the quantum walk is not necessarily identical with the stationary distribution of the underlying irreducible Markov chain. The Szegedy scheme can be extended to infinite state Markov chains (random walks). In the second part, we formulate the quantum walk induced from a lazy random walk on the line. We then obtain the weak limit of the quantum walk. It is noted that the current quantum walk appears to spread faster than its counterpart-quantum walk on the line driven by the Grover coin discussed in literature. The paper closes with an outlook on possible future directions.

  12. Irreducible complexity of iterated symmetric bimodal maps

    Directory of Open Access Journals (Sweden)

    J. P. Lampreia

    2005-01-01

    Full Text Available We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.

  13. Quantum Enhanced Inference in Markov Logic Networks.

    Science.gov (United States)

    Wittek, Peter; Gogolin, Christian

    2017-04-19

    Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.

  14. Quantum Enhanced Inference in Markov Logic Networks

    Science.gov (United States)

    Wittek, Peter; Gogolin, Christian

    2017-04-01

    Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.

  15. Stencil method: a Markov model for transport in porous media

    Science.gov (United States)

    Delgoshaie, A. H.; Tchelepi, H.; Jenny, P.

    2016-12-01

    In porous media the transport of fluid is dominated by flow-field heterogeneity resulting from the underlying transmissibility field. Since the transmissibility is highly uncertain, many realizations of a geological model are used to describe the statistics of the transport phenomena in a Monte Carlo framework. One possible way to avoid the high computational cost of physics-based Monte Carlo simulations is to model the velocity field as a Markov process and use Markov Chain Monte Carlo. In previous works multiple Markov models for discrete velocity processes have been proposed. These models can be divided into two general classes of Markov models in time and Markov models in space. Both of these choices have been shown to be effective to some extent. However some studies have suggested that the Markov property cannot be confirmed for a temporal Markov process; Therefore there is not a consensus about the validity and value of Markov models in time. Moreover, previous spacial Markov models have only been used for modeling transport on structured networks and can not be readily applied to model transport in unstructured networks. In this work we propose a novel approach for constructing a Markov model in time (stencil method) for a discrete velocity process. The results form the stencil method are compared to previously proposed spacial Markov models for structured networks. The stencil method is also applied to unstructured networks and can successfully describe the dispersion of particles in this setting. Our conclusion is that both temporal Markov models and spacial Markov models for discrete velocity processes can be valid for a range of model parameters. Moreover, we show that the stencil model can be more efficient in many practical settings and is suited to model dispersion both on structured and unstructured networks.

  16. Observation uncertainty in reversible Markov chains.

    Science.gov (United States)

    Metzner, Philipp; Weber, Marcus; Schütte, Christof

    2010-09-01

    In many applications one is interested in finding a simplified model which captures the essential dynamical behavior of a real life process. If the essential dynamics can be assumed to be (approximately) memoryless then a reasonable choice for a model is a Markov model whose parameters are estimated by means of Bayesian inference from an observed time series. We propose an efficient Monte Carlo Markov chain framework to assess the uncertainty of the Markov model and related observables. The derived Gibbs sampler allows for sampling distributions of transition matrices subject to reversibility and/or sparsity constraints. The performance of the suggested sampling scheme is demonstrated and discussed for a variety of model examples. The uncertainty analysis of functions of the Markov model under investigation is discussed in application to the identification of conformations of the trialanine molecule via Robust Perron Cluster Analysis (PCCA+) .

  17. Markov chains and mixing times

    CERN Document Server

    Levin, David A

    2017-01-01

    Markov Chains and Mixing Times is a magical book, managing to be both friendly and deep. It gently introduces probabilistic techniques so that an outsider can follow. At the same time, it is the first book covering the geometric theory of Markov chains and has much that will be new to experts. It is certainly THE book that I will use to teach from. I recommend it to all comers, an amazing achievement. -Persi Diaconis, Mary V. Sunseri Professor of Statistics and Mathematics, Stanford University Mixing times are an active research topic within many fields from statistical physics to the theory of algorithms, as well as having intrinsic interest within mathematical probability and exploiting discrete analogs of important geometry concepts. The first edition became an instant classic, being accessible to advanced undergraduates and yet bringing readers close to current research frontiers. This second edition adds chapters on monotone chains, the exclusion process and hitting time parameters. Having both exercises...

  18. Symmetric waterbomb origami.

    Science.gov (United States)

    Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong

    2016-06-01

    The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.

  19. Consistent Estimation of Partition Markov Models

    Directory of Open Access Journals (Sweden)

    Jesús E. García

    2017-04-01

    Full Text Available The Partition Markov Model characterizes the process by a partition L of the state space, where the elements in each part of L share the same transition probability to an arbitrary element in the alphabet. This model aims to answer the following questions: what is the minimal number of parameters needed to specify a Markov chain and how to estimate these parameters. In order to answer these questions, we build a consistent strategy for model selection which consist of: giving a size n realization of the process, finding a model within the Partition Markov class, with a minimal number of parts to represent the process law. From the strategy, we derive a measure that establishes a metric in the state space. In addition, we show that if the law of the process is Markovian, then, eventually, when n goes to infinity, L will be retrieved. We show an application to model internet navigation patterns.

  20. Absorbing Markov Chain Models to Determine Optimum Process Target Levels in Production Systems with Dual Correlated Quality Characteristics

    Directory of Open Access Journals (Sweden)

    Mohammad Saber Fallah Nezhad

    2012-03-01

    Full Text Available For a manufacturing organization to compete effectively in the global marketplace, cutting costs and improving overall efficiency is essential.  A single-stage production system with two independent quality characteristics and different costs associated with each quality characteristic that falls below a lower specification limit (scrap or above an upper specification limit (rework is presented in this paper. The amount of reworks and scraps are assumed to be depending on the process parameters such as process mean and standard deviation thus the expected total profit is significantly dependent on the process parameters. This paper develops a Markovian decision making model for determining the process means. Sensitivity analyzes is performed to validate, and a numerical example is given to illustrate the proposed model. The results showed that the optimal process means extremely effects on the quality characteristics’ parameters.

  1. Markov Random Fields on Triangle Meshes

    DEFF Research Database (Denmark)

    Andersen, Vedrana; Aanæs, Henrik; Bærentzen, Jakob Andreas

    2010-01-01

    In this paper we propose a novel anisotropic smoothing scheme based on Markov Random Fields (MRF). Our scheme is formulated as two coupled processes. A vertex process is used to smooth the mesh by displacing the vertices according to a MRF smoothness prior, while an independent edge process label...

  2. Asymptotics for Estimating Equations in Hidden Markov Models

    DEFF Research Database (Denmark)

    Hansen, Jørgen Vinsløv; Jensen, Jens Ledet

    Results on asymptotic normality for the maximum likelihood estimate in hidden Markov models are extended in two directions. The stationarity assumption is relaxed, which allows for a covariate process influencing the hidden Markov process. Furthermore a class of estimating equations is considered...

  3. Portfolio allocation under the vendor managed inventory: A Markov ...

    African Journals Online (AJOL)

    Portfolio allocation under the vendor managed inventory: A Markov decision process. ... Journal of Applied Sciences and Environmental Management ... This study provides a review of Markov decision processes and investigates its suitability for solutions to portfolio allocation problems under vendor managed inventory in ...

  4. Logics and Models for Stochastic Analysis Beyond Markov Chains

    DEFF Research Database (Denmark)

    Zeng, Kebin

    , because of the generality of ME distributions, we have to leave the world of Markov chains. To support ME distributions with multiple exits, we introduce a multi-exits ME distribution together with a process algebra MEME to express the systems having the semantics as Markov renewal processes with ME...

  5. On the degree distribution of horizontal visibility graphs associated with Markov processes and dynamical systems: diagrammatic and variational approaches

    International Nuclear Information System (INIS)

    Lacasa, Lucas

    2014-01-01

    Dynamical processes can be transformed into graphs through a family of mappings called visibility algorithms, enabling the possibility of (i) making empirical time series analysis and signal processing and (ii) characterizing classes of dynamical systems and stochastic processes using the tools of graph theory. Recent works show that the degree distribution of these graphs encapsulates much information on the signals' variability, and therefore constitutes a fundamental feature for statistical learning purposes. However, exact solutions for the degree distributions are only known in a few cases, such as for uncorrelated random processes. Here we analytically explore these distributions in a list of situations. We present a diagrammatic formalism which computes for all degrees their corresponding probability as a series expansion in a coupling constant which is the number of hidden variables. We offer a constructive solution for general Markovian stochastic processes and deterministic maps. As case tests we focus on Ornstein–Uhlenbeck processes, fully chaotic and quasiperiodic maps. Whereas only for certain degree probabilities can all diagrams be summed exactly, in the general case we show that the perturbation theory converges. In a second part, we make use of a variational technique to predict the complete degree distribution for special classes of Markovian dynamics with fast-decaying correlations. In every case we compare the theory with numerical experiments. (paper)

  6. Markov set-chains

    CERN Document Server

    Hartfiel, Darald J

    1998-01-01

    In this study extending classical Markov chain theory to handle fluctuating transition matrices, the author develops a theory of Markov set-chains and provides numerous examples showing how that theory can be applied. Chapters are concluded with a discussion of related research. Readers who can benefit from this monograph are those interested in, or involved with, systems whose data is imprecise or that fluctuate with time. A background equivalent to a course in linear algebra and one in probability theory should be sufficient.

  7. Context Tree Estimation in Variable Length Hidden Markov Models

    OpenAIRE

    Dumont, Thierry

    2011-01-01

    We address the issue of context tree estimation in variable length hidden Markov models. We propose an estimator of the context tree of the hidden Markov process which needs no prior upper bound on the depth of the context tree. We prove that the estimator is strongly consistent. This uses information-theoretic mixture inequalities in the spirit of Finesso and Lorenzo(Consistent estimation of the order for Markov and hidden Markov chains(1990)) and E.Gassiat and S.Boucheron (Optimal error exp...

  8. Causal symmetric spaces

    CERN Document Server

    Olafsson, Gestur; Helgason, Sigurdur

    1996-01-01

    This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces

  9. Confluence reduction for Markov automata

    NARCIS (Netherlands)

    Timmer, Mark; Katoen, Joost P.; van de Pol, Jaco; Stoelinga, Mariëlle Ida Antoinette

    2016-01-01

    Markov automata are a novel formalism for specifying systems exhibiting nondeterminism, probabilistic choices and Markovian rates. As expected, the state space explosion threatens the analysability of these models. We therefore introduce confluence reduction for Markov automata, a powerful reduction

  10. Study on the Evolution of Weights on the Market of Competitive Products using Markov Chains

    Directory of Open Access Journals (Sweden)

    Daniel Mihai Amariei

    2016-10-01

    Full Text Available In this paper aims the application through the Markov Process mode, within the software product WinQSB, Markov chain in the establishment of the development on the market of five brands of athletic shoes.

  11. Improving the capability of an integrated CA-Markov model to simulate spatio-temporal urban growth trends using an Analytical Hierarchy Process and Frequency Ratio

    Science.gov (United States)

    Aburas, Maher Milad; Ho, Yuek Ming; Ramli, Mohammad Firuz; Ash'aari, Zulfa Hanan

    2017-07-01

    The creation of an accurate simulation of future urban growth is considered one of the most important challenges in urban studies that involve spatial modeling. The purpose of this study is to improve the simulation capability of an integrated CA-Markov Chain (CA-MC) model using CA-MC based on the Analytical Hierarchy Process (AHP) and CA-MC based on Frequency Ratio (FR), both applied in Seremban, Malaysia, as well as to compare the performance and accuracy between the traditional and hybrid models. Various physical, socio-economic, utilities, and environmental criteria were used as predictors, including elevation, slope, soil texture, population density, distance to commercial area, distance to educational area, distance to residential area, distance to industrial area, distance to roads, distance to highway, distance to railway, distance to power line, distance to stream, and land cover. For calibration, three models were applied to simulate urban growth trends in 2010; the actual data of 2010 were used for model validation utilizing the Relative Operating Characteristic (ROC) and Kappa coefficient methods Consequently, future urban growth maps of 2020 and 2030 were created. The validation findings confirm that the integration of the CA-MC model with the FR model and employing the significant driving force of urban growth in the simulation process have resulted in the improved simulation capability of the CA-MC model. This study has provided a novel approach for improving the CA-MC model based on FR, which will provide powerful support to planners and decision-makers in the development of future sustainable urban planning.

  12. Markov Chain Monte Carlo

    Indian Academy of Sciences (India)

    be obtained as a limiting value of a sample path of a suitable ... makes a mathematical model of chance and deals with the problem by .... Is the Markov chain aperiodic? It is! Here is how you can see it. Suppose that after you do the cut, you hold the top half in your right hand, and the bottom half in your left. Then there.

  13. Perturbed Markov chains

    OpenAIRE

    Solan, Eilon; Vieille, Nicolas

    2015-01-01

    We study irreducible time-homogenous Markov chains with finite state space in discrete time. We obtain results on the sensitivity of the stationary distribution and other statistical quantities with respect to perturbations of the transition matrix. We define a new closeness relation between transition matrices, and use graph-theoretic techniques, in contrast with the matrix analysis techniques previously used.

  14. Markov Chain Monte Carlo

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Markov Chain Monte Carlo - Examples. Arnab Chakraborty. General Article Volume 7 Issue 3 March 2002 pp 25-34. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/03/0025-0034. Keywords.

  15. Partially Hidden Markov Models

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Rissanen, Jorma

    1996-01-01

    Partially Hidden Markov Models (PHMM) are introduced. They differ from the ordinary HMM's in that both the transition probabilities of the hidden states and the output probabilities are conditioned on past observations. As an illustration they are applied to black and white image compression where...

  16. Markov chain of distances between parked cars

    International Nuclear Information System (INIS)

    Seba, Petr

    2008-01-01

    We describe the distribution of distances between parked cars as a solution of certain Markov processes and show that its solution is obtained with the help of a distributional fixed point equation. Under certain conditions the process is solved explicitly. The resulting probability density is compared with the actual parking data measured in the city. (fast track communication)

  17. Markov and mixed models with applications

    DEFF Research Database (Denmark)

    Mortensen, Stig Bousgaard

    This thesis deals with mathematical and statistical models with focus on applications in pharmacokinetic and pharmacodynamic (PK/PD) modelling. These models are today an important aspect of the drug development in the pharmaceutical industry and continued research in statistical methodology within...... or uncontrollable factors in an individual. Modelling using SDEs also provides new tools for estimation of unknown inputs to a system and is illustrated with an application to estimation of insulin secretion rates in diabetic patients. Models for the eect of a drug is a broader area since drugs may affect...... for non-parametric estimation of Markov processes are proposed to give a detailed description of the sleep process during the night. Statistically the Markov models considered for sleep states are closely related to the PK models based on SDEs as both models share the Markov property. When the models...

  18. Recursive smoothers for hidden discrete-time Markov chains

    Directory of Open Access Journals (Sweden)

    Lakhdar Aggoun

    2005-01-01

    Full Text Available We consider a discrete-time Markov chain observed through another Markov chain. The proposed model extends models discussed by Elliott et al. (1995. We propose improved recursive formulae to update smoothed estimates of processes related to the model. These recursive estimates are used to update the parameter of the model via the expectation maximization (EM algorithm.

  19. A Markov decision model for optimising economic production lot size ...

    African Journals Online (AJOL)

    Adopting such a Markov decision process approach, the states of a Markov chain represent possible states of demand. The decision of whether or not to produce additional inventory units is made using dynamic programming. This approach demonstrates the existence of an optimal state-dependent EPL size, and produces ...

  20. Facade Layout Symmetrization

    KAUST Repository

    Jiang, Haiyong

    2016-04-11

    We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.

  1. Symmetrization of Facade Layouts

    KAUST Repository

    Jiang, Haiyong; Yan, Dong-Ming; Dong, Weiming; Wu, Fuzhang; Nan, Liangliang; Zhang, Xiaopeng

    2016-01-01

    We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.

  2. Facade Layout Symmetrization

    KAUST Repository

    Jiang, Haiyong; Dong, Weiming; Yan, Dongming; Zhang, Xiaopeng

    2016-01-01

    We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.

  3. Symmetrization of Facade Layouts

    KAUST Repository

    Jiang, Haiyong

    2016-02-26

    We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.

  4. Closed Form Aliasing Probability For Q-ary Symmetric Errors

    Directory of Open Access Journals (Sweden)

    Geetani Edirisooriya

    1996-01-01

    Full Text Available In Built-In Self-Test (BIST techniques, test data reduction can be achieved using Linear Feedback Shift Registers (LFSRs. A faulty circuit may escape detection due to loss of information inherent to data compaction schemes. This is referred to as aliasing. The probability of aliasing in Multiple-Input Shift-Registers (MISRs has been studied under various bit error models. By modeling the signature analyzer as a Markov process we show that the closed form expression derived for aliasing probability previously, for MISRs with primitive polynomials under q-ary symmetric error model holds for all MISRs irrespective of their feedback polynomials and for group cellular automata signature analyzers as well. If the erroneous behaviour of a circuit can be modelled with q-ary symmetric errors, then the test circuit complexity and propagation delay associated with the signature analyzer can be minimized by using a set of m single bit LFSRs without increasing the probability of aliasing.

  5. Markov bridges, bisection and variance reduction

    DEFF Research Database (Denmark)

    Asmussen, Søren; Hobolth, Asger

    . In this paper we firstly consider the problem of generating sample paths from a continuous-time Markov chain conditioned on the endpoints using a new algorithm based on the idea of bisection. Secondly we study the potential of the bisection algorithm for variance reduction. In particular, examples are presented......Time-continuous Markov jump processes is a popular modelling tool in disciplines ranging from computational finance and operations research to human genetics and genomics. The data is often sampled at discrete points in time, and it can be useful to simulate sample paths between the datapoints...

  6. Equivalent Markov-Renewal Processes.

    Science.gov (United States)

    1979-12-01

    a Fa P(X0 - JON Joml(t I’Q m-lim (tm 0 J 0 A0 jA rm A- Let td be the semi algebra of sets of the form (X0 cA 0 ,-*.,Xnc An, T1 < t l,..*,Tn < t n... IHQ (tl)Q(t 2 )"Q(tn)U - Y(tI)Y(t 2). "’Y(tn). If 0 - wy then Bl - wjjl - w, so (tl)Q(t2)... Q(tn)U - WnQ(tl)Q(t 2) ... Q(tn)U - 1O¥(t )¥(t,) ..•.y

  7. Pairwise Choice Markov Chains

    OpenAIRE

    Ragain, Stephen; Ugander, Johan

    2016-01-01

    As datasets capturing human choices grow in richness and scale---particularly in online domains---there is an increasing need for choice models that escape traditional choice-theoretic axioms such as regularity, stochastic transitivity, and Luce's choice axiom. In this work we introduce the Pairwise Choice Markov Chain (PCMC) model of discrete choice, an inferentially tractable model that does not assume any of the above axioms while still satisfying the foundational axiom of uniform expansio...

  8. A Martingale Decomposition of Discrete Markov Chains

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard

    We consider a multivariate time series whose increments are given from a homogeneous Markov chain. We show that the martingale component of this process can be extracted by a filtering method and establish the corresponding martingale decomposition in closed-form. This representation is useful fo...

  9. Bisimulation and Simulation Relations for Markov Chains

    NARCIS (Netherlands)

    Baier, Christel; Hermanns, H.; Katoen, Joost P.; Wolf, Verena; Aceto, L.; Gordon, A.

    2006-01-01

    Formal notions of bisimulation and simulation relation play a central role for any kind of process algebra. This short paper sketches the main concepts for bisimulation and simulation relations for probabilistic systems, modelled by discrete- or continuous-time Markov chains.

  10. Fracture Mechanical Markov Chain Crack Growth Model

    DEFF Research Database (Denmark)

    Gansted, L.; Brincker, Rune; Hansen, Lars Pilegaard

    1991-01-01

    propagation process can be described by a discrete space Markov theory. The model is applicable to deterministic as well as to random loading. Once the model parameters for a given material have been determined, the results can be used for any structure as soon as the geometrical function is known....

  11. Efficient Modelling and Generation of Markov Automata

    NARCIS (Netherlands)

    Koutny, M.; Timmer, Mark; Ulidowski, I.; Katoen, Joost P.; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette

    This paper introduces a framework for the efficient modelling and generation of Markov automata. It consists of (1) the data-rich process-algebraic language MAPA, allowing concise modelling of systems with nondeterminism, probability and Markovian timing; (2) a restricted form of the language, the

  12. Non-stationary Markov chains

    OpenAIRE

    Mallak, Saed

    1996-01-01

    Ankara : Department of Mathematics and Institute of Engineering and Sciences of Bilkent University, 1996. Thesis (Master's) -- Bilkent University, 1996. Includes bibliographical references leaves leaf 29 In thi.s work, we studierl the Ergodicilv of Non-Stationary .Markov chains. We gave several e.xainples with different cases. We proved that given a sec[uence of Markov chains such that the limit of this sec|uence is an Ergodic Markov chain, then the limit of the combination ...

