Ion pump using cylindrically symmetric spindle magnetic field
Rashid, M. H.
2012-11-01
For all accelerators and many research and industries, excellent vacuum conditions are required and the highest possible pumping rates are necessary. For most applications the standard ion sputtering pump (ISP) meets these requirements and is optimal for financial point of view also. The physical principle of the ISP is well known and many companies manufacture variety of ISP. Most of them use dipole magnetic field produced by permanent magnet and electric dipole field between the electrodes in which tenuous plasma is created because of interaction of between the relatively fast electrons slow residual gas atoms. Performance of an ISP depends basically on the electron cloud density in between the titanium electrodes but in the available present configurations no consideration has been given to electron confinement which needs a mirror magnetic field. If this is incorporated it will make a robust ISP surely; furthermore, the requirement of constant feeding of high voltage to electrodes for supplying sufficient number of electrons will be reduced too. A study has been performed to create sufficient rotationally symmetric spindle magnetic field (SMF) with inherent presence of magnetic mirror effect to electron motion to confine them for longer time for enhancing the density of electron cloud between the electrodes. It will lessen the electric power feeding the electrodes and lengthen their life-time. Construction of further compact and robust ISP is envisaged herein. The field simulation using the commercially available permanent magnet together with simulation of electron motion in such field will be presented and discussed in the paper.
A simple track-fitting method for particles in cylindrically symmetric magnetic fields
International Nuclear Information System (INIS)
Coupland, M.
1977-12-01
A method is described for making a least-squares fit to charged track data in the magnetic field of a polarised target magnet. Spark chambers and multiwire proportional chambers gave full vector information outside the region of magnetic field and horizontal position coordinates near to the polarised target at the centre of the magnetic field. An intrinsic precision of better than 2% is achieved with simple parametrisations and without the need for look-up tables. (author)
International Nuclear Information System (INIS)
Auluck, S.K.H.
1982-01-01
A method of treating problems involving strongly nonadiabatic particle orbits in a magnetic field is described for the case when the system is long-lived on the collisional time scale. A canonical distribution P=Z -1 exp-β(H+Ωpsub(theta)) results from maximization of entropy subject to conservation of the Hamiltonian H and canonical angular momentum psub(theta) for an azimuthally symmetric system. By taking the MIGMA problem as an example, the method of determining the constants β,Ω,Z from the average energy, average angular momentum and the total number of particles is illustrated. Associated physical effects are discussed. (author)
International Nuclear Information System (INIS)
Brito, P E de; Nazareno, H N
2007-01-01
In the present work we treat the problem of a particle in a uniform magnetic field along the symmetric gauge, so chosen since the wavefunctions present the required cylindrical symmetry. It is our understanding that by means of this work we can make a contribution to the teaching of the present subject, as well as encourage students to use computer algebra systems in solving problems of quantum mechanics. We obtained the degeneracy of the spectrum of eigenvalues in a very clear way. Through the use of a computer algebra system we show graphs of the probability density associated with different eigenvalues as well as compare such functions for some degenerate states, which helps us to visualize the physics of the problem. We also present a semiclassical model which gives a physical insight regarding the paradoxical fact that eigenfunctions associated with opposite angular momenta and different energy eigenvalues have the same probability density. Finally, by solving the time-dependent Schroedinger equation we obtain the time evolution of a wave packet that at time zero was considered to be localized in a definite region of the lattice. The centroid of such a packet performs an orbit similar to that obtained in the classical treatment of a particle in a magnetic field
International Nuclear Information System (INIS)
Goyal, Mamta; Bansal, J.L.
1993-01-01
The growth of the boundary layer in an accelerated flow of an electricity conducting fluid past a symmetrical placed body in the presence of uniform transverse magnetic field fixed relative to the body has been studied. The boundary layer equation has been solved by using a method previously developed by Pozzi, based on expressing the unknown velocity in term of an error function and on using differential and integral relations obtained from the balance equation. As examples, the impulsive flow past a circular cylinder and uniformly accelerated flow over a flat plate are considered. It is found that the effect of the magnetic field is to decelerate the fluid motion which results in an earlier boundary layer separation in the impulsive flow past a circular cylinder. The results show a good agreement with the numerical data available in the literature. (author). 30 refs., 4 figs., 2 tabs
Oieroset, M.; Phan, T. D.; Haggerty, C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R. E.; Mozer, F. S.;
2016-01-01
We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric Inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (d(sub i) width) current sheet (at approximately 12 d(sub i) downstream of the X line) was well resolved by MMS, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.
Schöller, Markus; Hubrig, Swetlana
2015-01-01
In this chapter, we give a brief introduction into the use of the Zeeman effect in astronomy and the general detection of magnetic fields in stars, concentrating on the use of FORS2 for longitudinal magnetic field measurements.
Characterization of axially-symmetric magnetic elds
AUTHOR|(CDS)2087237; Buzio, Marco
In solenoids for particle accelerators, the magnetic field is usually mapped by means of 3D Hall-sensing systems through a burdensome and costly procedure. A further problem arises from a coherent treatment between the beam physics requirements, the qualification of numerical models, the design and manufacturing of the magnet, and the magnetic measurements. For example, when the magnet is misaligned with respect to the longitudinal direction of the mapper, the fringe field shows spurious components. A method was therefore developed for measuring the magnetic field of axisymmetric magnets by exploiting their inherent symmetry. The method yields a measurement of the magnetic flux linked with a pair of sensing coils as a function of their longitudinal position. An induction transducer, sensitive to the longitudinal and radial components of the solenoid under test, has been designed and constructed. A transport system moves the transducer along the magnet axis, covering the full length of the magnet and including...
Spherically symmetric scalar field collapse
Indian Academy of Sciences (India)
2013-03-01
Mar 1, 2013 ... Abstract. It is shown that a scalar field, minimally coupled to gravity, may have collapsing modes even when the energy condition is violated, that is, for (ρ + 3p) < 0. This result may be useful in the investigation of the possible clustering of dark energy. All the examples dealt with have apparent horizons ...
Spherically symmetric scalar field collapse
Indian Academy of Sciences (India)
2013-03-01
Mar 1, 2013 ... nonlinearity of Einstien equations could lead to critical phenomena close to the threshold of black hole ... we refer the reader to [4]). Furthermore, the scalar field collapse could also lead to .... Anyway, the physical motivation is that in this case the collapsing model will eventually become an FRW one.
Spherically symmetric scalar field collapse
Indian Academy of Sciences (India)
It is shown that a scalar field, minimally coupled to gravity, may have collapsing modes even when the energy condition is violated, that is, for ( + 3) < 0. This result may be useful in the investigation of the possible clustering of dark energy. All the examples dealt with have apparent horizons formed before the formation of ...
DEFF Research Database (Denmark)
Olsen, Nils
2015-01-01
of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced......he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...
EWPD Constraints on Flavor Symmetric Vector Fields
Grinstein, Benjamín; Trott, Michael
2011-01-01
Electroweak precision data constraints on flavor symmetric vector fields are determined. The flavor multiplets of spin one that we examine are the complete set of fields that couple to quark bi-linears at tree level while not initially breaking the quark global flavor symmetry group. Flavor safe vector masses proximate to, and in some cases below, the electroweak symmetry breaking scale are found to be allowed. Many of these fields provide a flavor safe mechanism to explain the t tbar forward backward anomaly, and can simultaneously significantly raise the allowed values of the Standard Model Higgs mass consistent with electroweak precision data.
International Nuclear Information System (INIS)
Mestel, L.; Arizona Univ., Tucson)
1985-01-01
The role of the Galactic magnetic field in the early stages of star formation is examined. The dynamical and observational consequences of the anisotropic collapse of cool gas clouds permeated by the local Galactic magnetic field are discussed. Magneto-gravitational equilibria of such clouds with subcritical mass-flux ratios, especially in the thin disk approximation, are addressed. Magnetic braking of both subcritical and supercritical masses is considered, and the consequences of flux leakage during the molecular cloud phase are discussed, including the effect on field topology
Coupled dilaton and electromagnetic field in cylindrically symmetric ...
Indian Academy of Sciences (India)
Nature of circular geodesics is also studied in the presence of dilaton field in the cylindrically symmetric spacetime. Keywords. Dilaton field; general relativity; cylindrically symmetric spacetime. PACS Nos 04.50+h; .... For economy of space we skip all details of the intermediate steps and give the final expressions of the ...
International Nuclear Information System (INIS)
Mehdioui, M.; Fahmi, A.; Lassri, H.; Fahoume, M.; Qachaou, A.
2014-01-01
We have studied the elementary magnetic excitations and their dynamics in multilayer Co(t Co)/Pt(t Pt) and Pt(t Pt)/Co(t Co)/Pt(t Pt) under an applied magnetic field. The Heisenberg hamiltonian used takes into account the magneto-crystalline and surface anisotropies, the exchange and dipolar interactions. The calculated excitation spectrum ε N (k) presents a structure with two sub-bands corresponding to the magnons of surface and volume respectively. The existence of a gap of creating these magnons is also highlighted. The lifetimes deduced from these gaps are in good agreement with the results of previous studies. The thermal evolution of the magnetization m z indicates that the system undergoes a dimensional crossover 3D–2D when the temperature increases. The calculated and measured magnetizations are compared and they are in good agreement. The exchange integral and critical temperature values deduced from these adjustments are in very good agreement with the results of previous works. - Highlights: • The magnons of surface and volume exist in Co/Pt and Pt/Co/Pt. • Samples undergo dimensional crossover (3D–2D) when T increases. • A good agreement is obtained between M(T) measured and calculated. • Deduced exchange integrals and critical temperature values are correct. • The magnetism of the sample is reduced by increasing t Pt or capping Co by two Pt layers
International Nuclear Information System (INIS)
Assadi, S.
1994-01-01
Linear and nonlinear magnetohydrodynamic (MHD) stability of current-driven modes are studied in the MST reversed field pinch. Measured low frequency (f < 35 kHz) magnetic fluctuations are consistent with the global resistive tearing instabilities predicted by 3-D MHD simulations. At frequencies above 35 kHz, the magnetic fluctuations were detected to be localized and externally resonant. Discrete dynamo events, ''sawtooth oscillations,'' have been observed in the experimental RFP plasmas. This phenomenon causes the plasma to become unstable to m = 1 tearing modes. The modes that may be important in different phases of these oscillations are identified. These results then assist in nonlinear studies and also help to interpret the spectral broadening of the measured data during a discrete dynamo event. Three-wave nonlinear coupling of spectral Fourier modes is measured in the MST by applying bispectral analysis to magnetic fluctuations measured at the plasma edge at 64 toroidal locations and 16 poloidal locations, permitting observation of coupling over 8 poloidal and 32 toroidal modes. Comparison to bispectra predicted by resistive MHD computation indicates reasonably good agreement. However, during the crash phase of the sawtooth oscillation the nonlinear coupling is strongly enhanced, concomitant with a broadened k-spectrum. During the sawtooth formation the plasma is undergoing a pure diffusive process. The dynamo only occurs during the sawtooth crash. High frequency activity prior to a sawtooth crash is caused by nonlinear frequency (small-scale) mode coupling. Growth rate and coupling coefficients of toroidal mode spectra are calculated by statistical modeling. Temporal evolution of edge toroidal mode spectra has been predicted by transfer function analysis. The driving sources of electrostatic fields are different than for the magnetic fields. The characteristics of tearing modes can be altered by external field errors and addition of impurities to the plasma
Directory of Open Access Journals (Sweden)
A. A. Mazurenko
2017-01-01
Full Text Available Magnetic mode for 3-phase transformer with symmetrical magnetic conductor of frame design has been investigated on schematic model. The scheme consists of three non-linear coils having star-connection without zero wire. Weberampere characteristics correspond to similar parameters of separate frames of a magnetic conductor. It has been accepted that a magnetic flow of every frame is closed on itself without passing into other frame of the magnetic conductor. Electromagnetic state of equivalent diagram has been described by a system of differential equations which were solved with the help of MathCad program. Investigations have resulted in calculation of functions for magnetic frame induction and magnetizing current and their harmonic compositions; dependence of actual amplitude for magnetic field induction on amplitude of the main harmonic induction has been determined in the paper. While executing experiments it has been revealed the following: induction amplitude of the main harmonic in the magnetic field within frames of the magnetic conductor is higher in comparison with the design induction value by 15.5 %; due to non-linearity of weber-ampere characteristics in frames and properties of 3-phase system harmonic components, which are multiple of three, are initiated in the functions of magnetic induction for separate frames; high-order harmonics of function for magnetic frame induction being imposed on the main harmonic decrease an actual amplitude of magnetic field induction practically up to the design induction value within the operational range of the actual amplitude and in this context coefficients of high-order harmonics change insignificantly; harmonic components, which are multiple of three, are absent in magnetizing currents.
Mostert, W.
2017-01-27
We present numerical simulations of ideal magnetohydrodynamics showing suppression of the Richtmyer-Meshkov instability in spherical implosions in the presence of an octahedrally symmetric magnetic field. This field configuration is of interest owing to its high degree of spherical symmetry in comparison with previously considered dihedrally symmetric fields. The simulations indicate that the octahedral field suppresses the instability comparably to the other previously considered candidate fields for light-heavy interface accelerations while retaining a highly symmetric underlying flow even at high field strengths. With this field, there is a reduction in the root-mean-square perturbation amplitude of up to approximately 50% at representative time under the strongest field tested while maintaining a homogeneous suppression pattern compared to the other candidate fields.
Pradhan, Anirudh; Singh, P. K.; Yadav, A. K.
2007-01-01
A plane-symmetric inhomogeneous cosmological model of perfect fluid distribution with electro-magnetic field is obtained. The source of the magnetic field is due to an electric current produced along the z-axis. $F_{12}$ is the non-vanishing component of electromagnetic field tensor. To get a deterministic solution, we assume the free gravitational field is Petrov type-II non-degenerate. The behaviour of the electro-magnetic field tensor together with some physical aspects of the model are al...
National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...
Coupled dilaton and electromagnetic field in cylindrically symmetric ...
Indian Academy of Sciences (India)
An exact solution is obtained for coupled dilaton and electromagnetic ﬁeld in a cylindrically symmetric spacetime where an axial magnetic ﬁeld as well as a radial electric ﬁeld both are present. Depending on the choice of the arbitrary constants our solution reduces either to dilatonic gravity with pure electric ﬁeld or to that ...
Edge fluctuations in the MST [Madison Symmetric Torus] reversed field pinch
International Nuclear Information System (INIS)
Almagri, A.; Assadi, S.; Beckstead, J.; Chartas, G.; Crocker, N.; Den Hartog, D.; Dexter, R.; Hokin, S.; Holly, D.; Nilles, E.; Prager, S.; Rempel, T.; Sarff, J.; Scime, E.; Shen, W.; Spragins, C.; Sprott, J.; Starr, G.; Stoneking, M.; Watts, C.
1990-10-01
Edge magnetic and electrostatic fluctuations are measured in the Madison Symmetric Torus (MST) reversed field pinch. At low frequency ( e > p e /p e where φ and p e are the fluctuating potential and pressure, respectively). From measurements of the fluctuating density, temperature, and potential we infer that the electrostatic fluctuation induced transport of particles and energy can be substantial. 13 refs., 11 figs
The Topology of Symmetric Tensor Fields
Levin, Yingmei; Batra, Rajesh; Hesselink, Lambertus; Levy, Yuval
1997-01-01
Combinatorial topology, also known as "rubber sheet geometry", has extensive applications in geometry and analysis, many of which result from connections with the theory of differential equations. A link between topology and differential equations is vector fields. Recent developments in scientific visualization have shown that vector fields also play an important role in the analysis of second-order tensor fields. A second-order tensor field can be transformed into its eigensystem, namely, eigenvalues and their associated eigenvectors without loss of information content. Eigenvectors behave in a similar fashion to ordinary vectors with even simpler topological structures due to their sign indeterminacy. Incorporating information about eigenvectors and eigenvalues in a display technique known as hyperstreamlines reveals the structure of a tensor field. The simplify and often complex tensor field and to capture its important features, the tensor is decomposed into an isotopic tensor and a deviator. A tensor field and its deviator share the same set of eigenvectors, and therefore they have a similar topological structure. A a deviator determines the properties of a tensor field, while the isotopic part provides a uniform bias. Degenerate points are basic constituents of tensor fields. In 2-D tensor fields, there are only two types of degenerate points; while in 3-D, the degenerate points can be characterized in a Q'-R' plane. Compressible and incompressible flows share similar topological feature due to the similarity of their deviators. In the case of the deformation tensor, the singularities of its deviator represent the area of vortex core in the field. In turbulent flows, the similarities and differences of the topology of the deformation and the Reynolds stress tensors reveal that the basic addie-viscosity assuptions have their validity in turbulence modeling under certain conditions.
Symmetric diophantine approximation over function fields
Zhuang, Weidong
2015-01-01
With focus on study of binary forms and their discriminants and resultants over function fields, we developed an analogue of the geometry of numbers and generalized Mason's ABC theorem. Then we proved a conjecture, which is possibly first formulated by Evertse, over the rational function field and
From PT-symmetric quantum mechanics to conformal field theory
Indian Academy of Sciences (India)
One of the simplest examples of a P T -symmetric quantum system is the scaling Yang–Lee model, a quantum field theory with cubic interaction and purely imaginary coupling. We give a historical review of some facts about this model in ≤ 2 dimensions, from its original definition in connection with phase transitions in the ...
Axially symmetric, stationary gravitational field equations and pseudospherical surfaces
International Nuclear Information System (INIS)
Tomimatsu, Akira.
1981-04-01
For axially symmetric, stationary gravitational field equations, a new Lax pair of the inverse scattering method is presented from a geometrical point of view. The metric coefficient e sup(2γ) (= -g sub(rho rho)g sub(tt)sup(-1)) is taken as the basic field variable, which satisfies an equation describing pseudospherical surfaces, i.e., surfaces of constant negative Gaussian curvature. The equations for other metric coefficients are also discussed. (author)
Magnetic Field Grid Calculator
National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...
Frame dragging, vorticity and electromagnetic fields in axially symmetric stationary spacetimes
International Nuclear Information System (INIS)
Herrera, L; Gonzalez, G A; Pachon, L A; Rueda, J A
2006-01-01
We present a general study about the relation between the vorticity tensor and the Poynting vector of the electromagnetic field for axially symmetric stationary electrovacuum metrics. The obtained expressions allow us to understand the role of the Poynting vector in the dragging of inertial frames. The particular case of the rotating massive charged magnetic dipole is analysed in detail. In addition, the electric and magnetic parts of the Weyl tensor are calculated and the link between the latter and the vorticity is established. Then we show that, in the vacuum case, the necessary and sufficient condition for the vanishing of the magnetic part is that the spacetime be static
Cosmological magnetic fields - V
Indian Academy of Sciences (India)
Introduction. Magnetic fields seem to be everywhere that we can look in the universe, from our own sun out to high-redshift Lyman-« systems. The fields we ... is the field tensor, is the four-potential, and В is the four-current. The field tensor is observer-independent, while the electric and magnetic fields depend on the ...
Quenched spin tunneling and diabolical points in magnetic molecules. I. Symmetric configurations
Garg, Anupam
2001-09-01
The perfect quenching of spin tunneling that has previously been discussed in terms of interfering instantons, and has recently been observed in the magnetic molecule Fe8, is treated using a discrete phase integral (or Wentzel-Kramers-Brillouin) method. The simplest model Hamiltonian for the phenomenon leads to a Schrödinger equation that is a five-term recursion relation. This recursion relation is reflection symmetric when the magnetic field applied to the molecule is along the hard magnetic axis. A completely general Herring formula for the tunnel splittings for all reflection-symmetric five-term recursion relations is obtained. Using connection formulas for a nonclassical turning point that may be described as lying ``under the barrier,'' and which underlies the oscillations in the splitting as a function of magnetic field, this Herring formula is transformed into two other formulas that express the splittings in terms of a small number of action and actionlike integrals. These latter formulas appear to be generally valid, even for problems where the recursion contains more than five terms. The results for the model Hamiltonian are compared with experiment, numerics, previous instanton based approaches, and the limiting case of no magnetic field.
Resonant slow extraction in synchrotrons using anti-symmetric sextupole fields
Energy Technology Data Exchange (ETDEWEB)
Zou, Ye [University of Science and Technology of China, Hefei, Anhui 230029 (China); Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, CAS, Beijing 100049 (China); Tang, Jingyu [University of Science and Technology of China, Hefei, Anhui 230029 (China); China Spallation Neutron Source, Institute of High Energy Physics, CAS, Dongguan 523803 (China); Dongguan Institute of Neutron Science, Dongguan 523808 (China); Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, CAS, Beijing 100049 (China); Yang, Jianquan [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, CAS, Beijing 100049 (China)
2016-09-11
This paper proposes a novel method for resonant slow extraction in synchrotrons by using special anti-symmetric sextupole fields, which can be produced by a special magnet structure. The method has potential in applications demanding very stable slow extraction from synchrotrons. Our studies show that slow extraction at the half-integer resonance by using an anti-symmetric sextupole field has some advantages compared to the standard sextupole field, which is widely used in the slow extraction method. One advantage is that it can work at a more distant tune from the resonance, so that it can reduce significantly the intensity variation of the extracted beam which is mainly caused by the ripples of magnet power supplies. Studies by both the Hamiltonian theory and numerical simulations show that the stable region near the half-integer resonance by anti-symmetric sextupole field is much smaller and flatter than the one by standard sextupole field at the third-order resonance. The particles outside the region will be driven out in two possible directions in quite a short transit time but with spiral steps similar to the third-order resonant extraction. By gradually increasing the field strength, the beam can be extracted with intensity more homogeneous than by the usual third-order resonant method, because of both smaller intensity variation and spike in the beginning spill. With the same field strength and tune distance to the resonance, the change in the stable region area due to the working point variation in the case of the anti-symmetric sextupole is about 1/14 of the one for the standard sextupole. Detailed studies including beam dynamic behaviors near other resonances, expression of the field in polynomial expansion, influence of 2-D field error, half-integer stop-band, and resonant slow extraction using a quadrupole field are also presented.
Resonant slow extraction in synchrotrons using anti-symmetric sextupole fields
Zou, Ye; Tang, Jingyu; Yang, Jianquan
2016-09-01
This paper proposes a novel method for resonant slow extraction in synchrotrons by using special anti-symmetric sextupole fields, which can be produced by a special magnet structure. The method has potential in applications demanding very stable slow extraction from synchrotrons. Our studies show that slow extraction at the half-integer resonance by using an anti-symmetric sextupole field has some advantages compared to the standard sextupole field, which is widely used in the slow extraction method. One advantage is that it can work at a more distant tune from the resonance, so that it can reduce significantly the intensity variation of the extracted beam which is mainly caused by the ripples of magnet power supplies. Studies by both the Hamiltonian theory and numerical simulations show that the stable region near the half-integer resonance by anti-symmetric sextupole field is much smaller and flatter than the one by standard sextupole field at the third-order resonance. The particles outside the region will be driven out in two possible directions in quite a short transit time but with spiral steps similar to the third-order resonant extraction. By gradually increasing the field strength, the beam can be extracted with intensity more homogeneous than by the usual third-order resonant method, because of both smaller intensity variation and spike in the beginning spill. With the same field strength and tune distance to the resonance, the change in the stable region area due to the working point variation in the case of the anti-symmetric sextupole is about 1/14 of the one for the standard sextupole. Detailed studies including beam dynamic behaviors near other resonances, expression of the field in polynomial expansion, influence of 2-D field error, half-integer stop-band, and resonant slow extraction using a quadrupole field are also presented.
Magnetic field measuring device
International Nuclear Information System (INIS)
Hara, Shigemitsu; Takeuchi, Kazuhiro; Hirota, Jun-ichi.
1996-01-01
In order to directly measure the magnetic fields in the vicinity of plasmas in a thermonuclear device, electric current is supplied to a conductor intersecting magnetic fields, and the position of the conductor is changed by generated electromagnetic forces, and the positional change of the conductor is measured to determine the magnetic fields. Namely, if electric current is supplied to the conductor crossing the magnetic fields, electromagnetic forces directly in proportion to the magnetic fields exert on the object. If the forces are measured, magnetic fields can be determined directly without using an integrator. If springs are attached to the conductor undergoing electromagnetic forces, as a method of measuring electromagnetic forces, since the distortion is in proportion to the electromagnetic forces, magnetic fields can be determined, for example, by changing the position of a contact of a variable resistor interlocking with the positional change of the spring. Since a semiconductor device which is sensitive to radiation is not necessary and the magnetic fields can be measured directly in this method for the measurement of the magnetic fields, the measurement can be conducted at a constant accuracy even in a long period of time. The device of the present invention can measure magnetic fields with no drift components of the integrator, has excellent radiation-resistance and can improve the plant safety. (N.H.)
Magnetic field measuring device
International Nuclear Information System (INIS)
Hara, Shigemitsu; Abe, Mitsushi.
1996-01-01
If signal voltages are integrated with lapse of time in a thermonuclear device, erroneous voltages are also integrated with lapse of time thereby resulting in occurrence of measuring errors increased with lapse of time, and continuous measurement for magnetic fields at high accuracy for a long period of time has been difficult. Then, a movable coil is disposed in the magnetic fields to be measured in order to directly measure the magnetic fields at the periphery of the plasmas, and electric current is supplied to the coil and resulted electromagnetic force is measured to obtain a magnetic field. If electric current is supplied to the coil in the magnetic fields, electromagnetic force (rotational torque) directly in proportion to the magnetic fields is generated. If the electromagnetic force is measured, magnetic fields can be determined directly without using an integrator. If a resistor wire is disposed on one end of the coil so that the resistor wire extends/shrinks by the electromagnetic force and changes the resistance value, the electromagnetic force can be determined from the magnetic fields based on the change of the resistance values. Since the measurement using magnetic fields does not require semiconductor devices which are sensitive to radiation, and the magnetic fields can be measured directly, the measurement can be conducted at a constant accuracy even for a long period of time. (N.H.)
The Einstein field equations for cylindrically symmetric elastic configurations
Energy Technology Data Exchange (ETDEWEB)
Brito, I; Vaz, E G L R [Departamento de Matematica e Aplicacoes, Universidade do Minho, 4800-058 Guimaraes (Portugal); Carot, J, E-mail: ireneb@math.uminho.pt, E-mail: jcarot@uib.cat, E-mail: evaz@math.uminho.pt [Departament de Fisica, Universitat de les Illes Balears, Cra Valdemossa pk 7.5, E-07122 Palma (Spain)
2011-09-22
In the context of relativistic elasticity it is interesting to study axially symmetric space-times due to their significance in modeling neutron stars and other astrophysical systems of interest. To approach this problem, here, a particular class of these space-times is considered. A cylindrically symmetric elastic space-time configuration is studied, where the material metric is taken to be flat. The components of the energy-momentum tensor for elastic matter are written in terms of the invariants of the strain tensor, here chosen to be the eigenvalues of the pulled-back material metric. The Einstein field equations are presented and a condition confirming the existence of a constitutive function is obtained. This condition leads to special cases, in one of which a new system for the metric functions and an expression for the constitutive function are deduced. The new system depends on a particular function, which builds up the constitutive equation.
The Juno Magnetic Field Investigation
DEFF Research Database (Denmark)
Connerney, J. E. P.; Benn, Mathias; Bjarnø, Jonas Bækby
2017-01-01
The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor ...
A Generalized Field Theory: Charged Spherical Symmetric Solution
Wanas, M. I.
1985-06-01
Three solutions with spherical symmetry are obtained for the field equations of the generalized field theory established recently by Mikhail and Wanas. The solutions found are in agreement with classical known results. The solution representing a generalized field, outside a spherical symmetric charged body, is found to have an extra term compared with the Reissner-Nordström metric. The space used for application is of type FIGI, so the solutions obtained correspond to a field in a matter-free space. A brief comparison between the solutions obtained and those given by other field theories is given. Two methods have been used to get physical results: the first is the type analysis, and the second is the comparison with classical known results by writing down the metric of the associated Riemannian space.
Feature Surfaces in Symmetric Tensor Fields Based on Eigenvalue Manifold.
Palacios, Jonathan; Yeh, Harry; Wang, Wenping; Zhang, Yue; Laramee, Robert S; Sharma, Ritesh; Schultz, Thomas; Zhang, Eugene
2016-03-01
Three-dimensional symmetric tensor fields have a wide range of applications in solid and fluid mechanics. Recent advances in the (topological) analysis of 3D symmetric tensor fields focus on degenerate tensors which form curves. In this paper, we introduce a number of feature surfaces, such as neutral surfaces and traceless surfaces, into tensor field analysis, based on the notion of eigenvalue manifold. Neutral surfaces are the boundary between linear tensors and planar tensors, and the traceless surfaces are the boundary between tensors of positive traces and those of negative traces. Degenerate curves, neutral surfaces, and traceless surfaces together form a partition of the eigenvalue manifold, which provides a more complete tensor field analysis than degenerate curves alone. We also extract and visualize the isosurfaces of tensor modes, tensor isotropy, and tensor magnitude, which we have found useful for domain applications in fluid and solid mechanics. Extracting neutral and traceless surfaces using the Marching Tetrahedra method can cause the loss of geometric and topological details, which can lead to false physical interpretation. To robustly extract neutral surfaces and traceless surfaces, we develop a polynomial description of them which enables us to borrow techniques from algebraic surface extraction, a topic well-researched by the computer-aided design (CAD) community as well as the algebraic geometry community. In addition, we adapt the surface extraction technique, called A-patches, to improve the speed of finding degenerate curves. Finally, we apply our analysis to data from solid and fluid mechanics as well as scalar field analysis.
McCamey, Dane; Boehme, Christoph
2017-01-24
An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).
Relaxed plasmas in external magnetic fields
International Nuclear Information System (INIS)
Spies, G.O.; Li, J.
1991-08-01
The well-known theory of relaxed plasmas (Taylor states) is extended to external magnetic fields whose field lines intersect the conducting toroidal boundary. Application to an axially symmetric, large-aspect-ratio torus with circular cross section shows that the maximum pinch ratio, and hence the phenomenon of current saturation, is independent of the external field. The relaxed state is explicitly given for an external octupole field. In this case, field reversal is inhibited near parts of the boundary if the octupole generates magnetic x-points within the plasma. (orig.)
Iterative solution of the Grad-Shafranov equation in symmetric magnetic coordinates
International Nuclear Information System (INIS)
Brambilla, Marco
2003-01-01
The inverse Grad-Shafranov equation for axisymmetric magnetohydrodynamic equilibria is reformulated in symmetric magnetic coordinates (in which magnetic field lines look 'straight', and the geometric toroidal angle is one of the coordinates). The poloidally averaged part of the equilibrium condition and Ampere law takes the form of two first-order ordinary differential equations, with the two arbitrary flux functions, pressure and force-free part of the current density, as sources. The condition for the coordinates to be flux coordinates, and the poloidally varying part of the equilibrium equation are similarly transformed into a set of first-order ordinary differential equations, with coefficients depending on the metric, and explicitly solved for the radial derivatives of the coefficients of the Fourier representation of the Cartesian coordinates in the poloidal angle. The derivation exploits the existence of Boozer-White coordinates, but does not require to find these coordinates explicitly; on the other hand, it offers a simple recipe to perform the transformation to Boozer-White coordinates, if required. Use of symmetric flux coordinates is advantageous for the formulation of many problems of equilibrium, stability, and wave propagation in tokamak plasmas, since these coordinates have the simplest metric of their class. It is also shown that in symmetric flux coordinates the Lagrangian equations of the drift motion of charged particles are automatically solved for the time derivatives, with right-hand sides closely related to the coefficients of the inverse Grad-Shafranov equation
International Nuclear Information System (INIS)
Ness, N.F.; Acuna, M.H.; Burlaga, L.F.; Connerney, J.E.P.; Lepping, R.P.; Neubauer, F.M.
1989-01-01
The National Aeronautics and Space Administration Goddard Space Flight Center-University of Delaware Bartol Research Institute magnetic field experiment on the Voyager 2 spacecraft discovered a strong and complex intrinsic magnetic field of Neptune and an associated magnetosphere and magnetic tail. A maximum magnetic field of nearly 10,000 nanoteslas (1 nanotesla = 10 -5 gauss) was observed near closest approach, at a distance of 1.18 R N . The planetary magnetic field between 4 and 15 R N can be well represented by an offset tilted magnetic dipole (OTD), displaced from the center of Neptune by the surprisingly large amount of 0.55 R N and inclined by 47 degrees with respect to the rotation axis. Within 4 R N , the magnetic field representation must include localized sources or higher order magnetic multipoles, or both, which are not yet well determined. As the spacecraft exited the magnetosphere, the magnetic tail appeared to be monopolar, and no crossings of an imbedded magnetic field reversal or plasma neutral sheet were observed. The auroral zones are most likely located far from the rotation poles and may have a complicated geometry. The rings and all the known moons of Neptune are imbedded deep inside the magnetosphere, except for Nereid, which is outside when sunward of the planet. The radiation belts will have a complex structure owing to the absorption of energetic particles by the moons and rings of Neptune and losses associated with the significant changes in the diurnally varying magnetosphere configuration. In an astrophysical context, the magnetic field of Neptune, like that of Uranus, may be described as that of an oblique rotator
International Nuclear Information System (INIS)
Madsen, M.S.
1989-01-01
The possible role of a large-scale relic magnetic field in the history of the Universe is considered. The perturbation of the cosmic microwave back-ground radiation on large angular scales due to a homogeneous magnetic field is estimated in a simple relativistic model. This allows corresponding limits to be placed on the magnitude of any such large-scale relic magnetic field at the present time. These limits are essentially the strongest which can be set on the largest scales. A corresponding bound is obtained by use of the requirement that the field should not spoil the predictions of primordial nucleosynthesis. It is noted that the existence of large-scale cosmic magnetic fields would circumvent the limits previously set - also on the basis of nucleosynthesis considerations - on the large-scale anisotropy now present in the Universe. (author)
Sánchez Almeida, Jorge
2018-01-01
Magnetic fields pervade the universe and play an important role in many astrophysical processes. However, they require specialised observational tools, and are challenging to model and understand. This volume provides a unified view of magnetic fields across astrophysical and cosmological contexts, drawing together disparate topics that are rarely covered together. Written by the lecturers of the XXV Canary Islands Winter School, it offers a self-contained introduction to cosmic magnetic fields on a range of scales. The connections between the behaviours of magnetic fields in these varying contexts are particularly emphasised, from the relatively small and close ranges of the Sun, planets and stars, to galaxies and clusters of galaxies, as well as on cosmological scales. Aimed at young researchers and graduate students, this up-to-date review uniquely brings together a subject often tackled by disconnected communities, conveying the latest advances as well as highlighting the limits of our current understandi...
Transient anisotropic magnetic field calculation
International Nuclear Information System (INIS)
Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan
2006-01-01
For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement
Magnetic Fields Versus Gravity
Hensley, Kerry
2018-04-01
Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal
Extended Thermodynamics: a Theory of Symmetric Hyperbolic Field Equations
Müller, Ingo
2008-12-01
Extended thermodynamics is based on a set of equations of balance which are supplemented by local and instantaneous constitutive equations so that the field equations are quasi-linear first order differential equations. If the constitutive functions are subject to the requirements of the entropy principle, one may write them in symmetric hyperbolic form by a suitable choice of fields. The kinetic theory of gases, or the moment theories based on the Boltzmann equation provide an explicit example for extended thermodynamics. The theory proves its usefulness and practicality in the successful treatment of light scattering in rarefied gases. This presentation is based upon the book [1] of which the author of this paper is a co-author. For more details about the motivation and exploitation of the basic principles the interested reader is referred to that reference. It would seem that extended thermodynamics is worthy of the attention of mathematicians. It may offer them a non-trivial field of study concerning hyperbolic equations, if ever they get tired of the Burgers equation. Physicists may prefer to appreciate the success of extended thermodynamics in light scattering and to work on the open problems concerning the modification of the Navier-Stokes-Fourier theory in rarefied gases as predicted by extended thermodynamics of 13, 14, and more moments.
DEFF Research Database (Denmark)
research with the aim to better characterise the state and dynamics of Earth’s magnetic field. Advances in the exploitation of geomagnetic observations hold a huge potential not only for an improved quantitative description of the field source but also for a better understanding of the underlying processes...
1983-01-01
There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water
Johnson, C. L.
2014-12-01
Mercury is the only inner solar system body other than Earth to possess an active core dynamo-driven magnetic field and the only planet with a small, highly dynamic magnetosphere. Measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have provided a wealth of data on Mercury's magnetic field environment. Mercury's weak magnetic field was discovered 40 years ago by the Mariner 10 spacecraft, but its large-scale geometry, strength and origin could not be definitively established. MESSENGER data have shown that the field is dynamo-generated and can be described as an offset axisymmetric dipole field (hereafter OAD): the magnetic equator lies ~0.2 RM (RM = 2440 km) north of the geographic equator and the dipole moment is 2.8 x1019 Am2 (~0.03% that of Earth's). The weak internal field and the high, but variable, solar wind ram pressure drive vigorous magnetospheric dynamics and result in an average distance from the planet center to the sub-solar magnetopause of only 1.42 RM. Magnetospheric models developed with MESSENGER data have allowed re-analysis of the Mariner 10 observations, establishing that there has been no measureable secular variation in the internal field over 40 years. Together with spatial power spectra for the OAD, this provides critical constraints for viable dynamo models. Time-varying magnetopause fields induce secondary core fields, the magnitudes of which confirm the core radius estimated from MESSENGER gravity and Earth-based radar data. After accounting for large-scale magnetospheric fields, residual signatures are dominated by additional external fields that are organized in the local time frame and that vary with magnetospheric activity. Birkeland currents have been identified, which likely close in the planetary interior at depths below the base of the crust. Near-periapsis magnetic field measurements at altitudes greater than 200 km have tantalizing hints of crustal fields, but crustal
Kronberg, Philipp P
2016-01-01
Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.
International Nuclear Information System (INIS)
Jackson, D.J.; Beard, D.B.
1977-01-01
The geomagnetic field, suitably scaled down and parameterized, is shown to give a very good fit to the magnetic field measurements taken on the first and third passes of the Mariner 10 space probe past Mercury. The excellence of the fit to a reliable planetary magnetospheric model is good evidence that the Mercury magnetosphere is formed by a simple, permanent, intrinsic planetary magnetic field distorted by the effects of the solar wind. The parameters used for a best fit to all the data are (depending slightly on the choice of data) 2.44--2.55 for the ratio of Mercury's magnetic field strength at the subsolar point to that of the earth's subsolar point field (this results in a dipole moment of 170 γR/sub M/ 3 (R/sub M/ is Mercury Radius), i.e., 2.41 x 10 22 G cm 3 in the same direction as the earth's dipole), approx.-113 γR/sub M/ 4 for the planetary quadrupole moment parallel to the dipole moment, 10degree--17degree for the tilt of the planet dipole toward the sun, 4.5degree for the tilt of the dipole toward dawn, and 2.5degree--7.6degree aberration angle for the shift in the tail axis from the planet-sun direction because of the planet's orbital velocity. The rms deviation overall for the entire data set compared with the theoretical fitted model for the magnetic field strength was 17 γ (approx.4% of the maximum field measured). If the data from the first pass that show presumed strong time variations are excluded, the overall rms deviation for the field magnitude is only 10 γ
Efficient magnetic field measurements
Setiawan, Iwan; Moonen, Niek; Buesink, Frits; Leferink, Frank
2017-01-01
Measuring magnetic fields of equipment under test at low frequencies which is received by loop antennas using an EMI receiver with small bandwidths takes much time and can even reach a week for a standard measurement. This waste in time could be avoided by applying time domain measurements.
New Effects of the Interaction of Gravitational and Magnetic Fields
Krechet, V. G.; Ushurko, V. B.; Rodichev, S. V.
2017-11-01
Within the framework of GRT, properties of stationary distributions of self-gravitating magnetic fields are considered under the condition that a vortex component is present in the gravitational field. It is shown that in this case, cylindrically symmetric configurations of the considered fields always lead to the formation of a wormhole geometry. The properties of such formations are investigated.
Intercomparison of wedge factor for symmetric field and asymmetric field used 6MV linac
International Nuclear Information System (INIS)
Ji, Youn Sang; Han, Jae Jin
1999-01-01
Therapy equipment have taken progress for Cancer make use of Radiation for the normal tissue system make much of important for shielding. In modern times independent jaw setting to used equipment as possible make use of asymmetric field. Therefore, the asymmetric field be leave out of consideration wedge factor because of with used wedge for the most of part. These experimentation find out have an effect on the dosimetry of out put compared with of the difference between the symmetric field and asymmetric field for the wedge factor
Magnetic fields in diffuse media
Pino, Elisabete; Melioli, Claudio
2015-01-01
This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.
Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete
2017-09-01
Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.
DEFF Research Database (Denmark)
research with the aim to better characterise the state and dynamics of Earth’s magnetic field. Advances in the exploitation of geomagnetic observations hold a huge potential not only for an improved quantitative description of the field source but also for a better understanding of the underlying processes...... and physics. Key is the separation of the field sources in the observations, especially, but not solely, during times of quiet geomagnetic conditions, when the most subtle geomagnetic effects can be identified and become significant. The collected articles are based on the current constellation of ground......This volume provides a comprehensive view on the different sources of the geomagnetic field both in the Earth’s interior and from the field’s interaction with the terrestrial atmosphere and the solar wind. It combines expertise from various relevant areas of geomagnetic and near Earth space...
Magnetization reversal in ultrashort magnetic field pulses
International Nuclear Information System (INIS)
Bauer, M.; Lopusnik, R.; Fassbender, J.; Hillebrands, B.
2000-01-01
We report the switching properties of a thin magnetic film subject to an ultrashort, laterally localized magnetic field pulse, obtained by numerical investigations. The magnetization distribution in the film is calculated on a grid assuming Stoner-like coherent rotation within the grid square size. Perpendicularly and in-plane magnetized films exhibit a magnetization reversal due to a 4 ps magnetic field pulse. Outside the central region the pulse duration is short compared to the precession period. In this area the evolution of the magnetization during the field pulse does not depend strongly on magnetic damping and/or pulse shape. However, the final magnetization distribution is affected by the magnetic damping. Although the pulse duration is short compared to the precession period, the time needed for the relaxation of the magnetization to the equilibrium state is rather large. The influence of the different magnetic anisotropy contributions and the magnetic damping parameter enters into the magnetization reversal process. Comparing the case of perpendicular anisotropy with different kinds of in-plane anisotropies, a principal difference is found due to the symmetry of the shape anisotropy with respect to the anisotropy in question
Low field magnetic resonance imaging
Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.
2010-07-13
A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.
Magnetic Field Topology in Jets
Gardiner, T. A.; Frank, A.
2000-01-01
We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.
The Capacitive Magnetic Field Sensor
Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.
2016-01-01
The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.
Stephens, Hillary Dianne
Tearing mode induced magnetic islands have a significant impact on the thermal characteristics of magnetically confined plasmas such as those in the reversed-field-pinch. Using a state-of-the-art Thomson scattering (TS) diagnostic, electron temperature fluctuations correlated with magnetic tearing modes have been observed on the Madison Symmetric Torus reversed-field-pinch. The TS diagnostic consists of two independently triggerable Nd:YAG lasers that can each pulse up to 15 times each plasma discharge and 21 General Atomics polchromators equipped with avalanche photodiode modules. Detailed calibrations focusing on accuracy, ease of use and repeatability and in-situ measurements have been performed on the system. Electron temperature (Te) profiles are acquired at 25 kHz with 2 cm or less resolution along the minor radius, sufficient to measure the effect of an island on the profile as the island rotates by the measurement point. Bayesian data analysis techniques are developed and used to detect fluctuations over an ensemble of shots. Four cases are studied; standard plasmas in quiescent periods, through sawteeth, through core reconnection events and in plasmas where the tearing mode activity is decreased. With a spectrum of unstable tearing modes, remnant islands that tend to flatten the temperature profile are present in the core between sawtooth-like reconnection events. This flattening is characteristic of rapid parallel heat conduction along helical magnetic field lines. The spatial structure of the temperature fluctuations show that the location of the rational surface of the m/n = 1/6 tearing mode is significantly further in than equilibrium suggestions predict. The fluctuations also provide a measurement of the remnant island width which is significantly smaller than the predicted full island width. These correlated fluctuations disappear during both global and core reconnection events. In striking contrast to temperature flattening, a temperature gradient
Magnetic Fields: Visible and Permanent.
Winkeljohn, Dorothy R.; Earl, Robert D.
1983-01-01
Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)
The external magnetic field environment
1977-01-01
Calculations were made to predict magnetic field intensities surrounding an aircraft following a lightning strike. Aircraft design and aircraft structural geometry were considered in the computations. A wire grid aircraft model was used to aid in magnetic flux estimation.
Mercury's magnetic field and interior
International Nuclear Information System (INIS)
Connerney, J.E.P.; Ness, N.F.
