WorldWideScience

Sample records for symmetric key structural

  1. Symmetric autocompensating quantum key distribution

    Science.gov (United States)

    Walton, Zachary D.; Sergienko, Alexander V.; Levitin, Lev B.; Saleh, Bahaa E. A.; Teich, Malvin C.

    2004-08-01

    We present quantum key distribution schemes which are autocompensating (require no alignment) and symmetric (Alice and Bob receive photons from a central source) for both polarization and time-bin qubits. The primary benefit of the symmetric configuration is that both Alice and Bob may have passive setups (neither Alice nor Bob is required to make active changes for each run of the protocol). We show that both the polarization and the time-bin schemes may be implemented with existing technology. The new schemes are related to previously described schemes by the concept of advanced waves.

  2. Symmetric Key Authentication Services Revisited

    NARCIS (Netherlands)

    Crispo, B.; Popescu, B.C.; Tanenbaum, A.S.

    2004-01-01

    Most of the symmetric key authentication schemes deployed today are based on principles introduced by Needham and Schroeder [15] more than twenty years ago. However, since then, the computing environment has evolved from a LAN-based client-server world to include new paradigms, including wide area

  3. Authentication for Bulk Data Dissemination in Sensor Networks Using Symmetric Keys

    National Research Council Canada - National Science Library

    Wang, Limin; Kulkarni, Sandeep

    2007-01-01

    .... Our protocol uses the secret instantiation algorithm for distributing the keys. We apply the symmetric key signatures at the segment/group level and use hashed verification at the packet level...

  4. On symmetric structures of order two

    Directory of Open Access Journals (Sweden)

    Michel Bousquet

    2008-04-01

    Full Text Available Let (ω n 0 < n be the sequence known as Integer Sequence A047749 http://www.research.att.com/ njas/sequences/A047749 In this paper, we show that the integer ω n enumerates various kinds of symmetric structures of order two. We first consider ternary trees having a reflexive symmetry and we relate all symmetric combinatorial objects by means of bijection. We then generalize the symmetric structures and correspondences to an infinite family of symmetric objects.

  5. Symmetric Stream Cipher using Triple Transposition Key Method and Base64 Algorithm for Security Improvement

    Science.gov (United States)

    Nurdiyanto, Heri; Rahim, Robbi; Wulan, Nur

    2017-12-01

    Symmetric type cryptography algorithm is known many weaknesses in encryption process compared with asymmetric type algorithm, symmetric stream cipher are algorithm that works on XOR process between plaintext and key, to improve the security of symmetric stream cipher algorithm done improvisation by using Triple Transposition Key which developed from Transposition Cipher and also use Base64 algorithm for encryption ending process, and from experiment the ciphertext that produced good enough and very random.

  6. Quantum-Secure Symmetric-Key Cryptography Based on Hidden Shifts

    DEFF Research Database (Denmark)

    Alagic, Gorjan; Russell, Alexander

    2017-01-01

    Recent results of Kaplan et al., building on work by Kuwakado and Morii, have shown that a wide variety of classically-secure symmetric-key cryptosystems can be completely broken by quantum chosen-plaintext attacks (qCPA). In such an attack, the quantum adversary has the ability to query the cryp...

  7. Symmetric metamaterials based on flower-shaped structure

    International Nuclear Information System (INIS)

    Tuong, P.V.; Park, J.W.; Rhee, J.Y.; Kim, K.W.; Cheong, H.; Jang, W.H.; Lee, Y.P.

    2013-01-01

    We proposed new models of metamaterials (MMs) based on a flower-shaped structure (FSS), whose “meta-atoms” consist of two flower-shaped metallic parts separated by a dielectric layer. Like the non-symmetric MMs based on cut-wire-pairs or electric ring resonators, the symmetrical FSS demonstrates the negative permeability at GHz frequencies. Employing the results, we designed a symmetric negative-refractive-index MM [a symmetric combined structure (SCS)], which is composed of FSSs and cross continuous wires. The MM properties of the FSS and the SCS are presented numerically and experimentally. - Highlights: • A new designed of sub-wavelength metamaterial, flower-shaped structure was proposed. • Flower-shaped meta-atom illustrated effective negative permeability. • Based on the meta-atom, negative refractive index was conventionally gained. • Negative refractive index was demonstrated with symmetric properties for electromagnetic wave. • Dimensional parameters were studied under normal electromagnetic wave

  8. Symmetric extension of bipartite quantum states and its use in quantum key distribution with two-way postprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Myhr, Geir Ove

    2010-11-08

    Just like we can divide the set of bipartite quantum states into separable states and entangled states, we can divide it into states with and without a symmetric extension. The states with a symmetric extension - which includes all the separable states - behave classically in many ways, while the states without a symmetric extension - which are all entangled - have the potential to exhibit quantum effects. The set of states with a symmetric extension is closed under local quantum operations assisted by one-way classical communication (1-LOCC) just like the set of separable states is closed under local operations assisted by two-way classical communication (LOCC). Because of this, states with a symmetric extension often play the same role in a one-way communication setting as the separable states play in a two-way communication setting. We show that any state with a symmetric extension can be decomposed into a convex combination of states that have a pure symmetric extension. A necessary condition for a state to have a pure symmetric extension is that the spectra of the local and global density matrices are equal. This condition is also sufficient for two qubits, but not for any larger systems. We present a conjectured necessary and sufficient condition for two-qubit states with a symmetric extension. Proofs are provided for some classes of states: rank-two states, states on the symmetric subspace, Bell-diagonal states and states that are invariant under S x S, where S is a phase gate. We also show how the symmetric extension problem for multi-qubit Bell-diagonal states can be simplified and the simplified problem implemented as a semidefinite program. Quantum key distribution protocols such as the six-state protocol and the BB84 protocol effectively gives Alice and Bob Bell-diagonal states that they measure in the standard basis to obtain a raw key which they may then process further to obtain a secret error-free key. When the raw key has a high error rate, the

  9. Symmetric extension of bipartite quantum states and its use in quantum key distribution with two-way postprocessing

    International Nuclear Information System (INIS)

    Myhr, Geir Ove

    2010-01-01

    Just like we can divide the set of bipartite quantum states into separable states and entangled states, we can divide it into states with and without a symmetric extension. The states with a symmetric extension - which includes all the separable states - behave classically in many ways, while the states without a symmetric extension - which are all entangled - have the potential to exhibit quantum effects. The set of states with a symmetric extension is closed under local quantum operations assisted by one-way classical communication (1-LOCC) just like the set of separable states is closed under local operations assisted by two-way classical communication (LOCC). Because of this, states with a symmetric extension often play the same role in a one-way communication setting as the separable states play in a two-way communication setting. We show that any state with a symmetric extension can be decomposed into a convex combination of states that have a pure symmetric extension. A necessary condition for a state to have a pure symmetric extension is that the spectra of the local and global density matrices are equal. This condition is also sufficient for two qubits, but not for any larger systems. We present a conjectured necessary and sufficient condition for two-qubit states with a symmetric extension. Proofs are provided for some classes of states: rank-two states, states on the symmetric subspace, Bell-diagonal states and states that are invariant under S x S, where S is a phase gate. We also show how the symmetric extension problem for multi-qubit Bell-diagonal states can be simplified and the simplified problem implemented as a semidefinite program. Quantum key distribution protocols such as the six-state protocol and the BB84 protocol effectively gives Alice and Bob Bell-diagonal states that they measure in the standard basis to obtain a raw key which they may then process further to obtain a secret error-free key. When the raw key has a high error rate, the

  10. A Symmetric Key Cryptographic Technique Through Swapping Bits in Binary Field Using p-Box Matrix

    OpenAIRE

    Subhranil Som; Soumasree Banerjee

    2014-01-01

    In this paper a symmetric key cryptographic algorithm named as “A Symmetric Key Cryptographic Technique Through Swapping Bits in Binary Field Using p-box Matrix“ is proposed. Secret sharing is a technique by which any information can be break down into small pieces. The secret can be reconstructed only when a sufficient number of pieces of shares are combined together; individual shares are of no use on their own. Traditional secret sharing scheme possesses high computational ...

  11. Synthesis and Structure of D3h-Symmetric Triptycene Trimaleimide

    Directory of Open Access Journals (Sweden)

    Anthony Linden

    2010-01-01

    Full Text Available A new D3h symmetric triptycene derivative has been synthesized with the aim of obtaining molecules that are able to assemble into porous structures, and can be used in the development of new ligands. The synthesis involves a Diels-Alder reaction as the key step, followed by an oxidation and the formation of a maleimide ring. Triptycene trimaleimide furnished single crystals which have been analyzed by means of X-ray diffraction.

  12. AUDIO CRYPTANALYSIS- AN APPLICATION OF SYMMETRIC KEY CRYPTOGRAPHY AND AUDIO STEGANOGRAPHY

    Directory of Open Access Journals (Sweden)

    Smita Paira

    2016-09-01

    Full Text Available In the recent trend of network and technology, “Cryptography” and “Steganography” have emerged out as the essential elements of providing network security. Although Cryptography plays a major role in the fabrication and modification of the secret message into an encrypted version yet it has certain drawbacks. Steganography is the art that meets one of the basic limitations of Cryptography. In this paper, a new algorithm has been proposed based on both Symmetric Key Cryptography and Audio Steganography. The combination of a randomly generated Symmetric Key along with LSB technique of Audio Steganography sends a secret message unrecognizable through an insecure medium. The Stego File generated is almost lossless giving a 100 percent recovery of the original message. This paper also presents a detailed experimental analysis of the algorithm with a brief comparison with other existing algorithms and a future scope. The experimental verification and security issues are promising.

  13. Triple symmetric key cryptosystem for data security

    Science.gov (United States)

    Fuzail, C. Md; Norman, Jasmine; Mangayarkarasi, R.

    2017-11-01

    As the technology is getting spreads in the macro seconds of speed and in which the trend changing era from human to robotics the security issue is also getting increased. By means of using machine attacks it is very easy to break the cryptosystems in very less amount of time. Cryptosystem is a process which provides the security in all sorts of processes, communications and transactions to be done securely with the help of electronical mechanisms. Data is one such thing with the expanded implication and possible scraps over the collection of data to secure predominance and achievement, Information Security is the process where the information is protected from invalid and unverified accessibilities and data from mishandling. So the idea of Information Security has risen. Symmetric key which is also known as private key.Whereas the private key is mostly used to attain the confidentiality of data. It is a dynamic topic which can be implemented over different applications like android, wireless censor networks, etc. In this paper, a new mathematical manipulation algorithm along with Tea cryptosystem has been implemented and it can be used for the purpose of cryptography. The algorithm which we proposed is straightforward and more powerful and it will authenticate in harder way and also it will be very difficult to break by someone without knowing in depth about its internal mechanisms.

  14. Duality, phase structures, and dilemmas in symmetric quantum games

    International Nuclear Information System (INIS)

    Ichikawa, Tsubasa; Tsutsui, Izumi

    2007-01-01

    Symmetric quantum games for 2-player, 2-qubit strategies are analyzed in detail by using a scheme in which all pure states in the 2-qubit Hilbert space are utilized for strategies. We consider two different types of symmetric games exemplified by the familiar games, the Battle of the Sexes (BoS) and the Prisoners' Dilemma (PD). These two types of symmetric games are shown to be related by a duality map, which ensures that they share common phase structures with respect to the equilibria of the strategies. We find eight distinct phase structures possible for the symmetric games, which are determined by the classical payoff matrices from which the quantum games are defined. We also discuss the possibility of resolving the dilemmas in the classical BoS, PD, and the Stag Hunt (SH) game based on the phase structures obtained in the quantum games. It is observed that quantization cannot resolve the dilemma fully for the BoS, while it generically can for the PD and SH if appropriate correlations for the strategies of the players are provided

  15. Symmetric Link Key Management for Secure Neighbor Discovery in a Decentralized Wireless Sensor Network

    Science.gov (United States)

    2017-09-01

    KEY MANAGEMENT FOR SECURE NEIGHBOR DISCOVERY IN A DECENTRALIZED WIRELESS SENSOR NETWORK by Kelvin T. Chew September 2017 Thesis Advisor...and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT...DATE September 2017 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE SYMMETRIC LINK KEY MANAGEMENT FOR SECURE NEIGHBOR

  16. Symmetric cryptographic protocols

    CERN Document Server

    Ramkumar, Mahalingam

    2014-01-01

    This book focuses on protocols and constructions that make good use of symmetric pseudo random functions (PRF) like block ciphers and hash functions - the building blocks for symmetric cryptography. Readers will benefit from detailed discussion of several strategies for utilizing symmetric PRFs. Coverage includes various key distribution strategies for unicast, broadcast and multicast security, and strategies for constructing efficient digests of dynamic databases using binary hash trees.   •        Provides detailed coverage of symmetric key protocols •        Describes various applications of symmetric building blocks •        Includes strategies for constructing compact and efficient digests of dynamic databases

  17. The symmetric extendibility of quantum states

    International Nuclear Information System (INIS)

    Nowakowski, Marcin L

    2016-01-01

    Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states. (paper)

  18. Email authentication using symmetric and asymmetric key algorithm encryption

    Science.gov (United States)

    Halim, Mohamad Azhar Abdul; Wen, Chuah Chai; Rahmi, Isredza; Abdullah, Nurul Azma; Rahman, Nurul Hidayah Ab.

    2017-10-01

    Protection of sensitive or classified data from unauthorized access, hackers and other personals is virtue. Storage of data is done in devices such as USB, external hard disk, laptops, I-Pad or at cloud. Cloud computing presents with both ups and downs. However, storing information elsewhere increases risk of being attacked by hackers. Besides, the risk of losing the device or being stolen is increased in case of storage in portable devices. There are array of mediums of communications and even emails used to send data or information but these technologies come along with severe weaknesses such as absence of confidentiality where the message sent can be altered and sent to the recipient. No proofs are shown to the recipient that the message received is altered. The recipient would not find out unless he or she checks with the sender. Without encrypted of data or message, sniffing tools and software can be used to hack and read the information since it is in plaintext. Therefore, an electronic mail authentication is proposed, namely Hybrid Encryption System (HES). The security of HES is protected using asymmetric and symmetric key algorithms. The asymmetric algorithm is RSA and symmetric algorithm is Advance Encryption Standard. With the combination for both algorithms in the HES may provide the confidentiality and authenticity to the electronic documents send from the sender to the recipient. In a nutshell, the HES will help users to protect their valuable documentation and data from illegal third party user.

  19. A symmetric positive definite formulation for monolithic fluid structure interaction

    KAUST Repository

    Robinson-Mosher, Avi; Schroeder, Craig; Fedkiw, Ronald

    2011-01-01

    In this paper we consider a strongly coupled (monolithic) fluid structure interaction framework for incompressible flow, as opposed to a loosely coupled (partitioned) method. This requires solving a single linear system that combines the unknown velocities of the structure with the unknown pressures of the fluid. In our previous work, we were able to obtain a symmetric formulation of this coupled system; however, it was also indefinite, making it more difficult to solve. In fact in practice there have been cases where we have been unable to invert the system. In this paper we take a novel approach that consists of factoring the damping matrix of deformable structures and show that this can be used to obtain a symmetric positive definite system, at least to the extent that the uncoupled systems were symmetric positive definite. We use a traditional MAC grid discretization of the fluid and a fully Lagrangian discretization of the structures for the sake of exposition, noting that our procedure can be generalized to other scenarios. For the special case of rigid bodies, where there are no internal damping forces, we exactly recover the system of Batty et al. (2007) [4]. © 2010 Elsevier Inc.

  20. A symmetric positive definite formulation for monolithic fluid structure interaction

    KAUST Repository

    Robinson-Mosher, Avi

    2011-02-01

    In this paper we consider a strongly coupled (monolithic) fluid structure interaction framework for incompressible flow, as opposed to a loosely coupled (partitioned) method. This requires solving a single linear system that combines the unknown velocities of the structure with the unknown pressures of the fluid. In our previous work, we were able to obtain a symmetric formulation of this coupled system; however, it was also indefinite, making it more difficult to solve. In fact in practice there have been cases where we have been unable to invert the system. In this paper we take a novel approach that consists of factoring the damping matrix of deformable structures and show that this can be used to obtain a symmetric positive definite system, at least to the extent that the uncoupled systems were symmetric positive definite. We use a traditional MAC grid discretization of the fluid and a fully Lagrangian discretization of the structures for the sake of exposition, noting that our procedure can be generalized to other scenarios. For the special case of rigid bodies, where there are no internal damping forces, we exactly recover the system of Batty et al. (2007) [4]. © 2010 Elsevier Inc.

  1. Authenticated Blind Issuing of Symmetric Keys for Mobile Access Control System without Trusted Parties

    Directory of Open Access Journals (Sweden)

    Shin-Yan Chiou

    2013-01-01

    Full Text Available Mobile authentication can be used to verify a mobile user’s identity. Normally this is accomplished through the use of logon passwords, but this can raise the secret-key agreement problem between entities. This issue can be resolved by using a public-key cryptosystem, but mobile devices have limited computation ability and battery capacity and a PKI is needed. In this paper, we propose an efficient, non-PKI, authenticated, and blind issued symmetric key protocol for mobile access control systems. An easy-to-deploy authentication and authenticated key agreement system is designed such that empowered mobile devices can directly authorize other mobile devices to exchange keys with the server upon authentication using a non-PKI system without trusted parties. Empowered mobile users do not know the key value of the other mobile devices, preventing users from impersonating other individuals. Also, for security considerations, this system can revoke specific keys or keys issued by a specific user. The scheme is secure, efficient, and feasible and can be implemented in existing environments.

  2. Symmetric structures of coherent states in superfluid helium-4

    International Nuclear Information System (INIS)

    Ahmad, M.

    1981-02-01

    Coherent States in superfluid helium-4 are discussed and symmetric structures are assigned to these states. Discrete and continuous series functions are exhibited for such states. Coherent State structure has been assigned to oscillating condensed bosons and their inter-relations and their effects on the superfluid system are analysed. (author)

  3. On Symmetric Polynomials

    OpenAIRE

    Golden, Ryan; Cho, Ilwoo

    2015-01-01

    In this paper, we study structure theorems of algebras of symmetric functions. Based on a certain relation on elementary symmetric polynomials generating such algebras, we consider perturbation in the algebras. In particular, we understand generators of the algebras as perturbations. From such perturbations, define injective maps on generators, which induce algebra-monomorphisms (or embeddings) on the algebras. They provide inductive structure theorems on algebras of symmetric polynomials. As...

  4. Analog/RF performance of two tunnel FETs with symmetric structures

    Science.gov (United States)

    Chen, Shupeng; Liu, Hongxia; Wang, Shulong; Li, Wei; Wang, Qianqiong

    2017-11-01

    In this paper, the radio frequency and analog performance of two tunnel field-effect transistors with symmetric structures are analyzed. The symmetric U-shape gate tunnel field-effect transistor (SUTFET) and symmetric tunnel field-effect transistor (STFET) are investigated by Silvaco Atlas simulation. The basic electrical properties and the parameters related to frequency and analog characteristics are analyzed. Due to the lower off-state leakage current, the STFET has better power consumption performance. The SUTFET obtains larger operating current (242 μA/μm), transconductance (490 μS/μm), output conductance (494 μS/μm), gain bandwidth product (3.2 GHz) and cut-off frequency (27.7 GHz). The simulation result of these two devices can be used as a guideline for their analog/RF applications.

  5. Tunable elastic parity-time symmetric structure based on the shunted piezoelectric materials

    Science.gov (United States)

    Hou, Zhilin; Assouar, Badreddine

    2018-02-01

    We theoretically and numerically report on the tunable elastic Parity-Time (PT) symmetric structure based on shunted piezoelectric units. We show that the elastic loss and gain can be archived in piezoelectric materials when they are shunted by external circuits containing positive and negative resistances. We present and discuss, as an example, the strongly dependent relationship between the exceptional points of a three-layered system and the impedance of their external shunted circuit. The achieved results evidence that the PT symmetric structures based on this proposed concept can actively be tuned without any change of their geometric configurations.

  6. A low loss superconducting filter with four states based on symmetrical interdigital-loaded structure

    International Nuclear Information System (INIS)

    Gao, Tianqi; Wei, Bin; Cao, Bisong; Wang, Dan; Guo, Xubo

    2016-01-01

    Highlights: • A novel symmetrical interdigital-loaded microstrip structure is presents. • A six-pole L-band HTS filter with four states has similar in-band responses. • The coupling coefficients between resonators keep unchanged during tuning. • The low loss HTS filter can be tuned from 1.382 GHz to 1.193 GHz. - Abstract: This paper presents a new symmetrical interdigital-loaded microstrip structure. The symmetrical structure can be applied to design a filter that can work at different frequencies. The filter has similar in-band response at each working frequency with low insertion loss. Based on the proposed structures, a low-loss six-pole high temperature superconducting (HTS) filter with four different working states is designed and fabricated. The center frequency of the filter can be tuned discretely from 1.382 GHz to 1.193 GHz. All four states have similar in-band characters, whereas the insertion losses are less than 0.3 dB. The measured results are consistent with the simulations.

  7. Dynamic Symmetric Key Mobile Commerce Scheme Based on Self-Verified Mechanism

    Directory of Open Access Journals (Sweden)

    Jiachen Yang

    2014-01-01

    Full Text Available In terms of the security and efficiency of mobile e-commerce, the authors summarized the advantages and disadvantages of several related schemes, especially the self-verified mobile payment scheme based on the elliptic curve cryptosystem (ECC and then proposed a new type of dynamic symmetric key mobile commerce scheme based on self-verified mechanism. The authors analyzed the basic algorithm based on self-verified mechanisms and detailed the complete transaction process of the proposed scheme. The authors analyzed the payment scheme based on the security and high efficiency index. The analysis shows that the proposed scheme not only meets the high efficiency of mobile electronic payment premise, but also takes the security into account. The user confirmation mechanism at the end of the proposed scheme further strengthens the security of the proposed scheme. In brief, the proposed scheme is more efficient and practical than most of the existing schemes.

  8. Weakly Interacting Symmetric and Anti-Symmetric States in the Bilayer Systems

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Tomaka, G.; Ploch, D.

    We have studied the parallel magneto-transport in DQW-structures of two different potential shapes: quasi-rectangular and quasi-triangular. The quantum beats effect was observed in Shubnikov-de Haas (SdH) oscillations for both types of the DQW structures in perpendicular magnetic filed arrangement. We developed a special scheme for the Landau levels energies calculation by means of which we carried out the necessary simulations of beating effect. In order to obtain the agreement between our experimental data and the results of simulations, we introduced two different quasi-Fermi levels which characterize symmetric and anti-symmetric states in DQWs. The existence of two different quasi Fermi-Levels simply means, that one can treat two sub-systems (charge carriers characterized by symmetric and anti-symmetric wave functions) as weakly interacting and having their own rate of establishing the equilibrium state.

  9. The hidden symmetries and their algebraic structure of the static axially symmetric SDYM fields

    International Nuclear Information System (INIS)

    Hao Sanru

    1993-01-01

    A new explicit transformation about the static axially symmetric self-dual Yang-Mills (SDYM) fields is presented. The theory has proved that the new transformation is a symmetric one. For the two kinds of the Lie algebraic generators of the Lie group SL (N. R) /SO (N), the corresponding transformations are given. By making use of the Yang-Baxter equality and their square brackets, the loop and conformal algebraic structures of the symmetric transformations for the basic fields have been obtained. All the results obtained can be directly generalized to the other models

  10. Planar Circularly Symmetric Electromagnetic Band-Gap Antennas for Low Cost High Performance Integrated Antennas

    NARCIS (Netherlands)

    Neto, A.; LLombart, N.; Gerini, G.; Maagt, P.J. de

    2009-01-01

    The use of Planar Circularly Symmetric (PCS) Electromagnetic Band-Gap (EBG) structures for optimizing the performances of single antenna elements and arrays is been discussed. The key advantage of using this sort of super structures is that they are planar and thus very cheap to manufacture with

  11. Planar circularly symmetric Electromagnetic Band-Gap antennas for low cost high performance integrated antennas

    NARCIS (Netherlands)

    Neto, A.; Llombart, N.; Gerini, G.; de Maagt, P.J.I.

    2009-01-01

    The use of planar circularly symmetric (PCS) electromagnetic band-gap (EBG) structures for optimizing the performances of single antenna elements and arrays is been discussed. The key advantage of using this sort of super structures is that they are planar and thus very cheap to manufacture with

  12. Rotationally symmetric structure in two extragalactic radio sources

    International Nuclear Information System (INIS)

    Lonsdale, C.J.; Morison, I.

    1980-01-01

    The new multi-telescope radio-linked interferometer (MTRLI) at Jodrell Bank was used during January and February 1980 at a frequency of 408 MHz to map the extragalactic radio sources 3C196 and 3C305 with a resolution of approximately 1 arc s. It is shown here that both the markedly symmetric structures observed and the spectral index distributions inferred from comparisons with previously published 5 GHz maps provide evidence for the source axes having rotated during the lifetime of the emitting regions. (U.K.)

  13. An Anonymous User Authentication and Key Agreement Scheme Based on a Symmetric Cryptosystem in Wireless Sensor Networks.

    Science.gov (United States)

    Jung, Jaewook; Kim, Jiye; Choi, Younsung; Won, Dongho

    2016-08-16

    In wireless sensor networks (WSNs), a registered user can login to the network and use a user authentication protocol to access data collected from the sensor nodes. Since WSNs are typically deployed in unattended environments and sensor nodes have limited resources, many researchers have made considerable efforts to design a secure and efficient user authentication process. Recently, Chen et al. proposed a secure user authentication scheme using symmetric key techniques for WSNs. They claim that their scheme assures high efficiency and security against different types of attacks. After careful analysis, however, we find that Chen et al.'s scheme is still vulnerable to smart card loss attack and is susceptible to denial of service attack, since it is invalid for verification to simply compare an entered ID and a stored ID in smart card. In addition, we also observe that their scheme cannot preserve user anonymity. Furthermore, their scheme cannot quickly detect an incorrect password during login phase, and this flaw wastes both communication and computational overheads. In this paper, we describe how these attacks work, and propose an enhanced anonymous user authentication and key agreement scheme based on a symmetric cryptosystem in WSNs to address all of the aforementioned vulnerabilities in Chen et al.'s scheme. Our analysis shows that the proposed scheme improves the level of security, and is also more efficient relative to other related schemes.

  14. A novel sandwich differential capacitive accelerometer with symmetrical double-sided serpentine beam-mass structure

    International Nuclear Information System (INIS)

    Xiao, D B; Li, Q S; Hou, Z Q; Wang, X H; Chen, Z H; Xia, D W; Wu, X Z

    2016-01-01

    This paper presents a novel differential capacitive silicon micro-accelerometer with symmetrical double-sided serpentine beam-mass sensing structure and glass–silicon–glass sandwich structure. The symmetrical double-sided serpentine beam-mass sensing structure is fabricated with a novel pre-buried mask fabrication technology, which is convenient for manufacturing multi-layer sensors. The glass–silicon–glass sandwich structure is realized by a double anodic bonding process. To solve the problem of the difficulty of leading out signals from the top and bottom layer simultaneously in the sandwich sensors, a silicon pillar structure is designed that is inherently simple and low-cost. The prototype is fabricated and tested. It has low noise performance (the peak to peak value is 40 μg) and μg-level Allan deviation of bias (2.2 μg in 1 h), experimentally demonstrating the effectiveness of the design and the novel fabrication technology. (paper)

  15. An Anonymous User Authentication and Key Agreement Scheme Based on a Symmetric Cryptosystem in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jaewook Jung

    2016-08-01

    Full Text Available In wireless sensor networks (WSNs, a registered user can login to the network and use a user authentication protocol to access data collected from the sensor nodes. Since WSNs are typically deployed in unattended environments and sensor nodes have limited resources, many researchers have made considerable efforts to design a secure and efficient user authentication process. Recently, Chen et al. proposed a secure user authentication scheme using symmetric key techniques for WSNs. They claim that their scheme assures high efficiency and security against different types of attacks. After careful analysis, however, we find that Chen et al.’s scheme is still vulnerable to smart card loss attack and is susceptible to denial of service attack, since it is invalid for verification to simply compare an entered ID and a stored ID in smart card. In addition, we also observe that their scheme cannot preserve user anonymity. Furthermore, their scheme cannot quickly detect an incorrect password during login phase, and this flaw wastes both communication and computational overheads. In this paper, we describe how these attacks work, and propose an enhanced anonymous user authentication and key agreement scheme based on a symmetric cryptosystem in WSNs to address all of the aforementioned vulnerabilities in Chen et al.’s scheme. Our analysis shows that the proposed scheme improves the level of security, and is also more efficient relative to other related schemes.

  16. Algorithm for advanced canonical coding of planar chemical structures that considers stereochemical and symmetric information.

    Science.gov (United States)

    Koichi, Shungo; Iwata, Satoru; Uno, Takeaki; Koshino, Hiroyuki; Satoh, Hiroko

    2007-01-01

    We describe a rigorous and fast algorithm for advanced canonical coding of planar chemical structures based on the algorithm of Faulon et al. (J. Chem. Inf. Comput. Sci. 2004, 44, 427-436). Our algorithm works well even for highly symmetric structures; moreover, an advantage of our algorithm includes providing a rigorous canonical numbering of atoms with a consideration of stereochemistry and recognizing symmetric moieties. The planar structural line notation with the canonical numbering is also fit for use with stereochemical line notation. These capabilities are usable for general purposes in chemical structural coding and are particularly essential for detecting equivalent atoms in NMR studies. This algorithm was implemented on a 13C NMR chemical shift prediction system CAST/CNMR. Applications of the algorithm to several organic compounds demonstrate the practical efficiency of the rigorous coding.

  17. Research on Characteristics of New Energy Dissipation With Symmetrical Structure

    Science.gov (United States)

    Ming, Wen; Huang, Chun-mei; Huang, Hao-wen; Wang, Xin-fang

    2018-03-01

    Utilizing good energy consumption capacity of arc steel bar, a new energy dissipation with symmetrical structure was proposed in this article. On the base of collection experimental data of damper specimen Under low cyclic reversed loading, finite element models were built by using ANSYS software, and influences of parameter change (Conduction rod diameter, Actuation plate thickness, Diameter of arc steel rod, Curved bars initial bending) on energy dissipation performance were analyzed. Some useful conclusions which can lay foundations for practical application were drawn.

  18. Breaking symmetry in the structure determination of (large) symmetric protein dimers

    Energy Technology Data Exchange (ETDEWEB)

    Gaponenko, Vadim; Altieri, Amanda S.; Li, Jess; Byrd, R. Andrew [National Cancer Institute, Structural Biophysics Laboratory (United States)], E-mail: rabyrd@ncifcrf.gov

    2002-10-15

    We demonstrate a novel methodology to disrupt the symmetry in the NMR spectra of homodimers. A paramagnetic probe is introduced sub-stoichiometrically to create an asymmetric system with the paramagnetic probe residing on only one monomer within the dimer. This creates sufficient magnetic anisotropy for resolution of symmetry-related overlapped resonances and, consequently, detection of pseudocontact shifts and residual dipolar couplings specific to each monomeric component. These pseudocontact shifts can be readily incorporated into existing structure refinement calculations and enable determination of monomer orientation within the dimeric protein. This methodology can be widely used for solution structure determination of symmetric dimers.

  19. Anti-symmetrized molecular dynamics: a new insight into the structure of nuclei

    International Nuclear Information System (INIS)

    Yoshiko, Kanada-En'yo; Masaaki, Kimura; Hisashi, Horiuchi

    2003-01-01

    The AMD (anti-symmetrized molecular dynamics) theory for nuclear structure is explained by showing its actual applications. First the formulation of AMD including various refined versions is briefly presented and its characteristics are discussed, putting a stress on its nature as an 'ab initio' theory. Then we demonstrate fruitful applications to various structure problems in stable nuclei, in order to explicitly verify the 'ab initio' nature of AMD, especially the ability to describe both mean-field-type structure and cluster structure. Finally, we show the results of applications of AMD to unstable nuclei, from which we see that AMD is powerful in elucidating and understanding various types of nuclear structure of unstable nuclei. (authors)

  20. Preconditioned conjugate gradient technique for the analysis of symmetric anisotropic structures

    Science.gov (United States)

    Noor, Ahmed K.; Peters, Jeanne M.

    1987-01-01

    An efficient preconditioned conjugate gradient (PCG) technique and a computational procedure are presented for the analysis of symmetric anisotropic structures. The technique is based on selecting the preconditioning matrix as the orthotropic part of the global stiffness matrix of the structure, with all the nonorthotropic terms set equal to zero. This particular choice of the preconditioning matrix results in reducing the size of the analysis model of the anisotropic structure to that of the corresponding orthotropic structure. The similarities between the proposed PCG technique and a reduction technique previously presented by the authors are identified and exploited to generate from the PCG technique direct measures for the sensitivity of the different response quantities to the nonorthotropic (anisotropic) material coefficients of the structure. The effectiveness of the PCG technique is demonstrated by means of a numerical example of an anisotropic cylindrical panel.

  1. Impact of repeated uniaxial mechanical strain on flexible a-IGZO thin film transistors with symmetric and asymmetric structures

    Science.gov (United States)

    Liao, Po-Yung; Chang, Ting-Chang; Su, Wan-Ching; Chen, Bo-Wei; Chen, Li-Hui; Hsieh, Tien-Yu; Yang, Chung-Yi; Chang, Kuan-Chang; Zhang, Sheng-Dong; Huang, Yen-Yu; Chang, Hsi-Ming; Chiang, Shin-Chuan

    2017-06-01

    This letter investigates repeated uniaxial mechanical stress-induced degradation behavior in flexible amorphous In-Ga-Zn-O thin-film transistors (TFTs) of different geometric structures. Two types of via-contact structure TFTs are investigated: symmetrical and UI structure (TFTs with I- and U-shaped asymmetric electrodes). After repeated mechanical stress, I-V curves for the symmetrical structure show a significant negative threshold voltage (VT) shift, due to mechanical stress-induced oxygen vacancy generation. However, degradation in the UI structure TFTs after stress is a negative VT shift along with the parasitic transistor characteristic in the forward-operation mode, with this hump not evident in the reverse-operation mode. This asymmetrical degradation is clarified by the mechanical strain simulation of the UI TFTs.

  2. The effect of axial loads on free vibration of symmetric frame structures using continuous system method

    Directory of Open Access Journals (Sweden)

    Elham Ghandi

    2016-09-01

    Full Text Available The free vibration of frame structures has been usually studied in literature without considering the effect of axial loads. In this paper, the continuous system method is employed to investigate this effect on the free flexural and torsional vibration of two and three dimensional symmetric frames. In the continuous system method, in approximate analysis of buildings, commonly, the structure is replaced by an equivalent beam which matches the dominant characteristics of the structure. Accordingly, the natural frequencies of the symmetric frame structures are obtained through solving the governing differential equation of the equivalent beam whose stiffness and mass are supposed to be uniformly distributed along the length. The corresponding axial load applied to the replaced beam is calculated based on the total weight and the number of stories of the building. A numerical example is presented to show the simplicity and efficiency of the proposed solution.

  3. Magnetospectroscopy of symmetric and anti-symmetric states in double quantum wells

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Ploch, D.; Tomaka, G.; Furdak, M.; Kolek, A.; Stadler, A.; Mleczko, K.; Zak, D.; Strupinski, W.; Jasik, A.; Jakiela, R.

    2008-02-01

    The experimental results obtained for magnetotransport in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells are reported. A beating effect occurring in the Shubnikov-de Haas (SdH) oscillations was observed for both types of structures at low temperatures in the parallel transport when the magnetic field was perpendicular to the layers. An approach for the calculation of the Landau level energies for DQW structures was developed and then applied to the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to account for the observed magnetotransport phenomena (SdH and integer quantum Hall effect), one should introduce two different quasi-Fermi levels characterizing two electron subsystems regarding the symmetry properties of their states, symmetric and anti-symmetric ones, which are not mixed by electron-electron interaction.

  4. Super-symmetric informationally complete measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Huangjun, E-mail: hzhu@pitp.ca

    2015-11-15

    Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg–Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg–Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.

  5. New Structural Representation and Digital-Analysis Platform for Symmetrical Parallel Mechanisms

    Directory of Open Access Journals (Sweden)

    Wenao Cao

    2013-05-01

    Full Text Available Abstract An automatic design platform capable of automatic structural analysis, structural synthesis and the application of parallel mechanisms will be a great aid in the conceptual design of mechanisms, though up to now such a platform has only existed as an idea. The work in this paper constitutes part of such a platform. Based on the screw theory and a new structural representation method proposed here which builds a one-to-one correspondence between the strings of representative characters and the kinematic structures of symmetrical parallel mechanisms (SPMs, this paper develops a fully-automatic approach for mobility (degree-of-freedom analysis, and further establishes an automatic digital-analysis platform for SPMs. With this platform, users simply have to enter the strings of representative characters, and the kinematic structures of the SPMs will be generated and displayed automatically, and the mobility and its properties will also be analysed and displayed automatically. Typical examples are provided to show the effectiveness of the approach.

  6. On the harmonic starlike functions with respect to symmetric ...

    African Journals Online (AJOL)

    In the present paper, we introduce the notions of functions harmonic starlike with respect to symmetric, conjugate and symmetric conjugate points. Such results as coefficient inequalities and structural formulae for these function classes are proved. Keywords: Harmonic functions, harmonic starlike functions, symmetric points, ...

  7. Key management schemes using routing information frames in secure wireless sensor networks

    Science.gov (United States)

    Kamaev, V. A.; Finogeev, A. G.; Finogeev, A. A.; Parygin, D. S.

    2017-01-01

    The article considers the problems and objectives of key management for data encryption in wireless sensor networks (WSN) of SCADA systems. The structure of the key information in the ZigBee network and methods of keys obtaining are discussed. The use of a hybrid key management schemes is most suitable for WSN. The session symmetric key is used to encrypt the sensor data, asymmetric keys are used to encrypt the session key transmitted from the routing information. Three algorithms of hybrid key management using routing information frames determined by routing methods and the WSN topology are presented.

  8. HREM investigation of the structure of the Σ5(310)/[001] symmetric tilt grain boundaries in Nb

    International Nuclear Information System (INIS)

    King, W.E.; Compbell, G.H.; Coombs, A.; Ruehle, M.

    1991-01-01

    This paper reports on atomistic simulations using interatomic potentials for Nb developed employing the embedded atom method (EAM) and the model generalized pseudopotential theory (MGPT) that have indicated a possible cusp at the Σ5 (310) orientation in the energy vs tilt angle curves for left-angle 001 right-angle symmetric tilt grain boundaries. In addition, the most stable structure predicted using EAM exhibits shifts of one crystal relative to the other along the tilt axis and along the direction perpendicular to the tilt axis lying in the boundary plane. The structure predicted using the MGPT was mirror symmetric across the plane of the grain boundary. This boundary has been prepared for experimental study using the ultra high vacuum diffusion bonding method. A segment of this boundary has been studied using high resolution electron microscopy

  9. Causal symmetric spaces

    CERN Document Server

    Olafsson, Gestur; Helgason, Sigurdur

    1996-01-01

    This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces

  10. Enhanced Sensitivity of Anti-Symmetrically Structured Surface Plasmon Resonance Sensors with Zinc Oxide Intermediate Layers

    Directory of Open Access Journals (Sweden)

    Nan-Fu Chiu

    2013-12-01

    Full Text Available We report a novel design wherein high-refractive-index zinc oxide (ZnO intermediary layers are used in anti-symmetrically structured surface plasmon resonance (SPR devices to enhance signal quality and improve the full width at half maximum (FWHM of the SPR reflectivity curve. The surface plasmon (SP modes of the ZnO intermediary layer were excited by irradiating both sides of the Au film, thus inducing a high electric field at the Au/ZnO interface. We demonstrated that an improvement in the ZnO (002 crystal orientation led to a decrease in the FWHM of the SPR reflectivity curves. We optimized the design of ZnO thin films using different parameters and performed analytical comparisons of the ZnO with conventional chromium (Cr and indium tin oxide (ITO intermediary layers. The present study is based on application of the Fresnel equation, which provides an explanation and verification for the observed narrow SPR reflectivity curve and optical transmittance spectra exhibited by (ZnO/Au, (Cr/Au, and (ITO/Au devices. On exposure to ethanol, the anti-symmetrically structured showed a huge electric field at the Au/ZnO interface and a 2-fold decrease in the FWHM value and a 1.3-fold larger shift in angle interrogation and a 4.5-fold high-sensitivity shift in intensity interrogation. The anti-symmetrically structured of ZnO intermediate layers exhibited a wider linearity range and much higher sensitivity. It also exhibited a good linear relationship between the incident angle and ethanol concentration in the tested range. Thus, we demonstrated a novel and simple method for fabricating high-sensitivity, high-resolution SPR biosensors that provide high accuracy and precision over relevant ranges of analyte measurement.

  11. Exact solutions of the spherically symmetric multidimensional ...

    African Journals Online (AJOL)

    The complete orthonormalised energy eigenfunctions and the energy eigenvalues of the spherically symmetric isotropic harmonic oscillator in N dimensions, are obtained through the methods of separation of variables. Also, the degeneracy of the energy levels are examined. KEY WORDS: - Schrödinger Equation, Isotropic ...

  12. Solution Structure of a Novel C2-Symmetrical Bifunctional Bicyclic Inhibitor Based on SFTI-1

    International Nuclear Information System (INIS)

    Jaulent, Agnes M.; Brauer, Arnd B. E.; Matthews, Stephen J.; Leatherbarrow, Robin J.