  13. On Symmetric Polynomials

    OpenAIRE

    Golden, Ryan; Cho, Ilwoo

    2015-01-01

    In this paper, we study structure theorems of algebras of symmetric functions. Based on a certain relation on elementary symmetric polynomials generating such algebras, we consider perturbation in the algebras. In particular, we understand generators of the algebras as perturbations. From such perturbations, define injective maps on generators, which induce algebra-monomorphisms (or embeddings) on the algebras. They provide inductive structure theorems on algebras of symmetric polynomials. As...

  14. Comprehensive asynchronous symmetric rendezvous algorithm in ...

    Indian Academy of Sciences (India)

    Meenu Chawla

    2017-11-10

    Nov 10, 2017 ... Simulation results affirm that CASR algorithm performs better in terms of average time-to-rendezvous as compared ... process; neighbour discovery; symmetric rendezvous algorithm. 1. .... dezvous in finite time under the symmetric model. The CH ..... CASR algorithm in Matlab 7.11 and performed several.

  15. Musical Markov Chains

    Science.gov (United States)

    Volchenkov, Dima; Dawin, Jean René

    A system for using dice to compose music randomly is known as the musical dice game. The discrete time MIDI models of 804 pieces of classical music written by 29 composers have been encoded into the transition matrices and studied by Markov chains. Contrary to human languages, entropy dominates over redundancy, in the musical dice games based on the compositions of classical music. The maximum complexity is achieved on the blocks consisting of just a few notes (8 notes, for the musical dice games generated over Bach's compositions). First passage times to notes can be used to resolve tonality and feature a composer.

  16. On Weak Markov's Principle

    DEFF Research Database (Denmark)

    Kohlenbach, Ulrich Wilhelm

    2002-01-01

    We show that the so-called weak Markov's principle (WMP) which states that every pseudo-positive real number is positive is underivable in E-HA + AC. Since allows one to formalize (atl eastl arge parts of) Bishop's constructive mathematics, this makes it unlikely that WMP can be proved within...... the framework of Bishop-style mathematics (which has been open for about 20 years). The underivability even holds if the ine.ective schema of full comprehension (in all types) for negated formulas (in particular for -free formulas) is added, which allows one to derive the law of excluded middle...

  17. Scaling Limit of Symmetric Random Walk in High-Contrast Periodic Environment

    Science.gov (United States)

    Piatnitski, A.; Zhizhina, E.

    2017-11-01

    The paper deals with the asymptotic properties of a symmetric random walk in a high contrast periodic medium in Z^d, d≥1. From the existing homogenization results it follows that under diffusive scaling the limit behaviour of this random walk need not be Markovian. The goal of this work is to show that if in addition to the coordinate of the random walk in Z^d we introduce an extra variable that characterizes the position of the random walk inside the period then the limit dynamics of this two-component process is Markov. We describe the limit process and observe that the components of the limit process are coupled. We also prove the convergence in the path space for the said random walk.

  18. Noise can speed convergence in Markov chains.

    Science.gov (United States)

    Franzke, Brandon; Kosko, Bart

    2011-10-01

    A new theorem shows that noise can speed convergence to equilibrium in discrete finite-state Markov chains. The noise applies to the state density and helps the Markov chain explore improbable regions of the state space. The theorem ensures that a stochastic-resonance noise benefit exists for states that obey a vector-norm inequality. Such noise leads to faster convergence because the noise reduces the norm components. A corollary shows that a noise benefit still occurs if the system states obey an alternate norm inequality. This leads to a noise-benefit algorithm that requires knowledge of the steady state. An alternative blind algorithm uses only past state information to achieve a weaker noise benefit. Simulations illustrate the predicted noise benefits in three well-known Markov models. The first model is a two-parameter Ehrenfest diffusion model that shows how noise benefits can occur in the class of birth-death processes. The second model is a Wright-Fisher model of genotype drift in population genetics. The third model is a chemical reaction network of zeolite crystallization. A fourth simulation shows a convergence rate increase of 64% for states that satisfy the theorem and an increase of 53% for states that satisfy the corollary. A final simulation shows that even suboptimal noise can speed convergence if the noise applies over successive time cycles. Noise benefits tend to be sharpest in Markov models that do not converge quickly and that do not have strong absorbing states.

  19. The Bacterial Sequential Markov Coalescent.

    Science.gov (United States)

    De Maio, Nicola; Wilson, Daniel J

    2017-05-01

    Bacteria can exchange and acquire new genetic material from other organisms directly and via the environment. This process, known as bacterial recombination, has a strong impact on the evolution of bacteria, for example, leading to the spread of antibiotic resistance across clades and species, and to the avoidance of clonal interference. Recombination hinders phylogenetic and transmission inference because it creates patterns of substitutions (homoplasies) inconsistent with the hypothesis of a single evolutionary tree. Bacterial recombination is typically modeled as statistically akin to gene conversion in eukaryotes, i.e. , using the coalescent with gene conversion (CGC). However, this model can be very computationally demanding as it needs to account for the correlations of evolutionary histories of even distant loci. So, with the increasing popularity of whole genome sequencing, the need has emerged for a faster approach to model and simulate bacterial genome evolution. We present a new model that approximates the coalescent with gene conversion: the bacterial sequential Markov coalescent (BSMC). Our approach is based on a similar idea to the sequential Markov coalescent (SMC)-an approximation of the coalescent with crossover recombination. However, bacterial recombination poses hurdles to a sequential Markov approximation, as it leads to strong correlations and linkage disequilibrium across very distant sites in the genome. Our BSMC overcomes these difficulties, and shows a considerable reduction in computational demand compared to the exact CGC, and very similar patterns in simulated data. We implemented our BSMC model within new simulation software FastSimBac. In addition to the decreased computational demand compared to previous bacterial genome evolution simulators, FastSimBac provides more general options for evolutionary scenarios, allowing population structure with migration, speciation, population size changes, and recombination hotspots. FastSimBac is

  20. Symmetric cryptographic protocols

    CERN Document Server

    Ramkumar, Mahalingam

    2014-01-01

    This book focuses on protocols and constructions that make good use of symmetric pseudo random functions (PRF) like block ciphers and hash functions - the building blocks for symmetric cryptography. Readers will benefit from detailed discussion of several strategies for utilizing symmetric PRFs. Coverage includes various key distribution strategies for unicast, broadcast and multicast security, and strategies for constructing efficient digests of dynamic databases using binary hash trees.   •        Provides detailed coverage of symmetric key protocols •        Describes various applications of symmetric building blocks •        Includes strategies for constructing compact and efficient digests of dynamic databases

  1. Flux through a Markov chain

    International Nuclear Information System (INIS)

    Floriani, Elena; Lima, Ricardo; Ourrad, Ouerdia; Spinelli, Lionel

    2016-01-01

    Highlights: • The flux through a Markov chain of a conserved quantity (mass) is studied. • Mass is supplied by an external source and ends in the absorbing states of the chain. • Meaningful for modeling open systems whose dynamics has a Markov property. • The analytical expression of mass distribution is given for a constant source. • The expression of mass distribution is given for periodic or random sources. - Abstract: In this paper we study the flux through a finite Markov chain of a quantity, that we will call mass, which moves through the states of the chain according to the Markov transition probabilities. Mass is supplied by an external source and accumulates in the absorbing states of the chain. We believe that studying how this conserved quantity evolves through the transient (non-absorbing) states of the chain could be useful for the modelization of open systems whose dynamics has a Markov property.

  2. Programming list processes. SLIP: symmetric list processor - applications; Le traitement de listes en programmation. SLIP: langage de listes symetrique - applications

    Energy Technology Data Exchange (ETDEWEB)

    Broudin, Y [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-06-01

    Modern aspects of programming languages are essentially turned towards list processing. The ordinary methods of sequential treatment become inadequate and we must substitute list processes for them, where the cells of a group have no neighbourhood connection, but where the address of one cell is contained in the preceding one. These methods are required in 'time sharing' solving problems. They also allow us to treat new problems and to solve others in the shortest time. Many examples are presented after an abstract of the most usual list languages and a detailed study of one of them : SLIP. Among these examples one should note: locating of words in a dictionary or in a card index, treatment of non numerical symbols, formal derivation. The problems are treated in Fortran II on an IBM 7094 machine. The subroutines which make up the language are presented in an appendix. (author) [French] La programmation moderne ne se satisfait plus des methodes classiques de traitement sequentiel ni des tableaux a positions de memoire contigues. Elle tend a generaliser les methodes de listes ou les cellules d'un groupe n'ont pas de relation de voisinage, mais sont enchainees en listes, l'une donnant l'adresse machine de l'autre. Ces methodes sont indispensables en 'partage de temps' et dans les traitements en 'temps reel'. De plus, elles permettent de traiter des problemes nouveaux et d'optimiser le temps de traitement de nombreux autres. De nombreux exemples sont traites, apres un resume des langages les plus utilises et une etude plus precise d'un langage de listes: SLIP. Parmi les exemples traites signalons la recherche lexicographique, le traitement de symboles alphanumeriques, la derivation formelle. Probleme traite en Fortran II sur IBM 7094. Les sous-programmes constitutifs du langage sont fournis en annexe. (auteur)

  3. Symmetric splitting of very light systems

    International Nuclear Information System (INIS)

    Grotowski, K.; Majka, Z.; Planeta, R.

    1985-01-01

    Fission reactions that produce fragments close to one half the mass of the composite system are traditionally observed in heavy nuclei. In light systems, symmetric splitting is rarely observed and poorly understood. It would be interesting to verify the existence of the symmetric splitting of compound nuclei with A 12 C + 40 Ca, 141 MeV 9 Be + 40 Ca and 153 MeV 6 Li + 40 Ca. The out-of-plane correlation of symmetric products was also measured for the reaction 186 MeV 12 C + 40 Ca. The coincidence measurements of the 12 C + 40 Ca system demonstrated that essentially all of the inclusive yield of symmetric products around 40 0 results from a binary decay. To characterize the dependence of the symmetric splitting process on the excitation energy of the 12 C + 40 C system, inclusive measurements were made at bombarding energies of 74, 132, 162, and 185 MeV

  4. Stochastic Dynamics through Hierarchically Embedded Markov Chains.

    Science.gov (United States)

    Vasconcelos, Vítor V; Santos, Fernando P; Santos, Francisco C; Pacheco, Jorge M

    2017-02-03

    Studying dynamical phenomena in finite populations often involves Markov processes of significant mathematical and/or computational complexity, which rapidly becomes prohibitive with increasing population size or an increasing number of individual configuration states. Here, we develop a framework that allows us to define a hierarchy of approximations to the stationary distribution of general systems that can be described as discrete Markov processes with time invariant transition probabilities and (possibly) a large number of states. This results in an efficient method for studying social and biological communities in the presence of stochastic effects-such as mutations in evolutionary dynamics and a random exploration of choices in social systems-including situations where the dynamics encompasses the existence of stable polymorphic configurations, thus overcoming the limitations of existing methods. The present formalism is shown to be general in scope, widely applicable, and of relevance to a variety of interdisciplinary problems.

  5. Centrioles in Symmetric Spaces

    OpenAIRE

    Quast, Peter

    2011-01-01

    We describe all centrioles in irreducible simply connected pointed symmetric spaces of compact type in terms of the root system of the ambient space, and we study some geometric properties of centrioles.

  6. Markov Chains For Testing Redundant Software

    Science.gov (United States)

    White, Allan L.; Sjogren, Jon A.

    1990-01-01

    Preliminary design developed for validation experiment that addresses problems unique to assuring extremely high quality of multiple-version programs in process-control software. Approach takes into account inertia of controlled system in sense it takes more than one failure of control program to cause controlled system to fail. Verification procedure consists of two steps: experimentation (numerical simulation) and computation, with Markov model for each step.

  7. Markov Chain Models for the Stochastic Modeling of Pitting Corrosion

    OpenAIRE

    Valor, A.; Caleyo, F.; Alfonso, L.; Velázquez, J. C.; Hallen, J. M.

    2013-01-01

    The stochastic nature of pitting corrosion of metallic structures has been widely recognized. It is assumed that this kind of deterioration retains no memory of the past, so only the current state of the damage influences its future development. This characteristic allows pitting corrosion to be categorized as a Markov process. In this paper, two different models of pitting corrosion, developed using Markov chains, are presented. Firstly, a continuous-time, nonhomogeneous linear growth (pure ...

  8. Reliability estimation of semi-Markov systems: a case study

    International Nuclear Information System (INIS)

    Ouhbi, Brahim; Limnios, Nikolaos

    1997-01-01

    In this article, we are concerned with the estimation of the reliability and the availability of a turbo-generator rotor using a set of data observed in a real engineering situation provided by Electricite De France (EDF). The rotor is modeled by a semi-Markov process, which is used to estimate the rotor's reliability and availability. To do this, we present a method for estimating the semi-Markov kernel from a censored data

  9. Quadratic Variation by Markov Chains

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Horel, Guillaume

    We introduce a novel estimator of the quadratic variation that is based on the the- ory of Markov chains. The estimator is motivated by some general results concerning filtering contaminated semimartingales. Specifically, we show that filtering can in prin- ciple remove the effects of market...... microstructure noise in a general framework where little is assumed about the noise. For the practical implementation, we adopt the dis- crete Markov chain model that is well suited for the analysis of financial high-frequency prices. The Markov chain framework facilitates simple expressions and elegant analyti...

  10. A symmetrical rail accelerator

    International Nuclear Information System (INIS)

    Igenbergs, E.

    1991-01-01

    This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator

  11. Symmetric eikonal expansion

    International Nuclear Information System (INIS)

    Matsuki, Takayuki

    1976-01-01

    Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)

  12. Markov Chain Monte Carlo Methods

    Indian Academy of Sciences (India)

    Systat Software Asia-Pacific. Ltd., in Bangalore, where the technical work for the development of the statistical software Systat takes ... In Part 4, we discuss some applications of the Markov ... one can construct the joint probability distribution of.

  13. Constructing Dynamic Event Trees from Markov Models

    International Nuclear Information System (INIS)

    Paolo Bucci; Jason Kirschenbaum; Tunc Aldemir; Curtis Smith; Ted Wood

    2006-01-01

    In the probabilistic risk assessment (PRA) of process plants, Markov models can be used to model accurately the complex dynamic interactions between plant physical process variables (e.g., temperature, pressure, etc.) and the instrumentation and control system that monitors and manages the process. One limitation of this approach that has prevented its use in nuclear power plant PRAs is the difficulty of integrating the results of a Markov analysis into an existing PRA. In this paper, we explore a new approach to the generation of failure scenarios and their compilation into dynamic event trees from a Markov model of the system. These event trees can be integrated into an existing PRA using software tools such as SAPHIRE. To implement our approach, we first construct a discrete-time Markov chain modeling the system of interest by: (a) partitioning the process variable state space into magnitude intervals (cells), (b) using analytical equations or a system simulator to determine the transition probabilities between the cells through the cell-to-cell mapping technique, and, (c) using given failure/repair data for all the components of interest. The Markov transition matrix thus generated can be thought of as a process model describing the stochastic dynamic behavior of the finite-state system. We can therefore search the state space starting from a set of initial states to explore all possible paths to failure (scenarios) with associated probabilities. We can also construct event trees of arbitrary depth by tracing paths from a chosen initiating event and recording the following events while keeping track of the probabilities associated with each branch in the tree. As an example of our approach, we use the simple level control system often used as benchmark in the literature with one process variable (liquid level in a tank), and three control units: a drain unit and two supply units. Each unit includes a separate level sensor to observe the liquid level in the tank

  14. Nuclear security assessment with Markov model approach

    International Nuclear Information System (INIS)

    Suzuki, Mitsutoshi; Terao, Norichika

    2013-01-01

    Nuclear security risk assessment with the Markov model based on random event is performed to explore evaluation methodology for physical protection in nuclear facilities. Because the security incidences are initiated by malicious and intentional acts, expert judgment and Bayes updating are used to estimate scenario and initiation likelihood, and it is assumed that the Markov model derived from stochastic process can be applied to incidence sequence. Both an unauthorized intrusion as Design Based Threat (DBT) and a stand-off attack as beyond-DBT are assumed to hypothetical facilities, and performance of physical protection and mitigation and minimization of consequence are investigated to develop the assessment methodology in a semi-quantitative manner. It is shown that cooperation between facility operator and security authority is important to respond to the beyond-DBT incidence. (author)

  15. Counting with symmetric functions

    CERN Document Server

    Mendes, Anthony

    2015-01-01

    This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics.  It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions.  Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions.  Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4.  The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enu...

  16. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard

    2010-01-01

    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....

  17. Markov Chain Models for the Stochastic Modeling of Pitting Corrosion

    Directory of Open Access Journals (Sweden)

    A. Valor

    2013-01-01

    Full Text Available The stochastic nature of pitting corrosion of metallic structures has been widely recognized. It is assumed that this kind of deterioration retains no memory of the past, so only the current state of the damage influences its future development. This characteristic allows pitting corrosion to be categorized as a Markov process. In this paper, two different models of pitting corrosion, developed using Markov chains, are presented. Firstly, a continuous-time, nonhomogeneous linear growth (pure birth Markov process is used to model external pitting corrosion in underground pipelines. A closed-form solution of the system of Kolmogorov's forward equations is used to describe the transition probability function in a discrete pit depth space. The transition probability function is identified by correlating the stochastic pit depth mean with the empirical deterministic mean. In the second model, the distribution of maximum pit depths in a pitting experiment is successfully modeled after the combination of two stochastic processes: pit initiation and pit growth. Pit generation is modeled as a nonhomogeneous Poisson process, in which induction time is simulated as the realization of a Weibull process. Pit growth is simulated using a nonhomogeneous Markov process. An analytical solution of Kolmogorov's system of equations is also found for the transition probabilities from the first Markov state. Extreme value statistics is employed to find the distribution of maximum pit depths.

  18. Markov Chain Modelling for Short-Term NDVI Time Series Forecasting

    Directory of Open Access Journals (Sweden)

    Stepčenko Artūrs

    2016-12-01

    Full Text Available In this paper, the NDVI time series forecasting model has been developed based on the use of discrete time, continuous state Markov chain of suitable order. The normalised difference vegetation index (NDVI is an indicator that describes the amount of chlorophyll (the green mass and shows the relative density and health of vegetation; therefore, it is an important variable for vegetation forecasting. A Markov chain is a stochastic process that consists of a state space. This stochastic process undergoes transitions from one state to another in the state space with some probabilities. A Markov chain forecast model is flexible in accommodating various forecast assumptions and structures. The present paper discusses the considerations and techniques in building a Markov chain forecast model at each step. Continuous state Markov chain model is analytically described. Finally, the application of the proposed Markov chain model is illustrated with reference to a set of NDVI time series data.

  19. Prognostics for Steam Generator Tube Rupture using Markov Chain model

    International Nuclear Information System (INIS)

    Kim, Gibeom; Heo, Gyunyoung; Kim, Hyeonmin

    2016-01-01

    This paper will describe the prognostics method for evaluating and forecasting the ageing effect and demonstrate the procedure of prognostics for the Steam Generator Tube Rupture (SGTR) accident. Authors will propose the data-driven method so called MCMC (Markov Chain Monte Carlo) which is preferred to the physical-model method in terms of flexibility and availability. Degradation data is represented as growth of burst probability over time. Markov chain model is performed based on transition probability of state. And the state must be discrete variable. Therefore, burst probability that is continuous variable have to be changed into discrete variable to apply Markov chain model to the degradation data. The Markov chain model which is one of prognostics methods was described and the pilot demonstration for a SGTR accident was performed as a case study. The Markov chain model is strong since it is possible to be performed without physical models as long as enough data are available. However, in the case of the discrete Markov chain used in this study, there must be loss of information while the given data is discretized and assigned to the finite number of states. In this process, original information might not be reflected on prediction sufficiently. This should be noted as the limitation of discrete models. Now we will be studying on other prognostics methods such as GPM (General Path Model) which is also data-driven method as well as the particle filer which belongs to physical-model method and conducting comparison analysis

  20. Tornadoes and related damage costs: statistical modeling with a semi-Markov approach

    OpenAIRE

    Corini, Chiara; D'Amico, Guglielmo; Petroni, Filippo; Prattico, Flavio; Manca, Raimondo

    2015-01-01

    We propose a statistical approach to tornadoes modeling for predicting and simulating occurrences of tornadoes and accumulated cost distributions over a time interval. This is achieved by modeling the tornadoes intensity, measured with the Fujita scale, as a stochastic process. Since the Fujita scale divides tornadoes intensity into six states, it is possible to model the tornadoes intensity by using Markov and semi-Markov models. We demonstrate that the semi-Markov approach is able to reprod...