1988-01-01
The magnetic-field data collected on Mercury by the Mariner-10 spacecraft present substantial evidence for an intrinsic global magnetic field. However, studies of Mercury's thermal evolution show that it is most likely that the inner core region of Mercury solidified or froze early in the planet's history. Thus, the explanation of Mercury's magnetic field in the framework of the traditional planetary dynamo is less than certain
Thermocapillary Convection in Floating Zone with Axial Magnetic Fields
Liang, Ruquan; Yang, Shuo; Li, Jizhao
2014-02-01
Numerical simulations on the effects of axial magnetic fields on the thermocapillary convection in a liquid bridge of silicone-oil-based ferrofluid under zero gravity have been conducted. The Navier-Stokes equations coupled with the energy conservation equation are solved on a staggered grid, and the mass conserving level set approach is used to capture the free surface deformation of the liquid bridge. The obvious effects of the magnetic fields on the flow pattern as well as the velocity and temperature distributions in the liquid bridge can be detected. The axial magnetic fields suppress the thermocapillary convection and a stagnant flow zone is formed between the circulating flow and the symmetric axis as the magnetic fields increase. The axial magnetic fields affect not only the velocity level inside the liquid bridge but also the velocity level on the free surface. The temperature contours near the free surface illustrates conduction-type temperature profiles at moderate strength fields.
Magnetically modified biocells in constant magnetic field
International Nuclear Information System (INIS)
Abramov, E.G.; Panina, L.K.; Kolikov, V.A.; Bogomolova, E.V.; Snetov, V.N.; Cherepkova, I.A.; Kiselev, A.A.
2017-01-01
Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.
Magnetically modified biocells in constant magnetic field
Energy Technology Data Exchange (ETDEWEB)
Abramov, E.G.; Panina, L.K. [Saint Petersburg State University, St. Petersburg (Russian Federation); Kolikov, V.A., E-mail: kolikov1@yandex.ru [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Bogomolova, E.V. [Botanical Institute of the RAS after V.L.Komarov, St. Petersburg (Russian Federation); Snetov, V.N. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation); Cherepkova, I.A. [Saint Petersburg State Institute of Technology, St. Petersburg (Russian Federation); Kiselev, A.A. [Institute for Electrophysics and Electric Power of the RAS, St. Petersburg (Russian Federation)
2017-02-01
Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell’ size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae. - Highlights: • The inverse problem was solved for finding zero velocity isolines of magnetically modified biological cells. • Solution of the inverse problem depends on the size of cells and the number of nanoparticles attached to the single cell. • The experimental data are in agreement with theoretical solution.
Spherically symmetric quark-gluon plasma field configurations
Nachbagauer, Herbert
1995-01-01
We study field configurations in a hot quark-gluon plasma with spherical symmetry. We show that the electric fields point into radial direction and solve the effective non-abelian equations of motions. The corresponding charge density has a localized contribution which has a gauge invariant interpretation as a pointlike color charge. We discuss configurations oscillating periodically in time. Furthermore, we calculate the electric field induced by a constant local charge that is removed from ...
Measurements of magnetic field alignment
International Nuclear Information System (INIS)
Kuchnir, M.; Schmidt, E.E.
1987-01-01
The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs
Abou-Hamad, Edy
2011-09-01
Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.
Magnetic Fields of Neutron Stars
Indian Academy of Sciences (India)
Keywords. Neutron stars: population; magnetic fields; X-ray binaries: evolution; millisecond pulsars: inter-connections. Abstract. This article briefly reviews our current understanding of the evolution of magnetic fields in neutron stars, which basically defines the evolutionary pathways between different observational classes ...
No hair for spherically symmetric neutral black holes: Nonminimally coupled massive scalar fields
Hod, Shahar
2017-12-01
It is proved that spherically symmetric asymptotically flat neutral black holes cannot support spatially regular static configurations made of massive scalar fields with nonminimal coupling to gravity. Interestingly, our compact no-hair theorem is valid for generic values of the dimensionless physical parameter ξ which quantifies the strength of coupling between the scalar field and the spacetime curvature.
The MAVEN Magnetic Field Investigation
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2014-01-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.
International Nuclear Information System (INIS)
Sakakita, Hajime; Craig, Darren; Anderson, Jay K.; Chapman, Brett E.; Den-Hartog, Daniel J.; Prager, Stewart C.; Biewer, Ted M.; Terry, Stephen D.
2003-01-01
We report on passive measurements of impurity ion velocities during the pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed-field pinch. During PPCD, the electron temperature increased and a sudden reduction of magnetic fluctuations was observed. For this change, we have studied whether plasma velocity is affected. Plasma rotation is observed to decrease during PPCD. From measurements of line intensities for several impurities at 10 poloidal chords, it is found that the impurity line emission shifts outward. The ion temperature of impurities is reasonably connected to that measured by charge exchange recombination spectroscopy from core to edge. (author)
Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields
Metsaev, R. R.
2007-01-01
Conformal totally symmetric arbitrary spin bosonic fields in flat space-time of even dimension greater than or equal to four are studied. Second-derivative (ordinary-derivative) formulation for such fields is developed. We obtain gauge invariant Lagrangian and the corresponding gauge transformations. Gauge symmetries are realized by involving the Stueckelberg and auxiliary fields. Realization of global conformal boost symmetries on conformal gauge fields is obtained. Modified de Donder gauge ...
International Nuclear Information System (INIS)
Kiester, A.S.; Pacheco, J.L.; Ordonez, C.A.; Weathers, D.L.
2014-01-01
A configuration of magnetic fields using properties of cylindrically symmetric permanent magnets is presented as a candidate to produce a high purity charged particle source or trap. Cylindrically symmetric hollow permanent magnets produce magnetic field point cusps on the axis of symmetry. A magnetic field point cusp reflects all particles that lie outside a narrow region of phase space, a region dependent on particle kinetic energies and on the magnetic field intensity. An analysis of the phase space of positron trajectories entering and exiting a magnetic field point cusp is presented and quantified with respect to magnetic field intensity and particle kinetic energy. Preliminary experimental results support the use of point cusps for ion source applications
Indian Academy of Sciences (India)
Magnetic ﬁelds are observed not only in stars, but in galaxies, clusters, and even high redshift Lyman- systems. In principle, these ﬁelds could play an important role in structure formation and also affect the anisotropies in the cosmic microwave background radiation (CMB). The study of cosmological magnetic ﬁelds aims ...
From PT -symmetric quantum mechanics to conformal field theory
Indian Academy of Sciences (India)
ing Yang–Lee model, a quantum field theory with cubic interaction and purely imaginary coupling. We give a ... factor approach for correlation functions [6,7], the exact off-critical g-function [8,9], the excited state and the ...... related to their full consistency as quantum mechanical models have been success- fully addressed.
Electromagnetic multipole fields in a finite, spherically symmetric region
International Nuclear Information System (INIS)
Steiger, A.D.
1980-01-01
The electromagnetic eigenfields for the region bounded by two concentric spheres are discussed and compared with the corresponding eigenfields of a spherical cavity. These characteristic fields are the solenoidal and irrotational multiple solutions of the vector Helmholtz equation that satisfy the source-free boundary conditions. They constitute a complete set for the expansion of an arbitrary, square-integrable electromagnetic field, which may be generated by surface and volume sources. The frequencies of the solenoidal and irrotational eigenfields for the angular region are analyzed as functions of the radius ratio, α=r 1 /r 2 (r 1 2 =constant), of the two concentric spheres. The results are illustrated by graphs and tables. Two relations obtained by applying the implicit function theorem to the transcendental eigenfrequency equations are also derived by calculating the work performed against the radiation pressure as the electromagnetic field is compressed adiabatically. The multipoles. Two formulas for the reduction of vector products of multipole fields to sums of vector spherical harmonics are derived
Coupled dilaton and electromagnetic field in cylindrically symmetric ...
Indian Academy of Sciences (India)
The dilaton black hole solutions have attracted considerable attention for the last few years and there exists fairly exhaustive literature on the subject [1–4]. When the dilaton field is a coupled system or in other words when we consider a charged dilaton sphere, the so- lutions are significantly modified from the ordinary black ...
Dipole magnetic field of neutron stars in f(R) gravity
Bakirova, Elizat; Folomeev, Vladimir
2016-10-01
The structure of an interior dipole magnetic field of neutron stars in f( R) gravity is considered. For this purpose, the perturbative approaches are used when both the deviations from general relativity and the deformations of spherically symmetric configurations associated with the presence of the magnetic field are assumed to be small. Solutions are constructed which describe relativistic, spherically symmetric configurations consisting of a gravitating magnetized perfect fluid modeled by a realistic equation of state. Comparing configurations from general relativity and modified gravity, we reveal possible differences in the structure of the magnetic field which occur in considering neutron stars in modified gravity.
Rotating superconductor magnet for producing rotating lobed magnetic field lines
Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.
1978-01-01
This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.
Resonant magnetic fields from inflation
Byrnes, Christian T; Jain, Rajeev Kumar; Urban, Federico R
2012-01-01
We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of ${\\cal O}(10^{-15}\\, \\Gauss)$ today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing.
Magnetic fields and scintillator performance
International Nuclear Information System (INIS)
Green, D.; Ronzhin, A.; Hagopian, V.
1995-06-01
Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University
Magnetic field reconnexion in a sheared field
International Nuclear Information System (INIS)
Ugai, M.
1981-01-01
A nonlinear development of the Petschek mode in a sheared magnetic field where there is a field component Bsub(z) along an X line is numerically studied. It is found that finite-amplitude intermediate waves, adjacent to the slow shock, may eventually stand in the quasi-steady configuration; on the other hand, the fundamental characteristics of the Petschek-mode development are scarcely influenced, either qualitatively or quantitatively, by the Bsub(z) field. (author)
Discovery of the magnetic field of the B1/B2V star σ Lupi
Henrichs, H.F.; Kolenberg, K.; Plaggenborg, B.; Marsden, S.C.; Waite, I.A.; Landstreet, J.; Grunhut, J.; Oksala, M.; Wade, G.; MiMeS Collaboration, [Unknown; Hoffman, J.L.; Bjorkman, J.; Whitney, B.
2012-01-01
In our search for new magnetic massive stars we use the strongest indirect indicator of a magnetic field in B stars, which is periodic variability of UV stellar wind lines occurring in a velocity range symmetric around zero. Our aim is to obtain follow-up spectropolarimetry to search for a magnetic
International Nuclear Information System (INIS)
Fiedler, B.; Schimming, R.
1983-01-01
The fourth order field equations proposed by TREDER with a linear combination of BACH's tensor and EINSTEIN's tensor on the left-hand side admit static centrally symmetric solutions which are analytical and non-flat in some neighborhood of the centre of symmetry. (author)
Electric field of not completely symmetric systems earthed sphere-uniformly charged dielectric plan
International Nuclear Information System (INIS)
Vila, F.
1994-07-01
In this paper we study theoretically the electric field in the not completely symmetric system, earthed metallic sphere-uniformly charged dielectric plan, for sphere surface points situated in the plan that contains sphere's center and vertical symmetry axe of dielectric plan. (author). 11 refs, 1 fig
Energy Technology Data Exchange (ETDEWEB)
Fiedler, B.; Schimming, R.
1983-01-01
The fourth order field equations proposed by TREDER with a linear combination of BACH's tensor and EINSTEIN's tensor on the left-hand side admit static centrally symmetric solutions which are analytical and non-flat in some neighborhood of the centre of symmetry.
CERN PhotoLab
1975-01-01
The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.
The Juno Magnetic Field Investigation
Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.
2017-11-01
The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of
A New Semi-Symmetric Uniﬁed Field Theory of the Classical Fields of Gravity and Electromagnetism
Directory of Open Access Journals (Sweden)
Suhendro I.
2007-10-01
Full Text Available We attempt to present a classical theoretical framework in which the gravitational and electromagnetic fields are unified as intrinsic geometric objects in the space-time manifold. For this purpose, we first present the preliminary geometric considerations dealing with the metric differential geometry of Cartan connections. The unified field theory is then developed as an extension of the general theory of relativity based on a semi- symmetric Cartan connection which is meant to be as close as possible structurally to the symmetric connection of the Einstein-Riemann space-time.
Symmetrical metallic and magnetic edge states of nanoribbon from semiconductive monolayer PtS2
Liu, Shan; Zhu, Heyu; Liu, Ziran; Zhou, Guanghui
2018-03-01
Transition metal dichalcogenides (TMD) MoS2 or graphene could be designed to metallic nanoribbons, which always have only one edge show metallic properties due to symmetric protection. In present work, a nanoribbon with two parallel metallic and magnetic edges was designed from a noble TMD PtS2 by employing first-principles calculations based on density functional theory (DFT). Edge energy, bonding charge density, band structure, density of states (DOS) and simulated scanning tunneling microscopy (STM) of four possible edge states of monolayer semiconductive PtS2 were systematically studied. Detailed calculations show that only Pt-terminated edge state among four edge states was relatively stable, metallic and magnetic. Those metallic and magnetic properties mainly contributed from 5d orbits of Pt atoms located at edges. What's more, two of those central symmetric edges coexist in one zigzag nanoribbon, which providing two atomic metallic wires thus may have promising application for the realization of quantum effects, such as Aharanov-Bohm effect and atomic power transmission lines in single nanoribbon.
Fiedler, B.; Schimming, R.
A formal power series ansatz is used to obtain a convergence proof that the fourth-order gravitational field equations proposed by Treder (1977) with a linear combination of Bach's (1921) tensor and Einstein's tensor on the left-hand side admit static centrally symmetric solutions which are analytical and nonflat in some neighborhood of the center of symmetry. Conformal invariance is attained by means of a scalar gauge field.
... Health Lead Mercury Mold Nanomaterials Ozone Perfluorinated Chemicals Pesticides Radon Soy Infant Formula Styrene Water Pollution Weather ... 102-486, Section 2118) Questions and Answers about Biological Effects and Potential Hazards of Radiofrequency Electromagnetic Fields - ...
MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS
International Nuclear Information System (INIS)
2004-01-01
Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation
Directory of Open Access Journals (Sweden)
A. V. Gnatov
2015-04-01
Full Text Available Recently, repair and recovery of vehicle body operations become more and more popular. A special place here is taken by equipment that provides performance of given repair operations. The most interesting are methods for recovery of car body panels that allow the straightening without disassembling of car body panels and damaging of existing protective coating. Now, there are several technologies for repair and recovery of car body panels without their disassembly and dismantling. The most perspective is magnetic-pulse technology of external noncontact straightening. Results. The calculation of excited loads attractions in a symmetrical inductor system in the universal tool of magnetic-pulse straightening is provided. According to the obtained analytical dependence of the numerical evaluation of volumetric construction diagrams, phase and amplitude of the radial dependence of the spatial distribution of the excited efforts of attraction is obtained. The influence of the magnetic properties of the blank screen and manifested in the appearance of powerful magnetic attraction forces is determined. Originality. A new trend of research of magnetic-pulse working of thin-walled metals has been formulated and received further development, which allows to create not only new equipment, but principally new technological processes of external non-contact repair and recovery of vehicle body panels. Scientific basis of electrodynamic and magnetic attraction of thin-walled sheet metals with using the energy of high-power pulsed fields was created for the first time and proved theoretically and experimentally. Scientific and technical solutions in design of effective tools based on single-turn inductor systems of cylindrical geometry for straightening and recovery of car body panels were formulated and proved theoretically, as well as experimentally. Practical value. Using the results of the calculations we can create effective tools for an external magnetic
Spherically Symmetric Solutions of the Einstein-Bach Equations and a Consistent Spin-2 Field Theory
International Nuclear Information System (INIS)
Janda, A.
2006-01-01
We briefly present a relationship between General Relativity coupled to certain spin-0 and spin-2 field theories and higher derivatives metric theories of gravity. In a special case, described by the Einstein-Bach equations, the spin-0 field drops out from the theory and we obtain a consistent spin-two field theory interacting gravitationally, which overcomes a well known inconsistency of the theory for a linear spin-two field coupled to the Einstein's gravity. Then we discuss basic properties of static spherically symmetric solutions of the Einstein-Bach equations. (author)
Popov, Aleksey
2013-04-01
The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws
Photographing magnetic fields in superconductors
International Nuclear Information System (INIS)
Harrison, R.B.; Wright, L.S.
Magneto-optic techniques coupled with high-speed photography are being used to study the destruction of superconductivity by a magnetic field. The phenomenon of superconductivity will be introduced with emphasis placed on the properties of type I and type II superconductors in a magnetic field. The Faraday effect and its application to the study of the penetration of magnetic fields into these superconductors will be described; the relative effectiveness of some types of paramagnetic glass will be demonstrated. A number of cinefilms will be shown to illustrate the versatility of the magneto-optic method for observing flux motion and patterns. The analysis of data obtained from a high speed film (10,200 fps) of a flux jump in Nb-Zr will be presented and discussed
Hod, Shahar
2017-10-01
Recent no-hair theorems have revealed the intriguing fact that horizonless stars with compact reflecting surfaces cannot support non-linear matter configurations made of scalar, vector, and tensor fields. In the present paper we extend the regime of validity of these no-hair theorems by explicitly proving that spherically symmetric compact reflecting stars cannot support static configurations made of massive scalar fields with non-minimal coupling to gravity. Interestingly, our no-hair theorem is valid for generic values of the dimensionless field-curvature coupling parameter ξ.
Directory of Open Access Journals (Sweden)
Shahar Hod
2017-10-01
Full Text Available Recent no-hair theorems have revealed the intriguing fact that horizonless stars with compact reflecting surfaces cannot support non-linear matter configurations made of scalar, vector, and tensor fields. In the present paper we extend the regime of validity of these no-hair theorems by explicitly proving that spherically symmetric compact reflecting stars cannot support static configurations made of massive scalar fields with non-minimal coupling to gravity. Interestingly, our no-hair theorem is valid for generic values of the dimensionless field-curvature coupling parameter ξ.
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)
2017-12-15
It has recently been demonstrated that asymptotically flat neutral reflecting stars are characterized by an intriguing no-hair property. In particular, it has been proved that these horizonless compact objects cannot support spatially regular static matter configurations made of scalar (spin-0) fields, vector (spin-1) fields and tensor (spin-2) fields. In the present paper we shall explicitly prove that spherically symmetric compact reflecting stars can support stationary (rather than static) bound-state massive scalar fields in their exterior spacetime regions. To this end, we solve analytically the Klein-Gordon wave equation for a linearized scalar field of mass μ and proper frequency ω in the curved background of a spherically symmetric compact reflecting star of mass M and radius R{sub s}. It is proved that the regime of existence of these stationary composed star-field configurations is characterized by the simple inequalities 1 - 2M/R{sub s} < (ω/μ){sup 2} < 1. Interestingly, in the regime M/R{sub s} << 1 of weakly self-gravitating stars we derive a remarkably compact analytical equation for the discrete spectrum {ω(M,R_s, μ)}{sup n=∞}{sub n=1} of resonant oscillation frequencies which characterize the stationary composed compact-reflecting-star-linearized-massive-scalar-field configurations. Finally, we verify the accuracy of the analytically derived resonance formula of the composed star-field configurations with direct numerical computations. (orig.)
Magnetic fields around black holes
Garofalo, David A. G.
Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our
Magnetic Fields of Neutron Stars
Indian Academy of Sciences (India)
Sushan Konar
2017-09-12
Sep 12, 2017 ... Over the decades, one of the primary preoccupations of neutron star research has been to look for a unification scheme connecting the widely different observational classes (shown in Fig. 1). The magnetic field, ranging from 108 G in millisecond pulsars to 1015 G in mag- netars, has been central to this ...
Magnetic fields in Neutron Stars
Viganò, D.; Pons, J.A.; Miralles, J.A.; Rea, N.; Cenarro, A.J.; Figueras, F.; Hernández-Monteagudo, J.; Bueno, T.; Valdivielso, L.
2015-01-01
Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Shoko; Hayakawa, Katsumi; Yamamoto, Akira [Kyoto City Hospital, Department of Radiology, Kyoto (Japan); Aida, Noriko [Kanagawa Children' s Medical Center, Department of Radiology, Kyoto (Japan); Okano, Souzo; Matsushita, Hiroko [Kyoto City Hospital, Department of Pediatrics, Kyoto (Japan); Kanda, Toyoko; Yamori, Yuriko; Yoshida, Naoko; Hirota, Haruyo [St. Joseph Hospital for Handicapped Children, Department of Pediatric Neurology, Kyoto (Japan)
2009-02-15
The central tegmental tract (CTT) is mainly the extrapyramidal tract connecting between the red nucleus and the inferior olivary nucleus. There are only a few case reports describing CTT abnormalities on magnetic resonance imaging (MRI) in children. Our purpose was to evaluate the frequency of CTT lesions and their characteristics on MRI, and to correlate the MR imaging findings with clinical features. We reviewed retrospectively the MR images of 392 children (215 boys and 177 girls) ranging in age from 1 to 6 years. To evaluate symmetrical CTT hyperintense lesions, we defined a CTT lesion as an area of bilateral symmetrical hyperintensity in the tegmentum pontis on both T2-weighted images and diffusion-weighted images in more than two slices. We measured the ADC (apparent diffusion coefficient) values of symmetrical CTT hyperintensity, and compared them with those of children without CTT abnormality. CTT lesions were detected in 20 (5.1%) of the 392 children. The mean ADC value for these 20 children was significantly lower than that of the normal CTT (p<0.001). On MR imaging, other than CTT lesions, associated parenchymal lesion included: none (n=6); other abnormalities, including periventricular leukomalacia (n=3); thin corpus callosum (n=3); ventricular dilatation (n=2); encephalopathy (n=2). Clinically, cerebral palsy was the most frequent clinical diagnosis (n=6), accounting for 30%, which was significantly more frequent than the prevalence of cerebral palsy among children without CTT lesions (13%) (n<0.05). CTT lesions were detected in 5.1% of all the children examined. Cerebral palsy was the most frequent clinical diagnosis. (orig.)
Khine, Y. Y.; Walker, J. S.
1995-02-01
This paper treats the buoyant convection during the Czochralski growth of silicon crystals with a steady, strong, non-uniform, axisymmetric magnetic field. We consider a family of magnetic fields which includes a uniform axial magnetic field and a "cusp" field which is produced by identical solenoids placed symmetrically above and below the plane of the crystal-melt interface and free surface. We investigate the evolution of the buoyant convection as the magnetic field is changed continuously from a uniform axial field to a cusp field, with a constant value of the root-mean-squared magnetic flux density in the melt. We also investigate changes as the magnetic flux density is increased. While the cusp field appears very promising, perfect alignment between the local magnetic field vector and the crystal-melt interface or free surface is not possible, so the effects of a slight misalignment are also investigated.
Effect of sample shape on nonlinear magnetization dynamics under an external magnetic field
International Nuclear Information System (INIS)
Vagin, Dmitry V.; Polyakov, Oleg P.
2008-01-01
Effect of sample shape on the nonlinear collective dynamics of magnetic moments in the presence of oscillating and constant external magnetic fields is studied using the Landau-Lifshitz-Gilbert (LLG) approach. The uniformly magnetized sample is considered to be an ellipsoidal axially symmetric particle described by demagnetization factors and uniaxial crystallographic anisotropy formed some angle with an applied field direction. It is investigated as to how the change in particle shape affects its nonlinear magnetization dynamics. To produce a regular study, all results are presented in the form of bifurcation diagrams for all sufficient dynamics regimes of the considered system. In this paper, we show that the sample's (particle's) shape and its orientation with respect to the external field (system configuration) determine the character of magnetization dynamics: deterministic behavior and appearance of chaotic states. A simple change in the system's configuration or in the shapes of its parts can transfer it from chaotic to periodic or even static regime and back. Moreover, the effect of magnetization precession stall and magnetic moments alignment parallel or antiparallel to the external oscillating field is revealed and the way of control of such 'polarized' states is found. Our results suggest that varying the particle's shape and fields' geometry may provide a useful way of magnetization dynamics control in complex magnetic systems
Kocharovsky, V. V.; Kocharovsky, Vl V.; Martyanov, V. Yu; Nechaev, A. A.
2017-12-01
We derive and describe analytically a new wide class of self-consistent magnetostatic structures with sheared field lines and arbitrary energy distributions of particles. To do so we analyze superpositions of two planar current sheets with orthogonal magnetic fields and cylindrically symmetric momentum distribution functions, such that the magnetic field of one of them is directed along the symmetry axis of the distribution function of the other. These superpositions satisfy the pressure balance equation and allow one to construct configurations with an almost arbitrarily sheared magnetic field. We show that most of previously known current sheet families with sheared magnetic field lines are included in this novel class.
Galactic and intergalactic magnetic fields
Klein, Ulrich
2014-01-01
This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible.In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later c
Zhdanov, V.; Stashko, O.
2016-12-01
We study exact special solutions of the joint system of Einstein equations and scalar field equations with a non-zero self-interaction potential, which describe spherically symmetric static configurations. The space-time is asymptotically flat with a naked singularity at the center. The testbody motion is analyzed; we found conditions for existence of non-connected regions of stable circular orbits. We show the existence of static trajectories of particles that hang above the configuration.
Probing Magnetic Fields with Square Kilometre Array and its ...
Indian Academy of Sciences (India)
/fulltext/joaa/037/04/0042. Keywords. Magnetic fields; telescopes; galaxies: magnetic fields; ISM: magnetic fields; stars: magnetic fields; turbulence. Abstract. Origin of magnetic fields, its structure and effects on dynamical processes in stars to ...
RESICALC: Magnetic field modeling program
International Nuclear Information System (INIS)
Silva, J.M.
1992-12-01
RESICALC, Version 1.0, is a Microsoft Windows application that describes the magnetic field environment produced by user-defined arrays of transmission lines, distribution lines, and custom conductors. These arrays simulate specific situations that may be encountered in real-world community settings. RESICALC allows the user to define an area or ''world'' that contains the transmission and/or distribution lines, user-defined conductors, and locations of residences. The world contains a ''reference grid'' within which RESICALC analyzes the magnetic field environment due to all conductors within the world. Unique physical parameters (e.g., conductor height and spacing) and operating characteristics can be assigned to all electrical conductors. RESICALC's output is available for the x, y, z axis separately, the resultant (the three axes added in quadrature), and the major axis, each in three possible formats: a three-dimensional map of the magnetic field, two dimensional-contours, and as a table with statistical values. All formats may be printed, accompanied by a three-dimensional view of the world the user has drawn. The view of the world and the corresponding three-dimensional field map may be adjusted to the elevation and rotation angle of the user's preference
Establishment of magnetic coordinates for a given magnetic field
International Nuclear Information System (INIS)
Boozer, A.H.
1981-04-01
A method is given for expressing the magnetic field strength in magnetic coordinates for a given field. This expression is central to the study of equilibrium, stability, and transport in asymmetric plasmas
A Vorticity-Magnetic Field Dynamo Instability
Blackman, Eric G.; Chou, Tom
1997-01-01
We generalize the mean field magnetic dynamo to include local evolution of the mean vorticity in addition to the mean magnetic field. The coupled equations exhibit a general mean field dynamo instability that enables the transfer of turbulent energy to the magnetic field and vorticity on larger scales. The growth of the vorticity and magnetic field both require helical turbulence which can be supplied by an underlying global rotation. The dynamo coefficients are derived including the backreac...
Modulation of GCR in Various Types of Helispheric Magnetic Field
Kobylinski, Z.; Bochorishvili, T.
We make an attempt to compare the modulation of galactic cosmic rays (GCR) as the result of various assumptions referred to heliospheric magnetic field (HMF). The steady state version of 3D Parker cosmic ray transport equation (TPE), with drift included, is solved num erically in the spherically symmetric heliosphere. We take into account four cases of the possible magnetic field configuration: standard Parker HMF, Parker field with modifications in polar direction done by Jokippi and K ta (2) and Smith ando Bieber (3) , Fisk type of field (4). In the last one we assume the existence north and south polar coronal holes in the inner corona with central point inclined from the rotation of the Sun. At the polar regions of the heliosphere the isotropic diffusion of GCR is assumed. The results of calculation s will be discussed in detail. The (4) model more reduces an acces s of galactic particles from polar direction into solar system than others.
Anisotropic magnetism in field-structured composites
International Nuclear Information System (INIS)
Martin, James E.; Venturini, Eugene; Odinek, Judy; Anderson, Robert A.
2000-01-01
Magnetic field-structured composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g., rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chainlike particle structures, and a biaxial field produces sheetlike particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCs of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material. (c) 2000 The American Physical Society
Measurements of Solar Vector Magnetic Fields
International Nuclear Information System (INIS)
Hagyard, M.J.
1985-05-01
Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display
Remanent magnetization of instrument materials for low magnetic field applications
International Nuclear Information System (INIS)
Mester, J.C.; Lockhart, J.M.
1996-01-01
We report remanent magnetization and magnetic susceptibility measurements made on materials used in the construction of cryogenic instruments. SQUID based magnetometers were used to make the measurements over a range of background fields from 10 2 to 10 -7 Gauss. Although the materials tested are generally regarded as non-magnetic, some samples have sufficiently high magnetization values, or values which vary with foundry lot and heat, that use in low field or magnetically sensitive applications is contraindicated. (author)
Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction
International Nuclear Information System (INIS)
Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.
2004-01-01
It has recently been shown that a non-Hermitian Hamiltonian H possessing an unbroken PT symmetry (i) has a real spectrum that is bounded below, and (ii) defines a unitary theory of quantum mechanics with positive norm. The proof of unitarity requires a linear operator C, which was originally defined as a sum over the eigenfunctions of H. However, using this definition to calculate C is cumbersome in quantum mechanics and impossible in quantum field theory. An alternative method is devised here for calculating C directly in terms of the operator dynamical variables of the quantum theory. This method is general and applies to a variety of quantum mechanical systems having several degrees of freedom. More importantly, this method is used to calculate the C operator in quantum field theory. The C operator is a time-independent observable in PT-symmetric quantum field theory
Magnetic Field Measurement of induction Hobs
森, 秀樹||モリ, ヒデキ||Mori, Hideki; 松井, 景樹||マツイ, ケイジュ||Matsui, Keiju; 山本, 勇||ヤマモト, イサム||Yamamoto, Isamu
2004-01-01
Recently domestic induction hobs have rapidly come into wide use in Japan. When cooking a strong high frequency magnetic field is generated in the area of induction hob. However, there are few reports of the measurement of the magnetic field during actual cooking. The magnetic field resulting from various working conditions of several types of induction hobs are reported here. Measurements of the magnetic field due to differences in various types of converter, the size and materials of the co...
International Nuclear Information System (INIS)
Baxter, Mathew; Van Gorder, Robert A
2013-01-01
We obtain solutions to a transformation of the axially symmetric Ernst equation, which governs a class of exact solutions of Einstein's field equations. Physically, the equation serves as a model of axially symmetric stationary vacuum gravitational fields. By an application of the method of homotopy analysis, we are able to construct approximate analytic solutions to the relevant boundary value problem in the case where exact solutions are not possible. The results presented constitute a solution for a complicated nonlinear and singular initial value problem. Through appropriate selection of the auxiliary linear operator and convergence control parameter, we are able to obtain low order approximations which minimize residual error over the problem domain. The benefit to such approach is that we obtain very accurate approximations after computing very few terms, hence the computational efficiency is high. Finally, an exact solution is provided in a special case, and this corresponds to the analytical solutions obtained in the more general case. The approximate solutions agree qualitatively with the exact solutions. (paper)
Behavior of magnetic superconductors in a magnetic field
International Nuclear Information System (INIS)
Buzdin, A.I.
1984-01-01
We investigate the behavior in a magnetic field of magnetic superconductors in which the ferromagnetic and superconducting transition temperatures are close together. It is shown that as the temperature is lowered the order of the superconducting transition changes from second to first. The corresponding critical fields and the field and temperature dependences of the magnetization are determined. Attention is focused on a discontinuity in the magnetization in the vortex core in magnetic superconductors. This feature plus the relatively large scattering cross section make magnetic superconductors convenient objects for the study of the superconducting vortex lattice by neutron diffraction
Microwave Measurements of Coronal Magnetic Field
Shibasaki, K.
2006-08-01
Magnetic field measurements of the solar corona using microwave observation are reviewed. The solar corona is filled with highly ionised plasma and magnetic field. Moving charged particles interact with magnetic field due to Lorentz force. This results in gyration motion perpendicular to the magnetic field and free motion along the magnetic field. Circularly polarized electro-magnetic waves interact with gyrating electrons efficiently and the interaction depends on the sense of circular polarization (right-handed or left-handed). This is the reason why we can measure magnetic field strength through microwave observations. This process does not require complicated quantum physics but the classical treatment is enough. Hence the inversion of measured values to magnetic field strength is simpler than in the case of optical and infrared measurements. There are several methods to measure magnetic field strength through microwave observations. We can divide them into two categories: one is based on emission mechanisms and the other is based on wave propagation. In the case of emission mechanisms, thermal f-f emission, thermal gyro-resonance emission and non-thermal gyro-synchrotron emission can be used to measure magnetic field strength. In the case of wave propagation, polarization reversal due to propagation through quasi-transverse magnetic field region can be used. Examples of distribution of magnetic field strength in the solar corona measured by Nobeyama Radioheliograph will be presented.
Interaction between two magnetic dipoles in a uniform magnetic field
Ku, J. G.; Liu, X. Y.; Chen, H. H.; Deng, R. D.; Yan, Q. X.
2016-02-01
A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.
Interaction between two magnetic dipoles in a uniform magnetic field
Directory of Open Access Journals (Sweden)
J. G. Ku
2016-02-01
Full Text Available A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.
Effective magnetic moment of neutrinos in strong magnetic fields
Pérez, A; Masood, S S; Gaitan, R; Rodríguez, S
2002-01-01
In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)
Magnetic field measuring system for remapping the ORIC magnetic field
International Nuclear Information System (INIS)
Mosko, S.W.; Hudson, E.D.; Lord, R.S.; Hensley, D.C.; Biggerstaff, J.A.
1977-01-01
The Holifield Heavy Ion Research Facility will integrate a new 25 MV tandem electrostatic acccelerator into the existing cyclotron laboratory which includes the Oak Ridge Isochronous Cyclotron (ORIC). Computations of ion paths for beam injection from the new tandem into ORIC require field mapping in the regions traversed by the beam. Additional field data is also desired for the higher levels (approx.19 kG) now used for most heavy ion beams. The magnetic field measurement system uses 39 flip coil/current integrator sets with computer controlled data scanning. The coils are spaced radially at 1 inch intervals in an arm which can be rotated azimuthally in 2 degree increments. The entire flip coil assembly can be shifted to larger radii to measure fields beyond the pole boundary. Temperature stabilization of electronic circuitry permits a measurement resolution of +-1 gauss over a dynamic range of +-25,000 gauss. The system will process a scan of 8000 points in about one hour
The magnetic field measurements of the booster synchrotron magnet
International Nuclear Information System (INIS)
Kumada, Masayuki; Sasaki, Hiroshi; Takikawa, Koji; Someya, Hirohiko; Kurosawa, Toshitake.
1978-03-01
The magnetic field properties of the booster synchrotron magnet are investigated. Method of the field measurement, magnetic field measuring system, its data acquisition system and procedure of data processing are described in detail, with a special emphasis on the accuracy in the measurement. The excitation dependences and distributions of the field strength, field gradient, multipole fields and their effective lengths are given and analyzed. The betatron tune and chromaticity are discussed by taking account of the effect of the fringing field as well as the multipole fields of focussing and defocussing sectors. (auth.)
Far-field analysis of axially symmetric three-dimensional directional cloaks.
Ciracì, Cristian; Urzhumov, Yaroslav; Smith, David R
2013-04-22
Axisymmetric radiating and scattering structures whose rotational invariance is broken by non-axisymmetric excitations present an important class of problems in electromagnetics. For such problems, a cylindrical wave decomposition formalism can be used to efficiently obtain numerical solutions to the full-wave frequency-domain problem. Often, the far-field, or Fraunhofer region is of particular interest in scattering cross-section and radiation pattern calculations; yet, it is usually impractical to compute full-wave solutions for this region. Here, we propose a generalization of the Stratton-Chu far-field integral adapted for 2.5D formalism. The integration over a closed, axially symmetric surface is analytically reduced to a line integral on a meridional plane. We benchmark this computational technique by comparing it with analytical Mie solutions for a plasmonic nanoparticle, and apply it to the design of a three-dimensional polarization-insensitive cloak.
Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization
Doughty, Frank C.; Spencer, John E.
2000-12-19
In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.
Measurements of magnetic field sources in schools
International Nuclear Information System (INIS)
Johnson, G.B.
1992-01-01
The Electrical Systems Division of the Electric Power Research Institute (EPRI) has initiated several research projects to investigate magnetic field levels, their characteristics, and their sources. This paper describes measurements of magnetic field sources in schools. Magnetic field measurements were made at four schools in the service areas of two utility companies. Magnetic field measurements included profiles of the magnetic field versus distance near power lines, around the perimeter of the school buildings, and at several locations within each school. Twenty-four hour measurements were also made to record the temporal variation of the magnetic field at several locations at each school. The instrumentation, measurement techniques, and magnetic field sources identified are discussed
Magnetization reversal of ferromagnetic nanoparticles under inhomogeneous magnetic field
International Nuclear Information System (INIS)
Chang, Joonyeon; Yi, Hyunjung; Cheol Koo, Hyun; Mironov, V.L.; Gribkov, B.A.; Fraerman, A.A.; Gusev, S.A.; Vdovichev, S.N.
2007-01-01
We investigated remagnetization processes in ferromagnetic nanoparticles under inhomogeneous magnetic field induced by the tip of magnetic force microscope (MFM) in both theoretical and empirical ways. Systematic MFM observations were carried out on arrays of submicron-sized elliptical ferromagnetic particles of Co and FeCr with different sizes and periods. It clearly reveals the distribution of remanent magnetization and processes of local remagnetization of individual ferromagnetic particles. Modeling of remagnetization processes in ferromagnetic nanoparticles under magnetic field induced by MFM probe was performed on the base of Landau-Lifshitz-Gilbert equation for magnetization. MFM-induced inhomogeneous magnetic field is very effective to control the magnetic state of individual ferromagnetic nanoparticles as well as to create different distribution of magnetic field in array of ferromagnetic nanoparticles
Fringing field measurement of dipole magnet
International Nuclear Information System (INIS)
Lu Hongyou; Jiang Weisheng; Mao Naifeng; Mao Xingwang
1985-01-01
The fringing field of a dipole magnet with a C-type circuit and homogeneous field in the gap has been measured including the distributions of fringing fields with and without magnetic shield. The measured data was analyzed by using the concept of virtual field boundary
Magnetic field effects on microwave absorbing materials
Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.
1991-01-01
The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.
Strong and superstrong pulsed magnetic fields generation
Shneerson, German A; Krivosheev, Sergey I
2014-01-01
Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.
Femenias, O.; Diot, H.; Berza, T.; Gauffriau, A.; Demaiffe, D.
2003-04-01
The fabric of crystals in a dyke is representative of the flow of magma, considered as a newtonian fluid. The AMS of the rocks (=magnetic mineralogy subfabric) gives a good representation of the shape preferred orientation related to the total fabric which, in turn is marker of the magmatic flow acquired during emplacement of the fluid within the dyke width. Generally, a symmetrical distribution of the fabric in terms of foliation and lineation across the dyke is in agreement with a model involving symmetrical differential displacements of the flow of the fluid within a channel. In this case, the flow direction is in relation with the imbrication of the symmetric foliations. In this study, we present the cases of both symmetrical and asymmetrical dyke fabric recording and involving different process of emplacement during a regional deformation. From a regional survey of a large Pan-African calc-alkaline dyke swarm (of basaltic-andesitic-dacitic-rhyolitic composition) of the Alpine Danubian window from South Carpathians of Romania, two populations of dykes have been described: thick (from 1 to 30 meters) N-S trending dykes and thin (less than 1 meter) E-W dykes. These two populations crosscut the country rocks without simple chronological relations between them. The thick dykes display asymmetrical fabric that involve a relatively long history of emplacement and important distance of flow. They record the regional sinistral movement of the walls. By contrast, the thin dykes are symmetrical and display frequently an arteritic morphology that limits the dyke length, with no cartographic extension. The mean orientations of the two types of dykes can be related to the same regional stress field and a continuum of emplacement is proposed for the two types of dykes during the regional deformation.
Exploring Magnetic Fields with a Compass
Lunk, Brandon; Beichner, Robert
2011-01-01
A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…
Deformation of Water by a Magnetic Field
Chen, Zijun; Dahlberg, E. Dan
2011-01-01
After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…
Accurate method of the magnetic field measurement of quadrupole magnets
International Nuclear Information System (INIS)
Kumada, M.; Sakai, I.; Someya, H.; Sasaki, H.
1983-01-01
We present an accurate method of the magnetic field measurement of the quadrupole magnet. The method of obtaining the information of the field gradient and the effective focussing length is given. A new scheme to obtain the information of the skew field components is also proposed. The relative accuracy of the measurement was 1 x 10 -4 or less. (author)
Magnetic field generation during intense laser channelling in underdense plasma
Energy Technology Data Exchange (ETDEWEB)
Smyth, A. G.; Sarri, G.; Doria, D.; Kar, S.; Borghesi, M. [School of Mathematics and Physics, The Queen' s University of Belfast, University Road, Belfast BT7 1NN (United Kingdom); Vranic, M.; Guillaume, E.; Silva, L. O.; Vieira, J. [GoLP/IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon (Portugal); Amano, Y.; Habara, H.; Tanaka, K. A. [Graduate School of Engineering Osaka University. Suita, Osaka 5650871 (Japan); Heathcote, R.; Norreys, P. A. [STFC Rutherford Appleton Laboratory, Didcot, Oxon OX1 0Qx (United Kingdom); Hicks, G.; Najmudin, Z.; Nakamura, H. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)
2016-06-15
Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few μm and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion.
International Nuclear Information System (INIS)
Kuritsyn, A.; Fiksel, G.; Almagri, A. F.; Miller, M. C.; Mirnov, V. V.; Prager, S. C.; Sarff, J. S.; Brower, D. L.; Ding, W. X.
2009-01-01
In this paper measurements of momentum and current transport caused by current driven tearing instability are reported. The measurements are done in the Madison Symmetric Torus reversed-field pinch [R. N. Dexter, D. W. Kerst, T. W. Lovell, S. C. Prager, and J. C. Sprott, Fusion Technol. 19, 131 (1991)] in a regime with repetitive bursts of tearing instability causing magnetic field reconnection. It is established that the plasma parallel momentum profile flattens during these reconnection events: The flow decreases in the core and increases at the edge. The momentum relaxation phenomenon is similar in nature to the well established relaxation of the parallel electrical current and could be a general feature of self-organized systems. The measured fluctuation-induced Maxwell and Reynolds stresses, which govern the dynamics of plasma flow, are large and almost balance each other such that their difference is approximately equal to the rate of change of plasma momentum. The Hall dynamo, which is directly related to the Maxwell stress, drives the parallel current profile relaxation at resonant surfaces at the reconnection events. These results qualitatively agree with analytical calculations and numerical simulations. It is plausible that current-driven instabilities can be responsible for momentum transport in other laboratory and astrophysical plasmas.
Electrolytic tiltmeters inside magnetic fields: Some observations
International Nuclear Information System (INIS)
Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.; Calderon, A.; Garcia-Moral, L.A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Sobron, M.; Vila, I.; Virto, A.L.
2007-01-01
We present observations of the electrolytic clinometers behaviour inside magnetic field environments introducing phenomenological expressions to account for the measured output voltage variations as functions of field gradients and field strengths
Improving the magnetic field homogeneity by varying magnetic field structure in a geophone
Hong, Li; Wang, Wentao; Yao, Zhenjing; Gao, Qiang; Han, Zhiming
2018-01-01
The magnetic field structure is a key factor that affects performance of the magneto-electric geophone. In order to enhance the magnetic field homogeneity and magnetic induction intensity of the magnetic field structure, this paper proposes a new magnetic field structure. It consists of two cylindrical permanent magnets: an H-type magnetic boot and an external magnetic yoke. The proposed magnetic field structure can broaden the range of a uniform magnetic field and increase the magnetic field intensity of working air-gap. To confirm the validity of the design, the finite element analysis and real measurement experiments were conducted. The finite element simulations using the ANASYS Electromagnetics Suite 17.2.0 showed that the air-gap magnetic induction intensity is increased and the work space with a uniform magnetic field is broadened. Meanwhile, the output voltage of the coil is increased, and the harmonic distortion rate of output voltage is reduced. According to the real measurement experimental results, compared with the traditional magnetic field structure, the uniform range of the magnetic field is improved 23% in the entire air-gap path, and the magnetic induction intensity enhances 24% over the proposed new magnetic field structure.
Generating the optimal magnetic field for magnetic refrigeration
DEFF Research Database (Denmark)
Bjørk, Rasmus; Insinga, Andrea Roberto; Smith, Anders
2016-01-01
In a magnetic refrigeration device the magnet is the single most expensive component, and therefore it is crucially important to ensure that an effective magnetic field as possible is generated using the least amount of permanent magnets. Here we present a method for calculating the optimal...... in the optimal segmentation, for any number of segments specified. These two methods are used to determine the optimal magnet design of a 12-piece, two-pole concentric cylindrical magnet for use in a continuously rotating magnetic refrigeration device....