    2005-01-01

    A novel bifunctional bicyclic inhibitor has been created that combines features both from the Bowman-Birk inhibitor (BBI) proteins, which have two distinct inhibitory sites, and from sunflower trypsin inhibitor-1 (SFTI-1), which has a compact bicyclic structure. The inhibitor was designed by fusing together a pair of reactive loops based on a sequence derived from SFTI-1 to create a backbone-cyclized disulfide-bridged 16-mer peptide. This peptide has two symmetrically spaced trypsin binding sites. Its synthesis and biological activity have been reported in a previous communication [Jaulent and Leatherbarrow, 2004, PEDS 17, 681]. In the present study we have examined the three-dimensional structure of the molecule. We find that the new inhibitor, which has a symmetrical 8-mer half-cystine CTKSIPP'I' motif repeated through a C 2 symmetry axis also shows a complete symmetry in its three-dimensional structure. Each of the two loops adopts the expected canonical conformation common to all BBIs as well as SFTI-1. We also find that the inhibitor displays a strong and unique structural identity, with a notable lack of minor conformational isomers that characterise most reactive site loop mimics examined to date as well as SFTI-1. This suggests that the presence of the additional cyclic loop acts to restrict conformational mobility and that the deliberate introduction of cyclic symmetry may offer a general route to locking the conformation of β-hairpin structures

  13. Laser-Printed In-Plane Micro-Supercapacitors: From Symmetric to Asymmetric Structure.

    Science.gov (United States)

    Huang, Gui-Wen; Li, Na; Du, Yi; Feng, Qing-Ping; Xiao, Hong-Mei; Wu, Xing-Hua; Fu, Shao-Yun

    2018-01-10

    Here, we propose and demonstrate a complete solution for efficiently fabricating in-plane micro-supercapacitors (MSCs) from a symmetric to asymmetric structure. By using an original laser printing process, symmetric MSC with reduced graphene oxide (rGO)/silver nanowire (Ag-NW) hybrid electrodes was facilely fabricated and a high areal capacitance of 5.5 mF cm -2 was achieved, which reaches the best reports on graphene-based MSCs. More importantly, a "print-and-fold" method has been creatively proposed that enabled the rapid manufacturing of asymmetric in-plane MSCs beyond the traditional cumbersome technologies. α-Ni(OH) 2 particles with high tapping density were successfully synthesized and employed as the pseudocapacitive material. Consequently, an improved supply voltage of 1.5 V was obtained and an areal capacitance as high as 8.6 mF cm -2 has been realized. Moreover, a demonstration of a miniaturized MSC pack was performed by multiply-folding the serial Ag-NW-connected MSC units. As a result, a compact MSC pack with a high supply voltage of 3 V was obtained, which can be utilized to power a light-emitting diode light. These presented technologies may pave the way for the efficiently producing high performance in-plane MSCs, meanwhile offering a solution for the achievement of practical power supply packs integrated in limited spaces.

  14. Symmetric normalisation for intuitionistic logic

    DEFF Research Database (Denmark)

    Guenot, Nicolas; Straßburger, Lutz

    2014-01-01

    We present two proof systems for implication-only intuitionistic logic in the calculus of structures. The first is a direct adaptation of the standard sequent calculus to the deep inference setting, and we describe a procedure for cut elimination, similar to the one from the sequent calculus......, but using a non-local rewriting. The second system is the symmetric completion of the first, as normally given in deep inference for logics with a DeMorgan duality: all inference rules have duals, as cut is dual to the identity axiom. We prove a generalisation of cut elimination, that we call symmetric...

  15. Symmetric waterbomb origami.

    Science.gov (United States)

    Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong

    2016-06-01

    The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.

  16. Symmetric imaging findings in neuroradiology

    International Nuclear Information System (INIS)

    Zlatareva, D.

    2015-01-01

    Full text: Learning objectives: to make a list of diseases and syndromes which manifest as bilateral symmetric findings on computed tomography and magnetic resonance imaging; to discuss the clinical and radiological differential diagnosis for these diseases; to explain which of these conditions necessitates urgent therapy and when additional studies and laboratory can precise diagnosis. There is symmetry in human body and quite often we compare the affected side to the normal one but in neuroradiology we might have bilateral findings which affected pair structures or corresponding anatomic areas. It is very rare when clinical data prompt diagnosis. Usually clinicians suspect such an involvement but Ct and MRI can reveal symmetric changes and are one of the leading diagnostic tool. The most common location of bilateral findings is basal ganglia and thalamus. There are a number of diseases affecting these structures symmetrically: metabolic and systemic diseases, intoxication, neurodegeneration and vascular conditions, toxoplasmosis, tumors and some infections. Malformations of cortical development and especially bilateral perisylvian polymicrogyria requires not only exact report on the most affected parts but in some cases genetic tests or combination with other clinical symptoms. In the case of herpes simplex encephalitis bilateral temporal involvement is common and this finding very often prompt therapy even before laboratory results. Posterior reversible encephalopathy syndrome (PReS) and some forms of hypoxic ischemic encephalopathy can lead to symmetric changes. In these acute conditions MR plays a crucial role not only in diagnosis but also in monitoring of the therapeutic effect. Patients with neurofibromatosis type 1 or type 2 can demonstrate bilateral optic glioma combined with spinal neurofibroma and bilateral acoustic schwanoma respectively. Mirror-image aneurysm affecting both internal carotid or middle cerebral arteries is an example of symmetry in

  17. Facade Layout Symmetrization

    KAUST Repository

    Jiang, Haiyong

    2016-04-11

    We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.

  18. Facade Layout Symmetrization

    KAUST Repository

    Jiang, Haiyong; Dong, Weiming; Yan, Dongming; Zhang, Xiaopeng

    2016-01-01

    We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.

  19. Symmetric Blind Information Reconciliation for Quantum Key Distribution

    International Nuclear Information System (INIS)

    Kiktenko, Evgeniy O.

    2017-01-01

    Quantum key distribution (QKD) is a quantum-proof key-exchange scheme which is fast approaching the communication industry. An essential component in QKD is the information reconciliation step, which is used for correcting the quantum-channel noise errors. The recently suggested blind-reconciliation technique, based on low-density parity-check codes, offers remarkable prospectives for efficient information reconciliation without an a priori quantum bit error rate estimation. We suggest an improvement of the blind-information-reconciliation protocol promoting a significant increase in the efficiency of the procedure and reducing its interactivity. Finally, the proposed technique is based on introducing symmetry in operations of parties, and the consideration of results of unsuccessful belief-propagation decodings.

  20. Are both symmetric and buckled dimers on Si(100) minima? Density functional and multireference perturbation theory calculations

    International Nuclear Information System (INIS)

    Jung, Yousung; Shao, Yihan; Gordon, Mark S.; Doren, Douglas J.; Head-Gordon, Martin

    2003-01-01

    We report a spin-unrestricted density functional theory (DFT) solution at the symmetric dimer structure for cluster models of Si(100). With this solution, it is shown that the symmetric structure is a minimum on the DFT potential energy surface, although higher in energy than the buckled structure. In restricted DFT calculations the symmetric structure is a saddle point connecting the two buckled minima. To further assess the effects of electron correlation on the relative energies of symmetric versus buckled dimers on Si(100), multireference second order perturbation theory (MRMP2) calculations are performed on these DFT optimized minima. The symmetric structure is predicted to be lower in energy than the buckled structure via MRMP2, while the reverse order is found by DFT. The implications for recent experimental interpretations are discussed

  1. An Efficient Quantum Somewhat Homomorphic Symmetric Searchable Encryption

    Science.gov (United States)

    Sun, Xiaoqiang; Wang, Ting; Sun, Zhiwei; Wang, Ping; Yu, Jianping; Xie, Weixin

    2017-04-01

    In 2009, Gentry first introduced an ideal lattices fully homomorphic encryption (FHE) scheme. Later, based on the approximate greatest common divisor problem, learning with errors problem or learning with errors over rings problem, FHE has developed rapidly, along with the low efficiency and computational security. Combined with quantum mechanics, Liang proposed a symmetric quantum somewhat homomorphic encryption (QSHE) scheme based on quantum one-time pad, which is unconditional security. And it was converted to a quantum fully homomorphic encryption scheme, whose evaluation algorithm is based on the secret key. Compared with Liang's QSHE scheme, we propose a more efficient QSHE scheme for classical input states with perfect security, which is used to encrypt the classical message, and the secret key is not required in the evaluation algorithm. Furthermore, an efficient symmetric searchable encryption (SSE) scheme is constructed based on our QSHE scheme. SSE is important in the cloud storage, which allows users to offload search queries to the untrusted cloud. Then the cloud is responsible for returning encrypted files that match search queries (also encrypted), which protects users' privacy.

  2. Secure key distribution by swapping quantum entanglement

    International Nuclear Information System (INIS)

    Song, Daegene

    2004-01-01

    We report two key distribution schemes achieved by swapping quantum entanglement. Using two Bell states, two bits of secret key can be shared between two distant parties that play symmetric and equal roles. We also address eavesdropping attacks against the schemes

  3. Effect of intermolecular dipole-dipole interactions on interfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronene derivatives.

    Science.gov (United States)

    Mu, Zhongcheng; Shao, Qi; Ye, Jun; Zeng, Zebing; Zhao, Yang; Hng, Huey Hoon; Boey, Freddy Yin Chiang; Wu, Jishan; Chen, Xiaodong

    2011-02-15

    Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.

  4. Symmetrization of Facade Layouts

    KAUST Repository

    Jiang, Haiyong; Yan, Dong-Ming; Dong, Weiming; Wu, Fuzhang; Nan, Liangliang; Zhang, Xiaopeng

    2016-01-01

    We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.

  5. Symmetrization of Facade Layouts

    KAUST Repository

    Jiang, Haiyong

    2016-02-26

    We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.

  6. Is the Universe matter-antimatter symmetric

    International Nuclear Information System (INIS)

    Alfven, H.

    1976-09-01

    According to the symmetric cosmology there should be antimatter regions in space which are equally as large as the matter regions. The regions of different kind are separated by Leidenfrost layers, which may be very thin and not observable from a distance. This view has met resistance which in part is based on the old view that the dilute interstellar and intergalactic medium is more or less homogeneous. However, through space research in the magnetosphere and interplanetary space we know that thin layers, dividing space into regions of different magnetisation, exist and based on this it is concluded that space in general has a cellular structure. This result may break down the psychological resistance to the symmetric theory. The possibility that every second star in our galaxy consists of antimatter is discussed, and it is shown that this view is not in conflict with any observations. As most stars are likely to be surrounded by solar systems of a structure like our own, it is concluded that collisions between comets and antistars (or anticomets and stars) would be rather frequent. Such collisions would result in phenomena of the same type as the observed cosmic γ-ray bursts. Another support for the symmetric cosmology is the continuous X-ray background radiation. Also many of the observed large energy releases in cosmos are likely to be due to annihilation

  7. A Non-symmetric Digital Image Secure Communication Scheme Based on Generalized Chaos Synchronization System

    International Nuclear Information System (INIS)

    Zhang Xiaohong; Min Lequan

    2005-01-01

    Based on a generalized chaos synchronization system and a discrete Sinai map, a non-symmetric true color (RGB) digital image secure communication scheme is proposed. The scheme first changes an ordinary RGB digital image with 8 bits into unrecognizable disorder codes and then transforms the disorder codes into an RGB digital image with 16 bits for transmitting. A receiver uses a non-symmetric key to verify the authentication of the received data origin, and decrypts the ciphertext. The scheme can encrypt and decrypt most formatted digital RGB images recognized by computers, and recover the plaintext almost without any errors. The scheme is suitable to be applied in network image communications. The analysis of the key space, sensitivity of key parameters, and correlation of encrypted images imply that this scheme has sound security.

  8. Uniqueness of flat spherically symmetric spacelike hypersurfaces admitted by spherically symmetric static spacetimes

    Science.gov (United States)

    Beig, Robert; Siddiqui, Azad A.

    2007-11-01

    It is known that spherically symmetric static spacetimes admit a foliation by flat hypersurfaces. Such foliations have explicitly been constructed for some spacetimes, using different approaches, but none of them have proved or even discussed the uniqueness of these foliations. The issue of uniqueness becomes more important due to suitability of flat foliations for studying black hole physics. Here, flat spherically symmetric spacelike hypersurfaces are obtained by a direct method. It is found that spherically symmetric static spacetimes admit flat spherically symmetric hypersurfaces, and that these hypersurfaces are unique up to translation under the timelike Killing vector. This result guarantees the uniqueness of flat spherically symmetric foliations for such spacetimes.

  9. Solution of generalized shifted linear systems with complex symmetric matrices

    International Nuclear Information System (INIS)

    Sogabe, Tomohiro; Hoshi, Takeo; Zhang, Shao-Liang; Fujiwara, Takeo

    2012-01-01

    We develop the shifted COCG method [R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, T. Fujiwara, Linear algebraic calculation of Green’s function for large-scale electronic structure theory, Phys. Rev. B 73 (165108) (2006) 1–9] and the shifted WQMR method [T. Sogabe, T. Hoshi, S.-L. Zhang, T. Fujiwara, On a weighted quasi-residual minimization strategy of the QMR method for solving complex symmetric shifted linear systems, Electron. Trans. Numer. Anal. 31 (2008) 126–140] for solving generalized shifted linear systems with complex symmetric matrices that arise from the electronic structure theory. The complex symmetric Lanczos process with a suitable bilinear form plays an important role in the development of the methods. The numerical examples indicate that the methods are highly attractive when the inner linear systems can efficiently be solved.

  10. The Möbius transform on symmetric ordered structures and its application to capacities on finite sets

    OpenAIRE

    Michel Grabisch

    2004-01-01

    International audience; Considering a linearly ordered set, we introduce its symmetric version, and endow it with two operations extending supremum and infimum, so as to obtain an algebraic structure close to a commutative ring. We show that imposing symmetry necessarily entails non associativity, hence computing rules are defined in order to deal with non associativity. We study in details computing rules, which we endow with a partial order. This permits to find solutions to the inversion f...

  11. Elastic-plastic analysis of an axi-symmetric problem by a finite element method

    International Nuclear Information System (INIS)

    Isozaki, Toshikuni

    1984-06-01

    Generally speaking, many structures are designed and fabricated on the basis of an axi-symmetric structure. Finite Element Method is the capable method to solve these axi-symmetric problems beyond the elastic limit. As the first step to solve these problems, the computer program for the elastic-plastic analysis of the axi-symmetric problem is composed. The basic program is based upon that described in Zienkiewicz's text book to solve the elastic plane stress problem, taking the plastic stress matrix by Yamada's method into consideration and it is converted to solve the axi-symmetric problem. For the verification of the program, the plane strain problem of a cylindrical tube under internal pressure was solved. The computed results were compared with those shown in ADINA's user's manual. They showed close agreement. (author)

  12. Symmetric q-Bessel functions

    Directory of Open Access Journals (Sweden)

    Giuseppe Dattoli

    1996-05-01

    Full Text Available q analog of bessel functions, symmetric under the interchange of q and q^ −1 are introduced. The definition is based on the generating function realized as product of symmetric q-exponential functions with appropriate arguments. Symmetric q-Bessel function are shown to satisfy various identities as well as second-order q-differential equations, which in the limit q → 1 reproduce those obeyed by the usual cylindrical Bessel functions. A brief discussion on the possible algebraic setting for symmetric q-Bessel functions is also provided.

  13. Focusing optical waves with a rotationally symmetric sharp-edge aperture

    Science.gov (United States)

    Hu, Yanwen; Fu, Shenhe; Li, Zhen; Yin, Hao; Zhou, Jianying; Chen, Zhenqiang

    2018-04-01

    While there has been various kinds of patterned structures proposed for wave focusing, these patterned structures usually involve complicated lithographic techniques since the element size of the patterned structures should be precisely controlled in microscale or even nanoscale. Here we propose a new and straightforward method for focusing an optical plane wave in free space with a rotationally symmetric sharp-edge aperture. The focusing phenomenon of wave is realized by superposition of a portion of the higher-order symmetric plane waves generated from the sharp edges of the apertures, in contrast to previously focusing techniques which usually depend on a curved phase. We demonstrate both experimentally and theoretically the focusing effect with a series of apertures having different rotational symmetry, and find that the intensity of the hotspots could be controlled by the symmetric strength of the sharp-edge apertures. The presented results would advance the conventional wisdom that light would diffract in all directions and become expanding when it propagates through an aperture. The proposed method is easy to be processed, and might open potential applications in interferometry, image, and superresolution.

  14. Optical image encryption using password key based on phase retrieval algorithm

    Science.gov (United States)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2016-04-01

    A novel optical image encryption system is proposed using password key based on phase retrieval algorithm (PRA). In the encryption process, a shared image is taken as a symmetric key and the plaintext is encoded into the phase-only mask based on the iterative PRA. The linear relationship between the plaintext and ciphertext is broken using the password key, which can resist the known plaintext attack. The symmetric key and the retrieved phase are imported into the input plane and Fourier plane of 4f system during the decryption, respectively, so as to obtain the plaintext on the CCD. Finally, we analyse the key space of the password key, and the results show that the proposed scheme can resist a brute force attack due to the flexibility of the password key.

  15. Anti-symmetrized molecular dynamics: a new insight into the structure of nuclei; La dynamique moleculaire antisymetrisee, une nouvelle facon de comprendre la structure des noyaux

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiko, Kanada-En' yo [High Energy Accelerator Research Organization - KEK, Institute of Particle and Nuclear Studies, Ibaraki (Japan); Masaaki, Kimura [Institute of Physical and Chemical Research - RIKEN, Saitama (Japan); Hisashi, Horiuchi [Kyoto Univ., Dept. of Physics, Graduate School of Science (Japan)

    2003-06-01

    The AMD (anti-symmetrized molecular dynamics) theory for nuclear structure is explained by showing its actual applications. First the formulation of AMD including various refined versions is briefly presented and its characteristics are discussed, putting a stress on its nature as an 'ab initio' theory. Then we demonstrate fruitful applications to various structure problems in stable nuclei, in order to explicitly verify the 'ab initio' nature of AMD, especially the ability to describe both mean-field-type structure and cluster structure. Finally, we show the results of applications of AMD to unstable nuclei, from which we see that AMD is powerful in elucidating and understanding various types of nuclear structure of unstable nuclei. (authors)

  16. Investigating the degradation behavior under hot carrier stress for InGaZnO TFTs with symmetric and asymmetric structures

    International Nuclear Information System (INIS)

    Tsai, Ming-Yen; Chang, Ting-Chang; Chu, Ann-Kuo; Chen, Te-Chih; Hsieh, Tien-Yu; Chen, Yu-Te; Tsai, Wu-Wei; Chiang, Wen-Jen; Yan, Jing-Yi

    2013-01-01

    This letter studies the hot-carrier effect in indium–gallium–zinc oxide (IGZO) thin film transistors with symmetric and asymmetric source/drain structures. The different degradation behaviors after hot-carrier stress in symmetric and asymmetric source/drain devices indicate that different mechanisms dominate the degradation. Since the C–V measurement is highly sensitive to trap states compared to the I–V characterization, C–V curves are utilized to analyze the hot-carrier stress-induced trap state generation. Furthermore, the asymmetric C–V measurements C GD (gate-to-drain capacitance) and C GS (gate-to-source capacitance) are used to analyze the trap state in channel location. The asymmetric source/drain structure under hot-carrier stress induces an asymmetric electrical field and causes different degradation behaviors. In this work, the on-current and subthreshold swing (S.S.) degrade under low electrical field, whereas an apparent V t shift occurs under large electrical field. The different degradation behaviors indicate that trap states are generated under a low electrical field and the channel-hot-electron (CHE) effect occurs under a large electrical field. - Highlights: ► Asymmetric structure thin film transistors improve kick-back effect. ► Asymmetric structures under hot-carrier stress induce different degradation. ► Hot-carrier stress leads to capacitance–voltage curve distortion. ► Extra trap states are generated during hot-carrier stress

  17. Integrability and symmetric spaces. II- The coset spaces

    International Nuclear Information System (INIS)

    Ferreira, L.A.

    1987-01-01

    It shown that a sufficient condition for a model describing the motion of a particle on a coset space to possess a fundamental Poisson bracket relation, and consequently charges involution, is that it must be a symmetric space. The conditions a hamiltonian, or any function of the canonical variables, has to satisfy in order to commute with these charges are studied. It is shown that, for the case of non compact symmetric space, these conditions lead to an algebraic structure which plays an important role in the construction of conserved quantities. (author) [pt

  18. Calculation of key reduction for B92 QKD protocol

    Science.gov (United States)

    Mehic, Miralem; Partila, Pavol; Tovarek, Jaromir; Voznak, Miroslav

    2015-05-01

    It is well known that Quantum Key Distribution (QKD) can be used with the highest level of security for distribution of the secret key, which is further used for symmetrical encryption. B92 is one of the oldest QKD protocols. It uses only two non-orthogonal states, each one coding for one bit-value. It is much faster and simpler when compared to its predecessors, but with the idealized maximum efficiencies of 25% over the quantum channel. B92 consists of several phases in which initial key is significantly reduced: secret key exchange, extraction of the raw key (sifting), error rate estimation, key reconciliation and privacy amplification. QKD communication is performed over two channels: the quantum channel and the classical public channel. In order to prevent a man-in-the-middle attack and modification of messages on the public channel, authentication of exchanged values must be performed. We used Wegman-Carter authentication because it describes an upper bound for needed symmetric authentication key. We explained the reduction of the initial key in each of QKD phases.

  19. Quantum Key Distribution Using Four-Qubit W State

    International Nuclear Information System (INIS)

    Cai Haijing; Song Heshan

    2006-01-01

    A new theoretical quantum key distribution scheme based on entanglement swapping is proposed, where four-qubit symmetric W state functions as quantum channel. It is shown that two legitimate users can secretly share a series of key bits by using Bell-state measurements and classical communication.

  20. Symmetric vectors and algebraic classification

    International Nuclear Information System (INIS)

    Leibowitz, E.

    1980-01-01

    The concept of symmetric vector field in Riemannian manifolds, which arises in the study of relativistic cosmological models, is analyzed. Symmetric vectors are tied up with the algebraic properties of the manifold curvature. A procedure for generating a congruence of symmetric fields out of a given pair is outlined. The case of a three-dimensional manifold of constant curvature (''isotropic universe'') is studied in detail, with all its symmetric vector fields being explicitly constructed

  1. Invariant subspaces in some function spaces on symmetric spaces. II

    International Nuclear Information System (INIS)

    Platonov, S S

    1998-01-01

    Let G be a semisimple connected Lie group with finite centre, K a maximal compact subgroup of G, and M=G/K a Riemannian symmetric space of non-compact type. We study the problem of describing the structure of closed linear subspaces in various function spaces on M that are invariant under the quasiregular representation of the group G. We consider the case when M is a symplectic symmetric space of rank 1

  2. Symmetric energy-momentum tensor in Maxwell, Yang-Mills, and Proca theories obtained using only Noether's theorem

    International Nuclear Information System (INIS)

    Montesinos, M.; Flores, E.

    2006-01-01

    The symmetric and gauge-invariant energy-momentum tensors for source-free Maxwell and Yang-Mills theories are obtained by means of translations in spacetime via a systematic implementation of Noether's theorem. For the source-free neutral Proca field, the same procedure yields also the symmetric energy-momentum tensor. In all cases, the key point to get the right expressions for the energy-momentum tensors is the appropriate handling of their equations of motion and the Bianchi identities. It must be stressed that these results are obtained without using Belinfante's symmetrization techniques which are usually employed to this end. (Author)

  3. Marginal Stability Diagrams for Infinite-n Ballooning Modes in Quasi-symmetric Stellarators

    International Nuclear Information System (INIS)

    Hudson, S.R.; Hegna, C.C.; Torasso, R.; Ware, A.

    2003-01-01

    By perturbing the pressure and rotational-transform profiles at a selected surface in a given equilibrium, and by inducing a coordinate variation such that the perturbed state is in equilibrium, a family of magnetohydrodynamic equilibria local to the surface and parameterized by the pressure gradient and shear is constructed for arbitrary stellarator geometry. The geometry of the surface is not changed. The perturbed equilibria are analyzed for infinite-n ballooning stability and marginal stability diagrams are constructed that are analogous to the (s; alpha) diagrams constructed for axi-symmetric configurations. The method describes how pressure and rotational-transform gradients influence the local shear, which in turn influences the ballooning stability. Stability diagrams for the quasi-axially-symmetric NCSX (National Compact Stellarator Experiment), a quasi-poloidally-symmetric configuration and the quasi-helically-symmetric HSX (Helically Symmetric Experiment) are presented. Regions of second-stability are observed in both NCSX and the quasi-poloidal configuration, whereas no second stable region is observed for the quasi-helically symmetric device. To explain the different regions of stability, the curvature and local shear of the quasi-poloidal configuration are analyzed. The results are seemingly consistent with the simple explanation: ballooning instability results when the local shear is small in regions of bad curvature. Examples will be given that show that the structure, and stability, of the ballooning mode is determined by the structure of the potential function arising in the Schroedinger form of the ballooning equation

  4. Key exchange using biometric identity based encryption for sharing encrypted data in cloud environment

    Science.gov (United States)

    Hassan, Waleed K.; Al-Assam, Hisham

    2017-05-01

    The main problem associated with using symmetric/ asymmetric keys is how to securely store and exchange the keys between the parties over open networks particularly in the open environment such as cloud computing. Public Key Infrastructure (PKI) have been providing a practical solution for session key exchange for loads of web services. The key limitation of PKI solution is not only the need for a trusted third partly (e.g. certificate authority) but also the absent link between data owner and the encryption keys. The latter is arguably more important where accessing data needs to be linked with identify of the owner. Currently available key exchange protocols depend on using trusted couriers or secure channels, which can be subject to man-in-the-middle attack and various other attacks. This paper proposes a new protocol for Key Exchange using Biometric Identity Based Encryption (KE-BIBE) that enables parties to securely exchange cryptographic keys even an adversary is monitoring the communication channel between the parties. The proposed protocol combines biometrics with IBE in order to provide a secure way to access symmetric keys based on the identity of the users in unsecure environment. In the KE-BIOBE protocol, the message is first encrypted by the data owner using a traditional symmetric key before migrating it to a cloud storage. The symmetric key is then encrypted using public biometrics of the users selected by data owner to decrypt the message based on Fuzzy Identity-Based Encryption. Only the selected users will be able to decrypt the message by providing a fresh sample of their biometric data. The paper argues that the proposed solution eliminates the needs for a key distribution centre in traditional cryptography. It will also give data owner the power of finegrained sharing of encrypted data by control who can access their data.

  5. Representations of locally symmetric spaces

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1995-09-01

    Locally symmetric spaces in reference to globally and Hermitian symmetric Riemannian spaces are studied. Some relations between locally and globally symmetric spaces are exhibited. A lucid account of results on relevant spaces, motivated by fundamental problems, are formulated as theorems and propositions. (author). 10 refs

  6. Bistable states of TM polarized non-linear waves guided by symmetric layered structures

    International Nuclear Information System (INIS)

    Mihalache, D.

    1985-04-01

    Dispersion relations for TM polarized non-linear waves propagating in a symmetric single film optical waveguide are derived. The system consists of a layer of thickness d with dielectric constant epsilon 1 bounded at two sides by a non-linear medium characterized by the diagonal dielectric tensor epsilon 11 =epsilon 22 =epsilon 0 , epsilon 33 =epsilon 0 +α|E 3 | 2 , where E 3 is the normal electric field component. For sufficiently large d/lambda (lambda is the wavelength) we predict bistable states of both symmetric and antisymmetric modes provided that the power flow is the control parameter. (author)

  7. Pricing and collecting decisions in a closed-loop supply chain with symmetric and asymmetric information

    DEFF Research Database (Denmark)

    Wei, Jie; Govindan, Kannan; Li, Yongjian

    2015-01-01

    . The optimal strategies in closed form are given under the decision scenarios with symmetric information; moreover, the first order conditions that the optimal retail price, optimal wholesale price, and optimal collection rate satisfy are given under the decision scenarios with asymmetric information......The optimal decision problem of a closed-loop supply chain with symmetric and asymmetric information structures is considered using game theory in this paper. The paper aims to explore how the manufacturer and the retailer make their own decisions about wholesale price, retail price, and collection...... rate under symmetric and asymmetric information conditions. Four game models are established, which allow one to examine the strategies of each firm and explore the role of the manufacturer and the retailer in four different game scenarios under symmetric and asymmetric information structures...

  8. System of end-to-end symmetric database encryption

    Science.gov (United States)

    Galushka, V. V.; Aydinyan, A. R.; Tsvetkova, O. L.; Fathi, V. A.; Fathi, D. V.

    2018-05-01

    The article is devoted to the actual problem of protecting databases from information leakage, which is performed while bypassing access control mechanisms. To solve this problem, it is proposed to use end-to-end data encryption, implemented at the end nodes of an interaction of the information system components using one of the symmetric cryptographic algorithms. For this purpose, a key management method designed for use in a multi-user system based on the distributed key representation model, part of which is stored in the database, and the other part is obtained by converting the user's password, has been developed and described. In this case, the key is calculated immediately before the cryptographic transformations and is not stored in the memory after the completion of these transformations. Algorithms for registering and authorizing a user, as well as changing his password, have been described, and the methods for calculating parts of a key when performing these operations have been provided.

  9. Secure Clustering and Symmetric Key Establishment in Heterogeneous Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Azarderskhsh Reza

    2011-01-01

    Full Text Available Information security in infrastructureless wireless sensor networks (WSNs is one of the most important research challenges. In these networks, sensor nodes are typically sprinkled liberally in the field in order to monitor, gather, disseminate, and provide the sensed data to the command node. Various studies have focused on key establishment schemes in homogeneous WSNs. However, recent research has shown that achieving survivability in WSNs requires a hierarchy and heterogeneous infrastructure. In this paper, to address security issues in the heterogeneous WSNs, we propose a secure clustering scheme along with a deterministic pairwise key management scheme based on public key cryptography. The proposed security mechanism guarantees that any two sensor nodes located in the same cluster and routing path can directly establish a pairwise key without disclosing any information to other nodes. Through security performance evaluation, it is shown that the proposed scheme guarantees node-to-node authentication, high resiliency against node capture, and minimum memory space requirement.

  10. Cooperative Secret Sharing Using QR Codes and Symmetric Keys

    Directory of Open Access Journals (Sweden)

    Yang-Wai Chow

    2018-04-01

    Full Text Available Secret sharing is an information security technique where a dealer divides a secret into a collection of shares and distributes these to members of a group. The secret will only be revealed when a predefined number of group members cooperate to recover the secret. The purpose of this study is to investigate a method of distributing shares by embedding them into cover Quick Response (QR codes in a secure manner using cryptographic keys. The advantage of this approach is that the shares can be disseminated over public channels, as anyone who scans the QR codes will only obtain public information. Only authorized individuals who are in possession of the required keys will be able to recover the shares. This also means that when group members cooperate to recover a secret, the group can determine the presence of an illegitimate participant if the person does not produce a valid share. This study proposes a protocol for accomplishing this and discusses the underlying security of the protocol.

  11. The symmetric MSD encoder for one-step adder of ternary optical computer

    Science.gov (United States)

    Kai, Song; LiPing, Yan

    2016-08-01

    The symmetric Modified Signed-Digit (MSD) encoding is important for achieving the one-step MSD adder of Ternary Optical Computer (TOC). The paper described the symmetric MSD encoding algorithm in detail, and developed its truth table which has nine rows and nine columns. According to the truth table, the state table was developed, and the optical-path structure and circuit-implementation scheme of the symmetric MSD encoder (SME) for one-step adder of TOC were proposed. Finally, a series of experiments were designed and performed. The observed results of the experiments showed that the scheme to implement SME was correct, feasible and efficient.

  12. Dual formulation of covariant nonlinear duality-symmetric action of kappa-symmetric D3-brane

    Science.gov (United States)

    Vanichchapongjaroen, Pichet

    2018-02-01

    We study the construction of covariant nonlinear duality-symmetric actions in dual formulation. Essentially, the construction is the PST-covariantisation and nonlinearisation of Zwanziger action. The covariantisation made use of three auxiliary scalar fields. Apart from these, the construction proceed in a similar way to that of the standard formulation. For example, the theories can be extended to include interactions with external fields, and that the theories possess two local PST symmetries. We then explicitly demonstrate the construction of covariant nonlinear duality-symmetric actions in dual formulation of DBI theory, and D3-brane. For each of these theories, the twisted selfduality condition obtained from duality-symmetric actions are explicitly shown to match with the duality relation between field strength and its dual from the one-potential actions. Their on-shell actions between the duality-symmetric and the one-potential versions are also shown to match. We also explicitly prove kappa-symmetry of the covariant nonlinear duality-symmetric D3-brane action in dual formulation.

  13. Symmetric coupling of angular momenta, quadratic algebras and discrete polynomials

    International Nuclear Information System (INIS)

    Aquilanti, V; Marinelli, D; Marzuoli, A

    2014-01-01

    Eigenvalues and eigenfunctions of the volume operator, associated with the symmetric coupling of three SU(2) angular momentum operators, can be analyzed on the basis of a discrete Schrödinger–like equation which provides a semiclassical Hamiltonian picture of the evolution of a 'quantum of space', as shown by the authors in [1]. Emphasis is given here to the formalization in terms of a quadratic symmetry algebra and its automorphism group. This view is related to the Askey scheme, the hierarchical structure which includes all hypergeometric polynomials of one (discrete or continuous) variable. Key tool for this comparative analysis is the duality operation defined on the generators of the quadratic algebra and suitably extended to the various families of overlap functions (generalized recoupling coefficients). These families, recognized as lying at the top level of the Askey scheme, are classified and a few limiting cases are addressed

  14. In–HgCdTe–In structures with symmetric nonlinear I–V characteristics for sub-THz direct detection

    Directory of Open Access Journals (Sweden)

    N.I. Kukhtaruk

    2017-07-01

    Full Text Available This paper reports on the development and investigations of In–Hg1–xCdxTe–In structures with symmetric nonlinear I–V curves that are sensitive to sub-terahertz radiation. It is shown that at low currents photoresponse of the detectors based on these structures is due to the presence of potential barriers at the contacts. The dependences of the photoresponse as the function of the bias current are measured at the radiation frequency  = 140 GHz in 77–300 K temperature range. The studied structures may be used as the detectors of sub-terahertz radiation at room temperature or under weak cooling. The calculated NEP of investigated In–n-Hg0.61Cd0.39Te–In detectors was 3.5•10–9 W/Hz1/2, if taking into account thermal and shot noise.

  15. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard

    2010-01-01

    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....

  16. Strain-induced formation of fourfold symmetric SiGe quantum dot molecules.

    Science.gov (United States)

    Zinovyev, V A; Dvurechenskii, A V; Kuchinskaya, P A; Armbrister, V A

    2013-12-27

    The strain field distribution at the surface of a multilayer structure with disklike SiGe nanomounds formed by heteroepitaxy is exploited to arrange the symmetric quantum dot molecules typically consisting of four elongated quantum dots ordered along the [010] and [100] directions. The morphological transition from fourfold quantum dot molecules to continuous fortresslike quantum rings with an increasing amount of deposited Ge is revealed. We examine key mechanisms underlying the formation of lateral quantum dot molecules by using scanning tunneling microscopy and numerical calculations of the strain energy distribution on the top of disklike SiGe nanomounds. Experimental data are well described by a simple thermodynamic model based on the accurate evaluation of the strain dependent part of the surface chemical potential. The spatial arrangement of quantum dots inside molecules is attributed to the effect of elastic property anisotropy.

  17. Characterization of Generalized Young Measures Generated by Symmetric Gradients

    Science.gov (United States)

    De Philippis, Guido; Rindler, Filip

    2017-06-01

    This work establishes a characterization theorem for (generalized) Young measures generated by symmetric derivatives of functions of bounded deformation (BD) in the spirit of the classical Kinderlehrer-Pedregal theorem. Our result places such Young measures in duality with symmetric-quasiconvex functions with linear growth. The "local" proof strategy combines blow-up arguments with the singular structure theorem in BD (the analogue of Alberti's rank-one theorem in BV), which was recently proved by the authors. As an application of our characterization theorem we show how an atomic part in a BD-Young measure can be split off in generating sequences.

  18. One-way quantum key distribution: Simple upper bound on the secret key rate

    International Nuclear Information System (INIS)

    Moroder, Tobias; Luetkenhaus, Norbert; Curty, Marcos

    2006-01-01

    We present a simple method to obtain an upper bound on the achievable secret key rate in quantum key distribution (QKD) protocols that use only unidirectional classical communication during the public-discussion phase. This method is based on a necessary precondition for one-way secret key distillation; the legitimate users need to prove that there exists no quantum state having a symmetric extension that is compatible with the available measurements results. The main advantage of the obtained upper bound is that it can be formulated as a semidefinite program, which can be efficiently solved. We illustrate our results by analyzing two well-known qubit-based QKD protocols: the four-state protocol and the six-state protocol

  19. Symmetric energy-momentum tensor in Maxwell, Yang-Mills, and Proca theories obtained using only Noether's theorem

    Energy Technology Data Exchange (ETDEWEB)

    Montesinos, M. [CINVESTAV-IPN, 07360 Mexico D.F. (Mexico); Flores, E. [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)]. E-mail: merced@fis.cinvestav.mx

    2006-07-01

    The symmetric and gauge-invariant energy-momentum tensors for source-free Maxwell and Yang-Mills theories are obtained by means of translations in spacetime via a systematic implementation of Noether's theorem. For the source-free neutral Proca field, the same procedure yields also the symmetric energy-momentum tensor. In all cases, the key point to get the right expressions for the energy-momentum tensors is the appropriate handling of their equations of motion and the Bianchi identities. It must be stressed that these results are obtained without using Belinfante's symmetrization techniques which are usually employed to this end. (Author)

  20. Secure Hybrid Encryption from Weakened Key Encapsulation

    NARCIS (Netherlands)

    D. Hofheinz (Dennis); E. Kiltz (Eike); A. Menezes

    2007-01-01

    textabstractWe put forward a new paradigm for building hybrid encryption schemes from constrained chosen-ciphertext secure (CCCA) key-encapsulation mechanisms (KEMs) plus authenticated symmetric encryption. Constrained chosen-ciphertext security is a new security notion for KEMs that we propose. It

  1. Stationary states of a PT symmetric two-mode Bose–Einstein condensate

    International Nuclear Information System (INIS)

    Graefe, Eva-Maria

    2012-01-01

    The understanding of nonlinear PT symmetric quantum systems, arising for example in the theory of Bose–Einstein condensates in PT symmetric potentials, is widely based on numerical investigations, and little is known about generic features induced by the interplay of PT symmetry and nonlinearity. To gain deeper insights it is important to have analytically solvable toy models at hand. In the present paper the stationary states of a simple toy model of a PT symmetric system previously introduced in [1, 2] are investigated. The model can be interpreted as a simple description of a Bose–Einstein condensate in a PT symmetric double well trap in a two-mode approximation. The eigenvalues and eigenstates of the system can be explicitly calculated in a straightforward manner; the resulting structures resemble those that have recently been found numerically for a more realistic PT symmetric double delta potential. In addition, a continuation of the system is introduced that allows an interpretation in terms of a simple linear matrix model. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  2. A semi-symmetric image encryption scheme based on the function projective synchronization of two hyperchaotic systems.

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Di

    Full Text Available Both symmetric and asymmetric color image encryption have advantages and disadvantages. In order to combine their advantages and try to overcome their disadvantages, chaos synchronization is used to avoid the key transmission for the proposed semi-symmetric image encryption scheme. Our scheme is a hybrid chaotic encryption algorithm, and it consists of a scrambling stage and a diffusion stage. The control law and the update rule of function projective synchronization between the 3-cell quantum cellular neural networks (QCNN response system and the 6th-order cellular neural network (CNN drive system are formulated. Since the function projective synchronization is used to synchronize the response system and drive system, Alice and Bob got the key by two different chaotic systems independently and avoid the key transmission by some extra security links, which prevents security key leakage during the transmission. Both numerical simulations and security analyses such as information entropy analysis, differential attack are conducted to verify the feasibility, security, and efficiency of the proposed scheme.

  3. The 1/ N Expansion of Tensor Models with Two Symmetric Tensors

    Science.gov (United States)

    Gurau, Razvan

    2018-06-01

    It is well known that tensor models for a tensor with no symmetry admit a 1/ N expansion dominated by melonic graphs. This result relies crucially on identifying jackets, which are globally defined ribbon graphs embedded in the tensor graph. In contrast, no result of this kind has so far been established for symmetric tensors because global jackets do not exist. In this paper we introduce a new approach to the 1/ N expansion in tensor models adapted to symmetric tensors. In particular we do not use any global structure like the jackets. We prove that, for any rank D, a tensor model with two symmetric tensors and interactions the complete graph K D+1 admits a 1/ N expansion dominated by melonic graphs.

  4. Symmetric extendibility of quantum states

    OpenAIRE

    Nowakowski, Marcin L.

    2015-01-01

    Studies on symmetric extendibility of quantum states become especially important in a context of analysis of one-way quantum measures of entanglement, distilabillity and security of quantum protocols. In this paper we analyse composite systems containing a symmetric extendible part with a particular attention devoted to one-way security of such systems. Further, we introduce a new one-way monotone based on the best symmetric approximation of quantum state. We underpin those results with geome...