  1. Distributed Searchable Symmetric Encryption

    NARCIS (Netherlands)

    Bösch, C.T.; Peter, Andreas; Leenders, Bram; Lim, Hoon Wei; Tang, Qiang; Wang, Huaxiong; Hartel, Pieter H.; Jonker, Willem

    Searchable Symmetric Encryption (SSE) allows a client to store encrypted data on a storage provider in such a way, that the client is able to search and retrieve the data selectively without the storage provider learning the contents of the data or the words being searched for. Practical SSE schemes

  2. Markov Chain-Like Quantum Biological Modeling of Mutations, Aging, and Evolution

    Directory of Open Access Journals (Sweden)

    Ivan B. Djordjevic

    2015-08-01

    Full Text Available Recent evidence suggests that quantum mechanics is relevant in photosynthesis, magnetoreception, enzymatic catalytic reactions, olfactory reception, photoreception, genetics, electron-transfer in proteins, and evolution; to mention few. In our recent paper published in Life, we have derived the operator-sum representation of a biological channel based on codon basekets, and determined the quantum channel model suitable for study of the quantum biological channel capacity. However, this model is essentially memoryless and it is not able to properly model the propagation of mutation errors in time, the process of aging, and evolution of genetic information through generations. To solve for these problems, we propose novel quantum mechanical models to accurately describe the process of creation spontaneous, induced, and adaptive mutations and their propagation in time. Different biological channel models with memory, proposed in this paper, include: (i Markovian classical model, (ii Markovian-like quantum model, and (iii hybrid quantum-classical model. We then apply these models in a study of aging and evolution of quantum biological channel capacity through generations. We also discuss key differences of these models with respect to a multilevel symmetric channel-based Markovian model and a Kimura model-based Markovian process. These models are quite general and applicable to many open problems in biology, not only biological channel capacity, which is the main focus of the paper. We will show that the famous quantum Master equation approach, commonly used to describe different biological processes, is just the first-order approximation of the proposed quantum Markov chain-like model, when the observation interval tends to zero. One of the important implications of this model is that the aging phenotype becomes determined by different underlying transition probabilities in both programmed and random (damage Markov chain-like models of aging, which

  3. Markov Networks in Evolutionary Computation

    CERN Document Server

    Shakya, Siddhartha

    2012-01-01

    Markov networks and other probabilistic graphical modes have recently received an upsurge in attention from Evolutionary computation community, particularly in the area of Estimation of distribution algorithms (EDAs).  EDAs have arisen as one of the most successful experiences in the application of machine learning methods in optimization, mainly due to their efficiency to solve complex real-world optimization problems and their suitability for theoretical analysis. This book focuses on the different steps involved in the conception, implementation and application of EDAs that use Markov networks, and undirected models in general. It can serve as a general introduction to EDAs but covers also an important current void in the study of these algorithms by explaining the specificities and benefits of modeling optimization problems by means of undirected probabilistic models. All major developments to date in the progressive introduction of Markov networks based EDAs are reviewed in the book. Hot current researc...

  4. Markov chains and mixing times

    CERN Document Server

    Levin, David A; Wilmer, Elizabeth L

    2009-01-01

    This book is an introduction to the modern approach to the theory of Markov chains. The main goal of this approach is to determine the rate of convergence of a Markov chain to the stationary distribution as a function of the size and geometry of the state space. The authors develop the key tools for estimating convergence times, including coupling, strong stationary times, and spectral methods. Whenever possible, probabilistic methods are emphasized. The book includes many examples and provides brief introductions to some central models of statistical mechanics. Also provided are accounts of r

  5. Markov Models for Handwriting Recognition

    CERN Document Server

    Plotz, Thomas

    2011-01-01

    Since their first inception, automatic reading systems have evolved substantially, yet the recognition of handwriting remains an open research problem due to its substantial variation in appearance. With the introduction of Markovian models to the field, a promising modeling and recognition paradigm was established for automatic handwriting recognition. However, no standard procedures for building Markov model-based recognizers have yet been established. This text provides a comprehensive overview of the application of Markov models in the field of handwriting recognition, covering both hidden

  6. Baryon symmetric big bang cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1978-01-01

    It is stated that the framework of baryon symmetric big bang (BSBB) cosmology offers our greatest potential for deducting the evolution of the Universe because its physical laws and processes have the minimum number of arbitrary assumptions about initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the Universe and how galaxies and galaxy clusters are formed. BSBB cosmology also provides the only acceptable explanation at present for the origin of the cosmic γ-ray background radiation. (author)

  7. Symmetric modular torsatron

    Science.gov (United States)

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  8. Symmetric vectors and algebraic classification

    International Nuclear Information System (INIS)

    Leibowitz, E.

    1980-01-01

    The concept of symmetric vector field in Riemannian manifolds, which arises in the study of relativistic cosmological models, is analyzed. Symmetric vectors are tied up with the algebraic properties of the manifold curvature. A procedure for generating a congruence of symmetric fields out of a given pair is outlined. The case of a three-dimensional manifold of constant curvature (''isotropic universe'') is studied in detail, with all its symmetric vector fields being explicitly constructed

  9. Transportation and concentration inequalities for bifurcating Markov chains

    DEFF Research Database (Denmark)

    Penda, S. Valère Bitseki; Escobar-Bach, Mikael; Guillin, Arnaud

    2017-01-01

    We investigate the transportation inequality for bifurcating Markov chains which are a class of processes indexed by a regular binary tree. Fitting well models like cell growth when each individual gives birth to exactly two offsprings, we use transportation inequalities to provide useful...... concentration inequalities.We also study deviation inequalities for the empirical means under relaxed assumptions on the Wasserstein contraction for the Markov kernels. Applications to bifurcating nonlinear autoregressive processes are considered for point-wise estimates of the non-linear autoregressive...

  10. Consistency and refinement for Interval Markov Chains

    DEFF Research Database (Denmark)

    Delahaye, Benoit; Larsen, Kim Guldstrand; Legay, Axel

    2012-01-01

    Interval Markov Chains (IMC), or Markov Chains with probability intervals in the transition matrix, are the base of a classic specification theory for probabilistic systems [18]. The standard semantics of IMCs assigns to a specification the set of all Markov Chains that satisfy its interval...

  11. A Markov reward model checker

    NARCIS (Netherlands)

    Katoen, Joost P.; Maneesh Khattri, M.; Zapreev, I.S.; Zapreev, I.S.

    2005-01-01

    This short tool paper introduces MRMC, a model checker for discrete-time and continuous-time Markov reward models. It supports reward extensions of PCTL and CSL, and allows for the automated verification of properties concerning long-run and instantaneous rewards as well as cumulative rewards. In

  12. Adaptive Partially Hidden Markov Models

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Rasmussen, Tage

    1996-01-01

    Partially Hidden Markov Models (PHMM) have recently been introduced. The transition and emission probabilities are conditioned on the past. In this report, the PHMM is extended with a multiple token version. The different versions of the PHMM are applied to bi-level image coding....

  13. Representations of locally symmetric spaces

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1995-09-01

    Locally symmetric spaces in reference to globally and Hermitian symmetric Riemannian spaces are studied. Some relations between locally and globally symmetric spaces are exhibited. A lucid account of results on relevant spaces, motivated by fundamental problems, are formulated as theorems and propositions. (author). 10 refs

  14. Markov chain modelling of pitting corrosion in underground pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Caleyo, F. [Departamento de Ingenieri' a Metalurgica, ESIQIE, IPN, UPALM Edif. 7, Zacatenco, Mexico D. F. 07738 (Mexico)], E-mail: fcaleyo@gmail.com; Velazquez, J.C. [Departamento de Ingenieri' a Metalurgica, ESIQIE, IPN, UPALM Edif. 7, Zacatenco, Mexico D. F. 07738 (Mexico); Valor, A. [Facultad de Fisica, Universidad de La Habana, San Lazaro y L, Vedado, 10400 La Habana (Cuba); Hallen, J.M. [Departamento de Ingenieri' a Metalurgica, ESIQIE, IPN, UPALM Edif. 7, Zacatenco, Mexico D. F. 07738 (Mexico)

    2009-09-15

    A continuous-time, non-homogenous linear growth (pure birth) Markov process has been used to model external pitting corrosion in underground pipelines. The closed form solution of Kolmogorov's forward equations for this type of Markov process is used to describe the transition probability function in a discrete pit depth space. The identification of the transition probability function can be achieved by correlating the stochastic pit depth mean with the deterministic mean obtained experimentally. Monte-Carlo simulations previously reported have been used to predict the time evolution of the mean value of the pit depth distribution for different soil textural classes. The simulated distributions have been used to create an empirical Markov chain-based stochastic model for predicting the evolution of pitting corrosion depth and rate distributions from the observed properties of the soil. The proposed model has also been applied to pitting corrosion data from pipeline repeated in-line inspections and laboratory immersion experiments.

  15. Markov chain modelling of pitting corrosion in underground pipelines

    International Nuclear Information System (INIS)

    Caleyo, F.; Velazquez, J.C.; Valor, A.; Hallen, J.M.

    2009-01-01

    A continuous-time, non-homogenous linear growth (pure birth) Markov process has been used to model external pitting corrosion in underground pipelines. The closed form solution of Kolmogorov's forward equations for this type of Markov process is used to describe the transition probability function in a discrete pit depth space. The identification of the transition probability function can be achieved by correlating the stochastic pit depth mean with the deterministic mean obtained experimentally. Monte-Carlo simulations previously reported have been used to predict the time evolution of the mean value of the pit depth distribution for different soil textural classes. The simulated distributions have been used to create an empirical Markov chain-based stochastic model for predicting the evolution of pitting corrosion depth and rate distributions from the observed properties of the soil. The proposed model has also been applied to pitting corrosion data from pipeline repeated in-line inspections and laboratory immersion experiments.

  16. An Application of Graph Theory in Markov Chains Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Pavel Skalny

    2014-01-01

    Full Text Available The paper presents reliability analysis which was realized for an industrial company. The aim of the paper is to present the usage of discrete time Markov chains and the flow in network approach. Discrete Markov chains a well-known method of stochastic modelling describes the issue. The method is suitable for many systems occurring in practice where we can easily distinguish various amount of states. Markov chains are used to describe transitions between the states of the process. The industrial process is described as a graph network. The maximal flow in the network corresponds to the production. The Ford-Fulkerson algorithm is used to quantify the production for each state. The combination of both methods are utilized to quantify the expected value of the amount of manufactured products for the given time period.

  17. Numerical analysis of Markov-perfect equilibria with multiple stable steady states : A duopoly application with innovative firms

    NARCIS (Netherlands)

    Dawid, H.; Keoula, M.Y.; Kort, Peter

    2017-01-01

    This paper presents a numerical method for the characterization of Markov-perfect equilibria of symmetric differential games exhibiting coexisting stable steady states. The method relying on the calculation of ‘local value functions’ through collocation in overlapping parts of the state space, is

  18. A semi-Markov model for the duration of stay in a non-homogenous ...

    African Journals Online (AJOL)

    The semi-Markov approach to a non-homogenous manpower system is considered. The mean duration of stay in a grade and the total duration of stay in the system are obtained. A renewal type equation is developed and used in deriving the limiting distribution of the semi – Markov process. Empirical estimators of the ...

  19. ANALYSING ACCEPTANCE SAMPLING PLANS BY MARKOV CHAINS

    Directory of Open Access Journals (Sweden)

    Mohammad Mirabi

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: In this research, a Markov analysis of acceptance sampling plans in a single stage and in two stages is proposed, based on the quality of the items inspected. In a stage of this policy, if the number of defective items in a sample of inspected items is more than the upper threshold, the batch is rejected. However, the batch is accepted if the number of defective items is less than the lower threshold. Nonetheless, when the number of defective items falls between the upper and lower thresholds, the decision-making process continues to inspect the items and collect further samples. The primary objective is to determine the optimal values of the upper and lower thresholds using a Markov process to minimise the total cost associated with a batch acceptance policy. A solution method is presented, along with a numerical demonstration of the application of the proposed methodology.

    AFRIKAANSE OPSOMMING: In hierdie navorsing word ’n Markov-ontleding gedoen van aannamemonsternemingsplanne wat plaasvind in ’n enkele stap of in twee stappe na gelang van die kwaliteit van die items wat geïnspekteer word. Indien die eerste monster toon dat die aantal defektiewe items ’n boonste grens oorskry, word die lot afgekeur. Indien die eerste monster toon dat die aantal defektiewe items minder is as ’n onderste grens, word die lot aanvaar. Indien die eerste monster toon dat die aantal defektiewe items in die gebied tussen die boonste en onderste grense lê, word die besluitnemingsproses voortgesit en verdere monsters word geneem. Die primêre doel is om die optimale waardes van die booonste en onderste grense te bepaal deur gebruik te maak van ’n Markov-proses sodat die totale koste verbonde aan die proses geminimiseer kan word. ’n Oplossing word daarna voorgehou tesame met ’n numeriese voorbeeld van die toepassing van die voorgestelde oplossing.

  20. Benchmarking of a Markov multizone model of contaminant transport.

    Science.gov (United States)

    Jones, Rachael M; Nicas, Mark

    2014-10-01

    A Markov chain model previously applied to the simulation of advection and diffusion process of gaseous contaminants is extended to three-dimensional transport of particulates in indoor environments. The model framework and assumptions are described. The performance of the Markov model is benchmarked against simple conventional models of contaminant transport. The Markov model is able to replicate elutriation predictions of particle deposition with distance from a point source, and the stirred settling of respirable particles. Comparisons with turbulent eddy diffusion models indicate that the Markov model exhibits numerical diffusion in the first seconds after release, but over time accurately predicts mean lateral dispersion. The Markov model exhibits some instability with grid length aspect when turbulence is incorporated by way of the turbulent diffusion coefficient, and advection is present. However, the magnitude of prediction error may be tolerable for some applications and can be avoided by incorporating turbulence by way of fluctuating velocity (e.g. turbulence intensity). © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  1. Markov transitions and the propagation of chaos

    International Nuclear Information System (INIS)

    Gottlieb, A.

    1998-01-01

    The propagation of chaos is a central concept of kinetic theory that serves to relate the equations of Boltzmann and Vlasov to the dynamics of many-particle systems. Propagation of chaos means that molecular chaos, i.e., the stochastic independence of two random particles in a many-particle system, persists in time, as the number of particles tends to infinity. We establish a necessary and sufficient condition for a family of general n-particle Markov processes to propagate chaos. This condition is expressed in terms of the Markov transition functions associated to the n-particle processes, and it amounts to saying that chaos of random initial states propagates if it propagates for pure initial states. Our proof of this result relies on the weak convergence approach to the study of chaos due to Sztitman and Tanaka. We assume that the space in which the particles live is homomorphic to a complete and separable metric space so that we may invoke Prohorov's theorem in our proof. We also show that, if the particles can be in only finitely many states, then molecular chaos implies that the specific entropies in the n-particle distributions converge to the entropy of the limiting single-particle distribution

  2. Influence of credit scoring on the dynamics of Markov chain

    Science.gov (United States)

    Galina, Timofeeva

    2015-11-01

    Markov processes are widely used to model the dynamics of a credit portfolio and forecast the portfolio risk and profitability. In the Markov chain model the loan portfolio is divided into several groups with different quality, which determined by presence of indebtedness and its terms. It is proposed that dynamics of portfolio shares is described by a multistage controlled system. The article outlines mathematical formalization of controls which reflect the actions of the bank's management in order to improve the loan portfolio quality. The most important control is the organization of approval procedure of loan applications. The credit scoring is studied as a control affecting to the dynamic system. Different formalizations of "good" and "bad" consumers are proposed in connection with the Markov chain model.

  3. Markov chain solution of photon multiple scattering through turbid slabs.

    Science.gov (United States)

    Lin, Ying; Northrop, William F; Li, Xuesong

    2016-11-14

    This work introduces a Markov Chain solution to model photon multiple scattering through turbid slabs via anisotropic scattering process, i.e., Mie scattering. Results show that the proposed Markov Chain model agree with commonly used Monte Carlo simulation for various mediums such as medium with non-uniform phase functions and absorbing medium. The proposed Markov Chain solution method successfully converts the complex multiple scattering problem with practical phase functions into a matrix form and solves transmitted/reflected photon angular distributions by matrix multiplications. Such characteristics would potentially allow practical inversions by matrix manipulation or stochastic algorithms where widely applied stochastic methods such as Monte Carlo simulations usually fail, and thus enable practical diagnostics reconstructions such as medical diagnosis, spray analysis, and atmosphere sciences.

  4. Prediction of pipeline corrosion rate based on grey Markov models

    International Nuclear Information System (INIS)

    Chen Yonghong; Zhang Dafa; Peng Guichu; Wang Yuemin

    2009-01-01

    Based on the model that combined by grey model and Markov model, the prediction of corrosion rate of nuclear power pipeline was studied. Works were done to improve the grey model, and the optimization unbiased grey model was obtained. This new model was used to predict the tendency of corrosion rate, and the Markov model was used to predict the residual errors. In order to improve the prediction precision, rolling operation method was used in these prediction processes. The results indicate that the improvement to the grey model is effective and the prediction precision of the new model combined by the optimization unbiased grey model and Markov model is better, and the use of rolling operation method may improve the prediction precision further. (authors)

  5. Application of Hidden Markov Models in Biomolecular Simulations.

    Science.gov (United States)

    Shukla, Saurabh; Shamsi, Zahra; Moffett, Alexander S; Selvam, Balaji; Shukla, Diwakar

    2017-01-01

    Hidden Markov models (HMMs) provide a framework to analyze large trajectories of biomolecular simulation datasets. HMMs decompose the conformational space of a biological molecule into finite number of states that interconvert among each other with certain rates. HMMs simplify long timescale trajectories for human comprehension, and allow comparison of simulations with experimental data. In this chapter, we provide an overview of building HMMs for analyzing bimolecular simulation datasets. We demonstrate the procedure for building a Hidden Markov model for Met-enkephalin peptide simulation dataset and compare the timescales of the process.

  6. Markov chain analysis of single spin flip Ising simulations

    International Nuclear Information System (INIS)

    Hennecke, M.

    1997-01-01

    The Markov processes defined by random and loop-based schemes for single spin flip attempts in Monte Carlo simulations of the 2D Ising model are investigated, by explicitly constructing their transition matrices. Their analysis reveals that loops over all lattice sites using a Metropolis-type single spin flip probability often do not define ergodic Markov chains, and have distorted dynamical properties even if they are ergodic. The transition matrices also enable a comparison of the dynamics of random versus loop spin selection and Glauber versus Metropolis probabilities

  7. Hierarchical Multiple Markov Chain Model for Unsupervised Texture Segmentation

    Czech Academy of Sciences Publication Activity Database

    Scarpa, G.; Gaetano, R.; Haindl, Michal; Zerubia, J.

    2009-01-01

    Roč. 18, č. 8 (2009), s. 1830-1843 ISSN 1057-7149 R&D Projects: GA ČR GA102/08/0593 EU Projects: European Commission(XE) 507752 - MUSCLE Institutional research plan: CEZ:AV0Z10750506 Keywords : Classification * texture analysis * segmentation * hierarchical image models * Markov process Subject RIV: BD - Theory of Information Impact factor: 2.848, year: 2009 http://library.utia.cas.cz/separaty/2009/RO/haindl-hierarchical multiple markov chain model for unsupervised texture segmentation.pdf

  8. Detecting Faults By Use Of Hidden Markov Models

    Science.gov (United States)

    Smyth, Padhraic J.

    1995-01-01

    Frequency of false alarms reduced. Faults in complicated dynamic system (e.g., antenna-aiming system, telecommunication network, or human heart) detected automatically by method of automated, continuous monitoring. Obtains time-series data by sampling multiple sensor outputs at discrete intervals of t and processes data via algorithm determining whether system in normal or faulty state. Algorithm implements, among other things, hidden first-order temporal Markov model of states of system. Mathematical model of dynamics of system not needed. Present method is "prior" method mentioned in "Improved Hidden-Markov-Model Method of Detecting Faults" (NPO-18982).

  9. Honest Importance Sampling with Multiple Markov Chains.

    Science.gov (United States)

    Tan, Aixin; Doss, Hani; Hobert, James P

    2015-01-01

    Importance sampling is a classical Monte Carlo technique in which a random sample from one probability density, π 1 , is used to estimate an expectation with respect to another, π . The importance sampling estimator is strongly consistent and, as long as two simple moment conditions are satisfied, it obeys a central limit theorem (CLT). Moreover, there is a simple consistent estimator for the asymptotic variance in the CLT, which makes for routine computation of standard errors. Importance sampling can also be used in the Markov chain Monte Carlo (MCMC) context. Indeed, if the random sample from π 1 is replaced by a Harris ergodic Markov chain with invariant density π 1 , then the resulting estimator remains strongly consistent. There is a price to be paid however, as the computation of standard errors becomes more complicated. First, the two simple moment conditions that guarantee a CLT in the iid case are not enough in the MCMC context. Second, even when a CLT does hold, the asymptotic variance has a complex form and is difficult to estimate consistently. In this paper, we explain how to use regenerative simulation to overcome these problems. Actually, we consider a more general set up, where we assume that Markov chain samples from several probability densities, π 1 , …, π k , are available. We construct multiple-chain importance sampling estimators for which we obtain a CLT based on regeneration. We show that if the Markov chains converge to their respective target distributions at a geometric rate, then under moment conditions similar to those required in the iid case, the MCMC-based importance sampling estimator obeys a CLT. Furthermore, because the CLT is based on a regenerative process, there is a simple consistent estimator of the asymptotic variance. We illustrate the method with two applications in Bayesian sensitivity analysis. The first concerns one-way random effects models under different priors. The second involves Bayesian variable

  10. Holographic Spherically Symmetric Metrics

    Science.gov (United States)

    Petri, Michael

    The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.