Investigations on magnetic field induced optical transparency in magnetic nanofluids
Mohapatra, Dillip Kumar; Philip, John
2018-02-01
We study the magnetic field induced optical transparency and its origin in magnetic nanoemulsion of droplets of average size ∼200 nm containing superparamagnetic iron oxide nanoparticles. Beyond a certain volume fraction (Φ > 0.0021) of magnetic nanoemulsion and a critical magnetic field (Hc1), the transmitted light intensity increases drastically and reaches a maximum at another critical magnetic field (Hc2), beyond which the transmitted light intensity decreases and reaches a plateau. Interestingly, the transmitted light intensity at Hc2 is found to increase linearly with Φ and the critical magnetic fields Hc1 and Hc2 follow power law decay with Φ (i.e. Hc ∼ Φ-x), with exponents 0.48 and 0.27, respectively. The light intensity recovers to its initial value when the magnetic field is switched off, indicating the perfect reversibility of the field induced transparency process. The observed straight line scattered patterns above Hc2, on a screen placed perpendicular to the incident beam, confirms the formation of rod like anisotropic nanostructures perpendicular to the direction of light propagation. The magneto-optical measurements in the emulsion confirm that the observed field induced transparency in magnetic emulsions for Φ > 0.0021 is due to the optical birefringence caused by the rod like nanostructures. The reduced birefringence is found to be proportional to the square of the applied magnetic field. This finding offers several possibilities in using magnetic nanofluids in tunable optical devices.
Dynamic shielding of the magnetic fields
Directory of Open Access Journals (Sweden)
RAU, M.
2010-11-01
Full Text Available The paper presents a comparative study of the methods used to control and compensate the direct and alternative magnetic fields. Two frequently used methods in the electromagnetic compatibility of the complex biomagnetism installations were analyzed. The two methods refer to the use of inductive magnetic field sensors (only for alternative fields and of fluxgate magnetometers as active transducers which measures both the direct and alternative components of the magnetic field. The applications of the dynamic control of the magnetic field are: control of the magnetic field of the military ships, control of parasite magnetic field produced by power transformers and the electrical networks, protection of the mass spectrometers, electronic microscopes, SQUID and optical pumping magnetometers for applications in biomagnetism.
Tripolar electric field Structure in guide field magnetic reconnection
S. Fu; S. Huang; M. Zhou; B. Ni; X. Deng
2018-01-01
It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplit...
Magnetic field measurements of the superEBIS superconducting magnet
International Nuclear Information System (INIS)
Herschcovitch, A.; Kponou, A.; Clipperton, R.; Hensel, W.; Usack, F.
1994-01-01
SuperEBIS was designed to have a solenoidal magnetic field of a 5 Tesla strength with a 120 cm long bore. The field was specified to be straight within 1 part in 10000 within the bore, and uniform to within 1 part in 1000 within the central 90 cm. Magnetic field measurements were performed with a computerized magnetic field measuring setup that was borrowed from W. Sampson's group. A preliminary test was made of a scheme to determine if the magnetic and mechanical axes of the solenoid coincided, and, if not, by how much
Field free line magnetic particle imaging
Erbe, Marlitt
2014-01-01
Marlitt Erbe provides a detailed introduction into the young research field of Magnetic Particle Imaging (MPI) and field free line (FFL) imaging in particular. She derives a mathematical description of magnetic field generation for FFL imaging in MPI. To substantiate the simulation studies on magnetic FFL generation with a proof-of-concept, the author introduces the FFL field demonstrator, which provides the world's first experimentally generated rotated and translated magnetic FFL field complying with the requirements for FFL reconstruction. Furthermore, she proposes a scanner design of consi
Evolution of coronal and interplanetary magnetic fields
International Nuclear Information System (INIS)
Levine, R.H.
1980-01-01
Numerous studies have provided the detailed information necessary for a substantive synthesis of the empirical relation between the magnetic field of the sun and the structure of the interplanetary field. The author points out the latest techniques and studies of the global solar magnetic field and its relation to the interplanetary field. The potential to overcome most of the limitations of present methods of analysis exists in techniques of modelling the coronal magnetic field using observed solar data. Such empirical models are, in principle, capable of establishing the connection between a given heliospheric point and its magnetically-connected photospheric point, as well as the physical basis for the connection. (Auth.)
Photocurrent, Rectification, and Magnetic Field Symmetry of Induced Current Through Quantum Dots
DEFF Research Database (Denmark)
DiCarlo, L.; M. Marcus, C.; Harris jr, J.
2003-01-01
We report mesoscopic dc current generation in an open chaotic quantum dot with ac excitation applied to one of the shape-defining gates. For excitation frequencies large compared to the inverse dwell time of electrons in the dot (i.e., GHz), we find mesoscopic fluctuations of induced current...... that are fully asymmetric in the applied perpendicular magnetic field, as predicted by recent theory. Conductance, measured simultaneously, is found to be symmetric in field. In the adiabatic (i.e., MHz) regime, in contrast, the induced current is always symmetric in field, suggesting its origin is mesoscopic...
Cosmic Rays in Intermittent Magnetic Fields
Energy Technology Data Exchange (ETDEWEB)
Shukurov, Anvar; Seta, Amit; Bushby, Paul J.; Wood, Toby S. [School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); Snodin, Andrew P., E-mail: a.seta1@ncl.ac.uk, E-mail: amitseta90@gmail.com [Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800 (Thailand)
2017-04-10
The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.
Magnetic field mapper based on rotating coils
AUTHOR|(CDS)2087244; Arpaia, Pasquale
This thesis presents a magnetic field mapper based on rotating coils. The requirements, the architecture, the conceptual design, and the prototype for straight magnets were shown. The proposed system is made up of a rotating coil transducer and a train-like system for longitudinal motion and positioning inside magnet bore. The mapper allows a localized measurement of magnetic fields and the variation of the harmonic multipole content in the magnet ends. The proof-of-principle demonstration and the experimental characterization of the rotating-coil transducer specifically conceived for mapping validated the main objective of satisfying the magnetic measurement needs of the next generation of compact accelerators.
The effects of magnetic field errors on reversed field pinch plasma
International Nuclear Information System (INIS)
Almagri, A.F.
1990-12-01
Studies of magnetic field error effects on Reversed Field Pinch plasma were carried out on the Madison Symmetric Torus. Magnetic field errors at the poloidal gap were reduced by 18% in rms value. This modest reduction of field errors resulted in improved plasma discharges. The plasma loop voltage was reduced by about 31%, and the plasma resistivity was reduced by 36%. Reversal duration increased by 16%. The character of the sawtooth activity as seen on the toroidal field at the wall changed considerably when field errors were reduced. These results suggest improved plasma confinement. Field errors were reduced further by a factor of six in rms value. With this reduction of field errors, plasma loop voltage was reduced by about a factor of two. The discharge duration doubled. At this low level of field errors, the plasma exhibited coherent magnetic fluctuations. These fluctuations have a poloidal mode number m = 1 and toroidal mode number n = 5 - 10. These modes are typically phase-locked to one another to form a localized perturbation. This perturbation rotates toroidally in the ion-diamagnetic drift direction with a speed of about 10 6 cm/sec. Occasionally these modes are observed to lock to the conducting wall. This locking is believed to be caused by the poloidal gap field errors. These locked discharges tend to be much shorter in duration and to have larger loop voltage. The behavior of locked discharges can be explained by a field-error instability. Some estimates of the internal radial magnetic fields and the resulting magnetic islands are calculated. These calculations show that the field errors need to be reduced to less than 2% of the poloidal field at the wall to reduce islands overlap
High magnetic fields science and technology
Miura, Noboru
2003-01-01
This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst
DC-based magnetic field controller
Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.
1994-01-01
A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.
Demagnetizing fields in active magnetic regenerators
DEFF Research Database (Denmark)
Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders
2014-01-01
A magnetic material in an externally applied magnetic field will in general experience a spatially varying internal magnetic field due to demagnetizing effects. When the performance of active magnetic regenerators (AMRs) is evaluated using numerical models the internal field is often assumed...... is in general both a function of the overall shape of the regenerator and its morphology (packed particles, parallel plates etc.) as well as the magnetization of the material. Due to the pronounced temperature dependence of the magnetization near the Curie temperature, the demagnetization field is also...... temperature dependent. We propose a relatively straightforward method to correct sufficiently for the demagnetizing field in AMR models. We discuss how the demagnetizing field behaves in regenerators made of packed spheres under realistic operation conditions....
Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization
International Nuclear Information System (INIS)
Ida, Tetsuya; Watasaki, Masahiro; Kimura, Yosuke; Miki, Motohiro; Izumi, Mitsuru
2010-01-01
For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.
Energy Technology Data Exchange (ETDEWEB)
Zhuk, Alexander [The International Center of Future Science of the Jilin University, Changchun City (China); Odessa National University, Astronomical Observatory, Odessa (Ukraine); Chopovsky, Alexey; Fakhr, Seyed Hossein [Odessa National University, Astronomical Observatory, Odessa (Ukraine); Shulga, Valerii [The International Center of Future Science of the Jilin University, Changchun City (China); Institut of Radio Astronomy of National Academy of Sciences of Ukraine, Kharkov (Ukraine); Wei, Han [The International Center of Future Science of the Jilin University, Changchun City (China)
2017-11-15
In a multidimensional Kaluza-Klein model with Ricci-flat internal space, we study the gravitational field in the weak-field limit. This field is created by two coupled sources. First, this is a point-like massive body which has a dust-like equation of state in the external space and an arbitrary parameter Ω of equation of state in the internal space. The second source is a static spherically symmetric massive scalar field centered at the origin where the point-like massive body is. The found perturbed metric coefficients are used to calculate the parameterized post-Newtonian (PPN) parameter γ. We define under which conditions γ can be very close to unity in accordance with the relativistic gravitational tests in the solar system. This can take place for both massive or massless scalar fields. For example, to have γ ∼ 1 in the solar system, the mass of scalar field should be μ >or similar 5.05 x 10{sup -49} g ∝ 2.83 x 10{sup -16} eV. In all cases, we arrive at the same conclusion that to be in agreement with the relativistic gravitational tests, the gravitating mass should have tension: Ω = -1/2. (orig.)
Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane
Pant, Bharat B. (Inventor); Wan, Hong (Inventor)
2001-01-01
A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.
Transient Magnetic Field in a Conducting Cylinder
Directory of Open Access Journals (Sweden)
Zygmunt Piatek
2004-01-01
Full Text Available In the paper we determine the transient magnetic field in a conducting cylinder placed in external longitudinal sine-shaped magnetic field using the solution of Bessell equation in cylindrical co-ordinates, and also applying integral Laplace transformations, attenuation and diffusion of the magnetic field strength in the cylinder. The resulting equations can be used to describe volume density of the power lost in the cylinder and to determine substitute parameters of the inductor-cylindrical work system.
The influence of red blood cells (erythrocytes) and magnetic field on ...
African Journals Online (AJOL)
The present study considers the steady, laminar and axially symmetrical flow of blood through an artery provided with a mild stenosis under the influence of an externally applied homogeneous magnetic field. Assuming that blood has small electrical conductivity coupled with the Boussinesq approximation, the leading ...
Nonlinear instability of wormholes supported by exotic dust and a magnetic field
Sarbach, Olivier; Zannias, Thomas
2010-01-01
Recently, spherically symmetric, static wormholes supported by exotic dust and a radial magnetic field have been derived and argued to be stable with respect to linear radial fluctuations. In this report we point out that these wormholes are unstable due to the formation of shell-crossing singularities when the nonlinearities of the theory are taken into account.
Novel Electrochemical Phenomena in Magnetic Fields(Research in High Magnetic Fields)
Mogi, Iwao; Kamiko, Masao
1996-01-01
Recent two topics are given of electrochemical studies in steady magnetic fields at the High Field Laboratory of Tohoku University. One is the magnetic-field-induced diffusion-limited-aggregation in the pattern formation of silver electrodeposits . The other is the magnetic field effect on the learning effect in a dopant-exchange process of an organic conducting polymer polypyrrole.
Static, spherically symmetric solutions with a scalar field in Rastall gravity
Bronnikov, K. A.; Fabris, J. C.; Piattella, O. F.; Santos, E. C.
2016-12-01
Rastall's theory belongs to the class of non-conservative theories of gravity. In vacuum, the only non-trivial static, spherically symmetric solution is the Schwarzschild one, except for a very special case. When a canonical scalar field is coupled to the gravity sector in this theory, new exact solutions appear for some values of the Rastall parameter a. Some of these solutions describe the same space-time geometry as the recently found solutions in the k-essence theory with a power function for the kinetic term of the scalar field. There is a large class of solutions (in particular, those describing wormholes and regular black holes) whose geometry coincides with that of solutions of GR coupled to scalar fields with nontrivial self-interaction potentials; the form of these potentials, however, depends on the Rastall parameter a. We also note that all solutions of GR with a zero trace of the energy-momentum tensor, including black-hole and wormhole ones, may be re-interpreted as solutions of Rastall's theory.
Strongly Interacting Matter in Magnetic Field
Mao, Shijun; Wu, Youjia; Zhuang, Pengfei
Inverse magnetic catalysis effect on the chiral phase transition is investigated in the frame of SU(2) NJL model with Pauli-Villars regularization scheme. We consider two scenarios, the chiral chemical potential μ5 caused by sphalerons and magnetic inhibition of mesons π0. With different chiral chemical potential, we always obtain magnetic catalysis in the mean field calculation, due to the enhancement of Fermi surface of the pairing fermions by μ5. On the other hand, when going beyond the mean field approximation by including the feed-down from mesons to quarks, the competition between the magnetic catalysis effect of quarks and magnetic inhibition effect of mesons leads to the transition from inverse magnetic catalysis to delayed magnetic catalysis with increasing magnetic field.
Minimizing magnetic fields for precision experiments
Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.
2015-06-01
An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.
Magnetic field measurements and mapping techniques
CERN. Geneva
2003-01-01
These lectures will present an overview of the most common techniques used for the measurement of magnetic field in accelerator magnets. The formalism for a harmonic description of the magnetic field will be presented, including a discussion of harmonics allowed under various types of symmetries in the magnet. The harmonic coil technique for measurement of field harmonics will be covered in depth. Using examples from recent projects, magnetic measurements will be shown to be a powerful tool for monitoring magnet production. Measurements of magnetic axis using extensions of the harmonic coil technique, as well as other techniques, such as the colloidal cell and stretched wire, will be covered. Topics of interest in superconducting magnets, such as time decay and snapback, requiring relatively fast measurements of the harmonics, will also be described.
Féménias, Olivier; Diot, Hervé; Berza, Tudor; Gauffriau, Antoine; Demaiffe, Daniel
2004-08-01
The fabric in a dike is representative of the magmatic flow, considered as Newtonian. The anisotropy of magnetic susceptibility of the rocks gives a good representation of the shape-preferred orientation which, in turn, is a marker of the magmatic flow. Generally, a symmetrical pattern of the fabric across the dike is in agreement with a flow of magma within a channel: the flow direction is then reliable with this imbrication. An asymmetrical fabric is dependent on the flow and displacement of the wall. We present the case of both symmetrical and asymmetrical dike fabrics recording different emplacements. From a Pan-African calc-alkaline dike swarm (of basaltic-andesitic-dacitic-rhyolitic composition) of the Alpine Danubian window from South Carpathians (Romania), two populations of dikes have been described: thick (1-30 m) N-S-trending dikes and thin (movement of the walls. In contrast, the thin dikes are symmetrical and frequently display an arteritic morphology that limits the dike length, with no cartographic extension. We propose to relate the two types of dikes to the same regional stress field in a continuum of emplacement during a regional brittle event.
Operating a magnetic nozzle helicon thruster with strong magnetic field
Energy Technology Data Exchange (ETDEWEB)
Takahashi, Kazunori, E-mail: kazunori@ecei.tohoku.ac.jp; Komuro, Atsushi; Ando, Akira [Department of Electrical Engineering, Tohoku University, Sendai 980-8579 (Japan)
2016-03-15
A pulsed axial magnetic field up to ∼2.8 kG is applied to a 26-mm-inner-diameter helicon plasma thruster immersed in a vacuum chamber, and the thrust is measured using a pendulum target. The pendulum is located 30-cm-downstream of the thruster, and the thruster rf power and argon flow rate are fixed at 1 kW and 70 sccm (which gives a chamber pressure of 0.7 mTorr). The imparted thrust increases as the applied magnetic field is increased and saturates at a maximum value of ∼9.5 mN for magnetic field above ∼2 kG. At the maximum magnetic field, it is demonstrated that the normalized plasma density, and the ion flow energy in the magnetic nozzle, agree within ∼50% and of 10%, respectively, with a one-dimensional model that ignores radial losses from the nozzle. This magnetic nozzle model is combined with a simple global model of the thruster source that incorporates an artificially controlled factor α, to account for radial plasma losses to the walls, where α = 0 and 1 correspond to zero losses and no magnetic field, respectively. Comparison between the experiments and the model implies that the radial losses in the thruster source are experimentally reduced by the applied magnetic field to about 10% of that obtained from the no magnetic field model.
Magnetic field and magnetic isotope effects on photochemical reactions
International Nuclear Information System (INIS)
Wakasa, Masanobu
1999-01-01
By at present exact experiments and the theoretical analysis, it was clear that the magnetic field less than 2 T affected a radical pair reaction and biradical reaction. The radical pair life and the dissipative radical yield showed the magnetic field effects on chemical reactions. The radical pair mechanism and the triplet mechanism were known as the mechanism of magnetic field effects. The radical pair mechanism consists of four mechanisms such as the homogeneous hyperfine interaction (HFC), the delta-g mechanism, the relaxation mechanism and the level cross mechanism. In order to observe the magnetic effects of the radical pair mechanism, two conditions need, namely, the recombination rate of singlet radical pair > the dissipation rate and the spin exchange rate > the dissipation rate. A nanosecond laser photo-decomposition equipment can observe the magnetic field effects. The inversion phenomena of magnetic field effect, isolation of the relaxation mechanism and the delta-g mechanism, the magnetic field effect of heavy metal radical reaction, the magnetic field effect in homogeneous solvent, saturation of delta-g mechanism are explained. The succeeded examples of isotope concentration by the magnetic isotope effect are 17 O, 19 Si, 33 S, 73 Ge and 235 U. (S.Y.)
Ferroelectric Cathodes in Transverse Magnetic Fields
International Nuclear Information System (INIS)
Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch
2002-01-01
Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode
Thermodynamical instabilities under strong magnetic fields
Chen, Y. J.
2017-03-01
The thermodynamical instabilities of low densities in the n p matter and n p e matter are studied within several relativistic nuclear models under some values of magnetic fields. The results are compared between each other and the effects of the symmetry energy slope at saturation density on the instability are investigated. The instability regions can exhibit bands due to the presence of Landau levels for very strong magnetic fields of the order of 1017 G, while for weaker magnetic fields, the bands are replaced by many diffused or scattered pieces. It also shows that the proton fraction in the inner crust of neutron stars may be complex under strong magnetic fields.
The strongest magnetic fields in the universe
Balogh, A; Falanga, M; Lyutikov, M; Mereghetti, S; Piran, T; Treumann, RA
2016-01-01
This volume extends the ISSI series on magnetic fields in the Universe into the domain of what are by far the strongest fields in the Universe, and stronger than any field that could be produced on Earth. The chapters describe the magnetic fields in non-degenerate strongly magnetized stars, degenerate stars (such as white dwarfs and neutron stars), exotic members called magnetars, and in their environments, as well as magnetic fields in the environments of black holes. These strong fields have a profound effect on the behavior of matter, visible in particular in highly variable processes like radiation in all known wavelengths, including Gamma-Ray bursts. The generation and structure of such strong magnetic fields and effects on the environment are also described.
International Nuclear Information System (INIS)
Carvalho-Santos, Vagson L.; Dandoloff, Rossen
2012-01-01
We study the nonlinear σ-model in an external magnetic field applied on curved surfaces with rotational symmetry. The Euler–Lagrange equations derived from the Hamiltonian yield the double sine-Gordon equation (DSG) provided the magnetic field is tuned with the curvature of the surface. A 2π skyrmion appears like a solution for this model and surface deformations are predicted at the sector where the spins point in the opposite direction to the magnetic field. We also study some specific examples by applying the model on three rotationally symmetric surfaces: the cylinder, the catenoid and the hyperboloid.
Response of Magnetic Force Microscopy Probes under AC Magnetic Field
Sungthong, A.; Ruksasakchai, P.; Saengkaew, K.; Cheowanish, I.; Damrongsak, B.
2017-09-01
In this paper, magnetic force microscopy (MFM) probes with different coating materials were characterized under AC magnetic field. A perpendicular magnetic write head similar to those used in hard disk drives was employed as the AC magnetic field generator. In order to measure a response of MFM probes to AC magnetic field, a MFM probe under test was scanned, at a scan height of 10 nm, across the surface of the magnetic write head. During MFM imaging, the write head was biased by a sufficient magnitude of AC current, approximately 30 mA. A spectral analysis for a frequency sweep from 1 kHz to 100 MHz was extracted from post-processing MFM images. As expected, a MFM probe coated with hard magnetic alloys, i.e. FePt, has the lowest response to AC magnetic fields. MFM probes coated with soft magnetic alloys, i.e. NiFe and NiCoCr, have a relatively high and flat response across the frequency range. Ni coated MFM probe has the highest response to AC magnetic fields. In addition, CoCr and NiCo coated MFM probes show lower response than NiFe and NiCoCr probes at low frequencies; however, theirs response to AC magnetic field increase for the AC magnetic field with a frequency above 50 kHz. This can be implied that those MFM probes are a good candidate for being used to study the high-frequency performance of perpendicular magnetic write heads. Noting that response of all MFM probes significantly decreased when driven frequencies above 1 MHz due to the limitation of the hardware, i.e. response of quadrant photodiode and op-amp in a pre-amplifier.
Saadati-Moshtaghin, Hamid Reza; Zonoz, Farrokhzad Mohammadi; Amini, Mostafa M.
2018-04-01
A novel magnetically recoverable nanocomposite consisting of the NiFe2O4 core and KIT-6 mesoporous silica shell incorporated with ZnO nanoparticles was constructed. This nanocomposite was characterized by Fourier transform infrared (FT-IR), powder X-ray diffraction (XRD), Brunauer Emmett Teller (BET), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). This new nanocomposite demonstrated a catalytic performance in the synthesis of symmetrical N,N‧-alkylidene bisamides at the condensation reaction under solvent-free conditions. The nanocatalyst could simply be recovered from the reaction environment by using an exterior magnet and reused five times without a remarkable losing in the catalytic property.
Reducing Field Distortion in Magnetic Resonance Imaging
Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob
2010-01-01
A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T
NMR magnetic field controller for pulsed nuclear magnetic resonance experiments
International Nuclear Information System (INIS)
Scheler, G.; Anacker, M.
1975-01-01
A nuclear magnetic resonance controller for magnetic fields, which can also be used for pulsed NMR investigations, is described. A longtime stability of 10 -7 is achieved. The control signal is generated by a modified time sharing circuit with resonance at the first side band of the 2 H signal. An exact calibration of the magnetic field is achieved by the variation of the H 1 - or of the time-sharing frequency. (author)
Solar Force-free Magnetic Fields
Directory of Open Access Journals (Sweden)
Thomas Wiegelmann
2012-09-01
Full Text Available The structure and dynamics of the solar corona is dominated by the magnetic field. In most areas in the corona magnetic forces are so dominant that all non-magnetic forces like plasma pressure gradient and gravity can be neglected in the lowest order. This model assumption is called the force-free field assumption, as the Lorentz force vanishes. This can be obtained by either vanishing electric currents (leading to potential fields or the currents are co-aligned with the magnetic field lines. First we discuss a mathematically simpler approach that the magnetic field and currents are proportional with one global constant, the so-called linear force-free field approximation. In the generic case, however, the relation between magnetic fields and electric currents is nonlinear and analytic solutions have been only found for special cases, like 1D or 2D configurations. For constructing realistic nonlinear force-free coronal magnetic field models in 3D, sophisticated numerical computations are required and boundary conditions must be obtained from measurements of the magnetic field vector in the solar photosphere. This approach is currently of large interests, as accurate measurements of the photospheric field become available from ground-based (for example SOLIS and space-born (for example Hinode and SDO instruments. If we can obtain accurate force-free coronal magnetic field models we can calculate the free magnetic energy in the corona, a quantity which is important for the prediction of flares and coronal mass ejections. Knowledge of the 3D structure of magnetic field lines also help us to interpret other coronal observations, e.g., EUV images of the radiating coronal plasma.
Structure of magnetic field in Tokamaks
International Nuclear Information System (INIS)
Heller, M.V.A.P.; Caldas, I.L.
1990-01-01
Magnetic surfaces, necessary to plasma confinement, can be extinguished by resonant helical perturbations with small intensities due to plasma oscillations or external helical currents. The mapping of magnetic field is obtained intergrating numerically the differential equation of its lines. Criteria which evaluate the chaotic distribution of lines between resonant magnetic islands are presented. (M.C.K.) [pt
Molecular nanomagnet in periodic magnetic field
International Nuclear Information System (INIS)
Sinitsyn, N.A.
2002-01-01
The behavior of molecular nanomagnets in periodic magnetic field transverse to the easy axis direction is investigated. It is shown that at sufficiently strong field the tunneling time can be considerably reduced
Tripolar electric field Structure in guide field magnetic reconnection
Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua
2018-03-01
It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.
Control of magnetism by electric fields
Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo
2015-03-01
The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field.
Magnetic isotope and magnetic field effects on the DNA synthesis
Buchachenko, Anatoly L.; Orlov, Alexei P.; Kuznetsov, Dmitry A.; Breslavskaya, Natalia N.
2013-01-01
Magnetic isotope and magnetic field effects on the rate of DNA synthesis catalysed by polymerases β with isotopic ions 24Mg2+, 25Mg2+ and 26Mg2+ in the catalytic sites were detected. No difference in enzymatic activity was found between polymerases β carrying 24Mg2+ and 26Mg2+ ions with spinless, non-magnetic nuclei 24Mg and 26Mg. However, 25Mg2+ ions with magnetic nucleus 25Mg were shown to suppress enzymatic activity by two to three times with respect to the enzymatic activity of polymerases β with 24Mg2+ and 26Mg2+ ions. Such an isotopic dependence directly indicates that in the DNA synthesis magnetic mass-independent isotope effect functions. Similar effect is exhibited by polymerases β with Zn2+ ions carrying magnetic 67Zn and non-magnetic 64Zn nuclei, respectively. A new, ion–radical mechanism of the DNA synthesis is suggested to explain these effects. Magnetic field dependence of the magnesium-catalysed DNA synthesis is in a perfect agreement with the proposed ion–radical mechanism. It is pointed out that the magnetic isotope and magnetic field effects may be used for medicinal purposes (trans-cranial magnetic treatment of cognitive deceases, cell proliferation, control of the cancer cells, etc). PMID:23851636
Mobility of solid vortex matter in 'shaking' ac magnetic fields of variable amplitude
International Nuclear Information System (INIS)
Moreno, A.J.; Valenzuela, S.O.; Pasquini, G.; Bekeris, V.
2004-01-01
The vortex solid in high temperature superconductors exhibits several regimes and dynamical behaviors. A temporarily symmetric magnetic ac field (e.g. sinusoidal, square, triangular) can increase the vortex lattice mobility and a temporarily asymmetric one (e.g. sawtooth) can decrease it. In this work, we study the effect on the mobility of the vortex solid as a function of the amplitude of an ac symmetric 'shaking' field when it is applied to previously prepared high and low mobility configurations. This study was carried out in high quality twinned YBCO single crystals and vortex mobility was studied through ac susceptibility measurements
International Nuclear Information System (INIS)
Shabbir, Ghulam; Khan, Suhail
2010-01-01
In this paper we classify cylindrically symmetric static space-times according to their teleparallel homothetic vector fields using direct integration technique. It turns out that the dimensions of the teleparallel homothetic vector fields are 4, 5, 7 or 11, which are the same in numbers as in general relativity. In case of 4, 5 or 7 proper teleparallel homothetic vector fields exist for the special choice to the space-times. In the case of 11 teleparallel homothetic vector fields the space-time becomes Minkowski with all the zero torsion components. Teleparallel homothetic vector fields in this case are exactly the same as in general relativity. It is important to note that this classification also covers the plane symmetric static space-times. (general)
Coulomb blockade induced by magnetic field
International Nuclear Information System (INIS)
Kusmartsev, F.V.
1992-01-01
In this paper, the authors found that a Coulomb blockade can be induced by magnetic field. The authors illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field
Rotating artificial gauge magnetic and electric fields
Lembessis, V. E.; Alqarni, A.; Alshamari, S.; Siddig, A.; Aldossary, O. M.
2016-01-01
We consider the creation of artificial gauge magnetic and electric fields created when a two-level atom interacts with an optical Ferris wheel light field.These fields have the spatial structure of the optical Ferris wheel field intensity profile. If this optical field pattern is made to rotate in space then we have the creation of artificial electromagnetic fields which propagate in closed paths. The properties of such fields are presented and discussed
Magnetic Fields at the Center of Coils
Binder, Philippe; Hui, Kaleonui; Goldman, Jesse
2014-01-01
In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…
Magnetic Field Strength Evaluation Yu. S. Yefimov
Indian Academy of Sciences (India)
Blazars—magnetic fields—polarimetry. 1. Introduction. It is known that blazar radiation consists of several components. In optical region synchrotron radiation produced by the moving of relativistic electrons in the mag- netic field of a jet dominates. Magnetic field controls practically all main physical processes in galaxies ...
Hydrogen atom moving across a magnetic field
International Nuclear Information System (INIS)
Lozovik, Yu.E.; Volkov, S.Yu.
2004-01-01
A hydrogen atom moving across a magnetic field is considered in a wide region of magnitudes of magnetic field and atom momentum. We solve the Schroedinger equation of the system numerically using an imaginary time method and find wave functions of the lowest states of atom. We calculate the energy and the mean electron-nucleus separation as a function of atom momentum and magnetic field. All the results obtained could be summarized as a phase diagram on the 'atom-momentum - magnetic-field' plane. There are transformations of wave-function structure at critical values of atom momentum and magnetic field that result in a specific behavior of dependencies of energy and mean interparticle separation on the atom momentum P. We discuss a transition from the Zeeman regime to the high magnetic field regime. A qualitative analysis of the complicated behavior of wave functions vs P based on the effective potential examination is given. We analyze a sharp transition at the critical momentum from a Coulomb-type state polarized due to atom motion to a strongly decentered (Landau-type) state at low magnetic fields. A crossover occurring at intermediate magnetic fields is also studied
Evolution of Neutron Star Magnetic Fields
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... This paper reviews the current status of the theoretical models of the evolution of the magnetic fields of neutron stars other than magnetars. It appears that the magnetic fields of neutron stars decay significantly only if they are in binary systems. Three major physical models for this, namely spindown-induced ...
Threefold symmetric magnetic two-ion coupling in hcp rare-earth metals
International Nuclear Information System (INIS)
Jensen, J.
1997-01-01
The heavy rare earths crystallize in the hcp structure. Most of magnetic couplings between two ions in these metals are independent of the two different orientations of the hexagonal layers. However, trigonal anisotropy terms may occur, reflecting that c-axis is only threefold axis. In the presence of a trigonal coupling the symmetry is reduced, and the double-zone representation in the c-direction ceases to be valid. The strong interaction between the transverse optical phonons and the acoustic spin waves propagating in the c-direction of Yb detected more than twenty years ago, was the first example of a trigonal coupling found in these systems. A few years ago a careful neutron-diffraction study of the c-axis modulated magnetic structures in Er showed the presence of higher harmonics at positions along the c-axis translated by odd multiple of 2φ/c. This indicates distortions of the structures due to trigonal couplings, and the same characteristic phenomenon has now been also observed in Ho. Additionally, mean field calculations show that a trigonal coupling in Ho is required, in order to explain the increase in the commensurable effects observed for the 8 and 10 layered periodic structures, when a field is applied along the c-axis. (author)
Earth magnetism a guided tour through magnetic fields
Campbell, Wallace H
2001-01-01
An introductory guide to global magnetic field properties, Earth Magnetism addresses, in non-technical prose, many of the frequently asked questions about Earth''s magnetic field. Magnetism surrounds and penetrates our Earth in ways basic science courses can rarely address. It affects navigation, communication, and even the growth of crystals. As we observe and experience an 11-year solar maximum, we may witness spectacular satellite-destroying solar storms as they interact with our magnetic field. Written by an acknowledged expert in the field, this book will enrich courses in earth science, atmospheric science, geology, meteorology, geomagnetism, and geophysics. Contains nearly 200 original illustrations and eight pages of full-color plates.* Largely mathematics-free and with a wide breadth of material suitable for general readers* Integrates material from geomagnetism, paleomagnetism, and solar-terrestrial space physics.* Features nearly 200 original illustrations and 4 pages of colour plates
Classical theory of electric and magnetic fields
Good, Roland H
1971-01-01
Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma
Parameterization and measurements of helical magnetic fields
International Nuclear Information System (INIS)
Fischer, W.; Okamura, M.
1997-01-01
Magnetic fields with helical symmetry can be parameterized using multipole coefficients (a n , b n ). We present a parameterization that gives the familiar multipole coefficients (a n , b n ) for straight magnets when the helical wavelength tends to infinity. To measure helical fields all methods used for straight magnets can be employed. We show how to convert the results of those measurements to obtain the desired helical multipole coefficients (a n , b n )
Mechanics of magnetic fluid column in strong magnetic fields
International Nuclear Information System (INIS)
Polunin, V.M.; Ryapolov, P.A.; Platonov, V.B.
2017-01-01
Elastic-and magnetic properties of magnetic fluid confined by ponderomotive force in a tube fixed in horizontal position are considered. The system is placed in a strong magnetic field under the influence of external static and dynamic perturbations. An experimental setup has been developed. A theoretical basis of the processes of magnetic colloid elastic deformation has been proposed. The values of the static ponderomotive elasticity coefficient and the elasticity coefficient under dynamic action are experimentally determined. The calculations of the saturation magnetization for two magnetic fluid samples, carried out according to the equation containing the dynamic elasticity coefficient, are in good agreement with the experimental magnetization curve. The described method is of interest when studying magnetophoresis and aggregation of nanoparticles in magnetic colloids.
Theoretical Interpretation of Cosmic Magnetic Fields
Mikhail, F. I.; Wanas, M. I.; Eid, A. M.
1995-06-01
The paper discusses the possibilty of interpreting the magnetic fields of astronomical bodies in the framework of a unified field theory. Using one of the solutions of the generalized field theory, a direct relation between the polar magnetic field, the angular velocity and the gravitational potential of the body considered, is obtained. The geometric model used for applications has spherical symmetry and is of the type (FIGI). The predictions of the theoretical formula, obtained from the model, are compared with available observational data, and with the empirical formula of Blackett. The theoretical formula gives a possible interpretation of a seed magnetic field which will develop and produce the large-scale magnetic field observed for celestial objects. The formula shows that the field is generated as a result of rotation of a massive object.
Magnetic Helicity and Large Scale Magnetic Fields: A Primer
Blackman, Eric G.
2015-05-01
Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.
Orienting Paramecium with intense static magnetic fields
Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl
2004-03-01
Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).
The effect of the equatorially symmetric zonal winds of Saturn on its gravitational field
Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John D.
2018-04-01
The penetration depth of Saturn’s cloud-level winds into its interior is unknown. A possible way of estimating the depth is through measurement of the effect of the winds on the planet’s gravitational field. We use a self-consistent perturbation approach to study how the equatorially symmetric zonal winds of Saturn contribute to its gravitational field. An important advantage of this approach is that the variation of its gravitational field solely caused by the winds can be isolated and identified because the leading-order problem accounts exactly for rotational distortion, thereby determining the irregular shape and internal structure of the hydrostatic Saturn. We assume that (i) the zonal winds are maintained by thermal convection in the form of non-axisymmetric columnar rolls and (ii) the internal structure of the winds, because of the Taylor-Proundman theorem, can be uniquely determined by the observed cloud-level winds. We calculate both the variation ΔJn , n = 2, 4, 6 … of the axisymmetric gravitational coefficients Jn caused by the zonal winds and the non-axisymmetric gravitational coefficients ΔJnm produced by the columnar rolls, where m is the azimuthal wavenumber of the rolls. We consider three different cases characterized by the penetration depth 0.36, R S, 0.2, R S and 0.1, R S, where R S is the equatorial radius of Saturn at the 1-bar pressure level. We find that the high-degree gravitational coefficient (J 12 + ΔJ 12) is dominated, in all the three cases, by the effect of the zonal flow with |ΔJ 12/J 12| > 100% and that the size of the non-axisymmetric coefficients ΔJ mn directly reflects the depth and scale of the flow taking place in the Saturnian interior.
Probing Magnetic Fields of Early Galaxies
Kohler, Susanna
2017-06-01
How do magnetic fields form and evolve in early galaxies? A new study has provided some clever observations to help us answer this question.The Puzzle of Growing FieldsDynamo theory is the primary model describing how magnetic fields develop in galaxies. In this picture, magnetic fields start out as weak seed fields that are small and unordered. These fields then become ordered and amplified by large-scale rotation and turbulence in galaxy disks and halos, eventually leading to the magnetic fields we observe in galaxies today.Schematic showinghow to indirectly measure protogalactic magnetic fields. The measured polarization of a background quasar is altered by the fields in a foreground protogalaxy. Click for a closer look! [Farnes et al. 2017/Adolf Schaller/STSCI/NRAO/AUI/NSF]To test this model, we need observations of the magnetic fields in young protogalaxies. Unfortunately, we dont have the sensitivity to be able to measure these fields directly but a team of scientists led by Jamie Farnes (Radboud University in the Netherlands) have come up with a creative alternative.The key is to find early protogalaxies that absorb the light of more distant background objects. If a protogalaxy lies between us and a distant quasar, then magnetic fields of the protogalaxy if present will affect the polarization measurements of the background quasar.Observing Galactic Building BlocksTop: Redshift distribution for the background quasars in the authors sample. Bottom: Redshift distribution for the foreground protogalaxies the authors are exploring. [Farnes et al. 2017]Farnes and collaborators examined two types of foreground protogalaxies: Damped Lyman-Alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). They obtained polarimetric data for a sample of 114 distant quasars with nothing in the foreground (the control sample), 19 quasars with DLAs in the foreground, and 27 quasars with LLSs in the foreground. They then used statistical analysis techniques to draw conclusions about
Two populations of the solar magnetic field
Obridko, V. N.; Livshits, I. M.; Sokoloff, D. D.
2017-12-01
Dynamo theory suggests that there are two types of solar dynamo, namely the conventional mean-field dynamo, which produces large- and small-scale magnetic fields involved in the activity cycle, and also the small-scale dynamo, which produces a cycle independent small-scale magnetic field. The relative contribution of the two mechanisms to solar magnetism remains a matter of scientific debate, which includes the opinion that the contribution of the small-scale dynamo is negligible. Here, we consider several tracers of magnetic activity that separate cycle-dependent contributions to the background solar magnetic field from those that are independent of the cycle. We call background fields the magnetic fields outside active regions and give further development of this concept. The main message of our paper is that background fields include two relative separate populations. The background fields with a strength up to 100 Mx cm-2 are very poorly correlated with the sunspot numbers and vary little with the phase of the cycle. In contrast, stronger magnetic fields demonstrate pronounced cyclic behaviour. We discuss how this result can be included in the above-mentioned concepts of solar dynamo studies.
Line formation in microturbulent magnetic fields
International Nuclear Information System (INIS)
Domke, H.; Pavlov, G.G.
1979-01-01
The formation of Zeeman lines in Gaussian microturbulent magnetic fields is considered assuming LTE. General formulae are derived for the local mean values of the transfer matrix elements. The cases of one-dimensional (longitudinal), isotropic, and two-dimensional (transversal) magnetic microturbulence are studied in some detail. Asymptotic formulae are given for small mean as well as for small microturbulent magnetic fields. Characteristic effects of magnetic microturbulence on the transfer coefficients are: (i) the broadening of the frequency contours, although only for the case of longitudinal Zeeman effect and longitudinal magnetic microturbulence this effect can be described analogous to Doppler broadening, (ii) the appearance of a pseudo-Zeeman structure for nonlongitudinal magnetic microturbulence, (iii) the reduction of maximal values of circular polarization, and (iv) the appearance of characteristic linear polarization effects due to the anisotropy of the magnetic microturbulence. Line contours and polarization of Zeeman triplets are computed for Milne-Eddington atmospheres. It is shown that magnetic intensification due to microturbulent magnetic fields may be much more efficient than that due to regular fields. The gravity center of a Zeeman line observed in circularly polarized light remains a reasonable measure of the line of sight component of the mean magnetic field for a line strength eta 0 < approx. 2. For saturated lines, the gravity center distance depends significantly on the magnetic microturbulence and its anisotropy. The influence of magnetic microturbulence on the ratio of longitudinal field magnetographic signals shows that unique conclusions about the magnetic microstructure can be drawn from the line ratio measurements only in combination with further spectroscopic data or physical reasoning. (orig.)
Warm inflation in presence of magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Piccinelli, Gabriella [Centro Tecnológico, FES Aragón, Universidad Nacional Autónoma de México, Avenida Rancho Seco S/N, Bosques de Aragón, Nezahualcóyotl, Estado de México 57130 (Mexico); Sánchez, Ángel [Department of Physics, University of Texas at El Paso, El Paso, Texas 79968 (United States); Ayala, Alejandro; Mizher, Ana Julia [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, México Distrito Federal 04510 (Mexico)
2013-07-23
We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales which rises de possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger's proper time method.
Magnetic fields in noninvasive brain stimulation.
Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas
2014-04-01
The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985.
Dynamic Magnetic Field Applications for Materials Processing
Mazuruk, K.; Grugel, Richard N.; Motakef, S.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Magnetic fields, variable in time and space, can be used to control convection in electrically conducting melts. Flow induced by these fields has been found to be beneficial for crystal growth applications. It allows increased crystal growth rates, and improves homogeneity and quality. Particularly beneficial is the natural convection damping capability of alternating magnetic fields. One well-known example is the rotating magnetic field (RMF) configuration. RMF induces liquid motion consisting of a swirling basic flow and a meridional secondary flow. In addition to crystal growth applications, RMF can also be used for mixing non-homogeneous melts in continuous metal castings. These applied aspects have stimulated increasing research on RMF-induced fluid dynamics. A novel type of magnetic field configuration consisting of an axisymmetric magnetostatic wave, designated the traveling magnetic field (TMF), has been recently proposed. It induces a basic flow in the form of a single vortex. TMF may find use in crystal growth techniques such as the vertical Bridgman (VB), float zone (FZ), and the traveling heater method. In this review, both methods, RMF and TMF are presented. Our recent theoretical and experimental results include such topics as localized TMF, natural convection dumping using TMF in a vertical Bridgman configuration, the traveling heater method, and the Lorentz force induced by TMF as a function of frequency. Experimentally, alloy mixing results, with and without applied TMF, will be presented. Finally, advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, will be discussed.
Magnetic field compression using pinch-plasma
International Nuclear Information System (INIS)
Koyama, K.; Tanimoto, M.; Matsumoto, Y.; Veno, I.
1987-01-01
In a previous report, the method for ultra-high magnetic field compression by using the pinchplasma was discussed. It is summarized as follows. The experiment is performed with the Mather-type plasma focus device tau/sub 1/4/ = 2 μs, I=880 kA at V=20 kV). An initial DC magnetic field is fed by an electromagnet embedded in the inner electrode. The axial component of the magnetic field diverges from the maximum field of 1 kG on the surface of the inner electrode. The density profile deduced from a Mach-Zehnder interferogram with a 2-ns N/sub 2/-laser shows a density dip lasting for 30 ns along the axes. Using the measured density of 8 x 10/sup 18/ cm/sup -3/, the temperature of 1.5 keV and the pressure balance relation, the magnitude of the trapped magnetic field is estimated to be 1.0 MG. The magnitude of the compressed magnetic field is also measured by Faraday rotation in a single-mode quartz fiber and a magnetic pickup soil. A protective polyethylene tube (3-mm o.d.) is used along the central axis through the inner electrode and the discharge chamber. The peak value of the compressed field range from 150 to 190 kG. No signal of the magnetic field appears up to the instance of the maximum pinch
Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics
Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul
2017-10-01
The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.
Interplanetary magnetic field and geomagnetic Dst variations.
Patel, V. L.; Desai, U. D.
1973-01-01
The interplanetary magnetic field has been shown to influence the ring current field represented by Dst. Explorer 28 hourly magnetic field observations have been used with the hourly Dst values. The moderate geomagnetic storms of 60 gammas and quiet-time fluctuations of 10 to 30 gammas are correlated with the north to south change of the interplanetary field component perpendicular to the ecliptic. This change in the interplanetary field occurs one to three hours earlier than the corresponding change in the Dst field.
Write field asymmetry in perpendicular magnetic recording
Li, Zhanjie; Bai, Daniel Z.; Lin, Ed; Mao, Sining
2012-04-01
We present a systematic study of write field asymmetry by using micromagnetic modeling for a perpendicular magnetic recording (PMR) writer structure. Parameters investigated include initial magnetization condition, write current amplitude, write current frequency, and initial write current polarity. It is found that the write current amplitude and frequency (data rate) are the dominant factors that impact the field asymmetry. Lower write current amplitude and higher write current frequency will deteriorate the write field asymmetry, causing recording performance (such as bit error rate) degradation.
Neutron stars velocities and magnetic fields
Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.
2018-01-01
We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.
Planetary nebulae and the interstellar magnetic field
International Nuclear Information System (INIS)
Heiligman, G.M.
1980-01-01
Previous workers have found a statistical correlation between the projected directions of the interstellar magnetic field and the major axes of planetary nebulae. This result has been examined theoretically using a numerical hydromagnetic model of a cold plasma nebula expanding into a uniform vacuum magnetic field, with nebular gas accreting on the surface. It is found that magnetic pressure alone is probably not sufficient to shape most planetary nebulae to the observed degree. Phenomena are discussed which could amplify simple magnetic pressure, alter nebular morphology and account for the observed correlation. (author)
Tuning permanent magnets with adjustable field clamps
International Nuclear Information System (INIS)
Schermer, R.I.