  5. Symmetric eikonal expansion

    International Nuclear Information System (INIS)

    Matsuki, Takayuki

    1976-01-01

    Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)

  6. Complex {PT}-symmetric extensions of the nonlinear ultra-short light pulse model

    Science.gov (United States)

    Yan, Zhenya

    2012-11-01

    The short pulse equation u_{xt}=u+\\frac{1}{2}(u^2u_x)_x is PT symmetric, which arises in nonlinear optics for the ultra-short pulse case. We present a family of new complex PT-symmetric extensions of the short pulse equation, i[(iu_x)^{\\sigma }]_t=au+bu^m+ic[u^n(iu_x)^{\\epsilon }]_x \\,\\, (\\sigma ,\\, \\epsilon ,\\,a,\\,b,\\,c,\\,m,\\,n \\in {R}), based on the complex PT-symmetric extension principle. Some properties of these equations with some chosen parameters are studied including the Hamiltonian structures and exact solutions such as solitary wave solutions, doubly periodic wave solutions and compacton solutions. Our results may be useful to understand complex PT-symmetric nonlinear physical models. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

  7. RT-Symmetric Laplace Operators on Star Graphs: Real Spectrum and Self-Adjointness

    Directory of Open Access Journals (Sweden)

    Maria Astudillo

    2015-01-01

    Full Text Available How ideas of PT-symmetric quantum mechanics can be applied to quantum graphs is analyzed, in particular to the star graph. The class of rotationally symmetric vertex conditions is analyzed. It is shown that all such conditions can effectively be described by circulant matrices: real in the case of odd number of edges and complex having particular block structure in the even case. Spectral properties of the corresponding operators are discussed.

  8. Mesotherapy for benign symmetric lipomatosis.

    Science.gov (United States)

    Hasegawa, Toshio; Matsukura, Tomoyuki; Ikeda, Shigaku

    2010-04-01

    Benign symmetric lipomatosis, also known as Madelung disease, is a rare disorder characterized by fat distribution around the shoulders, arms, and neck in the context of chronic alcoholism. Complete excision of nonencapsulated lipomas is difficult. However, reports describing conservative therapeutic measures for lipomatosis are rare. The authors present the case of a 42-year-old man with a diagnosis of benign symmetric lipomatosis who had multiple, large, symmetrical masses in his neck. Multiple phosphatidylcholine injections in the neck were administered 4 weeks apart, a total of seven times to achieve lipolysis. The patient's lipomatosis improved in response to the injections, and he achieved good cosmetic results. Intralesional injection, termed mesotherapy, using phosphatidylcholine is a potentially effective therapy for benign symmetric lipomatosis that should be reconsidered as a therapeutic option for this disease.

  9. Password Authenticated Key Exchange and Protected Password Change Protocols

    Directory of Open Access Journals (Sweden)

    Ting-Yi Chang

    2017-07-01

    Full Text Available In this paper, we propose new password authenticated key exchange (PAKE and protected password change (PPC protocols without any symmetric or public-key cryptosystems. The security of the proposed protocols is based on the computational Diffie-Hellman assumption in the random oracle model. The proposed scheme can resist both forgery server and denial of service attacks.

  10. Symmetric large momentum transfer for atom interferometry with BECs

    Science.gov (United States)

    Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Rasel, Ernst M.; Quantus Collaboration

    2017-04-01

    We develop and demonstrate a novel scheme for a symmetric large momentum transfer beam splitter for interferometry with Bose-Einstein condensates. Large momentum transfer beam splitters are a key technique to enhance the scaling factor and sensitivity of an atom interferometer and to create largely delocalized superposition states. To realize the beam splitter, double Bragg diffraction is used to create a superposition of two symmetric momentum states. Afterwards both momentum states are loaded into a retro-reflected optical lattice and accelerated by Bloch oscillations on opposite directions, keeping the initial symmetry. The favorable scaling behavior of this symmetric acceleration, allows to transfer more than 1000 ℏk of total differential splitting in a single acceleration sequence of 6 ms duration while we still maintain a fraction of approx. 25% of the initial atom number. As a proof of the coherence of this beam splitter, contrast in a closed Mach-Zehnder atom interferometer has been observed with up to 208 ℏk of momentum separation, which equals a differential wave-packet velocity of approx. 1.1 m/s for 87Rb. The presented work is supported by the CRC 1128 geo-Q and the DLR with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557 (QUANTUS-IV-Fallturm).

  11. Algorithms and file structures for computational geometry

    International Nuclear Information System (INIS)

    Hinrichs, K.; Nievergelt, J.

    1983-01-01

    Algorithms for solving geometric problems and file structures for storing large amounts of geometric data are of increasing importance in computer graphics and computer-aided design. As examples of recent progress in computational geometry, we explain plane-sweep algorithms, which solve various topological and geometric problems efficiently; and we present the grid file, an adaptable, symmetric multi-key file structure that provides efficient access to multi-dimensional data along any space dimension. (orig.)

  12. DNA based random key generation and management for OTP encryption.

    Science.gov (United States)

    Zhang, Yunpeng; Liu, Xin; Sun, Manhui

    2017-09-01

    One-time pad (OTP) is a principle of key generation applied to the stream ciphering method which offers total privacy. The OTP encryption scheme has proved to be unbreakable in theory, but difficult to realize in practical applications. Because OTP encryption specially requires the absolute randomness of the key, its development has suffered from dense constraints. DNA cryptography is a new and promising technology in the field of information security. DNA chromosomes storing capabilities can be used as one-time pad structures with pseudo-random number generation and indexing in order to encrypt the plaintext messages. In this paper, we present a feasible solution to the OTP symmetric key generation and transmission problem with DNA at the molecular level. Through recombinant DNA technology, by using only sender-receiver known restriction enzymes to combine the secure key represented by DNA sequence and the T vector, we generate the DNA bio-hiding secure key and then place the recombinant plasmid in implanted bacteria for secure key transmission. The designed bio experiments and simulation results show that the security of the transmission of the key is further improved and the environmental requirements of key transmission are reduced. Analysis has demonstrated that the proposed DNA-based random key generation and management solutions are marked by high security and usability. Published by Elsevier B.V.

  13. Spiro annulation of cage polycycles via Grignard reaction and ring-closing metathesis as key steps

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2015-08-01

    Full Text Available A simple synthetic strategy to C2-symmetric bis-spiro-pyrano cage compound 7 involving ring-closing metathesis is reported. The hexacyclic dione 10 was prepared from simple and readily available starting materials such as 1,4-naphthoquinone and cyclopentadiene. The synthesis of an unprecedented octacyclic cage compound through intramolecular Diels–Alder (DA reaction as a key step is described. The structures of three new cage compounds 7, 12 and 18 were confirmed by single crystal X-ray diffraction studies.

  14. Multiparty symmetric sum types

    DEFF Research Database (Denmark)

    Nielsen, Lasse; Yoshida, Nobuko; Honda, Kohei

    2010-01-01

    This paper introduces a new theory of multiparty session types based on symmetric sum types, by which we can type non-deterministic orchestration choice behaviours. While the original branching type in session types can represent a choice made by a single participant and accepted by others...... determining how the session proceeds, the symmetric sum type represents a choice made by agreement among all the participants of a session. Such behaviour can be found in many practical systems, including collaborative workflow in healthcare systems for clinical practice guidelines (CPGs). Processes...... with the symmetric sums can be embedded into the original branching types using conductor processes. We show that this type-driven embedding preserves typability, satisfies semantic soundness and completeness, and meets the encodability criteria adapted to the typed setting. The theory leads to an efficient...

  15. High-Rate Field Demonstration of Large-Alphabet Quantum Key Distribution

    Science.gov (United States)

    2016-10-12

    count rate of Bob’s detectors. In this detector-limited regime , it is advantageous to increase M to encode as much information as possible in each...High- rate field demonstration of large-alphabet quantum key distribution Catherine Lee,1, 2 Darius Bunandar,1 Zheshen Zhang,1 Gregory R. Steinbrecher...October 12, 2016) 2 Quantum key distribution (QKD) enables secure symmetric key exchange for information-theoretically secure com- munication via one-time

  16. Does competitive entry structurally change key marketing metrics?

    NARCIS (Netherlands)

    Kornelis, Marcel; Dekimpe, Marnik G.; Leeflang, Peter S. H.

    To what extent does competitive entry create a structural change in key marketing metrics? New players mayjust be a temporal nuisance to incumbents, but could also fundamentally change the latter's performance evolution, or induce them to permanently alter their spending levels and/or pricing

  17. Symmetric splitting of very light systems

    International Nuclear Information System (INIS)

    Grotowski, K.; Majka, Z.; Planeta, R.

    1985-01-01

    Fission reactions that produce fragments close to one half the mass of the composite system are traditionally observed in heavy nuclei. In light systems, symmetric splitting is rarely observed and poorly understood. It would be interesting to verify the existence of the symmetric splitting of compound nuclei with A 12 C + 40 Ca, 141 MeV 9 Be + 40 Ca and 153 MeV 6 Li + 40 Ca. The out-of-plane correlation of symmetric products was also measured for the reaction 186 MeV 12 C + 40 Ca. The coincidence measurements of the 12 C + 40 Ca system demonstrated that essentially all of the inclusive yield of symmetric products around 40 0 results from a binary decay. To characterize the dependence of the symmetric splitting process on the excitation energy of the 12 C + 40 C system, inclusive measurements were made at bombarding energies of 74, 132, 162, and 185 MeV

  18. Nanotribology of Symmetric and Asymmetric Liquid Lubricants

    Directory of Open Access Journals (Sweden)

    Shinji Yamada

    2010-03-01

    Full Text Available When liquid molecules are confined in a narrow gap between smooth surfaces, their dynamic properties are completely different from those of the bulk. The molecular motions are highly restricted and the system exhibits solid-like responses when sheared slowly. This solidification behavior is very dependent on the molecular geometry (shape of liquids because the solidification is induced by the packing of molecules into ordered structures in confinement. This paper reviews the measurements of confined structures and friction of symmetric and asymmetric liquid lubricants using the surface forces apparatus. The results show subtle and complex friction mechanisms at the molecular scale.

  19. Strain-symmetrized Si/SiGe multi-quantum well structures grown by molecular beam epitaxy for intersubband engineering

    International Nuclear Information System (INIS)

    Zhao, M.; Karim, A.; Ni, W.-X.; Pidgeon, C.R.; Phillips, P.J.; Carder, D.; Murdin, B.N.; Fromherz, T.; Paul, D.J.

    2006-01-01

    Three strain-symmetrized Si/SiGe multi-quantum well structures, designed for probing the carrier lifetime of intrawell intersubband transitions between heavy hole 1 (HH1) and light hole 1 (LH1) states with transition energies below the optical phonon energy, were grown by molecular beam epitaxy at low temperature on fully relaxed SiGe virtual substrates. The grown structures were characterized by using various experimental techniques, showing a high crystalline quality and very precise growth control. The lifetime of the LH1 excited state was determined directly with pump-probe spectroscopy. The measurements indicated an increase of the lifetime by a factor of ∼2 due to the increasingly unconfined LH1 state, which agreed very well with the design. It also showed a very long lifetime of several hundred picoseconds for the holes excited out of the well to transit back to the well through a diagonal process

  20. Propagation of symmetric and anti-symmetric surface waves in aself-gravitating magnetized dusty plasma layer with generalized (r, q) distribution

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2018-05-01

    The dispersion properties of surface dust ion-acoustic waves in a self-gravitating magnetized dusty plasma layer with the (r, q) distribution are investigated. The result shows that the wave frequency of the symmetric mode in the plasma layer decreases with an increase in the wave number. It is also shown that the wave frequency of the symmetric mode decreases with an increase in the spectral index r. However, the wave frequency of the anti-symmetric mode increases with an increase in the wave number. It is also found that the anti-symmetric mode wave frequency increases with an increase in the spectral index r. In addition, it is found that the influence of the self-gravitation on the symmetric mode wave frequency decreases with increasing scaled Jeans frequency. Moreover, it is found that the wave frequency of the symmetric mode increases with an increase in the dust charge; however, the anti-symmetric mode shows opposite behavior.

  1. A novel symmetrical microwave power sensor based on GaAs monolithic microwave integrated circuit technology

    International Nuclear Information System (INIS)

    Wang, De-bo; Liao, Xiao-ping

    2009-01-01

    A novel symmetrical microwave power sensor based on GaAs monolithic microwave integrated circuit (MMIC) technology is presented in this paper. In this power sensor, the left section inputs the microwave power, while the right section inputs the dc power. Because of the symmetrical structure, this power sensor is created to provide more accurate microwave power measurement capability without mismatch uncertainty and restrain temperature drift. The loss model is built and the loss voltage is 0.8 mV at 20 GHz when the input power is 100 mW. This power sensor is designed and fabricated using GaAs MMIC technology. And it is measured in the frequency range up to 20 GHz with the input power in the −20 dBm to 19 dBm range. Over the 19 dBm dynamic range, the sensitivity can achieve about 0.2 mV mW −1 . The difference between the input powers in the two sections is below 0.1% for equal output voltages. For an amplitude modulation measurement, the carrier frequency is the main factor to influence the measurement results. In short, the key aspect of this power sensor is that the microwave power measurement can be replaced by a dc power measurement with precise wideband

  2. Symmetric textures

    International Nuclear Information System (INIS)

    Ramond, P.

    1993-01-01

    The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures

  3. Irreducible complexity of iterated symmetric bimodal maps

    Directory of Open Access Journals (Sweden)

    J. P. Lampreia

    2005-01-01

    Full Text Available We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.

  4. Formation of shatter cones by symmetric fracture bifurcation: Phenomenological modeling and validation

    Science.gov (United States)

    Kenkmann, Thomas; Hergarten, Stefan; Kuhn, Thomas; Wilk, Jakob

    2016-08-01

    Several models of shatter cone formation require a heterogeneity at the cone apex of high impedance mismatch to the surrounding bulk rock. This heterogeneity is the source of spherically expanding waves that interact with the planar shock front or the following release wave. While these models are capable of explaining the overall conical shape of shatter cones, they are not capable of explaining the subcone structure and the diverging and branching striations that characterize the surface of shatter cones and lead to the so-called horse-tailing effect. Here, we use the hierarchical arrangement of subcone ridges of shatter cone surfaces as key for understanding their formation. Tracing a single subcone ridge from its apex downward reveals that each ridge branches after some distance into two symmetrically equivalent subcone ridges. This pattern is repeated to form new branches. We propose that subcone ridges represent convex-curved fracture surfaces and their intersection corresponds to the bifurcation axis. The characteristic diverging striations are interpreted as the intersection lineations delimiting each subcone. Multiple symmetric crack branching is the result of rapid fracture propagation that may approach the Raleigh wave speed. We present a phenomenological model that fully constructs the shatter cone geometry to any order. The overall cone geometry including apex angle of the enveloping cone and the degree of concavity (horse-tailing) is largely governed by the convexity of the subcone ridges. Straight cones of various apical angles, constant slope, and constant bifurcation angles form if the subcone convexity is low (30°). Increasing subcone convexity leads to a stronger horse-tailing effect and the bifurcation angles increase with increasing distance from the enveloping cone apex. The model predicts possible triples of enveloping cone angle, bifurcation angle, and subcone angle. Measurements of these quantities on four shatter cones from different

  5. An FFT-accelerated fdtd scheme with exact absorbing conditions for characterizing axially symmetric resonant structures

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    An accurate and efficient finite-difference time-domain (FDTD) method for characterizing transient waves interactions on axially symmetric structures is presented. The method achieves its accuracy and efficiency by employing localized and/or fast Fourier transform (FFT) accelerated exact absorbing conditions (EACs). The paper details the derivation of the EACs, discusses their implementation and discretization in an FDTD method, and proposes utilization of a blocked-FFT based algorithm for accelerating the computation of temporal convolutions present in nonlocal EACs. The proposed method allows transient analyses to be carried for long time intervals without any loss of accuracy and provides reliable numerical data pertinent to physical processes under resonant conditions. This renders the method highly useful in characterization of high-Q microwave radiators and energy compressors. Numerical results that demonstrate the accuracy and efficiency of the method are presented.

  6. Symmetric and asymmetric hybrid cryptosystem based on compressive sensing and computer generated holography

    Science.gov (United States)

    Ma, Lihong; Jin, Weimin

    2018-01-01

    A novel symmetric and asymmetric hybrid optical cryptosystem is proposed based on compressive sensing combined with computer generated holography. In this method there are six encryption keys, among which two decryption phase masks are different from the two random phase masks used in the encryption process. Therefore, the encryption system has the feature of both symmetric and asymmetric cryptography. On the other hand, because computer generated holography can flexibly digitalize the encrypted information and compressive sensing can significantly reduce data volume, what is more, the final encryption image is real function by phase truncation, the method favors the storage and transmission of the encryption data. The experimental results demonstrate that the proposed encryption scheme boosts the security and has high robustness against noise and occlusion attacks.

  7. Exponential decay of GC content detected by strand-symmetric substitution rates influences the evolution of isochore structure.

    Science.gov (United States)

    Karro, J E; Peifer, M; Hardison, R C; Kollmann, M; von Grünberg, H H

    2008-02-01

    The distribution of guanine and cytosine nucleotides throughout a genome, or the GC content, is associated with numerous features in mammals; understanding the pattern and evolutionary history of GC content is crucial to our efforts to annotate the genome. The local GC content is decaying toward an equilibrium point, but the causes and rates of this decay, as well as the value of the equilibrium point, remain topics of debate. By comparing the results of 2 methods for estimating local substitution rates, we identify 620 Mb of the human genome in which the rates of the various types of nucleotide substitutions are the same on both strands. These strand-symmetric regions show an exponential decay of local GC content at a pace determined by local substitution rates. DNA segments subjected to higher rates experience disproportionately accelerated decay and are AT rich, whereas segments subjected to lower rates decay more slowly and are GC rich. Although we are unable to draw any conclusions about causal factors, the results support the hypothesis proposed by Khelifi A, Meunier J, Duret L, and Mouchiroud D (2006. GC content evolution of the human and mouse genomes: insights from the study of processed pseudogenes in regions of different recombination rates. J Mol Evol. 62:745-752.) that the isochore structure has been reshaped over time. If rate variation were a determining factor, then the current isochore structure of mammalian genomes could result from the local differences in substitution rates. We predict that under current conditions strand-symmetric portions of the human genome will stabilize at an average GC content of 30% (considerably less than the current 42%), thus confirming that the human genome has not yet reached equilibrium.

  8. Parametric instability producing broad symmetrical structure in the spectrum of ionospheric heating-induced radiation

    International Nuclear Information System (INIS)

    Kuo, S.P.

    1997-01-01

    A four-wave interaction process in which an O-mode electromagnetic pump decays parametrically into a lower hybrid decay mode and two-electron Bernstein sidebands is analyzed. It is shown that the instability can be excited in a spatial region near the electron Bernstein/upper hybrid double resonance and in a narrow pump frequency range slightly below the third harmonic electron cyclotron resonance. The two electron Bernstein sidebands have about the same intensity and thus, produce Broad Symmetrical Structure (BSS) in the emission spectrum after being converted into electromagnetic radiation by scattering off background field-aligned density irregularities. The results also show that the size of the instability zone becomes very small as the pump frequency operates near a cyclotron harmonic higher than the third. Thus, the converted emission will be too weak to be detected. This explains why the BSS feature in the spectrum of stimulated electromagnetic emissions (SEEs) has only been observed in the third harmonic case. copyright 1997 American Institute of Physics

  9. Probabilistic cloning of three symmetric states

    International Nuclear Information System (INIS)

    Jimenez, O.; Bergou, J.; Delgado, A.

    2010-01-01

    We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.

  10. Genuine multipartite entanglement of symmetric Gaussian states: Strong monogamy, unitary localization, scaling behavior, and molecular sharing structure

    Science.gov (United States)

    Adesso, Gerardo; Illuminati, Fabrizio

    2008-10-01

    We investigate the structural aspects of genuine multipartite entanglement in Gaussian states of continuous variable systems. Generalizing the results of Adesso and Illuminati [Phys. Rev. Lett. 99, 150501 (2007)], we analyze whether the entanglement shared by blocks of modes distributes according to a strong monogamy law. This property, once established, allows us to quantify the genuine N -partite entanglement not encoded into 2,…,K,…,(N-1) -partite quantum correlations. Strong monogamy is numerically verified, and the explicit expression of the measure of residual genuine multipartite entanglement is analytically derived, by a recursive formula, for a subclass of Gaussian states. These are fully symmetric (permutation-invariant) states that are multipartitioned into blocks, each consisting of an arbitrarily assigned number of modes. We compute the genuine multipartite entanglement shared by the blocks of modes and investigate its scaling properties with the number and size of the blocks, the total number of modes, the global mixedness of the state, and the squeezed resources needed for state engineering. To achieve the exact computation of the block entanglement, we introduce and prove a general result of symplectic analysis: Correlations among K blocks in N -mode multisymmetric and multipartite Gaussian states, which are locally invariant under permutation of modes within each block, can be transformed by a local (with respect to the partition) unitary operation into correlations shared by K single modes, one per block, in effective nonsymmetric states where N-K modes are completely uncorrelated. Due to this theorem, the above results, such as the derivation of the explicit expression for the residual multipartite entanglement, its nonnegativity, and its scaling properties, extend to the subclass of non-symmetric Gaussian states that are obtained by the unitary localization of the multipartite entanglement of symmetric states. These findings provide strong

  11. A symmetrical rail accelerator

    International Nuclear Information System (INIS)

    Igenbergs, E.

    1991-01-01

    This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator

  12. Cryptanalysis of Some Lightweight Symmetric Ciphers

    DEFF Research Database (Denmark)

    Abdelraheem, Mohamed Ahmed Awadelkareem Mohamed Ahmed

    In recent years, the need for lightweight encryption systems has been increasing as many applications use RFID and sensor networks which have a very low computational power and thus incapable of performing standard cryptographic operations. In response to this problem, the cryptographic community...... on a variant of PRESENT with identical round keys. We propose a new attack named the Invariant Subspace Attack that was specifically mounted against the lightweight block cipher PRINTcipher. Furthermore, we mount several attacks on a recently proposed stream cipher called A2U2....... of the international standards in lightweight cryptography. This thesis aims at analyzing and evaluating the security of some the recently proposed lightweight symmetric ciphers with a focus on PRESENT-like ciphers, namely, the block cipher PRESENT and the block cipher PRINTcipher. We provide an approach to estimate...

  13. Homotheties of cylindrically symmetric static spacetimes

    International Nuclear Information System (INIS)

    Qadir, A.; Ziad, M.; Sharif, M.

    1998-08-01

    In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)

  14. Symmetric scrolled packings of multilayered carbon nanoribbons

    Science.gov (United States)

    Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.

    2016-06-01

    Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.

  15. Beyond Extreme Ultra Violet (BEUV) Radiation from Spherically symmetrical High-Z plasmas

    Science.gov (United States)

    Yoshida, Kensuke; Fujioka, Shinsuke; Higashiguchi, Takeshi; Ugomori, Teruyuki; Tanaka, Nozomi; Kawasaki, Masato; Suzuki, Yuhei; Suzuki, Chihiro; Tomita, Kentaro; Hirose, Ryouichi; Eshima, Takeo; Ohashi, Hayato; Nishikino, Masaharu; Scally, Enda; Nshimura, Hiroaki; Azechi, Hiroshi; O'Sullivan, Gerard

    2016-03-01

    Photo-lithography is a key technology for volume manufacture of high performance and compact semiconductor devices. Smaller and more complex structures can be fabricated by using shorter wavelength light in the photolithography. One of the most critical issues in development of the next generation photo-lithography is to increase energy conversion efficiency (CE) from laser to shorter wavelength light. Experimental database of beyond extreme ultraviolet (BEUV) radiation was obtained by using spherically symmetrical high-Z plasmas generated with spherically allocated laser beams. Absolute energy and spectra of BEUV light emitted from Tb, Gd, and Mo plasmas were measured with a absolutely calibrated BEUV calorimeter and a transmission grating spectrometer. 1.0 x 1012 W/cm2 is the optimal laser intensity to produced efficient BEUV light source plasmas with Tb and Gd targets. Maximum CE is achieved at 0.8% that is two times higher than the published CEs obtained with planar targets.

  16. Counting with symmetric functions

    CERN Document Server

    Mendes, Anthony

    2015-01-01

    This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics.  It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions.  Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions.  Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4.  The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enu...

  17. Optical detection of symmetric and antisymmetric states in double quantum wells at room temperature

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Marcelli, A.; Piccinini, M.; Cebulski, J.

    2009-09-01

    We studied the optical reflectivity of a specially grown double quantum well (DQW) structure characterized by a rectangular shape and a high electron density at room temperature. Assuming that the QWs depth is known, reflectivity spectra in the mid-IR range allow to carry out the precise measurements of the SAS-gap values (the energy gap between the symmetric and anti-symmetric states) and the absolute energies of both symmetric and antisymmetric electron states. The results of our experiments are in favor of the existence of the SAS splitting in the DQWs at room temperature. Here we have shown that the SAS gap increases proportionally to the subband quantum number and the optical electron transitions between symmetric and antisymmetric states belonging to different subbands are allowed. These results were used for interpretation of the beating effect in the Shubnikov-de Haas (SdH) oscillations at low temperatures (0.6 and 4.2 K). The approach to the calculation of the Landau-levels energies for DQW structures developed earlier [D. Ploch , Phys. Rev. B 79, 195434 (2009)] is used for the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to explain the beating effect in the SdH oscillations, one should introduce two different quasi-Fermi levels characterizing the two electron subsystems regarding symmetry properties of their wave functions, symmetric and antisymmetric ones. These states are not mixed neither by electron-electron interaction nor probably by electron-phonon interaction.

  18. Key handling in wireless sensor networks

    International Nuclear Information System (INIS)

    Li, Y; Newe, T

    2007-01-01

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided

  19. Key handling in wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y; Newe, T [Optical Fibre Sensors Research Centre, Department of Electronic and Computer Engineering, University of Limerick, Limerick (Ireland)

    2007-07-15

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided.

  20. Solving the generalized symmetric eigenvalue problem using tile algorithms on multicore architectures

    KAUST Repository

    Ltaief, Hatem

    2012-01-01

    This paper proposes an efficient implementation of the generalized symmetric eigenvalue problem on multicore architecture. Based on a four-stage approach and tile algorithms, the original problem is first transformed into a standard symmetric eigenvalue problem by computing the Cholesky factorization of the right hand side symmetric definite positive matrix (first stage), and applying the inverse of the freshly computed triangular Cholesky factors to the original dense symmetric matrix of the problem (second stage). Calculating the eigenpairs of the resulting problem is then equivalent to the eigenpairs of the original problem. The computation proceeds by reducing the updated dense symmetric matrix to symmetric band form (third stage). The band structure is further reduced by applying a bulge chasing procedure, which annihilates the extra off-diagonal entries using orthogonal transformations (fourth stage). More details on the third and fourth stage can be found in Haidar et al. [Accepted at SC\\'11, November 2011]. The eigenvalues are then calculated from the tridiagonal form using the standard LAPACK QR algorithm (i.e., DTSEQR routine), while the complex and challenging eigenvector computations will be addressed in a companion paper. The tasks from the various stages can concurrently run in an out-of-order fashion. The data dependencies are cautiously tracked by the dynamic runtime system environment QUARK, which ensures the dependencies are not violated for numerical correctness purposes. The obtained tile four-stage generalized symmetric eigenvalue solver significantly outperforms the state-of-the-art numerical libraries (up to 21-fold speed up against multithreaded LAPACK with optimized multithreaded MKL BLAS and up to 4-fold speed up against the corresponding routine from the commercial numerical software Intel MKL) on four sockets twelve cores AMD system with a 24000×24000 matrix size. © 2012 The authors and IOS Press. All rights reserved.

  1. Observation of Bloch oscillations in complex PT-symmetric photonic lattices

    Science.gov (United States)

    Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf

    2015-01-01

    Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations. PMID:26639941

  2. Pseudo-Hermitian description of PT-symmetric systems defined on a complex contour

    International Nuclear Information System (INIS)

    Mostafazadeh, Ali

    2005-01-01

    We describe a method that allows for a practical application of the theory of pseudo-Hermitian operators to PT-symmetric systems defined on a complex contour. We apply this method to study the Hamiltonians H = p 2 + x 2 (ix) ν with ν ε (-2, ∞) that are defined along the corresponding anti-Stokes lines. In particular, we reveal the intrinsic non-Hermiticity of H for the cases that ν is an even integer, so that H p 2 ± x 2+ν , and give a proof of the discreteness of the spectrum of H for all ν ε (-2, ∞). Furthermore, we study the consequences of defining a square-well Hamiltonian on a wedge-shaped complex contour. This yields a PT-symmetric system with a finite number of real eigenvalues. We present a comprehensive analysis of this system within the framework of pseudo-Hermitian quantum mechanics. We also outline a direct pseudo-Hermitian treatment of PT-symmetric systems defined on a complex contour which clarifies the underlying mathematical structure of the formulation of PT-symmetric quantum mechanics based on the charge-conjugation operator. Our results provide conclusive evidence that pseudo-Hermitian quantum mechanics provides a complete description of general PT-symmetric systems regardless of whether they are defined along the real line or a complex contour

  3. Characteristic function-based semiparametric inference for skew-symmetric models

    KAUST Repository

    Potgieter, Cornelis J.

    2012-12-26

    Skew-symmetric models offer a very flexible class of distributions for modelling data. These distributions can also be viewed as selection models for the symmetric component of the specified skew-symmetric distribution. The estimation of the location and scale parameters corresponding to the symmetric component is considered here, with the symmetric component known. Emphasis is placed on using the empirical characteristic function to estimate these parameters. This is made possible by an invariance property of the skew-symmetric family of distributions, namely that even transformations of random variables that are skew-symmetric have a distribution only depending on the symmetric density. A distance metric between the real components of the empirical and true characteristic functions is minimized to obtain the estimators. The method is semiparametric, in that the symmetric component is specified, but the skewing function is assumed unknown. Furthermore, the methodology is extended to hypothesis testing. Two tests for a hypothesis of specific parameter values are considered, as well as a test for the hypothesis that the symmetric component has a specific parametric form. A resampling algorithm is described for practical implementation of these tests. The outcomes of various numerical experiments are presented. © 2012 Board of the Foundation of the Scandinavian Journal of Statistics.

  4. Conservation laws in baroclinic inertial-symmetric instabilities

    Science.gov (United States)

    Grisouard, Nicolas; Fox, Morgan B.; Nijjer, Japinder

    2017-04-01

    Submesoscale oceanic density fronts are structures in geostrophic and hydrostatic balance, but are more prone to instabilities than mesoscale flows. As a consequence, they are believed to play a large role in air-sea exchanges, near-surface turbulence and dissipation of kinetic energy of geostrophically and hydrostatically balanced flows. We will present two-dimensional (x, z) Boussinesq numerical experiments of submesoscale baroclinic fronts on the f-plane. Instabilities of the mixed inertial and symmetric types (the actual name varies across the literature) develop, with the absence of along-front variations prohibiting geostrophic baroclinic instabilities. Two new salient facts emerge. First, contrary to pure inertial and/or pure symmetric instability, the potential energy budget is affected, the mixed instability extracting significant available potential energy from the front and dissipating it locally. Second, in the submesoscale regime, the growth rate of this mixed instability is sufficiently large that significant radiation of near-inertial internal waves occurs. Although energetically small compared to e.g. local dissipation within the front, this process might be a significant source of near-inertial energy in the ocean.

  5. A differential equation for Lerch's transcendent and associated symmetric operators in Hilbert space

    International Nuclear Information System (INIS)

    Kaplitskii, V M

    2014-01-01

    The function Ψ(x,y,s)=e iy Φ(−e iy ,s,x), where Φ(z,s,v) is Lerch's transcendent, satisfies the following two-dimensional formally self-adjoint second-order hyperbolic differential equation, where s=1/2+iλ. The corresponding differential expression determines a densely defined symmetric operator (the minimal operator) on the Hilbert space L 2 (Π), where Π=(0,1)×(0,2π). We obtain a description of the domains of definition of some symmetric extensions of the minimal operator. We show that formal solutions of the eigenvalue problem for these symmetric extensions are represented by functional series whose structure resembles that of the Fourier series of Ψ(x,y,s). We discuss sufficient conditions for these formal solutions to be eigenfunctions of the resulting symmetric differential operators. We also demonstrate a close relationship between the spectral properties of these symmetric differential operators and the distribution of the zeros of some special analytic functions analogous to the Riemann zeta function. Bibliography: 15 titles

  6. Linac design algorithm with symmetric segments

    International Nuclear Information System (INIS)

    Takeda, Harunori; Young, L.M.; Nath, S.; Billen, J.H.; Stovall, J.E.

    1996-01-01

    The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells and individual cells symmetric in both the CCDTL AND CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. We have implemented a design algorithm in the PARMILA code in which cells and multi-cavity segments are made symmetric, significantly reducing the number of unique components. Using the symmetric algorithm, a sample linac design was generated and its performance compared with a similar one of conventional design

  7. PT symmetric Aubry–Andre model

    International Nuclear Information System (INIS)

    Yuce, C.

    2014-01-01

    PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists

  8. PT symmetric Aubry–Andre model

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C., E-mail: cyuce@anadolu.edu.tr

    2014-06-13

    PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists.

  9. Design and Analysis of Symmetric Primitives

    DEFF Research Database (Denmark)

    Lauridsen, Martin Mehl

    . In the second part, we delve into the matter of the various aspects of designing a symmetric cryptographic primitive. We start by considering generalizations of the widely acclaimed Advanced Encryption Standard (AES) block cipher. In particular, our focus is on a component operation in the cipher which permutes...... analyze and implement modes recommended by the National Institute of Standards and Technology (NIST), as well as authenticated encryption modes from the CAESAR competition, when instantiated with the AES. The data processed in our benchmarking has sizes representative to that of typical Internet traffic...... linear cryptanalysis. We apply this model to the standardized block cipher PRESENT. Finally, we present very generic attacks on two authenticated encryption schemes, AVALANCHE and RBS, by pointing out severe design flaws that can be leveraged to fully recover the secret key with very low complexity...

  10. Efficient reliability analysis of structures with the rotational quasi-symmetric point- and the maximum entropy methods

    Science.gov (United States)

    Xu, Jun; Dang, Chao; Kong, Fan

    2017-10-01

    This paper presents a new method for efficient structural reliability analysis. In this method, a rotational quasi-symmetric point method (RQ-SPM) is proposed for evaluating the fractional moments of the performance function. Then, the derivation of the performance function's probability density function (PDF) is carried out based on the maximum entropy method in which constraints are specified in terms of fractional moments. In this regard, the probability of failure can be obtained by a simple integral over the performance function's PDF. Six examples, including a finite element-based reliability analysis and a dynamic system with strong nonlinearity, are used to illustrate the efficacy of the proposed method. All the computed results are compared with those by Monte Carlo simulation (MCS). It is found that the proposed method can provide very accurate results with low computational effort.

  11. Comprehensive asynchronous symmetric rendezvous algorithm in ...

    Indian Academy of Sciences (India)

    Meenu Chawla

    2017-11-10

    Nov 10, 2017 ... Simulation results affirm that CASR algorithm performs better in terms of average time-to-rendezvous as compared ... process; neighbour discovery; symmetric rendezvous algorithm. 1. .... dezvous in finite time under the symmetric model. The CH ..... CASR algorithm in Matlab 7.11 and performed several.

  12. Switching of the direction of reflectionless light propagation at exceptional points in non-PT-symmetric structures using phase-change materials.

    Science.gov (United States)

    Huang, Yin; Shen, Yuecheng; Min, Changjun; Veronis, Georgios

    2017-10-30

    We introduce a non-parity-time-symmetric three-layer structure, consisting of a gain medium layer sandwiched between two phase-change medium layers for switching of the direction of reflectionless light propagation. We show that for this structure unidirectional reflectionlessness in the forward direction can be switched to unidirectional reflectionlessness in the backward direction at the optical communication wavelength by switching the phase-change material Ge 2 Sb 2 Te 5 (GST) from its amorphous to its crystalline phase. We also show that it is the existence of exceptional points for this structure with GST in both its amorphous and crystalline phases which leads to unidirectional reflectionless propagation in the forward direction for GST in its amorphous phase, and in the backward direction for GST in its crystalline phase. Our results could be potentially important for developing a new generation of compact active free-space optical devices.

  13. Soft theorems for shift-symmetric cosmologies

    Science.gov (United States)

    Finelli, Bernardo; Goon, Garrett; Pajer, Enrico; Santoni, Luca

    2018-03-01

    We derive soft theorems for single-clock cosmologies that enjoy a shift symmetry. These so-called consistency conditions arise from a combination of a large diffeomorphism and the internal shift symmetry and fix the squeezed limit of all correlators with a soft scalar mode. As an application, we show that our results reproduce the squeezed bispectrum for ultra-slow-roll inflation, a particular shift-symmetric, nonattractor model which is known to violate Maldacena's consistency relation. Similar results have been previously obtained by Mooij and Palma using background-wave methods. Our results shed new light on the infrared structure of single-clock cosmological spacetimes.

  14. X-ray Structural Investigation of Nonsymmetrically and Symmetrically Alkylated [1]Benzothieno[3,2-b]benzothiophene Derivatives in Bulk and Thin Films.

    OpenAIRE

    Gbabode , Gabin; Dohr , Michael; Niebel , Claude; Balandier , Jean-Yves; Ruzié , Christian; Négrier , Philippe; Mondieig , Denise; Geerts , Yves H; Resel , Roland; Sferrazza , Michele

    2014-01-01

    International audience; A detailed structural study of the bulk and thin film phases observed for two potential high-performance organic semiconductors has been carried out. The molecules are based on [1]benzothieno[3,2-b]benzothiophene (BTBT) as conjugated core and octyl side groups, which are anchored either symmetrically at both sides of the BTBT core (C8-BTBT-C8) or nonsymmetrically at one side only (C8-BTBT). Thin films of different thickness (8-85 nm) have been prepared by spin-coating ...

  15. Symmetric alignment of the nematic matrix between close penetrable colloidal particles

    International Nuclear Information System (INIS)

    Teixeira, P I C; Barmes, F; Cleaver, D J

    2004-01-01

    A simple model is proposed for the liquid crystal matrix surrounding 'soft' colloidal particles whose separation is much smaller than their radii. We use our implementation of the Onsager approximation of density-functional theory (Chrzanowska et al 2001 J. Phys.: Condens. Matter 13 4715) to calculate the structure of a nanometrically thin film of hard Gaussian overlap particles of elongations κ = 3 and 5, confined between two solid walls. The penetrability of either substrate can be tuned independently to yield symmetric or hybrid alignment. Comparison with Monte Carlo simulations of the same system (Cleaver and Teixeira 2001 Chem. Phys. Lett. 338 1, Barmes and Cleaver 2004 in preparation) reveals good agreement in the symmetric case

  16. Chaos control and generalized projective synchronization of heavy symmetric chaotic gyroscope systems via Gaussian radial basis adaptive variable structure control

    International Nuclear Information System (INIS)

    Farivar, Faezeh; Aliyari Shoorehdeli, Mahdi; Nekoui, Mohammad Ali; Teshnehlab, Mohammad

    2012-01-01

    Highlights: ► A systematic procedure for GPS of unknown heavy chaotic gyroscope systems. ► Proposed methods are based on Lyapunov stability theory. ► Without calculating Lyapunov exponents and Eigen values of the Jacobian matrix. ► Capable to extend for a variety of chaotic systems. ► Useful for practical applications in the future. - Abstract: This paper proposes the chaos control and the generalized projective synchronization methods for heavy symmetric gyroscope systems via Gaussian radial basis adaptive variable structure control. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise like, synchronized chaotic systems can be used as cipher generators for secure communication. This paper presents chaos synchronization of two identical chaotic motions of symmetric gyroscopes. In this paper, the switching surfaces are adopted to ensure the stability of the error dynamics in variable structure control. Using the neural variable structure control technique, control laws are established which guarantees the chaos control and the generalized projective synchronization of unknown gyroscope systems. In the neural variable structure control, Gaussian radial basis functions are utilized to on-line estimate the system dynamic functions. Also, the adaptation laws of the on-line estimator are derived in the sense of Lyapunov function. Thus, the unknown gyro systems can be guaranteed to be asymptotically stable. Also, the proposed method can achieve the control objectives. Numerical simulations are presented to

  17. The Symmetric Rudin-Shapiro Transform

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour

    2003-01-01

    A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, symmetric transform, the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generating large sets...... of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....

  18. Zero-leakage multiple key-binding scenarios for SRAM-PUF systems based on the XOR-method

    NARCIS (Netherlands)

    Kusters, C.J.; Ignatenko, T.; Willems, F.M.J.

    2016-01-01

    We show that the XOR-method based on linear error-correcting codes can be applied to achieve the secret-key capacity of binary-symmetric SRAM-PUFs. Then we focus on multiple key-bindings. We prove that no information is leaked by all the helper data about a single secret key both in the case where

  19. Zero-leakage multiple key-binding scenarios for SRAM-PUF systems based on the XOR-Method

    NARCIS (Netherlands)

    Kusters, C.J.; Ignatenko, T.; Willems, F.M.J.

    2016-01-01

    We show that the XOR-method based on linear error-correcting codes can be applied to achieve the secret-key capacity of binary-symmetric SRAM-PUFs. Then we focus on multiple key-bindings. We prove that no information is leaked by all the helper data about a single secret key both in the case where

  20. Implications of the Cosmological Constant for Spherically Symmetric Mass Distributions

    Science.gov (United States)

    Zubairi, Omair; Weber, Fridolin

    2013-04-01

    In recent years, scientists have made the discovery that the expansion rate of the Universe is increasing rather than decreasing. This acceleration leads to an additional term in Albert Einstein's field equations which describe general relativity and is known as the cosmological constant. This work explores the aftermath of a non-vanishing cosmological constant for relativistic spherically symmetric mass distributions, which are susceptible to change against Einstein's field equations. We introduce a stellar structure equation known as the Tolman-Oppenhiemer-Volkoff (TOV) equation modified for a cosmological constant, which is derived from Einstein's modified field equations. We solve this modified TOV equation for these spherically symmetric mass distributions and obtain stellar properties such as mass and radius and investigate changes that may occur depending on the value of the cosmological constant.

  1. Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants.