  11. Markov Chain Ontology Analysis (MCOA).

    Science.gov (United States)

    Frost, H Robert; McCray, Alexa T

    2012-02-03

    Biomedical ontologies have become an increasingly critical lens through which researchers analyze the genomic, clinical and bibliographic data that fuels scientific research. Of particular relevance are methods, such as enrichment analysis, that quantify the importance of ontology classes relative to a collection of domain data. Current analytical techniques, however, remain limited in their ability to handle many important types of structural complexity encountered in real biological systems including class overlaps, continuously valued data, inter-instance relationships, non-hierarchical relationships between classes, semantic distance and sparse data. In this paper, we describe a methodology called Markov Chain Ontology Analysis (MCOA) and illustrate its use through a MCOA-based enrichment analysis application based on a generative model of gene activation. MCOA models the classes in an ontology, the instances from an associated dataset and all directional inter-class, class-to-instance and inter-instance relationships as a single finite ergodic Markov chain. The adjusted transition probability matrix for this Markov chain enables the calculation of eigenvector values that quantify the importance of each ontology class relative to other classes and the associated data set members. On both controlled Gene Ontology (GO) data sets created with Escherichia coli, Drosophila melanogaster and Homo sapiens annotations and real gene expression data extracted from the Gene Expression Omnibus (GEO), the MCOA enrichment analysis approach provides the best performance of comparable state-of-the-art methods. A methodology based on Markov chain models and network analytic metrics can help detect the relevant signal within large, highly interdependent and noisy data sets and, for applications such as enrichment analysis, has been shown to generate superior performance on both real and simulated data relative to existing state-of-the-art approaches.

  12. Neuroevolution Mechanism for Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Nabil M. Hewahi

    2011-12-01

    Full Text Available Hidden Markov Model (HMM is a statistical model based on probabilities. HMM is becoming one of the major models involved in many applications such as natural language
    processing, handwritten recognition, image processing, prediction systems and many more. In this research we are concerned with finding out the best HMM for a certain application domain. We propose a neuroevolution process that is based first on converting the HMM to a neural network, then generating many neural networks at random where each represents a HMM. We proceed by
    applying genetic operators to obtain new set of neural networks where each represents HMMs, and updating the population. Finally select the best neural network based on a fitness function.

  13. A Markov Chain Model for Contagion

    Directory of Open Access Journals (Sweden)

    Angelos Dassios

    2014-11-01

    Full Text Available We introduce a bivariate Markov chain counting process with contagion for modelling the clustering arrival of loss claims with delayed settlement for an insurance company. It is a general continuous-time model framework that also has the potential to be applicable to modelling the clustering arrival of events, such as jumps, bankruptcies, crises and catastrophes in finance, insurance and economics with both internal contagion risk and external common risk. Key distributional properties, such as the moments and probability generating functions, for this process are derived. Some special cases with explicit results and numerical examples and the motivation for further actuarial applications are also discussed. The model can be considered a generalisation of the dynamic contagion process introduced by Dassios and Zhao (2011.

  14. Estimation of the workload correlation in a Markov fluid queue

    NARCIS (Netherlands)

    Kaynar, B.; Mandjes, M.R.H.

    2013-01-01

    This paper considers a Markov fluid queue, focusing on the correlation function of the stationary workload process. A simulation-based computation technique is proposed, which relies on a coupling idea. Then an upper bound on the variance of the resulting estimator is given, which reveals how the

  15. Efficient Approximation of Optimal Control for Markov Games

    DEFF Research Database (Denmark)

    Fearnley, John; Rabe, Markus; Schewe, Sven

    2011-01-01

    We study the time-bounded reachability problem for continuous-time Markov decision processes (CTMDPs) and games (CTMGs). Existing techniques for this problem use discretisation techniques to break time into discrete intervals, and optimal control is approximated for each interval separately...

  16. The Candy model revisited: Markov properties and inference

    NARCIS (Netherlands)

    M.N.M. van Lieshout (Marie-Colette); R.S. Stoica

    2001-01-01

    textabstractThis paper studies the Candy model, a marked point process introduced by Stoica et al. (2000). We prove Ruelle and local stability, investigate its Markov properties, and discuss how the model may be sampled. Finally, we consider estimation of the model parameters and present some

  17. Efficient Modelling and Generation of Markov Automata (extended version)

    NARCIS (Netherlands)

    Timmer, Mark; Katoen, Joost P.; van de Pol, Jan Cornelis; Stoelinga, Mariëlle Ida Antoinette

    2012-01-01

    This paper introduces a framework for the efficient modelling and generation of Markov automata. It consists of (1) the data-rich process-algebraic language MAPA, allowing concise modelling of systems with nondeterminism, probability and Markovian timing; (2) a restricted form of the language, the

  18. Epitope discovery with phylogenetic hidden Markov models.

    LENUS (Irish Health Repository)

    Lacerda, Miguel

    2010-05-01

    Existing methods for the prediction of immunologically active T-cell epitopes are based on the amino acid sequence or structure of pathogen proteins. Additional information regarding the locations of epitopes may be acquired by considering the evolution of viruses in hosts with different immune backgrounds. In particular, immune-dependent evolutionary patterns at sites within or near T-cell epitopes can be used to enhance epitope identification. We have developed a mutation-selection model of T-cell epitope evolution that allows the human leukocyte antigen (HLA) genotype of the host to influence the evolutionary process. This is one of the first examples of the incorporation of environmental parameters into a phylogenetic model and has many other potential applications where the selection pressures exerted on an organism can be related directly to environmental factors. We combine this novel evolutionary model with a hidden Markov model to identify contiguous amino acid positions that appear to evolve under immune pressure in the presence of specific host immune alleles and that therefore represent potential epitopes. This phylogenetic hidden Markov model provides a rigorous probabilistic framework that can be combined with sequence or structural information to improve epitope prediction. As a demonstration, we apply the model to a data set of HIV-1 protein-coding sequences and host HLA genotypes.

  19. Symmetric extendibility of quantum states

    OpenAIRE

    Nowakowski, Marcin L.

    2015-01-01

    Studies on symmetric extendibility of quantum states become especially important in a context of analysis of one-way quantum measures of entanglement, distilabillity and security of quantum protocols. In this paper we analyse composite systems containing a symmetric extendible part with a particular attention devoted to one-way security of such systems. Further, we introduce a new one-way monotone based on the best symmetric approximation of quantum state. We underpin those results with geome...

  20. A symmetric safety valve

    International Nuclear Information System (INIS)

    Burtraw, Dallas; Palmer, Karen; Kahn, Danny

    2010-01-01

    How to set policy in the presence of uncertainty has been central in debates over climate policy. Concern about costs has motivated the proposal for a cap-and-trade program for carbon dioxide, with a 'safety valve' that would mitigate against spikes in the cost of emission reductions by introducing additional emission allowances into the market when marginal costs rise above the specified allowance price level. We find two significant problems, both stemming from the asymmetry of an instrument that mitigates only against a price increase. One is that most important examples of price volatility in cap-and-trade programs have occurred not when prices spiked, but instead when allowance prices collapsed. Second, a single-sided safety valve may have unintended consequences for investment. We illustrate that a symmetric safety valve provides environmental and welfare improvements relative to the conventional one-sided approach.

  1. Monte Carlo methods for the reliability analysis of Markov systems

    International Nuclear Information System (INIS)

    Buslik, A.J.

    1985-01-01

    This paper presents Monte Carlo methods for the reliability analysis of Markov systems. Markov models are useful in treating dependencies between components. The present paper shows how the adjoint Monte Carlo method for the continuous time Markov process can be derived from the method for the discrete-time Markov process by a limiting process. The straightforward extensions to the treatment of mean unavailability (over a time interval) are given. System unavailabilities can also be estimated; this is done by making the system failed states absorbing, and not permitting repair from them. A forward Monte Carlo method is presented in which the weighting functions are related to the adjoint function. In particular, if the exact adjoint function is known then weighting factors can be constructed such that the exact answer can be obtained with a single Monte Carlo trial. Of course, if the exact adjoint function is known, there is no need to perform the Monte Carlo calculation. However, the formulation is useful since it gives insight into choices of the weight factors which will reduce the variance of the estimator

  2. Operations and support cost modeling using Markov chains

    Science.gov (United States)

    Unal, Resit

    1989-01-01

    Systems for future missions will be selected with life cycle costs (LCC) as a primary evaluation criterion. This reflects the current realization that only systems which are considered affordable will be built in the future due to the national budget constaints. Such an environment calls for innovative cost modeling techniques which address all of the phases a space system goes through during its life cycle, namely: design and development, fabrication, operations and support; and retirement. A significant portion of the LCC for reusable systems are generated during the operations and support phase (OS). Typically, OS costs can account for 60 to 80 percent of the total LCC. Clearly, OS costs are wholly determined or at least strongly influenced by decisions made during the design and development phases of the project. As a result OS costs need to be considered and estimated early in the conceptual phase. To be effective, an OS cost estimating model needs to account for actual instead of ideal processes by associating cost elements with probabilities. One approach that may be suitable for OS cost modeling is the use of the Markov Chain Process. Markov chains are an important method of probabilistic analysis for operations research analysts but they are rarely used for life cycle cost analysis. This research effort evaluates the use of Markov Chains in LCC analysis by developing OS cost model for a hypothetical reusable space transportation vehicle (HSTV) and suggests further uses of the Markov Chain process as a design-aid tool.

  3. Symmetric q-Bessel functions

    Directory of Open Access Journals (Sweden)

    Giuseppe Dattoli

    1996-05-01

    Full Text Available q analog of bessel functions, symmetric under the interchange of q and q^ −1 are introduced. The definition is based on the generating function realized as product of symmetric q-exponential functions with appropriate arguments. Symmetric q-Bessel function are shown to satisfy various identities as well as second-order q-differential equations, which in the limit q → 1 reproduce those obeyed by the usual cylindrical Bessel functions. A brief discussion on the possible algebraic setting for symmetric q-Bessel functions is also provided.

  4. Using social network analysis tools in ecology : Markov process transition models applied to the seasonal trophic network dynamics of the Chesapeake Bay

    NARCIS (Netherlands)

    Johnson, Jeffrey C.; Luczkovich, Joseph J.; Borgatti, Stephen P.; Snijders, Tom A. B.; Luczkovich, S.P.

    2009-01-01

    Ecosystem components interact in complex ways and change over time due to a variety of both internal and external influences (climate change, season cycles, human impacts). Such processes need to be modeled dynamically using appropriate statistical methods for assessing change in network structure.

  5. Data-driven Markov models and their application in the evaluation of adverse events in radiotherapy

    CERN Document Server

    Abler, Daniel; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken

    2013-01-01

    Decision-making processes in medicine rely increasingly on modelling and simulation techniques; they are especially useful when combining evidence from multiple sources. Markov models are frequently used to synthesize the available evidence for such simulation studies, by describing disease and treatment progress, as well as associated factors such as the treatment's effects on a patient's life and the costs to society. When the same decision problem is investigated by multiple stakeholders, differing modelling assumptions are often applied, making synthesis and interpretation of the results difficult. This paper proposes a standardized approach towards the creation of Markov models. It introduces the notion of ‘general Markov models’, providing a common definition of the Markov models that underlie many similar decision problems, and develops a language for their specification. We demonstrate the application of this language by developing a general Markov model for adverse event analysis in radiotherapy ...

  6. Symmetric minimally entangled typical thermal states for canonical and grand-canonical ensembles

    Science.gov (United States)

    Binder, Moritz; Barthel, Thomas

    2017-05-01

    Based on the density matrix renormalization group (DMRG), strongly correlated quantum many-body systems at finite temperatures can be simulated by sampling over a certain class of pure matrix product states (MPS) called minimally entangled typical thermal states (METTS). When a system features symmetries, these can be utilized to substantially reduce MPS computation costs. It is conceptually straightforward to simulate canonical ensembles using symmetric METTS. In practice, it is important to alternate between different symmetric collapse bases to decrease autocorrelations in the Markov chain of METTS. To this purpose, we introduce symmetric Fourier and Haar-random block bases that are efficiently mixing. We also show how grand-canonical ensembles can be simulated efficiently with symmetric METTS. We demonstrate these approaches for spin-1 /2 X X Z chains and discuss how the choice of the collapse bases influences autocorrelations as well as the distribution of measurement values and, hence, convergence speeds.

  7. Verification of Open Interactive Markov Chains

    OpenAIRE

    Brazdil, Tomas; Hermanns, Holger; Krcal, Jan; Kretinsky, Jan; Rehak, Vojtech

    2012-01-01

    Interactive Markov chains (IMC) are compositional behavioral models extending both labeled transition systems and continuous-time Markov chains. IMC pair modeling convenience - owed to compositionality properties - with effective verification algorithms and tools - owed to Markov properties. Thus far however, IMC verification did not consider compositionality properties, but considered closed systems. This paper discusses the evaluation of IMC in an open and thus compositional interpretation....

  8. A scaling analysis of a cat and mouse Markov chain

    NARCIS (Netherlands)

    Litvak, Nelli; Robert, Philippe

    2012-01-01

    If ($C_n$) a Markov chain on a discrete state space $S$, a Markov chain ($C_n, M_n$) on the product space $S \\times S$, the cat and mouse Markov chain, is constructed. The first coordinate of this Markov chain behaves like the original Markov chain and the second component changes only when both

  9. Criterion of Semi-Markov Dependent Risk Model

    Institute of Scientific and Technical Information of China (English)

    Xiao Yun MO; Xiang Qun YANG

    2014-01-01

    A rigorous definition of semi-Markov dependent risk model is given. This model is a generalization of the Markov dependent risk model. A criterion and necessary conditions of semi-Markov dependent risk model are obtained. The results clarify relations between elements among semi-Markov dependent risk model more clear and are applicable for Markov dependent risk model.

  10. Markov chain aggregation for agent-based models

    CERN Document Server

    Banisch, Sven

    2016-01-01

    This self-contained text develops a Markov chain approach that makes the rigorous analysis of a class of microscopic models that specify the dynamics of complex systems at the individual level possible. It presents a general framework of aggregation in agent-based and related computational models, one which makes use of lumpability and information theory in order to link the micro and macro levels of observation. The starting point is a microscopic Markov chain description of the dynamical process in complete correspondence with the dynamical behavior of the agent-based model (ABM), which is obtained by considering the set of all possible agent configurations as the state space of a huge Markov chain. An explicit formal representation of a resulting “micro-chain” including microscopic transition rates is derived for a class of models by using the random mapping representation of a Markov process. The type of probability distribution used to implement the stochastic part of the model, which defines the upd...

  11. Quasi-Feller Markov chains

    Directory of Open Access Journals (Sweden)

    Jean B. Lasserre

    2000-01-01

    Full Text Available We consider the class of Markov kernels for which the weak or strong Feller property fails to hold at some discontinuity set. We provide a simple necessary and sufficient condition for existence of an invariant probability measure as well as a Foster-Lyapunov sufficient condition. We also characterize a subclass, the quasi (weak or strong Feller kernels, for which the sequences of expected occupation measures share the same asymptotic properties as for (weak or strong Feller kernels. In particular, it is shown that the sequences of expected occupation measures of strong and quasi strong-Feller kernels with an invariant probability measure converge setwise to an invariant measure.

  12. Resonance Energy Transfer-Based Molecular Switch Designed Using a Systematic Design Process Based on Monte Carlo Methods and Markov Chains

    Science.gov (United States)

    Rallapalli, Arjun

    A RET network consists of a network of photo-active molecules called chromophores that can participate in inter-molecular energy transfer called resonance energy transfer (RET). RET networks are used in a variety of applications including cryptographic devices, storage systems, light harvesting complexes, biological sensors, and molecular rulers. In this dissertation, we focus on creating a RET device called closed-diffusive exciton valve (C-DEV) in which the input to output transfer function is controlled by an external energy source, similar to a semiconductor transistor like the MOSFET. Due to their biocompatibility, molecular devices like the C-DEVs can be used to introduce computing power in biological, organic, and aqueous environments such as living cells. Furthermore, the underlying physics in RET devices are stochastic in nature, making them suitable for stochastic computing in which true random distribution generation is critical. In order to determine a valid configuration of chromophores for the C-DEV, we developed a systematic process based on user-guided design space pruning techniques and built-in simulation tools. We show that our C-DEV is 15x better than C-DEVs designed using ad hoc methods that rely on limited data from prior experiments. We also show ways in which the C-DEV can be improved further and how different varieties of C-DEVs can be combined to form more complex logic circuits. Moreover, the systematic design process can be used to search for valid chromophore network configurations for a variety of RET applications. We also describe a feasibility study for a technique used to control the orientation of chromophores attached to DNA. Being able to control the orientation can expand the design space for RET networks because it provides another parameter to tune their collective behavior. While results showed limited control over orientation, the analysis required the development of a mathematical model that can be used to determine the

  13. Green functions and Langevin equations for nonlinear diffusion equations: A comment on ‘Markov processes, Hurst exponents, and nonlinear diffusion equations’ by Bassler et al.

    Science.gov (United States)

    Frank, T. D.

    2008-02-01

    We discuss two central claims made in the study by Bassler et al. [K.E. Bassler, G.H. Gunaratne, J.L. McCauley, Physica A 369 (2006) 343]. Bassler et al. claimed that Green functions and Langevin equations cannot be defined for nonlinear diffusion equations. In addition, they claimed that nonlinear diffusion equations are linear partial differential equations disguised as nonlinear ones. We review bottom-up and top-down approaches that have been used in the literature to derive Green functions for nonlinear diffusion equations and, in doing so, show that the first claim needs to be revised. We show that the second claim as well needs to be revised. To this end, we point out similarities and differences between non-autonomous linear Fokker-Planck equations and autonomous nonlinear Fokker-Planck equations. In this context, we raise the question whether Bassler et al.’s approach to financial markets is physically plausible because it necessitates the introduction of external traders and causes. Such external entities can easily be eliminated when taking self-organization principles and concepts of nonextensive thermostatistics into account and modeling financial processes by means of nonlinear Fokker-Planck equations.

  14. Conformally symmetric traversable wormholes

    International Nuclear Information System (INIS)

    Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.

    2007-01-01

    Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced

  15. Renormalization group for centrosymmetric gauge transformations of the dynamic motion for a Markov-ordered polymer chain

    International Nuclear Information System (INIS)

    Mikhailov, I.D.; Zhuravskii, L.V.

    1987-01-01

    A method is proposed for calculating the vibrational-state density averaged over all configurations for a polymer chain with Markov disorder. The method is based on using a group of centrally symmetric gauge transformations that reduce the dynamic matrix for along polymer chain to renormalized dynamic matrices for short fragments. The short-range order is incorporated exactly in the averaging procedure, while the long-range order is incorporated in the self-consistent field approximation. Results are given for a simple skeletal model for a polymer containing tacticity deviations of Markov type

  16. Learning Markov models for stationary system behaviors

    DEFF Research Database (Denmark)

    Chen, Yingke; Mao, Hua; Jaeger, Manfred

    2012-01-01

    to a single long observation sequence, and in these situations existing automatic learning methods cannot be applied. In this paper, we adapt algorithms for learning variable order Markov chains from a single observation sequence of a target system, so that stationary system properties can be verified using......Establishing an accurate model for formal verification of an existing hardware or software system is often a manual process that is both time consuming and resource demanding. In order to ease the model construction phase, methods have recently been proposed for automatically learning accurate...... the learned model. Experiments demonstrate that system properties (formulated as stationary probabilities of LTL formulas) can be reliably identified using the learned model....

  17. Estimation and uncertainty of reversible Markov models.

    Science.gov (United States)

    Trendelkamp-Schroer, Benjamin; Wu, Hao; Paul, Fabian; Noé, Frank

    2015-11-07

    Reversibility is a key concept in Markov models and master-equation models of molecular kinetics. The analysis and interpretation of the transition matrix encoding the kinetic properties of the model rely heavily on the reversibility property. The estimation of a reversible transition matrix from simulation data is, therefore, crucial to the successful application of the previously developed theory. In this work, we discuss methods for the maximum likelihood estimation of transition matrices from finite simulation data and present a new algorithm for the estimation if reversibility with respect to a given stationary vector is desired. We also develop new methods for the Bayesian posterior inference of reversible transition matrices with and without given stationary vector taking into account the need for a suitable prior distribution preserving the meta-stable features of the observed process during posterior inference. All algorithms here are implemented in the PyEMMA software--http://pyemma.org--as of version 2.0.

  18. Monte Carlo simulation of Markov unreliability models

    International Nuclear Information System (INIS)

    Lewis, E.E.; Boehm, F.

    1984-01-01

    A Monte Carlo method is formulated for the evaluation of the unrealibility of complex systems with known component failure and repair rates. The formulation is in terms of a Markov process allowing dependences between components to be modeled and computational efficiencies to be achieved in the Monte Carlo simulation. Two variance reduction techniques, forced transition and failure biasing, are employed to increase computational efficiency of the random walk procedure. For an example problem these result in improved computational efficiency by more than three orders of magnitudes over analog Monte Carlo. The method is generalized to treat problems with distributed failure and repair rate data, and a batching technique is introduced and shown to result in substantial increases in computational efficiency for an example problem. A method for separating the variance due to the data uncertainty from that due to the finite number of random walks is presented. (orig.)