1987-01-01
The effective length of a permanent-magnet assembly can be varied by adjusting the geometrical parameters of a field clamp. This paper presents measurements on a representative dipole and quadrupole as the field clamp is withdrawn axially or radially. The detailed behavior depends upon the magnet multipolarity and geometry. As a rule-of-thumb, a 3-mm-thick iron plate placed at one end plane of the magnet will shorten the length by one-third of the magnet bore radius
Kar, Soumen; Luo, Wenbo; Ben Yahia, Anis; Li, Xiaofen; Majkic, Goran; Selvamanickam, Venkat
2018-04-01
Round REBCO (RE = rare earth) wires of 1.6-1.85 mm diameter have been fabricated using ultrathin REBCO tapes where the superconductor film is positioned near the geometric center. Such symmetric tape round (STAR) wires exhibit excellent tolerance to bend strain with a critical current retention of more than 97% when bent to a radius of 15 mm. A 1.6 mm diameter REBCO STAR wire made with six 2.5 mm wide symmetric tapes reached an engineering current density (J e) of 454 A mm-2 at 4.2 K in a background field of 15 T at a bend radius of 15 mm. Such superior performance at a small bend radius can enable fabrication of future accelerator magnets, operating at magnetic fields above 20 T.
Tuning bacterial hydrodynamics with magnetic fields
Pierce, C. J.; Mumper, E.; Brown, E. E.; Brangham, J. T.; Lower, B. H.; Lower, S. K.; Yang, F. Y.; Sooryakumar, R.
2017-06-01
Magnetotactic bacteria are a group of motile prokaryotes that synthesize chains of lipid-bound, magnetic nanoparticles called magnetosomes. This study exploits their innate magnetism to investigate previously unexplored facets of bacterial hydrodynamics at surfaces. Through use of weak, uniform, external magnetic fields and local, micromagnetic surface patterns, the relative strength of hydrodynamic, magnetic, and flagellar force components is tuned through magnetic control of the bacteria's orientation. The resulting swimming behaviors provide a means to experimentally determine hydrodynamic parameters and offer a high degree of control over large numbers of living microscopic entities. The implications of this controlled motion for studies of bacterial motility near surfaces and for micro- and nanotechnology are discussed.
Design of integral magnetic field sensor
International Nuclear Information System (INIS)
Ma Liang; Cheng Yinhui; Wu Wei; Li Baozhong; Zhou Hui; Li Jinxi; Zhu Meng
2010-01-01
Magnetic field is one of the important physical parameters in the measuring process of pulsed EMP. We researched on anti-interference and high-sensitivity measurement technique of magnetic field in this report. Semi rigid cables were to bent into ringed antenna so that the antenna was shielded from electric-field interference and had little inductance; In order to have high sensitivity, operational transconductance amplifier was used to produce an active integrator; We designed an optical-electronic transferring module to upgrade anti-interference capability of the magnetic-field measurement system. A measurement system of magnetic field was accomplished. The measurement system was composed of antenna, integrator, and optical-electric transferring module and so on. We calibrated the measurement system in coaxial TEM cell. It indicates that, the measurement system's respondence of rise time is up to 2.5 ns, and output width at 90%-maximum of the pulse is wider than 200 ns. (authors)
Bound states in a strong magnetic field
International Nuclear Information System (INIS)
Machado, C. S.; Navarra, F. S.; Noronha, J.; Oliveira, E. G.; Ferreira Filho, L. G.
2013-01-01
We expect a strong magnetic field to be produced in the perpendicular direction to the reaction plane, in a noncentral heavy-ion collision . The strength of the magnetic field is estimated to be eB∼m 2 π ∼ 0.02 GeV 2 at the RHIC and eB∼ 15m 2 π ∼ 0.3 GeV 2 at the LHC. We investigate the effects of the magnetic field on B 0 and D 0 mesons, focusing on the changes of the energy levels and of the mass of the bound states.
Primordial magnetic fields in hybrid inflation
Davis, A C; Davis, Anne Christine; Dimopoulos, Konstantinos
1997-01-01
We show that, during hybrid inflation, a primordial magnetic field can be created, sufficiently strong to seed the galactic dynamo and generate the observed galactic magnetic fields. Considering the inflaton dominated regime, our field is produced by the Higgs--field gradients, resulting from a grand unified phase transition. The evolution of the field is followed from its creation through to the epoch of structure formation, subject to the relevant constraints. We find that it is always possible to create a magnetic field of sufficient magnitude, provided the phase transition occurs during the final 15 e-foldings of the inflationary period. the achieved field can be coherent over large distances and, for some parameter space, it is strong enough to dispense with the galactic dynamo.
Conductance of auroral magnetic field lines
International Nuclear Information System (INIS)
Weimer, D.R.; Gurnett, D.A.; Goertz, C.K.
1986-01-01
DE-1 high-resolution double-probe electric-field data and simultaneous magnetic-field measurements are reported for two 1981 events with large electric fields which reversed over short distances. The data are presented graphically and analyzed in detail. A field-line conductance of about 1 nmho/sq m is determined for both upward and downward currents, and the ionospheric conductivity is shown, in the short-wavelength limit, to have little effect on the relationship between the (N-S) electric and (E-W) magnetic fields above the potential drop parallel to the magnetic-field lines. The results are found to be consistent with a linear relationship between the field-aligned current density and the parallel potential drop. 14 references
Magnetic field decay in black widow pulsars
Mendes, Camile; de Avellar, Marcio G. B.; Horvath, J. E.; Souza, Rodrigo A. de; Benvenuto, O. G.; De Vito, M. A.
2018-04-01
We study in this work the evolution of the magnetic field in `redback-black widow' pulsars. Evolutionary calculations of these `spider' systems suggest that first the accretion operates in the redback stage, and later the companion star ablates matter due to winds from the recycled pulsar. It is generally believed that mass accretion by the pulsar results in a rapid decay of the magnetic field when compared to the rate of an isolated neutron star. We study the evolution of the magnetic field in black widow pulsars by solving numerically the induction equation using the modified Crank-Nicolson method with intermittent episodes of mass accretion on to the neutron star. Our results show that the magnetic field does not fall below a minimum value (`bottom field') in spite of the long evolution time of the black widow systems, extending the previous conclusions for much younger low-mass X-ray binary systems. We find that in this scenario, the magnetic field decay is dominated by the accretion rate, and that the existence of a bottom field is likely related to the fact that the surface temperature of the pulsar does not decay as predicted by the current cooling models. We also observe that the impurity of the pulsar crust is not a dominant factor in the decay of magnetic field for the long evolution time of black widow systems.
Environmental magnetic fields: Influences on early embryogenesis
Energy Technology Data Exchange (ETDEWEB)
Cameron, I.L.; Hardman, W.E.; Winters, W.D.; Zimmerman, S.; Zimmerman, A.M. (Univ. of Texas Health Science Center, San Antonio (United States))
1993-04-01
A 10-mG, 50 to 60-Hz magnetic field is in the intensity and frequency range that people worldwide are often exposed to in homes and in the workplace. Studies about the effects of 50- to 100-Hz electromagnetic fields on various species of animal embryos (fish, chick, fly, sea urchin, rat, and mouse) indicate that early stages of embryonic development are responsive to fluctuating magnetic fields. Chick, sea urchin, and mouse embryos are responsive to magnetic field intensities of 10-100 mG. Results from studies on sea urchin embryos indicate that exposure to conditions of rotating 60-Hz magnetic fields, e.g., similar to those in our environment, interferes with cell proliferation at the morula stage in a manner dependent on field intensity. The cleavage stages, prior to the 64-cell stage, were not delayed by this rotating 60-Hz magnetic field suggesting that the ionic surges, DNA replication, and translational events essential for early cleavage stages were not significantly altered. Studies of histone synthesis in early sea urchin embryos indicated that the rotating 60-Hz magnetic field decreased zygotic expression of early histone genes at the morula stage and suggests that this decrease in early histone production was limiting to cell proliferation. Whether these comparative observations from animal development studies will be paralleled by results from studies of human embryogenesis, as suggested by some epidemiology studies, has yet to be established. 38 refs.
Working in the magnetic field of ultrahigh field MRI
International Nuclear Information System (INIS)
Leitgeb, N.; Gombotz, H.
2013-01-01
Development of magnetic resonance imaging (MRI) device technology continues to increase the static magnetic flux densities applied and consequently leads to considerably increased occupational exposure. This has already made it necessary to review limits of occupational exposure and to postpone European legal regulations for occupational exposure to electromagnetic fields. This raises the question whether and if so which adverse health effects and health risks might be associated with occupational exposure to MRI ultra-high static magnetic fields. Based on a survey on interaction mechanisms recommendations and safety rules are presented to help minimize adverse health effects of emerging ultra-high field MRI. (orig.) [de
Global confinement in the MST (Madison Symmetric Torus) reversed field pinch
Energy Technology Data Exchange (ETDEWEB)
Almagri, A.; Assadi, S.; Beckstead, J.; Chartas, G.; Cudzinovic, M.; Den Hartog, D.; Dexter, R.; Hokin, S.; Holly, D.; Klevans, E.; Nebel, R.; Prager, S.; Rempel, T.; Sarff, J.; Scime, E.; Shen, W.; Spragins, C.; Sprott, C.; Starr, G.; Stoneking, M.; Veerasingam, R.; Watts, C.
1990-10-01
Global confinement measured in the first six months of MST full design operation is summarized. Central electron temperature and enhancement of resistivity over the Z = 1 Spitzer value are similar to other RFP experiments for the same value of I/N. As in several other RFP experiments, energy confinement time and poloidal beta are found to decrease with increasing plasma current, with maximum values of {tau}{sub E} {approximately} 1 ms and {beta}{sub p} {approximately} 10%. Particle transport may be approximated with a diffusion coefficient D {approximately} 40 m{sup 2}/s for a discharge studied with a 1-d particle-neutral code. A more elaborate code, incorporating heat and impurity transport, indicates an increase of Z{sub eff} with I/N. This code also reveals that the toroidal magnetic field decays resistively between discrete dynamo events, at the rate given by the measured global resistivity. Edge suprathermal electrons are observed as on other RFPs, with temperatures comparable to the central electron temperature and carrying a current density at least 15% of the total measured with an insertable magnetic coil array. Radial magnetic profiles measured with this array may be matched with a Modified Polynomial Function Model equilibrium for a value of {beta}{sub p} which is a factor of two larger than measured, but which is required due to the large values of {Theta} for a given F found in MST discharges ({Theta} = 1.85 at F= {minus}0.15). 15 refs., 14 figs.
The CMS Magnetic Field Map Performance
Klyukhin, V.I.; Andreev, V.; Ball, A.; Cure, B.; Herve, A.; Gaddi, A.; Gerwig, H.; Karimaki, V.; Loveless, R.; Mulders, M.; Popescu, S.; Sarycheva, L.I.; Virdee, T.
2010-04-05
The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field ...
Mercury's Crustal Magnetic Field from MESSENGER Data
Plattner, A.; Johnson, C.
2017-12-01
We present a regional spherical-harmonic based crustal magnetic field model for Mercury between latitudes 45° and 70° N, derived from MESSENGER magnetic field data. In addition to contributions from the core dynamo, the bow shock, and the magnetotail, Mercury's magnetic field is also influenced by interactions with the solar wind. The resulting field-aligned currents generate magnetic fields that are typically an order of magnitude stronger at spacecraft altitude than the field from sources within Mercury's crust. These current sources lie within the satellite path and so the resulting magnetic field can not be modeled using potential-field approaches. However, these fields are organized in the local-time frame and their spatial structure differs from that of the smaller-scale crustal field. We account for large-scale magnetic fields in the local-time reference frame by subtracting from the data a low-degree localized vector spherical-harmonic model including curl components fitted at satellite altitude. The residual data exhibit consistent signals across individual satellite tracks in the body fixed reference frame, similar to those obtained via more rudimentary along-track filtering approaches. We fit a regional internal-source spherical-harmonic model to the night-time radial component of the residual data, allowing a maximum spherical-harmonic degree of L = 150. Due to the cross-track spacing of the satellite tracks, spherical-harmonic degrees beyond L = 90 are damped. The strongest signals in the resulting model are in the region around the Caloris Basin and over Suisei Planitia, as observed previously. Regularization imposed in the modeling allows the field to be downward continued to the surface. The strongest surface fields are 30 nT. Furthermore, the regional power spectrum of the model shows a downward dipping slope between spherical-harmonic degrees 40 and 80, hinting that the main component of the crustal field lies deep within the crust.
Magnetic monopoles in field theory and cosmology.
Rajantie, Arttu
2012-12-28
The existence of magnetic monopoles is predicted by many theories of particle physics beyond the standard model. However, in spite of extensive searches, there is no experimental or observational sign of them. I review the role of magnetic monopoles in quantum field theory and discuss their implications for particle physics and cosmology. I also highlight their differences and similarities with monopoles found in frustrated magnetic systems.
Calculation of magnetic fields for engineering devices
International Nuclear Information System (INIS)
Colonias, J.S.
1976-06-01
The methodology of magnet technology and its application to various engineering devices are discussed. Magnet technology has experienced a rigid growth in the past few years as a result of the advances made in superconductivity, numerical methods and computational techniques. Included are discussions on: (1) mathematical models for solving magnetic field problems; (2) the applicability, usefulness, and limitations of computer programs that utilize these models; (3) examples of application in various engineering disciplines; and (4) areas where further contributions are needed
Shestakov, E. A.; Savrukhin, P. V.
2017-10-01
Experiments in the T-10 tokamak demonstrated possibility of controlling the plasma current during disruption instability using the electron cyclotron resonance heating (ECRH) and the controlled operation of the ohmic current-holding system. Quasistable plasma discharge with repeating sawtooth oscillations can be restored after energy quench using auxiliary ECRH power when PEC / POH > 2–5. The external magnetic field generation system consisted of eight saddle coils that were arranged symmetrically relative to the equatorial plane of the torus outside of the vacuum vessel of the T-10 tokamak to study the possible resonant magnetic field effects on the rotation frequency of magnetic islands. The saddle coils power supply system is based on four thyristor converters with a total power of 300 kW. The power supply control system is based on Siemens S7 controllers. As shown by preliminary experiments, the interaction efficiency of external magnetic fields with plasma depends on the plasma magnetic configuration. Optimal conditions for slowing the rotation of magnetic islands were determined. Additionally, the direction of the error magnetic field in the T-10 tokamak was determined, and the threshold value of the external magnetic field was determined.
Constraints on primordial magnetic fields from inflation
International Nuclear Information System (INIS)
Green, Daniel; Kobayashi, Takeshi
2016-01-01
We present generic bounds on magnetic fields produced from cosmic inflation. By investigating field bounds on the vector potential, we constrain both the quantum mechanical production of magnetic fields and their classical growth in a model independent way. For classical growth, we show that only if the reheating temperature is as low as T reh ∼< 10 2 MeV can magnetic fields of 10 −15 G be produced on Mpc scales in the present universe. For purely quantum mechanical scenarios, even stronger constraints are derived. Our bounds on classical and quantum mechanical scenarios apply to generic theories of inflationary magnetogenesis with a two-derivative time kinetic term for the vector potential. In both cases, the magnetic field strength is limited by the gravitational back-reaction of the electric fields that are produced simultaneously. As an example of quantum mechanical scenarios, we construct vector field theories whose time diffeomorphisms are spontaneously broken, and explore magnetic field generation in theories with a variable speed of light. Transitions of quantum vector field fluctuations into classical fluctuations are also analyzed in the examples
High Field Magnetization of Tb Single Crystals
DEFF Research Database (Denmark)
Roeland, L. W.; Cock, G. J.; Lindgård, Per-Anker
1975-01-01
The magnetization of Tb single crystals was measured in magnetic fields to 34T along the hard direction at temperature of 1.8, 4.2, 65.5 and 77K, and along with easy direction at 4.2 and 77K. The data are compared with the results of a self-consistent spin wave calculation using a phenomenological...
Measurement of Radio Frequency Magnetic Field
Czech Academy of Sciences Publication Activity Database
Bartušek, Karel; Gescheidtová, E.
2006-01-01
Roč. 2, č. 6 (2006), s. 555-558 ISSN 1931-7360 R&D Projects: GA MZd NR8110 Institutional research plan: CEZ:AV0Z20650511 Keywords : MR tomographic scanner * magnetic susceptibility * body implants * mapping the radiofrequency magnetic field * ANSYS Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering
Magnetic field modulation spectroscopy of rubidium atoms
Indian Academy of Sciences (India)
Abstract. The magnetically modulated saturation absorption profile is studied for a wide range of external DC magnetic field. The salient features of Doppler-free signal generated by laser frequency modulation and atomic energy level modulation are compared. The DC offset of the signal profile is found to be unstable as ...
Deformable nematic droplets in a magnetic field
Otten, R.H.J.; van der Schoot, P. P. A. M.
2012-01-01
We present a Frank-Oseen elasticity theory for the shape and structure of deformable nematic droplets with homeotropic surface anchoring in the presence of a magnetic field. Inspired by recent experimental observations, we focus on the case where the magnetic susceptibility is negative, and find
Evolution of Neutron Star Magnetic Fields
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
The magnetic field of a neutron star determines the evolution of its spin, its radia- tive properties and its interaction with the ... resulting in metal-like transport properties (electrical and heat conductivities) in this region (Yakovlev & Urpin ... from the spinning neutron star via magnetic coupling. The shorter the decay time scale.
External magnetic field configurations for EXTRAP
International Nuclear Information System (INIS)
Bonnevier, B.
1982-08-01
The strongly inhomogeneous magnetic field for stabilization of a pinch in an Extrap configuration can be created in various ways. Some possibilities both for the linear case and for the toroidal case are discussed. (author)
The Polar BEAR magnetic field experiment
Bythrow, P. F.; Potemra, T. A.; Zanetti, L. J.; Mobley, F. F.; Scheer, L.; Radford, W. E.
1987-09-01
The objectives and the instrumentation of the Polar BEAR magnetic field experiment are described along with the preliminary results from simultaneous measurements of Birkeland currents and UV auroral emissions. The experiment consists of an integrated sensor head, analog electronics, and digital electronics. The sensor head is a single unit containing sensor windings for each of the three orthogonal axes, oriented parrallel to the spacecraft coordinates; to minimize interference from spacecraft-generated magnetic fields, the sensor unit is located at the end of the +y solar panel. The digital electronics package is essentially identical to that flown on HILAT. A signal processor digitizes the analog outputs of the three orthogonal axes of the flux-gate magnetometer to a 13-bit resolution, yielding a magnetic field range of + or - 63,000 nT and a resolution of 15.2 nT. The full-resolution magnetic field values are recovered by data processing techniques on the ground.
Hydrogen atoms in a strong magnetic field
International Nuclear Information System (INIS)
Santos, R.R. dos.
1975-07-01
The energies and wave functions of the 14 lowest states of a Hydrogen atom in a strong magnetic field are calculated, using a variational scheme. The equivalence between the atomic problem and the problems related with excitons and impurities in semiconductors in the presence of a strong magnetic field are shown. The calculations of the energies and wave functions have been divided in two regions: the first, for the magnetic field ranging between zero and 10 9 G; in the second the magnetic field ranges between 10 9 and 10 11 G. The results have been compared with those obtained by previous authors. The computation time necessary for the calculations is small. Therefore this is a convenient scheme to obtain the energies and wave functions for the problem. Transition probabilities, wavelengths and oscillator strengths for some allowed transitions are also calculated. (Author) [pt
KEK effort for high field magnets
Nakamoto, T
2011-01-01
KEK has emphasized efforts to develop the RHQNb3Al superconductor and a sub-scale magnet reaching 13 T towards the HL-LHC upgrade in last years. In addition, relevant R&D regarding radiation resistance has been carried out. For higher field magnets beyond 15 T, HTS in combination with A15 superconductors should be one of baseline materials. However, all these superconductors are very sensitive to stress and strain and thorough understanding of behaviour is truly desired for realization of high field magnets. KEK has launched a new research subject on stress/strain sensitivity of HTS and A15 superconductors in collaboration with the neutron diffraction facility at J-PARC and High Field Laboratory in Tohoku University. Present activity for high field magnets at KEK is reported.
THE SNS RING DIPOLE MAGNETIC FIELD QUALITY.
Energy Technology Data Exchange (ETDEWEB)
WANDERER,P.; JACKSON,J.; JAIN,A.; LEE,Y.Y.; MENG,W.; PAPAPHILIPPOU,I.; SPATARO,C.; TEPIKIAN,S.; TSOUPAS,N.; WEI,J.
2002-06-03
The large acceptance and compact size of the Spallation Neutron Source (SNS) ring implies the use of short, large aperture dipole magnets, with significant end field errors. The SNS will contain 32 such dipoles. We report magnetic field measurements of the first 16 magnets. The end field errors have been successfully compensated by the use of iron bumps. For 1.0 GeV protons, the magnets have been shimmed to meet the 0.01% specification for rms variation of the integral field. At 1.3 GeV, the rms variation is 0.036%. The load on the corrector system at 1.3 GeV will be reduced by the use of sorting.
Proton imaging of stochastic magnetic fields
Bott, A. F. A.; Graziani, C.; Tzeferacos, P.; White, T. G.; Lamb, D. Q.; Gregori, G.; Schekochihin, A. A.
2017-12-01
Recent laser-plasma experiments (Fox et al., Phys. Rev. Lett., vol. 111, 2013, 225002; Huntington et al., Nat. Phys., vol. 11(2), 2015, 173-176 Tzeferacos et al., Phys. Plasmas, vol. 24(4), 2017a, 041404; Tzeferacos et al., 2017b, arXiv:1702.03016 [physics.plasm-ph]) report the existence of dynamically significant magnetic fields, whose statistical characterisation is essential for a complete understanding of the physical processes these experiments are attempting to investigate. In this paper, we show how a proton-imaging diagnostic can be used to determine a range of relevant magnetic-field statistics, including the magnetic-energy spectrum. To achieve this goal, we explore the properties of an analytic relation between a stochastic magnetic field and the image-flux distribution created upon imaging that field. This `Kugland image-flux relation' was previously derived (Kugland et al., Rev. Sci. Instrum. vol. 83(10), 2012, 101301) under simplifying assumptions typically valid in actual proton-imaging set-ups. We conclude that, as with regular electromagnetic fields, features of the beam's final image-flux distribution often display a universal character determined by a single, field-scale dependent parameter - the contrast parameter s/{\\mathcal{M}}lB$ - which quantifies the relative size of the correlation length B$ of the stochastic field, proton displacements s$ due to magnetic deflections and the image magnification . For stochastic magnetic fields, we establish the existence of four contrast regimes, under which proton-flux images relate to their parent fields in a qualitatively distinct manner. These are linear, nonlinear injective, caustic and diffusive. The diffusive regime is newly identified and characterised. The nonlinear injective regime is distinguished from the caustic regime in manifesting nonlinear behaviour, but as in the linear regime, the path-integrated magnetic field experienced by the beam can be extracted uniquely. Thus, in the linear and
Split-Field Magnet facility upgraded
CERN PhotoLab
1977-01-01
The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...
High-Field Superconducting Magnets Supporting PTOLEMY
Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam
2013-10-01
The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.
Magnetic Fields of Neutron Stars
Indian Academy of Sciences (India)
Sushan Konar
2017-09-12
Sep 12, 2017 ... The emphasis here is on the evolution in binary systems and the newly emergent classes of millisecond pulsars. Keywords. Neutron stars: population—magnetic fields—X-ray binaries: evolution—millisecond pulsars: ...... Konar, S. 2013, in: Astronomical Society of India Conference. Series, Vol. 8, edited by ...
Wake field in matched kicker magnet
International Nuclear Information System (INIS)
Miyahara, Y.
1979-01-01
Coherent transverse instability observed in KEK booster proton synchrotron has been reported previously. This instability is induced by the interaction of the beam with kicker magnet for the fast beam extraction. To understand the mechanism completely, it is necessary to know the wake field in detail. Here, the wake field or induced current in the kicker magnet which is terminated with matched resistance is considered
Supersymmetry breaking in a magnetic field
International Nuclear Information System (INIS)
Akyeampong, D.A.
1981-10-01
The one-loop effective potential of an abelian supersymmetric model in an environment provided by a constant external magnetic field is derived. It is shown that magnetic field breaks supersymmetry and that the value of the resulting minimum potential is lower than that of the tree level. This could be relevant to the question of possible restoration of the symmetry at higher loops. (author)
Ehrenfest force in inhomogeneous magnetic field
International Nuclear Information System (INIS)
Sisakyan, A.N.; Shevchenko, O.Yu.; Samojlov, V.N.
2000-01-01
The Ehrenfest force in an inhomogeneous magnetic field is calculated. It is shown that there exist such (very rare) topologically nontrivial physical situations when the Gauss theorem in its classic formulation fails and, as a consequence, apart from the usual Lorentz force an additional, purely imaginary force acts on the charged particle. This force arises only in inhomogeneous magnetic fields of special configurations, has a purely quantum origin, and disappears in the classical limit
Core Processes: Earth's eccentric magnetic field
DEFF Research Database (Denmark)
Finlay, Chris
2012-01-01
Earth’s magnetic field is characterized by a puzzling hemispheric asymmetry. Calculations of core dynamo processes suggest that lopsided growth of the planet’s inner core may be part of the cause.......Earth’s magnetic field is characterized by a puzzling hemispheric asymmetry. Calculations of core dynamo processes suggest that lopsided growth of the planet’s inner core may be part of the cause....
Magnetic fields and massive star formation
Energy Technology Data Exchange (ETDEWEB)
Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Girart, Josep M.; Juárez, Carmen [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Frau, Pau [Observatorio Astronómico Nacional, Alfonso XII, 3 E-28014 Madrid (Spain); Li, Hua-Bai [Department of Physics, The Chinese University of Hong Kong, Hong Kong (China); Padovani, Marco [Laboratoire de Radioastronomie Millimétrique, UMR 8112 du CNRS, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Bontemps, Sylvain [OASU/LAB-UMR5804, CNRS, Université Bordeaux 1, F-33270 Floirac (France); Csengeri, Timea, E-mail: qzhang@cfa.harvard.edu [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)
2014-09-10
Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.
Neutron oscillations and the primordial magnetic field
International Nuclear Information System (INIS)
Sarkar, S.
1988-01-01
It has been claimed that a primordial magnetic field must exist in order to suppress possible oscillations of neutrons into antineutrons which would otherwise affect the cosmological synthesis of helium. We demonstrate that such oscillations, even if they do occur, have a negligible effect on primordial nucleosynthesis, thus refuting the above claim. Hence the possible existence of a primordial magnetic field, relevant to current speculations concerning superconducting 'cosmic strings', remains an open question. (author)
The Strongest Magnetic Field in Sunspots
Okamoto, J.; Sakurai, T.
2017-12-01
Sunspots are concentrations of magnetic fields on the solar surface. Generally, the strongest magnetic field in each sunspot is located in the dark umbra in most cases. A typical field strength in sunspots is around 3,000 G. On the other hand, some exceptions also have been found in complex sunspots with bright regions such as light bridges that separate opposite polarity umbrae, for instance with a strength of 4,300 G. However, the formation mechanism of such strong fields outside umbrae is still puzzling. Here we report an extremely strong magnetic field in a sunspot, which was located in a bright region sandwiched by two opposite-polarity umbrae. The strength is 6,250 G, which is the largest ever observed since the discovery of magnetic field on the Sun in 1908 by Hale. We obtained 31 scanned maps of the active region observed by Hinode/SOT/SP with a cadence of 3 hours over 5 days (February 1-6, 2014). Considering the spatial and temporal evolution of the vector magnetic field and the Doppler velocity in the bright region, we suggested that this strong field region was generated as a result of compression of one umbra pushed by the outward flow from the other umbra (Evershed flow), like the subduction of the Earth's crust in plate tectonics.
Interstellar magnetic fields: An observational perspective
International Nuclear Information System (INIS)
Goodman, A.A.
1989-01-01
The plausibility of magnetic molecular clouds is established. It is shown that the empirically known relations between spectral line width, density, and cloud size can be derived from a virial equilibrium model where gravity is balanced by the sum of magnetic and pressure support. It is shown that substitution of measured density, cloud size, and line width measurements into the model can predict observed field strength to within a factor of two. The Zeeman effect is discussed and new measurements are presented for magnetic field strength based on OH and HI Zeeman observations at the Arecibo and Green Bank telescopes. The Barnard 1 (B1) region, in the Perseus Molecular Cloud Complex, is discussed in detail. OH spectral line intensity maps are presented for the regions where the OH Zeeman effect was observed, which allow, for the first time, comparison of observed field strength values with predicted field strength values, using emission from a single molecular species. Spatial structure of magnetic fields in molecular clouds are investigated. New optical polarization maps are presented for the dark clouds in Perseus, Taurus, and Ophiuchus. The polarization observed is attributed to preferential extinction of background starlight by magnetically aligned dust grains in the clouds, and we analyze the polarization maps as maps of the projection of the magnetic field onto the plane of the sky
Study of marine magnetic field
Digital Repository Service at National Institute of Oceanography (India)
Bhattacharya, G.C.
to the present although the frequency of reversals has changed considerably through time. During a reversal, the intensity usually decreases by about an order of magnitude for several thousand years, while the field maintains its direction. The field... (IGRF). The IGRF is basically a weighted average of several candidate spherical harmonic models of the main field and its secular variation for a given epoch adopted by International Association of Geomagnetism and Aeronomy (IAGA). The first IGRF...
In-plane magnetic field dependence of electric field-induced magnetization switching
Kanai, S.; Nakatani, Y.; Yamanouchi, M.; Ikeda, S.; Matsukura, F.; Ohno, H.
2013-08-01
Electric field-induced magnetization switching through magnetization precession is investigated as a function of in-plane component of external magnetic field for a CoFeB/MgO-based magnetic tunnel junction with perpendicular easy axis. The switching probability is an oscillatory function of the duration of voltage pulses and its magnitude and period depend on the magnitude of in-plane magnetic field. Experimental results are compared with simulated ones by using Landau-Lifshitz-Gilbert-Langevin equation, and possible factors determining the probability are discussed.
Nuclear resonance apparatus including means for rotating a magnetic field
International Nuclear Information System (INIS)
Sugimoto, H.
1983-01-01
A nuclear magnetic resonance apparatus including magnet apparatus for generating a homogeneous static magnetic field between its magnetic poles, shims of a magnetic substance mounted on the magnetic poles to apply a first gradient magnetic field intensity distribution in a direction orthogonal as to the direction of line of magnetic force of the static magnetic field, gradient magnetic field generating electromagnetic apparatus for generating a second gradient magnetic field having a gradient magnetic field intensity distribution in superimposition with the static magnetic field and for changing the magnetic field gradient of the first gradient magnetic field, an oscillator for generating an oscillating output having a frequency corresponding to the nuclear magnetic resonance condition of an atomic nucleus to be measured, a coil wound around a body to be examined for applying the output of said oscillator as electromagnetic waves upon the body, a receiver for detecting the nuclear magnetic resonance signals received by the coil, a gradient magnetic field controller making a magnetic field line equivalent to the combined gradient magnetic fields and for rotating the line along the section of the body to be examined by controlling said gradient magnetic field generating electromagnetic apparatus and devices for recording the nuclear magnetic resonance signals, for reconstructing the concentration distribution of the specific atomic nuclei in the section of the body, and a display unit for depicting the result of reconstruction
Tracing Magnetic Fields with Spectroscopic Channel Maps
Lazarian, A.; Yuen, Ka Ho
2018-01-01
We identify velocity channel map intensities as a new way to trace magnetic fields in turbulent media. This work makes use of both the modern theory of magnetohydrodynamic (MHD) turbulence, which predicts that magnetic eddies are aligned with the local direction of the magnetic field, and also the theory of spectral line position–position–velocity (PPV) statistics, which describes how velocity and density fluctuations are mapped onto PPV space. In particular, we use the fact that the fluctuations of the intensity of thin channel maps are mostly affected by the turbulent velocity, while the thick maps are dominated by density variations. We study how contributions of the fundamental MHD modes affect the Velocity Channel Gradients (VChGs), and demonstrate that the VChGs arising from Alfvén and slow modes are aligned perpendicular to the local direction of the magnetic field, while the VChGs produced by the fast mode are aligned parallel to the magnetic field. The dominance of Alfvén and slow modes in interstellar media will therefore allow reliable magnetic field tracing using the VChGs. We explore ways of identifying self-gravitating regions that do not require polarimetric information. In addition, we also introduce a new measure, termed “Reduced Velocity Centroids” (RVCGs), and compare its abilities with those of VChGs. We employed VChGs in analyzing GALFA 21 cm data and successfully compared the magnetic field directions with the Planck polarization observations. The applications of the suggested techniques include both tracing the magnetic field in diffuse interstellar media and star-forming regions, and removing the galactic foreground in the framework of cosmological polarization studies.
High-magnetic field atomic physics
International Nuclear Information System (INIS)
Gay, J.C.
1984-01-01
This chapter discusses both the traditional developments of Zeeman techniques at strong fields and the fundamental concepts of diamagnetism. Topics considered include historical aspects, the production of high fields, the atom in a magnetic field (Hamiltonian and symmetries, the various magnetic regimes in atomic spectra), applications of the Zeeman effect at strong B fields, the Landau regime for loosely bound particles, theoretical concepts of atomic diamagnetism, and the ultra-high-field regime and quantum electrodynamics. It is concluded that the wide implications of the problem of the strongly magnetized hydrogen atom in various domains of physics and its conceptual importance concerning theoretical methods of classical and quantum mechanics justify the experimental and theoretical efforts in atomic physics
Fast reconnection of weak magnetic fields
International Nuclear Information System (INIS)
Zweibel, E.G.
1998-01-01
Fast magnetic reconnection refers to annihilation or topological rearrangement of magnetic fields on a timescale that is independent (or nearly independent) of the plasma resistivity. The resistivity of astrophysical plasmas is so low that reconnection is of little practical interest unless it is fast. Yet, the theory of fast magnetic reconnection is on uncertain ground, as models must avoid the tendency of magnetic fields to pile up at the reconnection layer, slowing down the flow. In this paper it is shown that these problems can be avoided to some extent if the flow is three dimensional. On the other hand, it is shown that in the limited but important case of incompressible stagnation point flows, every flow will amplify most magnetic fields. Although examples of fast magnetic reconnection abound, a weak, disordered magnetic field embedded in stagnation point flow will in general be amplified, and should eventually modify the flow. These results support recent arguments against the operation of turbulent resistivity in highly conducting fluids. copyright 1998 American Institute of Physics
Suppressing drift chamber diffusion without magnetic field
International Nuclear Information System (INIS)
Martoff, C.J.; Snowden-Ifft, D.P.; Ohnuki, T.; Spooner, N.; Lehner, M.
2000-01-01
The spatial resolution in drift chamber detectors for ionizing radiation is limited by diffusion of the primary electrons. A strong magnetic field along the drift direction is often applied (Fancher et al., Nucl. Instr. and Meth. A 161 (1979) 383) because it suppresses the transverse diffusion, improving the resolution but at considerable increase in cost and complexity. Here we show that transverse track diffusion can be strongly suppressed without any magnetic field. This is achieved by using a gas additive which reversibly captures primary ionization electrons, forming negative ions. The ions drift with thermal energies even at very high drift fields and low pressures (E/P=28.5 V/cm torr), and the diffusion decreases with increasing drift field. Upon arrival at the avalanche region of the chamber the negative ions are efficiently stripped and ordinary avalanche gain is obtained. Using this technique, r.m.s. transverse diffusion less than 200 μm has been achieved over a 15 cm drift path at 40 torr with zero magnetic field. The method can provide high spatial resolution in detectors with long drift distances and zero magnetic field. Negative ion drift chambers would be particularly useful at low pressures and in situations such as space-based or underground experiments where detector size scaleability is important and cost, space, or power constraints preclude the use of a magnetic field
Maneuvering thermal conductivity of magnetic nanofluids by tunable magnetic fields
Patel, Jaykumar; Parekh, Kinnari; Upadhyay, R. V.
2015-06-01
We report an experimental investigation of magnetic field dependent thermal conductivity of a transformer oil base magnetic fluid as a function of volume fractions. In the absence of magnetic field, thermal conductivity increases linearly with an increase in volume fraction, and magnitude of thermal conductivity thus obtained is lower than that predicted by Maxwell's theory. This reveals the presence of clusters/oligomers in the system. On application of magnetic field, it exhibits a non-monotonous increase in thermal conductivity. The results are interpreted using the concept of a two-step homogenization method (which is based on differential effective medium theory). The results show a transformation of particle cluster configuration from long chain like prolate shape to the aggregated drop-like structure with increasing concentration as well as a magnetic field. The aggregated drop-like structure for concentrated system is supported by optical microscopic images. This shape change of clusters reduces thermal conductivity enhancement. Moreover, this structure formation is observed as a dynamic phenomenon, and at 226 mT field, the length of the structure extends with time, becomes maximum, and then reduces. This change results in the increase or decrease of thermal conductivity.
Magnetic Field Response Measurement Acquisition System
Woodward, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)
2007-01-01
Magnetic field response sensors designed as passive inductor- capacit or circuits produce magnetic field responses whose harmonic frequenci es correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induc tion. A radio frequency antenna produces the time varying magnetic fi eld used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for disce rning changes in sensor's response frequency, resistance and amplitud e is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminat ing the need to have a data acquisition channel dedicated to each se nsor. The method does not require the sensors to be in proximity to a ny form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.
Neutrino oscillations in strong magnetic fields
International Nuclear Information System (INIS)
Likhachev, G.G.; Studenikin, A.I.
1994-07-01
Neutrino conversion processes between two neutrino species and the corresponding oscillations induced by strong magnetic fields are considered. The value of the critical strength of magnetic field B cr as a function of characteristics of neutrinos in vacuum (Δm 2 ν , mixing angle θ), effective particle density of matter n eff , neutrino (transition) magnetic moment μ-tilde and energy E is introduced. It is shown that the neutrino conversion and oscillations effects induced by magnetic fields B ≥ B cr are important and may result in the depletion of the initial type of ν's in the bunch. A possible increase of these effects in the case when neutrinos pass through a sudden decrease of density of matter (''cross-boundary effect'') and applications to neutrinos from neutron stars and supernova are discussed. (author). 25 refs
Electromagnetic fields in an axial symmetric waveguide with variable cross section
International Nuclear Information System (INIS)
Kheifets, S.
1980-07-01
A new class of separable variables is found which allows one to find an approximate analytical solution of the Maxwell equations for axial symmetric waveguides with slow (but not necessarily small) varying boundary surfaces. An example of the solution is given. Possible applications and limitations of this approach are discussed
Magnetic Field Aided Indoor Navigation
2009-03-01
at a deep subsurface fracture. . .or when a highly conductive active magma chamber at a volcanic site moves before an eruption” [1]. The second cause...is brought about “as a result of the loading of rock surfaces as a major dam is filled or at a volcano as a result of a change in the magma chamber... temperature fluctuations and the readings might not be stable over long periods of operation. Due to the design requirements of the device, the magnetic
Neutron stars, magnetic fields, and gravitational waves
International Nuclear Information System (INIS)
Lamb, F.K.
2001-01-01
The r-modes of rapidly spinning young neutron stars have recently attracted attention as a promising source of detectable gravitational radiation. These neutron stars are expected to have magnetic fields ∼ 10 12 G. The r-mode velocity perturbation causes differential motion of the fluid in the star; this is a kinematic effect. In addition, the radiation-reaction associated with emission of gravitational radiation by r-waves drives additional differential fluid motions; this is a dynamic effect. These differential fluid motions distort the magnetic fields of neutron stars and may therefore play an important role in determining the structure of neutron star magnetic fields. If the stellar field is ∼ 10 16 (Ω/Ω B ) G or stronger, the usual r-modes are no longer normal modes of the star; here Ω and Ω B are the angular velocities of the star and at which mass shedding occurs. Much weaker magnetic fields can prevent gravitational radiation from amplifying the r-modes or damp existing r-mode oscillations on a relatively short timescale by extracting energy from the modes faster than gravitational wave emission can pump energy into them. The onset of proton superconductivity in the cores of newly formed magnetic neutron stars typically increases the effect on the r-modes of the magnetic field in the core by many orders of magnitude. Once the core has become superconducting, magnetic fields of the order of 10 12 G or greater are usually sufficient to damp r-modes that have been excited by emission of gravitational radiation and to suppress any further emission. A rapid drop in the strength of r-mode gravitational radiation from young neutron stars may therefore signal the onset of superconductivity in the core and provide a lower bound on the strength of the magnetic field there. Hence, measurements of r-mode gravitational waves from newly formed neutron stars may provide valuable diagnostic information about magnetic field strengths, cooling processes, and the
Magnetization relaxation of single molecule magnets after field cooling
Fernandez, Julio F.; Alonso, Juan J.
2004-03-01
Magnetic clusters, such as Fe8 and Mn_12, behave at low temperatures as large single spins S. In crystals, anisotropy energies U allow magnetic relaxation only through tunneling at k_BTstackrelspins with dipolar interactions. To mimic tunneling effects, a spin on a lattice site where h is within some tunnel window -h_w
Magnetic nanoparticles for applications in oscillating magnetic field
Energy Technology Data Exchange (ETDEWEB)
Peeraphatdit, Chorthip [Iowa State Univ., Ames, IA (United States)
2009-01-01
Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific
UNDERSTANDING THE GEOMETRY OF ASTROPHYSICAL MAGNETIC FIELDS
International Nuclear Information System (INIS)
Broderick, Avery E.; Blandford, Roger D.
2010-01-01
Faraday rotation measurements have provided an invaluable technique for probing the properties of astrophysical magnetized plasmas. Unfortunately, typical observations provide information only about the density-weighted average of the magnetic field component parallel to the line of sight. As a result, the magnetic field geometry along the line of sight, and in many cases even the location of the rotating material, is poorly constrained. Frequently, interpretations of Faraday rotation observations are dependent upon underlying models of the magnetic field being probed (e.g., uniform, turbulent, equipartition). However, we show that at sufficiently low frequencies, specifically below roughly 13(RM/1 rad m -2 ) 1/4 (B/1 G) 1/2 MHz, the character of Faraday rotation changes, entering what we term the 'super-adiabatic regime' in which the rotation measure (RM) is proportional to the integrated absolute value of the line-of-sight component of the field. As a consequence, comparing RMs at high frequencies with those in this new regime provides direct information about the geometry of the magnetic field along the line of sight. Furthermore, the frequency defining the transition to this new regime, ν SA , depends directly upon the local electron density and magnetic field strength where the magnetic field is perpendicular to the line of sight, allowing the unambiguous distinction between Faraday rotation within and in front of the emission region. Typical values of ν SA range from 10 kHz (below the ionospheric cutoff, but above the heliospheric cutoff) to 10 GHz, depending upon the details of the Faraday rotating environment. In particular, for resolved active galactic nuclei, including the black holes at the center of the Milky Way (Sgr A*) and M81, ν SA ranges from roughly 10 MHz to 10 GHz, and thus can be probed via existing and up-coming ground-based radio observatories.
Alaska and Yukon magnetic compilation, residual total magnetic field
Miles, W.; Saltus, Richard W.; Hayward, N.; Oneschuk, D.
2017-01-01
This map is a compilation of aeromagnetic surveys over Yukon and eastern Alaska. Aeromagnetic surveys measure the total intensity of the earth's magnetic field. The field was measured by a magnetometer aboard an aircraft flown in parallel lines spaced at 200 m to 10000 m across the map area. The magnetic field reflects magnetic properties of bedrock and provides qualitative and quantitative information used in geological mapping. Understanding the geology will help geologists map the area, assist mineral/hydrocarbon exploration activities, and provide useful information necessary for communities, aboriginal associations, and government to make land use decisions. This survey was flown to improve our knowledge of the area. It will support ongoing geological mapping and resource assessment.
Measurement of gradient magnetic field temporal characteristics
International Nuclear Information System (INIS)
Bartusek, K.; Jflek, B.
1994-01-01
We describe a technique of measuring the time dependence and field distortions of magnetic fields due to eddy currents (EC) produced by time-dependent magnetic field gradients. The EC measuring technique makes use of a large volume sample and selective RF excitation pulses and free induction decay (FID) (or a spin or gradient echo) to measure the out-of-phase component of the FID, which is proportional to γδB, i.e. the amount the signal is off resonance. The measuring technique is sensitive, easy to implement and interpret, and used for determining pre-emphasis compensation parameters
IMAGINE: Interstellar MAGnetic field INference Engine
Steininger, Theo
2018-03-01
IMAGINE (Interstellar MAGnetic field INference Engine) performs inference on generic parametric models of the Galaxy. The modular open source framework uses highly optimized tools and technology such as the MultiNest sampler (ascl:1109.006) and the information field theory framework NIFTy (ascl:1302.013) to create an instance of the Milky Way based on a set of parameters for physical observables, using Bayesian statistics to judge the mismatch between measured data and model prediction. The flexibility of the IMAGINE framework allows for simple refitting for newly available data sets and makes state-of-the-art Bayesian methods easily accessible particularly for random components of the Galactic magnetic field.
Acceleration of superparamagnetic particles with magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Stange, R., E-mail: Robert.stange@tu-dresden.de; Lenk, F.; Bley, T.; Boschke, E.