    Science.gov (United States)

    Hetherington, Alexander J; Dolan, Liam

    2018-02-05

    There are two general types of rooting systems in extant land plants: gametophyte rhizoids and sporophyte root axes. These structures carry out the rooting function in the free-living stage of almost all land plant gametophytes and sporophytes, respectively. Extant vascular plants develop a dominant, free-living sporophyte on which roots form, with the exception of a small number of taxa that have secondarily lost roots. However, fossil evidence indicates that early vascular plants did not develop sporophyte roots. We propose that the common ancestor of vascular plants developed a unique rooting system-rhizoidal sporophyte axes. Here we present a synthesis and reinterpretation of the rootless sporophytes of Horneophyton lignieri , Aglaophyton majus , Rhynia gwynne-vaughanii and Nothia aphylla preserved in the Rhynie chert. We show that the sporophyte rooting structures of all four plants comprised regions of plagiotropic (horizontal) axes that developed unicellular rhizoids on their underside. These regions of axes with rhizoids developed bilateral symmetry making them distinct from the other regions which were radially symmetrical. We hypothesize that rhizoidal sporophyte axes constituted the rooting structures in the common ancestor of vascular plants because the phylogenetic positions of these plants span the origin of the vascular lineage.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Authors.

  2. Entanglement of polar symmetric top molecules as candidate qubits.

    Science.gov (United States)

    Wei, Qi; Kais, Sabre; Friedrich, Bretislav; Herschbach, Dudley

    2011-10-21

    Proposals for quantum computing using rotational states of polar molecules as qubits have previously considered only diatomic molecules. For these the Stark effect is second-order, so a sizable external electric field is required to produce the requisite dipole moments in the laboratory frame. Here we consider use of polar symmetric top molecules. These offer advantages resulting from a first-order Stark effect, which renders the effective dipole moments nearly independent of the field strength. That permits use of much lower external field strengths for addressing sites. Moreover, for a particular choice of qubits, the electric dipole interactions become isomorphous with NMR systems for which many techniques enhancing logic gate operations have been developed. Also inviting is the wider chemical scope, since many symmetric top organic molecules provide options for auxiliary storage qubits in spin and hyperfine structure or in internal rotation states. © 2011 American Institute of Physics

  3. On the pseudo-norm in some PT-symmetric potentials

    International Nuclear Information System (INIS)

    Levai, G.

    2005-01-01

    finite at the boundaries (x = ±∞) and it has finite number of discrete levels. Considering these circumstances it seemed worthwhile to study the Scarf I potential, V (x) = (α 2 +β 2 / 2 - 1/4) 1/cos 2 x + α 2 - β 2 /2 sin x/cos 2 x (x ε [-π/2, π/2]), which is PT-symmetric and has real energy eigenvalues if α* = β holds. The Scarf II potential has similar structure, except for some constant factors and that it contains hyperbolic, rather than trigonometric functions. We found a closed expression for the pseudo-norm of the Scarf I potential and it turned out that it varies as (-1) n similarly to other potentials that are infinite at the boundaries and have infinite number of discrete levels. This potential has some further remarkable features. First, it contains the infinite square well as a special case, together with a specific PT-symmetric extension. Some other PT-symmetric extensions of the infinite square well have been analysed in terms of (semi- ) numerical methods, so comparison with these is certainly an interesting task. Second, since the Scarf I potential is singular at the boundaries, the boundary conditions play an especially important role in this case. It turned out that the solutions are regular at the boundaries if Re(α) < 1/2 holds, however, PT-normalizability has a less strict condition: Re(α) < 1. This is especially interesting considering the fact that similarly to other PT-symmetric potentials a second set of solutions is also possible with opposite quasi-parity, and these solutions are obtained from the (α,β) → (-α, -β) transformation (which, of course, leaves the potential invariant). A novel feature of the Scarf I potential is that although states with the same quasi-parity form an orthogonal set, there is non-orthogonality between states with opposite quasi-parity. (author)

  4. Looking for symmetric Bell inequalities

    OpenAIRE

    Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano

    2010-01-01

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell e...

  5. The Symmetric Rudin-Shapiro Transform

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour

    2003-01-01

    A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, and symmetric transform given as the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generatin...... large sets of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....

  6. Harmonic analysis on symmetric spaces

    CERN Document Server

    Terras, Audrey

    This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards’s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random  matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.

  7. Is the key of the ghost imaging mystery given by the electromagnetic crossing symmetric photon reactions?

    International Nuclear Information System (INIS)

    Rusu, L; Rusu, A

    2013-01-01

    In the ghost imaging system, the object and image are separately illuminated by a pair of correlated beams and the image is obtained through coincidence detection of the two beams. When the correlated beams are obtained by a spontaneous parametric down-conversion phenomenon, the image formation is attributed to either quantum entanglement or wave vector correlation. The physicist D B Ion has published a different point of view: the ghost imaging can be explained by electromagnetic crossing symmetric photon reactions. We report on an experimental setup to verify that a change of the object reflection coefficient modifies the idler single count rate. The obtained results are a confirmation proof and suggest the existence of a stimulated spontaneous parametric down-conversion effect. A possible application is mentioned. (paper)

  8. On isotropic cylindrically symmetric stellar models

    International Nuclear Information System (INIS)

    Nolan, Brien C; Nolan, Louise V

    2004-01-01

    We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model

  9. Foundations of symmetric spaces of measurable functions Lorentz, Marcinkiewicz and Orlicz spaces

    CERN Document Server

    Rubshtein, Ben-Zion A; Muratov, Mustafa A; Pashkova, Yulia S

    2016-01-01

    Key definitions and results in symmetric spaces, particularly Lp, Lorentz, Marcinkiewicz and Orlicz spaces are emphasized in this textbook. A comprehensive overview of the Lorentz, Marcinkiewicz and Orlicz spaces is presented based on concepts and results of symmetric spaces. Scientists and researchers will find the application of linear operators, ergodic theory, harmonic analysis and mathematical physics noteworthy and useful. This book is intended for graduate students and researchers in mathematics and may be used as a general reference for the theory of functions, measure theory, and functional analysis. This self-contained text is presented in four parts totaling seventeen chapters to correspond with a one-semester lecture course. Each of the four parts begins with an overview and is subsequently divided into chapters, each of which concludes with exercises and notes. A chapter called “Complements” is included at the end of the text as supplementary material to assist students with independent work.

  10. A strategy study on the technology development for key nuclear structural materials

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Jeong, Youg Hwan; Kim, Tae Kyu

    2012-01-01

    In order to realize the advanced long-life PWRs and new Generation-IV nuclear systems, it is pre-requisite to establish or ensure the several key materials technology. In this study, we proposed the several key needs and directions for the key materials issues. Each issue is envisioned and described below. 1) Development of innovative nuclear structural materials with extreme environment-resistance for advanced G-IV systems 2) Improvement/development of key reactor materials for advanced and long -life PWRs. 3) Development of technologies against nuclear materials aging degradation

  11. HYBRID CHRIPTOGRAPHY STREAM CIPHER AND RSA ALGORITHM WITH DIGITAL SIGNATURE AS A KEY

    Directory of Open Access Journals (Sweden)

    Grace Lamudur Arta Sihombing

    2017-03-01

    Full Text Available Confidentiality of data is very important in communication. Many cyber crimes that exploit security holes for entry and manipulation. To ensure the security and confidentiality of the data, required a certain technique to encrypt data or information called cryptography. It is one of the components that can not be ignored in building security. And this research aimed to analyze the hybrid cryptography with symmetric key by using a stream cipher algorithm and asymmetric key by using RSA (Rivest Shamir Adleman algorithm. The advantages of hybrid cryptography is the speed in processing data using a symmetric algorithm and easy transfer of key using asymmetric algorithm. This can increase the speed of transaction processing data. Stream Cipher Algorithm using the image digital signature as a keys, that will be secured by the RSA algorithm. So, the key for encryption and decryption are different. Blum Blum Shub methods used to generate keys for the value p, q on the RSA algorithm. It will be very difficult for a cryptanalyst to break the key. Analysis of hybrid cryptography stream cipher and RSA algorithms with digital signatures as a key, indicates that the size of the encrypted file is equal to the size of the plaintext, not to be larger or smaller so that the time required for encryption and decryption process is relatively fast.

  12. Two-stage solar concentrators based on parabolic troughs: asymmetric versus symmetric designs.

    Science.gov (United States)

    Schmitz, Max; Cooper, Thomas; Ambrosetti, Gianluca; Steinfeld, Aldo

    2015-11-20

    While nonimaging concentrators can approach the thermodynamic limit of concentration, they generally suffer from poor compactness when designed for small acceptance angles, e.g., to capture direct solar irradiation. Symmetric two-stage systems utilizing an image-forming primary parabolic concentrator in tandem with a nonimaging secondary concentrator partially overcome this compactness problem, but their achievable concentration ratio is ultimately limited by the central obstruction caused by the secondary. Significant improvements can be realized by two-stage systems having asymmetric cross-sections, particularly for 2D line-focus trough designs. We therefore present a detailed analysis of two-stage line-focus asymmetric concentrators for flat receiver geometries and compare them to their symmetric counterparts. Exemplary designs are examined in terms of the key optical performance metrics, namely, geometric concentration ratio, acceptance angle, concentration-acceptance product, aspect ratio, active area fraction, and average number of reflections. Notably, we show that asymmetric designs can achieve significantly higher overall concentrations and are always more compact than symmetric systems designed for the same concentration ratio. Using this analysis as a basis, we develop novel asymmetric designs, including two-wing and nested configurations, which surpass the optical performance of two-mirror aplanats and are comparable with the best reported 2D simultaneous multiple surface designs for both hollow and dielectric-filled secondaries.

  13. On a Non-Symmetric Eigenvalue Problem Governing Interior Structural–Acoustic Vibrations

    Directory of Open Access Journals (Sweden)

    Heinrich Voss

    2016-06-01

    Full Text Available Small amplitude vibrations of a structure completely filled with a fluid are considered. Describing the structure by displacements and the fluid by its pressure field, the free vibrations are governed by a non-self-adjoint eigenvalue problem. This survey reports on a framework for taking advantage of the structure of the non-symmetric eigenvalue problem allowing for a variational characterization of its eigenvalues. Structure-preserving iterative projection methods of the the Arnoldi and of the Jacobi–Davidson type and an automated multi-level sub-structuring method are reviewed. The reliability and efficiency of the methods are demonstrated by a numerical example.

  14. Key Management in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ismail Mansour

    2015-09-01

    Full Text Available Wireless sensor networks are a challenging field of research when it comes to security issues. Using low cost sensor nodes with limited resources makes it difficult for cryptographic algorithms to function without impacting energy consumption and latency. In this paper, we focus on key management issues in multi-hop wireless sensor networks. These networks are easy to attack due to the open nature of the wireless medium. Intruders could try to penetrate the network, capture nodes or take control over particular nodes. In this context, it is important to revoke and renew keys that might be learned by malicious nodes. We propose several secure protocols for key revocation and key renewal based on symmetric encryption and elliptic curve cryptography. All protocols are secure, but have different security levels. Each proposed protocol is formally proven and analyzed using Scyther, an automatic verification tool for cryptographic protocols. For efficiency comparison sake, we implemented all protocols on real testbeds using TelosB motes and discussed their performances.

  15. Cotangent bundles over all the Hermitian symmetric spaces

    International Nuclear Information System (INIS)

    Arai, Masato; Baba, Kurando

    2016-01-01

    We construct the N = 2 supersymmetric nonlinear sigma models on the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces. In order to construct them we use the projective superspace formalism which is an N = 2 off-shell superfield formulation in four-dimensional space-time. This formalism allows us to obtain the explicit expression of N = 2 supersymmetric nonlinear sigma models on the cotangent bundles over any Hermitian symmetric spaces in terms of the N =1 superfields, once the Kähler potentials of the base manifolds are obtained. Starting with N = 1 supersymmetric Kähler nonlinear sigma models on the Hermitian symmetric spaces, we extend them into the N = 2 supersymmetric models by using the projective superspace formalism and derive the general formula for the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces. We apply to the formula for the non-compact Hermitian symmetric space E 7 /E 6 × U(1) 1 . (paper)

  16. Symmetric modular torsatron

    Science.gov (United States)

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  17. Performance limitations of translationally symmetric nonimaging devices

    Science.gov (United States)

    Bortz, John C.; Shatz, Narkis E.; Winston, Roland

    2001-11-01

    The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quality, referred to herein as the translational skew invariant, is analogous to the conventional skew invariant, which is conserved in rotationally symmetric optical systems. The invariance of both of these quantities is a consequence of Noether's theorem. We show how performance limits for translationally symmetric nonimaging optical devices can be derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. Examples of computed performance limits are provided. In addition, we show that a numerically optimized non-tracking solar concentrator utilizing symmetry-breaking surface microstructure can overcome the performance limits associated with translational symmetry. The optimized design provides a 47.4% increase in efficiency and concentration relative to an ideal translationally symmetric concentrator.

  18. Canonic FFT flow graphs for real-valued even/odd symmetric inputs

    Science.gov (United States)

    Lao, Yingjie; Parhi, Keshab K.

    2017-12-01

    Canonic real-valued fast Fourier transform (RFFT) has been proposed to reduce the arithmetic complexity by eliminating redundancies. In a canonic N-point RFFT, the number of signal values at each stage is canonic with respect to the number of signal values, i.e., N. The major advantage of the canonic RFFTs is that these require the least number of butterfly operations and only real datapaths when mapped to architectures. In this paper, we consider the FFT computation whose inputs are not only real but also even/odd symmetric, which indeed lead to the well-known discrete cosine and sine transforms (DCTs and DSTs). Novel algorithms for generating the flow graphs of canonic RFFTs with even/odd symmetric inputs are proposed. It is shown that the proposed algorithms lead to canonic structures with N/2 +1 signal values at each stage for an N-point real even symmetric FFT (REFFT) or N/2 -1 signal values at each stage for an N-point RFFT real odd symmetric FFT (ROFFT). In order to remove butterfly operations, several twiddle factor transformations are proposed in this paper. We also discuss the design of canonic REFFT for any composite length. Performances of the canonic REFFT/ROFFT are also discussed. It is shown that the flow graph of canonic REFFT/ROFFT has less number of interconnections, less butterfly operations, and less twiddle factor operations, compared to prior works.

  19. Diffie-Hellman Key Exchange through Steganographied Images

    Directory of Open Access Journals (Sweden)

    Amine Khaldi

    2018-05-01

    Full Text Available Purpose – In a private key system, the major problem is the exchange of the key between the two parties. Diffie and Hellman have set up a way to share the key. However, this technique is not protected against a man-in-the-middle attack as the settings are not authenticated. The Diffie-Hellman key exchange requires the use of digital signature or creating a secure channel for data exchanging to avoid the man-in-the-middle attack. Methodology/approach/design – We present a Diffie-Hellman key exchange implementation using steganographied images. Using steganography made invisible the data exchange to a potential attacker. So, we will not need a digital signature or creating a secure channel to do our key exchange since only the two concerned parts are aware of this exchange. Findings – We generate a symmetric 128-bit key between two users without use of digital signature or secure channel. However, it works only on bitmap images, heavy images and sensitive to compression.

  20. Symmetric Imidazolium-Based Paramagnetic Ionic Liquids

    Science.gov (United States)

    2017-11-29

    Charts N/A Unclassified Unclassified Unclassified SAR 14 Kamran Ghiassi N/A 1 Symmetric Imidazolium-Based Paramagnetic Ionic Liquids Kevin T. Greeson...NUMBER (Include area code) 29 November 2017 Briefing Charts 01 November 2017 - 30 November 2017 Symmetric Imidazolium-Based Paramagnetic Ionic ... Liquids K. Greeson, K. Ghiassi, J. Alston, N. Redeker, J. Marcischak, L. Gilmore, A. Guenthner Air Force Research Laboratory (AFMC) AFRL/RQRP 9 Antares

  1. Mesomorphic Behavior of Symmetrical and Unsymmetrical Azomethines with Two Imine Groups

    Directory of Open Access Journals (Sweden)

    Patrice Rannou

    2009-02-01

    Full Text Available Seven symmetrical azomethines with two imine groups (HC=N were synthesized by condensation of the benzene-1,4-dicarboxaldehydewith five amines (first group: A1-A5 and of the 2,5-thiophenedicarboxaldehyde with two amines (second group: AT1-AT2. Additionally, two unsymmetrical azomethines were obtained by a two step condensation of benzene-1,4-dicarboxaldehydewith pyren-1-amine(1st step (abbreviated hereinafter as AP1 and then AP1 was reacted with4-dodecylaniline or 4-hexadecylaniline (2nd step (third group: AP1A-AP1B. Liquid crystalline properties of the azomethines were studied by differential scanning calorimetry (DSC, polarizing optical microscopy (POM and UV-vis spectroscopy in the function of temperature [UV-vis(T]. The Wide-Angle X-ray Diffraction (WAXD technique was used to probe the structural properties of the azomethines. Mesomorphic behavior was observed for symmetrical and unsymmetrical azomethines, obtained from the benzene-1,4-dicarboxaldehyde and symmetrical ones prepared from 2,5-thiophenedicarboxaldehyde and different amineshaving aliphatic chains. Based on the POM and DSC measurements the following mesophases were detected: nematic, smectic A, smectic C, smectic F (I, smectic G (J.

  2. Origin of unipolar half-cycle pulses generation in inversion symmetric media

    International Nuclear Information System (INIS)

    Song, Xiaohong; Hao, Zhizhen; Yan, Ming; Wu, Miaoli; Yang, Weifeng

    2015-01-01

    We investigate the physical mechanism of unipolar half-cycle pulses generation in resonant two-level media with inversion symmetry. The unipolar half-cycle pulse contains substantial nonzero dc or zero-frequency component in its Fourier spectrum of the electric field. Here the origin of zero-frequency component generation in inversion symmetric media driven by symmetric electric field is identified. We show that in the regime of extreme nonlinear optics, i.e. the Rabi frequency is comparable to or even larger than the carrier frequency of the laser pulse, the time evolution of the polarization can display obvious up-down asymmetric structure under certain conditions, which manifests in the zero-frequency component generation, and is responsible for the formation of unipolar half-cycle pulses in the course of pulse propagation. (letter)

  3. Filtering microfluidic bubble trains at a symmetric junction.

    Science.gov (United States)

    Parthiban, Pravien; Khan, Saif A

    2012-02-07

    We report how a nominally symmetric microfluidic junction can be used to sort all bubbles of an incoming train exclusively into one of its arms. The existence of this "filter" regime is unexpected, given that the junction is symmetric. We analyze this behavior by quantifying how bubbles modulate the hydrodynamic resistance in microchannels and show how speeding up a bubble train whilst preserving its spatial periodicity can lead to filtering at a nominally symmetric junction. We further show how such an asymmetric traffic of bubble trains can be triggered in symmetric geometries by identifying conditions wherein the resistance to flow decreases with an increase in the number of bubbles in the microchannel and derive an exact criterion to predict the same.

  4. Entangling capabilities of symmetric two-qubit gates

    Indian Academy of Sciences (India)

    Com- putational investigation of entanglement of such ensembles is therefore impractical for ... the computational complexity. Pairs of spin-1 ... tensor operators which can also provide different symmetric logic gates for quantum pro- ... that five of the eight, two-qubit symmetric quantum gates expressed in terms of our newly.

  5. Pion condensation in symmetric nuclear matter

    Science.gov (United States)

    Kabir, K.; Saha, S.; Nath, L. M.

    1988-01-01

    Using a model which is based essentially on the chiral SU(2)×SU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenom is expected to be seen in the pion-nucleus interaction.

  6. A cascaded three-phase symmetrical multistage voltage multiplier

    International Nuclear Information System (INIS)

    Iqbal, Shahid; Singh, G K; Besar, R; Muhammad, G

    2006-01-01

    A cascaded three-phase symmetrical multistage Cockcroft-Walton voltage multiplier (CW-VM) is proposed in this report. It consists of three single-phase symmetrical voltage multipliers, which are connected in series at their smoothing columns like string of batteries and are driven by three-phase ac power source. The smoothing column of each voltage multiplier is charged twice every cycle independently by respective oscillating columns and discharged in series through load. The charging discharging process completes six times a cycle and therefore the output voltage ripple's frequency is of sixth order of the drive signal frequency. Thus the proposed approach eliminates the first five harmonic components of load generated voltage ripples and sixth harmonic is the major ripple component. The proposed cascaded three-phase symmetrical voltage multiplier has less than half the voltage ripple, and three times larger output voltage and output power than the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the laboratory prototype are given to show the feasibility of proposed cascaded three-phase symmetrical CW-VM

  7. Polarization-independent characteristics of the metasurfaces with the symmetrical axis’s orientation angle of 45° or 135°

    International Nuclear Information System (INIS)

    Wang, Wei; Guo, Zhongyi; Li, Yan; Mao, Xiaoqin; Wang, Benyang; Fan, Guanghua; Qu, Shiliang; Ran, Lingling; Sun, Yongxuan; Shen, Fei

    2016-01-01

    A series of symmetrical nanoantennas with a symmetrical axis orientation angle of 45° or 135°, which are suitable for both X/Y linear and circular polarizations incidences simultaneously, have been designed and investigated in detail. We have deduced the transmitted matrix of the metasurface structure by rigorous mathematical theory, and found that the essential reason for the polarization-independence characteristics is that there are the same transmitted amplitudes and phases under the incidences of X/Y linear and circular polarization lights due to metasurface structure with the symmetrical axis’s orientation angles of 45° or 135°. Based on the V-shaped, C-shaped, U-shaped and elliptical slit nanoantennas, we have verified the proposed theory fully by numerical simulations. The independence of the incident polarizations is very important for the practical applications and developments of the metasurfaces. (paper)

  8. Axially symmetric reconstruction of plasma emission and absorption coefficients

    International Nuclear Information System (INIS)

    Yang Lixin; Jia Hui; Yang Jiankun; Li Xiujian; Chen Shaorong; Liu Xishun

    2013-01-01

    A layered structure imaging model is developed in order to reconstruct emission coefficients and absorption coefficients simultaneously, in laser fusion core plasma diagnostics. A novel axially symmetric reconstruction method that utilizes the LM (Levenberg-Marquardt) nonlinear least squares minimization algorithm is proposed based on the layered structure. Numerical simulation results demonstrate that the proposed method is sufficiently accurate to reconstruct emission coefficients and absorption coefficients, and when the standard deviation of noise is 0.01, the errors of emission coefficients and absorption coefficients are 0.17, 0.22, respectively. Furthermore, this method could perform much better on reconstruction effect compared with traditional inverse Abel transform algorithms. (authors)

  9. Centrioles in Symmetric Spaces

    OpenAIRE

    Quast, Peter

    2011-01-01

    We describe all centrioles in irreducible simply connected pointed symmetric spaces of compact type in terms of the root system of the ambient space, and we study some geometric properties of centrioles.

  10. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Kabir, K.; Saha, S.; Nath, L.M.

    1987-09-01

    Using a model which is based essentially on the chiral SU(2)xSU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenon is expected to be seen in the pion-nucleus interaction. (author). 20 refs

  11. Topologically protected bound states in photonic parity-time-symmetric crystals.

    Science.gov (United States)

    Weimann, S; Kremer, M; Plotnik, Y; Lumer, Y; Nolte, S; Makris, K G; Segev, M; Rechtsman, M C; Szameit, A

    2017-04-01

    Parity-time (PT)-symmetric crystals are a class of non-Hermitian systems that allow, for example, the existence of modes with real propagation constants, for self-orthogonality of propagating modes, and for uni-directional invisibility at defects. Photonic PT-symmetric systems that also support topological states could be useful for shaping and routing light waves. However, it is currently debated whether topological interface states can exist at all in PT-symmetric systems. Here, we show theoretically and demonstrate experimentally the existence of such states: states that are localized at the interface between two topologically distinct PT-symmetric photonic lattices. We find analytical closed form solutions of topological PT-symmetric interface states, and observe them through fluorescence microscopy in a passive PT-symmetric dimerized photonic lattice. Our results are relevant towards approaches to localize light on the interface between non-Hermitian crystals.

  12. Synthesis & Characterization of New bis-Symmetrical Adipoyl ...

    African Journals Online (AJOL)

    Full Title: Synthesis and Characterization of New bis-Symmetrical Adipoyl, Terepthaloyl, Chiral Diimido-di-L-alanine Diesters and Chiral Phthaloyl-L-alanine Ester of Tripropoxy p-tert-Butyl Calix[4]arene and Study of Their Hosting Ability for Alanine and Na+. Bis-symmetrical tripropoxy p-tert-butyl calix[4]arene esters were ...

  13. Looking for symmetric Bell inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Bancal, Jean-Daniel; Gisin, Nicolas [Group of Applied Physics, University of Geneva, 20 rue de l' Ecole-de Medecine, CH-1211 Geneva 4 (Switzerland); Pironio, Stefano, E-mail: jean-daniel.bancal@unige.c [Laboratoire d' Information Quantique, Universite Libre de Bruxelles (Belgium)

    2010-09-24

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.

  14. Looking for symmetric Bell inequalities

    International Nuclear Information System (INIS)

    Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano

    2010-01-01

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.

  15. Diagrams for symmetric product orbifolds

    International Nuclear Information System (INIS)

    Pakman, Ari; Rastelli, Leonardo; Razamat, Shlomo S.

    2009-01-01

    We develop a diagrammatic language for symmetric product orbifolds of two-dimensional conformal field theories. Correlation functions of twist operators are written as sums of diagrams: each diagram corresponds to a branched covering map from a surface where the fields are single-valued to the base sphere where twist operators are inserted. This diagrammatic language facilitates the study of the large N limit and makes more transparent the analogy between symmetric product orbifolds and free non-abelian gauge theories. We give a general algorithm to calculate the leading large N contribution to four-point correlators of twist fields.

  16. The Axially Symmetric One-Monopole

    International Nuclear Information System (INIS)

    Wong, K.-M.; Teh, Rosy

    2009-01-01

    We present new classical generalized one-monopole solution of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that this solution with θ-winding number m = 1 and φ-winding number n = 1 is an axially symmetric generalization of the 't Hooft-Polyakov one-monopole. We construct this axially symmetric one-monopole solution by generalizing the large distance asymptotic solutions of the 't Hooft-Polyakov one-monopole to the Jacobi elliptic functions and solving the second order equations of motion numerically when the Higgs potential is vanishing. This solution is a non-BPS solution.

  17. Commutative curvature operators over four-dimensional generalized symmetric

    Directory of Open Access Journals (Sweden)

    Ali Haji-Badali

    2014-12-01

    Full Text Available Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

  18. Graph-Based Cooperative Localization Using Symmetric Measurement Equations.

    Science.gov (United States)

    Gulati, Dhiraj; Zhang, Feihu; Clarke, Daniel; Knoll, Alois

    2017-06-17

    Precise localization is a key requirement for the success of highly assisted or autonomous vehicles. The diminishing cost of hardware has resulted in a proliferation of the number of sensors in the environment. Cooperative localization (CL) presents itself as a feasible and effective solution for localizing the ego-vehicle and its neighboring vehicles. However, one of the major challenges to fully realize the effective use of infrastructure sensors for jointly estimating the state of a vehicle in cooperative vehicle-infrastructure localization is an effective data association. In this paper, we propose a method which implements symmetric measurement equations within factor graphs in order to overcome the data association challenge with a reduced bandwidth overhead. Simulated results demonstrate the benefits of the proposed approach in comparison with our previously proposed approach of topology factors.

  19. A symmetric bipolar nebula around MWC 922.

    Science.gov (United States)

    Tuthill, P G; Lloyd, J P

    2007-04-13

    We report regular and symmetric structure around dust-enshrouded Be star MWC 922 obtained with infrared imaging. Biconical lobes that appear nearly square in aspect, forming this "Red Square" nebula, are crossed by a series of rungs that terminate in bright knots or "vortices," and an equatorial dark band crossing the core delimits twin hyperbolic arcs. The intricate yet cleanly constructed forms that comprise the skeleton of the object argue for minimal perturbation from global turbulent or chaotic effects. We also report the presence of a linear comb structure, which may arise from optically projected shadows of a periodic feature in the inner regions, such as corrugations in the rim of a circumstellar disk. The sequence of nested polar rings draws comparison with the triple-ring system seen around the only naked-eye supernova in recent history: SN1987A.

  20. Designing organizational structures: Key thoughts for development.

    Science.gov (United States)

    Killingsworth, Patricia; Eschenbacher, Lynn

    2018-04-01

    Current strategies and concepts to consider in developing a system-level organizational structure for the pharmacy enterprise are discussed. There are many different ways to design an organizational structure for the pharmacy enterprise within a health system. The size of the organization, the number of states in which it operates, and the geographic spread and complexity of the pharmacy business lines should be among the key considerations in determining the optimal organizational and decision-making structures for the pharmacy enterprise. The structure needs to support incorporation of the pharmacy leadership (both system-level executives and local leaders) into all strategic planning and discussions at the hospital and health-system levels so that they can directly represent the pharmacy enterprise instead of relying on others to develop strategy on their behalf. It is important that leaders of all aspects of the pharmacy enterprise report through the system's top pharmacy executive, who should be a pharmacist and have a title consistent with those of other leaders reporting at the same organizational level (e.g., chief pharmacy officer). Pharmacy leaders need to be well positioned within an organization to advocate for the pharmacy enterprise and use all resources to the best of their ability. As the scope and complexity of pharmacy services grow, it is critical to ensure that leadership of the pharmacy enterprise is unified under a single pharmacy executive team. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  1. Crossing-symmetric solutions to low equations

    International Nuclear Information System (INIS)

    McLeod, R.J.; Ernst, D.J.

    1985-01-01

    Crossing symmetric models of the pion-nucleon interaction in which crossing symmetry is kept to lowest order in msub(π)/msub(N) are investigated. Two iterative techniques are developed to solve the crossing-symmetric Low equation. The techniques are used to solve the original Chew-Low equations and their generalizations to include the coupling to the pion-production channels. Small changes are found in comparison with earlier results which used an iterative technique proposed by Chew and Low and which did not produce crossing-symmetric results. The iterative technique of Chew and Low is shown to fail because of its inability to produce zeroes in the amplitude at complex energies while physical solutions to the model require such zeroes. We also prove that, within the class of solutions such that phase shifts approach zero for infinite energy, the solution to the Low equation is unique. (orig.)

  2. Symmetric Kullback-Leibler Metric Based Tracking Behaviors for Bioinspired Robotic Eyes.

    Science.gov (United States)

    Liu, Hengli; Luo, Jun; Wu, Peng; Xie, Shaorong; Li, Hengyu

    2015-01-01

    A symmetric Kullback-Leibler metric based tracking system, capable of tracking moving targets, is presented for a bionic spherical parallel mechanism to minimize a tracking error function to simulate smooth pursuit of human eyes. More specifically, we propose a real-time moving target tracking algorithm which utilizes spatial histograms taking into account symmetric Kullback-Leibler metric. In the proposed algorithm, the key spatial histograms are extracted and taken into particle filtering framework. Once the target is identified, an image-based control scheme is implemented to drive bionic spherical parallel mechanism such that the identified target is to be tracked at the center of the captured images. Meanwhile, the robot motion information is fed forward to develop an adaptive smooth tracking controller inspired by the Vestibuloocular Reflex mechanism. The proposed tracking system is designed to make the robot track dynamic objects when the robot travels through transmittable terrains, especially bumpy environment. To perform bumpy-resist capability under the condition of violent attitude variation when the robot works in the bumpy environment mentioned, experimental results demonstrate the effectiveness and robustness of our bioinspired tracking system using bionic spherical parallel mechanism inspired by head-eye coordination.

  3. Symmetric Kullback-Leibler Metric Based Tracking Behaviors for Bioinspired Robotic Eyes

    Directory of Open Access Journals (Sweden)

    Hengli Liu

    2015-01-01

    Full Text Available A symmetric Kullback-Leibler metric based tracking system, capable of tracking moving targets, is presented for a bionic spherical parallel mechanism to minimize a tracking error function to simulate smooth pursuit of human eyes. More specifically, we propose a real-time moving target tracking algorithm which utilizes spatial histograms taking into account symmetric Kullback-Leibler metric. In the proposed algorithm, the key spatial histograms are extracted and taken into particle filtering framework. Once the target is identified, an image-based control scheme is implemented to drive bionic spherical parallel mechanism such that the identified target is to be tracked at the center of the captured images. Meanwhile, the robot motion information is fed forward to develop an adaptive smooth tracking controller inspired by the Vestibuloocular Reflex mechanism. The proposed tracking system is designed to make the robot track dynamic objects when the robot travels through transmittable terrains, especially bumpy environment. To perform bumpy-resist capability under the condition of violent attitude variation when the robot works in the bumpy environment mentioned, experimental results demonstrate the effectiveness and robustness of our bioinspired tracking system using bionic spherical parallel mechanism inspired by head-eye coordination.

  4. Radon transformation on reductive symmetric spaces:Support theorems

    DEFF Research Database (Denmark)

    Kuit, Job Jacob

    2013-01-01

    We introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and derive support theorems for these transforms. A reductive symmetric space is a homogeneous space G/H for a reductive Lie group G of the Harish-Chandra class, where H is an open sub...... is based on the relation between the Radon transform and the Fourier transform on G/H, and a Paley–Wiener-shift type argument. Our results generalize the support theorem of Helgason for the Radon transform on a Riemannian symmetric space....

  5. Alignment of symmetric top molecules by short laser pulses

    DEFF Research Database (Denmark)

    Hamilton, Edward; Seideman, Tamar; Ejdrup, Tine

    2005-01-01

    -resolved photofragment imaging. Using methyliodide and tert-butyliodide as examples, we calculate and measure the alignment dynamics, focusing on the temporal structure and intensity of the revival patterns, including their dependence on the pulse duration, and their behavior at long times, where centrifugal distortion......Nonadiabatic alignment of symmetric top molecules induced by a linearly polarized, moderately intense picosecond laser pulse is studied theoretically and experimentally. Our studies are based on the combination of a nonperturbative solution of the Schrodinger equation with femtosecond time...

  6. Evaluation of aseismic integrity in the HTTR core-bottom structure. V. On the static and dynamic behavior of graphite HTTR key-keyway structures

    International Nuclear Information System (INIS)

    Futakawa, M.; Iyoku, T.

    1996-01-01

    For pt.IV see ibid., vol.154, p.83-95, 1995. The graphite components in high temperature gas-cooled reactors are connected to each other through a key-keyway structure that has gaps between the key and the keyway to accommodate thermal expansion. Because a dynamic load concentrates on the key-keyway structure during earthquakes, it is considered to be a crucial element for assessing the integrity of the graphite components. A combination of experiments and analyses was employed to investigate the dynamic behavior of the key-keyway structure, i.e. the equivalent stiffness associated with vibrational characteristics of the graphite components and the stress distribution under dynamic loading. The experiments were performed using a graphite scale model and a dynamic photo-elastic method. The analysis was carried out using the finite element method (FEM) code ABAQUS, taking account of the contact behavior between the key and the keyway. The following conclusions were derived. (1) The equivalent stiffness of the key-keyway structure shows nonlinearity, owing to the contact deformation. (2) The equivalent stiffness evaluated by the FEM analysis, taking account of the non-linear contact deformation, is applicable for predicting the vibrational characteristics of the key-keyway structure. (3) The stress concentration under dynamic loading is lower than or nearly equal to that under static loading. The maximum stress concentration of the seismic load can be sufficiently evaluated under static loading conditions. (orig.)

  7. Design of efficient circularly symmetric two-dimensional variable digital FIR filters.

    Science.gov (United States)

    Bindima, Thayyil; Elias, Elizabeth

    2016-05-01

    Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability.

  8. Synthesis of novel symmetrical macrocycle via oxidative homocoupling of bisalkyne

    Energy Technology Data Exchange (ETDEWEB)

    Kamalulazmy, Nurulain; Hassan, Nurul Izzaty [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2014-09-03

    A novel symmetrical macrocycle has been synthesised via oxidative homocoupling of bisalkyne, diprop-2-ynyl pyridine-2,6-dicarboxylate mediated by copper (I) iodide (CuI) and 4-dimethylaminopyridine (DMAP). The precursor compound was synthesised from 2,6-pyridine dicarbonyl dichloride and propargyl alcohol in the presence of triethylamine. The reaction mixture was stirred overnight and further purified via column chromatograpy with 76% yield. Single crystal for X-ray study was obtained by recrystallization from acetone. Subsequently, a symmetrical macrocycle was synthesised from oxidative homocoupling of precursor compound in open atmosphere. The crude product was purified by column chromatography to furnish macrocycle compound with 5% yield. Both compounds were characterised by IR, {sup 1}H and {sup 13}C NMR and mass spectral techniques. The unusual conformation of the bisalkyne and twisted conformation of designed macrocycle has influence the percentage yield. This has been studied thoroughly by X-ray crystallography and electronic structure calculations.

  9. Development of Lexical and Syntactic Representations: The Acquisition of Symmetrical and Asymmetrical Verbs

    Science.gov (United States)

    Gurcanli, Ozge

    2013-01-01

    This dissertation concerns the acquisition of the interaction between lexicosemantic properties of verbs and syntax, focusing on symmetrical and asymmetrical verbs in different syntactic structures. Based on linguistic evidence, it is shown that two conceptual categories, Mutuality and Number, interact to give rise to four event-types: Single…

  10. Young—Capelli symmetrizers in superalgebras†

    Science.gov (United States)

    Brini, Andrea; Teolis, Antonio G. B.

    1989-01-01

    Let Supern[U [unk] V] be the nth homogeneous subspace of the supersymmetric algebra of U [unk] V, where U and V are Z2-graded vector spaces over a field K of characteristic zero. The actions of the general linear Lie superalgebras pl(U) and pl(V) span two finite-dimensional K-subalgebras B and [unk] of EndK(Supern[U [unk] V]) that are the centralizers of each other. Young—Capelli symmetrizers and Young—Capelli *-symmetrizers give rise to K-linear bases of B and [unk] containing orthogonal systems of idempotents; thus they yield complete decompositions of B and [unk] into minimal left and right ideals, respectively. PMID:16594014

  11. Symmetric splitting of very light systems

    International Nuclear Information System (INIS)

    Grotowski, K.; Majka, Z.; Planeta, R.

    1984-01-01

    Inclusive and coincidence measurements have been performed to study symmetric products from the reactions 74--186 MeV 12 C+ 40 Ca, 141 MeV 9 Be+ 40 Ca, and 153 MeV 6 Li+ 40 Ca. The binary decay of the composite system has been verified. Energy spectra, angular distributions, and fragment correlations are presented. The total kinetic energies for the symmetric products from these very light composite systems are compared to liquid drop model calculations and fission systematics

  12. Radon transformation on reductive symmetric spaces: support theorems

    NARCIS (Netherlands)

    Kuit, J.J.|info:eu-repo/dai/nl/313872589

    2011-01-01

    In this thesis we introduce a class of Radon transforms for reductive symmetric spaces, including the horospherical transforms, and study some of their properties. In particular we obtain a generalization of Helgason's support theorem for the horospherical transform on a Riemannian symmetric space.

  13. Decomposition of a symmetric second-order tensor

    Science.gov (United States)

    Heras, José A.

    2018-05-01

    In the three-dimensional space there are different definitions for the dot and cross products of a vector with a second-order tensor. In this paper we show how these products can uniquely be defined for the case of symmetric tensors. We then decompose a symmetric second-order tensor into its ‘dot’ part, which involves the dot product, and the ‘cross’ part, which involves the cross product. For some physical applications, this decomposition can be interpreted as one in which the dot part identifies with the ‘parallel’ part of the tensor and the cross part identifies with the ‘perpendicular’ part. This decomposition of a symmetric second-order tensor may be suitable for undergraduate courses of vector calculus, mechanics and electrodynamics.

  14. Revisiting the Optical PT-Symmetric Dimer

    Directory of Open Access Journals (Sweden)

    José Delfino Huerta Morales

    2016-08-01

    Full Text Available Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of PT -symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical PT -symmetric dimer, a two-waveguide coupler where the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry-based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar N-waveguide couplers that are the optical realization of the Lorentz group in 2 + 1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of the Ehrenfest theorem.

  15. A Symmetric Chaos-Based Image Cipher with an Improved Bit-Level Permutation Strategy

    Directory of Open Access Journals (Sweden)

    Chong Fu

    2014-02-01

    Full Text Available Very recently, several chaos-based image ciphers using a bit-level permutation have been suggested and shown promising results. Due to the diffusion effect introduced in the permutation stage, the workload of the time-consuming diffusion stage is reduced, and hence the performance of the cryptosystem is improved. In this paper, a symmetric chaos-based image cipher with a 3D cat map-based spatial bit-level permutation strategy is proposed. Compared with those recently proposed bit-level permutation methods, the diffusion effect of the new method is superior as the bits are shuffled among different bit-planes rather than within the same bit-plane. Moreover, the diffusion key stream extracted from hyperchaotic system is related to both the secret key and the plain image, which enhances the security against known/chosen plaintext attack. Extensive security analysis has been performed on the proposed scheme, including the most important ones like key space analysis, key sensitivity analysis, plaintext sensitivity analysis and various statistical analyses, which has demonstrated the satisfactory security of the proposed scheme

  16. A New Semi-Symmetric Unified Field Theory of the Classical Fields of Gravity and Electromagnetism

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2007-10-01

    Full Text Available We attempt to present a classical theoretical framework in which the gravitational and electromagnetic fields are unified as intrinsic geometric objects in the space-time manifold. For this purpose, we first present the preliminary geometric considerations dealing with the metric differential geometry of Cartan connections. The unified field theory is then developed as an extension of the general theory of relativity based on a semi- symmetric Cartan connection which is meant to be as close as possible structurally to the symmetric connection of the Einstein-Riemann space-time.