  19. Markov state models of protein misfolding

    Science.gov (United States)

    Sirur, Anshul; De Sancho, David; Best, Robert B.

    2016-02-01

    Markov state models (MSMs) are an extremely useful tool for understanding the conformational dynamics of macromolecules and for analyzing MD simulations in a quantitative fashion. They have been extensively used for peptide and protein folding, for small molecule binding, and for the study of native ensemble dynamics. Here, we adapt the MSM methodology to gain insight into the dynamics of misfolded states. To overcome possible flaws in root-mean-square deviation (RMSD)-based metrics, we introduce a novel discretization approach, based on coarse-grained contact maps. In addition, we extend the MSM methodology to include "sink" states in order to account for the irreversibility (on simulation time scales) of processes like protein misfolding. We apply this method to analyze the mechanism of misfolding of tandem repeats of titin domains, and how it is influenced by confinement in a chaperonin-like cavity.

  20. Numerical research of the optimal control problem in the semi-Markov inventory model

    Energy Technology Data Exchange (ETDEWEB)

    Gorshenin, Andrey K. [Institute of Informatics Problems, Russian Academy of Sciences, Vavilova str., 44/2, Moscow, Russia MIREA, Faculty of Information Technology (Russian Federation); Belousov, Vasily V. [Institute of Informatics Problems, Russian Academy of Sciences, Vavilova str., 44/2, Moscow (Russian Federation); Shnourkoff, Peter V.; Ivanov, Alexey V. [National research university Higher school of economics, Moscow (Russian Federation)

    2015-03-10

    This paper is devoted to the numerical simulation of stochastic system for inventory management products using controlled semi-Markov process. The results of a special software for the system’s research and finding the optimal control are presented.

  1. Numerical research of the optimal control problem in the semi-Markov inventory model

    International Nuclear Information System (INIS)

    Gorshenin, Andrey K.; Belousov, Vasily V.; Shnourkoff, Peter V.; Ivanov, Alexey V.

    2015-01-01

    This paper is devoted to the numerical simulation of stochastic system for inventory management products using controlled semi-Markov process. The results of a special software for the system’s research and finding the optimal control are presented

  2. Probabilistic Reachability for Parametric Markov Models

    DEFF Research Database (Denmark)

    Hahn, Ernst Moritz; Hermanns, Holger; Zhang, Lijun

    2011-01-01

    Given a parametric Markov model, we consider the problem of computing the rational function expressing the probability of reaching a given set of states. To attack this principal problem, Daws has suggested to first convert the Markov chain into a finite automaton, from which a regular expression...

  3. Markov-modulated and feedback fluid queues

    NARCIS (Netherlands)

    Scheinhardt, Willem R.W.

    1998-01-01

    In the last twenty years the field of Markov-modulated fluid queues has received considerable attention. In these models a fluid reservoir receives and/or releases fluid at rates which depend on the actual state of a background Markov chain. In the first chapter of this thesis we give a short

  4. Classification Using Markov Blanket for Feature Selection

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Luo, Jian

    2009-01-01

    Selecting relevant features is in demand when a large data set is of interest in a classification task. It produces a tractable number of features that are sufficient and possibly improve the classification performance. This paper studies a statistical method of Markov blanket induction algorithm...... for filtering features and then applies a classifier using the Markov blanket predictors. The Markov blanket contains a minimal subset of relevant features that yields optimal classification performance. We experimentally demonstrate the improved performance of several classifiers using a Markov blanket...... induction as a feature selection method. In addition, we point out an important assumption behind the Markov blanket induction algorithm and show its effect on the classification performance....

  5. Long time behavior of Markov processes

    Directory of Open Access Journals (Sweden)

    Cattiaux Patrick

    2014-01-01

    Full Text Available These notes correspond to a three hours lecture given during the workshop “Metastability and Stochastic Processes”held in Marne-la-Vallée in September 21st-23rd 2011. I would like to warmly thank the organizers Tony Lelièvre and Arnaud Guillin for a very nice organization and for obliging me first to give the lecture, second to write these notes. I also want to acknowledge all the people who attended the lecture.

  6. Markov Decision Processes Discrete Stochastic Dynamic Programming

    CERN Document Server

    Puterman, Martin L

    2005-01-01

    The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This text is unique in bringing together so many results hitherto found only in part in other texts and papers. . . . The text is fairly self-contained, inclusive of some basic mathematical results needed, and provides a rich diet

  7. A Markov Decision Process * EZUGWU, VO

    African Journals Online (AJOL)

    ADOWIE PERE

    strategy of traders who, in the presence of cost transaction, invest on this risky ... designing autonomous intelligent agent for forest fire fighting. ... minimizing energy consumption and maximizing sensing .... The actions allow us to modify the ...

  8. State space orderings for Gauss-Seidel in Markov chains revisited

    Energy Technology Data Exchange (ETDEWEB)

    Dayar, T. [Bilkent Univ., Ankara (Turkey)

    1996-12-31

    Symmetric state space orderings of a Markov chain may be used to reduce the magnitude of the subdominant eigenvalue of the (Gauss-Seidel) iteration matrix. Orderings that maximize the elemental mass or the number of nonzero elements in the dominant term of the Gauss-Seidel splitting (that is, the term approximating the coefficient matrix) do not necessarily converge faster. An ordering of a Markov chain that satisfies Property-R is semi-convergent. On the other hand, there are semi-convergent symmetric state space orderings that do not satisfy Property-R. For a given ordering, a simple approach for checking Property-R is shown. An algorithm that orders the states of a Markov chain so as to increase the likelihood of satisfying Property-R is presented. The computational complexity of the ordering algorithm is less than that of a single Gauss-Seidel iteration (for sparse matrices). In doing all this, the aim is to gain an insight for faster converging orderings. Results from a variety of applications improve the confidence in the algorithm.

  9. Threshold partitioning of sparse matrices and applications to Markov chains

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hwajeong; Szyld, D.B. [Temple Univ., Philadelphia, PA (United States)

    1996-12-31

    It is well known that the order of the variables and equations of a large, sparse linear system influences the performance of classical iterative methods. In particular if, after a symmetric permutation, the blocks in the diagonal have more nonzeros, classical block methods have a faster asymptotic rate of convergence. In this paper, different ordering and partitioning algorithms for sparse matrices are presented. They are modifications of PABLO. In the new algorithms, in addition to the location of the nonzeros, the values of the entries are taken into account. The matrix resulting after the symmetric permutation has dense blocks along the diagonal, and small entries in the off-diagonal blocks. Parameters can be easily adjusted to obtain, for example, denser blocks, or blocks with elements of larger magnitude. In particular, when the matrices represent Markov chains, the permuted matrices are well suited for block iterative methods that find the corresponding probability distribution. Applications to three types of methods are explored: (1) Classical block methods, such as Block Gauss Seidel. (2) Preconditioned GMRES, where a block diagonal preconditioner is used. (3) Iterative aggregation method (also called aggregation/disaggregation) where the partition obtained from the ordering algorithm with certain parameters is used as an aggregation scheme. In all three cases, experiments are presented which illustrate the performance of the methods with the new orderings. The complexity of the new algorithms is linear in the number of nonzeros and the order of the matrix, and thus adding little computational effort to the overall solution.

  10. Experimental technique of calibration of symmetrical air pollution ...

    Indian Academy of Sciences (India)

    Based on the inherent property of symmetry of air pollution models, a Symmetrical Air Pollution. Model ... process is in compliance with air pollution regula- ..... Ground simulation is achieved through MATLAB package which is based on least-.

  11. Mesotherapy for benign symmetric lipomatosis.

    Science.gov (United States)

    Hasegawa, Toshio; Matsukura, Tomoyuki; Ikeda, Shigaku

    2010-04-01

    Benign symmetric lipomatosis, also known as Madelung disease, is a rare disorder characterized by fat distribution around the shoulders, arms, and neck in the context of chronic alcoholism. Complete excision of nonencapsulated lipomas is difficult. However, reports describing conservative therapeutic measures for lipomatosis are rare. The authors present the case of a 42-year-old man with a diagnosis of benign symmetric lipomatosis who had multiple, large, symmetrical masses in his neck. Multiple phosphatidylcholine injections in the neck were administered 4 weeks apart, a total of seven times to achieve lipolysis. The patient's lipomatosis improved in response to the injections, and he achieved good cosmetic results. Intralesional injection, termed mesotherapy, using phosphatidylcholine is a potentially effective therapy for benign symmetric lipomatosis that should be reconsidered as a therapeutic option for this disease.

  12. Schmidt games and Markov partitions

    International Nuclear Information System (INIS)

    Tseng, Jimmy

    2009-01-01

    Let T be a C 2 -expanding self-map of a compact, connected, C ∞ , Riemannian manifold M. We correct a minor gap in the proof of a theorem from the literature: the set of points whose forward orbits are nondense has full Hausdorff dimension. Our correction allows us to strengthen the theorem. Combining the correction with Schmidt games, we generalize the theorem in dimension one: given a point x 0 in M, the set of points whose forward orbit closures miss x 0 is a winning set. Finally, our key lemma, the no matching lemma, may be of independent interest in the theory of symbolic dynamics or the theory of Markov partitions

  13. Looking for symmetric Bell inequalities

    OpenAIRE

    Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano

    2010-01-01

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell e...

  14. MARKOV CHAIN MODELING OF PERFORMANCE DEGRADATION OF PHOTOVOLTAIC SYSTEM

    OpenAIRE

    E. Suresh Kumar; Asis Sarkar; Dhiren kumar Behera

    2012-01-01

    Modern probability theory studies chance processes for which theknowledge of previous outcomes influence predictions for future experiments. In principle, when a sequence of chance experiments, all of the past outcomes could influence the predictions for the next experiment. In Markov chain type of chance, the outcome of a given experiment can affect the outcome of the next experiment. The system state changes with time and the state X and time t are two random variables. Each of these variab...

  15. Markov chains models, algorithms and applications

    CERN Document Server

    Ching, Wai-Ki; Ng, Michael K; Siu, Tak-Kuen

    2013-01-01

    This new edition of Markov Chains: Models, Algorithms and Applications has been completely reformatted as a text, complete with end-of-chapter exercises, a new focus on management science, new applications of the models, and new examples with applications in financial risk management and modeling of financial data.This book consists of eight chapters.  Chapter 1 gives a brief introduction to the classical theory on both discrete and continuous time Markov chains. The relationship between Markov chains of finite states and matrix theory will also be highlighted. Some classical iterative methods

  16. Markov chains analytic and Monte Carlo computations

    CERN Document Server

    Graham, Carl

    2014-01-01

    Markov Chains: Analytic and Monte Carlo Computations introduces the main notions related to Markov chains and provides explanations on how to characterize, simulate, and recognize them. Starting with basic notions, this book leads progressively to advanced and recent topics in the field, allowing the reader to master the main aspects of the classical theory. This book also features: Numerous exercises with solutions as well as extended case studies.A detailed and rigorous presentation of Markov chains with discrete time and state space.An appendix presenting probabilistic notions that are nec

  17. Extracting Markov Models of Peptide Conformational Dynamics from Simulation Data.

    Science.gov (United States)

    Schultheis, Verena; Hirschberger, Thomas; Carstens, Heiko; Tavan, Paul

    2005-07-01

    A high-dimensional time series obtained by simulating a complex and stochastic dynamical system (like a peptide in solution) may code an underlying multiple-state Markov process. We present a computational approach to most plausibly identify and reconstruct this process from the simulated trajectory. Using a mixture of normal distributions we first construct a maximum likelihood estimate of the point density associated with this time series and thus obtain a density-oriented partition of the data space. This discretization allows us to estimate the transfer operator as a matrix of moderate dimension at sufficient statistics. A nonlinear dynamics involving that matrix and, alternatively, a deterministic coarse-graining procedure are employed to construct respective hierarchies of Markov models, from which the model most plausibly mapping the generating stochastic process is selected by consideration of certain observables. Within both procedures the data are classified in terms of prototypical points, the conformations, marking the various Markov states. As a typical example, the approach is applied to analyze the conformational dynamics of a tripeptide in solution. The corresponding high-dimensional time series has been obtained from an extended molecular dynamics simulation.

  18. Application of Markov chains-entropy to analysis of depositional environments

    Energy Technology Data Exchange (ETDEWEB)

    Men Guizhen; Shi Xiaohong; Zhao Shuzhi

    1989-01-01

    The paper systematically and comprehensively discussed application of Markov chains-entropy to analysis of depositional environments of the upper Carboniferous series Taiyuan Formation in Anjialing, Pingshuo open-cast mine, Shanxi. Definite geological meanings were given respectively to calculated values of transition probability matrix, extremity probability matrix, substitution matrix and the entropy. The lithologic successions of coarse-fine-coarse grained layers from bottom upwards in the coal-bearing series made up the general symmetric cyclic patterns. It was suggested that the coal-bearing strata deposited in the coal-forming environment in delta plain-littoral swamps. Quantitative study of cyclic visibility and variation of formation was conducted. The assemblage relation among stratigraphic sequences and the significance of predicting vertical change were emphasized. Results of study showed that overall analysis of Markov chains was an effective method for analysis of depositional environments of coal-bearing strata. 2 refs., 5 figs.

  19. A scaling analysis of a cat and mouse Markov chain

    NARCIS (Netherlands)

    Litvak, Nelli; Robert, Philippe

    Motivated by an original on-line page-ranking algorithm, starting from an arbitrary Markov chain $(C_n)$ on a discrete state space ${\\cal S}$, a Markov chain $(C_n,M_n)$ on the product space ${\\cal S}^2$, the cat and mouse Markov chain, is constructed. The first coordinate of this Markov chain

  20. APPLICATION OF HIDDEN MARKOV CHAINS IN QUALITY CONTROL

    Directory of Open Access Journals (Sweden)

    Hanife DEMIRALP

    2013-01-01

    Full Text Available The ever growing technological innovations and sophistication in industrial processes require adequate checks on quality. Thus, there is an increasing demand for simple and efficient quality control methods. In this regard the control charts stand out in simplicity and efficiency. In this paper, we propose a method of controlling quality based on the theory of hidden Markov chains. Based on samples drawn at different times from the production process, the method obtains the state of the process probabilistically. The main advantage of the method is that it requires no assumption on the normality of the process output.

  1. Recursive utility in a Markov environment with stochastic growth.

    Science.gov (United States)

    Hansen, Lars Peter; Scheinkman, José A

    2012-07-24

    Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron-Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility.

  2. Multivariate longitudinal data analysis with mixed effects hidden Markov models.

    Science.gov (United States)

    Raffa, Jesse D; Dubin, Joel A

    2015-09-01

    Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random effects between multiple longitudinal responses. This approach was motivated by a smoking cessation clinical trial, where a bivariate longitudinal response involving both a continuous and a binomial response was collected for each participant to monitor smoking behavior. A Bayesian method using Markov chain Monte Carlo is used. Comparison of separate univariate response models to the bivariate response models was undertaken. Our methods are demonstrated on the smoking cessation clinical trial dataset, and properties of our approach are examined through extensive simulation studies. © 2015, The International Biometric Society.

  3. A Bayesian model for binary Markov chains

    Directory of Open Access Journals (Sweden)

    Belkheir Essebbar

    2004-02-01

    Full Text Available This note is concerned with Bayesian estimation of the transition probabilities of a binary Markov chain observed from heterogeneous individuals. The model is founded on the Jeffreys' prior which allows for transition probabilities to be correlated. The Bayesian estimator is approximated by means of Monte Carlo Markov chain (MCMC techniques. The performance of the Bayesian estimates is illustrated by analyzing a small simulated data set.

  4. Subharmonic projections for a quantum Markov semigroup

    International Nuclear Information System (INIS)

    Fagnola, Franco; Rebolledo, Rolando

    2002-01-01

    This article introduces a concept of subharmonic projections for a quantum Markov semigroup, in view of characterizing the support projection of a stationary state in terms of the semigroup generator. These results, together with those of our previous article [J. Math. Phys. 42, 1296 (2001)], lead to a method for proving the existence of faithful stationary states. This is often crucial in the analysis of ergodic properties of quantum Markov semigroups. The method is illustrated by applications to physical models

  5. Transition Effect Matrices and Quantum Markov Chains

    Science.gov (United States)

    Gudder, Stan

    2009-06-01

    A transition effect matrix (TEM) is a quantum generalization of a classical stochastic matrix. By employing a TEM we obtain a quantum generalization of a classical Markov chain. We first discuss state and operator dynamics for a quantum Markov chain. We then consider various types of TEMs and vector states. In particular, we study invariant, equilibrium and singular vector states and investigate projective, bistochastic, invertible and unitary TEMs.

  6. Robust Dynamics and Control of a Partially Observed Markov Chain

    International Nuclear Information System (INIS)

    Elliott, R. J.; Malcolm, W. P.; Moore, J. P.

    2007-01-01

    In a seminal paper, Martin Clark (Communications Systems and Random Process Theory, Darlington, 1977, pp. 721-734, 1978) showed how the filtered dynamics giving the optimal estimate of a Markov chain observed in Gaussian noise can be expressed using an ordinary differential equation. These results offer substantial benefits in filtering and in control, often simplifying the analysis and an in some settings providing numerical benefits, see, for example Malcolm et al. (J. Appl. Math. Stoch. Anal., 2007, to appear).Clark's method uses a gauge transformation and, in effect, solves the Wonham-Zakai equation using variation of constants. In this article, we consider the optimal control of a partially observed Markov chain. This problem is discussed in Elliott et al. (Hidden Markov Models Estimation and Control, Applications of Mathematics Series, vol. 29, 1995). The innovation in our results is that the robust dynamics of Clark are used to compute forward in time dynamics for a simplified adjoint process. A stochastic minimum principle is established

  7. Adaptive Markov Chain Monte Carlo

    KAUST Repository

    Jadoon, Khan

    2016-08-08

    A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In the MCMC simulations, posterior distribution was computed using Bayes rule. The electromagnetic forward model based on the full solution of Maxwell\\'s equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD mini-Explorer. The model parameters and uncertainty for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness are not well estimated as compared to layers electrical conductivity because layer thicknesses in the model exhibits a low sensitivity to the EMI measurements, and is hence difficult to resolve. Application of the proposed MCMC based inversion to the field measurements in a drip irrigation system demonstrate that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provide useful insight about parameter uncertainty for the assessment of the model outputs.

  8. Fitting Hidden Markov Models to Psychological Data

    Directory of Open Access Journals (Sweden)

    Ingmar Visser

    2002-01-01

    Full Text Available Markov models have been used extensively in psychology of learning. Applications of hidden Markov models are rare however. This is partially due to the fact that comprehensive statistics for model selection and model assessment are lacking in the psychological literature. We present model selection and model assessment statistics that are particularly useful in applying hidden Markov models in psychology. These statistics are presented and evaluated by simulation studies for a toy example. We compare AIC, BIC and related criteria and introduce a prediction error measure for assessing goodness-of-fit. In a simulation study, two methods of fitting equality constraints are compared. In two illustrative examples with experimental data we apply selection criteria, fit models with constraints and assess goodness-of-fit. First, data from a concept identification task is analyzed. Hidden Markov models provide a flexible approach to analyzing such data when compared to other modeling methods. Second, a novel application of hidden Markov models in implicit learning is presented. Hidden Markov models are used in this context to quantify knowledge that subjects express in an implicit learning task. This method of analyzing implicit learning data provides a comprehensive approach for addressing important theoretical issues in the field.

  9. Harmonic analysis on symmetric spaces

    CERN Document Server

    Terras, Audrey

    This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards’s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random  matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.

  10. Robust filtering and prediction for systems with embedded finite-state Markov-Chain dynamics

    International Nuclear Information System (INIS)

    Pate, E.B.

    1986-01-01

    This research developed new methodologies for the design of robust near-optimal filters/predictors for a class of system models that exhibit embedded finite-state Markov-chain dynamics. These methodologies are developed through the concepts and methods of stochastic model building (including time-series analysis), game theory, decision theory, and filtering/prediction for linear dynamic systems. The methodology is based on the relationship between the robustness of a class of time-series models and quantization which is applied to the time series as part of the model identification process. This relationship is exploited by utilizing the concept of an equivalence, through invariance of spectra, between the class of Markov-chain models and the class of autoregressive moving average (ARMA) models. This spectral equivalence permits a straightforward implementation of the desirable robust properties of the Markov-chain approximation in a class of models which may be applied in linear-recursive form in a linear Kalman filter/predictor structure. The linear filter/predictor structure is shown to provide asymptotically optimal estimates of states which represent one or more integrations of the Markov-chain state. The development of a new saddle-point theorem for a game based on the Markov-chain model structure gives rise to a technique for determining a worst case Markov-chain process, upon which a robust filter/predictor design if based

  11. Looking for symmetric Bell inequalities

    International Nuclear Information System (INIS)

    Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano

    2010-01-01

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.