2017-04-01
High magnetic capture efficiency in the context of Biomagnetic Separation (BMS) using superparamagnetic particles (SMPs) requires efficient mixing and high relative velocities between cellular and other targets and SMPs. For this purpose, batch processes or microfluidic systems are commonly used. Here, we analyze the characteristics of an in-house developed batch process experimental setup, the Electromagnetic Sample Mixer (ESM) described earlier. This device uses three electromagnets to increase the relative velocity between SMPs and targets. We carry out simulations of the magnetic field in the ESM and in a simpler paradigmatic setup, and thus were able to calculate the force field acting on the SMPs and to simulate their relative velocities and fluid dynamics due to SMP movement. In this way we were able to show that alternate charging of the magnets induces a double circular stream of SMPs in the ESM, resulting in high relative velocities of SMPs to the targets. Consequently, due to the conservation of momentum, the fluid experiences an acceleration induced by the SMPs. We validated our simulations by microscopic observation of the SMPs in the magnetic field, using a homemade apparatus designed to accommodate a long working-distance lens. By comparing the results of modeling this paradigmatic setup with the experimental observations, we determined that the velocities of the SMPs corresponded to the results of our simulations. - Highlights: • Investigation of a batch process setup for complex forming at Biomagnetic Separation. • Simulation of fluid flow characteristics in this Electro Magnetic Samplemixer. • Simulation of relative velocities between magnetic particles and fluid in the setup. • Simulation of fluid flow induced by the acceleration of magnet particles. • Validation of magnetic fields and flow characteristics in paradigmatic setups. • Reached relative velocity is higher than the sedimentation velocity of the particles • Alternating
Intermittent character of interplanetary magnetic field fluctuations
International Nuclear Information System (INIS)
Bruno, Roberto; Carbone, Vincenzo; Chapman, Sandra; Hnat, Bogdan; Noullez, Alain; Sorriso-Valvo, Luca
2007-01-01
Interplanetary magnetic field magnitude fluctuations are notoriously more intermittent than velocity fluctuations in both fast and slow wind. This behavior has been interpreted in terms of the anomalous scaling observed in passive scalars in fully developed hydrodynamic turbulence. In this paper, the strong intermittent nature of the interplanetary magnetic field is briefly discussed comparing results performed during different phases of the solar cycle. The scaling properties of the interplanetary magnetic field magnitude show solar cycle variation that can be distinguished in the scaling exponents revealed by structure functions. The scaling exponents observed around the solar maximum coincide, within the errors, to those measured for passive scalars in hydrodynamic turbulence. However, it is also found that the values are not universal in the sense that the solar cycle variation may be reflected in dependence on the structure of the velocity field
Neutron Scattering and High Magnetic Fields
Energy Technology Data Exchange (ETDEWEB)
Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stone, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2014-11-01
The workshop “Neutron Scattering and High Magnetic Fields” was held September 4-5, 2014 at the Oak Ridge National Laboratory (ORNL). The workshop was held in response to a recent report by the National Research Council of the National Academy of Sciences entitled “High Magnetic Field Science and Its Application in the United States: Current Status and Future Directions.”1 This report highlights the fact that neutron scattering measurements carried out in high magnetic fields provide important opportunities for new science. The workshop explored the range of the scientific discoveries that could be enabled with neutron scattering measurements at high fields (25 Tesla or larger), the various technologies that might be utilized to build specialized instruments and sample environment equipment to enable this research at ORNL, and possible routes to funding and constructing these facilities and portable high field sample environments.
The Magnetic Field Structure of Mercury's Magnetotail
Rong, Z. J.; Ding, Y.; Slavin, J. A.; Zhong, J.; Poh, G.; Sun, W. J.; Wei, Y.; Chai, L. H.; Wan, W. X.; Shen, C.
2018-01-01
In this study, we use the magnetic field data measured by MErcury Surface, Space ENvironment, GEochemistry, and Ranging from 2011 to 2015 to investigate the average magnetic field morphology of Mercury's magnetotail in the down tail 0-3 RM (RM = 2,440 km, Mercury's radius). It is found that Mercury has a terrestrial-like magnetotail; the magnetic field structure beyond 1.5 RM down tail is stretched significantly with typical lobe field 50 nT. A cross-tail current sheet separating the antiparallel field lines of lobes is present in the equatorial plane. The magnetotail width in north-south direction is about 5 RM, while the transverse width is about 4 RM. Thus, the magnetotail shows elongation along the north-south direction. At the cross-tail current sheet center, the normal component of magnetic field (10-20 nT) is much larger than the cross-tail component. The lobe-field-aligned component of magnetic field over current sheet can be well fitted by Harris sheet model. The curvature radius of field lines at sheet center usually reaches a minimum around midnight (100-200 km) with stronger current density (40-50 nA/m2), while the curvature radius increases toward both flanks (400-600 km) with the decreased current density (about 20 nA/m2). The half-thickness of current sheet around midnight is about 0.25 RM or 600 km, and the inner edge of current sheet is located at the down tail about 1.5 RM. Our results about the field structure in the near Mercury's tail show an evident dawn-dusk asymmetry as that found in the Earth's magnetotail, but reasons should be different. Possible reasons are discussed.
Field Models in Electricity and Magnetism
Barba, Paolo Di; Wiak, S
2008-01-01
Covering the development of field computation in the past forty years, Field Models in Electricity and Magnetism intends to be a concise, comprehensive and up-to-date introduction to field models in electricity and magnetism, ranging from basic theory to numerical applications. The approach assumed throughout the whole book is to solve field problems directly from partial differential equations in terms of vector quantities. Theoretical issues are illustrated by practical examples. In particular, a single example is solved by different methods so that, by comparison of results, limitations and advantages of the various methods are made clear. The subjects of the synthesis of fields and of the optimal design of devices, which are growing in research and so far have not been adequately covered in textbooks, are developed in addition to more classical subjects of analysis. Topics covered include: vector fields: electrostatics, magnetostatics, steady conduction; analytical methods for solving boundary-value probl...
Magnetic Fields in the Interstellar Medium
Clark, Susan
2017-01-01
The Milky Way is magnetized. Invisible magnetic fields thread the Galaxy on all scales and play a vital but still poorly understood role in regulating flows of gas in the interstellar medium and the formation of stars. I will present highlights from my thesis work on magnetic fields in the diffuse interstellar gas and in accretion disks. At high Galactic latitudes, diffuse neutral hydrogen is organized into an intricate network of slender linear features. I will show that these neutral hydrogen “fibers” are extremely well aligned with the ambient magnetic field as traced by both starlight polarization (Clark et al. 2014) and Planck 353 GHz polarized dust emission (Clark et al. 2015). The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. Because the orientation of neutral hydrogen is an independent predictor of the local dust polarization angle, our work provides a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. Magnetic fields also drive accretion in astrophysical disks via the magnetorotational instability (MRI). I analytically derive the behavior of this instability in the weakly nonlinear regime and show that the saturated state of the instability depends on the geometry of the background magnetic field. The analytical model describes the behavior of the MRI in a Taylor-Couette flow, a set-up used by experimentalists in the ongoing quest to observe MRI in the laboratory (Clark & Oishi 2016a, 2016b).
Electrically induced magnetic fields; a consistent approach
Batell, Brian; Ferstl, Andrew
2003-09-01
Electromagnetic radiation exists because changing magnetic fields induce changing electric fields and vice versa. This fact often appears inconsistent with the way some physics textbooks solve particular problems using Faraday's law. These types of problems often ask students to find the induced electric field given a current that does not vary linearly with time. A typical example involves a long solenoid carrying a sinusoidal current. This problem is usually solved as an example or assigned as a homework exercise. The solution offered by many textbooks uses the approximation that the induced, changing electric field produces a negligible magnetic field, which is only valid at low frequencies. If this approximation is not explicitly acknowledged, then the solution appears inconsistent with the description of electromagnetic radiation. In other cases, when the problem is solved without this approximation, the electric and magnetic fields are derived from the vector potential. We present a detailed calculation of the electric and magnetic fields inside and outside the long solenoid without using the vector potential. We then offer a comparison of our solution and a solution given in an introductory textbook.
Upper critical magnetic field of superconducting films with magnetic impurities
International Nuclear Information System (INIS)
Lemberger, T.R.
1978-01-01
The upper critical magnetic field, H/sub c2/(T), of In-Mn and Pb-Mn alloy films was measured. H/sub c2/ was determined from the resistance of the films. The results were compared with the theory of Fulde and Maki. This theory assumes that the electron-phonon coupling is weak, and that the interaction between the impurity spins and the conduction electron spins is weak. The theory predicts that the pair-breaking effect of the magnetic impurities is temperature-independent, and that the pair-breaking effects of the magnetic impurities and the applied magnetic field are additive. Furthermore, it predicts explicitly the temperature dependence of H/sub c2/. The temperature dependence of H/sub c2/ for the In-Mn alloy films is well described by the Fulde-Maki theory, despite the moderately strong electron-phonon coupling and the strong interaction between the impurity spins and the conduction electron spins. The temperature dependence of H/sub c2/ for the Pb-Mn alloy films is not well described by the Fulde-Maki theory, probably due to the strong electron-phonon coupling in Pb. However, even without a quantitatively correct theory, one can conclude from the Pb-Mn data that the pair-breaking effect of the magnetic impurities is temperature independent, and that the pair-breaking effects of the magnetic impurities and the applied magnetic field are additive. For some of the Pb-Mn alloy films, there was a region of positive curvature in H/sub c2/(T) near the zero-field transition temperature. This positive curvature is not understood
Magnetic Field Observations at Purcell, Oklahoma Field Campaign Report
Energy Technology Data Exchange (ETDEWEB)
Chi, P. J. [Univ. of California, Los Angeles, CA (United States); Gibson, J. P. [Univ. of Oklahoma, Norman, OK (United States)
2017-05-01
The campaign “Magnetic Field Observations at Purcell, Oklahoma” installed a ground-based magnetometer at Purcell’s U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility boundary installation at the Kessler Atmospheric and Ecological Field Station, University of Oklahoma, to measure local magnetic field variations. It is a part of the nine stations of the Mid-continent MAgnetoseismic Chain (McMAC) placed as close to the 330° magnetic longitude as possible. This is the meridian in the world where land covers the greatest continuous range in magnetic latitude. Figure 1 shows the map of the magnetometer stations along the 330th magnetic meridian, including the Purcell (PCEL) station. The main scientific objective of the campaign is to detect the field line resonance (FLR) frequencies of the magnetic field line connected to the Purcell station. This magnetic field line extends from Purcell to the outer space at distances as far as 2 Earth radii (RE). To accurately identify FLR frequencies, however, simultaneous measurements at slightly different latitudes along the same meridian are necessary to allow the use of the cross-phase technique. This consideration explains the arrangement to operate magnetometers at the Americus (AMER) and Richardson (RICH) stations nearby. The measured resonant frequency can infer the plasma mass density along the field line through the method of normal-mode magnetoseismology. The magnetometer at the Purcell station can detect many other types of magnetic field fluctuations associated with the changes in the electric currents in the ionosphere and the magnetosphere, which by large are affected by the solar activity. In other words, the magnetic field data collected by this campaign are also useful for understanding space weather phenomena. The magnetometer was installed at Purcell’s ARM boundary facility in March 27, 2006. The construction of the triaxial fluxgate magnetometer used by the
Jin, Daeseong; Kim, Hackjin
2018-03-01
We have investigated the agglomeration of magnetite nanoparticles in the aqueous solution under magnetic field by measuring temporal change of magnetic weight. The magnetic weight corresponds to the force due to the magnetization of magnetic materials. Superparamagnetic magnetite nanoparticles are synthesized and used in this work. When the aqueous solution of magnetite nanoparticle is placed under magnetic field, the magnetic weight of the sample jumps instantaneously by Neel and Brown mechanisms and thereafter increases steadily following a stretched exponential function as the nanoparticles agglomerate, which results from the distribution of energy barriers involved in the dynamics. Thermal motions of nanoparticles in the agglomerate perturb the ordered structure of the agglomerate to reduce the magnetic weight. Fluctuation of the structural order of the agglomerate by temperature change is much faster than the formation of agglomerate and explained well with the Boltzmann distribution, which suggests that the magnetic weight of the agglomerate works as a magnetic thermometer.
Primordial magnetic fields from metric perturbations
Maroto, A L
2001-01-01
We study the amplification of electromagnetic vacuum fluctuations induced by the evolution of scalar metric perturbations at the end of inflation. Such perturbations break the conformal invariance of Maxwell equations in Friedmann-Robertson-Walker backgrounds and allow the growth of magnetic fields on super-Hubble scales. We estimate the strength of the fields generated by this mechanism on galactic scales and compare the results with the present bounds on the galactic dynamo seed fields.
Method of formation of a high gradient magnetic field and the device for division of substances
International Nuclear Information System (INIS)
Il'yashenko, E. I.; Glebov, V. A.; Skeltorp, A. T.
2005-01-01
Full text: The method and the device [1] are intended for use as a high-sensitivity magnetic separator for different types of paramagnetic substances and materials from diamagnetic ones, for division of paramagnetic substances and materials on the magnitudes of their paramagnetic susceptibility, for division of diamagnetic substances and materials on magnitudes of their diamagnetic susceptibility. Scopes: to produce pure and super pure substances and materials in electronics, metallurgy and chemistry, separation of biological objects (red blood cells, magnetic bacteria, etc.) in biology and medicine, water treatment removing heavy metals and organic impurities, etc. The main condition for magnetic separation is the magnetic force which acts on a particle of the substance and which is proportional to the magnetic susceptibility of the substance, magnetic induction B and gradient ∇B of the applied magnetic field. Therefore, to increase the sensitivity and selectivity of magnetic separation it will be required to use the largest possible values of the magnetic induction and the gradient of a magnetic field, or their product - B∇B. The device declared in the present work includes the magnetic system such as the open domain structure, consisting of permanent magnets with magnetic anisotropy much greater than the induction of a material of magnets. However, the declared device differs from the open domain structure in that [1]: *the surface of the neighbor poles of magnets is covered with a mask made from sheets of adjustable thickness of a soft magnetic material; *the soft magnetic material of the mask is selected on the basis of the magnitudes of the induction of saturation and magnetic permeability for achievement of the required magnitude of the induction and gradient of the magnetic field; *between the sheets of the mask there is an adjustable gap located symmetrically relative to the junction line of the magnets; *the size and the form of the gap between the
Trapped field recovery of bulk superconductor magnets by static field magnetization
Energy Technology Data Exchange (ETDEWEB)
Deng, Z., E-mail: zigang@kaiyodai.ac.jp [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)
2011-11-15
A series of initial trapped fields after ZFC or FC magnetization are used to simulate the attenuated trapped field. It is possible and easy to recover the lost trapped field and regain the best trapped field performance as before. In the re-magnetization process, the initial magnetic flux inside the bulk magnets will help to recover the trapped field. The optimum recovery field is recommended to be 2.5 times the saturation field of the bulk at LN2 temperature. Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa{sub 2}Cu{sub 3}O{sub y} (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.
NEAR-IR IMAGING POLARIMETRY TOWARD A BRIGHT-RIMMED CLOUD: MAGNETIC FIELD IN SFO 74
International Nuclear Information System (INIS)
Kusune, Takayoshi; Sugitani, Koji; Miao, Jingqi; Tamura, Motohide; Kwon, Jungmi; Sato, Yaeko; Watanabe, Makoto; Nishiyama, Shogo; Nagayama, Takahiro; Sato, Shuji
2015-01-01
We have made near-infrared (JHK s ) imaging polarimetry of a bright-rimmed cloud (SFO 74). The polarization vector maps clearly show that the magnetic field in the layer just behind the bright rim is running along the rim, quite different from its ambient magnetic field. The direction of the magnetic field just behind the tip rim is almost perpendicular to that of the incident UV radiation, and the magnetic field configuration appears to be symmetric as a whole with respect to the cloud symmetry axis. We estimated the column and number densities in the two regions (just inside and far inside the tip rim) and then derived the magnetic field strength, applying the Chandrasekhar-Fermi method. The estimated magnetic field strength just inside the tip rim, ∼90 μG, is stronger than that far inside, ∼30 μG. This suggests that the magnetic field strength just inside the tip rim is enhanced by the UV-radiation-induced shock. The shock increases the density within the top layer around the tip and thus increases the strength of the magnetic field. The magnetic pressure seems to be comparable to the turbulent one just inside the tip rim, implying a significant contribution of the magnetic field to the total internal pressure. The mass-to-flux ratio was estimated to be close to the critical value just inside the tip rim. We speculate that the flat-topped bright rim of SFO 74 could be formed by the magnetic field effect
High magnetic field magnetization of a new triangular lattice antiferromagnet
Energy Technology Data Exchange (ETDEWEB)
Zhou, H. D. [Univ. of Tennessee, Knoxville, TN (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States). National High Magnetic Field Lab. (MagLab); Stritzinger, Laurel Elaine Winter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harrison, Neil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-03-23
In CsV(MoO_{4})_{2}, the magnetic V^{3+} ions with octahedral oxygen-coordination form a geometrically frustrated triangular lattice. So fare, there is no magnetic properties reported on it. Recently, we successfully grew single crystals of CsV(MoO_{4})_{2} by using flux method. The susceptibility shows a sharp drop around 24 K, representing a long range magnetic ordering. To understand the physical properties of this new triangular lattice antiferromagnet (TLAF), we pursued high field magnetization measurements to answer two questions: (i) what is the saturation field, which will be very useful to calculate the exchange interaction of the system? (ii) Will it exhibit spin state transition, such as the up up down phase with 1/3-saturation moment as other TLAFs? Recently, we performed VSM measurements in Cell 8, Tallahassee, NHMFL, the results show that the magnetization reaches 0.38 MuB at 34 T, which is just 19% of the full moment of 2 MuB for V^{3+} (3d^{2}) ions. Apparently we need higher field to reach 1/3 value or full moment.
The CMS Magnetic Field Map Performance
Klyukhin, V. I.; Amapane, N.; Andreev, V.; Ball, A.; Curé, B.; Hervé, A.; Gaddi, A.; Gerwig, H.; Karimaki, V.; Loveless, R.; Mulders, M.; Popescu, S.; Sarycheva, L. I.; Virdee, T.
2011-01-01
The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured insid...
Nieves-Chinchilla, T.; Vourlidas, A.; Raymond, J. C.; Linton, M. G.; Al-haddad, N.; Savani, N. P.; Szabo, A.; Hidalgo, M. A.
2018-02-01
The magnetic topology, structure, and geometry of the magnetic obstacles embedded within interplanetary coronal mass ejections (ICMEs) are not yet fully and consistently described by in situ models and reconstruction techniques. The main goal of this work is to better understand the status of the internal magnetic field of ICMEs and to explore in situ signatures to identify clues to develop a more accurate and reliable in situ analytical models. We take advantage of more than 20 years of Wind observations of transients at 1 AU to compile a comprehensive database of ICMEs through three solar cycles, from 1995 to 2015. The catalog is publicly available at wind.gsfc.nasa.gov and is fully described in this article. We identify and collect the properties of 337 ICMEs, of which 298 show organized magnetic field signatures. To allow for departures from idealized magnetic configurations, we introduce the term "magnetic obstacle" (MO) to signify the possibility of more complex configurations. To quantify the asymmetry of the magnetic field strength profile within these events, we introduce the distortion parameter (DiP) and calculate the expansion velocity within the magnetic obstacle. Circular-cylindrical geometry is assumed when the magnetic field strength displays a symmetric profile. We perform a statistical study of these two parameters and find that only 35% of the events show symmetric magnetic profiles and a low enough expansion velocity to be compatible with the assumption of an idealized cylindrical static flux rope, and that 41% of the events do not show the expected relationship between expansion and magnetic field compression in the front, with the maximum magnetic field closer to the first encounter of the spacecraft with the magnetic obstacle; 18% show contractions ( i.e. apparent negative expansion velocity), and 30% show magnetic field compression in the back. We derive an empirical relation between DiP and expansion velocity that is the first step toward
Sudo, S.; Ito, M.; Ishimoto, Y.; Nix, S.
2017-04-01
This paper describes microstreaming flows generated by oscillating interface of magnetic fluid adsorbed on a circular cylindrical permanent magnet in alternating magnetic field. The interface of magnetic fluid adsorbed on the NdFeB magnet responds to the external alternating magnetic flied as harmonic oscillation. The directions of alternating magnetic field are parallel and antiparallel to the magnetic field of permanent magnet. The oscillation of magnetic fluid interface generates streaming flow around the magnet-magnetic fluid element in water. Microstreaming flows are observed with a high-speed video camera analysis system. The flow pattern generated by magnetic fluid motion depends on the Keulegan-Carpenter number and the Reynolds number.
Magnetic resonance signal moment determination using the Earth's magnetic field
Fridjonsson, Einar Orn
2015-03-01
We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.
Diffusive processes in a stochastic magnetic field
International Nuclear Information System (INIS)
Wang, H.; Vlad, M.; Vanden Eijnden, E.; Spineanu, F.; Misguich, J.H.; Balescu, R.
1995-01-01
The statistical representation of a fluctuating (stochastic) magnetic field configuration is studied in detail. The Eulerian correlation functions of the magnetic field are determined, taking into account all geometrical constraints: these objects form a nondiagonal matrix. The Lagrangian correlations, within the reasonable Corrsin approximation, are reduced to a single scalar function, determined by an integral equation. The mean square perpendicular deviation of a geometrical point moving along a perturbed field line is determined by a nonlinear second-order differential equation. The separation of neighboring field lines in a stochastic magnetic field is studied. We find exponentiation lengths of both signs describing, in particular, a decay (on the average) of any initial anisotropy. The vanishing sum of these exponentiation lengths ensures the existence of an invariant which was overlooked in previous works. Next, the separation of a particle's trajectory from the magnetic field line to which it was initially attached is studied by a similar method. Here too an initial phase of exponential separation appears. Assuming the existence of a final diffusive phase, anomalous diffusion coefficients are found for both weakly and strongly collisional limits. The latter is identical to the well known Rechester-Rosenbluth coefficient, which is obtained here by a more quantitative (though not entirely deductive) treatment than in earlier works
The ARASE (ERG) magnetic field investigation
Matsuoka, Ayako; Teramoto, Mariko; Nomura, Reiko; Nosé, Masahito; Fujimoto, Akiko; Tanaka, Yoshimasa; Shinohara, Manabu; Nagatsuma, Tsutomu; Shiokawa, Kazuo; Obana, Yuki; Miyoshi, Yoshizumi; Mita, Makoto; Takashima, Takeshi; Shinohara, Iku
2018-03-01
The fluxgate magnetometer for the Arase (ERG) spacecraft mission was built to investigate particle acceleration processes in the inner magnetosphere. Precise measurements of the field intensity and direction are essential in studying the motion of particles, the properties of waves interacting with the particles, and magnetic field variations induced by electric currents. By observing temporal field variations, we will more deeply understand magnetohydrodynamic and electromagnetic ion-cyclotron waves in the ultra-low-frequency range, which can cause production and loss of relativistic electrons and ring-current particles. The hardware and software designs of the Magnetic Field Experiment (MGF) were optimized to meet the requirements for studying these phenomena. The MGF makes measurements at a sampling rate of 256 vectors/s, and the data are averaged onboard to fit the telemetry budget. The magnetometer switches the dynamic range between ± 8000 and ± 60,000 nT, depending on the local magnetic field intensity. The experiment is calibrated by preflight tests and through analysis of in-orbit data. MGF data are edited into files with a common data file format, archived on a data server, and made available to the science community. Magnetic field observation by the MGF will significantly improve our knowledge of the growth and decay of radiation belts and ring currents, as well as the dynamics of geospace storms.
Field flattening in superconducting beam transport magnets
International Nuclear Information System (INIS)
Morgan, G.H.
1994-01-01
Dipoles in which the beam traverses the midplane well away from tie magnet axis may benefit from flattening of the vertical field on the midplane. A procedure is described for doing so, making use of Chebyshev polynomials. In the case of the large aperture ''DX'' magnets located immediately on each side of the six intersection regions of the Relativistic Heavy Ion Powder (RHIC), a comparison is made of the field of coils optimized in this way and of coils optimized in the more common way by minimizing the leading coefficients of the Fourier expansion about the magnet axis. The comparison is of the integrated Fourier coefficients of the field expanded locally along the beam trajectory
Chiral battery, scaling laws and magnetic fields
International Nuclear Information System (INIS)
Anand, Sampurn; Bhatt, Jitesh R.; Pandey, Arun Kumar
2017-01-01
We study the generation and evolution of magnetic field in the presence of chiral imbalance and gravitational anomaly which gives an additional contribution to the vortical current. The contribution due to gravitational anomaly is proportional to T "2 which can generate seed magnetic field irrespective of plasma being chirally charged or neutral. We estimate the order of magnitude of the magnetic field to be 10"3"0 G at T ∼ 10"9 GeV, with a typical length scale of the order of 10"−"1"8 cm, which is much smaller than the Hubble radius at that temperature (10"−"8 cm). Moreover, such a system possess scaling symmetry. We show that the T "2 term in the vorticity current along with scaling symmetry leads to more power transfer from lower to higher length scale as compared to only chiral anomaly without scaling symmetry.
Generation of intense transient magnetic fields
International Nuclear Information System (INIS)
Benjamin, R.F.
1983-01-01
In a laser system, the return current of a laser generated plasma is conducted near a target to subject that target to a magnetic field. The target may be either a small non-fusion object for testing under the magnetic field or a laser-fusion pellet. In the laser-fusion embodiment, the laser-fusion pellet is irradiated during the return current flow and the intense transient magnetic field is used to control the hot electrons thereof to hinder them from striking and heating the core of the irradiated laser-fusion pellet. An emitter, e.g. a microballoon of glass, metal or plastics, is subjected to a laser pulse to generate the plasma from which the return current flows into a wire cage or a coil and then to earth. (author)
Consistency relation for cosmic magnetic fields
Jain, Rajeev Kumar; Sloth, Martin S.
2012-12-01
If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the cosmic microwave background anisotropies and large scale structure. Within an archetypical model of inflationary magnetogenesis, we show that there exists a new simple consistency relation for the non-Gaussian cross correlation function of the scalar metric perturbation with two powers of the magnetic field in the squeezed limit where the momentum of the metric perturbation vanishes. We emphasize that such a consistency relation turns out to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields.
DEFF Research Database (Denmark)
Hubrig, S.; González, J. F.; Ilyin, I.
2012-01-01
Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have...... by applying the moment technique on spectral lines of inhomogeneously distributed elements separately. Furthermore, we present new determinations of the mean longitudinal magnetic field for the HgMn star HD 65949 and the hotter analog of HgMn stars, the PGa star HD 19400, using FORS 2 installed at the VLT. We...... also give new measurements of the eclipsing system ARAur with a primary star of HgMn peculiarity, which were obtained with the SOFIN spectropolarimeter installed at the Nordic Optical Telescope. Methods. We downloaded from the European Southern Observatory (ESO) archive the publically available HARPS...
Solar Flare Magnetic Fields and Plasmas
Fisher, George
2012-01-01
This volume is devoted to the dynamics and diagnostics of solar magnetic fields and plasmas in the Sun’s atmosphere. Five broad areas of current research in Solar Physics are presented: (1) New techniques for incorporating radiation transfer effects into three-dimensional magnetohydrodynamic models of the solar interior and atmosphere, (2) The connection between observed radiation processes occurring during flares and the underlying flare energy release and transport mechanisms, (3) The global balance of forces and momenta that occur during flares, (4) The data-analysis and theoretical tools needed to understand and assimilate vector magnetogram observations and (5) Connecting flare and CME phenomena to the topological properties of the magnetic field in the Solar Atmosphere. The role of the Sun’s magnetic field is a major emphasis of this book, which was inspired by a workshop honoring Richard C. (Dick) Canfield. Dick has been making profound contributions to these areas of research over a long and pro...
Magnetic field measurements of the BLAST spectrometer
International Nuclear Information System (INIS)
Dow, Karen A.; Botto, Tancredi; Goodhue, Abigail; Hasell, Douglas; Loughnan, Dylan; Murphy, Kilian; Smith, Timothy Paul; Ziskin, Vitaliy
2009-01-01
The Bates Large Acceptance Spectrometer Toroid has been built to study nuclear physics reactions using a stored, polarized electron beam and a variety of polarized targets internal to the storage ring. The spectrometer consists of eight coils surrounding the target cell. There is a requirement of nominally zero field along the centerline of the spectrometer for proper electron beam storage. In addition, the polarized internal targets require a low field gradient in the target region. Magnetic field measurements were made near the beam centerline to guide the alignment of the coils and satisfy the field magnitude and gradient requirements. After the coils were aligned, the magnetic field was measured in the detector regions to provide information for particle tracking.
Magnetic Field Amplification via Protostellar Disc Dynamos
Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Koldoba, A. V.; Wasserman, I.
2018-03-01
We numerically investigate the generation of a magnetic field in a protostellar disc via an αΩ-dynamo and the resulting magnetohydrodynamic (MHD) driven outflows. We find that for small values of the dimensionless dynamo parameter αd the poloidal field grows exponentially at a rate σ ∝ Ω _K √{α _d}, before saturating to a value ∝ √{α _d}. The dynamo excites dipole and octupole modes, but quadrupole modes are suppressed, because of the symmetries of the seed field. Initial seed fields too weak to launch MHD outflows are found to grow sufficiently to launch winds with observationally relevant mass fluxes of order 10^{-9} M_{⊙}/{yr} for T Tauri stars. This suggests αΩ-dynamos may be responsible for generating magnetic fields strong enough to launch observed outflows.
Doped spin ladders under magnetic field
International Nuclear Information System (INIS)
Roux, G.
2007-07-01
This thesis deals with the physics of doped two-leg ladders which are a quasi one-dimensional and unconventional superconductor. We particularly focus on the properties under magnetic field. Models for strongly correlated electrons on ladders are studied using exact diagonalization and density-matrix renormalization group (DMRG). Results are also enlightened by using the bosonization technique. Taking into account a ring exchange it highlights the relation between the pairing of holes and the spin gap. Its influence on the dynamics of the magnetic fluctuations is also tackled. Afterwards, these excitations are probed by the magnetic field by coupling it to the spin degree of freedom of the electrons through Zeeman effect. We show the existence of doping-dependent magnetization plateaus and also the presence of an inhomogeneous superconducting phase (FFLO phase) associated with an exceeding of the Pauli limit. When a flux passes through the ladder, the magnetic field couples to the charge degree of freedom of the electrons via orbital effect. The diamagnetic response of the doped ladder probes the commensurate phases of the t-J model at low J/t. Algebraic transverse current fluctuations are also found once the field is turned on. Lastly, we report numerical evidences of a molecular superfluid phase in the 3/2-spin attractive Hubbard model: at a density low enough, bound states of four fermions, called quartets, acquire dominant superfluid fluctuations. The observed competition between the superfluid and density fluctuations is connected to the physics of doped ladders. (author)
Permanent Magnet Spiral Motor for Magnetic Gradient Energy Utilization: Axial Magnetic Field
Valone, Thomas F.
2010-01-01
The Spiral Magnetic Motor, which can accelerate a magnetized rotor through 90% of its cycle with only permanent magnets, was an energy milestone for the 20th century patents by Kure Tekkosho in the 1970's. However, the Japanese company used old ferrite magnets which are relatively weak and an electrically-powered coil to jump start every cycle, which defeated the primary benefit of the permanent magnet motor design. The principle of applying an inhomogeneous, anisotropic magnetic field gradient force Fz = μ cos φ dB/dz, with permanent magnets is well-known in physics, e.g., Stern-Gerlach experiment, which exploits the interaction of a magnetic moment with the aligned electron spins of magnetic domains. In this case, it is applied to dB/dθ in polar coordinates, where the force Fθ depends equally on the magnetic moment, the cosine of the angle between the magnetic moment and the field gradient. The radial magnetic field increases in strength (in the attractive mode) or decreases in strength (in the repulsive mode) as the rotor turns through one complete cycle. An electromagnetic pulsed switching has been historically used to help the rotor traverse the gap (detent) between the end of the magnetic stator arc and the beginning (Kure Tekko, 1980). However, alternative magnetic pulse and switching designs have been developed, as well as strategic eddy current creation. This work focuses on the switching mechanism, novel magnetic pulse methods and advantageous angular momentum improvements. For example, a collaborative effort has begun with Toshiyuki Ueno (University of Tokyo) who has invented an extremely low power, combination magnetostrictive-piezoelectric (MS-PZT) device for generating low frequency magnetic fields and consumes "zero power" for static magnetic field production (Ueno, 2004 and 2007a). Utilizing a pickup coil such as an ultra-miniature millihenry inductor with a piezoelectric actuator or simply Wiegand wire geometry, it is shown that the necessary
Ultralow field magnetization reversal of two-body magnetic nanoparticles
Directory of Open Access Journals (Sweden)
Fei Li
2016-08-01
Full Text Available Field induced magnetization reversal was investigated in a system of two magnetic nanoparticles with uniaxial anisotropies and magnetostatic interaction. By using the micromagnetic simulation, ultralow switching field strength was found when the separation distance between the two particles reaches a critical small value (on nanometer scale in the perpendicular configuration where the anisotropic axes of the two particles are perpendicular to the separation line. The switching field increases sharply when the separation is away from the critical distance. The ultralow field switching phenomenon was missed in the parallel configuration where both the anisotropic axes are aligned along the separation line of the two particles. The micromagnetic results are consistent with the previous theoretical prediction [J. Appl. Phys. 109, 104303 (2011] where dipolar interaction between two single-domain magnetic particles was considered. Our present simulations offered further proofs and possibilities for the low-power applications of information storage as the two-body magnetic nanoparticles might be implemented as a composite information bit.
Magnetic field calculation for Fermilab-style magnet coil end
International Nuclear Information System (INIS)
Ishibashi, K.; McInturff, A.D.
1982-09-01
A simple end field calculation is described, which utilizes a reciprocal theorem of mutual inductance between actual windings and a virtual coil. The calculation method is applied to a Fermilab-style magnet, and the computation results are compared with those obtained by GFUN
High magnetic field ohmically decoupled non-contact technology
Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN
2009-05-19
Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.
Magnetic Catalysis in Graphene Effective Field Theory.
DeTar, Carleton; Winterowd, Christopher; Zafeiropoulos, Savvas
2016-12-23
We report on the first calculation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle.
Ultracold plasma dynamics in a magnetic field
Zhang, Xianli
Plasmas, often called the fourth state of matter and the most common one in the universe, have parameters varying by many orders of magnitude, from temperature of a few hundred kelvin in the Earth's ionosphere to 10 16 K in the magnetosphere of a pulsar. Ultracold plasmas, produced by photoionizing a sample of laser-cooled and trapped atoms near the ionization limit, have extended traditional neutral plasma parameters by many orders of magnitude, to electron temperatures below 1 K and ion temperatures in the tens of muK to a few Kelvin, and densities of 105 cm -3 to 1010 cm-3. These plasmas thus provide a testing ground to study basic plasma theory in a clean and simple system with or without a magnetic field. Previous studies of ultracold plasmas have primarily concentrated on temperature measurements, collective modes and expansion dynamics in the absence of magnetic fields. This thesis presents the first study of ultracold plasma dynamics in a magnetic field. The presence of a magnetic field during the expansion can initiate various phenomena, such as plasma confinement and plasma instabilities. While the electron temperatures are very low in ultracold plasmas, we need only tens of Gauss of magnetic field to observe significant effects on the expansion dynamics. To probe the ultraocold plasma dynamics in a magnetic field, we developed a new diagnostic - projection imaging, which images the ion distribution by extracting the ions with a high voltage pulse onto a position-sensitive detector. Early in the lifetime of the plasma (explosion of the dense ion cloud. For later times, we measure the 2-D Gaussian width of the ion image, obtaining the transverse expansion velocity as a function of magnetic field (up to 70 G), and observe that the transverse expansion velocity scales as B-1/2, explained by a nonlinear ambipolar diffusion model that involes anisotropic diffusion in two different directions. We also present the first observation of a plasma instability in an
The Magnetic Field of Planet Earth
DEFF Research Database (Denmark)
Hulot, G.; Finlay, Chris; Constable, C. G.
2010-01-01
The magnetic field of the Earth is by far the best documented magnetic field of all known planets. Considerable progress has been made in our understanding of its characteristics and properties, thanks to the convergence of many different approaches and to the remarkable fact that surface rocks...... yr) to the longest (virtually the age of the Earth) time scales are finally reviewed, underlining the respective roles of the magnetohydodynamics at work in the core, and of the slow dynamic evolution of the planet as a whole....
Reduction of a Ship's Magnetic Field Signatures
Holmes, John
2008-01-01
Decreasing the magnetic field signature of a naval vessel will reduce its susceptibility to detonating naval influence mines and the probability of a submarine being detected by underwater barriers and maritime patrol aircraft. Both passive and active techniques for reducing the magnetic signatures produced by a vessel's ferromagnetism, roll-induced eddy currents, corrosion-related sources, and stray fields are presented. Mathematical models of simple hull shapes are used to predict the levels of signature reduction that might be achieved through the use of alternate construction materials. Al
Consistency relation for cosmic magnetic fields
DEFF Research Database (Denmark)
Jain, R. K.; Sloth, M. S.
2012-01-01
If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the cosmic microwave background anisotropies and large scale structure. Within an archetypical model of inflationary magnetogenesis, we show...... to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields. DOI...
Xia, Ying; Wang, Shiyu; Sun, Wenjia; Xiu, Jie
2017-01-01
The electromagnetically induced parametric vibration of the symmetrical three-phase induction stator is examined. While it can be analyzed by an approximate analytical or numerical method, more accurate and simple analytical method is desirable. This work proposes a new method based on the field-synchronous coordinates. A mechanical-electromagnetic coupling model is developed under this frame such that a time-invariant governing equation with gyroscopic term can be developed. With the general vibration theory, the eigenvalue is formulated; the transition curves between the stable and unstable regions, and response are all determined as closed-form expressions of basic mechanical-electromagnetic parameters. The dependence of these parameters on the instability behaviors is demonstrated. The results imply that the divergence and flutter instabilities can occur even for symmetrical motors with balanced, constant amplitude and sinusoidal voltage. To verify the analytical predictions, this work also builds up a time-variant model of the same system under the conventional inertial frame. The Floquét theory is employed to predict the parametric instability and the numerical integration is used to obtain the parametric response. The parametric instability and response are both well compared against those under the field-synchronous coordinates. The proposed field-synchronous coordinates allows a quick estimation on the electromagnetically induced vibration. The convenience offered by the body-fixed coordinates is discussed across various fields.
Directory of Open Access Journals (Sweden)
Leonid N. Krivonosov
2015-09-01
Full Text Available Previously, we found the complete solution of Yang–Mills equations for a centrally symmetric metric in 4-dimensional space of conformal torsion-free connection in the absence of the electromagnetic field. Later, in another article, we found a solution of the Yang–Mills equations for the same metric in the presence of an electromagnetic field of a special type, suggesting that its components depend not on the four, but only on two variables. There we compared the resulting solutions with the well-known Reissner–Nordstrom solution and indicated the reason why these solutions do not match. In this paper, we do not impose any prior restrictions on the components of the electromagnetic field. This greatly complicates the derivation of the Yang–Mills equations. However, all computational difficulties were overcome. It turned out that the solutions of these equations all the same depend only on two variables and new solutions, in addition to previously obtained, do not arise. Consequently, we have found all the solutions of the Yang-Mills equations for a centrally symmetric metric in the presence of an arbitrary electromagnetic field, agreed with the Yang–Mills equations in the torsion-free space (i.e., without sources. These solutions are expressed in terms of the Weierstrass elliptic function.
COMPASS magnetic field coils and structure systems
International Nuclear Information System (INIS)
Crossland, R.T.; Booth, J.A.; Hayward, R.J.; Keogh, P.; Pratt, A.P.
1987-01-01
COMPASS is a new experimental toroidal assembly of compact design and with a wide range of physics objectives. It is required to operate either as a Tokamak or as a Reversed Field Pinch with interchangeable circular and dee-section vacuum vessels. The Toroidal field is produced by 16 rectangular coils of 4 turns with tapered conductors on the inside which nest together to form a vault to resist the centering forces. The coils are designed to produce a maximum field on axis of 2.1T which requires a current of 91 kA per turn. Two central solenoids and five pairs of coils symmetrically positioned above and below the machine equator provide the poloidal field. Both coil systems are supported form a mechanical support structure which surrounds the machine. This is primarily designed to resist out-of-plane forces on the TF coils but also acts as the base support for the PF coils and vacuum vessels. An illustration of the COMPASS Load Assembly is given and shows the D-shaped vacuum vessel, the major components and the various field windings
High magnetic fields in the USA
Campbell, Laurence J.; Parkin, Don E.; Crow, Jack E.; Schneider-Muntau, Hans J.; Sullivan, Neil S.
During the past thirty years research using high magnetic fields has technically evolved in the manner, but not the magnitude, of the so-called big science areas of particle physics, plasma physics, neutron scattering, synchrotron light scattering, and astronomy. Starting from the laboratories of individual researchers it moved to a few larger universities, then to centralized national facilities with research and maintenance staffs, and, finally, to joint international ventures to build unique facilities, as illustrated by the subject of this conference. To better understand the nature of this type of research and its societal justification it is helpful to compare it, in general terms, with the aforementioned big-science fields. High magnetic field research differs from particle physics, plasma physics, and astronomy in three respects: (1) it is generic research that cuts across a wide range of scientific disciplines in physics, chemistry, biology, medicine, and engineering; (2) it studies materials and processes that are relevant for a variety of technological applications and it gives insight into biological processes; (3) it has produced, at least, comparably significant results with incomparably smaller resources. Unlike neutron and synchrotron light scattering, which probe matter, high magnetic fields change the thermodynamic state of matter. This change of state is fundamental and independent of other state variables, such as pressure and temperature. After the magnetic field is applied, various techniques are then used to study the new state.
Neutron energy focusing with magnetic fields
International Nuclear Information System (INIS)
Schwab, D.E.; Summhammer, J.; Rauch, H.
2001-01-01
Full text: For the majority of neutron optics instruments and many neutron scattering techniques the use of a monochromatic neutron beam is vitally important. Most monochromators are passive, and often include an interaction with matter. They cut off certain parts of the spectrum, and as a consequence, large losses of neutron density occur, and the spectral density is depleted as well. On the other hand, active energy focusing systems enrich the beam in a very narrow velocity band without considerable losses. Here, we study the active monochromatization of neutrons, generated at a pulsed neutron source by interaction with magnetic fields. The first proposed set-up consists of magnets which surround the beam-line. They produce traveling magnetic waves with desired velocity to escort a neutron pulse between the source and an instrument. During the interaction, the magnetic field forces the neutrons to accelerate or decelerate to this velocity. Simulations show that a comoving magnetic field, shaped like an harmonic oscillator, or of a sinusoidal form, effectuates an increase of neutron intensity up to an order of magnitude in a small but variable velocity band. Consequently, the precision of related neutron scattering experiments is increased or their measurement time is decreased, accordingly. Another concept arises from static and rf spinflip stages. Thereby, an appropriate number of photons of the rf-field can be transmitted to or extracted from the neutrons. Polarized neutrons entering a static magnetic field which is oriented perpendicularly to the neutrons propagation direction, are subject to acceleration or deceleration depending on their spin orientation (Zeeman shift). Flipping the neutrons spin by on rf coil inside the static field, causes a second acceleration or deceleration of the neutrons when they are leaving the static field. They immediately enter the next stage with another static field, which is much smaller than the one they have just left. Its
Biomaterials and Magnetic fields for Cancer Therapy
Ramachandran, Narayanan; Mazuruk, Konstanty
2003-01-01
The field of biomaterials has emerged as an important topic in the purview of NASA s new vision of research activities in the Microgravity Research Division. Although this area has an extensive track record in the medical field as borne out by the routine use of polymeric sutures, implant devices, and prosthetics, novel applications such as tissue engineering, artificial heart valves and controlled drug delivery are beginning to be developed. Besides the medical field, biomaterials and bio-inspired technologies are finding use in a host of emerging interdisciplinary fields such as self-healing and self-assembling structures, biosensors, fuel systems etc. The field of magnetic fluid technology has several potential applications in medicine. One of the emerging fields is the area of controlled drug delivery, which has seen its evolution from the basic oral delivery system to pulmonary to transdermal to direct inoculations. In cancer treatment by chemotherapy for example, targeted and controlled drug delivery has received vast scrutiny and substantial research and development effort, due to the high potency of the drugs involved and the resulting requirement to keep the exposure of the drugs to surrounding healthy tissue to a minimum. The use of magnetic particles in conjunction with a static magnetic field allows smart targeting and retention of the particles at a desired site within the body with the material transport provided by blood perfusion. Once so located, the therapeutical aspect (radiation, chemotherapy, hyperthermia, etc.) of the treatment, now highly localized, can be implemented.
Magnetic field measurements on the sun and implications for stellar magnetic field observations
Energy Technology Data Exchange (ETDEWEB)
Sun, W.H.; Giampapa, M.S.; Worden, S.P.
1987-01-01
Results of solar magnetic field measurements in plages, sunspot umbrae, and sunspot penumbrae using high spectral resolution, unpolarized infrared H band spectral data are presented. A Fourier deconvolution analysis scheme similar to that utilized for stellar magnetic field measurements is adopted. As an example, a field strength of 3240 + or - 450 G is determined in a sunspot umbra combined with a value of 2000 + or - 180 G in the associated penumbra. These values are compared with a direct measurement of the spot umbra and penumbra field strengths based on the observed separation of the Zeeman components of the magnetically sensitive lines. Possible origins for the discrepancy between the results inferred by these two different techniques are discussed. The Fourier analysis results confirm the widespread occurrence of kilogauss level fields in the solar photosphere. The implications of the solar results for stellar magnetic field measurements are considered. 45 references.