  17. Parity-Time Symmetric Photonics

    KAUST Repository

    Zhao, Han

    2018-01-17

    The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy to the complex quantum potentials, photonics provides an ideal platform for visualization of many conceptually striking predictions from the non-Hermitian quantum theory. A rapidly developing field has emerged, namely, PT symmetric photonics, demonstrating intriguing optical phenomena including eigenstate coalescence and spontaneous PT symmetry breaking. The advance of quantum physics, as the feedback, provides photonics with brand-new paradigms to explore the entire complex permittivity plane for novel optical functionalities. Here, we review recent exciting breakthroughs in PT symmetric photonics while systematically presenting their underlying principles guided by non-Hermitian symmetries. The potential device applications for optical communication and computing, bio-chemical sensing, and healthcare are also discussed.

  18. Determination of the interaction parameter and topological scaling features of symmetric star polymers in dilute solution

    KAUST Repository

    Rai, Durgesh K.; Beaucage, Gregory; Ratkanthwar, Kedar; Beaucage, Peter; Ramachandran, Ramnath; Hadjichristidis, Nikolaos

    2015-01-01

    Star polymers provide model architectures to understand the dynamic and rheological effects of chain confinement for a range of complex topological structures like branched polymers, colloids, and micelles. It is important to describe the structure of such macromolecular topologies using small-angle neutron and x-ray scattering to facilitate understanding of their structure-property relationships. Modeling of scattering from linear, Gaussian polymers, such as in the melt, has applied the random phase approximation using the Debye polymer scattering function. The Flory-Huggins interaction parameter can be obtained using neutron scattering by this method. Gaussian scaling no longer applies for more complicated chain topologies or when chains are in good solvents. For symmetric star polymers, chain scaling can differ from ν=0.5(df=2) due to excluded volume, steric interaction between arms, and enhanced density due to branching. Further, correlation between arms in a symmetric star leads to an interference term in the scattering function first described by Benoit for Gaussian chains. In this work, a scattering function is derived which accounts for interarm correlations in symmetric star polymers as well as the polymer-solvent interaction parameter for chains of arbitrary scaling dimension using a hybrid Unified scattering function. The approach is demonstrated for linear, four-arm and eight-arm polyisoprene stars in deuterated p-xylene.

  19. Determination of the interaction parameter and topological scaling features of symmetric star polymers in dilute solution

    KAUST Repository

    Rai, Durgesh K.

    2015-07-15

    Star polymers provide model architectures to understand the dynamic and rheological effects of chain confinement for a range of complex topological structures like branched polymers, colloids, and micelles. It is important to describe the structure of such macromolecular topologies using small-angle neutron and x-ray scattering to facilitate understanding of their structure-property relationships. Modeling of scattering from linear, Gaussian polymers, such as in the melt, has applied the random phase approximation using the Debye polymer scattering function. The Flory-Huggins interaction parameter can be obtained using neutron scattering by this method. Gaussian scaling no longer applies for more complicated chain topologies or when chains are in good solvents. For symmetric star polymers, chain scaling can differ from ν=0.5(df=2) due to excluded volume, steric interaction between arms, and enhanced density due to branching. Further, correlation between arms in a symmetric star leads to an interference term in the scattering function first described by Benoit for Gaussian chains. In this work, a scattering function is derived which accounts for interarm correlations in symmetric star polymers as well as the polymer-solvent interaction parameter for chains of arbitrary scaling dimension using a hybrid Unified scattering function. The approach is demonstrated for linear, four-arm and eight-arm polyisoprene stars in deuterated p-xylene.

  20. Crossing symmetric solution of the Chew-Low equation

    International Nuclear Information System (INIS)

    McLeod, R.J.; Ernst, D.J.

    1982-01-01

    An N/D dispersion theory is developed which solves crossing symmetric Low equations. The method is used to generate crossing symmetric solutions to the Chew-Low model. We show why the technique originally proposed by Chew and Low was incapable of producing solutions. (orig.)

  1. Are nasopharyngeal structures really symmetric?

    International Nuclear Information System (INIS)

    Ichimura, Keiichi

    1990-01-01

    Asymmetry of nasopharyngeal structure in CT scans, such as blunting of the lateral pharyngeal recesses (LPR, fossa of Rosenmuller) and depression of the parapharyngeal space, is regarded as an essential sign in the diagnosis of malignancies or aggressive inflammatory processes. The rate of nasopharyngeal symmetry, however, has been rarely reported so far. I examined axial CT scans of the nasopharynx of 220 patients who did not have any complaints of the nasopharynx or oropharynx. LPR, tube orifices, torus tubarius, intrapharyngeal muscles, paranasopharyngeal spaces, and deeper musculofacial planes were examined. The asymmetry rates were 17.8%, 15.8%, 16.8%, 3.7%, 5.5%, and 8.0% respectively. The former three superficial landmarks were more often asymmetric than the latter three plane tissues. There were no differences in symmetry between patients with histories of sinus surgery or facial fracture and others. The loss of symmetry of the nasopharyngeal structures, not only the deeper ones, but the superficial ones, seems to be a useful sign in differentiating the recalcitrant pathologies. (author)

  2. Numerical study of two-dimensional moist symmetric instability

    Directory of Open Access Journals (Sweden)

    M. Fantini

    2008-06-01

    Full Text Available The 2-D version of the non-hydrostatic fully compressible model MOLOCH developed at ISAC-CNR was used in idealized set-up to study the start-up and finite amplitude evolution of symmetric instability. The unstable basic state was designed by numerical integration of the equation which defines saturated equivalent potential vorticity qe*. We present the structure and growth rates of the linear modes both for a supersaturated initial state ("super"-linear mode and for a saturated one ("pseudo"-linear mode and the modifications induced on the base state by their finite amplitude evolution.

  3. Symmetric webs, Jones-Wenzl recursions and q-Howe duality

    DEFF Research Database (Denmark)

    Rose, David; Tubbenhauer, Daniel

    We define and study the category of symmetric sl2-webs. This category is a combinatorial description of the category of all finite dimensional quantum sl2-modules. Explicitly, we show that (the additive closure of) the symmetric sl2-spider is (braided monoidally) equivalent to the latter. Our mai...... tool is a quantum version of symmetric Howe duality. As a corollary of our construction, we provide new insight into Jones-Wenzl projectors and the colored Jones polynomials....

  4. Symmetric weak ternary quantum homomorphic encryption schemes

    Science.gov (United States)

    Wang, Yuqi; She, Kun; Luo, Qingbin; Yang, Fan; Zhao, Chao

    2016-03-01

    Based on a ternary quantum logic circuit, four symmetric weak ternary quantum homomorphic encryption (QHE) schemes were proposed. First, for a one-qutrit rotation gate, a QHE scheme was constructed. Second, in view of the synthesis of a general 3 × 3 unitary transformation, another one-qutrit QHE scheme was proposed. Third, according to the one-qutrit scheme, the two-qutrit QHE scheme about generalized controlled X (GCX(m,n)) gate was constructed and further generalized to the n-qutrit unitary matrix case. Finally, the security of these schemes was analyzed in two respects. It can be concluded that the attacker can correctly guess the encryption key with a maximum probability pk = 1/33n, thus it can better protect the privacy of users’ data. Moreover, these schemes can be well integrated into the future quantum remote server architecture, and thus the computational security of the users’ private quantum information can be well protected in a distributed computing environment.

  5. SUSY formalism for the symmetric double well potential

    Indian Academy of Sciences (India)

    symmetric double well potential barrier we have obtained a class of exactly solvable potentials subject to moving boundary condition. The eigenstates are also obtained by the same technique. Keywords. SUSY; moving boundary condition; exactly solvable; symmetric double well; NH3 molecule. PACS Nos 02.30.Ik; 03.50.

  6. Coupled dilaton and electromagnetic field in cylindrically symmetric ...

    Indian Academy of Sciences (India)

    The dilaton black hole solutions have attracted considerable attention for the ... theory and study the corresponding cylindrically symmetric spacetime, where .... where Йm and Йe are integration constants to be interpreted later as the ..... feature is apparent for the cylindrically symmetric spacetime in the presence of the dila-.

  7. Sirius-T, a symmetrically illuminated ICF tritium production facility

    International Nuclear Information System (INIS)

    Sviatoslavsky, I.N.; Sawan, M.E.; Moses, G.A.; Kulcinski, G.L.; Engelstad, R.L.; Larsen, E.; Lovell, E.; MacFarlane, J.; Peterson, R.R.; Wittenberg, L.J.

    1989-01-01

    A scoping study of a symmetrically illuminated ICF tritium production facility utilizing a KrF laser is presented. A single shell ICF target is illuminated by 92 beams symmetrically distributed around a spherical cavity filled with xenon gas at 1.0 torr. The driver energy and target gain are taken to be 2 MJ and 50 for the optimistic case and 1 MJ and 100 for the conservative case. Based on a graphite dry wall evaporation rate of 0.1 cm/y for a 100 MJ yield, the authors estimate a cavity radius of 3.5 m for a rep-rate of 10 Hz and 3.0 m for 5 Hz. A spherical structural frame has been scoped out capable of supporting 92 blanket modules, each with a beam port in the center. They have selected liquid lithium in vanadium structure as the primary breeding concept utilizing beryllium as a neutron multiplier. A tritium breeding ratio of 1.83 can be achieved in the 3 m radius cavity which at 10 Hz and an availability of 75% provides an annual tritium surplus of 32.6 kg. Assuming 100% debt financing over a 30 year reactor lifetime, the production cost of T 2 for the 2 MJ driver case is $7,325/g for a 5% interest rate and $12,370/g for a 10% interest rate. 8 refs., 3 figs., 4 tabs

  8. Design of tryptophan-containing mutants of the symmetrical Pizza protein for biophysical studies.

    Science.gov (United States)

    Noguchi, Hiroki; Mylemans, Bram; De Zitter, Elke; Van Meervelt, Luc; Tame, Jeremy R H; Voet, Arnout

    2018-03-18

    β-propeller proteins are highly symmetrical, being composed of a repeated motif with four anti-parallel β-sheets arranged around a central axis. Recently we designed the first completely symmetrical β-propeller protein, Pizza6, consisting of six identical tandem repeats. Pizza6 is expected to prove a useful building block for bionanotechnology, and also a tool to investigate the folding and evolution of β-propeller proteins. Folding studies are made difficult by the high stability and the lack of buried Trp residues to act as monitor fluorophores, so we have designed and characterized several Trp-containing Pizza6 derivatives. In total four proteins were designed, of which three could be purified and characterized. Crystal structures confirm these mutant proteins maintain the expected structure, and a clear redshift of Trp fluorescence emission could be observed upon denaturation. Among the derivative proteins, Pizza6-AYW appears to be the most suitable model protein for future folding/unfolding kinetics studies as it has a comparable stability as natural β-propeller proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials.

    Science.gov (United States)

    Lu, Xiqun; Shi, Jinhui; Liu, Ran; Guan, Chunying

    2012-07-30

    We propose, design and experimentally demonstrate highly-dispersive electromagnetically induced transparency (EIT) in planar symmetric metamaterials actively switched and controlled by angles of incidence. Full-wave simulation and measurement results show EIT phenomena, trapped-mode excitations and the associated local field enhancement of two symmetric metamaterials consisting of symmetrically split rings (SSR) and a fishscale (FS) metamaterial pattern, respectively, strongly depend on angles of incidence. The FS metamaterial shows much broader spectral splitting than the SSR metamaterial due to the surface current distribution variation.

  10. Tensegrity structures form, stability, and symmetry

    CERN Document Server

    Zhang, Jing Yao

    2015-01-01

    To facilitate a deeper understanding of tensegrity structures, this book focuses on their two key design problems: self-equilibrium analysis and stability investigation. In particular, high symmetry properties of the structures are extensively utilized. Conditions for self-equilibrium as well as super-stability of tensegrity structures are presented in detail. An analytical method and an efficient numerical method are given for self-equilibrium analysis of tensegrity structures: the analytical method deals with symmetric structures and the numerical method guarantees super-stability. Utilizing group representation theory, the text further provides analytical super-stability conditions for the structures that are of dihedral as well as tetrahedral symmetry. This book not only serves as a reference for engineers and scientists but is also a useful source for upper-level undergraduate and graduate students. Keeping this objective in mind, the presentation of the book is self-contained and detailed, with an abund...

  11. Binary self-assembly of highly symmetric DNA nanocages via sticky-end engineering

    Institute of Scientific and Technical Information of China (English)

    Xiao-Rong Wu; Chen-Wei Wu; Fei Ding; Cheng Tian; Wen Jiang; Cheng-De Mao; Chuan Zhang

    2017-01-01

    Discrete and symmetric three-dimensional (3D) DNA nanocages have been revoked as excellent candidates for various applications,such as guest component encapsulation and organization (e.g.dye molecules,proteins,inorganic nanoparticles,etc.) to construct new materials and devices.To date,a large variety of DNA nanocages has been synthesized through assembling small individual DNA motifs into predesigned structures in a bottom-up fashion.Most of them rely on the assembly using multiple copies of single type of motifs and a few sophisticated nanostructures have been engineered by co-assembling multi-types of DNA tiles simultaneously.However,the availability of complex DNA nanocages is still limited.Herein,we demonstrate that highly symmetric DNA nanocages consisted of binary DNA pointstar motifs can be easily assembled by deliberately engineering the sticky-end interaction between the component building blocks.As such,DNA nanocages with new geometries,including elongated tetrahedron (E-TET),rhombic dodecahedron (R-DOD),and rhombic triacontahedron (R-TRI) are successfully synthesized.Moreover,their design principle,assembly process,and structural features are revealed by polyacryalmide gel electrophoresis (PAGE),atomic force microscope (AFM) imaging,and cryogenic transmission electron microscope imaging (cryo-TEM) associated with single particle reconstruction.

  12. Parallel coupling of symmetric and asymmetric exclusion processes

    International Nuclear Information System (INIS)

    Tsekouras, K; Kolomeisky, A B

    2008-01-01

    A system consisting of two parallel coupled channels where particles in one of them follow the rules of totally asymmetric exclusion processes (TASEP) and in another one move as in symmetric simple exclusion processes (SSEP) is investigated theoretically. Particles interact with each other via hard-core exclusion potential, and in the asymmetric channel they can only hop in one direction, while on the symmetric lattice particles jump in both directions with equal probabilities. Inter-channel transitions are also allowed at every site of both lattices. Stationary state properties of the system are solved exactly in the limit of strong couplings between the channels. It is shown that strong symmetric couplings between totally asymmetric and symmetric channels lead to an effective partially asymmetric simple exclusion process (PASEP) and properties of both channels become almost identical. However, strong asymmetric couplings between symmetric and asymmetric channels yield an effective TASEP with nonzero particle flux in the asymmetric channel and zero flux on the symmetric lattice. For intermediate strength of couplings between the lattices a vertical-cluster mean-field method is developed. This approximate approach treats exactly particle dynamics during the vertical transitions between the channels and it neglects the correlations along the channels. Our calculations show that in all cases there are three stationary phases defined by particle dynamics at entrances, at exits or in the bulk of the system, while phase boundaries depend on the strength and symmetry of couplings between the channels. Extensive Monte Carlo computer simulations strongly support our theoretical predictions. Theoretical calculations and computer simulations predict that inter-channel couplings have a strong effect on stationary properties. It is also argued that our results might be relevant for understanding multi-particle dynamics of motor proteins

  13. Confining but chirally symmetric dense and cold matter

    International Nuclear Information System (INIS)

    Glozman, L. Ya.

    2012-01-01

    The possibility for existence of cold, dense chirally symmetric matter with confinement is reviewed. The answer to this question crucially depends on the mechanism of mass generation in QCD and interconnection of confinement and chiral symmetry breaking. This question can be clarified from spectroscopy of hadrons and their axial properties. Almost systematical parity doubling of highly excited hadrons suggests that their mass is not related to chiral symmetry breaking in the vacuum and is approximately chirally symmetric. Then there is a possibility for existence of confining but chirally symmetric matter. We clarify a possible mechanism underlying such a phase at low temperatures and large density. Namely, at large density the Pauli blocking prevents the gap equation to generate a solution with broken chiral symmetry. However, the chirally symmetric part of the quark Green function as well as all color non-singlet quantities are still infrared divergent, meaning that the system is with confinement. A possible phase transition to such a matter is most probably of the first order. This is because there are no chiral partners to the lowest lying hadrons.

  14. Solitons in PT-symmetric potential with competing nonlinearity

    International Nuclear Information System (INIS)

    Khare, Avinash; Al-Marzoug, S.M.; Bahlouli, Hocine

    2012-01-01

    We investigate the effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. In particular, we consider the stationary nonlinear Schrödinger equation (NLSE) in one dimension with competing cubic and generalized nonlinearity in the presence of a PT-symmetric potential. Closed form solutions for localized states are obtained. These solitons are shown to be stable over a wide range of potential parameters. The transverse power flow associated with these complex solitons is also examined. -- Highlights: ► Effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. ► Closed form solutions for localized states are. ► The transverse power flow associated with these complex solitons is also examined.

  15. Color symmetrical superconductivity in a schematic nuclear quark model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; da Providencia, J.

    2010-01-01

    In this letter, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. In the usual approach to color superconductivity, the pairing correlations affect only the quasi-particle...... states of two colors, the single-particle states of the third color remaining unaffected by the pairing correlations. In the theory of color symmetrical superconductivity here proposed, the pairing correlations affect symmetrically the quasi-particle states of the three colors and vanishing net color...

  16. Geometric characteristics of aberrations of plane-symmetric optical systems

    International Nuclear Information System (INIS)

    Lu Lijun; Deng Zhiyong

    2009-01-01

    The geometric characteristics of aberrations of plane-symmetric optical systems are studied in detail with a wave-aberration theory. It is dealt with as an extension of the Seidel aberrations to realize a consistent aberration theory from axially symmetric to plane-symmetric systems. The aberration distribution is analyzed with the spot diagram of a ray and an aberration curve. Moreover, the root-mean-square value and the centroid of aberration distribution are discussed. The numerical results are obtained with the focusing optics of a toroidal mirror at grazing incidence.

  17. Thermoacoustic focusing lens by symmetric Airy beams with phase manipulations

    Science.gov (United States)

    Liu, Chen; Xia, Jian-Ping; Sun, Hong-Xiang; Yuan, Shou-Qi

    2017-12-01

    We report the realization of broadband acoustic focusing lenses based on two symmetric thermoacoustic phased arrays of Airy beams, in which the units of thermoacoustic phase control are designed by employing air with different temperatures surrounded by rigid insulated boundaries and thermal insulation films. The phase delays of the transmitted and reflected units could cover a whole 2π interval, which arises from the change of the sound velocity of air induced by the variation of the temperature. Based on the units of phase control, we design the transmitted and reflected acoustic focusing lenses with two symmetric Airy beams, and verify the high self-healing focusing characteristic and the feasibility of the thermal insulation films. Besides, the influences of the bending angle of the Airy beam on the focusing performance are discussed in detail. The proposed acoustic lens has advantages of broad bandwidth (about 4.8 kHz), high focusing performance, self-healing feature, and simple structure, which enable it to provide more schemes for acoustic focusing. It has excellent potential applications in acoustic devices.

  18. Facial One-Pot Synthesis of D 3h Symmetric Bicyclocalix[2]arene[2]triazines and Their Layered Comb Self-Assembly

    KAUST Repository

    Chen, Yin

    2017-11-23

    A number of D3h symmetric bicyclocalix[2]arene[2]triazine core compounds were synthesized via a general and good-yielding (43-48% yield) facile protocol starting from cyanuric halides, phloroglucinol and K2CO3 under very mild reaction conditions. These cage-like compounds are tolerate with different reaction conditions and can be derived with other functional groups in high yield. The X-ray crystal structures show these compounds have slightly distorted D3h symmetric structures. Due to the unique molecular topological structure, bicyclocalix[2]arene[2]triazine molecules form unique layered comb networks when hydrogen bond groups exist (such as CO2H, B(OH)2), which represent a new kind of building block unit for supramolecular architectures.

  19. Sparse symmetric preconditioners for dense linear systems in electromagnetism

    NARCIS (Netherlands)

    Carpentieri, Bruno; Duff, Iain S.; Giraud, Luc; Monga Made, M. Magolu

    2004-01-01

    We consider symmetric preconditioning strategies for the iterative solution of dense complex symmetric non-Hermitian systems arising in computational electromagnetics. In particular, we report on the numerical behaviour of the classical incomplete Cholesky factorization as well as some of its recent

  20. The Topology of Three-Dimensional Symmetric Tensor Fields

    Science.gov (United States)

    Lavin, Yingmei; Levy, Yuval; Hesselink, Lambertus

    1994-01-01

    We study the topology of 3-D symmetric tensor fields. The goal is to represent their complex structure by a simple set of carefully chosen points and lines analogous to vector field topology. The basic constituents of tensor topology are the degenerate points, or points where eigenvalues are equal to each other. First, we introduce a new method for locating 3-D degenerate points. We then extract the topological skeletons of the eigenvector fields and use them for a compact, comprehensive description of the tensor field. Finally, we demonstrate the use of tensor field topology for the interpretation of the two-force Boussinesq problem.

  1. Nature of the many-particle potential in the monatomic liquid state: Radial and angular structure

    International Nuclear Information System (INIS)

    Clements, B.E.; Wallace, D.C.

    1999-01-01

    The atomic configurational order of random, symmetric, and crystalline states of sodium is investigated using molecular-dynamics simulations. Pair distribution functions are calculated for these states. Consistent with the liquid- and random-state energetics, we find that, by cooling, the liquid configurations evolve continuously to random-state structures. For sodium, the random pair distribution function has a split second peak characteristic of many amorphous materials and has the first subpeak exceeding the second subpeak. Experiments have shown this to be the case for amorphous Ni, Co, Cr, Fe, and Mn. A universal pair distribution function is identified for all random structures, as was hypothesized by liquid-dynamics theory. The peak widths of the random pair distribution function are considerably broader, even at very low temperatures, than those of the bcc and symmetric structures. No universal pair distribution function exists for symmetric structures. For low-temperature random, symmetric, and crystalline structures we determine average Voronoi coordination numbers, angular distributions between neighboring atomic triplets, and the number of Voronoi edges per face. Without exception the random and symmetric structures show very different trends for each of these properties. The universal nature of the random structures is also apparent in each property exhibited in the Voronoi polyhedra, unlike for the symmetric structures. Angles between neighboring Voronoi triplets common to random close-packing structures are favored by the random structures whereas those hinting at microcrystalline order are found for the symmetric structures. The distribution of Voronoi coordination numbers for both random and symmetric structures are peaked at 14 neighbors, but while the symmetric structures are essentially all 14, the random structures have nearly as many 13 and 15 neighbor polyhedra. The number of edges per face also shows a stark difference between the random and

  2. Unitals and ovals of symmetric block designs in LDPC and space-time coding

    Science.gov (United States)

    Andriamanalimanana, Bruno R.

    2004-08-01

    An approach to the design of LDPC (low density parity check) error-correction and space-time modulation codes involves starting with known mathematical and combinatorial structures, and deriving code properties from structure properties. This paper reports on an investigation of unital and oval configurations within generic symmetric combinatorial designs, not just classical projective planes, as the underlying structure for classes of space-time LDPC outer codes. Of particular interest are the encoding and iterative (sum-product) decoding gains that these codes may provide. Various small-length cases have been numerically implemented in Java and Matlab for a number of channel models.

  3. Key Issues in Modeling of Complex 3D Structures from Video Sequences

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available Construction of three-dimensional structures from video sequences has wide applications for intelligent video analysis. This paper summarizes the key issues of the theory and surveys the recent advances in the state of the art. Reconstruction of a scene object from video sequences often takes the basic principle of structure from motion with an uncalibrated camera. This paper lists the typical strategies and summarizes the typical solutions or algorithms for modeling of complex three-dimensional structures. Open difficult problems are also suggested for further study.

  4. Tilting-connected symmetric algebras

    OpenAIRE

    Aihara, Takuma

    2010-01-01

    The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.

  5. Distributed Searchable Symmetric Encryption

    NARCIS (Netherlands)

    Bösch, C.T.; Peter, Andreas; Leenders, Bram; Lim, Hoon Wei; Tang, Qiang; Wang, Huaxiong; Hartel, Pieter H.; Jonker, Willem

    Searchable Symmetric Encryption (SSE) allows a client to store encrypted data on a storage provider in such a way, that the client is able to search and retrieve the data selectively without the storage provider learning the contents of the data or the words being searched for. Practical SSE schemes

  6. Rings with involution whose symmetric elements are central

    Directory of Open Access Journals (Sweden)

    Taw Pin Lim

    1980-01-01

    Full Text Available In a ring R with involution whose symmetric elements S are central, the skew-symmetric elements K form a Lie algebra over the commutative ring S. The classification of such rings which are 2-torsion free is equivalent to the classification of Lie algebras K over S equipped with a bilinear form f that is symmetric, invariant and satisfies [[x,y],z]=f(y,zx−f(z,xy. If S is a field of char ≠2, f≠0 and dimK>1 then K is a semisimple Lie algebra if and only if f is nondegenerate. Moreover, the derived algebra K′ is either the pure quaternions over S or a direct sum of mutually orthogonal abelian Lie ideals of dim≤2.

  7. Optomechanically induced absorption in parity-time-symmetric optomechanical systems

    Science.gov (United States)

    Zhang, X. Y.; Guo, Y. Q.; Pei, P.; Yi, X. X.

    2017-06-01

    We explore the optomechanically induced absorption (OMIA) in a parity-time- (PT -) symmetric optomechanical system (OMS). By numerically calculating the Lyapunov exponents, we find out the stability border of the PT -symmetric OMS. The results show that in the PT -symmetric phase the system can be either stable or unstable depending on the coupling constant and the decay rate. In the PT -symmetric broken phase the system can have a stable state only for small gain rates. By calculating the transmission rate of the probe field, we find that there is an inverted optomechanically induced transparency (OMIT) at δ =-ωM and an OMIA at δ =ωM for the PT -symmetric optomechanical system. At each side of δ =-ωM there is an absorption window due to the resonance absorption of the two generated supermodes. Comparing with the case of optomechanics coupled to a passive cavity, we find that the active cavity can enhance the resonance absorption. The absorption rate at δ =ωM increases as the coupling strength between the two cavities increases. Our work provides us with a promising platform for controlling light propagation and light manipulation in terms of PT symmetry, which might have potential applications in quantum information processing and quantum optical devices.

  8. Cryptanalysis of a chaotic block cipher with external key and its improved version

    International Nuclear Information System (INIS)

    Li Chengqing; Li Shujun; Alvarez, Gonzalo; Chen Guanrong; Lo, K.-T.

    2008-01-01

    Recently, Pareek et al. proposed a symmetric key block cipher using multiple one-dimensional chaotic maps. This paper reports some new findings on the security problems of this kind of chaotic cipher: (1) a number of weak keys exist; (2) some important intermediate data of the cipher are not sufficiently random; (3) the whole secret key can be broken by a known-plaintext attack with only 120 consecutive known plain-bytes in one known plaintext. In addition, it is pointed out that an improved version of the chaotic cipher proposed by Wei et al. still suffers from all the same security defects

  9. All-optical symmetric ternary logic gate

    Science.gov (United States)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  10. Symmetric spaces and the Kashiwara-Vergne method

    CERN Document Server

    Rouvière, François

    2014-01-01

    Gathering and updating results scattered in journal articles over thirty years, this self-contained monograph gives a comprehensive introduction to the subject. Its goal is to: - motivate and explain the method for general Lie groups, reducing the proof of deep results in invariant analysis to the verification of two formal Lie bracket identities related to the Campbell-Hausdorff formula (the "Kashiwara-Vergne conjecture"); - give a detailed proof of the conjecture for quadratic and solvable Lie algebras, which is relatively elementary; - extend the method to symmetric spaces; here an obstruction appears, embodied in a single remarkable object called an "e-function"; - explain the role of this function in invariant analysis on symmetric spaces, its relation to invariant differential operators, mean value operators and spherical functions; - give an explicit e-function for rank one spaces (the hyperbolic spaces); - construct an e-function for general symmetric spaces, in the spirit of Kashiwara and Vergne's or...

  11. Helically symmetric experiment, (HSX) goals, design and status

    International Nuclear Information System (INIS)

    Anderson, F.S.B.; Almagri, A.F.; Anderson, D.T.; Matthews, P.G.; Talmadge, J.N.; Shohet, J.L.

    1995-01-01

    HSX is a quasi-helically symmetric (QHS) stellarator currently under construction at the Torsatron-Stellarator Laboratory of the University of Wisconsin-Madison. This device is unique in its magnetic design in that the magnetic field spectrum possesses only a single dominant (helical) component. This design avoids the large direct orbit losses and the low-collisionality neoclassical losses associated with conventional stellarators. The restoration of symmetry to the confining magnetic field makes the neoclassical confinement in this device analogous to an axisymmetric q=1/3 tokamak. The HSX device has been designed with a clear set of primary physics goals: demonstrate the feasibility of construction of a QHS device, examine single particle confinement of injected ions with regard to magnetic field symmetry breaking, compare density and temperature profiles in this helically symmetric system to those for axisymmetric tokamaks and conventional stellarators, examine electric fields and plasma rotation with edge biasing in relation to L-H transitions in symmetric versus non-symmetric stellarator systems, investigate QHS effects on 1/v regime electron confinement, and examine how greatly-reduced neoclassical electron thermal conductivity compares to the experimental χ e profile. 3 refs., 4 figs., 1 tab

  12. Symmetric coupling of four spin-1/2 systems

    Science.gov (United States)

    Suzuki, Jun; Englert, Berthold-Georg

    2012-06-01

    We address the non-binary coupling of identical angular momenta based upon the representation theory for the symmetric group. A correspondence is pointed out between the complete set of commuting operators and the reference-frame-free subsystems. We provide a detailed analysis of the coupling of three and four spin-1/2 systems and discuss a symmetric coupling of four spin-1/2 systems.

  13. New approach to solve symmetric fully fuzzy linear systems

    Indian Academy of Sciences (India)

    In this paper, we present a method to solve fully fuzzy linear systems with symmetric coefficient matrix. The symmetric coefficient matrix is decomposed into two systems of equations by using Cholesky method and then a solution can be obtained. Numerical examples are given to illustrate our method.

  14. The mathematics of xenology: di-cographs, symbolic ultrametrics, 2-structures and tree-representable systems of binary relations.

    Science.gov (United States)

    Hellmuth, Marc; Stadler, Peter F; Wieseke, Nicolas

    2017-07-01

    The concepts of orthology, paralogy, and xenology play a key role in molecular evolution. Orthology and paralogy distinguish whether a pair of genes originated by speciation or duplication. The corresponding binary relations on a set of genes form complementary cographs. Allowing more than two types of ancestral event types leads to symmetric symbolic ultrametrics. Horizontal gene transfer, which leads to xenologous gene pairs, however, is inherent asymmetric since one offspring copy "jumps" into another genome, while the other continues to be inherited vertically. We therefore explore here the mathematical structure of the non-symmetric generalization of symbolic ultrametrics. Our main results tie non-symmetric ultrametrics together with di-cographs (the directed generalization of cographs), so-called uniformly non-prime ([Formula: see text]) 2-structures, and hierarchical structures on the set of strong modules. This yields a characterization of relation structures that can be explained in terms of trees and types of ancestral events. This framework accommodates a horizontal-transfer relation in terms of an ancestral event and thus, is slightly different from the the most commonly used definition of xenology. As a first step towards a practical use, we present a simple polynomial-time recognition algorithm of [Formula: see text] 2-structures and investigate the computational complexity of several types of editing problems for [Formula: see text] 2-structures. We show, finally that these NP-complete problems can be solved exactly as Integer Linear Programs.

  15. Quadratic Hamiltonians on non-symmetric Poisson structures

    International Nuclear Information System (INIS)

    Arribas, M.; Blesa, F.; Elipe, A.

    2007-01-01

    Many dynamical systems may be represented in a set of non-canonical coordinates that generate an su(2) algebraic structure. The topology of the phase space is the one of the S 2 sphere, the Poisson structure is the one of the rigid body, and the Hamiltonian is a parametric quadratic form in these 'spherical' coordinates. However, there are other problems in which the Poisson structure losses its symmetry. In this paper we analyze this case and, we show how the loss of the spherical symmetry affects the phase flow and parametric bifurcations for the bi-parametric cases

  16. Kinetic-energy distribution for symmetric fission of 236U

    International Nuclear Information System (INIS)

    Brissot, R.; Bocquet, J.P.; Ristori, C.; Crancon, J.; Guet, C.R.; Nifenecker, H.A.; Montoya, M.

    1980-01-01

    Fission fragment kinetic-energy distributions have been measured at the Grenoble high-flux reactor with the Lohengrin facility. Spurious events were eliminated in the symmetric region by a coherence test based on a time-of-flight measurement of fragment velocities. A Monte-Carlo calculation is then performed to correct the experimental data for neutron evaporation. The difference between the most probable kinetic energy in symmetric fission and the fission in which the heavy fragment is 'magic' (Zsub(H)=50) is found to be approximately =30 MeV. The results suggest that for the symmetric case the total excitation energy available at scission is shared equally among the fragments. (author)

  17. Torsion-rotation structure and quasi-symmetric-rotor behaviour for the CH3SH asymmetric CH3-bending and C-H stretching bands of E parentage

    Science.gov (United States)

    Lees, R. M.; Xu, Li-Hong; Guislain, B. G.; Reid, E. M.; Twagirayezu, S.; Perry, D. S.; Dawadi, M. B.; Thapaliya, B. P.; Billinghurst, B. E.

    2018-01-01

    High-resolution Fourier transform spectra of the asymmetric methyl-bending and methyl-stretching bands of CH3SH have been recorded employing synchrotron radiation at the FIR beamline of the Canadian Light Source. Analysis of the torsion-rotation structure and relative intensities has revealed the novel feature that for both bend and stretch the in-plane and out-of-plane modes behave much like a Coriolis-coupled l-doublet pair originating from degenerate E modes of a symmetric top. As the axial angular momentum K increases, the energies of the coupled "l = ±1" modes diverge linearly, with effective Coriolis ζ constants typical for symmetric tops. For the methyl-stretching states, separated at K = 0 by only about 1 cm-1, the assigned sub-bands follow a symmetric top Δ(K - l) = 0 selection rule, with only ΔK = -1 transitions observed to the upper l = -1 in-plane A‧ component and only ΔK = +1 transitions to the lower l = +1 out-of-plane A″ component. The K = 0 separation of the CH3-bending states is larger at 9.1 cm-1 with the l-ordering reversed. Here, both ΔK = +1 and ΔK = -1 transitions are seen for each l-component but with a large difference in relative intensity. Term values for the excited state levels have been fitted to J(J + 1) power-series expansions to obtain substate origins. These have then been fitted to a Fourier model to characterize the torsion-K-rotation energy patterns. For both pairs of vibrational states, the torsional energies display the customary oscillatory behaviour as a function of K and have inverted torsional splittings relative to the ground state. The spectra show numerous perturbations, indicating local resonances with the underlying bath of high torsional levels and vibrational combination and overtone states. The overall structure of the two pairs of bands represents a new regime in which the vibrational energy separations, torsional splittings and shifts due to molecular asymmetry are all of the same order, creating a

  18. Symmetry theorems via the continuous steiner symmetrization

    Directory of Open Access Journals (Sweden)

    L. Ragoub

    2000-06-01

    Full Text Available Using a new approach due to F. Brock called the Steiner symmetrization, we show first that if $u$ is a solution of an overdetermined problem in the divergence form satisfying the Neumann and non-constant Dirichlet boundary conditions, then $Omega$ is an N-ball. In addition, we show that we can relax the condition on the value of the Dirichlet boundary condition in the case of superharmonicity. Finally, we give an application to positive solutions of some semilinear elliptic problems in symmetric domains for the divergence case.

  19. A key heterogeneous structure of fractal networks based on inverse renormalization scheme

    Science.gov (United States)

    Bai, Yanan; Huang, Ning; Sun, Lina

    2018-06-01

    Self-similarity property of complex networks was found by the application of renormalization group theory. Based on this theory, network topologies can be classified into universality classes in the space of configurations. In return, through inverse renormalization scheme, a given primitive structure can grow into a pure fractal network, then adding different types of shortcuts, it exhibits different characteristics of complex networks. However, the effect of primitive structure on networks structural property has received less attention. In this paper, we introduce a degree variance index to measure the dispersion of nodes degree in the primitive structure, and investigate the effect of the primitive structure on network structural property quantified by network efficiency. Numerical simulations and theoretical analysis show a primitive structure is a key heterogeneous structure of generated networks based on inverse renormalization scheme, whether or not adding shortcuts, and the network efficiency is positively correlated with degree variance of the primitive structure.

  20. Symmetric group representations and Z

    OpenAIRE

    Adve, Anshul; Yong, Alexander

    2017-01-01

    We discuss implications of the following statement about the representation theory of symmetric groups: every integer appears infinitely often as an irreducible character evaluation, and every nonnegative integer appears infinitely often as a Littlewood-Richardson coefficient and as a Kronecker coefficient.

  1. Quantum systems and symmetric spaces

    International Nuclear Information System (INIS)

    Olshanetsky, M.A.; Perelomov, A.M.

    1978-01-01

    Certain class of quantum systems with Hamiltonians related to invariant operators on symmetric spaces has been investigated. A number of physical facts have been derived as a consequence. In the classical limit completely integrable systems related to root systems are obtained

  2. Highly accurate potential calculations for cylindrically symmetric geometries using multi-region FDM: A review

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, David, E-mail: dej@kingcon.com [IJL Research Center, Newark, VT 05871 (United States)

    2011-07-21

    This paper is a review of multi-region FDM, a numerical technique for accurately determining electrostatic potentials in cylindrically symmetric geometries. Multi-region FDM can be thought of as the union of various individual elements: a single region FDM process: a method for algorithmic development; a method for auto creating a multi-region structure; the process for the relaxation of multi-region structures. Each element will be briefly described along with its integration into the multi-region relaxation process itself.

  3. Hypercyclic operators on algebra of symmetric snalytic functions on $\\ell_p$

    Directory of Open Access Journals (Sweden)

    Z. H. Mozhyrovska

    2016-06-01

    Full Text Available In the paper, it is proposed a method of construction of hypercyclic composition operators on $H(\\mathbb{C}^n$ using polynomial automorphisms of $\\mathbb{C}^n$ and symmetric analytic functions on $\\ell_p.$ In particular, we show that an ``symmetric translation'' operator is hypercyclic on a Frechet algebra of symmetric entire functions on $\\ell_p$ which are bounded on bounded subsets.

  4. A New Formulation for Symmetric Implicit Runge-Kutta-Nystrom ...

    African Journals Online (AJOL)

    In this paper we derive symmetric stable Implicit Runge-Kutta –Nystrom Method for the Integration of General Second Order ODEs by using the collocation approach.The block hybrid method obtained by the evaluation of the continuous interpolant at different nodes of the polynomial is symmetric and suitable for stiff intial ...

  5. Relativistic fluids in spherically symmetric space

    International Nuclear Information System (INIS)

    Dipankar, R.

    1977-12-01

    Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat

  6. The generalised Sylvester matrix equations over the generalised bisymmetric and skew-symmetric matrices

    Science.gov (United States)

    Dehghan, Mehdi; Hajarian, Masoud

    2012-08-01

    A matrix P is called a symmetric orthogonal if P = P T = P -1. A matrix X is said to be a generalised bisymmetric with respect to P if X = X T = PXP. It is obvious that any symmetric matrix is also a generalised bisymmetric matrix with respect to I (identity matrix). By extending the idea of the Jacobi and the Gauss-Seidel iterations, this article proposes two new iterative methods, respectively, for computing the generalised bisymmetric (containing symmetric solution as a special case) and skew-symmetric solutions of the generalised Sylvester matrix equation ? (including Sylvester and Lyapunov matrix equations as special cases) which is encountered in many systems and control applications. When the generalised Sylvester matrix equation has a unique generalised bisymmetric (skew-symmetric) solution, the first (second) iterative method converges to the generalised bisymmetric (skew-symmetric) solution of this matrix equation for any initial generalised bisymmetric (skew-symmetric) matrix. Finally, some numerical results are given to illustrate the effect of the theoretical results.

  7. Omni-directional reflectors for deep blue LED using symmetric autocloning method

    Science.gov (United States)

    Chen, Sheng-Hui; Chen, Chun-Ko; Huang, Yu-Chia; Lee, Cheng-Chung

    2013-03-01

    Omni-directional reflectors (ODRs) for deep blue LED were designed and fabricated using symmetric autocloning method. The symmetric stack multi-layers for the reflectors were designed by finite-difference time-domain simulation. The fabricating process of ODR is combined with the techniques of anodic aluminum oxide (AAO) process and autocloning method. The two-dimensional structure template of nano-channel array was grown using AAO with the period of 150 nm. Then the shaping layer was deposited on the AAO template by evaporation deposition. Besides, the ion etching was applied to modify the apex angle to the triangle shape at 100°. Finally, the sub/(0.5TiO2 SiO2 0.5TiO2)8 multi-layer stack was deposited on the shaping layer using autocloning method to achieve the ODR. The results show the reflective spectra of ODR at the incident angles of 0, 30, 45, and 60° had high values within the range 400-450 nm. Besides, the central wavelength shifting is not obvious which is very good for keeping the color of LED stable.

  8. Symmetric Space Cartan Connections and Gravity in Three and Four Dimensions

    Directory of Open Access Journals (Sweden)

    Derek K. Wise

    2009-08-01

    Full Text Available Einstein gravity in both 3 and 4 dimensions, as well as some interesting generalizations, can be written as gauge theories in which the connection is a Cartan connection for geometry modeled on a symmetric space. The relevant models in 3 dimensions include Einstein gravity in Chern-Simons form, as well as a new formulation of topologically massive gravity, with arbitrary cosmological constant, as a single constrained Chern-Simons action. In 4 dimensions the main model of interest is MacDowell-Mansouri gravity, generalized to include the Immirzi parameter in a natural way. I formulate these theories in Cartan geometric language, emphasizing also the role played by the symmetric space structure of the model. I also explain how, from the perspective of these Cartan-geometric formulations, both the topological mass in 3d and the Immirzi parameter in 4d are the result of non-simplicity of the Lorentz Lie algebra so(3,1 and its relatives. Finally, I suggest how the language of Cartan geometry provides a guiding principle for elegantly reformulating any 'gauge theory of geometry'.