  12. Symmetric normalisation for intuitionistic logic

    DEFF Research Database (Denmark)

    Guenot, Nicolas; Straßburger, Lutz

    2014-01-01

    We present two proof systems for implication-only intuitionistic logic in the calculus of structures. The first is a direct adaptation of the standard sequent calculus to the deep inference setting, and we describe a procedure for cut elimination, similar to the one from the sequent calculus......, but using a non-local rewriting. The second system is the symmetric completion of the first, as normally given in deep inference for logics with a DeMorgan duality: all inference rules have duals, as cut is dual to the identity axiom. We prove a generalisation of cut elimination, that we call symmetric...

  13. Diagrams for symmetric product orbifolds

    International Nuclear Information System (INIS)

    Pakman, Ari; Rastelli, Leonardo; Razamat, Shlomo S.

    2009-01-01

    We develop a diagrammatic language for symmetric product orbifolds of two-dimensional conformal field theories. Correlation functions of twist operators are written as sums of diagrams: each diagram corresponds to a branched covering map from a surface where the fields are single-valued to the base sphere where twist operators are inserted. This diagrammatic language facilitates the study of the large N limit and makes more transparent the analogy between symmetric product orbifolds and free non-abelian gauge theories. We give a general algorithm to calculate the leading large N contribution to four-point correlators of twist fields.

  14. Looking for symmetric Bell inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Bancal, Jean-Daniel; Gisin, Nicolas [Group of Applied Physics, University of Geneva, 20 rue de l' Ecole-de Medecine, CH-1211 Geneva 4 (Switzerland); Pironio, Stefano, E-mail: jean-daniel.bancal@unige.c [Laboratoire d' Information Quantique, Universite Libre de Bruxelles (Belgium)

    2010-09-24

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.

  15. Symmetric autocompensating quantum key distribution

    Science.gov (United States)

    Walton, Zachary D.; Sergienko, Alexander V.; Levitin, Lev B.; Saleh, Bahaa E. A.; Teich, Malvin C.

    2004-08-01

    We present quantum key distribution schemes which are autocompensating (require no alignment) and symmetric (Alice and Bob receive photons from a central source) for both polarization and time-bin qubits. The primary benefit of the symmetric configuration is that both Alice and Bob may have passive setups (neither Alice nor Bob is required to make active changes for each run of the protocol). We show that both the polarization and the time-bin schemes may be implemented with existing technology. The new schemes are related to previously described schemes by the concept of advanced waves.

  16. Dijet rates with symmetric Et cuts

    International Nuclear Information System (INIS)

    Banfi, Andrea; Dasgupta, Mrinal

    2004-01-01

    We consider dijet production in the region where symmetric cuts on the transverse energy, E t , are applied to the jets. In this region next-to-leading order calculations are unreliable and an all-order resummation of soft gluon effects is needed, which we carry out. Although, for illustrative purposes, we choose dijets produced in deep inelastic scattering, our general ideas apply additionally to dijets produced in photoproduction or gamma-gamma processes and should be relevant also to the study of prompt di-photon E t spectra in association with a recoiling jet, in hadron-hadron processes. (author)

  17. Grey-Markov prediction model based on background value optimization and central-point triangular whitenization weight function

    Science.gov (United States)

    Ye, Jing; Dang, Yaoguo; Li, Bingjun

    2018-01-01

    Grey-Markov forecasting model is a combination of grey prediction model and Markov chain which show obvious optimization effects for data sequences with characteristics of non-stationary and volatility. However, the state division process in traditional Grey-Markov forecasting model is mostly based on subjective real numbers that immediately affects the accuracy of forecasting values. To seek the solution, this paper introduces the central-point triangular whitenization weight function in state division to calculate possibilities of research values in each state which reflect preference degrees in different states in an objective way. On the other hand, background value optimization is applied in the traditional grey model to generate better fitting data. By this means, the improved Grey-Markov forecasting model is built. Finally, taking the grain production in Henan Province as an example, it verifies this model's validity by comparing with GM(1,1) based on background value optimization and the traditional Grey-Markov forecasting model.

  18. Symmetric Stream Cipher using Triple Transposition Key Method and Base64 Algorithm for Security Improvement

    Science.gov (United States)

    Nurdiyanto, Heri; Rahim, Robbi; Wulan, Nur

    2017-12-01

    Symmetric type cryptography algorithm is known many weaknesses in encryption process compared with asymmetric type algorithm, symmetric stream cipher are algorithm that works on XOR process between plaintext and key, to improve the security of symmetric stream cipher algorithm done improvisation by using Triple Transposition Key which developed from Transposition Cipher and also use Base64 algorithm for encryption ending process, and from experiment the ciphertext that produced good enough and very random.

  19. Finding metastabilities in reversible Markov chains based on incomplete sampling

    Directory of Open Access Journals (Sweden)

    Fackeldey Konstantin

    2017-01-01

    Full Text Available In order to fully characterize the state-transition behaviour of finite Markov chains one needs to provide the corresponding transition matrix P. In many applications such as molecular simulation and drug design, the entries of the transition matrix P are estimated by generating realizations of the Markov chain and determining the one-step conditional probability Pij for a transition from one state i to state j. This sampling can be computational very demanding. Therefore, it is a good idea to reduce the sampling effort. The main purpose of this paper is to design a sampling strategy, which provides a partial sampling of only a subset of the rows of such a matrix P. Our proposed approach fits very well to stochastic processes stemming from simulation of molecular systems or random walks on graphs and it is different from the matrix completion approaches which try to approximate the transition matrix by using a low-rank-assumption. It will be shown how Markov chains can be analyzed on the basis of a partial sampling. More precisely. First, we will estimate the stationary distribution from a partially given matrix P. Second, we will estimate the infinitesimal generator Q of P on the basis of this stationary distribution. Third, from the generator we will compute the leading invariant subspace, which should be identical to the leading invariant subspace of P. Forth, we will apply Robust Perron Cluster Analysis (PCCA+ in order to identify metastabilities using this subspace.

  20. A Bayesian Markov geostatistical model for estimation of hydrogeological properties

    International Nuclear Information System (INIS)

    Rosen, L.; Gustafson, G.

    1996-01-01

    A geostatistical methodology based on Markov-chain analysis and Bayesian statistics was developed for probability estimations of hydrogeological and geological properties in the siting process of a nuclear waste repository. The probability estimates have practical use in decision-making on issues such as siting, investigation programs, and construction design. The methodology is nonparametric which makes it possible to handle information that does not exhibit standard statistical distributions, as is often the case for classified information. Data do not need to meet the requirements on additivity and normality as with the geostatistical methods based on regionalized variable theory, e.g., kriging. The methodology also has a formal way for incorporating professional judgments through the use of Bayesian statistics, which allows for updating of prior estimates to posterior probabilities each time new information becomes available. A Bayesian Markov Geostatistical Model (BayMar) software was developed for implementation of the methodology in two and three dimensions. This paper gives (1) a theoretical description of the Bayesian Markov Geostatistical Model; (2) a short description of the BayMar software; and (3) an example of application of the model for estimating the suitability for repository establishment with respect to the three parameters of lithology, hydraulic conductivity, and rock quality designation index (RQD) at 400--500 meters below ground surface in an area around the Aespoe Hard Rock Laboratory in southeastern Sweden

  1. Hidden Markov models: the best models for forager movements?

    Science.gov (United States)

    Joo, Rocio; Bertrand, Sophie; Tam, Jorge; Fablet, Ronan

    2013-01-01

    One major challenge in the emerging field of movement ecology is the inference of behavioural modes from movement patterns. This has been mainly addressed through Hidden Markov models (HMMs). We propose here to evaluate two sets of alternative and state-of-the-art modelling approaches. First, we consider hidden semi-Markov models (HSMMs). They may better represent the behavioural dynamics of foragers since they explicitly model the duration of the behavioural modes. Second, we consider discriminative models which state the inference of behavioural modes as a classification issue, and may take better advantage of multivariate and non linear combinations of movement pattern descriptors. For this work, we use a dataset of >200 trips from human foragers, Peruvian fishermen targeting anchovy. Their movements were recorded through a Vessel Monitoring System (∼1 record per hour), while their behavioural modes (fishing, searching and cruising) were reported by on-board observers. We compare the efficiency of hidden Markov, hidden semi-Markov, and three discriminative models (random forests, artificial neural networks and support vector machines) for inferring the fishermen behavioural modes, using a cross-validation procedure. HSMMs show the highest accuracy (80%), significantly outperforming HMMs and discriminative models. Simulations show that data with higher temporal resolution, HSMMs reach nearly 100% of accuracy. Our results demonstrate to what extent the sequential nature of movement is critical for accurately inferring behavioural modes from a trajectory and we strongly recommend the use of HSMMs for such purpose. In addition, this work opens perspectives on the use of hybrid HSMM-discriminative models, where a discriminative setting for the observation process of HSMMs could greatly improve inference performance.

  2. Hidden Markov models: the best models for forager movements?

    Directory of Open Access Journals (Sweden)

    Rocio Joo

    Full Text Available One major challenge in the emerging field of movement ecology is the inference of behavioural modes from movement patterns. This has been mainly addressed through Hidden Markov models (HMMs. We propose here to evaluate two sets of alternative and state-of-the-art modelling approaches. First, we consider hidden semi-Markov models (HSMMs. They may better represent the behavioural dynamics of foragers since they explicitly model the duration of the behavioural modes. Second, we consider discriminative models which state the inference of behavioural modes as a classification issue, and may take better advantage of multivariate and non linear combinations of movement pattern descriptors. For this work, we use a dataset of >200 trips from human foragers, Peruvian fishermen targeting anchovy. Their movements were recorded through a Vessel Monitoring System (∼1 record per hour, while their behavioural modes (fishing, searching and cruising were reported by on-board observers. We compare the efficiency of hidden Markov, hidden semi-Markov, and three discriminative models (random forests, artificial neural networks and support vector machines for inferring the fishermen behavioural modes, using a cross-validation procedure. HSMMs show the highest accuracy (80%, significantly outperforming HMMs and discriminative models. Simulations show that data with higher temporal resolution, HSMMs reach nearly 100% of accuracy. Our results demonstrate to what extent the sequential nature of movement is critical for accurately inferring behavioural modes from a trajectory and we strongly recommend the use of HSMMs for such purpose. In addition, this work opens perspectives on the use of hybrid HSMM-discriminative models, where a discriminative setting for the observation process of HSMMs could greatly improve inference performance.

  3. Symmetric relations of finite negativity

    NARCIS (Netherlands)

    Kaltenbaeck, M.; Winkler, H.; Woracek, H.; Forster, KH; Jonas, P; Langer, H

    2006-01-01

    We construct and investigate a space which is related to a symmetric linear relation S of finite negativity on an almost Pontryagin space. This space is the indefinite generalization of the completion of dom S with respect to (S.,.) for a strictly positive S on a Hilbert space.

  4. Tilting-connected symmetric algebras

    OpenAIRE

    Aihara, Takuma

    2010-01-01

    The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.

  5. Symmetric group representations and Z

    OpenAIRE

    Adve, Anshul; Yong, Alexander

    2017-01-01

    We discuss implications of the following statement about the representation theory of symmetric groups: every integer appears infinitely often as an irreducible character evaluation, and every nonnegative integer appears infinitely often as a Littlewood-Richardson coefficient and as a Kronecker coefficient.

  6. Symmetric Key Authentication Services Revisited

    NARCIS (Netherlands)

    Crispo, B.; Popescu, B.C.; Tanenbaum, A.S.

    2004-01-01

    Most of the symmetric key authentication schemes deployed today are based on principles introduced by Needham and Schroeder [15] more than twenty years ago. However, since then, the computing environment has evolved from a LAN-based client-server world to include new paradigms, including wide area

  7. Quantum systems and symmetric spaces

    International Nuclear Information System (INIS)

    Olshanetsky, M.A.; Perelomov, A.M.

    1978-01-01

    Certain class of quantum systems with Hamiltonians related to invariant operators on symmetric spaces has been investigated. A number of physical facts have been derived as a consequence. In the classical limit completely integrable systems related to root systems are obtained

  8. The symmetric longest queue system

    NARCIS (Netherlands)

    van Houtum, Geert-Jan; Adan, Ivo; van der Wal, Jan

    1997-01-01

    We derive the performance of the exponential symmetric longest queue system from two variants: a longest queue system with Threshold Rejection of jobs and one with Threshold Addition of jobs. It is shown that these two systems provide lower and upper bounds for the performance of the longest queue

  9. Hidden Markov models in automatic speech recognition

    Science.gov (United States)

    Wrzoskowicz, Adam

    1993-11-01

    This article describes a method for constructing an automatic speech recognition system based on hidden Markov models (HMMs). The author discusses the basic concepts of HMM theory and the application of these models to the analysis and recognition of speech signals. The author provides algorithms which make it possible to train the ASR system and recognize signals on the basis of distinct stochastic models of selected speech sound classes. The author describes the specific components of the system and the procedures used to model and recognize speech. The author discusses problems associated with the choice of optimal signal detection and parameterization characteristics and their effect on the performance of the system. The author presents different options for the choice of speech signal segments and their consequences for the ASR process. The author gives special attention to the use of lexical, syntactic, and semantic information for the purpose of improving the quality and efficiency of the system. The author also describes an ASR system developed by the Speech Acoustics Laboratory of the IBPT PAS. The author discusses the results of experiments on the effect of noise on the performance of the ASR system and describes methods of constructing HMM's designed to operate in a noisy environment. The author also describes a language for human-robot communications which was defined as a complex multilevel network from an HMM model of speech sounds geared towards Polish inflections. The author also added mandatory lexical and syntactic rules to the system for its communications vocabulary.

  10. Tornadoes and related damage costs: statistical modelling with a semi-Markov approach

    Directory of Open Access Journals (Sweden)

    Guglielmo D’Amico

    2016-09-01

    Full Text Available We propose a statistical approach to modelling for predicting and simulating occurrences of tornadoes and accumulated cost distributions over a time interval. This is achieved by modelling the tornado intensity, measured with the Fujita scale, as a stochastic process. Since the Fujita scale divides tornado intensity into six states, it is possible to model the tornado intensity by using Markov and semi-Markov models. We demonstrate that the semi-Markov approach is able to reproduce the duration effect that is detected in tornado occurrence. The superiority of the semi-Markov model as compared to the Markov chain model is also affirmed by means of a statistical test of hypothesis. As an application, we compute the expected value and the variance of the costs generated by the tornadoes over a given time interval in a given area. The paper contributes to the literature by demonstrating that semi-Markov models represent an effective tool for physical analysis of tornadoes as well as for the estimation of the economic damages to human things.

  11. Data-driven Markov models and their application in the evaluation of adverse events in radiotherapy

    Science.gov (United States)

    Abler, Daniel; Kanellopoulos, Vassiliki; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken

    2013-01-01

    Decision-making processes in medicine rely increasingly on modelling and simulation techniques; they are especially useful when combining evidence from multiple sources. Markov models are frequently used to synthesize the available evidence for such simulation studies, by describing disease and treatment progress, as well as associated factors such as the treatment's effects on a patient's life and the costs to society. When the same decision problem is investigated by multiple stakeholders, differing modelling assumptions are often applied, making synthesis and interpretation of the results difficult. This paper proposes a standardized approach towards the creation of Markov models. It introduces the notion of ‘general Markov models’, providing a common definition of the Markov models that underlie many similar decision problems, and develops a language for their specification. We demonstrate the application of this language by developing a general Markov model for adverse event analysis in radiotherapy and argue that the proposed method can automate the creation of Markov models from existing data. The approach has the potential to support the radiotherapy community in conducting systematic analyses involving predictive modelling of existing and upcoming radiotherapy data. We expect it to facilitate the application of modelling techniques in medical decision problems beyond the field of radiotherapy, and to improve the comparability of their results. PMID:23824126

  12. Data-driven Markov models and their application in the evaluation of adverse events in radiotherapy

    International Nuclear Information System (INIS)

    Abler, Daniel; Kanellopoulos, Vassiliki; Dosanjh, Manjit; Davies, Jim; Peach, Ken; Jena, Raj; Kirkby, Norman

    2013-01-01

    Decision-making processes in medicine rely increasingly on modelling and simulation techniques; they are especially useful when combining evidence from multiple sources. Markov models are frequently used to synthesize the available evidence for such simulation studies, by describing disease and treatment progress, as well as associated factors such as the treatment's effects on a patient's life and the costs to society. When the same decision problem is investigated by multiple stakeholders, differing modelling assumptions are often applied, making synthesis and interpretation of the results difficult. This paper proposes a standardized approach towards the creation of Markov models. It introduces the notion of 'general Markov models', providing a common definition of the Markov models that underlie many similar decision problems, and develops a language for their specification. We demonstrate the application of this language by developing a general Markov model for adverse event analysis in radiotherapy and argue that the proposed method can automate the creation of Markov models from existing data. The approach has the potential to support the radiotherapy community in conducting systematic analyses involving predictive modelling of existing and upcoming radiotherapy data. We expect it to facilitate the application of modelling techniques in medical decision problems beyond the field of radiotherapy, and to improve the comparability of their results. (author)

  13. Symmetric imaging findings in neuroradiology

    International Nuclear Information System (INIS)

    Zlatareva, D.

    2015-01-01

    Full text: Learning objectives: to make a list of diseases and syndromes which manifest as bilateral symmetric findings on computed tomography and magnetic resonance imaging; to discuss the clinical and radiological differential diagnosis for these diseases; to explain which of these conditions necessitates urgent therapy and when additional studies and laboratory can precise diagnosis. There is symmetry in human body and quite often we compare the affected side to the normal one but in neuroradiology we might have bilateral findings which affected pair structures or corresponding anatomic areas. It is very rare when clinical data prompt diagnosis. Usually clinicians suspect such an involvement but Ct and MRI can reveal symmetric changes and are one of the leading diagnostic tool. The most common location of bilateral findings is basal ganglia and thalamus. There are a number of diseases affecting these structures symmetrically: metabolic and systemic diseases, intoxication, neurodegeneration and vascular conditions, toxoplasmosis, tumors and some infections. Malformations of cortical development and especially bilateral perisylvian polymicrogyria requires not only exact report on the most affected parts but in some cases genetic tests or combination with other clinical symptoms. In the case of herpes simplex encephalitis bilateral temporal involvement is common and this finding very often prompt therapy even before laboratory results. Posterior reversible encephalopathy syndrome (PReS) and some forms of hypoxic ischemic encephalopathy can lead to symmetric changes. In these acute conditions MR plays a crucial role not only in diagnosis but also in monitoring of the therapeutic effect. Patients with neurofibromatosis type 1 or type 2 can demonstrate bilateral optic glioma combined with spinal neurofibroma and bilateral acoustic schwanoma respectively. Mirror-image aneurysm affecting both internal carotid or middle cerebral arteries is an example of symmetry in

  14. Continuous-Time Semi-Markov Models in Health Economic Decision Making: An Illustrative Example in Heart Failure Disease Management.

    Science.gov (United States)

    Cao, Qi; Buskens, Erik; Feenstra, Talitha; Jaarsma, Tiny; Hillege, Hans; Postmus, Douwe

    2016-01-01

    Continuous-time state transition models may end up having large unwieldy structures when trying to represent all relevant stages of clinical disease processes by means of a standard Markov model. In such situations, a more parsimonious, and therefore easier-to-grasp, model of a patient's disease progression can often be obtained by assuming that the future state transitions do not depend only on the present state (Markov assumption) but also on the past through time since entry in the present state. Despite that these so-called semi-Markov models are still relatively straightforward to specify and implement, they are not yet routinely applied in health economic evaluation to assess the cost-effectiveness of alternative interventions. To facilitate a better understanding of this type of model among applied health economic analysts, the first part of this article provides a detailed discussion of what the semi-Markov model entails and how such models can be specified in an intuitive way by adopting an approach called vertical modeling. In the second part of the article, we use this approach to construct a semi-Markov model for assessing the long-term cost-effectiveness of 3 disease management programs for heart failure. Compared with a standard Markov model with the same disease states, our proposed semi-Markov model fitted the observed data much better. When subsequently extrapolating beyond the clinical trial period, these relatively large differences in goodness-of-fit translated into almost a doubling in mean total cost and a 60-d decrease in mean survival time when using the Markov model instead of the semi-Markov model. For the disease process considered in our case study, the semi-Markov model thus provided a sensible balance between model parsimoniousness and computational complexity. © The Author(s) 2015.

  15. Maximally reliable Markov chains under energy constraints.

    Science.gov (United States)

    Escola, Sean; Eisele, Michael; Miller, Kenneth; Paninski, Liam

    2009-07-01

    Signal-to-noise ratios in physical systems can be significantly degraded if the outputs of the systems are highly variable. Biological processes for which highly stereotyped signal generations are necessary features appear to have reduced their signal variabilities by employing multiple processing steps. To better understand why this multistep cascade structure might be desirable, we prove that the reliability of a signal generated by a multistate system with no memory (i.e., a Markov chain) is maximal if and only if the system topology is such that the process steps irreversibly through each state, with transition rates chosen such that an equal fraction of the total signal is generated in each state. Furthermore, our result indicates that by increasing the number of states, it is possible to arbitrarily increase the reliability of the system. In a physical system, however, an energy cost is associated with maintaining irreversible transitions, and this cost increases with the number of such transitions (i.e., the number of states). Thus, an infinite-length chain, which would be perfectly reliable, is infeasible. To model the effects of energy demands on the maximally reliable solution, we numerically optimize the topology under two distinct energy functions that penalize either irreversible transitions or incommunicability between states, respectively. In both cases, the solutions are essentially irreversible linear chains, but with upper bounds on the number of states set by the amount of available energy. We therefore conclude that a physical system for which signal reliability is important should employ a linear architecture, with the number of states (and thus the reliability) determined by the intrinsic energy constraints of the system.