Mercury's Internal Magnetic Field: Modeling Core Fields with Smooth Inversions
Uno, H.; Johnson, C. L.; Anderson, B. J.; Korth, H.; Purucker, M. E.; Solomon, S. C.
2008-12-01
MESSENGER's second flyby (M2) of Mercury on 6 October 2008 will provide significantly improved geographical sampling of the planet's internal magnetic field over previous measurements. Latitudinal coverage and spacecraft altitudes will be similar to those during MESSENGER's first encounter (M1), but the spacecraft trajectory will be displaced by about 180° in longitude, yielding the first magnetic measurements in the western hemisphere. We investigate spatial structure in Mercury's internal magnetic field by applying methods from inverse theory to construct low-degree-and-order spherical harmonic models. External fields predicted by a parameterized magnetospheric model are subtracted from the vector field observations. The approach takes into account noise contributions from long-wavelength uncertainties in the external field models, unexplained short-wavelength features, and spacecraft attitude errors. We investigate the effect of different regularization (smoothness) constraints on our inversions. Analyses of data from M1 and the two Mariner 10 flybys that penetrated the magnetosphere yield a preferred spherical harmonic solution to degree and order eight with the centered, axial dipole term g10 dominating. The model shows structure at low and mid-latitude regions near the flybys. Terms predicted by an analytical model for long- wavelength crustal fields - namely g10, g30 and g32 - are present, but their relative amplitudes are not consistent with such a field. We conclude that structure in our models is dominated by core, rather than by crustal, fields. We also investigate, through simulations, field morphologies that are recoverable while the spacecraft is in orbit about Mercury, under the assumption that the long-wavelength contributions from external sources can be accurately modeled and removed. Although the elliptical orbit of MESSENGER will impede the recovery of southern hemisphere structure, we obtain excellent recovery of the dipole field and of
MAGNETIC FIELD TWISTING BY INTERGRANULAR DOWNDRAFTS
Energy Technology Data Exchange (ETDEWEB)
Taroyan, Youra; Williams, Thomas [Department of Physics, IMPACS, Aberystwyth University, Aberystwyth (United Kingdom)
2016-10-01
The interaction of an intergranular downdraft with an embedded vertical magnetic field is examined. It is demonstrated that the downdraft may couple to small magnetic twists leading to an instability. The descending plasma exponentially amplifies the magnetic twists when it decelerates with depth due to increasing density. Most efficient amplification is found in the vicinity of the level, where the kinetic energy density of the downdraft reaches equipartition with the magnetic energy density. Continual extraction of energy from the decelerating plasma and growth in the total azimuthal energy occurs as a consequence of the wave-flow coupling along the downdraft. The presented mechanism may drive vortices and torsional motions that have been detected between granules and in simulations of magnetoconvection.
Fiedler, B.; Guenther, M.
Fiedler and Schimming (1983) proved that the fourth order gravitational field equations with a linear combination of Bach's and Einstein's tensors on the left-hand side, which were proposed by Treder, admit static centrally symmetric solutions which are analytical and non-flat in some neighbourhood of the centre of symmetry. The existence of these solutions, known at first only in a small neighbourhood of r = 0 (r radius), can now be extended to intervals 0 ≤ r ≤ α with arbitrarily large α.
Magnetic field dependence of vortex activation energy
Indian Academy of Sciences (India)
... the resistance as a function of temperature and magnetic field in clean polycrystalline samples of NbSe2, MgB2 and Bi2Sr2Ca2Cu3O10 (BSCCO) superconductors. Thermally activated flux flow behaviour is seen in all the three systems and clearly identified in bulk MgB2. While the activation energy at low fields for MgB2 ...
Magnetic field influence on paramecium motility
Energy Technology Data Exchange (ETDEWEB)
Rosen, M.F.; Rosen, A.D. (State Univ. of New York, Stony Brook (USA))
1990-01-01
The influence of a moderately intense static magnetic field on movement patterns of free swimming Paramecium was studied. When exposed to fields of 0.126 T, these ciliated protozoa exhibited significant reduction in velocity as well as a disorganization of movement pattern. It is suggested that these findings may be explained on the basis of alteration in function of ion specific channels within the cell membrane.
Trapped field recovery of bulk superconductor magnets by static field magnetization
Deng, Z.; Tsuzuki, K.; Miki, M.; Felder, B.; Hara, S.; Izumi, M.
2011-11-01
Thanks to the trapped field of bulk high-temperature superconductors, they can be used as field-pole magnets in the high temperature superconducting (HTS) rotating machines. For example, an output power of 10 kW at 720 rpm was realized by an average trapped field of 0.56 T of eight melt-textured GdBa2Cu3Oy (Gd-123) bulks at liquid nitrogen temperature in TUMSAT in 2004. Similarly to the HTS machines involving 1G or 2G wires, the trapped field of the bulk is possibly sensitive and even can be attenuated by the AC component field during the operation. Hence, it is necessary to recover the trapped field once being decreased to some extent in the practical application. From this point, we have investigated the trapped field recovery of HTS bulk magnets by static field magnetization in the paper. A series of different initial trapped fields after zero-field-cooling or field-cooling magnetization are used to simulate the attenuated trapped field. By comparing the trapped field peak and its distribution, the trapped field was found to be able to recover by the static field magnetization method with a stronger excitation field and the initial trapped flux inside the bulk also has an influence on the recovery process. The optimum recovery field was found to be about 2.5 times the saturated trapped field of the bulk at liquid nitrogen temperature, by which the bulk can regain the former best trapped field performance.
Magnetic fields and density functional theory
International Nuclear Information System (INIS)
Salsbury, Freddie Jr.
1999-01-01
A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules
Super-strong Magnetic Field in Sunspots
Okamoto, Takenori J.; Sakurai, Takashi
2018-01-01
Sunspots are the most notable structure on the solar surface with strong magnetic fields. The field is generally strongest in a dark area (umbra), but sometimes stronger fields are found in non-dark regions, such as a penumbra and a light bridge. The formation mechanism of such strong fields outside umbrae is still puzzling. Here we report clear evidence of the magnetic field of 6250 G, which is the strongest field among Stokes I profiles with clear Zeeman splitting ever observed on the Sun. The field was almost parallel to the solar surface and located in a bright region sandwiched by two opposite-polarity umbrae. Using a time series of spectral data sets, we discuss the formation process of the super-strong field and suggest that this strong field region was generated as a result of compression of one umbra pushed by the horizontal flow from the other umbra, such as the subduction of the Earth’s crust in plate tectonics.
Self-Dual Yang-Mills Fields in Static Axially Symmetric Case and Related Topics
Hou, Bo-yuan; Wang, Pei
1985-09-01
In this article we will present an explicit geometric picture about the complete integrability of the static axially symmetric SDYM equation and the gravitational Ernst equation, interpret the correspondence between their Bäcklund transformation formulae and the transformations from one focal surface of Weingarten congruence to the other, and give the matrix Riccati equation so that the integrability of the B.T. will be proved. It is shown that for the axially symmetric SDYM equation and gravitational Ernst equation the adjoint space of the group (SL(2r)) is a 3-dimensional Minkowski space, and the corresponding soliton surfaces have negative variable curvature. After introducing the generator R we can explain the B.T. as the rotation around the common tangent between two surfaces of solitons. Using Riccati equation we will confirm in this paper the integrability of B.T. and prove that the B.T. is strong, i.e., the new and old solutions satisfy equations of motion separately. Some related topics are also discussed.
Compensation-device for a magnetic field
Kruit, P.; Ferreira, J.A.
2007-01-01
The invention relates to compensation device for a magnetic field generated through electric traction in a tram or train transport system that comprises an overhead line and rails, the overhead line and rails during operation being live, wherein a predetermined section of the overhead line and rails
Magnetic Field Strength Evaluation Yu. S. Yefimov
Indian Academy of Sciences (India)
Magnetic Field Strength Evaluation. 75 fluctuations have natural explanation in the frame of shock-in-jet model (Marscher. & Gear 1985; Hughes et al. 1989; Qian et al. 1991). However, the flare activity (especially periodical) presents some difficulties in this model. To eliminate these problems, Camenzind & Krockenberger ...
Enhanced microactuation with magnetic field curing of ...
Indian Academy of Sciences (India)
The incorporation of nanoparticles of iron in a natural rubber matrix leads to flexible magnetorheolog- ical (MR) materials. Rod-shaped MR elastomers based on natural rubber and nanosized iron have been moulded both with and without the application of an external magnetic field during curing. These MR elastomer rods ...
Rotational Rectification of an Alternating Magnetic Field
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 5. Rotational Rectification of an Alternating Magnetic Field. N Kumar. Classroom Volume 18 Issue 5 May 2013 pp 458-467. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/018/05/0458-0467 ...
ATLAS Barrel Toroid magnet reached nominal field
2006-01-01
Â OnÂ 9 November the barrel toroid magnet reached its nominal field of 4 teslas, with an electrical current of 21 000 amperes (21 kA) passing through the eight superconducting coils as shown on this graph
Historic Methods for Capturing Magnetic Field Images
Kwan, Alistair
2016-01-01
I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection…
Inversion layer thermopower in high magnetic field
Energy Technology Data Exchange (ETDEWEB)
Girvin, S.M.; Jonson, M.
1982-11-20
The authors calculate the thermopower of an ideal two-dimensional electron gas (inversion layer) in a quantising magnetic field. They find that the thermopower is a universal function of the reduced temperature which has a novel dependence on the chemical potential.
Strain sensors for high field pulse magnets
Energy Technology Data Exchange (ETDEWEB)
Martinez, Christian [Los Alamos National Laboratory; Zheng, Yan [Los Alamos National Laboratory; Easton, Daniel [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory
2009-01-01
In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Three operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.
Cylindrical isentropic compression by ultrahigh magnetic field
Gu, Zhuowei; Luo, Hao; Zhang, Hengdi; Zhao, Shichao; Tang, Xiaosong; Tong, Yanjin; Song, Zhenfei; Tan, Fuli; Zhao, Jianheng; Sun, Chengwei
2014-05-01
The cylindrical isentropic compression by ultrahigh magnetic field (MC-1) is a kind of unique high energy density technique. It has characters like ultrahigh pressure and low temperature rising, and would have widely used in areas like high pressure physics, new material synthesis and ultrahigh magnetic field physics. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) has begun the experiment since 2011 and a primary experimental device had been set-up. In the experiments, a seed magnetic field of 5 Tesla were set-up first and compressed by a stainless steel liner which is driven by high explosive initiated synchronously. The internal diameter of the liner is 97 mm, and its thickness is 1.5 mm. The movement of liner was recorded optically and a typical turnaround phenomenon was observed. From the photography results the liner was compressed smoothly and evenly and its average velocity was about 5-6 km/s. In the experiment a axial magnetic field of over 1400 Tesla has been recorded. The MC-1 process was numerical simulated by 1D MHD code MC11D and the simulations are in accord with the experiments.
Physics of semiconductors in high magnetic fields
Miura, Noboru
2008-01-01
This book summarizes most of the fundamental physical phenomena which semiconductors and their modulated structures exhibit in high magnetic fields. Readers can learn not only the basic theoretical background but also the present state of the art from the most advanced data in this rapidly growing research area.
Manifestations of Magnetic Field Inhomogeneities Lawrence Rudnick
Indian Academy of Sciences (India)
Abstract. Both observations and simulations reveal large inhomo- geneities in magnetic field distributions in diffuse plasmas. Incorporating these inhomogeneities into various calculations can significantly change the inferred physical conditions. In extragalactic sources, e.g., these can compromise analyses of spectral ...
Manipulation of molecular structures with magnetic fields
Boamfa, M.I.
2003-01-01
The present thesis deals with the use of magnetic fields as a handle to manipulate matter at a molecular level and as a tool to probe molecular properties or inter molecular interactions. The work consists of in situ optical studies of (polymer) liquid crystals and molecular aggregates in high
Enhanced microactuation with magnetic field curing of ...
Indian Academy of Sciences (India)
The incorporation of nanoparticles of iron in a natural rubber matrix leads to flexible magnetorheological (MR) materials. Rod-shaped MR elastomers based on natural rubber and nanosized iron have been moulded both with and without the application of an external magnetic field during curing. These MR elastomer rods ...
Magnetic Field Structure in Relativistic Jets
Directory of Open Access Journals (Sweden)
Jermak Helen
2013-12-01
Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.
Solar Magnetic Fields J. O. Stenflo
Indian Academy of Sciences (India)
I wish to dedicate this presentation to my dear friend Arvind Bhatnagar, whom I have known for nearly four decades, since we shared office for half a year in 1968 in ..... The pattern of quiet-Sun magnetic fields appears to maintain a high degree of self- similarity as we zoom in on ever smaller scales, as illustrated in Fig. 5.
Electro-mechanical resonant magnetic field sensor
International Nuclear Information System (INIS)
Temnykh, A.B.; Lovelace, R.V.E.
2002-01-01
We describe a new type of magnetic field sensor, which is termed as an Electro-Mechanical Resonant Sensor (EMRS). The key part of this sensor is a small conductive elastic element with low damping rate and therefore, a high Q fundamental mode of frequency f 1 . An AC current is driven through the elastic element which, in the presence of a magnetic field, causes an AC force on the element. When the frequency of the AC current matches the resonant frequency of the element, maximum vibration of the element occurs and this can be measured precisely by optical means. We have built and tested a model sensor of this type by using for the elastic element, a length of copper wire of diameter 0.030 mm formed into a loop shape. The wire motion was measured using a light-emitting diode photo-transistor assembly. This sensor demonstrated a sensitivity better than 0.001 G for an applied magnetic field of ∼1 G and a good selectivity for the magnetic field direction. The sensitivity can be easily improved by a factor of ∼10-100 by a more sensitive measurement of the elastic element motion and by having the element in vacuum to reduce the drag force
Magnetic field and gradient analysis around matrix for HGMS
International Nuclear Information System (INIS)
Baik, S.K.; Ha, D.W.; Ko, R.K.; Kwon, J.M.
2010-01-01
A High Gradient Magnetic Separator (HGMS) uses matrix to make high magnetic field gradient so that ferro- or para-magnetic particles can be attracted to them by high magnetic force. These matrixes are usually composed of stainless wires having high magnetization characteristics. This paper deals with superconducting HGMS which is aimed for purifying wastewater by using stainless steel matrix. Background magnetic field up to 6 T is generated by a superconducting solenoid and the stainless steel matrix are arranged inside of the solenoid. In order to calculate magnetic forces exerting on magnetic particles in wastewater, it is important to calculate magnetic field and magnetic field gradient those are proportional to the magnetic force acting on the particle. So we presents magnetic field distribution analysis result and estimates how many times of magnetic force will act on a particle when the matrix are arranged or not.
Symmetric vectors and algebraic classification
International Nuclear Information System (INIS)
Leibowitz, E.
1980-01-01
The concept of symmetric vector field in Riemannian manifolds, which arises in the study of relativistic cosmological models, is analyzed. Symmetric vectors are tied up with the algebraic properties of the manifold curvature. A procedure for generating a congruence of symmetric fields out of a given pair is outlined. The case of a three-dimensional manifold of constant curvature (''isotropic universe'') is studied in detail, with all its symmetric vector fields being explicitly constructed
Magnetic field dynamos and magnetically triggered flow instabilities
Stefani, F.; Albrecht, T.; Arlt, R.; Christen, M.; Gailitis, A.; Gellert, M.; Giesecke, A.; Goepfert, O.; Herault, J.; Kirillov, O. N.; Mamatsashvili, G.; Priede, J.; Rüdiger, G.; Seilmayer, M.; Tilgner, A.; Vogt, T.
2017-07-01
The project A2 of the LIMTECH Alliance aimed at a better understanding of those magnetohydrodynamic instabilities that are relevant for the generation and the action of cosmic magnetic fields. These comprise the hydromagnetic dynamo effect and various magnetically triggered flow instabilities, such as the magnetorotational instability and the Tayler instability. The project was intended to support the experimental capabilities to become available in the framework of the DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN). An associated starting grant was focused on the dimensioning of a liquid metal experiment on the newly found magnetic destabilization of rotating flows with positive shear. In this survey paper, the main results of these two projects are summarized.
Crystal field symmetry and magnetic interactions in rare earth-silver amorphous alloys
International Nuclear Information System (INIS)
Pappa, Catherine.
1979-01-01
A study has been made of the following rare earth based amorphous alloys: Ndsub(x)Agsub(100-x), Prsub(x)Agsub(100-x), Gdsub(x)Agsub(100-x), Tlsub(x)Agsub(100-x). In rare earth based amorphous alloys, the symmetrical distribution of the crystal field is very wide and hence not very sensitive to the content of the alloys. The existence of preponderant negative magnetic interactions leads to an upset magnetic order, the magnetization of a small volume not being nil. The magnetic behaviour of alloys with a small concentration of rare earths is governed by the existence of clusters of statistical origin, within which a rare earth ion has at least one other rare earth ion in the position of first neighbour. The presence of a high anisotropy at low temperatures make the magnetic interactions between clusters inoperative [fr
Electrical conductivity of quark matter in magnetic field
Kerbikov, B.; Andreichikov, M.
2011-01-01
Fermion currents in dense quark matter embedded into magnetic field are under intense discussions motivated by Chiral Magnetic Effect. We argue that conductivity of quark matter may be independent of the magnetic field direction and not proportional to the magnetic field strength.
Parahydrogen discriminated PHIP at low magnetic fields
Prina, I.; Buljubasich, L.; Acosta, R. H.
2015-02-01
Parahydrogen induced polarization (PHIP) is a powerful hyperpolarization technique. However, as the signal created has an anti-phase characteristic, it is subject to signal cancellation when the experiment is carried out in inhomogeneous magnetic fields or in low fields that lack the necessary spectral resolution. The use of benchtop spectrometers and time domain (TD) analyzers has continuously grown in the last years and many applications are found in the food industry, for non-invasive compound detection or as a test bench for new contrast agents among others. In this type of NMR devices the combination of low and inhomogeneous magnetic fields renders the application of PHIP quite challenging. We have recently shown that the acquisition of J-spectra in high magnetic fields not only removes the anti-phase peak cancellation but also produces a separation of thermal from hyperpolarized signals, providing Parahydrogen Discriminated (PhD-PHIP) spectra. In this work we extend the use of PhD-PHIP to low and inhomogeneous fields. In this case the strong coupling found for the protons of the sample renders spin-echo spectra that have a great complexity, however, a central region in the spectrum with only hyperpolarized signal is clearly identified. This experimental approach is ideal for monitoring real time chemical reaction of pure PHIP signals.
Axial Symmetric Solutions to Einstein's Field Equations for Deformed Neutron Stars
Zubairi, Omair; Weber, Fridolin
2016-03-01
Traditional models of neutron stars are constructed under of assumption that they are perfect spheres. This is not correct, however, if the matter inside of neutron stars is described by an non-isotropic model for the equation of state. Examples of such stars are magnetars and neutron stars that would contain color-superconducting quark matter. In this work, we derive the stellar structure equations which describe the properties of non-isotropic neutron stars. The equations are solved numerically in two dimensions. We calculate stellar properties such as masses and radii along with pressure and density profiles and investigate any changes from conventional spherically symmetric neutron stars. This work was supported through the National Science Foundation under Grants PHYS-1411708 and DUE-1259951. Additional computing resources were provided by the CSRC at SDSU and the Department of Sciences at Wentworth Institute of Technology.
Faraday diamagnetism under slowly oscillating magnetic fields
Kimura, Tsunehisa; Kimura, Fumiko; Kimura, Yosuke
2018-04-01
Diamagnetism is a universal phenomenon of materials arising from the orbital motion of electrons bound to atoms, which is commonly known as Langevin diamagnetism. The orbital motion also occurs according to the Faraday's law of induction when the applied magnetic field is oscillating. However, the influence of this dynamic effect on the magnetism of materials has seldom been studied. Here, we propose a new type diamagnetism coined Faraday diamagnetism. The magnitude of this diamagnetism evaluated by an atomic electric circuit model was as large as that of Langevin diamagnetism. The predicted scale of Faraday diamagnetism was supported by experiments.
Navigation: Bat orientation using Earth's magnetic field
DEFF Research Database (Denmark)
Holland, Richard A.; Thorup, Kasper; Vonhof, Maarten J.
2006-01-01
Bats famously orientate at night by echolocation 1 , but this works over only a short range, and little is known about how they navigate over longer distances 2 . Here we show that the homing behaviour of Eptesicus fuscus, known as the big brown bat, can be altered by artificially shifting...... the Earth's magnetic field, indicating that these bats rely on a magnetic compass to return to their home roost. This finding adds to the impressive array of sensory abilities possessed by this animal for navigation in the dark....
Primordial magnetic field amplification from turbulent reheating
International Nuclear Information System (INIS)
Calzetta, Esteban; Kandus, Alejandra
2010-01-01
We analyze the possibility of primordial magnetic field amplification by a stochastic large scale kinematic dynamo during reheating. We consider a charged scalar field minimally coupled to gravity. During inflation this field is assumed to be in its vacuum state. At the transition to reheating the state of the field changes to a many particle/anti-particle state. We characterize that state as a fluid flow of zero mean velocity but with a stochastic velocity field. We compute the scale-dependent Reynolds number Re(k), and the characteristic times for decay of turbulence, t d and pair annihilation t a , finding t a d . We calculate the rms value of the kinetic helicity of the flow over a scale L and show that it does not vanish. We use this result to estimate the amplification factor of a seed field from the stochastic kinematic dynamo equations. Although this effect is weak, it shows that the evolution of the cosmic magnetic field from reheating to galaxy formation may well be more complex than as dictated by simple flux freezing
Wen, Qianqian; Wang, Yu; Gong, Xinglong
2017-07-01
In this study, novel magnetorheological elastomers based on hard magnetic particles (H-MREs) were developed and the magnetic field dependent dynamic properties of the H-MREs were further investigated. The storage modulus of H-MREs could not only be increased by increasing magnetic field but also be decreased by the increasing magnetic field of opposite orientation. For the anisotropic H-MREs with 80 wt% NdFeB particles, the field-induced increasing and decreasing modulus was 426 kPa and 118 kPa respectively. Moreover, the dynamic performances of H-MREs significantly depended on the pre-structure magnetic field, magnetizing field and test magnetic field. The H-MREs were initially magnetized and formed the chain-like microstructure by the pre-structure magnetic field. The field-induced increasing and decreasing modulus of H-MREs both raised with increasing of the magnetizing field. When the magnetizing field increased from 400 to 1200 kA m-1, the field induced decreasing modulus of the 80 wt% isotropic H-MREs raised from 3 to 47 kPa. The magnetic field dependent curves of H-MREs’ storage modulus were asymmetric if the magnetizing field was higher than the test magnetic field. Based on the dipolar model of MREs and magnetic properties of hard magnetic material, a reasonable explanation was proposed to understand the H-MREs’ field dependent mechanical behaviors.
An atlas of photospheric magnetic field observations and computed coronal magnetic fields: 1976-1985
Hoeksema, J. T.; Scherrer, P. H.
1986-01-01
Daily magnetogram observations of the large-scale photospheric magnetic field have been made at the John M. Wilcox Solar Observatory at Stanford since May of 1976. These measurements provide a homogeneous record of the changing solar field through most of solar cycle 21. Using the photospheric data, the configuration of the coronal and heliospheric fields can be calculated using a Potential Field-Source Surface model. This provides a three-dimensional picture of the heliospheric field evolution during the solar cycle. This paper announces the publication of UAG Report No. 94, an Atlas containing the complete set of synoptic charts of the measured photospheric magnetic field, the computed field at the source surface, and the coefficients of the multipole expansion of the coronal field. The general underlying structures of the solar and heliospheric fields, which determine the environment for solar-terrestrial relations and provide the context within which solar activity related events occur, can be approximated from these data.
An Orbital Trap Mass Analyzer Using a Hybrid Magnetic-Electric Field: A Simulation Study
Xu, Chongsheng; Wu, Fangling; Ding, Li; Ding, Chuan-Fan
2018-03-01
An orbital ion trap mass analyzer employing hybrid magnetic-electric field was designed and simulated. The trap has a rotational symmetrical structure and the hybrid trapping field was created in a toroidal space between 12 pairs of sector detection electrodes. Ion injection and ion orbital motion inside the trap were simulated using SIMION 8.1 with a user Lua program, and the required electric and magnetic field were investigated. The image charge signal can be picked up by the 12 pairs of detection electrodes and the mass resolution was evaluated using FFT. The simulated resolving power for the optimized configuration over 79,000 FWHM was obtained at the magnetic induction intensity of 0.5 Tesla in the simulation. [Figure not available: see fulltext.
On the origin of cosmic magnetic fields
Kulsrud, Russell M.; Zweibel, Ellen G.
2008-04-01
We review the extensive and controversial literature concerning how the cosmic magnetic fields pervading nearly all galaxies and clusters of galaxies actually got started. Some observational evidence supports a hypothesis that the field is already moderately strong at the beginning of the life of a galaxy and its disc. One argument involves the chemical abundance of the light elements Be and B, while a second one is based on the detection of strong magnetic fields in very young high red shift galaxies. Since this problem of initial amplification of cosmic magnetic fields involves important plasma problems it is obvious that one must know the plasma in which the amplification occurs. Most of this review is devoted to this basic problem and for this it is necessary to devote ourselves to reviewing studies that take place in environments in which the plasma properties are most clearly understood. For this reason the authors have chosen to restrict themselves almost completely to studies of dynamos in our Galaxy. It is true that one can get a much better idea of the grand scope of galactic fields in extragalactic systems. However, most mature galaxies share the same dilemma as ours of overcoming important plasma problems. Since the authors are both trained in plasma physics we may be biased in pursuing this approach, but we feel it is justified by the above argument. In addition we feel we can produce a better review by staying close to that which we know best. In addition we have chosen not to consider the saturation problem of the galactic magnetic field since if the original dynamo amplification fails the saturation question does not arise. It is generally accepted that seed fields, whose strength is of order 10-20 G, easily spring up in the era preceding galaxy formation. Several mechanisms have been proposed to amplify these seed magnetic fields to a coherent structure with the microgauss strengths of the currently observed galactic magnetic fields. The standard
Measurement of the CMS Magnetic Field
INSPIRE-00096921; Bergsma, F.; Campi, D.; Cure, B.; Gaddi, A.; Gerwig, H.; Herve, A.; Korienek, J.; Linde, F.; Lindenmeyer, C.; Loveless, R.; Mulders, M.; Nebel, T.; Smith, R.P.; Stickland, D.; Teafoe, G.; Veillet, L.; Zimmerman, J.K.
2011-01-01
The measurement of the magnetic field in the tracking volume inside the superconducting coil of the Compact Muon Solenoid (CMS) detector under construction at CERN is done with a fieldmapper designed and produced at Fermilab. The fieldmapper uses 10 3-D B-sensors (Hall probes) developed at NIKHEF and calibrated at CERN to precision 0.05% for a nominal 4 T field. The precise fieldmapper measurements are done in 33840 points inside a cylinder of 1.724 m radius and 7 m long at central fields of 2, 3, 3.5, 3.8, and 4 T. Three components of the magnetic flux density at the CMS coil maximum excitation and the remanent fields on the steel-air interface after discharge of the coil are measured in check-points with 95 3-D B-sensors located near the magnetic flux return yoke elements. Voltages induced in 22 flux-loops made of 405-turn installed on selected segments of the yoke are sampled online during the entire fast discharge (190 s time-constant) of the CMS coil and integrated offline to provide a measurement of the...
Validation of the CMS Magnetic Field Map
INSPIRE-00096921; Amapane, N.; Ball, A.; Curé, B.; Gaddi, A.; Gerwig, H.; Mulders, M.; Calvelli, V.; Hervé, A.; Loveless, R.
2014-10-26
The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4-T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 three-dimensional (3-D) Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The magnetic field description is compared with the measurements and discussed.
On the origin of cosmic magnetic fields
International Nuclear Information System (INIS)
Kulsrud, Russell M; Zweibel, Ellen G
2008-01-01
We review the extensive and controversial literature concerning how the cosmic magnetic fields pervading nearly all galaxies and clusters of galaxies actually got started. Some observational evidence supports a hypothesis that the field is already moderately strong at the beginning of the life of a galaxy and its disc. One argument involves the chemical abundance of the light elements Be and B, while a second one is based on the detection of strong magnetic fields in very young high red shift galaxies. Since this problem of initial amplification of cosmic magnetic fields involves important plasma problems it is obvious that one must know the plasma in which the amplification occurs. Most of this review is devoted to this basic problem and for this it is necessary to devote ourselves to reviewing studies that take place in environments in which the plasma properties are most clearly understood. For this reason the authors have chosen to restrict themselves almost completely to studies of dynamos in our Galaxy. It is true that one can get a much better idea of the grand scope of galactic fields in extragalactic systems. However, most mature galaxies share the same dilemma as ours of overcoming important plasma problems. Since the authors are both trained in plasma physics we may be biased in pursuing this approach, but we feel it is justified by the above argument. In addition we feel we can produce a better review by staying close to that which we know best. In addition we have chosen not to consider the saturation problem of the galactic magnetic field since if the original dynamo amplification fails the saturation question does not arise. It is generally accepted that seed fields, whose strength is of order 10 -20 G, easily spring up in the era preceding galaxy formation. Several mechanisms have been proposed to amplify these seed magnetic fields to a coherent structure with the microgauss strengths of the currently observed galactic magnetic fields. The standard
Winkler, Franz-Günter
2013-09-01
The geodesic equations for the general case of diagonal metrics of static, spherically symmetric fields are calculated. The elimination of the proper time variable gives the motion equations for test particles with respect to coordinate time and an account of "gravitational acceleration from the coordinate perspective". The results are applied to the Schwarzschild metric and to the so-called exponential metric. In an attempt to add an account of "gravitational force from the coordinate perspective", the special relativistic mass-energy relation is generalized to diagonal metrics involving location dependent and possibly anisotropic light speeds. This move requires a distinction between two aspects of the mass of a test particle (parallel and perpendicular to the field). The obtained force expressions do not reveal "gravitational repulsion" for the Schwarzschild metric and for the exponential metric.
Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.
Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M
2001-01-25
Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.
Interplanetary Magnetic Field Guiding Relativistic Particles
Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.
2011-01-01
The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.
Surface flute modes in the bumpy magnetic field
International Nuclear Information System (INIS)
Girka, I.O.; Girka, V.O.; Lapshin, V.I.
2005-01-01
Surface electromagnetic waves are often determined as the most possible cause of undesirable heating of edge plasma that leads, in turn, to strengthening of plasma - wall interaction in stellarators and increased plasma contamination. The propagation of surface flute modes near the interface of plasma column separated by a vacuum layer from the ring cylindrical ideally conductive metallic chamber is studied. The external steady bumpy magnetic field B-vector 0 = B 0z e-vector z + B 0r e-vector r was considered, B 0z =B 00 [1+ε m (r)cos(k m z)], here ε m '≡dε m /dr, k m =2π/L, L is the period of nonuniformity. non-uniformity of B-vector 0 is planned to be dominant in the confining magnetic field of the modular stellarator Helias, ε m ∼ 0.13. In the bumpy magnetic field the electromagnetic disturbance propagates in the form of the wave envelope, in which one alongside with the fundamental harmonic, proportional to exp[i(mθ±-ωt)], infinite set of satellite spatial harmonics, proportional to exp[i(mθ ± jk m z - ωt)], j=1,2,3..., is present. It is shown, that in the first approximation in the respect to ε m , amplitudes of the fundamental harmonics of the E-wave with the field components E r , E θ , B z do not vary, small satellite harmonics of these fields arise, proportional to exp[i(mθ ± k m z - ωt)]. At the same time due to weak coupling of - and - modes, caused by B-vector 0 nonuniformity and nonzero axial wave number of satellite harmonics, small satellite harmonics of H-wave with the field components E z , B r , B θ also arise. The amplitudes of satellite harmonics of E-wave are shown to be symmetric: E r (+) =E r (-) , E θ (+) =E θ (-) , B z (+) =B z (-) , and the amplitudes of H-wave are antisymmetric: B r (+) =-B r (-) , B θ (+) =- B θ (-) , E z (+) =-E z (-) . In the second approximation in the respect to ε m corrections to the amplitudes of the fundamental harmonic of E-wave arise. The correction to the eigen frequency of the wave
NMR in rotating magnetic fields: Magic angle field spinning
Energy Technology Data Exchange (ETDEWEB)
Sakellariou, D.; Meriles, C.; Martin, R.; Pines, A.
2004-09-10
Magic angle sample spinning has been one of the cornerstones in high-resolution solid state NMR. Spinning frequencies nowadays have increased by at least one order of magnitude over the ones used in the first experiments and the technique has gained tremendous popularity. It is currently a routine procedure in solid-state NMR, high-resolution liquid-state NMR and solid-state MRI. The technique enhances the spectral resolution by averaging away rank 2 anisotropic spin interactions thereby producing isotropic-like spectra with resolved chemical shifts and scalar couplings. Andrew proposed that it should be possible to induce similar effects in a static sample if the direction of the magnetic field is varied, e.g., magic-angle rotation of the B0 field (B0-MAS) and this has been recently demonstrated using electromagnetic field rotation. Here we discuss on the possibilities to perform field rotation using alternative hardware, together with spectroscopic methods to recover isotropic resolution even in cases where the field is not rotating at the magic angle. Extension to higher magnetic fields would be beneficial in situations where the physical manipulation of the sample is inconvenient or impossible. Such situations occur often in materials or biomedical samples where ''ex-situ'' NMR spectroscopy and imaging analysis is needed.
Electric and magnetic fields at power frequencies.
Miller, Anthony B; Green, Lois M
2010-01-01
Exposures to electric and magnetic fields are among the most ubiquitous exposures that the Canadian population experiences. Sources of electric and magnetic field exposures may be occupational or residential and include proximity to certain types of electrical equipment, transmission and distribution power lines as well as appliance use. The early studies of children tended toward a consistent association between risks for leukemia and brain cancer and residential proximity to power lines having high wire configuration. More recent studies-and studies which have attempted to improve upon the measurement of exposure by using calculated fields, point-in-time or personal monitoring-have been inconsistent, with some suggesting increased risk and others not. Occupational exposures have suggested an increase in risk for leukemia, and to a lesser extent brain cancer and Non-Hodgkin lymphoma. However, studies of residential exposures and cancer in adults generally have suggested no effect. Laboratory work has been unable to demonstrate a biological mechanism which might explain the epidemiological findings. In spite of extensive efforts over the past 20 years and many expert reviews, it has been difficult to reach consensus regarding the carcinogenic effects of electric and magnetic fields. Exposure assessment has proven to be complex, and agreement on the relevant exposure metric has not yet been obtained. There is justification to question whether point-in-time measures in homes are appropriate indices of the relevant etiological exposure, as they fail to account for changes over time, peak exposures or time-varying fields. Nevertheless, it is probably desirable to err on the side of caution in not placing too much weight on the inconsistencies. The IARC has classified EMF as a "possible carcinogen" which refers to the circumstances where there is limited evidence of carcinogenicity in humans and inadequate evidence in experimental animals. The IARC review indicated
Magnetic Field Water Treatment Section - Overview
International Nuclear Information System (INIS)
Kopec, M.
1999-01-01
Full text: In the last year the activity of the team was focused on industrial implementing of methods developed, as well as on designing and implementing devices for magnetohydrodynamic water treatment and water filtration in the magnetic field. - Phase 1 of research for Ostrowiec Steelworks in Ostrowiec Swietokrzyski (IFJ N-3454 Research) on the possibilities of implementation of the methods of magnetohydrodynamic water treatment in water and sewage circuits, as well as of the method of filtration in the magnetic field were completed. In this part of research, phase analyses of deposits from water and sewage circuits were carried out. In the rolling mill circuit of Ostrowiec Steelworks, a magnetic filter with a capacity of 200 m 3 /h, designed in the Institute of Nuclear Physics was installed and tested. Implementation of this filter is predicted for the year 1999. - Research for the Kozienice Power Station in Swierze Gorne (IFJ N-3450 Research) on determination of the phase composition of total suspended solids in water-steam circuits was completed. - A preliminary evaluation was completed on economic effects of implementation of the prototype magnetic filter FM-500 which has been operational since 1993 in the circuit of turbine condensate cleaning in the 225 MW unit in the power station in Polaniec. (author)
New Methods of Magnetic Field Measurements
Kholtygin, A. F.
2015-04-01
The standard methods of magnetic field measurements, based on the relation between the Stokes V parameter and the first derivative of the line profile intensity were modified by applying a linear integral transform to both sides of this relation. We used the wavelet integral transform with the DOG wavelets. The key advantage of the proposed method is the effective suppression of the noise contribution both to the line profile and the Stokes V parameter. To test the proposed method, spectropolarimetric observations of the young O star θ1 Ori C were used. We also demonstrate that the smoothed Time Variation Spectra (smTVS) can be used as a tool for detecting the local stellar magnetic fields.
Modified methods of stellar magnetic field measurements
Kholtygin, A. F.
2014-12-01
The standard methods of the magnetic field measurement, based on an analysis of the relation between the Stokes V-parameter and the first derivative of the total line profile intensity, were modified by applying a linear integral operator \\hat{L} to both sides of this relation. As the operator \\hat{L}, the operator of the wavelet transform with DOG-wavelets is used. The key advantage of the proposed method is an effective suppression of the noise contribution to the line profile and the Stokes parameter V. The efficiency of the method has been studied using model line profiles with various noise contributions. To test the proposed method, the spectropolarimetric observations of the A0 star α2 CVn, the Of?p star HD 148937, and the A0 supergiant HD 92207 were used. The longitudinal magnetic field strengths calculated by our method appeared to be in good agreement with those determined by other methods.
Frictional Coulomb drag in strong magnetic fields
DEFF Research Database (Denmark)
Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang
1997-01-01
A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21......) is evaluated using diagrammatic techniques. The transresistivity is given by an integral over energy and momentum transfer weighted by the product of the screened interlayer interaction and the phase space for scattering events. We demonstrate, by a numerical analysis of the transresistivity, that for well...
Antimagnets: controlling magnetic fields with superconductor-metamaterial hybrids
International Nuclear Information System (INIS)
Sanchez, Alvaro; Navau, Carles; Prat-Camps, Jordi; Chen Duxing
2011-01-01
Magnetism is very important in various areas of science and technology, ranging from magnetic recording through energy generation to trapping cold atoms. Physicists have managed to master magnetism-to create and manipulate magnetic fields-almost at will. Surprisingly, there is at least one property that has been elusive until now: how to 'switch off' the magnetic interaction of a magnetic material with existing magnetic fields without modifying them. Here we introduce the antimagnet, a design that conceals the magnetic response of a given volume from its exterior, without altering the external magnetic fields, in some respects analogous to recent theoretical proposals for cloaking electromagnetic waves with metamaterials. However, unlike these devices, which require extreme material properties, our device is feasible and needs only two kinds of available materials: superconductors and isotropic magnetic materials. Antimagnets may have applications in magnetic-based medical techniques such as magnetic resonance imaging or in reducing the magnetic signature of vessels or planes.
Improving Magnet Designs With High and Low Field Regions
DEFF Research Database (Denmark)
Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders
2011-01-01
A general scheme for increasing the difference in magnetic flux density between a high and a low magnetic field region by removing unnecessary magnet material is presented. This is important in, e.g., magnetic refrigeration where magnet arrays have to deliver high field regions in close proximity...... to low field regions. Also, a general way to replace magnet material with a high permeability soft magnetic material where appropriate is discussed. As an example, these schemes are applied to a two dimensional concentric Halbach cylinder design resulting in a reduction of the amount of magnet material...
Magnetic Resonance Imaging at Ultrahigh Fields
Uğurbil, Kamil
2014-01-01
Since the introduction of 4 T human systems in three academic laboratories circa 1990, rapid progress in imaging and spectroscopy studies in humans at 4 T and animal model systems at 9.4 T have led to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has demonstrated the existence of significant advantages in SNR and biological information content at these ultrahigh fields, as well as the presence of numerous challenges. Primary difference from lower fields is the deviation from the near field regime; at the frequencies corresponding to hydrogen resonance conditions at ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image nonuniformities for a given sample-coil configuration because of interferences. These nonuniformities were considered detrimental to the progress of imaging at high field strengths. However, they are advantageous for parallel imaging for signal reception and parallel transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies, and improvements in instrumentation and imaging methods, ultra-high fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques. PMID:24686229
Flatland Electrons in High Magnetic Fields
Shayegan, M.
This paper provides a review of recent developments in the physics of two-dimensional carrier systems in perpendicular magnetic fields. The emphasis is on many-body phenomena in very clean GaAs/AlGaAs heterostructures, probed via magnetotransport measurements. Topics that are discussed include the integer and fractional quantum Hall effects, Wigner crystallization, composite Fermions, Skyrmions, stripe and bubble phases in single layer systems, and electron-hole pairing and Bose-Einstein condensation in interacting bilayer systems.
Ground Vehicle Navigation Using Magnetic Field Variation
2012-09-13
to copyright protection in the United States. AFIT/DEE/ENG/12-17 Ground Vehicle Navigation Using Magnetic Field Variation DISSERTATION Presented to...or groundwater content due to “deep subsurface fractures” [8]. Volcanoes and even man-made occurrences such as filling a large reservoir after a dam...Gradient Data from Effigy Mounds National Park, Iowa ”, 2005. URL http://www.archaeology-geophysics.com/Publications.html. 168 24. Judd, T. and T. Vu. “Use
Mitigated-force carriage for high magnetic field environments
Ludtka, Gerard M.; Ludtka, Gail M.; Wilgen, John B.; Murphy, Bart L.
2015-05-19
A carriage for high magnetic field environments includes a plurality of work-piece separators disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla for supporting and separating a plurality of work-pieces by a preselected, essentially equal spacing, so that, as a first work-piece is inserted into the magnetic field, a second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.
Magnetic hyperfine field at caesium in iron
International Nuclear Information System (INIS)
Ashworth, C.J.; Back, P.; Stone, N.J.; White, J.P.; Ohya, S.
1990-01-01
We report temperature dependence of nuclear orientation (NO), and the first observation of NMR/ON on Cs in iron. 132,136 Cs were implanted at room temperature into polycrystalline and single crystal iron. NO values for the (average) magnetic hyperfine field B hf (CsFe) are close to 34 T, intermediate between the value of 40.7 T found in on-line samples made at mK temperatures and the NMR/ON value of 27.8(2) T. The latter studies. The site/field distribution is briefly discussed. (orig.)
Relativistic thermal plasmas - Effects of magnetic fields
Araki, S.; Lightman, A. P.
1983-01-01
Processes and equilibria in finite, relativistic, thermal plasmas are investigated, taking into account electron-positron creation and annihilation, photon production by internal processes, and photon production by a magnetic field. Inclusion of the latter extends previous work on such plasmas. The basic relations for thermal, Comptonized synchrotron emission are analyzed, including emission and absorption without Comptonization, Comptonized thermal synchrotron emission, and the Comptonized synchrotron and bremsstrahlung luminosities. Pair equilibria are calculated, including approximations and dimensionless parameters, the pair balance equation, maximum temperatures and field strengths, and individual models and cooling curves.
Tunneling decay in a magnetic field
International Nuclear Information System (INIS)
Sharpee, T.; Dykman, M.I.; Platzman, P.M.
2002-01-01
We provide a semiclassical theory of tunneling decay in a magnetic field and a three-dimensional potential of a general form. Because of broken time-reversal symmetry, the standard WKB technique has to be modified. The decay rate is found from the analysis of the Hamilton trajectories of the particle in complex phase space and time. In a magnetic field, the tunneling particle comes from beneath the barrier with a nonzero velocity. The exit location in the classically allowed region is obtained by matching the decaying and outgoing branches of the WKB wave function on a caustic of the set of the complex trajectories. The slope of the logarithm of the wave function sharply changes on the anti-Stokes surface where there occurs switching between different WKB branches. For potential wells that are parabolic near the minimum, we also provide a bounce-type formulation. The theory is applied to the models that are relevant to tunneling from correlated two-dimensional electron systems in a magnetic field parallel to the electron layer
Kong, Dali; Zhang, Keke; Schubert, Gerald; Anderson, John
2017-10-01
The structure/amplitude of the Jovian equatorially symmetric gravitational field is affected by both rotational distortion and the fast equatorially symmetric zonal flow. We construct a fully self-consistent, four-layer, non-spheroidal (i.e, the shape is irregular) model of Jupiter that comprises an inner core, a metallic region, an outer molecular envelope and a thin transition layer between the metallic and molecular regions. While the core is assumed to have a uniform density, three different equations of state are adopted for the metallic, molecular and transition regions. We solve the governing equations via a perturbation approach. The leading-order problem accounts for the full effect of rotational distortion, and determines the density, size and shape of the core, the location and thickness of the transition layer, and the shape of the 1-bar pressure level; it also produces the mass, the equatorial and polar radii of Jupiter, and the even zonal gravitational coefficients caused by the rotational distortion. The next-order problem determines the corrections caused by the zonal flow which is assumed to be confined within the molecular envelope and on cylinders parallel to the rotation axis. Our model provides the total even gravitational coefficients that can be compared with those acquired by the Juno spacecraft.