  9. Symmetric Pin Diversion Detection using a Partial Defect Detector (PDET)

    International Nuclear Information System (INIS)

    Sitaraman, S.; Ham, Y.S.

    2009-01-01

    Since the signature from the Partial Defect Detector (PDET) is principally dependent on the geometric layout of the guide tube locations, the capability of the technique in detecting symmetric diversion of pins needs to be determined. The Monte Carlo simulation study consisted of cases where pins were removed in a symmetric manner and the resulting signatures were examined. In addition to the normalized gamma-to-neutron ratios, the neutron and gamma signatures normalized to their maximum values, were also examined. Examination of the shape of the three curves as well as of the peak-to-valley differences in excess of the maximum expected in intact assemblies, indicated pin diversion. A set of simulations with various symmetric patterns of diversion were examined. The results from these studies indicated that symmetric diversions as low as twelve percent could be detected by this methodology

  10. Stability of transparent spherically symmetric thin shells and wormholes

    International Nuclear Information System (INIS)

    Ishak, Mustapha; Lake, Kayll

    2002-01-01

    The stability of transparent spherically symmetric thin shells (and wormholes) to linearized spherically symmetric perturbations about static equilibrium is examined. This work generalizes and systematizes previous studies and explores the consequences of including the cosmological constant. The approach shows how the existence (or not) of a domain wall dominates the landscape of possible equilibrium configurations

  11. Multiple symmetrical lipomatosis (Madelung's disease) - a case report

    International Nuclear Information System (INIS)

    Vieira, Marcelo Vasconcelos; Abreu, Marcelo de; Furtado, Claudia Dietz; Silveira, Marcio Fleck da; Furtado, Alvaro Porto Alegre; Genro, Carlos Horacio; Grazziotin, Rossano Ughini

    2001-01-01

    Multiple symmetrical lipomatosis (Madelung's disease) is a rare disorder characterized by deep accumulation of fat tissue, involving mainly the neck, shoulders and chest. This disease is associated with heavy alcohol intake and it is more common in men of Mediterranean origin. This disease can cause severe aesthetic deformities and progressive respiratory dysfunction. We report a case of a patient with multiple symmetrical lipomatosis and describe the clinical and radiological features of this disorder. (author)

  12. Axially symmetric Lorentzian wormholes in general relativity

    International Nuclear Information System (INIS)

    Schein, F.

    1997-11-01

    The field equations of Einstein's theory of general relativity, being local, do not fix the global structure of space-time. They admit topologically non-trivial solutions, including spatially closed universes and the amazing possibility of shortcuts for travel between distant regions in space and time - so-called Lorentzian wormholes. The aim of this thesis is to (mathematically) construct space-times which contain traversal wormholes connecting arbitrary distant regions of an asymptotically flat or asymptotically de Sitter universe. Since the wormhole mouths appear as two separate masses in the exterior space, space-time can at best be axially symmetric. We eliminate the non-staticity caused by the gravitational attraction of the mouths by anchoring them by strings held at infinity or, alternatively, by electric repulsion. The space-times are obtained by surgically grafting together well-known solutions of Einstein's equations along timelike hypersurfaces. This surgery naturally concentrates a non-zero stress-energy tensor on the boundary between the two space-times which can be investigated by using the standard thin shell formalism. It turns out that, when using charged black holes, the provided constructions are possible without violation of any of the energy conditions. In general, observers living in the axially symmetric, asymptotically flat (respectively asymptotically de Sitter) region axe able to send causal signals through the topologically non-trivial region. However, the wormhole space-times contain closed timelike curves. Because of this explicit violation of global hyperbolicity these models do not serve as counterexamples to known topological censorship theorems. (author)

  13. The lamellar period in symmetric diblock copolymer thin films studied by neutron reflectivity and AFM

    DEFF Research Database (Denmark)

    Gadegaard, N.; Almdal, K.; Larsen, N.B.

    1999-01-01

    The lamellar structure of a symmetric diblock copolymer was studied as a function of temperature. We used dPEP-PDMS with a molecular weight of 8.3 kg/mol as model system. The polymer was dissolved in chloroform and spin-casted on silicon wafers into thin uniform films. The degree and direction...

  14. Key Technologies of the Hydraulic Structures of the Three Gorges Project

    Directory of Open Access Journals (Sweden)

    Xinqiang Niu

    2016-09-01

    Full Text Available To date, the Three Gorges Project is the largest hydro junction in the world. It is the key project for the integrated water resource management and development of the Changjiang River. The technology of the project, with its huge scale and comprehensive benefits, is extremely complicated, and the design difficulty is greater than that of any other hydro project in the world. A series of new design theories and methods have been proposed and applied in the design and research process. Many key technological problems regarding hydraulic structures have been overcome, such as a gravity dam with multi-layer large discharge orifices, a hydropower station of giant generating units, and a giant continual multi-step ship lock with a high water head.

  15. Sparse-matrix factorizations for fast symmetric Fourier transforms

    International Nuclear Information System (INIS)

    Sequel, J.

    1987-01-01

    This work proposes new fast algorithms computing the discrete Fourier transform of certain families of symmetric sequences. Sequences commonly found in problems of structure determination by x-ray crystallography and in numerical solutions of boundary-value problems in partial differential equations are dealt with. In the algorithms presented, the redundancies in the input and output data, due to the presence of symmetries in the input data sequence, were eliminated. Using ring-theoretical methods a matrix representation is obtained for the remaining calculations; which factors as the product of a complex block-diagonal matrix times as integral matrix. A basic two-step algorithm scheme arises from this factorization with a first step consisting of pre-additions and a second step containing the calculations involved in computing with the blocks in the block-diagonal factor. These blocks are structured as block-Hankel matrices, and two sparse-matrix factoring formulas are developed in order to diminish their arithmetic complexity

  16. Analysing PKCS#11 Key Management APIs with Unbounded Fresh Data

    Science.gov (United States)

    Fröschle, Sibylle; Steel, Graham

    We extend Delaune, Kremer and Steel’s framework for analysis of PKCS#11-based APIs from bounded to unbounded fresh data. We achieve this by: formally defining the notion of an attribute policy; showing that a well-designed API should have a certain class of policy we call complete; showing that APIs with complete policies may be safely abstracted to APIs where the attributes are fixed; and proving that these static APIs can be analysed in a small bounded model such that security properties will hold for the unbounded case. We automate analysis in our framework using the SAT-based security protocol model checker SATMC. We show that a symmetric key management subset of the Eracom PKCS#11 API, used in their ProtectServer product, preserves the secrecy of sensitive keys for unbounded numbers of fresh keys and handles, i.e. pointers to keys. We also show that this API is not robust: if an encryption key is lost to the intruder, SATMC finds an attack whereby all the keys may be compromised.

  17. Symmetric encryption algorithms using chaotic and non-chaotic generators: A review.

    Science.gov (United States)

    Radwan, Ahmed G; AbdElHaleem, Sherif H; Abd-El-Hafiz, Salwa K

    2016-03-01

    This paper summarizes the symmetric image encryption results of 27 different algorithms, which include substitution-only, permutation-only or both phases. The cores of these algorithms are based on several discrete chaotic maps (Arnold's cat map and a combination of three generalized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms include a set of new image encryption algorithms based on non-chaotic generators, either using substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two different permutation scenarios are presented where the permutation-phase has or does not have a relationship with the input image through an ON/OFF switch. Different encryption-key lengths and complexities are provided from short to long key to persist brute-force attacks. In addition, sensitivities of those different techniques to a one bit change in the input parameters of the substitution key as well as the permutation key are assessed. Finally, a comparative discussion of this work versus many recent research with respect to the used generators, type of encryption, and analyses is presented to highlight the strengths and added contribution of this paper.

  18. Experimental Characterization of Electron-Beam-Driven Wakefield Modes in a Dielectric-Woodpile Cartesian Symmetric Structure

    Science.gov (United States)

    Hoang, P. D.; Andonian, G.; Gadjev, I.; Naranjo, B.; Sakai, Y.; Sudar, N.; Williams, O.; Fedurin, M.; Kusche, K.; Swinson, C.; Zhang, P.; Rosenzweig, J. B.

    2018-04-01

    Photonic structures operating in the terahertz (THz) spectral region enable the essential characteristics of confinement, modal control, and electric field shielding for very high gradient accelerators based on wakefields in dielectrics. We report here an experimental investigation of THz wakefield modes in a three-dimensional photonic woodpile structure. Selective control in exciting or suppressing of wakefield modes with a nonzero transverse wave vector is demonstrated by using drive beams of varying transverse ellipticity. Additionally, we show that the wakefield spectrum is insensitive to the offset position of strongly elliptical beams. These results are consistent with analytic theory and three-dimensional simulations and illustrate a key advantage of wakefield systems with Cartesian symmetry: the suppression of transverse wakes by elliptical beams.

  19. Bound states for non-symmetric evolution Schroedinger potentials

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Gulmaro Corona [Area de Analisis Matematico y sus Aplicaciones, Universidad Autonoma Metropolitana-Azcapotalco, Atzcapotzalco, DF (Mexico)). E-mail: ccg@correo.azc.uam.mx

    2001-09-14

    We consider the spectral problem associated with the evolution Schroedinger equation, (D{sup 2}+ k{sup 2}){phi}=u{phi}, where u is a matrix-square-valued function, with entries in the Schwartz class defined on the real line. The solution {phi}, called the wavefunction, consists of a function of one real variable, matrix-square-valued with entries in the Schwartz class. This problem has been dealt for symmetric potentials u. We found for the present case that the bound states are localized similarly to the scalar and symmetric cases, but by the zeroes of an analytic matrix-valued function. If we add an extra condition to the potential u, we can determine these states by an analytic scalar function. We do this by generalizing the scalar and symmetric cases but without using the fact that the Wronskian of a pair of wavefunction is constant. (author)

  20. Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes

    International Nuclear Information System (INIS)

    Jagadale, A.D.; Kumbhar, V.S.; Dhawale, D.S.; Lokhande, C.D.

    2013-01-01

    In the present investigation, we have successfully assembled symmetric supercapacitor device based on cobalt hydroxide [Co(OH) 2 ] thin film electrodes using 1 M KOH as an electrolyte. Initially, potentiodynamic electrodeposition method is employed for the preparation of Co(OH) 2 thin films onto stainless steel substrate. These films are characterized for structural and morphological elucidations using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The XRD reveals formation of β-Co(OH) 2 material with hexagonal crystal structure. The SEM images show formation of nanoflakes like microstructure with average flake width 100 nm. Electrochemical characterizations of Co(OH) 2 based symmetric supercapacitor cell are carried out using cyclic voltammetry, charge–discharge and electrochemical impedance spectroscopy (EIS) techniques. In the performance evaluation the maximum values of specific capacitance, specific energy and specific power are encountered as 44 F g −1 , 3.96 Wh kg −1 and 42 kW kg −1 . The value of equivalent series resistance (ESR) is estimated as 2.3 Ω using EIS

  1. Symmetric nuclear matter with Skyrme interaction

    International Nuclear Information System (INIS)

    Manisa, K.; Bicer, A.; Atav, U.

    2010-01-01

    The equation of state (EOS) and some properties of symmetric nuclear matter, such as the saturation density, saturation energy and incompressibility, are obtained by using Skyrme's density-dependent effective nucleon-nucleon interaction.

  2. Separator-Integrated, Reversely Connectable Symmetric Lithium-Ion Battery.

    Science.gov (United States)

    Wang, Yuhang; Zeng, Jiren; Cui, Xiaoqi; Zhang, Lijuan; Zheng, Gengfeng

    2016-02-24

    A separator-integrated, reversely connectable, symmetric lithium-ion battery is developed based on carbon-coated Li3V2(PO4)3 nanoparticles and polyvinylidene fluoride-treated separators. The Li3V2(PO4)3 nanoparticles are synthesized via a facile solution route followed by calcination in Ar/H2 atmosphere. Sucrose solution is used as the carbon source for uniform carbon coating on the Li3V2(PO4)3 nanoparticles. Both the carbon and the polyvinylidene fluoride treatments substantially improve the cycling life of the symmetric battery by preventing the dissolution and shuttle of the electroactive Li3V2(PO4)3. The obtained symmetric full cell exhibits a reversible capacity of ≈ 87 mA h g(-1), good cycling stability, and capacity retention of ≈ 70% after 70 cycles. In addition, this type of symmetric full cell can be operated in both forward and reverse connection modes, without any influence on the cycling of the battery. Furthermore, a new separator integration approach is demonstrated, which enables the direct deposition of electroactive materials for the battery assembly and does not affect the electrochemical performance. A 10-tandem-cell battery assembled without differentiating the electrode polarity exhibits a low thickness of ≈ 4.8 mm and a high output voltage of 20.8 V. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. FACES WITH LARGE DIAMETER ON THE SYMMETRICAL TRAVELING SALESMAN POLYTOPE

    NARCIS (Netherlands)

    SIERKSMA, G; TIJSSEN, GA

    This paper deals with the symmetric traveling salesman polytope and contains three main theorems. The first one gives a new characterization of (non)adjacency. Based on this characterization a new upper bound for the diameter of the symmetric traveling salesman polytope (conjectured to be 2 by M.

  4. Electromagnetically Induced Transparency in Symmetric Planar Metamaterial at THz Wavelengths

    Directory of Open Access Journals (Sweden)

    Abdelwaheb Ourir

    2015-03-01

    Full Text Available We report the experimental observation and the evidence of the analogue of electromagnetically-induced transparency (EIT in a symmetric planar metamaterial. This effect has been obtained in the THz range thanks to a destructive Fano-interference between the two first modes of an array of multi-gap split ring resonators deposited on a silicon substrate. This structure is a planar thin film material with four-fold symmetry. Thanks to this property, a polarization-independent transmission has been achieved. The proposed metamaterial is well adapted to variety of slow-light applications in the infrared and optical range.

  5. Symmetric relations of finite negativity

    NARCIS (Netherlands)

    Kaltenbaeck, M.; Winkler, H.; Woracek, H.; Forster, KH; Jonas, P; Langer, H

    2006-01-01

    We construct and investigate a space which is related to a symmetric linear relation S of finite negativity on an almost Pontryagin space. This space is the indefinite generalization of the completion of dom S with respect to (S.,.) for a strictly positive S on a Hilbert space.

  6. The symmetric longest queue system

    NARCIS (Netherlands)

    van Houtum, Geert-Jan; Adan, Ivo; van der Wal, Jan

    1997-01-01

    We derive the performance of the exponential symmetric longest queue system from two variants: a longest queue system with Threshold Rejection of jobs and one with Threshold Addition of jobs. It is shown that these two systems provide lower and upper bounds for the performance of the longest queue

  7. The symmetric quartic map for trajectories of magnetic field lines in elongated divertor tokamak plasmas

    Science.gov (United States)

    Jones, Morgin; Wadi, Hasina; Ali, Halima; Punjabi, Alkesh

    2009-04-01

    The coordinates of the area-preserving map equations for integration of magnetic field line trajectories in divertor tokamaks can be any coordinates for which a transformation to (ψt,θ,φ) coordinates exists [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. ψt is toroidal magnetic flux, θ is poloidal angle, and φ is toroidal angle. This freedom is exploited to construct the symmetric quartic map such that the only parameter that determines magnetic geometry is the elongation of the separatrix surface. The poloidal flux inside the separatrix, the safety factor as a function of normalized minor radius, and the magnetic perturbation from the symplectic discretization are all held constant, and only the elongation is κ varied. The width of stochastic layer, the area, and the fractal dimension of the magnetic footprint and the average radial diffusion coefficient of magnetic field lines from the stochastic layer; and how these quantities scale with κ is calculated. The symmetric quartic map gives the correct scalings which are consistent with the scalings of coordinates with κ. The effects of m =1, n =±1 internal perturbation with the amplitude that is expected to occur in tokamaks are calculated by adding a term [H. Ali, A. Punjabi, A. H. Boozer, and T. Evans, Phys. Plasmas 11, 1908 (2004)] to the symmetric quartic map. In this case, the width of stochastic layer scales as 0.35 power of κ. The area of the footprint is roughly constant. The average radial diffusion coefficient of field lines near the X-point scales linearly with κ. The low mn perturbation changes the quasisymmetric structure of the footprint, and reorganizes it into a single, large scale, asymmetric structure. The symmetric quartic map is combined with the dipole map [A. Punjabi, H. Ali, and A. H. Boozer, Phys. Plasmas 10, 3992 (2003)] to calculate the effects of magnetic perturbation from a current carrying coil. The coil position and coil current coil are

  8. The symmetric quartic map for trajectories of magnetic field lines in elongated divertor tokamak plasmas

    International Nuclear Information System (INIS)

    Jones, Morgin; Wadi, Hasina; Ali, Halima; Punjabi, Alkesh

    2009-01-01

    The coordinates of the area-preserving map equations for integration of magnetic field line trajectories in divertor tokamaks can be any coordinates for which a transformation to (ψ t ,θ,φ) coordinates exists [A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Lett. A 364, 140 (2007)]. ψ t is toroidal magnetic flux, θ is poloidal angle, and φ is toroidal angle. This freedom is exploited to construct the symmetric quartic map such that the only parameter that determines magnetic geometry is the elongation of the separatrix surface. The poloidal flux inside the separatrix, the safety factor as a function of normalized minor radius, and the magnetic perturbation from the symplectic discretization are all held constant, and only the elongation is κ varied. The width of stochastic layer, the area, and the fractal dimension of the magnetic footprint and the average radial diffusion coefficient of magnetic field lines from the stochastic layer; and how these quantities scale with κ is calculated. The symmetric quartic map gives the correct scalings which are consistent with the scalings of coordinates with κ. The effects of m=1, n=±1 internal perturbation with the amplitude that is expected to occur in tokamaks are calculated by adding a term [H. Ali, A. Punjabi, A. H. Boozer, and T. Evans, Phys. Plasmas 11, 1908 (2004)] to the symmetric quartic map. In this case, the width of stochastic layer scales as 0.35 power of κ. The area of the footprint is roughly constant. The average radial diffusion coefficient of field lines near the X-point scales linearly with κ. The low mn perturbation changes the quasisymmetric structure of the footprint, and reorganizes it into a single, large scale, asymmetric structure. The symmetric quartic map is combined with the dipole map [A. Punjabi, H. Ali, and A. H. Boozer, Phys. Plasmas 10, 3992 (2003)] to calculate the effects of magnetic perturbation from a current carrying coil. The coil position and coil current coil are

  9. A Polynomial Subset-Based Efficient Multi-Party Key Management System for Lightweight Device Networks.

    Science.gov (United States)

    Mahmood, Zahid; Ning, Huansheng; Ghafoor, AtaUllah

    2017-03-24

    Wireless Sensor Networks (WSNs) consist of lightweight devices to measure sensitive data that are highly vulnerable to security attacks due to their constrained resources. In a similar manner, the internet-based lightweight devices used in the Internet of Things (IoT) are facing severe security and privacy issues because of the direct accessibility of devices due to their connection to the internet. Complex and resource-intensive security schemes are infeasible and reduce the network lifetime. In this regard, we have explored the polynomial distribution-based key establishment schemes and identified an issue that the resultant polynomial value is either storage intensive or infeasible when large values are multiplied. It becomes more costly when these polynomials are regenerated dynamically after each node join or leave operation and whenever key is refreshed. To reduce the computation, we have proposed an Efficient Key Management (EKM) scheme for multiparty communication-based scenarios. The proposed session key management protocol is established by applying a symmetric polynomial for group members, and the group head acts as a responsible node. The polynomial generation method uses security credentials and secure hash function. Symmetric cryptographic parameters are efficient in computation, communication, and the storage required. The security justification of the proposed scheme has been completed by using Rubin logic, which guarantees that the protocol attains mutual validation and session key agreement property strongly among the participating entities. Simulation scenarios are performed using NS 2.35 to validate the results for storage, communication, latency, energy, and polynomial calculation costs during authentication, session key generation, node migration, secure joining, and leaving phases. EKM is efficient regarding storage, computation, and communication overhead and can protect WSN-based IoT infrastructure.

  10. Overlap-free symmetric D 0 Lwords

    Directory of Open Access Journals (Sweden)

    Anna Frid

    2001-12-01

    Full Text Available A D0L word on an alphabet Σ={0,1,…,q-1} is called symmetric if it is a fixed point w=φ(w of a morphism φ:Σ * → Σ * defined by φ(i= t 1 + i t 2 + i … t m + i for some word t 1 t 2 … t m (equal to φ(0 and every i ∈ Σ; here a means a mod q. We prove a result conjectured by J. Shallit: if all the symbols in φ(0 are distinct (i.e., if t i ≠ t j for i ≠ j, then the symmetric D0L word w is overlap-free, i.e., contains no factor of the form axaxa for any x ∈ Σ * and a ∈ Σ.

  11. Flat synchronizations in spherically symmetric space-times

    International Nuclear Information System (INIS)

    Herrero, Alicia; Morales-Lladosa, Juan Antonio

    2010-01-01

    It is well known that the Schwarzschild space-time admits a spacelike slicing by flat instants and that the metric is regular at the horizon in the associated adapted coordinates (Painleve-Gullstrand metric form). We consider this type of flat slicings in an arbitrary spherically symmetric space-time. The condition ensuring its existence is analyzed, and then, we prove that, for any spherically symmetric flat slicing, the densities of the Weinberg momenta vanish. Finally, we deduce the Schwarzschild solution in the extended Painleve-Gullstrand-LemaItre metric form by considering the coordinate decomposition of the vacuum Einstein equations with respect to a flat spacelike slicing.

  12. Unidirectional Wave Vector Manipulation in Two-Dimensional Space with an All Passive Acoustic Parity-Time-Symmetric Metamaterials Crystal

    Science.gov (United States)

    Liu, Tuo; Zhu, Xuefeng; Chen, Fei; Liang, Shanjun; Zhu, Jie

    2018-03-01

    Exploring the concept of non-Hermitian Hamiltonians respecting parity-time symmetry with classical wave systems is of great interest as it enables the experimental investigation of parity-time-symmetric systems through the quantum-classical analogue. Here, we demonstrate unidirectional wave vector manipulation in two-dimensional space, with an all passive acoustic parity-time-symmetric metamaterials crystal. The metamaterials crystal is constructed through interleaving groove- and holey-structured acoustic metamaterials to provide an intrinsic parity-time-symmetric potential that is two-dimensionally extended and curved, which allows the flexible manipulation of unpaired wave vectors. At the transition point from the unbroken to broken parity-time symmetry phase, the unidirectional sound focusing effect (along with reflectionless acoustic transparency in the opposite direction) is experimentally realized over the spectrum. This demonstration confirms the capability of passive acoustic systems to carry the experimental studies on general parity-time symmetry physics and further reveals the unique functionalities enabled by the judiciously tailored unidirectional wave vectors in space.

  13. A tandem regression-outlier analysis of a ligand cellular system for key structural modifications around ligand binding.

    Science.gov (United States)

    Lin, Ying-Ting

    2013-04-30

    A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis.

  14. Introduction to left-right symmetric models

    International Nuclear Information System (INIS)

    Grimus, W.

    1993-01-01

    We motivate left-right symmetric models by the possibility of spontaneous parity breaking. Then we describe the multiplets and the Lagrangian of such models. Finally we discuss lower bounds on the right-handed scale. (author)

  15. Aerial Observations of Symmetric Instability at the North Wall of the Gulf Stream

    Science.gov (United States)

    Savelyev, I.; Thomas, L. N.; Smith, G. B.; Wang, Q.; Shearman, R. K.; Haack, T.; Christman, A. J.; Blomquist, B.; Sletten, M.; Miller, W. D.; Fernando, H. J. S.

    2018-01-01

    An unusual spatial pattern on the ocean surface was captured by thermal airborne swaths taken across a strong sea surface temperature front at the North Wall of the Gulf Stream. The thermal pattern on the cold side of the front resembles a staircase consisting of tens of steps, each up to ˜200 m wide and up to ˜0.3°C warm. The steps are well organized, clearly separated by sharp temperature gradients, mostly parallel and aligned with the primary front. The interpretation of the airborne imagery is aided by oceanographic measurements from two research vessels. Analysis of the in situ observations indicates that the front was unstable to symmetric instability, a type of overturning instability that can generate coherent structures with similar dimensions to the temperature steps seen in the airborne imagery. It is concluded that the images capture, for the first time, the surface temperature field of symmetric instability turbulence.

  16. Positive projections of symmetric matrices and Jordan algebras

    DEFF Research Database (Denmark)

    Fuglede, Bent; Jensen, Søren Tolver

    2013-01-01

    An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model.......An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model....

  17. Nilpotent orbits in real symmetric pairs and stationary black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Heiko [School of Mathematical Sciences, Monash University, VIC (Australia); De Graaf, Willem A. [Department of Mathematics, University of Trento, Povo (Italy); Ruggeri, Daniele [Universita di Torino, Dipartimento di Fisica (Italy); INFN, Sezione di Torino (Italy); Trigiante, Mario [DISAT, Politecnico di Torino (Italy)

    2017-02-15

    In the study of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determine the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of (SL{sub 2}(R)){sup 4} acting on the fourth tensor power of the natural 2-dimensional SL{sub 2}(R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Nilpotent orbits in real symmetric pairs and stationary black holes

    International Nuclear Information System (INIS)

    Dietrich, Heiko; De Graaf, Willem A.; Ruggeri, Daniele; Trigiante, Mario

    2017-01-01

    In the study of stationary solutions in extended supergravities with symmetric scalar manifolds, the nilpotent orbits of a real symmetric pair play an important role. In this paper we discuss two approaches to determine the nilpotent orbits of a real symmetric pair. We apply our methods to an explicit example, and thereby classify the nilpotent orbits of (SL 2 (R)) 4 acting on the fourth tensor power of the natural 2-dimensional SL 2 (R)-module. This makes it possible to classify all stationary solutions of the so-called STU-supergravity model. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. X-ray structural investigation of nonsymmetrically and symmetrically alkylated [1]benzothieno[3,2-b]benzothiophene derivatives in bulk and thin films.

    Science.gov (United States)

    Gbabode, Gabin; Dohr, Michael; Niebel, Claude; Balandier, Jean-Yves; Ruzié, Christian; Négrier, Philippe; Mondieig, Denise; Geerts, Yves H; Resel, Roland; Sferrazza, Michele

    2014-08-27

    A detailed structural study of the bulk and thin film phases observed for two potential high-performance organic semiconductors has been carried out. The molecules are based on [1]benzothieno[3,2-b]benzothiophene (BTBT) as conjugated core and octyl side groups, which are anchored either symmetrically at both sides of the BTBT core (C8-BTBT-C8) or nonsymmetrically at one side only (C8-BTBT). Thin films of different thickness (8-85 nm) have been prepared by spin-coating for both systems and analyzed by combining specular and grazing incidence X-ray diffraction. In the case of C8-BTBT-C8, the known crystal structure obtained from single-crystal investigations is observed within all thin films, down to a film thickness of 9 nm. In the case of C8-BTBT, the crystal structure of the bulk phase has been determined from X-ray powder diffraction data with a consistent matching of experimental and calculated X-ray diffraction patterns (Rwp = 5.8%). The packing arrangement of C8-BTBT is similar to that of C8-BTBT-C8, that is, consisting of a lamellar structure with molecules arranged in a "herringbone" fashion, yet with lamellae composed of two head-to-head (or tail-to-tail as the structure is periodic) superimposed molecules instead of only one molecule for C8-BTBT-C8. As for C8-BTBT-C8, we demonstrate that the same phase is observed in bulk and thin films for C8-BTBT whatever the film thickness investigated.

  20. Symmetrical parahiliar infiltrated, cough and dyspnoea

    International Nuclear Information System (INIS)

    Giraldo Estrada, Horacio; Escalante, Hector

    2004-01-01

    It is the case a patient to who is diagnosed symmetrical parahiliar infiltrated; initially she is diagnosed lymphoma Hodgkin, treaty with radiotherapy and chemotherapy, but the X rays of the thorax demonstrated parahiliars and paramediastinals infiltrated

  1. Fundamental quantitative security in quantum key generation

    International Nuclear Information System (INIS)

    Yuen, Horace P.

    2010-01-01

    We analyze the fundamental security significance of the quantitative criteria on the final generated key K in quantum key generation including the quantum criterion d, the attacker's mutual information on K, and the statistical distance between her distribution on K and the uniform distribution. For operational significance a criterion has to produce a guarantee on the attacker's probability of correctly estimating some portions of K from her measurement, in particular her maximum probability of identifying the whole K. We distinguish between the raw security of K when the attacker just gets at K before it is used in a cryptographic context and its composition security when the attacker may gain further information during its actual use to help get at K. We compare both of these securities of K to those obtainable from conventional key expansion with a symmetric key cipher. It is pointed out that a common belief in the superior security of a quantum generated K is based on an incorrect interpretation of d which cannot be true, and the security significance of d is uncertain. Generally, the quantum key distribution key K has no composition security guarantee and its raw security guarantee from concrete protocols is worse than that of conventional ciphers. Furthermore, for both raw and composition security there is an exponential catch-up problem that would make it difficult to quantitatively improve the security of K in a realistic protocol. Some possible ways to deal with the situation are suggested.

  2. Parallel reduction to condensed forms for symmetric eigenvalue problems using aggregated fine-grained and memory-aware kernels

    KAUST Repository

    Haidar, Azzam

    2011-01-01

    This paper introduces a novel implementation in reducing a symmetric dense matrix to tridiagonal form, which is the preprocessing step toward solving symmetric eigenvalue problems. Based on tile algorithms, the reduction follows a two-stage approach, where the tile matrix is first reduced to symmetric band form prior to the final condensed structure. The challenging trade-off between algorithmic performance and task granularity has been tackled through a grouping technique, which consists of aggregating fine-grained and memory-aware computational tasks during both stages, while sustaining the application\\'s overall high performance. A dynamic runtime environment system then schedules the different tasks in an out-of-order fashion. The performance for the tridiagonal reduction reported in this paper is unprecedented. Our implementation results in up to 50-fold and 12-fold improvement (130 Gflop/s) compared to the equivalent routines from LAPACK V3.2 and Intel MKL V10.3, respectively, on an eight socket hexa-core AMD Opteron multicore shared-memory system with a matrix size of 24000×24000. Copyright 2011 ACM.

  3. Phase-structure of SU(3) lattice gauge-higgs model

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Mitrjushkin, V.K.; Zadorozhny, A.M.

    1985-01-01

    Phase structure is investigated of SU(3) symmetric gauge-Higgs theory with a defrost radial mode. The Higgs fields are considered in the fundamental representation of SU(3) group. It is shown that the phase structures of SU(3) and SU(2) symmetric coincide qualitatively

  4. Exploring plane-symmetric solutions in f(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk [National University of Computer and Emerging Sciences, Department of Sciences and Humanities (Pakistan)

    2016-02-15

    The modified theories of gravity, especially the f(R) gravity, have attracted much attention in the last decade. This paper is devoted to exploring plane-symmetric solutions in the context of metric f(R) gravity. We extend the work on static plane-symmetric vacuum solutions in f(R) gravity already available in the literature [1, 2]. The modified field equations are solved using the assumptions of both constant and nonconstant scalar curvature. Some well-known solutions are recovered with power-law and logarithmic forms of f(R) models.

  5. Some curvature properties of quarter symmetric metric connections

    International Nuclear Information System (INIS)

    Rastogi, S.C.

    1986-08-01

    A linear connection Γ ji h with torsion tensor T j h P i -T i h P j , where T j h is an arbitrary (1,1) tensor field and P i is a 1-form, has been called a quarter-symmetric connection by Golab. Some properties of such connections have been studied by Rastogi, Mishra and Pandey, and Yano and Imai. In this paper based on the curvature tensor of quarter-symmetric metric connection we define a tensor analogous to conformal curvature tensor and study some properties of such a tensor. (author)

  6. Color-symmetric superconductivity in a phenomenological QCD model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; Providencia, J. da

    2009-01-01

    In this paper, we construct a theory of the NJL type where superconductivity is present, and yet the superconducting state remains, in the average, color symmetric. This shows that the present approach to color superconductivity is consistent with color singletness. Indeed, quarks are free...... in the deconfined phase, but the deconfined phase itself is believed to be a color singlet. The usual description of the color superconducting state violates color singletness. On the other hand, the color superconducting state here proposed is color symmetric in the sense that an arbitrary color rotation leads...

  7. Key technological issues in LMFBR high-temperature structural design - the US perspective

    International Nuclear Information System (INIS)

    Corum, J.M.

    1984-01-01

    The purpose of this paper is: (1) to review the key technological issues in LMFBR high-temperature structural design, particularly as they relate to cost reduction; and (2) to provide an overview of activities sponsored by the US Department of Energy to resolve the issues and to establish stable, standardized, and defensible structural design methods and criteria. Specific areas of discussion include: weldments, structural validation tests, simplified design analysis procedures, design procedures for piping, validation of the methodology for notch-like geometries, improved life assessment procedures, thermal striping, extension of the methodology to new materials, and ASME high-temperature Code reform needs. The perceived problems and needs in each area are discussed, and the current status of related US activities is given

  8. Representations of the infinite symmetric group

    CERN Document Server

    Borodin, Alexei

    2016-01-01

    Representation theory of big groups is an important and quickly developing part of modern mathematics, giving rise to a variety of important applications in probability and mathematical physics. This book provides the first concise and self-contained introduction to the theory on the simplest yet very nontrivial example of the infinite symmetric group, focusing on its deep connections to probability, mathematical physics, and algebraic combinatorics. Following a discussion of the classical Thoma's theorem which describes the characters of the infinite symmetric group, the authors describe explicit constructions of an important class of representations, including both the irreducible and generalized ones. Complete with detailed proofs, as well as numerous examples and exercises which help to summarize recent developments in the field, this book will enable graduates to enhance their understanding of the topic, while also aiding lecturers and researchers in related areas.

  9. Symmetric vs. asymmetric stem cell divisions: an adaptation against cancer?

    Directory of Open Access Journals (Sweden)

    Leili Shahriyari

    Full Text Available Traditionally, it has been held that a central characteristic of stem cells is their ability to divide asymmetrically. Recent advances in inducible genetic labeling provided ample evidence that symmetric stem cell divisions play an important role in adult mammalian homeostasis. It is well understood that the two types of cell divisions differ in terms of the stem cells' flexibility to expand when needed. On the contrary, the implications of symmetric and asymmetric divisions for mutation accumulation are still poorly understood. In this paper we study a stochastic model of a renewing tissue, and address the optimization problem of tissue architecture in the context of mutant production. Specifically, we study the process of tumor suppressor gene inactivation which usually takes place as a consequence of two "hits", and which is one of the most common patterns in carcinogenesis. We compare and contrast symmetric and asymmetric (and mixed stem cell divisions, and focus on the rate at which double-hit mutants are generated. It turns out that symmetrically-dividing cells generate such mutants at a rate which is significantly lower than that of asymmetrically-dividing cells. This result holds whether single-hit (intermediate mutants are disadvantageous, neutral, or advantageous. It is also independent on whether the carcinogenic double-hit mutants are produced only among the stem cells or also among more specialized cells. We argue that symmetric stem cell divisions in mammals could be an adaptation which helps delay the onset of cancers. We further investigate the question of the optimal fraction of stem cells in the tissue, and quantify the contribution of non-stem cells in mutant production. Our work provides a hypothesis to explain the observation that in mammalian cells, symmetric patterns of stem cell division seem to be very common.

  10. Asymptotic properties of solvable PT-symmetric potentials

    International Nuclear Information System (INIS)

    Levai, G.

    2010-01-01

    Compete text of publication follows. The introduction of PT-symmetric quantum mechanics generated renewed interest in non-hermitian quantum mechanical systems in the past decade. PT symmetry means the invariance of a Hamiltonian under the simultaneous P space and T time reflection, the latter understood as complex conjugation. Considering the Schroedinger equation in one dimension, this corresponds to a potential with even real and odd imaginary components. This implies a delicate balance of emissive and absorptive regions that eventually manifests itself in properties that typically characterize real potentials, i.e. hermitian systems. These include partly or fully real energy spectrum and conserved (pseudo-)norm. A particularly notable feature of these systems is the spontaneous breakdown of PT symmetry, which typically occurs when the magnitude of the imaginary potential component exceeds a certain limit. At this point the real energy eigenvalues begin to merge pairwise and re-emerge as complex conjugate pairs. Another unusual property of PT-symmetric potentials is that they can, or sometimes have to be defined off the real x axis on trajectories that are symmetric with respect to the imaginary x axis. After more than a decade of theoretical investigations a remarkable recent development was the experimental verification of the existence of PT-symmetric systems in nature and the occurrence of spontaneous PT symmetry breaking in them. The experimental setup was a waveguide containing regions where loss and gain of flux occurred in a set out prescribed by PT symmetry. These experimental developments require the study of PT -symmetric potentials with various asymptotics, in which, furthermore, the complex potential component is finite in its range and/or its magnitude. Having in mind that PT symmetry allows for a wider variety of asymptotic properties than hermeticity, we studied three exactly solvable PT-symmetric potentials and compared their scattering and bound

  11. Entanglement of three-qubit Greenberger-Horne-Zeilinger-symmetric states.

    Science.gov (United States)

    Eltschka, Christopher; Siewert, Jens

    2012-01-13

    The first characterization of mixed-state entanglement was achieved for two-qubit states in Werner's seminal work [Phys. Rev. A 40, 4277 (1989)]. A physically important extension concerns mixtures of a pure entangled state [such as the Greenberger-Horne-Zeilinger (GHZ) state] and the unpolarized state. These mixed states serve as benchmark for the robustness of multipartite entanglement. They share the symmetries of the GHZ state. We call such states GHZ symmetric. Here we give a complete description of the entanglement in the family of three-qubit GHZ-symmetric states and, in particular, of the three-qubit generalized Werner states. Our method relies on the appropriate parametrization of the states and on the invariance of entanglement properties under general local operations. An application is the definition of a symmetrization witness for the entanglement class of arbitrary three-qubit states.

  12. Random matrix ensembles for PT-symmetric systems

    International Nuclear Information System (INIS)

    Graefe, Eva-Maria; Mudute-Ndumbe, Steve; Taylor, Matthew

    2015-01-01

    Recently much effort has been made towards the introduction of non-Hermitian random matrix models respecting PT-symmetry. Here we show that there is a one-to-one correspondence between complex PT-symmetric matrices and split-complex and split-quaternionic versions of Hermitian matrices. We introduce two new random matrix ensembles of (a) Gaussian split-complex Hermitian; and (b) Gaussian split-quaternionic Hermitian matrices, of arbitrary sizes. We conjecture that these ensembles represent universality classes for PT-symmetric matrices. For the case of 2 × 2 matrices we derive analytic expressions for the joint probability distributions of the eigenvalues, the one-level densities and the level spacings in the case of real eigenvalues. (fast track communication)

  13. Order-disorder transformations in the Σ3 (111)/[110] symmetrical tilt boundary in tungsten

    International Nuclear Information System (INIS)

    Wang, G.J.; Vitek, V.

    1996-01-01

    The structure of the Σ3 (111)/[110] symmetrical tilt boundary in tungsten was modeled by molecular statics using Finnis-Sinclair type many body potentials. Several multiple structures have been found which are composed of two types of structural units and the interaction energy between these units is negative. Hence, order-disorder structural transitions may occur in the boundary with structures being ordered and/or disordered mixtures of the two units. the transition temperature is found to be 1,158 K if only the internal energy and configurational entropy are included when evaluating the free energy. However, the transition temperature is 782 K if the vibrational entropy is also incorporated. This demonstrates that the vibrational contribution to the entropy may be as important as the configurational contribution when considering the interfacial transformations

  14. A Fully Symmetric and Completely Decoupled MEMS-SOI Gyroscope

    Directory of Open Access Journals (Sweden)

    Abdelhameed SHARAF

    2011-04-01

    Full Text Available This paper introduces a novel MEMS gyroscope that is capable of exciting the drive mode differentially. The structure also decouples the drive and sense modes via an intermediate mass and decoupling beams. Both drive and sense modes are fully differential enabling control over the zero-rate-output for the former and maximizing output sensitivity using a bridge circuit for the latter. Further, the structure is fully symmetric about the x- and y- axes which results in minimizing the temperature sensitivity problem. Complete analytical analysis based on the equations of motion was performed and verified using two commercially available finite element software packages. Results from both methods are in good agreement. The analysis of the sensor shows an electrical sensitivity of 1.14 (mV/(º/s. The gyroscope was fabricated using single mask and deep reactive ion etching. The measurement of the resonance frequency performed showing a good agreement with the analytical and numerical analysis.

  15. Symmetric Encryption Relying on Chaotic Henon System for Secure Hardware-Friendly Wireless Communication of Implantable Medical Systems

    Directory of Open Access Journals (Sweden)

    Taha Belkhouja

    2018-05-01

    Full Text Available Healthcare remote devices are recognized as a promising technology for treating health related issues. Among them are the wireless Implantable Medical Devices (IMDs: These electronic devices are manufactured to treat, monitor, support or replace defected vital organs while being implanted in the human body. Thus, they play a critical role in healing and even saving lives. Current IMDs research trends concentrate on their medical reliability. However, deploying wireless technology in such applications without considering security measures may offer adversaries an easy way to compromise them. With the aim to secure these devices, we explore a new scheme that creates symmetric encryption keys to encrypt the wireless communication portion. We will rely on chaotic systems to obtain a synchronized Pseudo-Random key. The latter will be generated separately in the system in such a way that avoids a wireless key exchange, thus protecting patients from the key theft. Once the key is defined, a simple encryption system that we propose in this paper will be used. We analyze the performance of this system from a cryptographic point of view to ensure that it offers a better safety and protection for patients.