  16. Zipf exponent of trajectory distribution in the hidden Markov model

    Science.gov (United States)

    Bochkarev, V. V.; Lerner, E. Yu

    2014-03-01

    This paper is the first step of generalization of the previously obtained full classification of the asymptotic behavior of the probability for Markov chain trajectories for the case of hidden Markov models. The main goal is to study the power (Zipf) and nonpower asymptotics of the frequency list of trajectories of hidden Markov frequencys and to obtain explicit formulae for the exponent of the power asymptotics. We consider several simple classes of hidden Markov models. We prove that the asymptotics for a hidden Markov model and for the corresponding Markov chain can be essentially different.

  17. Zipf exponent of trajectory distribution in the hidden Markov model

    International Nuclear Information System (INIS)

    Bochkarev, V V; Lerner, E Yu

    2014-01-01

    This paper is the first step of generalization of the previously obtained full classification of the asymptotic behavior of the probability for Markov chain trajectories for the case of hidden Markov models. The main goal is to study the power (Zipf) and nonpower asymptotics of the frequency list of trajectories of hidden Markov frequencys and to obtain explicit formulae for the exponent of the power asymptotics. We consider several simple classes of hidden Markov models. We prove that the asymptotics for a hidden Markov model and for the corresponding Markov chain can be essentially different

  18. Performance Modeling of Communication Networks with Markov Chains

    CERN Document Server

    Mo, Jeonghoon

    2010-01-01

    This book is an introduction to Markov chain modeling with applications to communication networks. It begins with a general introduction to performance modeling in Chapter 1 where we introduce different performance models. We then introduce basic ideas of Markov chain modeling: Markov property, discrete time Markov chain (DTMe and continuous time Markov chain (CTMe. We also discuss how to find the steady state distributions from these Markov chains and how they can be used to compute the system performance metric. The solution methodologies include a balance equation technique, limiting probab

  19. Baryon symmetric big-bang cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Stecker, F.W.

    1978-04-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.

  20. Baryon symmetric big-bang cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1978-04-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation

  1. Coding with partially hidden Markov models

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Rissanen, J.

    1995-01-01

    Partially hidden Markov models (PHMM) are introduced. They are a variation of the hidden Markov models (HMM) combining the power of explicit conditioning on past observations and the power of using hidden states. (P)HMM may be combined with arithmetic coding for lossless data compression. A general...... 2-part coding scheme for given model order but unknown parameters based on PHMM is presented. A forward-backward reestimation of parameters with a redefined backward variable is given for these models and used for estimating the unknown parameters. Proof of convergence of this reestimation is given....... The PHMM structure and the conditions of the convergence proof allows for application of the PHMM to image coding. Relations between the PHMM and hidden Markov models (HMM) are treated. Results of coding bi-level images with the PHMM coding scheme is given. The results indicate that the PHMM can adapt...

  2. Parity-Time Symmetric Photonics

    KAUST Repository

    Zhao, Han

    2018-01-17

    The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy to the complex quantum potentials, photonics provides an ideal platform for visualization of many conceptually striking predictions from the non-Hermitian quantum theory. A rapidly developing field has emerged, namely, PT symmetric photonics, demonstrating intriguing optical phenomena including eigenstate coalescence and spontaneous PT symmetry breaking. The advance of quantum physics, as the feedback, provides photonics with brand-new paradigms to explore the entire complex permittivity plane for novel optical functionalities. Here, we review recent exciting breakthroughs in PT symmetric photonics while systematically presenting their underlying principles guided by non-Hermitian symmetries. The potential device applications for optical communication and computing, bio-chemical sensing, and healthcare are also discussed.

  3. Homotheties of cylindrically symmetric static spacetimes

    International Nuclear Information System (INIS)

    Qadir, A.; Ziad, M.; Sharif, M.

    1998-08-01

    In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)

  4. Maximally Symmetric Composite Higgs Models.

    Science.gov (United States)

    Csáki, Csaba; Ma, Teng; Shu, Jing

    2017-09-29

    Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.

  5. Inhomogeneous Markov Models for Describing Driving Patterns

    DEFF Research Database (Denmark)

    Iversen, Emil Banning; Møller, Jan K.; Morales, Juan Miguel

    2017-01-01

    . Specifically, an inhomogeneous Markov model that captures the diurnal variation in the use of a vehicle is presented. The model is defined by the time-varying probabilities of starting and ending a trip, and is justified due to the uncertainty associated with the use of the vehicle. The model is fitted to data...... collected from the actual utilization of a vehicle. Inhomogeneous Markov models imply a large number of parameters. The number of parameters in the proposed model is reduced using B-splines....

  6. Inhomogeneous Markov Models for Describing Driving Patterns

    DEFF Research Database (Denmark)

    Iversen, Jan Emil Banning; Møller, Jan Kloppenborg; Morales González, Juan Miguel

    . Specically, an inhomogeneous Markov model that captures the diurnal variation in the use of a vehicle is presented. The model is dened by the time-varying probabilities of starting and ending a trip and is justied due to the uncertainty associated with the use of the vehicle. The model is tted to data...... collected from the actual utilization of a vehicle. Inhomogeneous Markov models imply a large number of parameters. The number of parameters in the proposed model is reduced using B-splines....

  7. Detecting Structural Breaks using Hidden Markov Models

    DEFF Research Database (Denmark)

    Ntantamis, Christos

    Testing for structural breaks and identifying their location is essential for econometric modeling. In this paper, a Hidden Markov Model (HMM) approach is used in order to perform these tasks. Breaks are defined as the data points where the underlying Markov Chain switches from one state to another....... The estimation of the HMM is conducted using a variant of the Iterative Conditional Expectation-Generalized Mixture (ICE-GEMI) algorithm proposed by Delignon et al. (1997), that permits analysis of the conditional distributions of economic data and allows for different functional forms across regimes...

  8. Predicting Protein Secondary Structure with Markov Models

    DEFF Research Database (Denmark)

    Fischer, Paul; Larsen, Simon; Thomsen, Claus

    2004-01-01

    we are considering here, is to predict the secondary structure from the primary one. To this end we train a Markov model on training data and then use it to classify parts of unknown protein sequences as sheets, helices or coils. We show how to exploit the directional information contained...... in the Markov model for this task. Classifications that are purely based on statistical models might not always be biologically meaningful. We present combinatorial methods to incorporate biological background knowledge to enhance the prediction performance....

  9. Estimation with Right-Censored Observations Under A Semi-Markov Model.

    Science.gov (United States)

    Zhao, Lihui; Hu, X Joan

    2013-06-01

    The semi-Markov process often provides a better framework than the classical Markov process for the analysis of events with multiple states. The purpose of this paper is twofold. First, we show that in the presence of right censoring, when the right end-point of the support of the censoring time is strictly less than the right end-point of the support of the semi-Markov kernel, the transition probability of the semi-Markov process is nonidentifiable, and the estimators proposed in the literature are inconsistent in general. We derive the set of all attainable values for the transition probability based on the censored data, and we propose a nonparametric inference procedure for the transition probability using this set. Second, the conventional approach to constructing confidence bands is not applicable for the semi-Markov kernel and the sojourn time distribution. We propose new perturbation resampling methods to construct these confidence bands. Different weights and transformations are explored in the construction. We use simulation to examine our proposals and illustrate them with hospitalization data from a recent cancer survivor study.

  10. On symmetric structures of order two

    Directory of Open Access Journals (Sweden)

    Michel Bousquet

    2008-04-01

    Full Text Available Let (ω n 0 < n be the sequence known as Integer Sequence A047749 http://www.research.att.com/ njas/sequences/A047749 In this paper, we show that the integer ω n enumerates various kinds of symmetric structures of order two. We first consider ternary trees having a reflexive symmetry and we relate all symmetric combinatorial objects by means of bijection. We then generalize the symmetric structures and correspondences to an infinite family of symmetric objects.

  11. Prediction of Annual Rainfall Pattern Using Hidden Markov Model ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Hidden Markov model is very influential in stochastic world because of its ... the earth from the clouds. The usual ... Rainfall modelling and ... Markov Models have become popular tools ... environment sciences, University of Jos, plateau state,.

  12. Extending Markov Automata with State and Action Rewards

    NARCIS (Netherlands)

    Guck, Dennis; Timmer, Mark; Blom, Stefan; Bertrand, N.; Bortolussi, L.

    This presentation introduces the Markov Reward Automaton (MRA), an extension of the Markov automaton that allows the modelling of systems incorporating rewards in addition to nondeterminism, discrete probabilistic choice and continuous stochastic timing. Our models support both rewards that are

  13. Assessing type I error and power of multistate Markov models for panel data-A simulation study.

    Science.gov (United States)

    Cassarly, Christy; Martin, Renee' H; Chimowitz, Marc; Peña, Edsel A; Ramakrishnan, Viswanathan; Palesch, Yuko Y

    2017-01-01

    Ordinal outcomes collected at multiple follow-up visits are common in clinical trials. Sometimes, one visit is chosen for the primary analysis and the scale is dichotomized amounting to loss of information. Multistate Markov models describe how a process moves between states over time. Here, simulation studies are performed to investigate the type I error and power characteristics of multistate Markov models for panel data with limited non-adjacent state transitions. The results suggest that the multistate Markov models preserve the type I error and adequate power is achieved with modest sample sizes for panel data with limited non-adjacent state transitions.

  14. Hidden-Markov-Model Analysis Of Telemanipulator Data

    Science.gov (United States)

    Hannaford, Blake; Lee, Paul

    1991-01-01

    Mathematical model and procedure based on hidden-Markov-model concept undergoing development for use in analysis and prediction of outputs of force and torque sensors of telerobotic manipulators. In model, overall task broken down into subgoals, and transition probabilities encode ease with which operator completes each subgoal. Process portion of model encodes task-sequence/subgoal structure, and probability-density functions for forces and torques associated with each state of manipulation encode sensor signals that one expects to observe at subgoal. Parameters of model constructed from engineering knowledge of task.

  15. Perturbation theory for Markov chains via Wasserstein distance

    NARCIS (Netherlands)

    Rudolf, Daniel; Schweizer, Nikolaus

    2017-01-01

    Perturbation theory for Markov chains addresses the question of how small differences in the transition probabilities of Markov chains are reflected in differences between their distributions. We prove powerful and flexible bounds on the distance of the nth step distributions of two Markov chains

  16. Reflection Positive Stochastic Processes Indexed by Lie Groups

    Science.gov (United States)

    Jorgensen, Palle E. T.; Neeb, Karl-Hermann; Ólafsson, Gestur

    2016-06-01

    Reflection positivity originates from one of the Osterwalder-Schrader axioms for constructive quantum field theory. It serves as a bridge between euclidean and relativistic quantum field theory. In mathematics, more specifically, in representation theory, it is related to the Cartan duality of symmetric Lie groups (Lie groups with an involution) and results in a transformation of a unitary representation of a symmetric Lie group to a unitary representation of its Cartan dual. In this article we continue our investigation of representation theoretic aspects of reflection positivity by discussing reflection positive Markov processes indexed by Lie groups, measures on path spaces, and invariant gaussian measures in spaces of distribution vectors. This provides new constructions of reflection positive unitary representations.

  17. Evaluation of Usability Utilizing Markov Models

    Science.gov (United States)

    Penedo, Janaina Rodrigues; Diniz, Morganna; Ferreira, Simone Bacellar Leal; Silveira, Denis S.; Capra, Eliane

    2012-01-01

    Purpose: The purpose of this paper is to analyze the usability of a remote learning system in its initial development phase, using a quantitative usability evaluation method through Markov models. Design/methodology/approach: The paper opted for an exploratory study. The data of interest of the research correspond to the possible accesses of users…

  18. Bayesian analysis for reversible Markov chains

    NARCIS (Netherlands)

    Diaconis, P.; Rolles, S.W.W.

    2006-01-01

    We introduce a natural conjugate prior for the transition matrix of a reversible Markov chain. This allows estimation and testing. The prior arises from random walk with reinforcement in the same way the Dirichlet prior arises from Pólya’s urn. We give closed form normalizing constants, a simple

  19. Discounted Markov games : generalized policy iteration method

    NARCIS (Netherlands)

    Wal, van der J.

    1978-01-01

    In this paper, we consider two-person zero-sum discounted Markov games with finite state and action spaces. We show that the Newton-Raphson or policy iteration method as presented by Pollats-chek and Avi-Itzhak does not necessarily converge, contradicting a proof of Rao, Chandrasekaran, and Nair.

  20. Hidden Markov Models for Human Genes

    DEFF Research Database (Denmark)

    Baldi, Pierre; Brunak, Søren; Chauvin, Yves

    1997-01-01

    We analyse the sequential structure of human genomic DNA by hidden Markov models. We apply models of widely different design: conventional left-right constructs and models with a built-in periodic architecture. The models are trained on segments of DNA sequences extracted such that they cover com...

  1. Markov Trends in Macroeconomic Time Series

    NARCIS (Netherlands)

    R. Paap (Richard)

    1997-01-01

    textabstractMany macroeconomic time series are characterised by long periods of positive growth, expansion periods, and short periods of negative growth, recessions. A popular model to describe this phenomenon is the Markov trend, which is a stochastic segmented trend where the slope depends on the

  2. Optimal dividend distribution under Markov regime switching

    NARCIS (Netherlands)

    Jiang, Z.; Pistorius, M.

    2012-01-01

    We investigate the problem of optimal dividend distribution for a company in the presence of regime shifts. We consider a company whose cumulative net revenues evolve as a Brownian motion with positive drift that is modulated by a finite state Markov chain, and model the discount rate as a

  3. Revisiting Weak Simulation for Substochastic Markov Chains

    DEFF Research Database (Denmark)

    Jansen, David N.; Song, Lei; Zhang, Lijun

    2013-01-01

    of the logic PCTL\\x, and its completeness was conjectured. We revisit this result and show that soundness does not hold in general, but only for Markov chains without divergence. It is refuted for some systems with substochastic distributions. Moreover, we provide a counterexample to completeness...

  4. Multi-dimensional quasitoeplitz Markov chains

    Directory of Open Access Journals (Sweden)

    Alexander N. Dudin

    1999-01-01

    Full Text Available This paper deals with multi-dimensional quasitoeplitz Markov chains. We establish a sufficient equilibrium condition and derive a functional matrix equation for the corresponding vector-generating function, whose solution is given algorithmically. The results are demonstrated in the form of examples and applications in queues with BMAP-input, which operate in synchronous random environment.

  5. Markov chains with quasitoeplitz transition matrix

    Directory of Open Access Journals (Sweden)

    Alexander M. Dukhovny

    1989-01-01

    Full Text Available This paper investigates a class of Markov chains which are frequently encountered in various applications (e.g. queueing systems, dams and inventories with feedback. Generating functions of transient and steady state probabilities are found by solving a special Riemann boundary value problem on the unit circle. A criterion of ergodicity is established.

  6. Markov Chain Estimation of Avian Seasonal Fecundity

    Science.gov (United States)

    To explore the consequences of modeling decisions on inference about avian seasonal fecundity we generalize previous Markov chain (MC) models of avian nest success to formulate two different MC models of avian seasonal fecundity that represent two different ways to model renestin...

  7. Model Checking Infinite-State Markov Chains

    NARCIS (Netherlands)

    Remke, Anne Katharina Ingrid; Haverkort, Boudewijn R.H.M.; Cloth, L.

    2004-01-01

    In this paper algorithms for model checking CSL (continuous stochastic logic) against infinite-state continuous-time Markov chains of so-called quasi birth-death type are developed. In doing so we extend the applicability of CSL model checking beyond the recently proposed case for finite-state

  8. Model Checking Markov Chains: Techniques and Tools

    NARCIS (Netherlands)

    Zapreev, I.S.

    2008-01-01

    This dissertation deals with four important aspects of model checking Markov chains: the development of efficient model-checking tools, the improvement of model-checking algorithms, the efficiency of the state-space reduction techniques, and the development of simulation-based model-checking

  9. Model Checking Structured Infinite Markov Chains

    NARCIS (Netherlands)

    Remke, Anne Katharina Ingrid

    2008-01-01

    In the past probabilistic model checking hast mostly been restricted to finite state models. This thesis explores the possibilities of model checking with continuous stochastic logic (CSL) on infinite-state Markov chains. We present an in-depth treatment of model checking algorithms for two special

  10. Hidden Markov models for labeled sequences

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose

    1994-01-01

    A hidden Markov model for labeled observations, called a class HMM, is introduced and a maximum likelihood method is developed for estimating the parameters of the model. Instead of training it to model the statistics of the training sequences it is trained to optimize recognition. It resembles MMI...

  11. Uncovering and testing the fuzzy clusters based on lumped Markov chain in complex network.

    Science.gov (United States)

    Jing, Fan; Jianbin, Xie; Jinlong, Wang; Jinshuai, Qu

    2013-01-01

    Identifying clusters, namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. By means of a lumped Markov chain model of a random walker, we propose two novel ways of inferring the lumped markov transition matrix. Furthermore, some useful results are proposed based on the analysis of the properties of the lumped Markov process. To find the best partition of complex networks, a novel framework including two algorithms for network partition based on the optimal lumped Markovian dynamics is derived to solve this problem. The algorithms are constructed to minimize the objective function under this framework. It is demonstrated by the simulation experiments that our algorithms can efficiently determine the probabilities with which a node belongs to different clusters during the learning process and naturally supports the fuzzy partition. Moreover, they are successfully applied to real-world network, including the social interactions between members of a karate club.

  12. Stochastic modeling of pitting corrosion in underground pipelines using Markov chains

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, J.C.; Caleyo, F.; Hallen, J.M.; Araujo, J.E. [Instituto Politecnico Nacional (IPN), Mexico D.F. (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas (ESIQIE); Valor, A. [Universidad de La Habana, La Habana (Cuba)

    2009-07-01

    A non-homogenous, linear growth (pure birth) Markov process, with discrete states in continuous time, has been used to model external pitting corrosion in underground pipelines. The transition probability function for the pit depth is obtained from the analytical solution of the forward Kolmogorov equations for this process. The parameters of the transition probability function between depth states can be identified from the observed time evolution of the mean of the pit depth distribution. Monte Carlo simulations were used to predict the time evolution of the mean value of the pit depth distribution in soils with different physicochemical characteristics. The simulated distributions have been used to create an empirical Markov-chain-based stochastic model for predicting the evolution of pitting corrosion from the observed properties of the soil in contact with the pipeline. Real- life case studies, involving simulated and measured pit depth distributions are presented to illustrate the application of the proposed Markov chains model. (author)

  13. Master equation for She-Leveque scaling and its classification in terms of other Markov models of developed turbulence

    Science.gov (United States)

    Nickelsen, Daniel

    2017-07-01

    The statistics of velocity increments in homogeneous and isotropic turbulence exhibit universal features in the limit of infinite Reynolds numbers. After Kolmogorov’s scaling law from 1941, many turbulence models aim for capturing these universal features, some are known to have an equivalent formulation in terms of Markov processes. We derive the Markov process equivalent to the particularly successful scaling law postulated by She and Leveque. The Markov process is a jump process for velocity increments u(r) in scale r in which the jumps occur randomly but with deterministic width in u. From its master equation we establish a prescription to simulate the She-Leveque process and compare it with Kolmogorov scaling. To put the She-Leveque process into the context of other established turbulence models on the Markov level, we derive a diffusion process for u(r) using two properties of the Navier-Stokes equation. This diffusion process already includes Kolmogorov scaling, extended self-similarity and a class of random cascade models. The fluctuation theorem of this Markov process implies a ‘second law’ that puts a loose bound on the multipliers of the random cascade models. This bound explicitly allows for instances of inverse cascades, which are necessary to satisfy the fluctuation theorem. By adding a jump process to the diffusion process, we go beyond Kolmogorov scaling and formulate the most general scaling law for the class of Markov processes having both diffusion and jump parts. This Markov scaling law includes She-Leveque scaling and a scaling law derived by Yakhot.

  14. Symmetric functions and orthogonal polynomials

    CERN Document Server

    Macdonald, I G

    1997-01-01

    One of the most classical areas of algebra, the theory of symmetric functions and orthogonal polynomials has long been known to be connected to combinatorics, representation theory, and other branches of mathematics. Written by perhaps the most famous author on the topic, this volume explains some of the current developments regarding these connections. It is based on lectures presented by the author at Rutgers University. Specifically, he gives recent results on orthogonal polynomials associated with affine Hecke algebras, surveying the proofs of certain famous combinatorial conjectures.

  15. Immanant Conversion on Symmetric Matrices

    Directory of Open Access Journals (Sweden)

    Purificação Coelho M.

    2014-01-01

    Full Text Available Letr Σn(C denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C -> Σn (C satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB = dχ·(Φ(Α + αΦ(Β for all matrices A,В ε Σ„(С and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С.