International Nuclear Information System (INIS)
Oka, T.; Tanaka, K.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Yamaguchi, M.
2010-01-01
The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.
Oka, T.; Tanaka, K.; Kimura, T.; Mimura, D.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Yamaguchi, M.
2010-11-01
The magnetic separation technique in combination with high temperature superconducting bulk magnets has been investigated to purify the ground water which has been used in the coolant system for the incinerator furnace to cool the burning gas. The experiment has been operated by means of the newly-built alternating channel type magnetic separating device. The separation ratios of ferromagnetic flocks including fine magnetite powder have been estimated by means of the high gradient magnetic separation method with small iron balls filled in the water channels. As the magnetic force acting on the magnetic particle is given by the product of a magnetization of the material and a gradient of magnetic field, and as the ferromagnetic stainless steel balls yield the steep gradient of magnetic field around them in a strong magnetic field, the system has exhibited a quite excellent performance with respect to the separation ratios. The separation ratios of the flocks which contain the magnetite powder with the values more than 50 ppm have remained over 80% for under the flow rates less than 5 L/min.
Waves on the surface of a magnetic fluid layer in a traveling magnetic field
International Nuclear Information System (INIS)
Zimmermann, K.; Zeidis, I.; Naletova, V.A.; Turkov, V.A.
2004-01-01
The plane flow of a layer of incompressible viscous magnetic fluid with constant magnetic permeability under the action of a traveling magnetic field is analyzed. The strength of the magnetic field producing a sinusoidal traveling small-amplitude wave on the surface of a magnetic fluid is found. This flow can be used in designing mobile robots
Field modeling for transcranial magnetic stimulation
DEFF Research Database (Denmark)
Thielscher, Axel; Antunes, Andre; Saturnino, Guilherme B
2015-01-01
) improving the usability of the tools for field calculation to the level that they can be easily used by non-experts. We then introduce a new version of our pipeline for field calculations (www.simnibs.org) that substantially simplifies setting up and running TMS and tDCS simulations based on Finite......Electric field calculations based on numerical methods and increasingly realistic head models are more and more used in research on Transcranial Magnetic Stimulation (TMS). However, they are still far from being established as standard tools for the planning and analysis in practical applications...... of TMS. Here, we start by delineating three main challenges that need to be addressed to unravel their full potential. This comprises (i) identifying and dealing with the model uncertainties, (ii) establishing a clear link between the induced fields and the physiological stimulation effects, and (iii...
Solar Polarimetry and Magnetic Field Measurements
del Toro Iniesta, J. C.
2001-05-01
The magnetic nature of most solar (spatially resolved or unresolved) structures is amply recognized. Magnetic fields of the Sun play a paramount rôle in the overall thermodynamic and dynamic state of our star. The main observable manifestation of solar magnetic fields is the polarization of light either through the Zeeman effect on spectral lines or through the Hanle effect (depolarization by very weak magnetic fields of light previously polarized by scattering). Hence, one can easily understand the increasing importance that polarimetry is experimenting continuously in solar physics. Under the title of this contribution a six-hour course was given during the summer school. Clearly, the limited extension allocated for the notes in these proceedings avoids an extensive account of the several topics discussed: 1) a description of light as an electromagnetic wave and the polarization properties of monochromatic, time-harmonic, plane waves; 2) the polarization properties of polychromatic light and, in particular, of quasi-monochromatic light; 3) the transformations of (partially) polarized light by linear optical systems and a description of the ways we measure the Stokes parameters by spatially and/or temporally modulating the polarimetric signal; 4) a discussion on specific problems relevant to solar polarimetry like seeing-induced and instrumental polarization, or modulation and demodulation, along with a brief description of current solar polarimeters; 5) the vector radiative transfer equation for polarized light and its links to the scalar one for unpolarized light, together with a summary of the Zeeman effect and its consequences on line formation in a magnetized stellar atmosphere; 7) an introduction of the paramount astrophysical problem, i.e., that of finding diagnostics that enable the solar physicist to interpret the observables in terms of the solar atmospheric quantities, including a discussion on contribution and response functions; and 8) a brief
Field-ball milling induced anisotropy in magnetic particles
Energy Technology Data Exchange (ETDEWEB)
Poudyal, Narayan [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Altuncevahir, Baki [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Chakka, Vamsi [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Chen Kanghua [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Black, Truman D [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Liu, J Ping [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Ding, Yong [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Wang Zhonglin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)
2004-12-21
Nd{sub 2}Fe{sub 14}B and Sm{sub 2}Co{sub 17} particles of submicrometre sizes have been prepared by ball milling in a magnetic field. Structural and magnetic characterization reveal that these submicrometre particles milled in a magnetic field, consisting of nanosize grains, exhibit strong magnetic anisotropy compared with the particles milled without a magnetic field. Based on in situ observations of the field-ball milling in a transparent container, the mechanism of field-induced anisotropy in the nanostructured hard magnetic particles is discussed. (rapid communication)
High-field NMR using resistive and hybrid magnets
Gan, Zhehong; Kwak, Hyung-Tae; Bird, Mark; Cross, Timothy; Gor'kov, Peter; Brey, William; Shetty, Kiran
2008-03-01
Resistive and resistive-superconducting hybrid magnets can generate dc magnetic fields much higher than conventional superconducting NMR magnets but the field spatial homogeneity and temporal stability are usually not sufficient for high-resolution NMR experiments. Hardware and technique development addressing these issues are presented for high-resolution NMR at magnetic fields up to 40 T. Passive ferromagnetic shimming and magic-angle spinning are used effectively to reduce the broadening from inhomogeneous magnetic field. A phase correction technique based on simultaneous heteronuclear detection is developed to compensate magnetic field fluctuations to achieve high spectral resolution.
Observations of magnetic fields in diffuse clouds
Myers, P. C.; Goodman, A. A.; Gusten, R.; Heiles, C.
1995-03-01
We report 32 statistically significant measurements of the line-of-sight component of the magnetic field strength, Bz, in four diffuse clouds, via the Zeeman effect in the 21 cm line of H I. The region near Magnani, Blitz, and Mundy 1985 (MBM) 27-30 in the Ursa Major complex has Bz greater than 4 micro-G throughout a filamentary region 15 pc long, with significant structure on scales as small as 1.6 pc. The greatest field strength measured in this cloud is 19 +/- 2 micro-G, greater than in most diffuse clouds by a factor approximately 2. Comparison of measurements with different telescopes suggests that the field strength at the map peak may be significantly greater than 19 micro-G on scales smaller than 1.6 pc. The magnetic and kinetic energy densities M and K in this cloud are comparable, within a factor 2 of 2 x 10-11ergs/cu cm, and greater than the gravitational energy density by a factor approximately 500. Among the four clouds surveyed, six positions where CO emission is a local maximim have essentially the same mean line-of-sight field strength, Bz approximately = 8 micro-G, as do four positions where CO emission is too weak to be detected. The similarity of M and K in the diffuse clouds discussed here, as well as in denser, self-gravitating clouds, suggests strong coupling between magnetic fields and gas motions in some interstellar clouds, independent of their self-gravity. This coupling probably arises from ion-neutral collisions, which allow propagation of MHD waves.
Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.
Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai
2015-09-01
Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.
Field-dependent dynamic responses from dilute magnetic nanoparticle dispersions
DEFF Research Database (Denmark)
Fock, Jeppe; Balceris, Christoph; Costo, Rocio
2017-01-01
The response of magnetic nanoparticles (MNPs) to an oscillating magnetic field outside the linear response region is important for several applications including magnetic hyperthermia, magnetic resonance imaging and biodetection. The size and magnetic moment are two critical parameters for the pe...
High magnetic field generation for laser-plasma experiments
International Nuclear Information System (INIS)
Pollock, B. B.; Froula, D. H.; Davis, P. F.; Ross, J. S.; Fulkerson, S.; Bower, J.; Satariano, J.; Price, D.; Krushelnick, K.; Glenzer, S. H.
2006-01-01
An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system supplying 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented
Suppressing drift chamber diffusion without magnetic field
Martoff, C J; Ohnuki, T; Spooner, N J C; Lehner, M
2000-01-01
The spatial resolution in drift chamber detectors for ionizing radiation is limited by diffusion of the primary electrons. A strong magnetic field along the drift direction is often applied (Fancher et al., Nucl. Instr. and Meth. A 161 (1979) 383) because it suppresses the transverse diffusion, improving the resolution but at considerable increase in cost and complexity. Here we show that transverse track diffusion can be strongly suppressed without any magnetic field. This is achieved by using a gas additive which reversibly captures primary ionization electrons, forming negative ions. The ions drift with thermal energies even at very high drift fields and low pressures (E/P=28.5 V/cm torr), and the diffusion decreases with increasing drift field. Upon arrival at the avalanche region of the chamber the negative ions are efficiently stripped and ordinary avalanche gain is obtained. Using this technique, r.m.s. transverse diffusion less than 200 mu m has been achieved over a 15 cm drift path at 40 torr with ze...
Hydrogen molecular ion in a magnetic field
International Nuclear Information System (INIS)
Larsen, D.M.
1982-01-01
The energy of the ground electronic state of H 2 /sup ts+/ is studied as a function of the internuclear separation R 12 , the angle theta, between the molecular axis and the magnetic field, and the field strength B. For small B the molecular diamagnetism reaches its maximum value when theta = π/2 and R 12 approx. =5 Bohr radii. This maximum value is about 50% greater than the diamagnetism of an isolated H atom. At large B the molecule shrinks due to magnetic compression of the electron wave function, and the molecular vibration frequencies increase substantially. A strong diamagnetic torque appears which tends to align the molecular axis along the field. This gives rise to a zero-point rotational oscillation about theta = 0 whose energy can substantially exceed that of the zero-point vibrational oscillation. The calculations presented indicate that even if the protons had infinite mass, the molecule would become unstable to dissociation at theta = π/2 in fields > or approx. =1.6 x 10 11 G
Hydrogen atom in intense magnetic field.
Canuto, V.; Kelly, D. C.
1972-01-01
The structure of a hydrogen atom situated in an intense magnetic field is investigaged. Three approaches are employed. An elementary Bohr picture establishes a crucial magnetic field strength, H sub a approximately equal to 5 x 10 to the 9th G. Fields in excess of H sub a are intense in that they are able to modify the characteristic atomic scales of length and binding energy. A second approach solves the Schrodinger equation by a combination of variational methods and perturbation theory. It yields analytic expressions for the wave functions and energy eigenvalues. A third approach determines the energy eigenvalues by reducing the Schrodinger equation to a one-dimensional wave equation, which is then solved numerically. Energy eigenvalues are tabulated for field strengths of 2 x 10 to the 10th G and 2 x 10 to the 12th G. It is found that at 2 x 10 to the 12th G the lowest energy eigenvalue is changed from -13.6 to about -180 eV in agreement with previous variational computations.
Pressure, Chaotic Magnetic Fields and MHD Equilibria
Energy Technology Data Exchange (ETDEWEB)
S.R. Hudson & N. Nakajima
2010-05-12
Analyzes of plasma behavior often begin with a description of the ideal magnetohydrodynamic equilibrium, this being the simplest model capable of approximating macroscopic force balance. Ideal force balance is when the pressure gradient is supported by the Lorentz force, ∇p = j x B. We discuss the implications of allowing for a chaotic magnetic field on the solutions to this equation. We argue that the solutions are pathological and not suitable for numerical calculations. If the pressure and magnetic Field are continuous, the only non-trivial solutions have an uncountable infinity of discontinuities in the pressure gradient and current. The problems arise from the arbitrarily small length scales in the structure of the field, and the consequence of ideal force balance that the pressure is constant along the Field-lines, B • ∇p = 0. A simple method to ameliorate the singularities is to include a small but Finite perpendicular diffusion. A self-consistent set of equilibrium equations is described and some algorithmic approaches aimed at solving these equations are discussed.
Interaction of Mutually Perpendicular Magnetic Fields in HTSC
Directory of Open Access Journals (Sweden)
Vasilyev Aleksandr Fedorovich
2015-11-01
Full Text Available In this article a problem of interaction of the crossed magnetic fields in superconductors is considered. Superconducting materials have nonlinear magnetic properties. It allows using a non-linear magnetic susceptibility for measurement of feeble magnetic fields. We place a wire of superconducting material in a constant parallel uniform magnetic field. Then we let through a wire the alternating current leak. Interaction of mutual and perpendicular variation magnetic fields, with adequate accuracy is described by Ginzburg-Landau's equations. Approximate solution of the written equations is received. The component of a magnetic field parallel to a wire contains a variable component. Frequency of a variable component of the magnetic field is equal to the doubled current frequency. Amplitude of the variable component of the magnetic field is proportional to strength of the constant magnetic field. The experimental installation for research of interaction of mutually perpendicular magnetic fields is created. The cylinder from HTSC of ceramics of the YBa2Cu3O7-x was used as a sensor. Dependence of amplitude of the second harmonica of a variation magnetic field on strength of a constant magnetic field is received.
Coronal rain in magnetic bipolar weak fields
Xia, C.; Keppens, R.; Fang, X.
2017-07-01
Aims: We intend to investigate the underlying physics for the coronal rain phenomenon in a representative bipolar magnetic field, including the formation and the dynamics of coronal rain blobs. Methods: With the MPI-AMRVAC code, we performed three dimensional radiative magnetohydrodynamic (MHD) simulation with strong heating localized on footpoints of magnetic loops after a relaxation to quiet solar atmosphere. Results: Progressive cooling and in-situ condensation starts at the loop top due to radiative thermal instability. The first large-scale condensation on the loop top suffers Rayleigh-Taylor instability and becomes fragmented into smaller blobs. The blobs fall vertically dragging magnetic loops until they reach low-β regions and start to fall along the loops from loop top to loop footpoints. A statistic study of the coronal rain blobs finds that small blobs with masses of less than 1010 g dominate the population. When blobs fall to lower regions along the magnetic loops, they are stretched and develop a non-uniform velocity pattern with an anti-parallel shearing pattern seen to develop along the central axis of the blobs. Synthetic images of simulated coronal rain with Solar Dynamics Observatory Atmospheric Imaging Assembly well resemble real observations presenting dark falling clumps in hot channels and bright rain blobs in a cool channel. We also find density inhomogeneities during a coronal rain "shower", which reflects the observed multi-stranded nature of coronal rain. Movies associated to Figs. 3 and 7 are available at http://www.aanda.org
Superconducting niobium in high rf magnetic fields
International Nuclear Information System (INIS)
Mueller, G.
1988-01-01
The benefit of superconducting cavities for accelerator applications depends on the field and Q/sub 0/ levels which can be achieved reliably in mass producible multicell accelerating structures. The presently observed field and Q/sub 0/ limitations are caused by anomalous loss mechanisms which are not correlated with the intrinsic properties of the pure superconductor but rather due to defects or contaminants on the superconducting surface. The ultimate performance levels of clean superconducting cavities built from pure Nb will be given by the rf critical field and the surface resistance of the superconductor. In the first part of this paper a short survey is given of the maximum surface magnetic fields achieved in single-cell cavities. The results of model calculations for the thermal breakdown induced by very small defects and for the transition to the defect free case is discussed in part 2. In the last chapter, a discussion is given for the rf critical field of Nb on the basis of the Ginzburg-Landau Theory. It is shown that not only purity but also the homogeneity of the material should become important for the performance of superconducting Nb cavities at field levels beyond 100mT. Measurement results of the upper critical field for different grades of commercially available Nb sheet materials are given. 58 references, 20 figures, 1 table
Directory of Open Access Journals (Sweden)
Teresa D'Aprile
2000-11-01
Full Text Available In this paper we study the existence of concentrated solutions of the nonlinear field equation $$ -h^{2}Delta v+V(xv-h^{p}Delta_{p}v+ W'(v=0,, $$ where $v:{mathbb R}^{N}o{mathbb R}^{N+1}$, $Ngeq 3$, $p>N$, the potential $V$ is positive and radial, and $W$ is an appropriate singular function satisfying a suitable symmetric property. Provided that $h$ is sufficiently small, we are able to find solutions with a certain spherical symmetry which exhibit a concentration behaviour near a circle centered at zero as $ho 0^{+}$. Such solutions are obtained as critical points for the associated energy functional; the proofs of the results are variational and the arguments rely on topological tools. Furthermore a penalization-type method is developed for the identification of the desired solutions.
International Nuclear Information System (INIS)
Ikhdair, Sameer M.; Hamzavi, Majid
2013-01-01
Approximate analytical solutions of the Dirac equation for Tietz—Hua (TH) potential including Coulomb-like tensor (CLT) potential with arbitrary spin—orbit quantum number κ are obtained within the Pekeris approximation scheme to deal with the spin—orbit coupling terms κ(κ ± 1)r −2 . Under the exact spin and pseudospin symmetric limitation, bound state energy eigenvalues and associated unnormalized two-component wave functions of the Dirac particle in the field of both attractive and repulsive TH potential with tensor potential are found using the parametric Nikiforov—Uvarov (NU) method. The cases of the Morse oscillator with tensor potential, the generalized Morse oscillator with tensor potential, and the non-relativistic limits have been investigated. (general)
Tracing magnetic fields with aligned grains
International Nuclear Information System (INIS)
Lazarian, A.
2007-01-01
Magnetic fields play a crucial role in various astrophysical processes, including star formation, accretion of matter, transport processes (e.g., transport of heat), and cosmic rays. One of the easiest ways to determine the magnetic field direction is via polarization of radiation resulting from extinction or/and emission by aligned dust grains. Reliability of interpretation of the polarization maps in terms of magnetic fields depends on how well we understand the grain-alignment theory. Explaining what makes grains aligned has been one of the big issues of the modern astronomy. Numerous exciting physical effects have been discovered in the course of research undertaken in this field. As both the theory and observations matured, it became clear that the grain-alignment phenomenon is inherent not only in diffuse interstellar medium or molecular clouds but also is a generic property of the dust in circumstellar regions, interplanetary space and cometary comae. Currently the grain-alignment theory is a predictive one, and its results nicely match observations. Among its predictions is a subtle phenomenon of radiative torques. This phenomenon, after having stayed in oblivion for many years after its discovery, is currently viewed as the most powerful means of alignment. In this article, I shall review the basic physical processes involved in grain alignment, and the currently known mechanisms of alignment. I shall also discuss possible niches for different alignment mechanisms. I shall dwell on the importance of the concept of grain helicity for understanding of many properties of grain alignment, and shall demonstrate that rather arbitrarily shaped grains exhibit helicity when they interact with gaseous and radiative flows
From the Gyration of Electrons to Cosmic Magnetic Fields
Wang, Xia-Wei
2010-01-01
Employing Bohr's quantum theory, the author deduces three limits, which correspond to the magnetic fields of white dwarfs, neutron stars and the strongest in the universe. The author discusses the possible origins of magnetic fields due to collapse of stars, which produces a magnetic field of 10[superscript 8] T. Although the complete analysis…
Superconducting Sphere in an External Magnetic Field Revisited
Sazonov, Sergey N.
2013-01-01
The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere…
PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES
Directory of Open Access Journals (Sweden)
N. G. Ptitsyna
2013-01-01
Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.
Effective field theory for magnetic compactifications
Buchmuller, Wilfried; Dierigl, Markus; Dudas, Emilian; Schweizer, Julian
2017-04-01
Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N = 1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.
Effective field theory for magnetic compactifications
Energy Technology Data Exchange (ETDEWEB)
Buchmuller, Wilfried; Dierigl, Markus; Schweizer Julian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Dudas, Emilian [Univ. Paris-Saclay, Palaiseau (France). Ecole Polytechnique
2016-12-15
Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.
Effective field theory for magnetic compactifications
Energy Technology Data Exchange (ETDEWEB)
Buchmuller, Wilfried; Dierigl, Markus [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany); Dudas, Emilian [Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay,F-91128 Palaiseau (France); Schweizer, Julian [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany)
2017-04-10
Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.
Nonlinear dynamics of magnetic island interacting with external helical magnetic field
International Nuclear Information System (INIS)
Nishimura, S.; Yagi, M.; Itoh, S.-I.; Itoh, K.
2009-01-01
Full text: The control of magnetic islands is one of important issues for magnetically confined fusion plasmas. Magnetic islands strongly affect the achievable β''-value by modifying transports, equilibrium fields (i.e. radial profiles of electric current, pressure and electric field) and the stability of plasmas. The induction of resonant helical magnetic fields, which interact with magnetic islands, is an effective method to control the dynamics of magnetic islands. In the Large Helical Device (LHD), magnetic islands are excited by the external magnetic, and the generation of equilibrium poloidal E x B flows by magnetic islands is observed. On the other hand, the external helical magnetic fields have been used to control the poloidal rotation and the stability of magnetic islands in tokamak plasmas. The error field, which is caused by the misalignment of toroidal magnetic coil, plays a similar role to the external helical magnetic field. The locking of the rotation of magnetic islands by error field triggers the disruption in tokamak plasmas. Thus, it is important to understand the basic mechanism of the interaction between magnetic islands and external helical magnetic fields. In this study, nonlinear simulation of drift tearing mode is performed using a set of reduced two-fluid equations, and the detailed study of the interaction between magnetic islands with external helical magnetic fields is reported. The external helical field associated with magnetic islands is imposed by means of finite amplitude of perturbed magnetic flux (vector potential) at edge boundary. In our simulation, the locking (stop) of the rotation of magnetic islands is observed. The rotation of magnetic island is basically driven by the diamagnetic drift flow and E x B flow. It is found that contributions of these flows approximately cancel each other inside the separatrix of magnetic island in the locking phase. The detailed mechanism of the locking of magnetic island rotation is
International Nuclear Information System (INIS)
Matsuki, Takayuki
1976-01-01
Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)
Axial magnetic field injection in magnetized liner inertial fusion
Gourdain, P.-A.; Adams, M. B.; Davies, J. R.; Seyler, C. E.
2017-10-01
MagLIF is a fusion concept using a Z-pinch implosion to reach thermonuclear fusion. In current experiments, the implosion is driven by the Z-machine using 19 MA of electrical current with a rise time of 100 ns. MagLIF requires an initial axial magnetic field of 30 T to reduce heat losses to the liner wall during compression and to confine alpha particles during fusion burn. This field is generated well before the current ramp starts and needs to penetrate the transmission lines of the pulsed-power generator, as well as the liner itself. Consequently, the axial field rise time must exceed hundreds of microseconds. Any coil capable of being submitted to such a field for that length of time is inevitably bulky. The space required to fit the coil near the liner, increases the inductance of the load. In turn, the total current delivered to the load decreases since the voltage is limited by driver design. Yet, the large amount of current provided by the Z-machine can be used to produce the required 30 T field by tilting the return current posts surrounding the liner, eliminating the need for a separate coil. However, the problem now is the field penetration time, across the liner wall. This paper discusses why skin effect arguments do not hold in the presence of resistivity gradients. Numerical simulations show that fields larger than 30 T can diffuse across the liner wall in less than 60 ns, demonstrating that external coils can be replaced by return current posts with optimal helicity.
Magnetic field-controlled microfluidic transport.
Grant, Kyle M; Hemmert, Jared W; White, Henry S
2002-01-23
Several new forms of magnetohydrodynamic (MHD) flow occurring in the solution gap between two 250-microm-diameter Pt microdisk electrodes, oriented in a face-to-face geometry and immersed in a uniform magnetic field (1 T), are described. The MHD flow results from the Lorentz force generated by diffusion of electrochemically generated molecular ions through the magnetic field. Individual microscopic flow tubes ( approximately 50-microm radius) spanning the gap between the face-to-face electrodes are observed during the 1-e(-) reduction of nitrobenzene in acetonitrile solutions. The flow tubes extend up to approximately 2 cm in length and are stable for indefinite periods. Directional transport of the electrogenerated nitrobenzene radical anion over macroscopic distances within the flow tubes, with minimal diffusional broadening, is demonstrated using an ultramicroelectrode probe to map the convective flux of redox species. Pulsed MHD transport of small packets of molecules and the formation of large area (approximately 3 cm(2)), microscopically thin (25 microm) rotating sheets of solution are also demonstrated. The results suggest that electrochemical methods, in combination with magnetohydrodynamic principles, may be useful for external field-controlled microfluidic systems.
National survey of residential magnetic field exposure
International Nuclear Information System (INIS)
Karipidis, K.K.
2002-01-01
The release of the Doll report in the UK, and its reported association between prolonged exposures to higher levels of power frequency magnetic fields and a small risk of leukaemia in children, has heightened community concerns. This disquiet among the general public has prompted the possibility of a national survey of residential magnetic field exposures to be implemented. Measurement methodologies were reviewed by the author and long-term measurements made by a logger placed in the living room for a 24-hour period were chosen as a surrogate measurement for the evaluation of exposure. An international comparison of similar surveys is presented, showing great deficiency, with the exception of Schuz et al and the UKCCS, in the number of homes surveyed. Factors influencing the selection of residences in the survey sample are elucidated and a range of sample sizes is presented with varying precision and confidence levels. Finally a feasible sample of 1,000 homes is chosen and a cost estimate is calculated with extra options for the measurement of the child's bedroom, a schools' survey and child personal exposure measurements included in the outlay. The purpose of the proposed national survey is to determine the proportion of Australian homes that are exposed to fields greater than 0.4 μT and the influence of proximity to powerlines as a cause. The study would also enable an interstate and international comparison of exposures to be made. Copyright (2002) Australasian Radiation Protection Society Inc
International Nuclear Information System (INIS)
Yokoyama, K.; Oka, T.; Noto, K.
2008-01-01
We study on the construction of superconducting permanent magnets by RE123 bulk materials and the investigation of these industrial applications such as a magnetic separation. The bulk magnets can generate strong magnetic field in comparison with common permanent magnets and iron-cored electromagnets. In order to propagate an industrial application of bulk magnet in the feature, it is necessary to form various shape of magnetic field, as well as its strength is enlarged. In this paper, the strong magnetic field in the radial direction has been constructed by a pair of bulk magnets. Two Gd123 bulk materials are magnetized by the IMRA method and these are arranged face-to-face with the same pole facing each other. When the radial component of magnetic fields, B x , is measured in the open space between the magnetic poles with a gap of 50 mm, the area of |B x | > 0.5 T increases to 148% compared with the single pole
Magnetic field-assisted electrochemical discharge machining
International Nuclear Information System (INIS)
Cheng, Chih-Ping; Mai, Chao-Chuang; Wu, Kun-Ling; Hsu, Yu-Shan; Yan, Biing-Hwa
2010-01-01
Electrochemical discharge machining (ECDM) is an effective unconventional method for micromachining in non-conducting materials, such as glass, quartz and some ceramics. However, since the spark discharge performance becomes unpredictable as the machining depth increases, it is hard to achieve precision geometry and efficient machining rate in ECDM drilling. One of the main factors for this is the lack of sufficient electrolyte flow in the narrow gap between the tool and the workpiece. In this study a magnetohydrodynamic (MHD) convection, which enhances electrolyte circulation has been applied to the ECDM process in order to upgrade the machining accuracy and efficiency. During electrolysis in the presence of a magnetic field, the Lorenz force induces the charged ions to form a MHD convection. The MHD convection then forces the electrolyte into movement, thus enhancing circulation of electrolyte. Experimental results show that the MHD convection induced by the magnetic field can effectively enhance electrolyte circulation in the micro-hole, which contributes to higher machining efficiency. Micro-holes in glass with a depth of 450 µm are drilled in less than 20 s. At the same time, better electrolyte circulation can prevent deterioration of gas film quality with increasing machining depth, while ensuring stable electrochemical discharge. The improvement in the entrance diameter thus achieved was 23.8% while that in machining time reached 57.4%. The magnetic field-assisted approach proposed in the research does not require changes in the machining setup or electrolyte but has proved to achieve significant enhancement in both accuracy and efficiency of ECDM.
Directory of Open Access Journals (Sweden)
Noriyuki Hirota et al
2008-01-01
Full Text Available An in situ microscopic observation of the magnetic orientation process of feeble magnetic fibers was carried out under high magnetic fields of up to 10 T using a scanning laser microscope. In the experiment, carbon fibers and needle-like titania fibers with a length of 1 to 20 μm were used. The fibers were observed to gradually orient their axes parallel to the direction of the magnetic field. The orientation behavior of the sample fibers was evaluated on the basis of the measured duration required for a certain angular variation. As predicted from the theoretical consideration, it was confirmed that the duration required for a certain angular variation normalized by the viscosity of the fluid is described as a function of the fiber length. The results obtained here appear useful for the consideration of the magnetic orientation of materials suspended in a static fluid.
Chizhik, Alexander; Zhukov, Arkady; Gonzalez, Julian; Stupakiewicz, Andrzej
2018-02-01
Magnetization reversal in magnetic microwires was studied in the presence of external mechanical stress and helical magnetic fields using the magneto-optical Kerr effect. It was found that a combination of tuned magnetic anisotropy and a direct current or pulsed circular magnetic field activated different types of magnetization reversal scenarios. The application of the pulsed magnetic field of 10 ns time duration induced a transient controlling action to switch the magnetic states without activating a domain wall motion. This created a promising method for tuning the giant magneto-impedance effect.
Review of MFTF yin-yang magnet displacement and magnetic field measurements and calculations
International Nuclear Information System (INIS)
Hanson, C.L.; Myall, J.O.; Wohlwend, J.W.
1983-01-01
During the recent testing of the MFTF yin-yang magnet, measurements of coil position, structural case strain, and magnetic field were made to verify calculated values. Measurements to detect magnet movement were taken throughout cooldown and during the operation of the magnet. The magnetic field at the mirror points was measured by Hall-effect probes. The magnet position, structural case strain, and magnetic field measurements indicated a reasonably close correlation with calculated values. Information obtained from the yin-yang test has been very useful in setting realistic mechanical alignment values for the new MFTF-B magnet system
Pulse magnetic field measuring system for Kicker and septum magnets of INDUS-2
International Nuclear Information System (INIS)
Shinde, R.S.; Yadav, R.R.; Senthil Kumar, S.; Gaud, Vinod; Veerabhadraiah, T.; Kotaiah, S.
2005-01-01
In Indus-2 (2.5 GeV SRS), injection of 700 MeV electron into 2.5 GeV storage ring will be accomplished using four Kicker magnets and two septum magnets. The high performance of Pulse Magnets-Kickers and Septums are important for the efficiency of beam injection. A test bench was setup for the accurate pulse magnetic field measurements. This paper will describe Pulse Magnetic field measuring system, high speed digitizer, Magnetic Probes, calibration for Pulsed Magnetic Measurements and accurate mapping of pulse magnetic field (3 μs, 50 μs and 100 μs half sine wave. (author)
Biological effects of electrical and magnetic fields
International Nuclear Information System (INIS)
Thibault de Boesinghe, L. de
1979-01-01
A review is made by the author of the literature about the biological effects of electrical and magnetic fields. A distinction is made between the observations made on man and the experience on animals. The results do not allow to reach a uniform conclusion. The used methodology is furthermore often open for discussion. One fundamental question remains: is there or not a threshold value. The question may be asked if objective modifications would not better come out in the light of systematical programs studies. This review of the literature gives results which anyway justify a systematic study of this subject. (author)
High-magnetic-field research collaborations
International Nuclear Information System (INIS)
Goettee, J.
1998-01-01
This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The purpose of this project was to develop collaborations with the academic community to exploit scientific research potential of the pulsed magnetic fields that might be possible with electrically pulsed devices, as well as magneto-cumulative generators. The author started with a campaign of experiments using high-explosive-driven flux compression generators. The campaign's objective was to explore completely novel ideas in condensed-matter physics and chemistry. The initiative was very successful in pulling together top researchers from around the world
Studies of the Martian Magnetic Field
Russell, C. T.
1998-01-01
This report covers two awards: the first NAGW-2573 was awarded to enable participation in the Mars 94 mission that slipped to become the Mars 96 mission. Upon the unfortunate failure of Mars 96 to achieve its intended trajectory, the second grant was awarded to closeout the Mars 96 activities. Our initial efforts concentrated on assisting our colleagues: W. Riedler, K. Schwingenschuh, K. Gringanz, M. Verigin and Ye. Yeroshenko with advice on the development of the magnetic field portion of the investigation and to help them with test activities. We also worked with them to properly analyze the Phobos magnetic field and plasma data in order to optimize the return from the Mars 94/96 mission. This activity resulted in 18 papers on Mars scientific topics, and two on the instrumentation. One of these latter two papers was the last of the papers written, and speaks to the value of the closeout award. These 20 papers are listed in the attached bibliography. Because we had previously studied Venus and Titan and since it was becoming evident that the magnetic field was very weak, we compared the various properties of the Martian interaction with those of the analogous interactions at Venus and Titan while other papers simply analyzed the properties of the interaction as Phobos 2 observed them. One very interesting observation was the identification of ions picked up in the solar wind, originating in Mars neutral atmosphere. These had been predicted by our earlier observation of cyclotron waves at the proton gyrofrequency in the region upstream from Mars in the solar wind. Of course, the key question we addressed was that of the intrinsic or induced nature of the Martian magnetic field. We found little evidence for the former and much for the latter point of view. We also discussed the instrumentation planned for the Mars balloon and the instrumentation on the orbiter. In all these studies were very rewarding despite the short span of the Phobos data. Although they did not
SO(4)-symmetric solutions of Minkowskian Yang-Mills field equations
International Nuclear Information System (INIS)
Luescher, M.
1977-06-01
We construct all solutions to the SU(2) Yang-Mills field equations in Minkowski space that are invariant under an SO(4) subgroup of the conformal group. They are real, regular and have finite energy and action. A connection with the instanton solution is pointed out. (orig.) [de
The process γγ → νν-bar in a strong magnetic field
International Nuclear Information System (INIS)
Kuznetsov, A.V.; Mikheev, N.V.; Rumyantsev, D.A.
2003-01-01
A general analysis of the three-vertex loop amplitude in a strong magnetic field, based on the asymptotic form of the electron propagator in the field, is performed. In order to investigate the photon-neutrino process γγ → νν-bar, the vertex combinations of the scalar-vector-vector (SVV), pseudoscalar- vector-vector (PVV), 3-vector (VVV), and axial-vector-vector (AVV) types are considered. It is shown that only the SVV amplitude grows linearly with the magnetic-field strength, while in the other amplitudes, PVV, VVV, and AVV, the linearly growing terms are cancelled. The process γγ → νν-bar is investigated in the left-right-symmetric extension of the standard model of electroweak interaction, where the effective scalar ννee coupling could exist. Possible astrophysical manifestations of the considered process are discussed [ru
Josephson tunnel junctions in a magnetic field gradient
DEFF Research Database (Denmark)
Monaco, R.; Mygind, Jesper; Koshelets, V.P.
2011-01-01
We measured the magnetic field dependence of the critical current of high-quality Nb-based planar Josephson tunnel junctions in the presence of a controllable nonuniform field distribution. We found skewed and slowly changing magnetic diffraction patterns quite dissimilar from the Fraunhofer......-like ones typical of a homogeneous field. Our findings can be well interpreted in terms of recent theoretical predictions [R. Monaco, J. Appl. Phys. 108, 033906 (2010)] for a uniform magnetic field gradient, leading to Fresnel-like magnetic diffraction patterns. We also show that Fiske resonances can...... be suppressed by an asymmetric magnetic field profile. © 2011 American Institute of Physics....
Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki
2014-01-21
A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.
International Nuclear Information System (INIS)
Wang Wei; Liu Gongqiang; Wang Jinhui
2006-01-01
The magnetic property in neodymium gallium garnet (NdGaG) is studied by the quantum theory. The ground configuration split states are calculated taking into account the spin-orbit interaction and crystal field effect. Taking account of the Nd-Nd exchange interaction, a good agreement between experimental and theoretical values can be obtained for the variation of the magnetic moment with the external magnetic field under 'extreme' conditions (low temperature and high magnetic field). Moreover, the temperature dependence of magnetic moment and the magnetic susceptibility χ is also discussed. Above 30 K, the magnetization (M) shows a linear field (H e ) dependence
Focus on Materials Analysis and Processing in Magnetic Fields
Directory of Open Access Journals (Sweden)
Yoshio Sakka, Noriyuki Hirota, Shigeru Horii and Tsutomu Ando
2009-01-01
Full Text Available Recently, interest in the applications of feeble (diamagnetic and paramagnetic magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan.Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3, which was held on 14–16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields.This focus issue compiles 13 key papers selected from the proceedings
Axial magnetic field produced by axially and radially magnetized permanent rings
International Nuclear Information System (INIS)
Peng, Q.L.; McMurry, S.M.; Coey, J.M.D.
2004-01-01
Axial magnetic fields produced by axially and radially magnetized permanent magnet rings were studied. First, the axial magnetic field produced by a current loop is introduced, from which the axial field generated by an infinitely thin solenoid and by an infinitely thin current disk can be derived. Then the axial fields produced by axially and by radially magnetized permanent magnet rings can be obtained. An analytic formula for the axial fields produced by two axially magnetized rings is given. A permanent magnet with a high axial gradient field is fabricated, the measured results agree with the theoretical calculation very well. As an example, the axial periodic field produced by an arrangement of alternating axially and radially magnetized rings has been discussed
Magnetic field induced augmented thermal conduction phenomenon in magneto nanocolloids
Katiyar, Ajay; Dhar, Purbarun; Nandi, Tandra; Das, Sarit K.
2015-01-01
Magnetic field induced drastically augmented thermal conductivity of magneto nanocolloids involving magnetic oxide nanoparticles, viz. Fe2O3, Fe3O4, Nickel oxide (NiO), Cobalt oxide (Co3O4), dispersed in different base fluids (heat transfer oil, kerosene, and ethylene glycol) have been reported. Experiments reveal the augmented thermal transport under the external applied magnetic field, with kerosene based MNCs showing at relatively low magnetic field intensities as compared to the heat tran...
Interaction between laser-produced plasma and guiding magnetic field
International Nuclear Information System (INIS)
Hasegawa, Jun; Takahashi, Kazumasa; Ikeda, Shunsuke; Nakajima, Mitsuo; Horioka, Kazuhiko
2013-01-01
Transportation properties of laser-produced plasma through a guiding magnetic field were examined. A drifting dense plasma produced by a KrF laser was injected into an axisymmetric magnetic field induced by permanent ring magnets. The plasma ion flux in the guiding magnetic field was measured by a Faraday cup at various distances from the laser target. Numerical analyses based on a collective focusing model were performed to simulate plasma particle trajectories and then compared with the experimental results. (author)
International Nuclear Information System (INIS)
Beković, Miloš; Trlep, Mladen; Jesenik, Marko; Hamler, Anton
2014-01-01
Magnetic fluids are distinct magnetic materials that have recently been the subject of extensive research precisely because of their unique properties. One of them is the heating effect when exposed to alternating magnetic fields, wherein the objective is to use this property in medicine as an alternative method for the treatment of tumors in the body. In this paper, we focus on two methods of magnetizing magnetic fluids, firstly using the alternating magnetic field (AMF), and secondly with the rotational magnetic field (RMF). The effects of the first are scientifically well-established, whilst the impact of RMF has not as yet been investigated as presented in this article. So far the effects of RMF have only been studied at low frequencies and high amplitudes, or vice versa. This article presents the results of heating at high frequencies and high magnetic field amplitudes, and the results compared with AMF. This paper presents the construction and implementation of a measuring system which is suitable both types of magnetic field. - Highlights: • Development of a new measurement system for the characterization of magnetic fluids. • System enables pulsed magnetic field, or a rotary magnetic field. • Analysis of the conditions to create a rotational magnetic field by means of a double power supply. • Good agreement between the analytical and numerical calculation of magnetic field and measurements. • Increase of the heating power when sample is exposed to rotating field compared to pulsating field
NUMERICAL MODELING THE INTERACTION OF A MAGNETIC FIELD WITH A CYLINDRICAL MAGNETIC FLUID LAYER
Directory of Open Access Journals (Sweden)
V. K. Polevikov
2017-01-01
Full Text Available A combined method of finite differences and boundary elements is applied to solve a nonlinear conjugate problem of magnetostatics describing, the interaction of a uniform magnetic field with a cylindrical magnetic fluid layer. Magnetic permeability of the fluid is considered to be a non-linearly dependent on the magnetic field intensity. Shielding properties of a cylindrical thick-walled magneticfluid layer, depending on the external magnetic field intensity, are investigated. A shielding effectiveness factor is calculated.
A 77 K MOS magnetic field detector
Energy Technology Data Exchange (ETDEWEB)
Murphy, R S; Torres, A. [Instituto Nacional de Astrofisica Optica y Electronica, Puebla (Mexico); Garcia, P.J. [Universidad Veracruzana, Veracruz (Mexico); Gutierrez, E.A. [Motorola, Puebla (Mexico)
2001-12-01
An integrated MOS (metal-oxide-semiconductor)-compatible magnetic field detector (split-drain MAGFET) for operation at liquid-nitrogen temperature LNT (77 K) is presented. The measured relative magnetic sensibility (S{sub a}) is approximately 14%/T (double the value ever reported) using a non-optimized MAGFET structure (W/L) = (100 mm/125 mm). The cryo-magnetic structure was tested without a built-in preamplifier. It presents a power consumption of the order of mW. [Spanish] A traves de este articulo se presenta un detector de campo magnetico (split-drain MAGFET), basado en el transistor de efecto de campo MOS (metal-oxido-semiconductor), y totalmente compatible con procesos de fabricacion de circuitos integrados CMOS. La operacion optima de este detector es a temperaturas criogenicas. Aqui se presentan los resultados experimentales de la caracterizacion de una estructura no optimizada con dimensiones (W / L) = (100 mm/125 mm) a la temperatura del nitrogeno liquido (77 K). La sensibilidad relativa medida es de cerca del 14 % T, casi el doble del valor maximo antes reportado en la literatura. El dispositivo se midio sin un pre-amplificador integrado, mostrando un consumo de potencia del orden de microwatts.
The mechanisms of the effects of magnetic fields on cells
Kondrachuk, A.
The evolution of organisms in conditions of the Earth magnetism results in close dependence of their functioning on the properties of the Earth magnetic field. The magnetic conditions in space flight differ from those on the Earth (e.g. much smaller values of magnetic filed) that effect various processes in living organisms. Meanwhile the mechanisms of interaction of magnetic fields with cell structures are poorly understood and systemized. The goal of the present work is to analyze and estimate the main established mechanisms of "magnetic fields - cell" interaction. Due to variety and complexity of the effects the analysis is mainly restricted to biological effects of the static magnetic field at a cellular level. 1) Magnetic induction. Static magnetic fields exert forces on moving ions in solution (e.g., electrolytes), giving rise to induced electric fields and currents. This effect may be especially important when the currents changed due to the magnetic field application are participating in some receptor functions of cells (e.g. plant cells). 2) Magneto-mechanical effect of reorientation. Uniform static magnetic fields produce torques on certain molecules with anisotropic magnetic properties, which results in their reorientation and spatial ordering. Since the structures of biological cells are magnetically and mechanically inhomogeneous, the application of a homogeneous magnetic field may cause redistribution of stresses within cells, deformation of intracellular structures, change of membrane permeability, etc. 3) Ponderomotive effects. Spatially non-uniform magnetic field exerts ponderomotive force on magnetically non-uniform cell structures. This force is proportional to the gradient of the square of magnetic field and the difference of magnetic susceptibilities of the component of the cell and its environment. 4) Biomagnetic effects. Magnetic fields can exert torques and translational forces on ferromagnetic structures, such as magnetite and ferritins
TRIANGULATION OF THE INTERSTELLAR MAGNETIC FIELD
Energy Technology Data Exchange (ETDEWEB)
Schwadron, N. A.; Moebius, E. [University of New Hampshire, Durham, NH 03824 (United States); Richardson, J. D. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Burlaga, L. F. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States)
2015-11-01
Determining the direction of the local interstellar magnetic field (LISMF) is important for understanding the heliosphere’s global structure, the properties of the interstellar medium, and the propagation of cosmic rays in the local galactic medium. Measurements of interstellar neutral atoms by Ulysses for He and by SOHO/SWAN for H provided some of the first observational insights into the LISMF direction. Because secondary neutral H is partially deflected by the interstellar flow in the outer heliosheath and this deflection is influenced by the LISMF, the relative deflection of H versus He provides a plane—the so-called B–V plane in which the LISMF direction should lie. Interstellar Boundary Explorer (IBEX) subsequently discovered a ribbon, the center of which is conjectured to be the LISMF direction. The most recent He velocity measurements from IBEX and those from Ulysses yield a B–V plane with uncertainty limits that contain the centers of the IBEX ribbon at 0.7–2.7 keV. The possibility that Voyager 1 has moved into the outer heliosheath now suggests that Voyager 1's direct observations provide another independent determination of the LISMF. We show that LISMF direction measured by Voyager 1 is >40° off from the IBEX ribbon center and the B–V plane. Taking into account the temporal gradient of the field direction measured by Voyager 1, we extrapolate to a field direction that passes directly through the IBEX ribbon center (0.7–2.7 keV) and the B–V plane, allowing us to triangulate the LISMF direction and estimate the gradient scale size of the magnetic field.
Influence of magnetization on the applied magnetic field in various AMR regenerators
DEFF Research Database (Denmark)
Mira, A.; de Larochelambert, T.; Espanet, C.
2017-01-01
The aim of this work is to assess the influence of a magnetic sample on the applied magnetic field inside the air gap of a magnetic circuit. Different magnetic sources including an electromagnet, a permanent magnet in a soft ferromagnetic toroidal yoke, as well as 2D and 3D Halbach cylinders...