  16. Using Florida Keys Reference Sites As a Standard for Restoration of Forest Structure in Everglades Tree Islands

    International Nuclear Information System (INIS)

    Ross, M.S.; Sah, J.P.; Ruiz, P.L.; Ross, M.S.; Ogurcak, D.E.

    2010-01-01

    In south Florida, tropical hardwood forests (hammocks) occur in Everglades tree islands and as more extensive forests in coastal settings in the nearby Florida Keys. Keys hammocks have been less disturbed by humans, and many qualify as old-growth, while Everglades hammocks have received much heavier use. With improvement of tree island condition an important element in Everglades restoration efforts, we examined stand structure in 23 Keys hammocks and 69 Everglades tree islands. Based on Stand Density Index and tree diameter distributions, many Everglades hammocks were characterized by low stocking and under-representation in the smaller size classes. In contrast, most Keys forests had the dense canopies and open under stories usually associated with old-growth hardwood hammocks. Subject to the same caveats that apply to off-site references elsewhere, structural information from mature Keys hammocks can be helpful in planning and implementing forest restoration in Everglades tree islands. In many of these islands, such restoration might involve supplementing tree stocking by planting native trees to produce more complete site utilization and a more open under story.

  17. Security bound of two-basis quantum-key-distribution protocols using qudits

    International Nuclear Information System (INIS)

    Nikolopoulos, Georgios M.; Alber, Gernot

    2005-01-01

    We investigate the security bounds of quantum-cryptographic protocols using d-level systems. In particular, we focus on schemes that use two mutually unbiased bases, thus extending the Bennett-Brassard 1984 quantum-key-distribution scheme to higher dimensions. Under the assumption of general coherent attacks, we derive an analytic expression for the ultimate upper security bound of such quantum-cryptography schemes. This bound is well below the predictions of optimal cloning machines. The possibility of extraction of a secret key beyond entanglement distillation is discussed. In the case of qutrits we argue that any eavesdropping strategy is equivalent to a symmetric one. For higher dimensions such an equivalence is generally no longer valid

  18. On the Huygens principle for bianisotropic mediums with symmetric permittivity and permeability dyadics

    Energy Technology Data Exchange (ETDEWEB)

    Faryad, Muhammad, E-mail: muhammad.faryad@lums.edu.pk [Department of Physics, Lahore University of Management Sciences, Lahore 54792 (Pakistan); Lakhtakia, Akhlesh [Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-02-19

    Mathematical statements of the Huygens principle relate the electric and magnetic field phasors at an arbitrary location in a source-free region enclosed by a surface to the tangential components of the electric and magnetic field phasors over that surface, via the dyadic Green functions applicable to the linear homogeneous medium occupying that region. We have mathematically formulated the Huygens principle for the electric and magnetic field phasors when the permittivity and permeability dyadics of the medium are symmetric, the symmetric parts of the two magnetoelectric dyadics of the medium are negative of each other, and both magnetoelectric dyadics also contain anti-symmetric terms. We have also formulated the Huygens principle for the electric (resp. magnetic) field phasor in a medium whose permittivity (resp. permeability) is scalar, the permeability (resp. permittivity) is symmetric, the symmetric parts of the two magnetoelectric dyadics reduce to dissimilar scalars, and anti-symmetric parts of the two magnetoelectric dyadics are identical. - Highlights: • The Huygens principle was formulated for bianistropic mediums when the permittivity and permeability dyadics of the medium are symmetric. • The formulation covers isotropic, biisotropic, and gyrotropic-like uniaxial mediums for which the Huygens principle is already available. • The formulation also covers new mediums like biaxial, chiro-omega, pseudo chiral, gyrotropic-like biaxial, and Lorentz reciprocal mediums.

  19. Remitting seronegative symmetrical synovitis with pitting edema (RS3PE syndrome

    Directory of Open Access Journals (Sweden)

    Neslihan Gokcen

    2017-03-01

    Full Text Available Remitting seronegative symmetrical synovitis with pitting edema is a rare rheumatological disorder that presents with symmetrical hand and/or foot edema resembling rheumatoid arthritis. It is generally seen in male patients in older age, but atypical cases in different age groups have been documented. Although no clear mechanism has been described, certain genetic and environmental factors have been suggested for etiopathogenesis. Medical treatment is mainly focused on glucocorticoid therapy. This article aims to discuss the Remitting seronegative symmetrical synovitis with pitting edema syndrome and to review the current literature. [Cukurova Med J 2017; 42(1.000: 147-154

  20. Theorem on axially symmetric gravitational vacuum configurations

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, A; Le Denmat, G [Paris-6 Univ., 75 (France). Inst. Henri Poincare

    1977-01-24

    A theorem is proved which asserts the non-existence of axially symmetric gravitational vacuum configurations with non-stationary rotation only. The eventual consequences in black-hole physics are suggested.

  1. The discrete dynamics of symmetric competition in the plane.

    Science.gov (United States)

    Jiang, H; Rogers, T D

    1987-01-01

    We consider the generalized Lotka-Volterra two-species system xn + 1 = xn exp(r1(1 - xn) - s1yn) yn + 1 = yn exp(r2(1 - yn) - s2xn) originally proposed by R. M. May as a model for competitive interaction. In the symmetric case that r1 = r2 and s1 = s2, a region of ultimate confinement is found and the dynamics therein are described in some detail. The bifurcations of periodic points of low period are studied, and a cascade of period-doubling bifurcations is indicated. Within the confinement region, a parameter region is determined for the stable Hopf bifurcation of a pair of symmetrically placed period-two points, which imposes a second component of oscillation near the stable cycles. It is suggested that the symmetric competitive model contains much of the dynamical complexity to be expected in any discrete two-dimensional competitive model.

  2. Application of group representation theory to symmetric structures

    International Nuclear Information System (INIS)

    Miller, A.G.

    1980-01-01

    Structures with symmetry occur in various problems, such as static and dynamic elastic response, and it is possible to gain partial information about their behaviour from their symmetry alone, using group representation theory. Due to the nature of the method, no numerical results other than the vanishing of certain quantities can be derived, but subsequent numerical calculations may be greatly shortened, and in simple structures, be rendered trivial. Among the applications to simple structures, those of interest in a nuclear context include, hexagonal tubes, bending of a circular tube under hexagonal loading patterns, and hexagonal arrays of fuel pins. (author)

  3. Distinction of impedance responses of Li-ion batteries for individual electrodes using symmetric cells

    International Nuclear Information System (INIS)

    Momma, Toshiyuki; Yokoshima, Tokihiko; Nara, Hiroki; Gima, Yuhei; Osaka, Tetsuya

    2014-01-01

    Graphical abstract: - Highlights: • Impedance of lithium ion battery and symmetric cells were analyzed. • Anode symmetric cells and cathode one were prepared with ca. 7 × 7 cm 2 electrodes. • Except for R ct in cathode, electrochemical parameters did not change by reassembling. • Fitting data for symmetric cell were found to be useful for full cell analysis. • Electrochemical parameters of battery were traced during cycling degradation. - Abstract: Symmetric cells were prepared with a newly designed separable cell module, which enabled ca. 70 mm by 70 mm electrode sheets to be used for a pouch type 5 Ah class Li-ion battery (LIB). Impedance analysis of the LIB as a full cell state was successfully performed with electrochemical parameters obtained by an impedance analysis of symmetric cells of anodes and cathodes obtained from the operated Li-ion batteries. While the charge transfer resistance of the cathode was found to increase after reassembling the cells symmetrically, other electrochemical parameters were found not to change when comparing the values obtained for full cells with symmetric cells. Eelectrodes degraded by charge/discharge cycling of the battery were also investigated, and the parameter change caused by the degradation was confirmed

  4. Connections of geometric measure of entanglement of pure symmetric states to quantum state estimation

    International Nuclear Information System (INIS)

    Chen Lin; Zhu Huangjun; Wei, Tzu-Chieh

    2011-01-01

    We study the geometric measure of entanglement (GM) of pure symmetric states related to rank 1 positive-operator-valued measures (POVMs) and establish a general connection with quantum state estimation theory, especially the maximum likelihood principle. Based on this connection, we provide a method for computing the GM of these states and demonstrate its additivity property under certain conditions. In particular, we prove the additivity of the GM of pure symmetric multiqubit states whose Majorana points under Majorana representation are distributed within a half sphere, including all pure symmetric three-qubit states. We then introduce a family of symmetric states that are generated from mutually unbiased bases and derive an analytical formula for their GM. These states include Dicke states as special cases, which have already been realized in experiments. We also derive the GM of symmetric states generated from symmetric informationally complete POVMs (SIC POVMs) and use it to characterize all inequivalent SIC POVMs in three-dimensional Hilbert space that are covariant with respect to the Heisenberg-Weyl group. Finally, we describe an experimental scheme for creating the symmetric multiqubit states studied in this article and a possible scheme for measuring the permanence of the related Gram matrix.

  5. The radiation chemistry of symmetric aliphatic polyesters

    International Nuclear Information System (INIS)

    Babanalbandi, A.; Hill, D.J.T.; Pomery, P.J.; Whittaker, A.K.

    1996-01-01

    Full text: Naturally occurring, symmetric polyesters, including polyglycolic acid, polylactic acid and polyhydroxybutyrate, have found biomedical applications in areas as diverse as the controlled release of pharmaceuticals and the manufacture of surgical sutures. As biomedical products, the materials require sterilization by high energy radiation. This has provided the motivation for the present work. D'Alelio et al. have reported that linear, asymmetric polyesters undergo scission on irradiation, but that branched polyesters containing a methyl group in the diol segments undergo crosslinking. However, for the symmetric polyhydroxybutyrate, Carswell-Pomerantz et al. have reported that only scission occurs on radiolysis, with the evolution of CO and CO 2 as a result of the loss of ester linkages. These workers also found that G(CO + CO 2 ) was approximately equal to G(S) for this polyester. By contrast, Collett et al. have reported that G(S) = 1.26 and G(X) = 0.53 for polylactic acid, which indicates that the polymer undergoes nett crosslinking on radiolysis to form a gel. They have also reported that poly(lactic-co-glycolic acid) should form a gel on radiolysis, since G(S) = 1.66 and G(X) = 0.65 for a 1:1 copolymer composition. In the present work the radiolysis of polylactic acid and poly(lactic-co-glycolic acid) have been reinvestigated in order to resolve the differences between the work of Collett et al. and that of Carswell-Pomerantz et al. In these studies, ESR has been used to study the radicals formed, GPC has been used to investigate scission and crosslinking, GC has been used to study the small molecule volatile products and NMR spectroscopy has been used to identify and measure the new chemical structures formed in the polymers

  6. Examining the Cultural Leadership Behaviors of Schoo l Principal s within the Context of Symmetric and Asymmetric School Culture

    Directory of Open Access Journals (Sweden)

    Betül BALKAR

    2015-08-01

    Full Text Available The aim of this study is to determine the opinions of teachers on contributions of school principals’ cultural leadership behaviors to forming symmetric and asymmetric culture. The participants of the study consisted of 27 secondary school teachers working in Gaziantep province. Data of the study were collected through semi - structured interviews and analyzed through content analysis. Contributions of each cultural leader ship behavior to symmetric and asymmetric culture types were determined by taking relations between cultural leadership behaviors and symmetric and asymmetric cultures into consideration in the process of content analysis. According to the findings of the study ; supporting development of teachers and reflecting developments and innovations on schools are among the cultural leadership behaviors contributing to forming asymmetric culture at schools. Interpreting tasks and missions of school and ensuring neces sary environment for keeping social values alive at schools are among the cultural leadership behaviors contributing to forming symmetric culture at schools. Based on the results of the study, it is suggested that school principals should follow developmen ts in educational issues and transfer these developments into school practices. They should place more importance on supporting innovative behaviors of teachers in order to create asymmetric culture at schools.

  7. Symmetric, discrete fractional splines and Gabor systems

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel

    2006-01-01

    In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing the continu......In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing...... the continuous splines, and one is a truly finite, discrete construction. We discuss the properties of these splines and their usefulness as windows for Gabor frames and Wilson bases....

  8. Group Lifting Structures For Multirate Filter Banks, II: Linear Phase Filter Banks

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, Christopher M [Los Alamos National Laboratory

    2008-01-01

    The theory of group lifting structures is applied to linear phase lifting factorizations for the two nontrivial classes of two-channel linear phase perfect reconstruction filter banks, the whole-and half-sample symmetric classes. Group lifting structures defined for the reversible and irreversible classes of whole-and half-sample symmetric filter banks are shown to satisfy the hypotheses of the uniqueness theorem for group lifting structures. It follows that linear phase lifting factorizations of whole-and half-sample symmetric filter banks are therefore independent of the factorization methods used to compute them. These results cover the specification of user-defined whole-sample symmetric filter banks in Part 2 of the ISO JPEG 2000 standard.

  9. Non-symmetric bi-stable flow around the Ahmed body

    International Nuclear Information System (INIS)

    Meile, W.; Ladinek, T.; Brenn, G.; Reppenhagen, A.; Fuchs, A.

    2016-01-01

    Highlights: • The non-symmetric bi-stable flow around the Ahmed body is investigated experimentally. • Bi-stability, described for symmetric flow by Cadot and co-workers, was found in nonsymmetric flow also. • The flow field randomly switches between two states. • The flow is subject to a spanwise instability identified by Cadot and co-workers for symmetric flow. • Aerodynamic forces fluctuate strongly due to the bi-stability. - Abstract: The flow around the Ahmed body at varying Reynolds numbers under yawing conditions is investigated experimentally. The body geometry belongs to a regime subject to spanwise flow instability identified in symmetric flow by Cadot and co-workers (Grandemange et al., 2013b). Our experiments cover the two slant angles 25° and 35° and Reynolds numbers up to 2.784 × 10"6. Special emphasis lies on the aerodynamics under side wind influence. For the 35° slant angle, forces and moments change significantly with the yawing angle in the range 10° ≤ |β| ≤ 15°. The lift and the pitching moment exhibit strong fluctuations due to bi-stable flow around a critical angle β of ±12.5°, where the pitching moment changes sign. Time series of the forces and moments are studied and explained by PIV measurements in the flow field near the rear of the body.

  10. Electromagnetic and structural interaction analysis of curved shell structures

    International Nuclear Information System (INIS)

    Horie, T.; Niho, T.

    1993-01-01

    This paper describes a finite element formulation of the eddy current and structure coupled problem for curved shell structures. Coupling terms produced by curved geometry as well as flat plate geometry were obtained. Both matrix equations for eddy current and structure were solved simultaneously using coupling sub-matrices. TEAM Workshop bench mark problem 16 was solved to verify the formulation and the computer code. Agreement with experimental results was very good for such plate problem. A coupled problem for cylindrical shell structure was also analyzed. Influence of each coupling term was examined. The next topic is the eigenvalues of the coupled equations. Although the coupled matrix equations are not symmetric, symmetry was obtained by introducing a symmetrizing variable. The eigenvalues of the coupled matrix equations are different from those obtained from the uncoupled equations because of the influence of the coupling sub-matrix components. Some parameters obtained by the eigenvalue analysis have characteristics of parameters which indicate the intensity of electromagnetic structural coupling effect. (author)

  11. Solving the generalized symmetric eigenvalue problem using tile algorithms on multicore architectures

    KAUST Repository

    Ltaief, Hatem; Luszczek, Piotr R.; Haidar, Azzam; Dongarra, Jack

    2012-01-01

    This paper proposes an efficient implementation of the generalized symmetric eigenvalue problem on multicore architecture. Based on a four-stage approach and tile algorithms, the original problem is first transformed into a standard symmetric

  12. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    International Nuclear Information System (INIS)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-01-01

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing

  13. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin, E-mail: xmli@cqu.edu.cn [Key Laboratory of Dependable Service Computing in Cyber Physical Society of Ministry of Education, Chongqing University, Chongqing 400044 (China); College of Automation, Chongqing University, Chongqing 400044 (China)

    2015-11-15

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  14. Strong orientational coordinates and orientational order parameters for symmetric objects

    International Nuclear Information System (INIS)

    Haji-Akbari, Amir; Glotzer, Sharon C

    2015-01-01

    Recent advancements in the synthesis of anisotropic macromolecules and nanoparticles have spurred an immense interest in theoretical and computational studies of self-assembly. The cornerstone of such studies is the role of shape in self-assembly and in inducing complex order. The problem of identifying different types of order that can emerge in such systems can, however, be challenging. Here, we revisit the problem of quantifying orientational order in systems of building blocks with non-trivial rotational symmetries. We first propose a systematic way of constructing orientational coordinates for such symmetric building blocks. We call the arising tensorial coordinates strong orientational coordinates (SOCs) as they fully and exclusively specify the orientation of a symmetric object. We then use SOCs to describe and quantify local and global orientational order, and spatiotemporal orientational correlations in systems of symmetric building blocks. The SOCs and the orientational order parameters developed in this work are not only useful in performing and analyzing computer simulations of symmetric molecules or particles, but can also be utilized for the efficient storage of rotational information in long trajectories of evolving many-body systems. (paper)

  15. Substring-Searchable Symmetric Encryption

    Directory of Open Access Journals (Sweden)

    Chase Melissa

    2015-06-01

    Full Text Available In this paper, we consider a setting where a client wants to outsource storage of a large amount of private data and then perform substring search queries on the data – given a data string s and a search string p, find all occurrences of p as a substring of s. First, we formalize an encryption paradigm that we call queryable encryption, which generalizes searchable symmetric encryption (SSE and structured encryption. Then, we construct a queryable encryption scheme for substring queries. Our construction uses suffix trees and achieves asymptotic efficiency comparable to that of unencrypted suffix trees. Encryption of a string of length n takes O(λn time and produces a ciphertext of size O(λn, and querying for a substring of length m that occurs k times takes O(λm+k time and three rounds of communication. Our security definition guarantees correctness of query results and privacy of data and queries against a malicious adversary. Following the line of work started by Curtmola et al. (ACM CCS 2006, in order to construct more efficient schemes we allow the query protocol to leak some limited information that is captured precisely in the definition. We prove security of our substring-searchable encryption scheme against malicious adversaries, where the query protocol leaks limited information about memory access patterns through the suffix tree of the encrypted string.

  16. Solving symmetric-definite quadratic lambda-matrix problems without factorization

    International Nuclear Information System (INIS)

    Scott, D.S.; Ward, R.C.

    1982-01-01

    Algorithms are presented for computing some of the eigenvalues and their associated eigenvectors of the quadratic lambda-matrix M lambda 2 C lambda + K. M, C, and K are assumed to have special symmetry-type properties which insure that theory analogous to the standard symmetric eigenproblem exists. The algorithms are based on a generalization of the Rayleigh quotient and the Lanczos method for computing eigenpairs of standard symmetric eigenproblems. Monotone quadratic convergence of the basic method is proved. Test examples are presented

  17. Analytical Study on Propagation Dynamics of Optical Beam in Parity-Time Symmetric Optical Couplers

    International Nuclear Information System (INIS)

    Zhou Zheng; Zhang Li-Juan; Zhu Bo

    2015-01-01

    We present exact analytical solutions to parity-time (PT) symmetric optical system describing light transport in PT-symmetric optical couplers. We show that light intensity oscillates periodically between two waveguides for unbroken PT-symmetric phase, whereas light always leaves the system from the waveguide experiencing gain when light is initially input at either waveguide experiencing gain or waveguide experiencing loss for broken PT-symmetric phase. These analytical results agree with the recent experimental observation reported by Rüter et al. [Nat. Phys. 6 (2010) 192]. Besides, we present a scheme for manipulating PT symmetry by applying a periodic modulation. Our results provide an efficient way to control light propagation in periodically modulated PT-symmetric system by tuning the modulation amplitude and frequency. (paper)

  18. Capacity Bounds and Mapping Design for Binary Symmetric Relay Channels

    Directory of Open Access Journals (Sweden)

    Majid Nasiri Khormuji

    2012-12-01

    Full Text Available Capacity bounds for a three-node binary symmetric relay channel with orthogonal components at the destination are studied. The cut-set upper bound and the rates achievable using decode-and-forward (DF, partial DF and compress-and-forward (CF relaying are first evaluated. Then relaying strategies with finite memory-length are considered. An efficient algorithm for optimizing the relay functions is presented. The Boolean Fourier transform is then employed to unveil the structure of the optimized mappings. Interestingly, the optimized relay functions exhibit a simple structure. Numerical results illustrate that the rates achieved using the optimized low-dimensional functions are either comparable to those achieved by CF or superior to those achieved by DF relaying. In particular, the optimized low-dimensional relaying scheme can improve on DF relaying when the quality of the source-relay link is worse than or comparable to that of other links.

  19. VP-Nets : Efficient automatic localization of key brain structures in 3D fetal neurosonography.

    Science.gov (United States)

    Huang, Ruobing; Xie, Weidi; Alison Noble, J

    2018-04-23

    Three-dimensional (3D) fetal neurosonography is used clinically to detect cerebral abnormalities and to assess growth in the developing brain. However, manual identification of key brain structures in 3D ultrasound images requires expertise to perform and even then is tedious. Inspired by how sonographers view and interact with volumes during real-time clinical scanning, we propose an efficient automatic method to simultaneously localize multiple brain structures in 3D fetal neurosonography. The proposed View-based Projection Networks (VP-Nets), uses three view-based Convolutional Neural Networks (CNNs), to simplify 3D localizations by directly predicting 2D projections of the key structures onto three anatomical views. While designed for efficient use of data and GPU memory, the proposed VP-Nets allows for full-resolution 3D prediction. We investigated parameters that influence the performance of VP-Nets, e.g. depth and number of feature channels. Moreover, we demonstrate that the model can pinpoint the structure in 3D space by visualizing the trained VP-Nets, despite only 2D supervision being provided for a single stream during training. For comparison, we implemented two other baseline solutions based on Random Forest and 3D U-Nets. In the reported experiments, VP-Nets consistently outperformed other methods on localization. To test the importance of loss function, two identical models are trained with binary corss-entropy and dice coefficient loss respectively. Our best VP-Net model achieved prediction center deviation: 1.8 ± 1.4 mm, size difference: 1.9 ± 1.5 mm, and 3D Intersection Over Union (IOU): 63.2 ± 14.7% when compared to the ground truth. To make the whole pipeline intervention free, we also implement a skull-stripping tool using 3D CNN, which achieves high segmentation accuracy. As a result, the proposed processing pipeline takes a raw ultrasound brain image as input, and output a skull-stripped image with five detected key brain

  20. A cosmological problem for maximally symmetric supergravity

    International Nuclear Information System (INIS)

    German, G.; Ross, G.G.

    1986-01-01

    Under very general considerations it is shown that inflationary models of the universe based on maximally symmetric supergravity with flat potentials are unable to resolve the cosmological energy density (Polonyi) problem. (orig.)

  1. Interplay between topological phase and self-acceleration in a vortex symmetric Airy beam.

    Science.gov (United States)

    Fang, Zhao-Xiang; Chen, Yue; Ren, Yu-Xuan; Gong, Lei; Lu, Rong-De; Zhang, An-Qi; Zhao, Hong-Ze; Wang, Pei

    2018-03-19

    Photons in an optical vortex usually carry orbital angular momentum, which boosts the application of the micro-rotation of absorbing particles and quantum information encoding. Such photons propagate along a straight line in free space or follow a curved trace once guided by an optical fiber. Teleportation of an optical vortex using a beam with non-diffraction and self-healing is quite challenging. We demonstrate the manipulation of the propagation trace of an optical vortex with a symmetric Airy beam (SAB) and found that the SAB experiences self-rotation with the implementation of a topological phase structure of coaxial vortex. Slight misalignment of the vortex and the SAB enables the guiding of the vortex into one of the self-accelerating channels. Multiple off-axis vortices embedded in SAB are also demonstrated to follow the trajectory of the major lobe for the SAB beam. The Poynting vector for the beams proves the direction of the energy flow corresponding to the intensity distribution. Hence, we anticipate that the proposed vortex symmetric Airy beam (VSAB) will provide new possibilities for optical manipulation and optical communication.

  2. Sobolev spaces on bounded symmetric domains

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav

    Roč. 60, č. 12 ( 2015 ), s. 1712-1726 ISSN 1747-6933 Institutional support: RVO:67985840 Keywords : bounded symmetric domain * Sobolev space * Bergman space Subject RIV: BA - General Mathematics Impact factor: 0.466, year: 2015 http://www.tandfonline.com/doi/abs/10.1080/17476933. 2015 .1043910

  3. Harmonic analysis on reductive symmetric spaces

    NARCIS (Netherlands)

    Ban, E.P. van den; Schlichtkrull, H.

    2000-01-01

    We give a relatively non-technical survey of some recent advances in the Fourier theory for semisimple symmetric spaces. There are three major results: An inversion formula for the Fourier transform, a Palley-Wiener theorem, which describes the Fourier image of the space of completely supported

  4. Performance Analysis of Autonomous Microgrid Subsequent to Symmetrical and Unsymmetrical Fault Triggered Condition

    Science.gov (United States)

    Natesan, Chitra; Ajithan, Senthil Kumar; Mani, Shobana; Palani, Priyadharshini; Kandhasamy, Prabaakaran

    2014-01-01

    Hi-tech scenario and the ecological compression are the key point to drive the intervention of the renewable in the distribution system. In the perspective of complex power system planners, the transient performance of the microgrid is the main concern. For that purpose, various fault cases are explored in order to examine the microgrid transient performance when subjected to accidental events. In this work, the microgrid is modelled with two distributed generations (DGs) tied with a converter separately. With this intention, droop control strategy is adopted for the microsources to examine the microgrid performance during the symmetrical and unsymmetrical fault events. The ability of the control strategy adopted in this work and its effectiveness are evaluated through Matlab/Simulink platform. PMID:25162062

  5. Performance Analysis of Autonomous Microgrid Subsequent to Symmetrical and Unsymmetrical Fault Triggered Condition

    Directory of Open Access Journals (Sweden)

    Chitra Natesan

    2014-01-01

    Full Text Available Hi-tech scenario and the ecological compression are the key point to drive the intervention of the renewable in the distribution system. In the perspective of complex power system planners, the transient performance of the microgrid is the main concern. For that purpose, various fault cases are explored in order to examine the microgrid transient performance when subjected to accidental events. In this work, the microgrid is modelled with two distributed generations (DGs tied with a converter separately. With this intention, droop control strategy is adopted for the microsources to examine the microgrid performance during the symmetrical and unsymmetrical fault events. The ability of the control strategy adopted in this work and its effectiveness are evaluated through Matlab/Simulink platform.

  6. Performance analysis of autonomous microgrid subsequent to symmetrical and unsymmetrical fault triggered condition.

    Science.gov (United States)

    Natesan, Chitra; Ajithan, Senthil Kumar; Mani, Shobana; Palani, Priyadharshini; Kandhasamy, Prabaakaran

    2014-01-01

    Hi-tech scenario and the ecological compression are the key point to drive the intervention of the renewable in the distribution system. In the perspective of complex power system planners, the transient performance of the microgrid is the main concern. For that purpose, various fault cases are explored in order to examine the microgrid transient performance when subjected to accidental events. In this work, the microgrid is modelled with two distributed generations (DGs) tied with a converter separately. With this intention, droop control strategy is adopted for the microsources to examine the microgrid performance during the symmetrical and unsymmetrical fault events. The ability of the control strategy adopted in this work and its effectiveness are evaluated through Matlab/Simulink platform.

  7. Electroweak Baryogenesis in R-symmetric Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin

    2013-03-01

    We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.

  8. Axially symmetrical stresses measurement in the cylindrical tube using DIC with hole-drilling

    Science.gov (United States)

    Ma, Yinji; Yao, Xuefeng; Zhang, Danwen

    2015-03-01

    In this paper, a new method combining the digital image correlation (DIC) with the hole-drilling technology to characterize the axially symmetrical stresses of the cylindrical tube is developed. First, the theoretical expressions of the axially symmetrical stresses in the cylindrical tube are derived based on the displacement or strain fields before and after hole-drilling. Second, the release of the axially symmetrical stresses for the cylindrical tube caused by hole-drilling is simulated by the finite element method (FEM), which indicates that the axially symmetrical stresses of the cylindrical tube calculated by the cylindrical solution is more accuracy than that for traditionally planar solution. Finally, both the speckle image information and the displacement field of the cylindrical tube before and after hole-drilling are extracted by combining the DIC with the hole-drilling technology, then the axially symmetrical loading induced stresses of the cylindrical tube are obtained, which agree well with the results from the strain gauge method.

  9. The ultimate security bounds of quantum key distribution protocols

    International Nuclear Information System (INIS)

    Nikolopoulos, G.M.; Alber, G.

    2005-01-01

    Full text: Quantum key distribution (QKD) protocols exploit quantum correlations in order to establish a secure key between two legitimate users. Recent work on QKD has revealed a remarkable link between quantum and secret correlations. In this talk we report on recent results concerning the ultimate upper security bounds of various QKD schemes (i.e., the maximal disturbance up to which the two legitimate users share quantum correlations) under the assumption of general coherent attacks. In particular, we derive an analytic expression for the ultimate upper security bound of QKD schemes that use two mutually unbiased bases. As long as the two legitimate users focus on the sifted key and treat each pair of data independently during the post processing, our results are valid for arbitrary dimensions of the information carriers. The bound we have derived is well below the predictions of optimal cloning machines. The possibility of extraction of a secret key beyond entanglement distillation is also discussed. In the case of qutrits we argue that any eavesdropping strategy is equivalent to a symmetric one. For higher dimensions, however, such equivalence is generally no longer valid. (author)

  10. Duality in Left-Right Symmetric Seesaw Mechanism

    International Nuclear Information System (INIS)

    Akhmedov, E.Kh.; Frigerio, M.

    2006-01-01

    We consider type I+II seesaw mechanism, where the exchanges of both right-handed neutrinos and isotriplet Higgs bosons contribute to the neutrino mass. Working in the left-right symmetric framework and assuming the mass matrix of light neutrinos m ν and the Dirac-type Yukawa couplings to be known, we find the triplet Yukawa coupling matrix f, which carries the information about the masses and mixing of the right-handed neutrinos. We show that in this case there exists a duality: for any solution f, there is a dual solution f-circumflex=m ν /v L -f, where v L is the vacuum expectation value of the triplet Higgs boson. Thus, unlike in pure type I (II) seesaw, there is no unique allowed structure for the matrix f. For n lepton generations the number of solutions is 2 n . We develop an exact analytic method of solving the seesaw nonlinear matrix equation for f

  11. Particle in a box in PT-symmetric quantum mechanics and an electromagnetic analog

    Science.gov (United States)

    Dasarathy, Anirudh; Isaacson, Joshua P.; Jones-Smith, Katherine; Tabachnik, Jason; Mathur, Harsh

    2013-06-01

    In PT-symmetric quantum mechanics a fundamental principle of quantum mechanics, that the Hamiltonian must be Hermitian, is replaced by another set of requirements, including notably symmetry under PT, where P denotes parity and T denotes time reversal. Here we study the role of boundary conditions in PT-symmetric quantum mechanics by constructing a simple model that is the PT-symmetric analog of a particle in a box. The model has the usual particle-in-a-box Hamiltonian but boundary conditions that respect PT symmetry rather than Hermiticity. We find that for a broad class of PT-symmetric boundary conditions the model respects the condition of unbroken PT symmetry, namely, that the Hamiltonian and the symmetry operator PT have simultaneous eigenfunctions, implying that the energy eigenvalues are real. We also find that the Hamiltonian is self-adjoint under the PT-symmetric inner product. Thus we obtain a simple soluble model that fulfills all the requirements of PT-symmetric quantum mechanics. In the second part of this paper we formulate a variational principle for PT-symmetric quantum mechanics that is the analog of the textbook Rayleigh-Ritz principle. Finally we consider electromagnetic analogs of the PT-symmetric particle in a box. We show that the isolated particle in a box may be realized as a Fabry-Perot cavity between an absorbing medium and its conjugate gain medium. Coupling the cavity to an external continuum of incoming and outgoing states turns the energy levels of the box into sharp resonances. Remarkably we find that the resonances have a Breit-Wigner line shape in transmission and a Fano line shape in reflection; by contrast, in the corresponding Hermitian case the line shapes always have a Breit-Wigner form in both transmission and reflection.

  12. Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback

    Science.gov (United States)

    Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.

    2018-02-01

    We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.

  13. (Anti)symmetric multivariate exponential functions and corresponding Fourier transforms

    International Nuclear Information System (INIS)

    Klimyk, A U; Patera, J

    2007-01-01

    We define and study symmetrized and antisymmetrized multivariate exponential functions. They are defined as determinants and antideterminants of matrices whose entries are exponential functions of one variable. These functions are eigenfunctions of the Laplace operator on the corresponding fundamental domains satisfying certain boundary conditions. To symmetric and antisymmetric multivariate exponential functions there correspond Fourier transforms. There are three types of such Fourier transforms: expansions into the corresponding Fourier series, integral Fourier transforms and multivariate finite Fourier transforms. Eigenfunctions of the integral Fourier transforms are found

  14. Ab initio study of symmetrical tilt grain boundaries in bcc Fe: structural units, magnetic moments, interfacial bonding, local energy and local stress

    International Nuclear Information System (INIS)

    Bhattacharya, Somesh Kr; Tanaka, Shingo; Kohyama, Masanori; Shiihara, Yoshinori

    2013-01-01

    We present first-principle calculations on symmetric tilt grain boundaries (GBs) in bcc Fe. Using density functional theory (DFT), we studied the structural, electronic and magnetic properties of Σ3(111) and Σ11(332) GBs formed by rotation around the [110] axis. The optimized structures, GB energies and GB excess free volumes are consistent with previous DFT and classical simulation studies. The GB configurations can be interpreted by the structural unit model as given by Nakashima and Takeuchi (2000 ISIJ 86 357). Both the GBs are composed of similar structural units of three- and five-membered rings with different densities at the interface according to the rotation angle. The interface atoms with larger atomic volumes reveal higher magnetic moments than the bulk value, while the interface atoms with shorter bond lengths have reduced magnetic moments in each GB. The charge density and local density of states reveal that the interface bonds with short bond lengths have more covalent nature, where minority-spin electrons play a dominant role as the typical nature of ferromagnetic Fe. In order to understand the structural stability of these GBs, we calculated the local energy and local stress for each atomic region using the scheme of Shiihara et al (2010 Phys. Rev. B 81 075441). In each GB, the interface atoms with larger atomic volumes and enhanced magnetic moments reveal larger local energy increase and tensile stress. The interface atoms constituting more covalent-like bonds with reduced magnetic moments have lower local energy increase, contributing to the stabilization, while compressive stress is generated at these atoms. The relative stability between the two GBs can be understood by the local energies at the structural units. The local energy and local stress analysis is a powerful tool to investigate the structural properties of GBs based on the behavior of valence electrons. (paper)

  15. Symmetric mixed states of n qubits: Local unitary stabilizers and entanglement classes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, David W.; Walck, Scott N. [Lebanon Valley College, Annville, Pennsylvania 17003 (United States)

    2011-10-15

    We classify, up to local unitary equivalence, local unitary stabilizer Lie algebras for symmetric mixed states of n qubits into six classes. These include the stabilizer types of the Werner states, the Greenberger-Horne-Zeilinger state and its generalizations, and Dicke states. For all but the zero algebra, we classify entanglement types (local unitary equivalence classes) of symmetric mixed states that have those stabilizers. We make use of the identification of symmetric density matrices with polynomials in three variables with real coefficients and apply the representation theory of SO(3) on this space of polynomials.

  16. PT-symmetric ladders with a scattering core

    Energy Technology Data Exchange (ETDEWEB)

    D' Ambroise, J. [Department of Mathematics, Amherst College, Amherst, MA 01002-5000 (United States); Lepri, S. [CNR – Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del piano 10, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Malomed, B.A. [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Kevrekidis, P.G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-9305 (United States)

    2014-08-01

    We consider a PT-symmetric chain (ladder-shaped) system governed by the discrete nonlinear Schrödinger equation where the cubic nonlinearity is carried solely by two central “rungs” of the ladder. Two branches of scattering solutions for incident plane waves are found. We systematically construct these solutions, analyze their stability, and discuss non-reciprocity of the transmission associated with them. To relate the results to finite-size wavepacket dynamics, we also perform direct simulations of the evolution of the wavepackets, which confirm that the transmission is indeed asymmetric in this nonlinear system with the mutually balanced gain and loss. - Highlights: • We model a PT-symmetric ladder system with cubic nonlinearity on two central rungs. • We examine non-reciprocity and stability of incident plane waves. • Simulations of wavepackets confirm our results.

  17. Symmetric voltage-controlled variable resistance

    Science.gov (United States)

    Vanelli, J. C.

    1978-01-01

    Feedback network makes resistance of field-effect transistor (FET) same for current flowing in either direction. It combines control voltage with source and load voltages to give symmetric current/voltage characteristics. Since circuit produces same magnitude output voltage for current flowing in either direction, it introduces no offset in presense of altering polarity signals. It is therefore ideal for sensor and effector circuits in servocontrol systems.

  18. Simple Web-based interactive key development software (WEBiKEY) and an example key for Kuruna (Poaceae: Bambusoideae).

    Science.gov (United States)

    Attigala, Lakshmi; De Silva, Nuwan I; Clark, Lynn G

    2016-04-01

    Programs that are user-friendly and freely available for developing Web-based interactive keys are scarce and most of the well-structured applications are relatively expensive. WEBiKEY was developed to enable researchers to easily develop their own Web-based interactive keys with fewer resources. A Web-based multiaccess identification tool (WEBiKEY) was developed that uses freely available Microsoft ASP.NET technologies and an SQL Server database for Windows-based hosting environments. WEBiKEY was tested for its usability with a sample data set, the temperate woody bamboo genus Kuruna (Poaceae). WEBiKEY is freely available to the public and can be used to develop Web-based interactive keys for any group of species. The interactive key we developed for Kuruna using WEBiKEY enables users to visually inspect characteristics of Kuruna and identify an unknown specimen as one of seven possible species in the genus.

  19. Quantum key distribution with finite resources: Smooth Min entropy vs. Smooth Renyi entropy

    Energy Technology Data Exchange (ETDEWEB)

    Mertz, Markus; Abruzzo, Silvestre; Bratzik, Sylvia; Kampermann, Hermann; Bruss, Dagmar [Institut fuer Theoretische Physik III, Duesseldorf (Germany)

    2010-07-01

    We consider different entropy measures that play an important role in the analysis of the security of QKD with finite resources. The smooth min entropy leads to an optimal bound for the length of a secure key. Another bound on the secure key length was derived by using Renyi entropies. Unfortunately, it is very hard or even impossible to calculate these entropies for realistic QKD scenarios. To estimate the security rate it becomes important to find computable bounds on these entropies. Here, we compare a lower bound for the smooth min entropy with a bound using Renyi entropies. We compare these entropies for the six-state protocol with symmetric attacks.

  20. Left ventricular dimensions, systolic functions, and mass in term neonates with symmetric and asymmetric intrauterine growth restriction.

    Science.gov (United States)

    Cinar, Bahar; Sert, Ahmet; Gokmen, Zeynel; Aypar, Ebru; Aslan, Eyup; Odabas, Dursun

    2015-02-01

    Previous studies have demonstrated structural changes in the heart and cardiac dysfunction in foetuses with intrauterine growth restriction. There are no available data that evaluated left ventricular dimensions and mass in neonates with symmetric and asymmetric intrauterine growth restriction. Therefore, we aimed to evaluate left ventricular dimensions, systolic functions, and mass in neonates with symmetric and asymmetric intrauterine growth restriction. We also assessed associated maternal risk factors, and compared results with healthy appropriate for gestational age neonates. In all, 62 asymmetric intrauterine growth restriction neonates, 39 symmetric intrauterine growth restriction neonates, and 50 healthy appropriate for gestational age neonates were evaluated by transthoracic echocardiography. The asymmetric intrauterine growth restriction group had significantly lower left ventricular end-systolic and end-diastolic diameters and posterior wall diameter in systole and diastole than the control group. The symmetric intrauterine growth restriction group had significantly lower left ventricular end-diastolic diameter than the control group. All left ventricular dimensions were lower in the asymmetric intrauterine growth restriction neonates compared with symmetric intrauterine growth restriction neonates (p>0.05), but not statistically significant except left ventricular posterior wall diameter in diastole (3.08±0.83 mm versus 3.54 ±0.72 mm) (pintrauterine growth restriction groups had significantly lower relative posterior wall thickness (0.54±0.19 versus 0.48±0.13 versus 0.8±0.12), left ventricular mass (9.8±4.3 g versus 8.9±3.4 g versus 22.2±5.7 g), and left ventricular mass index (63.6±29.1 g/m2 versus 54.5±24.4 g/m2 versus 109±28.8 g/m2) when compared with the control group. Our study has demonstrated that although neonates with both symmetric and asymmetric intrauterine growth restriction had lower left ventricular dimensions, relative

  1. Performance improvements of symmetry-breaking reflector structures in nonimaging devices

    Science.gov (United States)

    Winston, Roland

    2004-01-13

    A structure and method for providing a broken symmetry reflector structure for a solar concentrator device. The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quantity, referred to as the translational skew invariant, is conserved in rotationally symmetric optical systems. Performance limits for translationally symmetric nonimaging optical devices are derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. A numerically optimized non-tracking solar concentrator utilizing symmetry-breaking reflector structures can overcome the performance limits associated with translational symmetry.

  2. Monte Carlo studies on the interfacial properties and interfacial structures of ternary symmetric blends with gradient copolymers.