  16. Markov analysis of different standby computer based systems

    International Nuclear Information System (INIS)

    Srinivas, G.; Guptan, Rajee; Mohan, Nalini; Ghadge, S.G.; Bajaj, S.S.

    2006-01-01

    As against the conventional triplicated systems of hardware and the generation of control signals for the actuator elements by means of redundant hardwired median circuits, employed in the early Indian PHWR's, a new approach of generating control signals based on software by a redundant system of computers is introduced in the advanced/current generation of Indian PHWR's. Reliability is increased by fault diagnostics and automatic switch over of all the loads to one computer in case of total failure of the other computer. Independent processing by a redundant CPU in each system enables inter-comparison to quickly identify system failure, in addition to the other self-diagnostic features provided. Combinatorial models such as reliability block diagrams and fault trees are frequently used to predict the reliability, maintainability and safety of complex systems. Unfortunately, these methods cannot accurately model dynamic system behavior; Because of its unique ability to handle dynamic cases, Markov analysis can be a powerful tool in the reliability maintainability and safety (RMS) analyses of dynamic systems. A Markov model breaks the system configuration into a number of states. Each of these states is connected to all other states by transition rates. It then utilizes transition matrices to evaluate the reliability and safety of the systems, either through matrix manipulation or other analytical solution methods, such as Laplace transforms. Thus, Markov analysis is a powerful reliability, maintainability and safety analysis tool. It allows the analyst to model complex, dynamic, highly distributed, fault tolerant systems that would otherwise be very difficult to model using classical techniques like the Fault tree method. The Dual Processor Hot Standby Process Control System (DPHS-PCS) and the Computerized Channel Temperature Monitoring System (CCTM) are typical examples of hot standby systems in the Indian PHWR's. While such systems currently in use in Indian PHWR

  17. Comparison of Langevin and Markov channel noise models for neuronal signal generation.

    Science.gov (United States)

    Sengupta, B; Laughlin, S B; Niven, J E

    2010-01-01

    The stochastic opening and closing of voltage-gated ion channels produce noise in neurons. The effect of this noise on the neuronal performance has been modeled using either an approximate or Langevin model based on stochastic differential equations or an exact model based on a Markov process model of channel gating. Yet whether the Langevin model accurately reproduces the channel noise produced by the Markov model remains unclear. Here we present a comparison between Langevin and Markov models of channel noise in neurons using single compartment Hodgkin-Huxley models containing either Na+ and K+, or only K+ voltage-gated ion channels. The performance of the Langevin and Markov models was quantified over a range of stimulus statistics, membrane areas, and channel numbers. We find that in comparison to the Markov model, the Langevin model underestimates the noise contributed by voltage-gated ion channels, overestimating information rates for both spiking and nonspiking membranes. Even with increasing numbers of channels, the difference between the two models persists. This suggests that the Langevin model may not be suitable for accurately simulating channel noise in neurons, even in simulations with large numbers of ion channels.

  18. Assessing type I error and power of multistate Markov models for panel data-A simulation study

    OpenAIRE

    Cassarly, Christy; Martin, Renee’ H.; Chimowitz, Marc; Peña, Edsel A.; Ramakrishnan, Viswanathan; Palesch, Yuko Y.

    2016-01-01

    Ordinal outcomes collected at multiple follow-up visits are common in clinical trials. Sometimes, one visit is chosen for the primary analysis and the scale is dichotomized amounting to loss of information. Multistate Markov models describe how a process moves between states over time. Here, simulation studies are performed to investigate the type I error and power characteristics of multistate Markov models for panel data with limited non-adjacent state transitions. The results suggest that ...

  19. Mixed Vehicle Flow At Signalized Intersection: Markov Chain Analysis

    Directory of Open Access Journals (Sweden)

    Gertsbakh Ilya B.

    2015-09-01

    Full Text Available We assume that a Poisson flow of vehicles arrives at isolated signalized intersection, and each vehicle, independently of others, represents a random number X of passenger car units (PCU’s. We analyze numerically the stationary distribution of the queue process {Zn}, where Zn is the number of PCU’s in a queue at the beginning of the n-th red phase, n → ∞. We approximate the number Yn of PCU’s arriving during one red-green cycle by a two-parameter Negative Binomial Distribution (NBD. The well-known fact is that {Zn} follow an infinite-state Markov chain. We approximate its stationary distribution using a finite-state Markov chain. We show numerically that there is a strong dependence of the mean queue length E[Zn] in equilibrium on the input distribution of Yn and, in particular, on the ”over dispersion” parameter γ= Var[Yn]/E[Yn]. For Poisson input, γ = 1. γ > 1 indicates presence of heavy-tailed input. In reality it means that a relatively large ”portion” of PCU’s, considerably exceeding the average, may arrive with high probability during one red-green cycle. Empirical formulas are presented for an accurate estimation of mean queue length as a function of load and g of the input flow. Using the Markov chain technique, we analyze the mean ”virtual” delay time for a car which always arrives at the beginning of the red phase.

  20. Nonequilibrium thermodynamic potentials for continuous-time Markov chains.

    Science.gov (United States)

    Verley, Gatien

    2016-01-01

    We connect the rare fluctuations of an equilibrium (EQ) process and the typical fluctuations of a nonequilibrium (NE) stationary process. In the framework of large deviation theory, this observation allows us to introduce NE thermodynamic potentials. For continuous-time Markov chains, we identify the relevant pairs of conjugated variables and propose two NE ensembles: one with fixed dynamics and fluctuating time-averaged variables, and another with fixed time-averaged variables, but a fluctuating dynamics. Accordingly, we show that NE processes are equivalent to conditioned EQ processes ensuring that NE potentials are Legendre dual. We find a variational principle satisfied by the NE potentials that reach their maximum in the NE stationary state and whose first derivatives produce the NE equations of state and second derivatives produce the NE Maxwell relations generalizing the Onsager reciprocity relations.

  1. [Compared Markov with fractal models by using single-channel experimental and simulation data].

    Science.gov (United States)

    Lan, Tonghan; Wu, Hongxiu; Lin, Jiarui

    2006-10-01

    The gating mechanical kinetical of ion channels has been modeled as a Markov process. In these models it is assumed that the channel protein has a small number of discrete conformational states and kinetic rate constants connecting these states are constant, the transition rate constants among the states is independent both of time and of the previous channel activity. It is assumed in Liebovitch's fractal model that the channel exists in an infinite number of energy states, consequently, transitions from one conductance state to another would be governed by a continuum of rate constants. In this paper, a statistical comparison is presented of Markov and fractal models of ion channel gating, the analysis is based on single-channel data from ion channel voltage-dependence K+ single channel of neuron cell and simulation data from three-states Markov model.

  2. Optomechanically induced absorption in parity-time-symmetric optomechanical systems

    Science.gov (United States)

    Zhang, X. Y.; Guo, Y. Q.; Pei, P.; Yi, X. X.

    2017-06-01

    We explore the optomechanically induced absorption (OMIA) in a parity-time- (PT -) symmetric optomechanical system (OMS). By numerically calculating the Lyapunov exponents, we find out the stability border of the PT -symmetric OMS. The results show that in the PT -symmetric phase the system can be either stable or unstable depending on the coupling constant and the decay rate. In the PT -symmetric broken phase the system can have a stable state only for small gain rates. By calculating the transmission rate of the probe field, we find that there is an inverted optomechanically induced transparency (OMIT) at δ =-ωM and an OMIA at δ =ωM for the PT -symmetric optomechanical system. At each side of δ =-ωM there is an absorption window due to the resonance absorption of the two generated supermodes. Comparing with the case of optomechanics coupled to a passive cavity, we find that the active cavity can enhance the resonance absorption. The absorption rate at δ =ωM increases as the coupling strength between the two cavities increases. Our work provides us with a promising platform for controlling light propagation and light manipulation in terms of PT symmetry, which might have potential applications in quantum information processing and quantum optical devices.

  3. A cascaded three-phase symmetrical multistage voltage multiplier

    International Nuclear Information System (INIS)

    Iqbal, Shahid; Singh, G K; Besar, R; Muhammad, G

    2006-01-01

    A cascaded three-phase symmetrical multistage Cockcroft-Walton voltage multiplier (CW-VM) is proposed in this report. It consists of three single-phase symmetrical voltage multipliers, which are connected in series at their smoothing columns like string of batteries and are driven by three-phase ac power source. The smoothing column of each voltage multiplier is charged twice every cycle independently by respective oscillating columns and discharged in series through load. The charging discharging process completes six times a cycle and therefore the output voltage ripple's frequency is of sixth order of the drive signal frequency. Thus the proposed approach eliminates the first five harmonic components of load generated voltage ripples and sixth harmonic is the major ripple component. The proposed cascaded three-phase symmetrical voltage multiplier has less than half the voltage ripple, and three times larger output voltage and output power than the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the laboratory prototype are given to show the feasibility of proposed cascaded three-phase symmetrical CW-VM

  4. Un calcul de Viterbi pour un Modèle de Markov Caché Contraint

    DEFF Research Database (Denmark)

    Petit, Matthieu; Christiansen, Henning

    2009-01-01

    A hidden Markov model (HMM) is a statistical model in which the system being modeled is assumed to be a Markov process with hidden states. This model has been widely used in speech recognition and biological sequence analysis. Viterbi algorithm has been proposed to compute the most probable value....... Several constraint techniques are used to reduce the search of the most probable value of hidden states of a constrained HMM. An implementation based on PRISM, a logic programming language for statistical modeling, is presented....

  5. Discrete-time semi-Markov modeling of human papillomavirus persistence

    Science.gov (United States)

    Mitchell, C. E.; Hudgens, M. G.; King, C. C.; Cu-Uvin, S.; Lo, Y.; Rompalo, A.; Sobel, J.; Smith, J. S.

    2011-01-01

    Multi-state modeling is often employed to describe the progression of a disease process. In epidemiological studies of certain diseases, the disease state is typically only observed at periodic clinical visits, producing incomplete longitudinal data. In this paper we consider fitting semi-Markov models to estimate the persistence of human papillomavirus (HPV) type-specific infection in studies where the status of HPV type(s) is assessed periodically. Simulation study results are presented indicating the semi-Markov estimator is more accurate than an estimator currently used in the HPV literature. The methods are illustrated using data from the HIV Epidemiology Research Study (HERS). PMID:21538985

  6. The Fracture Mechanical Markov Chain Fatigue Model Compared with Empirical Data

    DEFF Research Database (Denmark)

    Gansted, L.; Brincker, Rune; Hansen, Lars Pilegaard

    The applicability of the FMF-model (Fracture Mechanical Markov Chain Fatigue Model) introduced in Gansted, L., R. Brincker and L. Pilegaard Hansen (1991) is tested by simulations and compared with empirical data. Two sets of data have been used, the Virkler data (aluminium alloy) and data...... established at the Laboratory of Structural Engineering at Aalborg University, the AUC-data, (mild steel). The model, which is based on the assumption, that the crack propagation process can be described by a discrete Space Markov theory, is applicable to constant as well as random loading. It is shown...

  7. Solution of generalized shifted linear systems with complex symmetric matrices

    International Nuclear Information System (INIS)

    Sogabe, Tomohiro; Hoshi, Takeo; Zhang, Shao-Liang; Fujiwara, Takeo

    2012-01-01

    We develop the shifted COCG method [R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara, Linear algebraic calculation of Green’s function for large-scale electronic structure theory, Phys. Rev. B 73 (165108) (2006) 1–9] and the shifted WQMR method [T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, On a weighted quasi-residual minimization strategy of the QMR method for solving complex symmetric shifted linear systems, Electron. Trans. Numer. Anal. 31 (2008) 126–140] for solving generalized shifted linear systems with complex symmetric matrices that arise from the electronic structure theory. The complex symmetric Lanczos process with a suitable bilinear form plays an important role in the development of the methods. The numerical examples indicate that the methods are highly attractive when the inner linear systems can efficiently be solved.

  8. New algorithms for the symmetric tridiagonal eigenvalue computation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, V. [City Univ. of New York, Bronx, NY (United States)]|[International Computer Sciences Institute, Berkeley, CA (United States)

    1994-12-31

    The author presents new algorithms that accelerate the bisection method for the symmetric eigenvalue problem. The algorithms rely on some new techniques, which include acceleration of Newton`s iteration and can also be further applied to acceleration of some other iterative processes, in particular, of iterative algorithms for approximating polynomial zeros.

  9. A mathematical approach for evaluating Markov models in continuous time without discrete-event simulation.

    Science.gov (United States)

    van Rosmalen, Joost; Toy, Mehlika; O'Mahony, James F

    2013-08-01

    Markov models are a simple and powerful tool for analyzing the health and economic effects of health care interventions. These models are usually evaluated in discrete time using cohort analysis. The use of discrete time assumes that changes in health states occur only at the end of a cycle period. Discrete-time Markov models only approximate the process of disease progression, as clinical events typically occur in continuous time. The approximation can yield biased cost-effectiveness estimates for Markov models with long cycle periods and if no half-cycle correction is made. The purpose of this article is to present an overview of methods for evaluating Markov models in continuous time. These methods use mathematical results from stochastic process theory and control theory. The methods are illustrated using an applied example on the cost-effectiveness of antiviral therapy for chronic hepatitis B. The main result is a mathematical solution for the expected time spent in each state in a continuous-time Markov model. It is shown how this solution can account for age-dependent transition rates and discounting of costs and health effects, and how the concept of tunnel states can be used to account for transition rates that depend on the time spent in a state. The applied example shows that the continuous-time model yields more accurate results than the discrete-time model but does not require much computation time and is easily implemented. In conclusion, continuous-time Markov models are a feasible alternative to cohort analysis and can offer several theoretical and practical advantages.

  10. MARKOV CHAIN PORTFOLIO LIQUIDITY OPTIMIZATION MODEL

    Directory of Open Access Journals (Sweden)

    Eder Oliveira Abensur

    2014-05-01

    Full Text Available The international financial crisis of September 2008 and May 2010 showed the importance of liquidity as an attribute to be considered in portfolio decisions. This study proposes an optimization model based on available public data, using Markov chain and Genetic Algorithms concepts as it considers the classic duality of risk versus return and incorporating liquidity costs. The work intends to propose a multi-criterion non-linear optimization model using liquidity based on a Markov chain. The non-linear model was tested using Genetic Algorithms with twenty five Brazilian stocks from 2007 to 2009. The results suggest that this is an innovative development methodology and useful for developing an efficient and realistic financial portfolio, as it considers many attributes such as risk, return and liquidity.

  11. An interlacing theorem for reversible Markov chains

    International Nuclear Information System (INIS)

    Grone, Robert; Salamon, Peter; Hoffmann, Karl Heinz

    2008-01-01

    Reversible Markov chains are an indispensable tool in the modeling of a vast class of physical, chemical, biological and statistical problems. Examples include the master equation descriptions of relaxing physical systems, stochastic optimization algorithms such as simulated annealing, chemical dynamics of protein folding and Markov chain Monte Carlo statistical estimation. Very often the large size of the state spaces requires the coarse graining or lumping of microstates into fewer mesoscopic states, and a question of utmost importance for the validity of the physical model is how the eigenvalues of the corresponding stochastic matrix change under this operation. In this paper we prove an interlacing theorem which gives explicit bounds on the eigenvalues of the lumped stochastic matrix. (fast track communication)

  12. An interlacing theorem for reversible Markov chains

    Energy Technology Data Exchange (ETDEWEB)

    Grone, Robert; Salamon, Peter [Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182-7720 (United States); Hoffmann, Karl Heinz [Institut fuer Physik, Technische Universitaet Chemnitz, D-09107 Chemnitz (Germany)

    2008-05-30

    Reversible Markov chains are an indispensable tool in the modeling of a vast class of physical, chemical, biological and statistical problems. Examples include the master equation descriptions of relaxing physical systems, stochastic optimization algorithms such as simulated annealing, chemical dynamics of protein folding and Markov chain Monte Carlo statistical estimation. Very often the large size of the state spaces requires the coarse graining or lumping of microstates into fewer mesoscopic states, and a question of utmost importance for the validity of the physical model is how the eigenvalues of the corresponding stochastic matrix change under this operation. In this paper we prove an interlacing theorem which gives explicit bounds on the eigenvalues of the lumped stochastic matrix. (fast track communication)

  13. Probabilistic cloning of three symmetric states

    International Nuclear Information System (INIS)

    Jimenez, O.; Bergou, J.; Delgado, A.

    2010-01-01

    We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.

  14. A Bayesian method for construction of Markov models to describe dynamics on various time-scales.

    Science.gov (United States)

    Rains, Emily K; Andersen, Hans C

    2010-10-14

    The dynamics of many biological processes of interest, such as the folding of a protein, are slow and complicated enough that a single molecular dynamics simulation trajectory of the entire process is difficult to obtain in any reasonable amount of time. Moreover, one such simulation may not be sufficient to develop an understanding of the mechanism of the process, and multiple simulations may be necessary. One approach to circumvent this computational barrier is the use of Markov state models. These models are useful because they can be constructed using data from a large number of shorter simulations instead of a single long simulation. This paper presents a new Bayesian method for the construction of Markov models from simulation data. A Markov model is specified by (τ,P,T), where τ is the mesoscopic time step, P is a partition of configuration space into mesostates, and T is an N(P)×N(P) transition rate matrix for transitions between the mesostates in one mesoscopic time step, where N(P) is the number of mesostates in P. The method presented here is different from previous Bayesian methods in several ways. (1) The method uses Bayesian analysis to determine the partition as well as the transition probabilities. (2) The method allows the construction of a Markov model for any chosen mesoscopic time-scale τ. (3) It constructs Markov models for which the diagonal elements of T are all equal to or greater than 0.5. Such a model will be called a "consistent mesoscopic Markov model" (CMMM). Such models have important advantages for providing an understanding of the dynamics on a mesoscopic time-scale. The Bayesian method uses simulation data to find a posterior probability distribution for (P,T) for any chosen τ. This distribution can be regarded as the Bayesian probability that the kinetics observed in the atomistic simulation data on the mesoscopic time-scale τ was generated by the CMMM specified by (P,T). An optimization algorithm is used to find the most

  15. Handbook of Markov chain Monte Carlo

    CERN Document Server

    Brooks, Steve

    2011-01-01

    ""Handbook of Markov Chain Monte Carlo"" brings together the major advances that have occurred in recent years while incorporating enough introductory material for new users of MCMC. Along with thorough coverage of the theoretical foundations and algorithmic and computational methodology, this comprehensive handbook includes substantial realistic case studies from a variety of disciplines. These case studies demonstrate the application of MCMC methods and serve as a series of templates for the construction, implementation, and choice of MCMC methodology.

  16. Second Order Optimality in Markov Decision Chains

    Czech Academy of Sciences Publication Activity Database

    Sladký, Karel

    2017-01-01

    Roč. 53, č. 6 (2017), s. 1086-1099 ISSN 0023-5954 R&D Projects: GA ČR GA15-10331S Institutional support: RVO:67985556 Keywords : Markov decision chains * second order optimality * optimalilty conditions for transient, discounted and average models * policy and value iterations Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 0.379, year: 2016 http://library.utia.cas.cz/separaty/2017/E/sladky-0485146.pdf

  17. Analysis of a quantum Markov chain

    International Nuclear Information System (INIS)

    Marbeau, J.; Gudder, S.

    1990-01-01

    A quantum chain is analogous to a classical stationary Markov chain except that the probability measure is replaced by a complex amplitude measure and the transition probability matrix is replaced by a transition amplitude matrix. After considering the general situation, we study a particular example of a quantum chain whose transition amplitude matrix has the form of a Dirichlet matrix. Such matrices generate a discrete analog of the usual continuum Feynman amplitude. We then compute the probability distribution for these quantum chains

  18. Modelling of cyclical stratigraphy using Markov chains

    Energy Technology Data Exchange (ETDEWEB)

    Kulatilake, P.H.S.W.

    1987-07-01

    State-of-the-art on modelling of cyclical stratigraphy using first-order Markov chains is reviewed. Shortcomings of the presently available procedures are identified. A procedure which eliminates all the identified shortcomings is presented. Required statistical tests to perform this modelling are given in detail. An example (the Oficina formation in eastern Venezuela) is given to illustrate the presented procedure. 12 refs., 3 tabs. 1 fig.

  19. Design and Analysis of Symmetric Primitives

    DEFF Research Database (Denmark)

    Lauridsen, Martin Mehl

    . In the second part, we delve into the matter of the various aspects of designing a symmetric cryptographic primitive. We start by considering generalizations of the widely acclaimed Advanced Encryption Standard (AES) block cipher. In particular, our focus is on a component operation in the cipher which permutes...... analyze and implement modes recommended by the National Institute of Standards and Technology (NIST), as well as authenticated encryption modes from the CAESAR competition, when instantiated with the AES. The data processed in our benchmarking has sizes representative to that of typical Internet traffic...... linear cryptanalysis. We apply this model to the standardized block cipher PRESENT. Finally, we present very generic attacks on two authenticated encryption schemes, AVALANCHE and RBS, by pointing out severe design flaws that can be leveraged to fully recover the secret key with very low complexity...

  20. Classification of symmetric toroidal orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.