Plasma opening switch with extrinsic magnetic field
Dolgachev, G; Maslennikov, D
2001-01-01
Summary form only given, as follows. We have demonstrated in series of experiments that plasma opening switch (POS) switching voltage (UPOS) is defined by energy density (w) deposited in the POS plasma. If we then consider a plasma erosion mainly responsible for the effect of POS switching (the erosion effect could be described by Hall or Child-Langmuir models) the energy density (w) could be measured as a function of a system "macro-parameter" such as the initial charging voltage of the capacity storage system (the Marx pulsed voltage generator) UMarx. The POS voltage in this case could be given by UPOS"aw=aUMarx4/7, where a is a constant. This report demonstrates that for the high-impedance POS which has limited charge density transferred through the POS plasma a"2.5 (MV3/7) with no external magnetic field applied. The use of the extrinsic magnetic field allows to increase a up to 3.6 (MV3/7) and to achieve higher voltages at the opening phase - UPOS=3.6UMarx4/7. To verify this approach set of experimental ...
Colloidal Switches by Electric and Magnetic Fields.
Demirörs, Ahmet Faik; Beltramo, Peter J; Vutukuri, Hanumantha Rao
2017-05-24
External electric and magnetic fields have already been proven to be a versatile tool to control the particle assembly; however, the degree of control of the dynamics and versatility of the produced structures is expected to increase if both can be implemented simultaneously. For example, while micromagnets can rapidly assemble superparamagnetic particles, repeated, rapid disassembly or reassembly is not trivial because of the remanence and coercivity of metals used in such applications. Here, an interdigitated design of micromagnet and microfabricated electrodes enables rapid switching of colloids between their magnetic and electric potential minima. Active control over colloids between two such adjacent potential minima enables a fast on/off mechanism, which is potentially important for optical switches or display technologies. Moreover, we demonstrate that the response time of the colloids between these states is on the order of tens of milliseconds, which is tunable by electric field strength. By carefully designing the electrode pattern, our strategy enables the switchable assembly of single particles down to few microns and also hierarchical assemblies containing many particles. Our work on precise dynamic control over the particle position would open new avenues to find potential applications in optical switches and display technologies.
Theory of electrolyte crystallization in magnetic field
DEFF Research Database (Denmark)
Madsen, Hans Erik Lundager
2007-01-01
Crystallization from aqueous solution of a sparingly soluble electrolyte is accelerated by magnetic field if the crystalizing phase is a diamagnetic salt of a weak acid, and crystallization is from neutral or acid solution in ordinary (not heavy) water. Since the effect of Lorentz force is neglig......Crystallization from aqueous solution of a sparingly soluble electrolyte is accelerated by magnetic field if the crystalizing phase is a diamagnetic salt of a weak acid, and crystallization is from neutral or acid solution in ordinary (not heavy) water. Since the effect of Lorentz force...... phenomena. The basis of the theory is a crystal model of a sparingly soluble salt with NaCl structure, where the ions are divalent, and the anion is a base. It is assumed that almost all the anions in the surface layer are protonized, and that an approaching metal ion pushes the proton away...... to a neighbouring anion, which then becomes doubly protonized. If the two protons are in the same spin state, the Pauli principle requires that one of them enter a state of higher energy, which enhances the activation energy and reduces the rate of the process, but even with opposite spins the incoming proton must...
Numerical determination of the magnetic field line Hamiltonian
International Nuclear Information System (INIS)
Kuo-Petravic, G.; Boozer, A.H.
1986-03-01
The structure of a magnetic field is determined by a one-degree of freedom, time-dependent Hamiltonian. This Hamiltonian is evaluated for a given field in a perturbed action-angle form. The location and the size of magnetic islands in the given field are determined from Hamiltonian perturbation theory and from an ordinary Poincare plot of the field line trajectories
Yao, Guang-Rui; Huang, Lei; Yu, Cong; Shen, Zhi-Qiang
2018-02-01
We have analyzed the multipolar magnetic field structure variation at neutron star surface by means of the catastrophic eruption model and find that the variation of the geometry of multipolar fields on the magnetar surface could result in the catastrophic rearrangement of the magnetosphere, which provides certain physical mechanism for the outburst of giant flares. The magnetospheric model we adopted consists of two assumptions: (1) a helically twisted flux rope is suspended in an ideal force-free magnetosphere around the magnetar, and (2) a current sheet emerges during the flux rope evolution. Magnetic energy accumulates during the flux rope’s gradual evolution along with the variation of magnetar surface magnetic structure before the eruption. The two typical behaviors, either state transition or catastrophic escape, would take place once the flux rope loses equilibrium; thus, tremendous accumulated energy is radiated. We have investigated the equilibrium state of the flux rope and the energy release affected by different multipolar structures and find structures that could trigger violent eruption and provide the radiation approximately 0.5% of the total magnetic energy during the giant flare outburst. Our results provide certain multipolar structures of the neutron star’s magnetic field with an energy release percentage 0.42% in the state transition and 0.51% in the catastrophic escape case, which are sufficient for the previously reported energy release from SGR 1806–20 giant flares.
A commercial tokamak reactor using super high field superconducting magnets
International Nuclear Information System (INIS)
Schwartz, J.; Bromberg, L.; Cohn, D.R.; Williams, J.E.C.
1988-01-01
This paper explores the range of possibilities for producing super high fields with advanced superconducting magnets. Obtaining magnetic fields greater than about 18 T at the coil in a large superconducting magnet system will require advances in many areas of magnet technology. These needs are discussed and potential solutions (advanced superconductors, structural materials and design methods) evaluated. A point design for a commercial reactor with magnetic field at the coil of 24 T and fusion power of 1800 MW is presented. Critical issues and parameters for magnet design are identified. 20 refs., 9 figs., 4 tabs
Split Field magnet at the I4 ISR intersection
1974-01-01
The Split-Field Magnet (SFM) at I4 had an unconventional topology, consisting of two dipole magnets of opposite polarity. It formed the heart of the first general facility at the ISR. It had a useful magnetic field volume of 28 m3 and a field in the median plane of 1.14 T. With a gap height of 1.1 m and length of 10.5 m, the magnet weighed about 1000 t. The SFM spectrometer featured the first large-scale application of MWPCs (about 70,000 wires), which filled the main magnet, visible here in 1974, and the two large compensator magnets.
O'Shea, Tuathan P; Foley, Mark J; Faddegon, Bruce A
2011-06-01
was up to three times higher in the bending plane, away from the electron gun, and symmetric within measurement uncertainty in the transverse plane. Simulations showed the magnetic field resulted in an offset of the electron beam of 0.80 cm (mean) at the machine isocenter for the exit window only configuration. The fringe field resulted in a 3.5%-7.6% symmetry and 0.25-0.35 cm offset of the clinical beam R(max) profiles. With the magnetic field included in simulations, a single (realistic) position of the secondary scattering foil and monitor chamber was selected. Measured and simulated dose profiles showed agreement to an average of 2.5%/0.16 cm (maximum: 3%/0.2 cm), which is a better match than previously achieved without incorporating the magnetic field in the simulation. The undulations from the 3 stepped layers of the secondary scattering foil, evident in the measured profiles of the higher energy beams, are now aligned with those in the simulated beam. The simulated fringe magnetic field had negligible effect on the central axis depth dose curves and cross-plane dose profiles. The fringe magnetic field is a significant contributor to the electron beam in-plane asymmetry. With the magnetic field included explicitly in the simulation, realistic monitor chamber and secondary scattering foil positions have been achieved, and the calculated fluence and dose distributions are more accurate.
The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament
Pattle, Kate; Ward-Thompson, Derek; Berry, David; Hatchell, Jennifer; Chen, Huei-Ru; Pon, Andy; Koch, Patrick M.; Kwon, Woojin; Kim, Jongsoo; Bastien, Pierre; Cho, Jungyeon; Coudé, Simon; Di Francesco, James; Fuller, Gary; Furuya, Ray S.; Graves, Sarah F.; Johnstone, Doug; Kirk, Jason; Kwon, Jungmi; Lee, Chang Won; Matthews, Brenda C.; Mottram, Joseph C.; Parsons, Harriet; Sadavoy, Sarah; Shinnaga, Hiroko; Soam, Archana; Hasegawa, Tetsuo; Lai, Shih-Ping; Qiu, Keping; Friberg, Per
2017-09-01
We determine the magnetic field strength in the OMC 1 region of the Orion A filament via a new implementation of the Chandrasekhar-Fermi method using observations performed as part of the James Clerk Maxwell Telescope (JCMT) B-Fields In Star-forming Region Observations (BISTRO) survey with the POL-2 instrument. We combine BISTRO data with archival SCUBA-2 and HARP observations to find a plane-of-sky magnetic field strength in OMC 1 of {B}{pos}=6.6+/- 4.7 mG, where δ {B}{pos}=4.7 mG represents a predominantly systematic uncertainty. We develop a new method for measuring angular dispersion, analogous to unsharp masking. We find a magnetic energy density of ˜ 1.7× {10}-7 J m-3 in OMC 1, comparable both to the gravitational potential energy density of OMC 1 (˜10-7 J m-3) and to the energy density in the Orion BN/KL outflow (˜10-7 J m-3). We find that neither the Alfvén velocity in OMC 1 nor the velocity of the super-Alfvénic outflow ejecta is sufficiently large for the BN/KL outflow to have caused large-scale distortion of the local magnetic field in the ˜500 yr lifetime of the outflow. Hence, we propose that the hourglass field morphology in OMC 1 is caused by the distortion of a primordial cylindrically symmetric magnetic field by the gravitational fragmentation of the filament and/or the gravitational interaction of the BN/KL and S clumps. We find that OMC 1 is currently in or near magnetically supported equilibrium, and that the current large-scale morphology of the BN/KL outflow is regulated by the geometry of the magnetic field in OMC 1, and not vice versa.
Magnetic-field-dependent microwave absorption in HgSe in weak magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Veinger, A. I., E-mail: Anatoly.Veinger@mail.ioffe.ru; Tisnek, T. V.; Kochman, I. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Okulov, V. I. [Russian Academy of Sciences, Ural Branch, Mikheev Institute of Metal Physics (Russian Federation)
2017-02-15
The low-temperature magnetoresistive effect in the semiconductor HgSe:Fe in weak magnetic fields at microwave frequencies is examined. The negative and positive components of magnetoabsorption based on the magnetoresistive effect in the degenerate conduction band are analyzed. The special features of experiments carried out in the investigated frequency range are noted. The momentum and electron-energy relaxation times are determined from the experimental field and temperature dependences.
Effect of Anode Magnetic Shield on Magnetic Field and Ion Beam in Cylindrical Hall Thruster
International Nuclear Information System (INIS)
Zhao Jie; Wang Shiqing; Liu Jian; Xu Li; Tang Deli; Geng Shaofei
2010-01-01
Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shield, the magnetic field lines near the anode surface are obviously convex curved, the ratio of the magnetic mirror is enhanced, the width of the positive magnetic field gradient becomes larger than that without the anode magnetic shielding, the radial magnetic field component is enhanced, and the discharge plasma turbulence is reduced as a result of keeping the original saddle field profile and the important role the other two saddle field profiles play in restricting electrons. The results of the particle in cell (PIC) numerical simulation show that both the ion number and the energy of the ion beam increase after the anode is shielded by the magnetic shield. In other words, the specific impulse of the cylindrical Hall thruster is enhanced.
International Nuclear Information System (INIS)
Khodjaev, L.Sh.
2004-01-01
Full text: We review the conceptual foundation of Yang-Mills gauge field theories. On these gauge theories the Standard Model (SM) are constructed. The fundamental postulates and their immediate consequence of the SM are formulated. The SM is a Yang-Mills type gauge field theory basically dictated by the Generalized Gauge Principle (GGP). According to this principle all fundamental forces of nature such as strong, electroweak, gravitational are mediated by an exchange of the Yang-Mills gauge fields corresponding gauge group. The SM is constructed by extension of the global non-Abelian SU(3)xSU(2)xU(1) symmetry to the local SU(3)xSU(2)xU(1) symmetry under which the Lagrangian of the SM invariant. This full symmetry has to be broken by Higgs mechanism down to the Electroweak gauge symmetry. The concept of fundamental particles does not exist. To Look for not Fundamental Particles but Fundamental symmetries. By searching of more general theory it is natural to search first of all Global symmetries and then to learn consequences connected with the localization of the global symmetries like wise of SM. The SM is renormalizable and therefor potentially consist at all energy scales. The SM in principle can describe the properties of the Universe beginning at 10 -43 sec. after BIG BANG. A SM of the BIG BANG Particle physics provides one of the few windows of the high energy world beyond SM which is consistent with SM and Cosmology. All the fundamental particles of the SM such as quarks, leptons and weak intermediate vector-gauge Bosons except one Higgs boson H 0 have been discovered and there masses and spins have been determined. The SM is stunning. Until now, no cracks have been found. There is no experiment that contradicts the SM. Moreover there is nothing observed beyond the SM. The SM works better and better. We proposed to construct colour singular nuclear forces theory based on Quantum Chromodynamics (QCD). As well Theological aspects of the BIG BANG
Sidewall containment of liquid metal with horizontal alternating magnetic fields
Pareg, Walter F.
1990-01-01
An apparatus for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers.
Magnetic field applications in modern technology and medicine
International Nuclear Information System (INIS)
Tenforde, T.S.
1985-05-01
A brief summary is given of several major applications of magnetism. A description of the range of magnetic field intensities to which humans are exposed in technologies that utilize large stationary magnetic fields is given. 12 refs., 8 figs., 3 tabs
Crystal Fields and the Magnetic Properties of Praseodymium and Neodymium
DEFF Research Database (Denmark)
Johansson, Torben; Lebech, Bente; Nielsen, Mourits
1970-01-01
The magnetic properties of Pr and Nd single crystals have been studied by neutron-diffraction and susceptibility measurements. In contrast to earlier results on polycrystals, monocrystalline Pr is found not to be magnetically ordered, because of crystal field effects, but a magnetic field induces...
Optical properties of semiconductor nanostructures in magnetic field
Energy Technology Data Exchange (ETDEWEB)
Grochol, M.
2007-04-03
In this work, the near bandgap linear optical properties of semiconductor quantum structures under applied magnetic field are investigated. First, the exciton theory is developed starting with the one-electron Hamiltonian in a crystal, continuing with the Luttinger and Bir-Pikus Hamiltonian, and ending with the exciton Hamiltonian in the envelope function approximation. Further, concentrating on the quantum well and thus assuming strong confinement in the growth direction, the motion parallel and perpendicular to the xy-plane is factorized leading to the well-known single sublevel approximation. A magnetic field perpendicular to the xy-plane is applied, and a general theorem describing the behavior of the energy eigenvalues is derived. The strain calculation within the isotropic elasticity approach is described in detail. The Schroedinger equation is solved numerically for both the full model and the factorization with artificially generated disorder potentials. Furthermore the statistical properties of the disorder in a real quantum well have been analyzed. In particular, temperature dependent photoluminescence spectra and diamagnetic shift statistics, have been compared with the experimental ones and very good agreement has been found. The second part of this thesis deals predominantly with highly symmetrical structures embedded in the quantum well: namely quantum rings and dots. First, adopting an ansatz for the wave function, the Hamiltonian matrix is derived discussing which matrix elements are non-zero according to the symmetry of the potential. Additionally, the expectation values of the current and magnetization operators are evaluated. Then, concentrating on the case of the highest (circular) symmetry, the model of zero width ring is introduced. Within this model the close relation between the oscillatory component of the exciton energy (exciton Aharonov-Bohm effect) and the persistent current is revealed. Examples for different material systems follow
Ion H2+ can dissociate in a strong magnetic field
International Nuclear Information System (INIS)
Turbiner, A.V.; Lopez, J.C.; Flores-Riveros, A.
2001-01-01
In framework of a variational method the molecular ion H 2 + in a magnetic field is studied. An optimal form of the vector potential corresponding to a given magnetic field is chosen. It is shown that for any magnetic field strength as well as for any orientation of the molecular axis the system (ppe) possesses a minimum in the potential energy. The stable configuration always corresponds to elongation along the magnetic line. However, for magnetic fields B ≥ 5 x 10 11 G and some orientations the ion H 2 + becomes instable decaying to H-atom + p [ru
Quantum diffusion of magnetic fields in a numerical worldline approach
Gies, Holger; Gies, Holger; Langfeld, Kurt
2001-01-01
We propose a numerical technique for calculating effective actions of electromagnetic backgrounds based on the worldline formalism. As a conceptually simple example, we consider scalar electrodynamics in three dimensions to one-loop order. Beyond the constant-magnetic-field case, serving as a benchmark test, we analyze the effective action of a step-function-like magnetic field -- a configuration that is inaccessible to derivative expansions. We observe magnetic-field diffusion, i.e., nonvanishing magnetic action density at space points near the magnetic step where the classical field vanishes.
On the relationship between quadrupolar magnetic field and collisionless reconnection
Energy Technology Data Exchange (ETDEWEB)
Smets, R., E-mail: roch.smets@lpp.polytechnique.fr; Belmont, G. [LPP, University P. and M. Curie, CNRS, Ecole Polytechnique, F-91128 Palaiseau (France); Aunai, N. [IRAP, University Paul Sabatier, F-31028 Toulouse (France); Boniface, C. [CEA/DAM, DIF, F-91297 Arpajon (France); Fuchs, J. [LULI, Ecole Polytechnique, CNRS, CEA, University P. and M. Curie, F-91128 Palaiseau (France)
2014-06-15
Using hybrid simulations, we investigate the onset of fast reconnection between two cylindrical magnetic shells initially close to each other. This initial state mimics the plasma structure in High Energy Density Plasmas induced by a laser-target interaction and the associated self-generated magnetic field. We clearly observe that the classical quadrupolar structure of the out-of-plane magnetic field appears prior to the reconnection onset. Furthermore, a parametric study reveals that, with a non-coplanar initial magnetic topology, the reconnection onset is delayed and possibly suppressed. The relation between the out-of-plane magnetic field and the out-of-plane electric field is discussed.
Energy Technology Data Exchange (ETDEWEB)
Sudo, Seiichi, E-mail: sudo@akita-pu.ac.jp [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Yamamoto, Kazuki [Graduate School of Engineering, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan); Ishimoto, Yukitaka; Nix, Stephanie [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan)
2017-06-01
This paper describes the characteristics of water flow induced by the bridge oscillation of magnetic fluid between two permanent magnets subject to an external alternating magnetic field. The magnetic fluid bridge is formed in the space between a pair of identical coaxial cylindrical permanent magnets submerged in water. The direction of alternating magnetic field is parallel /antiparallel to the magnetic field produced by two permanent magnets. The magnetic fluid bridge responds to the external alternating magnetic field with harmonic oscillation. The oscillation of magnetic fluid bridge generates water flow around the bridge. Water flow is visualized using a thin milk film at the container bottom. Water flows are observed with a high-speed video camera analysis system. The experimental results show that the flow pattern induced by the bridge oscillation depends on the Keulegan–Carpenter number.
An active antenna for ELF magnetic fields
Sutton, John F.; Spaniol, Craig
1994-01-01
The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.
International Nuclear Information System (INIS)
Zhou, J. F.; Shao, C. L.; Gu, B. Q.
2016-01-01
Magnetic particles (MPs) are known to respond to a magnetic field and can be moved by magnetic force, which make them good carriers in bioengineering and pharmaceutical engineering. In this paper, a pose control method for the straight chain composed of MPs is proposed, and the chain with one pose can be moved to another position with another pose using alternately employed uniform and gradient magnetic fields. Based on computer simulations, it is revealed that in the uniform magnetic field, the MPs form a straight chain with the same separation space along the field lines, and once the uniform magnetic field rotates, the chain also rotates with the field. In the gradient magnetic field, the MPs move toward the higher field so that the translation of the chain can be realized. The simulation results indicate that while the uniform magnetic field is rotating, there exists certain hysteresis between the chain and the field, and the chain is not straight anymore. So the uniform magnetic field should rest at the target angle for a period to make the chain fully relax to be straight. For nanoMP, its magnetic moment directly determines the gradient magnetic force which is much smaller than the dipole–dipole force among MPs. Therefore, the translation of the chain is much more time-consuming than rotation. To enlarge the translational velocity, it is suggested to increase the size of MPs or the magnetic field gradient
Analysis of magnetic nanoparticles using quadrupole magnetic field-flow fractionation
International Nuclear Information System (INIS)
Carpino, Francesca; Moore, Lee R.; Zborowski, Maciej; Chalmers, Jeffrey J.; Williams, P. Stephen
2005-01-01
The new technique of quadrupole magnetic field-flow fractionation is described. It is a separation and characterization technique for particulate magnetic materials. Components of a sample are eluted from the separation channel at times dependent on the strength of their interaction with the magnetic field. A quadrupole electromagnet allows a programmed reduction of field strength during analysis of polydisperse samples
The quantum behavior of an electron in a uniform magnetic field
Li, Chun-Fang; Wang, Qi
1999-07-01
The total probability current of an electron in a uniform magnetic field is calculated in the symmetric gauge. Even though the eigen motion of the electron in this gauge is similar to the classical orbit motion, the total probability current is found to be equal to zero when the canonical angular momentum is less than zero. The reason is that in this case, the origin of the coordinate system lies outside the circular orbit of corresponding classical motion, in addition to the absence of radial component of the probability current density because of the indeterminacy of the location of the orbit center.
Research on magnetic field characteristics and magnetic shield effect of reinforced concrete members
International Nuclear Information System (INIS)
Ishikawa, Noboru
1986-01-01
The steel frames and reinforcing bars used for structures are subjected to various magnetic history at the time of the manufacture, transport and processing, and are magnetized. Consequently, magnetically uneven fields are formed near steel materials in general structures. In the structures for accurate magnetic field measurements or geomagnetism observation, magnetic shield rooms or small magnetizing force or nonmagnetic materials are used. When the equipments requiring the control of weak magnetic fields are installed in general structures, the method of restraining the disturbance of magnetic fields caused by structural materials is demanded hereafter. In this report, when an electronic equipment assembling shop was constructed, the intensity of magnetic fields of reinforced concrete columns was measured, and the countermeasures to reduce their effect were experimentally examined, therefore these are described. The concept of a magnetic field in a reinforced concrete member, magnetic shield materials, measuring instruments, the method of measurement and the results are reported. Around reinforced concrete members, magnetic fields exist, but at a position more than 1 m distant from the surface of reinforced concrete, the magnetic field was negligible. Silicon steel sheets are effective for shielding such magnetic fields. (Kako, I.)
Magnetic Fields Recorded by Chondrules Formed in Nebular Shocks
Mai, Chuhong; Desch, Steven J.; Boley, Aaron C.; Weiss, Benjamin P.
2018-04-01
Recent laboratory efforts have constrained the remanent magnetizations of chondrules and the magnetic field strengths to which the chondrules were exposed as they cooled below their Curie points. An outstanding question is whether the inferred paleofields represent the background magnetic field of the solar nebula or were unique to the chondrule-forming environment. We investigate the amplification of the magnetic field above background values for two proposed chondrule formation mechanisms, large-scale nebular shocks and planetary bow shocks. Behind large-scale shocks, the magnetic field parallel to the shock front is amplified by factors of ∼10–30, regardless of the magnetic diffusivity. Therefore, chondrules melted in these shocks probably recorded an amplified magnetic field. Behind planetary bow shocks, the field amplification is sensitive to the magnetic diffusivity. We compute the gas properties behind a bow shock around a 3000 km radius planetary embryo, with and without atmospheres, using hydrodynamics models. We calculate the ionization state of the hot, shocked gas, including thermionic emission from dust, thermal ionization of gas-phase potassium atoms, and the magnetic diffusivity due to Ohmic dissipation and ambipolar diffusion. We find that the diffusivity is sufficiently large that magnetic fields have already relaxed to background values in the shock downstream where chondrules acquire magnetizations, and that these locations are sufficiently far from the planetary embryos that chondrules should not have recorded a significant putative dynamo field generated on these bodies. We conclude that, if melted in planetary bow shocks, chondrules probably recorded the background nebular field.
Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field
Banerjee, Ananya; Sarkar, A.
2016-05-01
The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained and agreement between theory and experiment are good.
Application of Magnetic Markers for Precise Measurement of Magnetic Fields in Ramped Accelerators
Benedikt, Michael; Lindroos, M
1999-01-01
For precise measurements of the magnetic field in ramped machines, different magnetic markers are in use. The best known are peaking strips, Nuclear Magnetic Resonance (NMR) probes and Electron Spin Resonance (ESR) probes. Their operational principles and limitations are explained and some examples of recent and new applications are given. A fuller theoretical description is given of the lesser-known Ferrimagnetic Resonance (FMR) probe and its practical application. The essential purpose of these magnetic markers is the in situ calibration of either on-line magnetic field measurements (e.g. via a magnetic pick-up coil) or field predictions (e.g. using a magnet model).
Review of MFTF yin-yang magnet displacement and magnetic field measurements and calculations
International Nuclear Information System (INIS)
Hanson, C.L.; Myall, J.O.; Wohlwend, J.W.
1983-01-01
During the recent testing of the MFTF yin-yang magnet, measurements of coil position, structural case strain, and magnetic field were made to verify calculated values. Measurements to detect magnet movement were taken throughout cooldown and during the operation of the magnet. The magnetic field at the mirror points was measured by Hall-effect probes. The magnet position, structural case strain, and magntic field measurements indicated a reasonably close correlation with calculated values. Information obtained from the yin-yang test has been very useful in setting realistic mechanical alignment values for the new MFTF-B magnet system
Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Ananya, E-mail: banerjee.ananya2008@gmail.com; Sarkar, A. [Dept. of Physics, Bijoy Krishna Girls’ College, 5/3 M.G. Road, Howrah 711101, W.B. (India)
2016-05-06
The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained and agreement between theory and experiment are good.
Magnetic field 3D-reconstruction techniques using images of an ion beam in a toroidal plasma
Ling, C.; Connor, K. A.; Demers, D. R.; Radke, R. J.; Schoch, P. M.
2004-11-01
A technique to map the magnetic field of a plasma via spectral imaging of a heavy ion beam is being developed on the Madison Symmetric Torus (MST). This technique will provide both spatial and temporal magnetic field information. A code has been developed to analyze spectral images of the beam. To assess the technique, the code utilizes a trajectory produced with a known magnetic field and simulates two 2D-images of this trajectory. These 2D-images are used to reconstruct a 3D-trajectory and compute the magnetic field in the vicinity of the beam. The magnetic field components that are perpendicular to the beam velocity field can be resolved, but there is insufficient information to resolve the component along the beam velocity field. Hence, additional constraints such as shifted, circular, closed magnetic flux surfaces are used. We discuss details of the simulation including various image processing algorithms, accuracy of the reconstructed 3D-trajectory, and agreement between the prescribed and computed magnetic fields.
International Nuclear Information System (INIS)
Ramond, P.
1993-01-01
The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures
DOM. A dewar for optical measurements in magnetic field
International Nuclear Information System (INIS)
Baldacchini, G.
1975-01-01
A cryostat for low helium temperature has been designed and realized with the aim to perform optical investigations at high magnetic fields. The superconductor magnet is also described and the performance of the whole system presented
Very low field magnetic resonance imaging
International Nuclear Information System (INIS)
Herreros, Quentin
2013-01-01
The aim of this thesis is to perform Magnetic Resonance Imaging at very low field (from 1 mT to 10 mT). A new kind of sensor called 'mixed sensor' has been used to achieve a good detectivity at low frequencies. Combining a superconducting loop and a giant magnetoresistance, those detectors have a competitive equivalent field noise compared to existing devices (Tuned coils, SQUIDs and Atomic Magnetometers). They have been combined with flux transformers to increase the coupling between the sample and the sensor. A complete study has been performed to adapt it to mixed sensors and then maximize the gain. This set has been incorporated in an existing small MRI device to test its robustness in real conditions. In parallel, several MRI sequences (GE, SE, FLASH, EPI,...) have been integrated and adapted to very low field requirements. They have been used to perform in-vivo three dimensional imaging and relaxometry studies on well known products to test their reliability. Finally, a larger setup adapted for full-head imaging has been designed and built to perform images on a larger working volume. (author) [fr
Planar Josephson tunnel junctions in a transverse magnetic field
DEFF Research Database (Denmark)
Monacoa, R.; Aarøe, Morten; Mygind, Jesper
2007-01-01
Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where...... demagnetization effects imposed by the tunnel barrier and electrodes geometry are important. Measurements of the junction critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size, and critical current density show that it is advantageous to use a transverse...... magnetic field rather than an in-plane field. The conditions under which this occurs are discussed....
MAGNETIC FIELD RELAXATION AND CURRENT SHEETS IN AN IDEAL PLASMA
International Nuclear Information System (INIS)
Candelaresi, S.; Pontin, D. I.; Hornig, G.
2015-01-01
We investigate the existence of magnetohydrostatic equilibria for topologically complex magnetic fields. The approach employed is to perform ideal numerical relaxation experiments. We use a newly developed Lagrangian relaxation scheme that exactly preserves the magnetic field topology during the relaxation. Our configurations include both twisted and sheared fields, of which some fall into the category for which Parker predicted no force-free equilibrium. The first class of field considered contains no magnetic null points, and field lines connect between two perfectly conducting plates. In these cases, we observe only resolved current layers of finite thickness. In further numerical experiments, we confirm that magnetic null points are loci of singular currents
Magnetic field induced transitions in BiFeO3
Matsuda, M.; Dissanayake, S.; Hong, T.; Ratcliff, W., II; Zhao, Y.; Xu, Z.; Miyahara, S.; Furukawa, N.; Kawachi, S.; Miyake, A.; Tokunaga, M.
Bulk BiFeO3 exhibits a spiral spin structure below 640 K and also a transition to a canted G-type structure in magnetic field. Very recently, a new magnetic phase was found just below the critical field to the canted G-type phase. Neutron diffraction measurements were performed to clarify the magnetic structure in the intermediate phase as well as the magnetic domain redistribution in magnetic field. There are three magnetic domains with different easy planes at ambient magnetic field. We found that with applying field perpendicular to one of the magnetic domains (M1), the other two domains merge to the M1 domain around 5 T. With further applying field, there occurs a first order magnetic transition to the intermediate phase. The incommensurate peaks observed perpendicular to the magnetic field at low fields become commensurate in the intermediate phase. We will discuss the magnetic structure in this phase. This research at ORNL's HFIR was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.
Donoso, Guillermo; Ladera, Celso L.
2012-01-01
The parametric oscillations of an oscillator driven electromagnetically are presented. The oscillator is a conductive pipe hung from a spring, and driven by the oscillating magnetic field of a surrounding coil in the presence of a static magnetic field. It is an interesting case of parametric oscillations since the pipe is neither a magnet nor a…
On field line resonances of hydromagnetic Alfven waves in dipole magnetic field
International Nuclear Information System (INIS)
Chen, Liu; Cowley, S.C.
1989-07-01
Using the dipole magnetic field model, we have developed the theory of field line resonances of hydromagnetic Alfven waves in general magnetic field geometries. In this model, the Alfven speed thus varies both perpendicular and parallel to the magnetic field. Specifically, it is found that field line resonances do persist in the dipole model. The corresponding singular solutions near the resonant field lines as well as the natural definition of standing shear Alfven eigenfunctions have also been systematically derived. 11 refs
Performance of silicon drift detectors in a magnetic field
Energy Technology Data Exchange (ETDEWEB)
Castoldi, A.; Gatti, E.; Manzari, V.; Rehak, P. [Brookhaven National Lab., Upton, NY (United States)
1997-11-11
A study of the properties of silicon drift detectors in a magnetic field was carried out. A silicon drift detector with 41 anodes, providing unambiguous x and y position information, was used for measurements. Studies were done in three principal orientations of the detector relative to the direction of the magnetic field. The magnetic field was varied between 0 and 0.7 T and the drift field between 300 and 600 V/cm. Basic agreement with the theory of electron transport in semiconductors in a magnetic field was found. The transport properties of electrons in a magnetic field can be described by a mobility matrix. The components of the matrix depend on the electron mobility, Hall mobility and on the vector of the magnetic field. The precision of measurement was better than 0.2% for most of the parameters. For the electric field of a silicon drift detector, there is a first-order effect of the magnetic field only in one out of three principal directions. In this direction, the plane of the detector is perpendicular to the magnetic field and electrons drift at an angle {alpha} relative to the direction of the drift field. In two other principal directions, which are more important for tracking of the particles with drift detectors, there are no first-order magnetic effects. (orig.). 13 refs.
Magnetism and crystal fields in ternary superconductors
International Nuclear Information System (INIS)
Shenoy, G.K.; Crabtree, G.W.; Niarchos, D.; Behroozi, F.; Dunlap, B.D.; Hinks, D.; Noakes, D.R.
1982-01-01
In this paper, the present state of knowledge of crystalline electric field (CEF) in two important classes of ternary superconductors has been described. It is clear that in understanding the superconducting and magnetic behavior of RERh 4 B 4 , the CEF plays a very important role. Considerable importance has been given to the specific heat Schottky anomalies in deducing the position and degeneracy of various CEF levels. Interpretation of these data is made difficult because of complicated subtraction of lattice, electronic and superconducting specific heats. Furthermore, the purity of the sample is important in such studies. It is known that a few percent of Rh-B/sub x/, RERh 3 B 2 and RERh 6 B 4 are commonly present in RERh 4 B 4 , while Mo-Ch/sub x/, RE-Ch/sub x/ and RE 2 O 2 Ch phases occur in Chevrel phase compounds. Only single-crystal samples will lead to dependable specific heat data
MAGNETIC FIELDS IN A SAMPLE OF NEARBY SPIRAL GALAXIES
Energy Technology Data Exchange (ETDEWEB)
Van Eck, C. L. [Department of Astrophysics, Faculty of Science, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Brown, J. C. [Department of Physics and Astronomy, University of Calgary, Calgary, AB T2N 1N4 (Canada); Shukurov, A.; Fletcher, A., E-mail: c.vaneck@astro.ru.nl, E-mail: jocat@ucalgary.ca, E-mail: anvar.shukurov@ncl.ac.uk, E-mail: andrew.fletcher@ncl.ac.uk [School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)
2015-01-20
Both observations and modeling of magnetic fields in the diffuse interstellar gas of spiral galaxies are well developed, but the theory has been confronted with observations for only a handful of individual galaxies. There is now sufficient data to consider the statistical properties of galactic magnetic fields. We have collected data from the literature on the magnetic fields and interstellar media of 20 spiral galaxies, and tested for various physically motivated correlations between magnetic field and interstellar medium parameters. Clear correlations emerge between the total magnetic field strength and molecular gas density as well as the star formation rate. The magnetic pitch angle exhibits correlations with the total gas density, the star formation rate, and the strength of the axisymmetric component of the mean magnetic field. The total and mean magnetic field strengths exhibit a noticeable degree of correlation, suggesting a universal behavior of the degree of order in galactic magnetic fields. We also compare the predictions of galactic dynamo theory to observed magnetic field parameters and identify directions in which theory and observations might be usefully developed.
Li, Jingqi
2011-09-01
The diode characteristics of carbon nanotube field-effect transistors (CNTFETs) with symmetric source and drain contacts have been experimentally found at zero gate voltage (Li J. et al., Appl. Phys. Lett., 92 (2008) 133111). We calculate this characteristic using a semiclassical method based on Schottky barrier transistor mechanism. The influences of metal work function, the diameter of the carbon nanotubes and the dielectric thickness on the rectification behavior have been studied. The calculation results show that the metal with a higher work function results in a better diode characteristics for a p-type CNTFET. For single-walled carbon nanotubes (SWNTs) with different band gaps, both forward current and reverse current increase with decreasing band gap, but the ratio of forward current to reverse current decreases with decreasing band gap. This result is well consistent with the experimental observations reported previously. The simulation of the dielectric thickness effect indicates that the thinner the dielectric layer, the better the rectification behavior. The CNTFETs without a bottom gate could not show the diode characteristics, which is consistent with the reported experimental observation. © 2011 Europhysics Letters Association.
Ablation acceleration of macroparticle in spiral magnetic fields
International Nuclear Information System (INIS)
Ikuta, Kazunari.
1981-05-01
The rocket motion of macroparticles heated by energetic pulses in a spiral magnetic field was studied. The purpose of the present work is to study the ablation acceleration of a macroparticle in a spiral magnetic field with the help of the law of conservation of angular momentum. The basic equation of motion of ablatively accelerated projectile in a spiral magnetic field was derived. Any rocket which is ejecting fully ionized plasma in an intense magnetic field with rotational transform is able to have spin by the law of conservation of momentum. The effect of spiral magnetic field on macroparticle acceleration is discussed. The necessary mass ratio increase exponentially with respect to the field parameter. The spiral field should be employed with care to have only to stabilize the position of macroparticles. As conclusion, it can be said that the ablation acceleration of the projectile in a spiral field can give the accelerated body spin quite easily. (Kato, T.)
Mechanism and Simulation of Generating Pulsed Strong Magnetic Field
Yang, Xian-Jun; Wang, Shuai-Chuang; Deng, Ai-Dong; Gu, Zhuo-Wei; Luo, Hao
2014-10-01
A strong magnetic field (over 1000 T) was recently experimentally produced at the Academy of Engineering Physics in China. The theoretical methods, which include a simple model and MHD code, are discussed to investigate the physical mechanism and dynamics of generating the strong magnetic field. The analysis and simulation results show that nonlinear magnetic diffusion contributes less as compared to the linear magnetic diffusion. This indicates that the compressible hydrodynamic effect and solid imploding compression may have a large influence on strong magnetic field generation.
Particle simulation in stochastic magnetic fields at tokamak edge
Chang, C. C.; Nishimura, Y.; Cheng, C. Z.
2013-10-01
An orbit following simulation code is developed incorporating magnetic perturbation. While magnetic field lines can exhibit stochastic behavior in the presence of incommensurate magnetic perturbations, the particle motions are also influenced by the mirror force and the perturbed electric fields. Remnants of lowest order magnetic islands can also play an important role in regulating the particle and heat transport. Effective perpendicular transport can be enhanced in the presence of trapped particles; how the mirror force influences the transport in stochastic magnetic fields is examined. This work is supported by National Science Council of Taiwan, NSC 100-2112-M-006-021-MY3 and NCKU Top University Project.
Magnetic fields, special relativity and potential theory elementary electromagnetic theory
Chirgwin, B H; Kilmister, C W
1972-01-01
Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec
Magnetic Field in the Gravitationally Stratified Coronal Loops B. N. ...
Indian Academy of Sciences (India)
field for the longest (L = 406 Mm) coronal loops. The magnetic fields Bstr and Babs also increase with the number density, if the loop length does not vary much. The increment in the magnetic field due to gravitational stratification is small at the lower number densities, however, it is large at the higher number densities.
Magnetic field influence on the selfquenching streamer discharge
International Nuclear Information System (INIS)
Alekseev, G.D.; Korytov, A.V.
1987-01-01
The influence of the magnetic field on the selfquenching streamer discharge characteristics is investigated. In the field about 10 kGs streamer charge is decreased several per cent (change of charge is due to amplitude decreasing of signal). In the transition region from limited-proportional to streamer mode magnetic field results in increasing of probability of avalanche developing into a streamer
Localized magnetic fields in arbitrary directions using patterned nanomagnets
DEFF Research Database (Denmark)
McNeil, Robert P G; Schneble, Jeff; Kataoka, Masaya
2010-01-01
Control of the local magnetic fields desirable for spintronics and quantum information technology is not well developed. Existing methods produce either moderately small local fields or one held orientation. We present designs of patterned magnetic elements that produce remanent fields of 50 mT (...
Reconstruction of flux coordinates from discretized magnetic field maps
Predebon, I.; Momo, B.; Suzuki, Y.; Auriemma, F.
2018-04-01
We provide a simple method to build a straight field-line coordinate system from discretized (Poincaré) magnetic field maps. The method is suitable for any plasma domain with nested flux surfaces, including magnetic islands. Illustrative examples are shown for tokamak, heliotron, and reversed-field-pinch plasmas with m = 1 islands.
Electrical and magnetic fields of the power supply
International Nuclear Information System (INIS)
2017-01-01
The availability of electrical energy in all areas of life is guaranteed by a widely ramified power grid. When electricity is transported, magnetic fields are created in addition to the electrical fields. In this brochure one will learn more about the causes and effects of electrical and magnetic fields as well as protection concepts and preventive measures. [de
Thermal quantum discord of spins in an inhomogeneous magnetic field
International Nuclear Information System (INIS)
Guo Jinliang; Mi Yingjuan; Zhang Jian; Song Heshan
2011-01-01
In contrast with the thermal entanglement, we study the quantum discord and classical correlation in a two-qubit Heisenberg XXZ model with an inhomogeneous magnetic field. It is shown that the effects of the external magnetic fields, including the uniform and inhomogeneous magnetic fields, on the thermal entanglement, quantum discord and classical correlation behave differently in various aspects, which depend on system temperature and model type. We can tune the inhomogeneous magnetic field to enhance the entanglement or classical correlation and meanwhile decrease the quantum discord. In addition, taking into account the inhomogeneous magnetic field, the sudden change in the behaviour of quantum discord still survives, which can detect the critical points of quantum phase transitions at finite temperature, but not for a uniform magnetic field.
Magnetic Fields Boosted by Gluon Vortices in Color Superconductivity
International Nuclear Information System (INIS)
Ferrer, Efrain J.; Incera, Vivian de la
2006-01-01
We investigate the effects of an external magnetic field in the gluon dynamics of a color superconductor with three massless quark flavors. In the framework of gluon mean-field theory at asymptotic densities, we show that the long-range component H(tilde sign) of the external magnetic field that penetrates the color-flavor locked phase produces an instability when its strength becomes larger than the Meissner mass of the charged gluons. As a consequence, the magnetic field causes the formation of a vortex state characterized by the condensation of charged gluons and the creation of magnetic flux tubes. Inside the flux tubes, the magnetic field is stronger than the applied one. This antiscreening effect is connected to the anomalous magnetic moment of the gluon field. We suggest how this same mechanism could serve to remove the chromomagnetic instabilities existing in gapless color superconductivity
The origin, evolution and signatures of primordial magnetic fields.
Subramanian, Kandaswamy
2016-07-01
The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak ∼ 10(-16) Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-α forest are outlined. Constraints from radio and γ-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.
Inferring Lower Boundary Driving Conditions Using Vector Magnetic Field Observations
Schuck, Peter W.; Linton, Mark; Leake, James; MacNeice, Peter; Allred, Joel
2012-01-01
Low-beta coronal MHD simulations of realistic CME events require the detailed specification of the magnetic fields, velocities, densities, temperatures, etc., in the low corona. Presently, the most accurate estimates of solar vector magnetic fields are made in the high-beta photosphere. Several techniques have been developed that provide accurate estimates of the associated photospheric plasma velocities such as the Differential Affine Velocity Estimator for Vector Magnetograms and the Poloidal/Toroidal Decomposition. Nominally, these velocities are consistent with the evolution of the radial magnetic field. To evolve the tangential magnetic field radial gradients must be specified. In addition to estimating the photospheric vector magnetic and velocity fields, a further challenge involves incorporating these fields into an MHD simulation. The simulation boundary must be driven, consistent with the numerical boundary equations, with the goal of accurately reproducing the observed magnetic fields and estimated velocities at some height within the simulation. Even if this goal is achieved, many unanswered questions remain. How can the photospheric magnetic fields and velocities be propagated to the low corona through the transition region? At what cadence must we observe the photosphere to realistically simulate the corona? How do we model the magnetic fields and plasma velocities in the quiet Sun? How sensitive are the solutions to other unknowns that must be specified, such as the global solar magnetic field, and the photospheric temperature and density?
Magnetic field trimming studies for a separated-sector cyclotron
International Nuclear Information System (INIS)
Hudson, E.D.; Martin, J.A.; Mallory, M.L.; McDaniel, F.E.; Irwin, F.
1975-01-01
Magnetic field studies were made for a four-sector, K = 330 (E = Kq 2 /A MeV), separated-sector cyclotron using a 1 / 10 scale model of a single sector equipped with 11 trimming coils. Data are presented showing the effects of saturation at high magnetic fields on the field contour and on the trimming coil characteristics. Some implications of these measurements for the design of separated-sector machine magnets are given. (U.S.)
A Study of Thermocurrent Induced Magnetic Fields in ILC Cavities
Energy Technology Data Exchange (ETDEWEB)
Crawford, Anthony C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Cooley, Victoria [Univ. of Wisconsin, Madison, WI (United States)
2014-03-31
The case of axisymmetric ILC-type cavities with titanium helium vessels is investigated. A first-order estimate for magnetic field within the SRF current layer is presented. The induced magnetic field is found to be not more than 1.4x10^{-8} Tesla = 0.14 milligauss for the case of axial symmetry. Magnetic fields due to symmetry breaking effects are discussed.
Magnetic Field Applications in Semiconductor Crystal Growth and Metallurgy
Mazuruk, Konstantin; Ramachandran, Narayanan; Grugel, Richard; Curreri, Peter A. (Technical Monitor)
2002-01-01
The Traveling Magnetic Field (TMF) technique, recently proposed to control meridional flow in electrically conducting melts, is reviewed. In particular, the natural convection damping capability of this technique has been numerically demonstrated with the implication of significantly improving crystal quality. Advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, are discussed. Finally, results of experiments with mixing metallic alloys in long ampoules using TMF is presented