    Science.gov (United States)

    Sun, Dachuan; Guo, Hongxia

    2012-08-09

    Using Monte Carlo simulation methods, the effects of the comonomer sequence distribution on the interfacial properties (including interfacial tension, interfacial thickness, saturated interfacial area per copolymer, and bending modulus) and interfacial structures (including chain conformations and comonomer distributions of the simulated copolymers at the interfaces) of a ternary symmetric blend containing two immiscible homopolymers and one gradient copolymer are investigated. We find that copolymers with a larger composition gradient width have a broader comonomer distribution along the interface normal, and hence more pronouncedly enlarge the interfacial thickness and reduce the interfacial tension. Furthermore, the counteraction effect, which arises from the tendency of heterogeneous segments in gradient copolymers to phase separate and enter their miscible phases to reduce the local enthalpy, decreases the stretching of copolymers along the interface normal direction. As a result, copolymers with a larger width of gradient composition can occupy a larger interfacial area and form softer monolayers at saturation and are more efficient in facilitating the formation of bicontinuous microemulsions. Additionally, chain length ratio, segregation strength, and interactions between homopolymers and copolymers can alter the interfacial character of gradient copolymers. There exists a strong coupling between the comonomer sequence distribution, chain conformation, and interfacial properties. Especially, bending modulus is mainly determined by the complicated interplay of interfacial copolymer density and interfacial chain conformation.

  3. The Mathematics of Symmetrical Factorial Designs

    Indian Academy of Sciences (India)

    The Mathematics of Symmetrical Factorial Designs. Mausumi Bose (nee Sen) obtained her MSc degree in. Statistics from the Calcutta. University and PhD degree from the Indian Statistical. Institute. She is on the faculty of the Indian. Statistical Institute. Her main field of research interest is design and analysis of experiments.

  4. A comparison of lower bounds for the symmetric circulant traveling salesman problem

    NARCIS (Netherlands)

    de Klerk, E.; Dobre, C.

    2011-01-01

    When the matrix of distances between cities is symmetric and circulant, the traveling salesman problem (TSP) reduces to the so-called symmetric circulant traveling salesman problem (SCTSP), that has applications in the design of reconfigurable networks, and in minimizing wallpaper waste. The

  5. A class of non-symmetric band determinants with the Gaussian q ...

    African Journals Online (AJOL)

    A class of symmetric band matrices of bandwidth 2r+1 with the binomial coefficients entries was studied earlier. We consider a class of non-symmetric band matrices with the Gaussian q-binomial coefficients whose upper bandwith is s and lower bandwith is r. We give explicit formulæ for the determinant, the inverse (along ...

  6. Asymptotic expansions for Toeplitz operators on symmetric spaces of general type

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav; Upmeier, H.

    2015-01-01

    Roč. 367, č. 1 (2015), s. 423-476 ISSN 0002-9947 R&D Projects: GA ČR GA201/09/0473 Institutional support: RVO:67985840 Keywords : symmetric space * symmetric domain * Berezin quantization Subject RIV: BA - General Mathematics Impact factor: 1.196, year: 2015 http://www.ams.org/journals/tran/2015-367-01/S0002-9947-2014-06130-8/

  7. Symmetric minimally entangled typical thermal states for canonical and grand-canonical ensembles

    Science.gov (United States)

    Binder, Moritz; Barthel, Thomas

    2017-05-01

    Based on the density matrix renormalization group (DMRG), strongly correlated quantum many-body systems at finite temperatures can be simulated by sampling over a certain class of pure matrix product states (MPS) called minimally entangled typical thermal states (METTS). When a system features symmetries, these can be utilized to substantially reduce MPS computation costs. It is conceptually straightforward to simulate canonical ensembles using symmetric METTS. In practice, it is important to alternate between different symmetric collapse bases to decrease autocorrelations in the Markov chain of METTS. To this purpose, we introduce symmetric Fourier and Haar-random block bases that are efficiently mixing. We also show how grand-canonical ensembles can be simulated efficiently with symmetric METTS. We demonstrate these approaches for spin-1 /2 X X Z chains and discuss how the choice of the collapse bases influences autocorrelations as well as the distribution of measurement values and, hence, convergence speeds.

  8. Holographic Spherically Symmetric Metrics

    Science.gov (United States)

    Petri, Michael

    The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.

  9. KEY ASPECTS OF ENSURING ENERGY EFFICIENCY OF BUILDINGS AND STRUCTURES

    Directory of Open Access Journals (Sweden)

    S.G. Abramyan

    2017-06-01

    Full Text Available The paper is based on the review of the foreign and national academic literature and intended to emphasize the issues of ensuring energy efficiency of buildings and structures applicable to all the countries as for reconstruction of existing buildings as for erection of new ones . The author highlights the key aspects of the provision of energy efficiency of buildings and structures in some foreign countries. The conclusion is made that the studies are mainly aimed at discovering new heat insulation materials, whereby polystyrene insulation is found to be the most widespread wall insulation material in a number of countries. At the same time, it is observed that the ongoing research is focused on solutions to optimize the structure of walling systems in terms of both insulant thickness and the number and sequence of insulation layers in the walling structure. A conclusion is made that hyper insulation of external walls leads to considerable expenses arising due to cooling during the summer season. The use of prefabricated vacuum panels as a heat insulation layer and off-the-shelf single-layer structures, subject to their heat insulation characteristics, appears a more constructive way to meet the energy efficiency requirements, as the arrangement of ideal air space in multilayered walls proves a significant challenge today. One of the most promising ways to ensure energy efficiency is the use of multifunctional polyvalent walls and provision of polyvalent heat supply from renewable energy sources. Since energy efficiency depends on the spatial arrangement of buildings, construction must ensure a minimum ratio of the area of enclosing structures to the overall building volume (by adding on new facilities in case of reconstruction. It is noted that a systemic approach to ensuring energy efficiency of buildings is impossible without proper regard to the environmental parameters of heat insulation materials.

  10. Symmetrized neutron transport equation and the fast Fourier transform method

    International Nuclear Information System (INIS)

    Sinh, N.Q.; Kisynski, J.; Mika, J.

    1978-01-01

    The differential equation obtained from the neutron transport equation by the application of the source iteration method in two-dimensional rectangular geometry is transformed into a symmetrized form with respect to one of the angular variables. The discretization of the symmetrized equation leads to finite difference equations based on the five-point scheme and solved by use of the fast Fourier transform method. Possible advantages of the approach are shown on test calculations

  11. Unraveling the symmetry ambiguity in a hexamer: Calculation of the R6 human insulin structure

    International Nuclear Information System (INIS)

    O'Donoghue, Sean I.; Chang Xiaoqing; Abseher, Roger; Nilges, Michael; Led, Jens J.

    2000-01-01

    Crystallographic and NMR studies of insulin have revealed a highly flexible molecule with a range of different aggregation and structural states; the importance of these states for the function of the hormone is still unclear. To address this question, we have studied the solution structure of the insulin R 6 symmetric hexamer using NMR spectroscopy. Structure determination of symmetric oligomers by NMR is complicated due to 'symmetry ambiguity' between intra- and intermonomer NOEs, and between different classes of intermonomer NOEs. Hence, to date, only two symmetric tetramers and one symmetric pentamer (VTB, B subunit of verotoxin) have been solved by NMR; there has been no other symmetric hexamer or higher-order oligomer. Recently, we reported a solution structure for R 6 insulin hexamer. However, in that study, a crystal structure was used as a reference to resolve ambiguities caused by the threefold symmetry; the same method was used in solving VTB. Here, we have successfully recalculated R 6 insulin using the symmetry-ADR method, a computational strategy in which ambiguities are resolved using the NMR data alone. Thus the obtained structure is a refinement of the previous R 6 solution structure. Correlated motions in the final structural ensemble were analysed using a recently developed principal component method; this suggests the presence of two major conformational substates. The study demonstrates that the solution structure of higher-order symmetric oligomers can be determined unambiguously from NMR data alone, using the symmetry-ADR method. This success bodes well for future NMR studies of higher-order symmetric oligomers. The correlated motions observed in the structural ensemble suggest a new insight into the mechanism of phenol exchange and the T 6 ↔ R 6 transition of insulin in solution

  12. Ultrastrong extraordinary transmission and reflection in PT-symmetric Thue-Morse optical waveguide networks.

    Science.gov (United States)

    Wu, Jiaye; Yang, Xiangbo

    2017-10-30

    In this paper, we construct a 1D PT-symmetric Thue-Morse aperiodic optical waveguide network (PTSTMAOWN) and mainly investigate the ultrastrong extraordinary transmission and reflection. We propose an approach to study the photonic modes and solve the problem of calculating photonic modes distributions in aperiodic networks due to the lack of dispersion functions and find that in a PTSTMAOWN there exist more photonic modes and more spontaneous PT-symmetric breaking points, which are quite different from other reported PT-symmetric optical systems. Additionally, we develop a method to sort spontaneous PT-symmetric breaking point zones to seek the strongest extraordinary point and obtain that at this point the strongest extraordinary transmission and reflection arrive at 2.96316 × 10 5 and 1.32761 × 10 5 , respectively, due to the PT-symmetric coupling resonance and the special symmetry pattern of TM networks. These enormous gains are several orders of magnitude larger than the previous results. This optical system may possess potential in designing optical amplifier, optical logic elements in photon computers and ultrasensitive optical switches with ultrahigh monochromatity.

  13. Tailoring Spectral Properties of Binary PT-Symmetric Gratings by Duty-Cycle Methods

    DEFF Research Database (Denmark)

    Lupu, Anatole T.; Benisty, Henri; Lavrinenko, Andrei

    2016-01-01

    We explore the frequency selective functionalities of a nonuniform PT-symmetric Bragg grating with modulated complex index profile. We start by assessing the possibility to achieve an efficient apodization of the PT-symmetric Bragg grating spectral response by using direct adaptations of the conv...

  14. Maximum-confidence discrimination among symmetric qudit states

    International Nuclear Information System (INIS)

    Jimenez, O.; Solis-Prosser, M. A.; Delgado, A.; Neves, L.

    2011-01-01

    We study the maximum-confidence (MC) measurement strategy for discriminating among nonorthogonal symmetric qudit states. Restricting to linearly dependent and equally likely pure states, we find the optimal positive operator valued measure (POVM) that maximizes our confidence in identifying each state in the set and minimizes the probability of obtaining inconclusive results. The physical realization of this POVM is completely determined and it is shown that after an inconclusive outcome, the input states may be mapped into a new set of equiprobable symmetric states, restricted, however, to a subspace of the original qudit Hilbert space. By applying the MC measurement again onto this new set, we can still gain some information about the input states, although with less confidence than before. This leads us to introduce the concept of sequential maximum-confidence (SMC) measurements, where the optimized MC strategy is iterated in as many stages as allowed by the input set, until no further information can be extracted from an inconclusive result. Within each stage of this measurement our confidence in identifying the input states is the highest possible, although it decreases from one stage to the next. In addition, the more stages we accomplish within the maximum allowed, the higher will be the probability of correct identification. We will discuss an explicit example of the optimal SMC measurement applied in the discrimination among four symmetric qutrit states and propose an optical network to implement it.

  15. Quantum work relations and response theory in parity-time-symmetric quantum systems

    Science.gov (United States)

    Wei, Bo-Bo

    2018-01-01

    In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extends to a parity-time- (PT -) symmetric quantum system with unbroken PT symmetry, which is a consequence of microscopic reversibility. The quantum Jarzynski equality, linear response theory, and Onsager reciprocal relations for the PT -symmetric quantum system are recovered as special cases of the universal quantum work relation in a PT -symmetric quantum system. In the regime of broken PT symmetry, the universal quantum work relation does not hold because the norm is not preserved during the dynamics.

  16. An efficient three-party password-based key agreement protocol using extended chaotic maps

    International Nuclear Information System (INIS)

    Shu Jian

    2015-01-01

    Three-party password-based key agreement protocols allow two users to authenticate each other via a public channel and establish a session key with the aid of a trusted server. Recently, Farash et al. [Farash M S, Attari M A 2014 “An efficient and provably secure three-party password-based authenticated key exchange protocol based on Chebyshev chaotic maps”, Nonlinear Dynamics 77(7): 399–411] proposed a three-party key agreement protocol by using the extended chaotic maps. They claimed that their protocol could achieve strong security. In the present paper, we analyze Farash et al.’s protocol and point out that this protocol is vulnerable to off-line password guessing attack and suffers communication burden. To handle the issue, we propose an efficient three-party password-based key agreement protocol using extended chaotic maps, which uses neither symmetric cryptosystems nor the server’s public key. Compared with the relevant schemes, our protocol provides better performance in terms of computation and communication. Therefore, it is suitable for practical applications. (paper)

  17. An Authenticated Key Agreement Scheme Based on Cyclic Automorphism Subgroups of Random Orders

    Directory of Open Access Journals (Sweden)

    Yang Jun

    2017-01-01

    Full Text Available Group-based cryptography is viewed as a modern cryptographic candidate solution to blocking quantum computer attacks, and key exchange protocols on the Internet are one of the primitives to ensure the security of communication. In 2016 Habeeb et al proposed a “textbook” key exchange protocol based on the semidirect product of two groups, which is insecure for use in real-world applications. In this paper, after discarding the unnecessary disguising notion of semidirect product in the protocol, we establish a simplified yet enhanced authenticated key agreement scheme based on cyclic automorphism subgroups of random orders by making hybrid use of certificates and symmetric-key encryption as challenge-and-responses in the public-key setting. Its passive security is formally analyzed, which is relative to the cryptographic hardness assumption of a computational number-theoretic problem. Cryptanalysis of this scheme shows that it is secure against the intruder-in-the-middle attack even in the worst case of compromising the signatures, and provides explicit key confirmation to both parties.

  18. Nonstandard jump functions for radically symmetric shock waves

    International Nuclear Information System (INIS)

    Baty, Roy S.; Tucker, Don H.; Stanescu, Dan

    2008-01-01

    Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function.

  19. Are average and symmetric faces attractive to infants? Discrimination and looking preferences.

    Science.gov (United States)

    Rhodes, Gillian; Geddes, Keren; Jeffery, Linda; Dziurawiec, Suzanne; Clark, Alison

    2002-01-01

    Young infants prefer to look at faces that adults find attractive, suggesting a biological basis for some face preferences. However, the basis for infant preferences is not known. Adults find average and symmetric faces attractive. We examined whether 5-8-month-old infants discriminate between different levels of averageness and symmetry in faces, and whether they prefer to look at faces with higher levels of these traits. Each infant saw 24 pairs of female faces. Each pair consisted of two versions of the same face differing either in averageness (12 pairs) or symmetry (12 pairs). Data from the mothers confirmed that adults preferred the more average and more symmetric versions in each pair. The infants were sensitive to differences in both averageness and symmetry, but showed no looking preference for the more average or more symmetric versions. On the contrary, longest looks were significantly longer for the less average versions, and both longest looks and first looks were marginally longer for the less symmetric versions. Mean looking times were also longer for the less average and less symmetric versions, but those differences were not significant. We suggest that the infant looking behaviour may reflect a novelty preference rather than an aesthetic preference.

  20. Design and Modeling of Symmetric Three Branch Polymer Planar Optical Power Dividers

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2013-04-01

    Full Text Available Two types of polymer-based three-branch symmetric planar optical power dividers (splitters were designed, multimode interference (MMI splitter and triangular shape-spacing splitter. By means of modeling the real structures were simulated as made of Epoxy Novolak Resin on silicon substrate, with silica buffer layer and polymethylmethacrylate as protection cover layer. The design of polymer waveguide structure was done by Beam Propagation Method. After comparing properties of both types of the splitters we have demonstrated that our new polymer based triangular shaped splitter can work simultaneously in broader spectrum, the only condition would be that the waveguides are single-mode guiding. It practically means that, what concerns communication wavelengths, it can on principle simultaneously operate at two mainly used wavelengths, 1310 and 1550 nm.

  1. Density functional theory studies of screw dislocation core structures in bcc metals

    DEFF Research Database (Denmark)

    Frederiksen, Søren Lund; Jacobsen, Karsten Wedel

    2003-01-01

    The core structures of (I 11) screw dislocations in bee metals are studied using density functional theory in the local-density approximation. For Mo and Fe, direct calculations of the core structures show the cores to be symmetric with respect to 180degrees rotations around an axis perpendicular...... to symmetric core structures for all the studied metals....

  2. Symmetric bends how to join two lengths of cord

    CERN Document Server

    Miles, Roger E

    1995-01-01

    A bend is a knot securely joining together two lengths of cord (or string or rope), thereby yielding a single longer length. There are many possible different bends, and a natural question that has probably occurred to many is: "Is there a 'best' bend and, if so, what is it?"Most of the well-known bends happen to be symmetric - that is, the two constituent cords within the bend have the same geometric shape and size, and interrelationship with the other. Such 'symmetric bends' have great beauty, especially when the two cords bear different colours. Moreover, they have the practical advantage o

  3. Algorithms for sparse, symmetric, definite quadratic lambda-matrix eigenproblems

    International Nuclear Information System (INIS)

    Scott, D.S.; Ward, R.C.

    1981-01-01

    Methods are presented for computing eigenpairs of the quadratic lambda-matrix, M lambda 2 + C lambda + K, where M, C, and K are large and sparse, and have special symmetry-type properties. These properties are sufficient to insure that all the eigenvalues are real and that theory analogous to the standard symmetric eigenproblem exists. The methods employ some standard techniques such as partial tri-diagonalization via the Lanczos Method and subsequent eigenpair calculation, shift-and- invert strategy and subspace iteration. The methods also employ some new techniques such as Rayleigh-Ritz quadratic roots and the inertia of symmetric, definite, quadratic lambda-matrices

  4. Symmetrical metallic and magnetic edge states of nanoribbon from semiconductive monolayer PtS2

    Science.gov (United States)

    Liu, Shan; Zhu, Heyu; Liu, Ziran; Zhou, Guanghui

    2018-03-01

    Transition metal dichalcogenides (TMD) MoS2 or graphene could be designed to metallic nanoribbons, which always have only one edge show metallic properties due to symmetric protection. In present work, a nanoribbon with two parallel metallic and magnetic edges was designed from a noble TMD PtS2 by employing first-principles calculations based on density functional theory (DFT). Edge energy, bonding charge density, band structure, density of states (DOS) and simulated scanning tunneling microscopy (STM) of four possible edge states of monolayer semiconductive PtS2 were systematically studied. Detailed calculations show that only Pt-terminated edge state among four edge states was relatively stable, metallic and magnetic. Those metallic and magnetic properties mainly contributed from 5d orbits of Pt atoms located at edges. What's more, two of those central symmetric edges coexist in one zigzag nanoribbon, which providing two atomic metallic wires thus may have promising application for the realization of quantum effects, such as Aharanov-Bohm effect and atomic power transmission lines in single nanoribbon.

  5. Supersymmetry and cotangent bundle over non-compact exceptional Hermitian symmetric space

    International Nuclear Information System (INIS)

    Arai, Masato; Baba, Kurando

    2015-01-01

    We construct N=2 supersymmetric nonlinear sigma models on the cotangent bundles over the non-compact exceptional Hermitian symmetric spaces M=E 6(−14) /SO(10)×U(1) and E 7(−25) /E 6 ×U(1). In order to construct them we use the projective superspace formalism which is an N=2 off-shell superfield formulation in four-dimensional space-time. This formalism allows us to obtain the explicit expression of N=2 supersymmetric nonlinear sigma models on the cotangent bundles over any Hermitian symmetric spaces in terms of the N=1 superfields, once the Kähler potentials of the base manifolds are obtained. We derive the N=1 supersymmetric nonlinear sigma models on the Kähler manifolds M. Then we extend them into the N=2 supersymmetric models with the use of the result in arXiv:1211.1537 developed in the projective superspace formalism. The resultant models are the N=2 supersymmetric nonlinear sigma models on the cotangent bundles over the Hermitian symmetric spaces M. In this work we complete constructing the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces.

  6. Parametric amplification and bidirectional invisibility in PT -symmetric time-Floquet systems

    Science.gov (United States)

    Koutserimpas, Theodoros T.; Alù, Andrea; Fleury, Romain

    2018-01-01

    Parity-time (PT )-symmetric wave devices, which exploit balanced interactions between material gain and loss, exhibit extraordinary properties, including lasing and flux-conserving scattering processes. In a seemingly different research field, periodically driven systems, also known as time-Floquet systems, have been widely studied as a relevant platform for reconfigurable active wave control and manipulation. In this article, we explore the connection between PT -symmetry and parametric time-Floquet systems. Instead of relying on material gain, we use parametric amplification by considering a time-periodic modulation of the refractive index at a frequency equal to twice the incident signal frequency. We show that the scattering from a simple parametric slab, whose dynamics follows the Mathieu equation, can be described by a PT -symmetric scattering matrix, whose PT -breaking threshold corresponds to the Mathieu instability threshold. By combining different parametric slabs modulated out of phase, we create PT -symmetric time-Floquet systems that feature exceptional scattering properties, such as coherent perfect absorption (CPA)-laser operation and bidirectional invisibility. These bidirectional properties, rare for regular PT -symmetric systems, are related to a compensation of parametric amplification due to multiple scattering between two parametric systems modulated with a phase difference.

  7. STRUCTURE FORMATION PRINCIPLES OF INTERFERENCE BEAM SPLITTERS

    Directory of Open Access Journals (Sweden)

    L. A. Gubanova

    2012-01-01

    Full Text Available The methodology of interference beam splitters construction, formed by symmetric cells of dielectric layers is considered. The methodology of short-wave and long-wave interference beam splitters formation is given. The impact analysis of symmetric cells number and their structure on output parameters is considered.

  8. Key Management Scheme Based on Route Planning of Mobile Sink in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2016-01-01

    Full Text Available In many wireless sensor network application scenarios the key management scheme with a Mobile Sink (MS should be fully investigated. This paper proposes a key management scheme based on dynamic clustering and optimal-routing choice of MS. The concept of Traveling Salesman Problem with Neighbor areas (TSPN in dynamic clustering for data exchange is proposed, and the selection probability is used in MS route planning. The proposed scheme extends static key management to dynamic key management by considering the dynamic clustering and mobility of MSs, which can effectively balance the total energy consumption during the activities. Considering the different resources available to the member nodes and sink node, the session key between cluster head and MS is established by modified an ECC encryption with Diffie-Hellman key exchange (ECDH algorithm and the session key between member node and cluster head is built with a binary symmetric polynomial. By analyzing the security of data storage, data transfer and the mechanism of dynamic key management, the proposed scheme has more advantages to help improve the resilience of the key management system of the network on the premise of satisfying higher connectivity and storage efficiency.

  9. Key Management Scheme Based on Route Planning of Mobile Sink in Wireless Sensor Networks.

    Science.gov (United States)

    Zhang, Ying; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming; Chen, Wei

    2016-01-29

    In many wireless sensor network application scenarios the key management scheme with a Mobile Sink (MS) should be fully investigated. This paper proposes a key management scheme based on dynamic clustering and optimal-routing choice of MS. The concept of Traveling Salesman Problem with Neighbor areas (TSPN) in dynamic clustering for data exchange is proposed, and the selection probability is used in MS route planning. The proposed scheme extends static key management to dynamic key management by considering the dynamic clustering and mobility of MSs, which can effectively balance the total energy consumption during the activities. Considering the different resources available to the member nodes and sink node, the session key between cluster head and MS is established by modified an ECC encryption with Diffie-Hellman key exchange (ECDH) algorithm and the session key between member node and cluster head is built with a binary symmetric polynomial. By analyzing the security of data storage, data transfer and the mechanism of dynamic key management, the proposed scheme has more advantages to help improve the resilience of the key management system of the network on the premise of satisfying higher connectivity and storage efficiency.

  10. A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates

    Directory of Open Access Journals (Sweden)

    Fufei Liu

    2017-01-01

    Full Text Available To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7–20 Hz range.

  11. Factored Facade Acquisition using Symmetric Line Arrangements

    KAUST Repository

    Ceylan, Duygu

    2012-05-01

    We introduce a novel framework for image-based 3D reconstruction of urban buildings based on symmetry priors. Starting from image-level edges, we generate a sparse and approximate set of consistent 3D lines. These lines are then used to simultaneously detect symmetric line arrangements while refining the estimated 3D model. Operating both on 2D image data and intermediate 3D feature representations, we perform iterative feature consolidation and effective outlier pruning, thus eliminating reconstruction artifacts arising from ambiguous or wrong stereo matches. We exploit non-local coherence of symmetric elements to generate precise model reconstructions, even in the presence of a significant amount of outlier image-edges arising from reflections, shadows, outlier objects, etc. We evaluate our algorithm on several challenging test scenarios, both synthetic and real. Beyond reconstruction, the extracted symmetry patterns are useful towards interactive and intuitive model manipulations.

  12. Complex group algebras of the double covers of the symmetric and alternating group

    DEFF Research Database (Denmark)

    Bessenrodt, Christine; Nguyen, Hung Ngoc; Olsson, Jørn Børling

    2015-01-01

    We prove that the double covers of the alternating and symmetric groups are determined by their complex group algebras......We prove that the double covers of the alternating and symmetric groups are determined by their complex group algebras...

  13. Exotic fermions in the left-right symmetric model

    International Nuclear Information System (INIS)

    Choi, J.; Volkas, R.R.

    1992-01-01

    A systematic study is made of non-standard fermion multiplets in left-right symmetric models with gauge group SU(3) x SU(2) L x SU(2) R x U(1) BL . Constraints from gauge anomaly cancellation and invariance of Yukawa coupling terms are used to define interesting classes of exotic fermions. The standard quark lepton spectrum of left-right symmetric models was identified as the simplest member of an infinite class. Phenomenological implications of the next simplest member of this class are then studied. Classes of exotic fermions which may couple to the standard fermions through doublet Higgs bosons were also considered, then shown that some of these exotics may be used to induce a generalised universal see-saw mechanism. 12 refs., 1 tab

  14. Tourist Demand Reactions: Symmetric or Asymmetric across the Business Cycle?

    Science.gov (United States)

    Bronner, Fred; de Hoog, Robert

    2017-09-01

    Economizing and spending priorities on different types of vacations are investigated during two periods: an economic downturn and returning prosperity. Two nation-wide samples of vacationers are used: one during a downturn, the other one at the start of the recovery period. Through comparing the results, conclusions can be drawn about symmetric or asymmetric tourist demand across the business cycle. The main summer holiday has an asymmetric profile: being fairly crisis-resistant during a recession and showing considerable growth during an expansion. This does not apply to short vacations and day trips, each having a symmetric profile: during a recession they experience substantial reductions and during expansion comparable growth. So when talking about tourist demand in general , one cannot say that it is symmetric or asymmetric across the business cycle: it depends on the type of vacation. Differences in tourist demand are best explained by the role of Quality-of-Life for vacationers.

  15. Phase behaviour of the symmetric binary mixture from thermodynamic perturbation theory.

    Science.gov (United States)

    Dorsaz, N; Foffi, G

    2010-03-17

    We study the phase behaviour of symmetric binary mixtures of hard core Yukawa (HCY) particles via thermodynamic perturbation theory (TPT). We show that all the topologies of phase diagram reported for the symmetric binary mixtures are correctly reproduced within the TPT approach. In a second step we use the capability of TPT to be straightforwardly extended to mixtures that are nonsymmetric in size. Starting from mixtures that belong to the different topologies of symmetric binary mixtures we investigate the effect on the phase behaviour when an asymmetry in the diameters of the two components is introduced. Interestingly, when the energy of interaction between unlike particles is weaker than the interaction between like particles, the propensity for the solution to demix is found to increase strongly with size asymmetry.

  16. Effects of demographic structure on key properties of stochastic density-independent population dynamics.

    Science.gov (United States)

    Vindenes, Yngvild; Sæther, Bernt-Erik; Engen, Steinar

    2012-12-01

    The development of stochastic demography has largely been based on age structured populations, although other types of demographic structure, especially permanent and dynamic heterogeneity, are likely common in natural populations. The combination of stochasticity and demographic structure is a challenge for analyses of population dynamics and extinction risk, because the population structure will fluctuate around the stable structure and the population size shows transient fluctuations. However, by using a diffusion approximation for the total reproductive value, density-independent dynamics of structured populations can be described with only three population parameters: the expected population growth rate, the environmental variance and the demographic variance. These parameters depend on population structure via the state-specific vital rates and transition rates. Once they are found, the diffusion approximation represents a substantial reduction in model complexity. Here, we review and compare the key population parameters across a wide range of demographic structure, from the case of no structure to the most general case of dynamic heterogeneity, and for both discrete and continuous types. We focus on the demographic variance, but also show how environmental stochasticity can be included. This study brings together results from recent models, each considering a specific type of population structure, and places them in a general framework for structured populations. Comparison across different types of demographic structure reveals that the reproductive value is an essential concept for understanding how population structure affects stochastic dynamics and extinction risk. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Applicability of DUKPT Key Management Scheme to Cloud Wallet and other Mobile Payments

    OpenAIRE

    Saha, Amal; Sanyal, Sugata

    2014-01-01

    After discussing the concept of DUKPT based symmetric encryption key management (e.g., for 3DES) and definition of cloud or remote wallet, the paper analyses applicability of DUKPT to different use cases like mobile banking, NFC payment using EMV contactless card and mobile based EMV card emulation, web browser based transaction and cloud or remote wallet. Cloud wallet is an emerging payment method and is gaining momentum very fast. Anticipating that the wallet product managers and security s...

  18. High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite

    International Nuclear Information System (INIS)

    Khamlich, S.; Abdullaeva, Z.; Kennedy, J.V.; Maaza, M.

    2017-01-01

    Highlights: • A symmetric supercapacitor device based on NiF-G/ZHCNs composite materials electrodes was successfully fabricated. • The fabricated device exhibited high specific areal capacitance of 222 mF cm"−"2 at 1.0 mA cm"−"2 current density. • Excellent cycling performance with 96% specific capacitance retention after 5000 cycles was achieved. - Abstract: In this work, zinc hydroxychloride nanosheets (ZHCNs) were deposited on 3d graphene-nickel foam (NiF-G) by employing a simple hydrothermal synthesis method to form NiF-G/ZHCNs composite electrode materials. The fabricated NiF-G/ZHCNs electrode revealed a well-developed pore structures with high specific surface area of 119 m"2 g"−"1, and used as electrode materials for symmetric supercapacitor with aqueous alkaline electrolyte. The specific areal capacitance and electron charge transfer resistance (R_c_t) were 222 mF cm"−"2 (at current density of 1.0 mA cm"−"2) and 1.63 Ω, respectively, in a symmetric two-electrode system. After 5000 cycles with galvanostatic charge/discharge, the device can maintain 96% of its initial capacitance under 1.0 mA cm"−"2 and showed low R_c_t of about 9.84 Ω. These results indicate that NiF-G/ZHCNs composite is an excellent electrode material for electrochemical energy storage devices.

  19. Source-rock maturation characteristics of symmetric and asymmetric grabens inferred from integrated analogue and numerical modeling: The southern Viking Graben (North Sea)

    NARCIS (Netherlands)

    Corver, M.P.; Doust, H.; van Wees, J.D.A.M.; Cloetingh, S.A.P.L.

    2011-01-01

    We present the results of an integrated analogue and numerical modeling study with a focus on structural, stratigraphic and thermal differences between symmetric and asymmetric grabens. These models enable fault interpretation and subsidence analyses in studies of active rifting and graben

  20. Hardware Realization of Chaos Based Symmetric Image Encryption

    KAUST Repository

    Barakat, Mohamed L.

    2012-01-01

    This thesis presents a novel work on hardware realization of symmetric image encryption utilizing chaos based continuous systems as pseudo random number generators. Digital implementation of chaotic systems results in serious degradations

  1. Maximally Symmetric Composite Higgs Models.

    Science.gov (United States)

    Csáki, Csaba; Ma, Teng; Shu, Jing

    2017-09-29

    Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.

  2. Determination of symmetrical index for 3H in river waters

    International Nuclear Information System (INIS)

    Jankovic, M.; Todorovic, D.; Jankovic, B.; Nikolic, J.; Sarap, N.

    2011-01-01

    The paper presents the results of determining the symmetric index, which describes the magnitude of the tritium content changes with time, for samples of Sava and Danube river waters and Mlaka creek water. The results cover the period from 2003 to 2008. It was shown that the value of the symmetric index is the highest for Mlaka samples, which is in accordance with the fact that in these samples the highest concentration of tritium was found in comparison with samples of the Sava and Danube. [sr

  3. Iodine salts of the pharmaceutical compound agomelatine: the effect of the symmetric H-bond on amide protonation

    Czech Academy of Sciences Publication Activity Database

    Skořepová, E.; Hušák, M.; Ridvan, L.; Tkadlecová, M.; Havlíček, J.; Dušek, Michal

    2016-01-01

    Roč. 18, č. 24 (2016), s. 4518-4529 ISSN 1466-8033 R&D Projects: GA ČR GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : agomelatine * crystal structure * API * iodides * symmetric hydrogen bond Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.474, year: 2016

  4. Electron temperature structures associated with magnetic tearing modes in the Madison Symmetric Torus

    Science.gov (United States)

    Stephens, Hillary Dianne

    Tearing mode induced magnetic islands have a significant impact on the thermal characteristics of magnetically confined plasmas such as those in the reversed-field-pinch. Using a state-of-the-art Thomson scattering (TS) diagnostic, electron temperature fluctuations correlated with magnetic tearing modes have been observed on the Madison Symmetric Torus reversed-field-pinch. The TS diagnostic consists of two independently triggerable Nd:YAG lasers that can each pulse up to 15 times each plasma discharge and 21 General Atomics polchromators equipped with avalanche photodiode modules. Detailed calibrations focusing on accuracy, ease of use and repeatability and in-situ measurements have been performed on the system. Electron temperature (Te) profiles are acquired at 25 kHz with 2 cm or less resolution along the minor radius, sufficient to measure the effect of an island on the profile as the island rotates by the measurement point. Bayesian data analysis techniques are developed and used to detect fluctuations over an ensemble of shots. Four cases are studied; standard plasmas in quiescent periods, through sawteeth, through core reconnection events and in plasmas where the tearing mode activity is decreased. With a spectrum of unstable tearing modes, remnant islands that tend to flatten the temperature profile are present in the core between sawtooth-like reconnection events. This flattening is characteristic of rapid parallel heat conduction along helical magnetic field lines. The spatial structure of the temperature fluctuations show that the location of the rational surface of the m/n = 1/6 tearing mode is significantly further in than equilibrium suggestions predict. The fluctuations also provide a measurement of the remnant island width which is significantly smaller than the predicted full island width. These correlated fluctuations disappear during both global and core reconnection events. In striking contrast to temperature flattening, a temperature gradient

  5. A Derandomized Algorithm for RP-ADMM with Symmetric Gauss-Seidel Method

    OpenAIRE

    Xu, Jinchao; Xu, Kailai; Ye, Yinyu

    2017-01-01

    For multi-block alternating direction method of multipliers(ADMM), where the objective function can be decomposed into multiple block components, we show that with block symmetric Gauss-Seidel iteration, the algorithm will converge quickly. The method will apply a block symmetric Gauss-Seidel iteration in the primal update and a linear correction that can be derived in view of Richard iteration. We also establish the linear convergence rate for linear systems.

  6. Symmetric and asymmetric nuclear matter in the relativistic approach

    International Nuclear Information System (INIS)

    Huber, H.; Weber, F.; Weigel, M.K.

    1995-01-01

    Symmetric and asymmetric nuclear matter is studied in the framework of the relativistic Brueckner-Hartree-Fock and in the relativistic version of the so-called Λ 00 approximation. The equations are solved self-consistently in the full Dirac space, so avoiding the ambiguities in the choice of the effective scattering amplitude in matter. The calculations were performed for some modern meson-exchange potentials constructed by Brockmann and Machleidt. In some cases we used also the Groningen potentials. First, we examine the outcome for symmetric matter with respect to other calculations, which restrict themselves to positive-energy states only. The main part is devoted to the properties of asymmetric matter. In this case we obtain additionally to the good agreement with the parameters of symmetric matter, also a quite satisfactory agreement with the semiempirical macroscopic coefficients of asymmetric matter. Furthermore, we tested the assumption of a quadratic dependence of the asymmetry energy for a large range of asymmetries. Included is also the dependence of nucleon self-energies on density and neutron excess. For the purpose of comparison we discuss further the similarities and differences with relativistic Hartree and Hartree-Fock calculations and nonrelativistic Skyrme calculations

  7. The critical current of point symmetric Josephson tunnel junctions

    International Nuclear Information System (INIS)

    Monaco, Roberto

    2016-01-01

    Highlights: • We disclose some geometrical properties of the critical current field dependence that apply to a large class of Josephson junctions characterized by a point symmetric shape. • The developed theory is valid for any orientation of the applied magnetic field, therefore it allows the determine the consequences of field misalignment in the experimental setups. • We also address that the threshold curves of Josephson tunnel junctions with complex shapes can be expressed as a linear combination of the threshold curves of junctions with simpler point symmetric shapes. - Abstract: The physics of Josephson tunnel junctions drastically depends on their geometrical configurations. The shape of the junction determines the specific form of the magnetic-field dependence of its Josephson current. Here we address the magnetic diffraction patterns of specially shaped planar Josephson tunnel junctions in the presence of an in-plane magnetic field of arbitrary orientations. We focus on a wide ensemble of junctions whose shape is invariant under point reflection. We analyze the implications of this type of isometry and derive the threshold curves of junctions whose shape is the union or the relative complement of two point symmetric plane figures.

  8. Optimality and stability of symmetric evolutionary games with applications in genetic selection.

    Science.gov (United States)

    Huang, Yuanyuan; Hao, Yiping; Wang, Min; Zhou, Wen; Wu, Zhijun

    2015-06-01

    Symmetric evolutionary games, i.e., evolutionary games with symmetric fitness matrices, have important applications in population genetics, where they can be used to model for example the selection and evolution of the genotypes of a given population. In this paper, we review the theory for obtaining optimal and stable strategies for symmetric evolutionary games, and provide some new proofs and computational methods. In particular, we review the relationship between the symmetric evolutionary game and the generalized knapsack problem, and discuss the first and second order necessary and sufficient conditions that can be derived from this relationship for testing the optimality and stability of the strategies. Some of the conditions are given in different forms from those in previous work and can be verified more efficiently. We also derive more efficient computational methods for the evaluation of the conditions than conventional approaches. We demonstrate how these conditions can be applied to justifying the strategies and their stabilities for a special class of genetic selection games including some in the study of genetic disorders.

  9. Neutrinoless double-beta decay in left-right symmetric models

    International Nuclear Information System (INIS)

    Picciotto, C.E.; Zahir, M.S.

    1982-06-01

    Neutrinoless double-beta decay is calculated via doubly charged Higgs, which occur naturally in left-right symmetric models. We find that the comparison with known half-lives yields values of phenomenological parameters which are compatible with earlier analyses of neutral current data. In particular, we obtain a right-handed gauge-boson mass lower bound of the order of 240 GeV. Using this result and expressions for neutrino masses derived in a parity non-conserving left-right symmetric model, we obtain msub(νsub(e)) < 1.5 eV, msub(νsub(μ)) < 0.05 MeV and msub(νsub(tau)) < 18 MeV

  10. Industrial Structure, Menu Costs and the Non-Neutrality of Money

    DEFF Research Database (Denmark)

    Dixon, Huw David; Hansen, Claus Thustrup

    by perfect competition. The mixed industrial structure implies that there is a misallocation of the input (labour) between sectors. Following a 5% monetary expansion, the menu costs required for price rigidity in the monopolistic sector can be 50 times smaller than in the symmetric case, while the ratio......New Keynesian literature assumes symmetric industrial structure when analysing explanations of monetary non-neutrality. We analyse the impact of modifying this assumption by allowing for a mixed industrial structure; some industries are characterized by monopolistic competition, and others...... of welfare gain to private loss can be as large as 200 times the corresponding symmetric case. This implies that in real world economies, menu costs may be even more significant than previously thought...

  11. Jet structure in lepton-nucleon scattering

    International Nuclear Information System (INIS)

    Kitazoe, T.; Morii, T.

    1980-01-01

    Materialization processes are studied in lepton-nucleon scattering on the assumption that all incoming and outgoing hadrons have a localized space-time structure described in terms of the Bethe-Salpeter (BS) amplitude. It is shown on the basis of loop diagrams that a coordination of strongly Lorentz contracted BS amplitudes has a key role in deriving two-jet structure. The formalism manifests two distinct models, depending on the parameters which represent the ranges of a BS amplitude. One is a strongly ordered cascade model which is in accordance with a naive quark cascade model. The other is an uncorrelated jet model which corresponds to an uncorrelated Monte Carlo calculation and it fails to be described as a cascade process. The former model predicts an equal spacing momentum distribution in rapidity space. The latter predicts symmetrical distributions in Feynman x-space. Several observable quantities are presented to discriminate between these two models. (orig.)

  12. DNA-scaffolded nanoparticle structures

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, Bjoern; Olin, Haakan [Department of Engineering Physics and Mathematics, Mid Sweden University, SE-851 70 Sundsvall, Sweden (Sweden)

    2007-03-15

    DNA self-assembly is a powerful route to the production of very small, complex structures. When used in combination with nanoparticles it is likely to become a key technology in the production of nanoelectronics in the future. Previously, demonstrated nanoparticle assemblies have mainly been periodic and highly symmetric arrays, unsuited as building blocks for any complex circuits. With the invention of DNA-scaffolded origami reported earlier this year (Rothemund P W K 2006 Nature 440 (7082) 297-302), a new route to complex nanostructures using DNA has been opened. Here, we give a short review of the field and present the current status of our experiments were DNA origami is used in conjunction with nanoparticles. Gold nanoparticles are functionalized with thiolated single stranded DNA. Strands that are complementary to the gold particle strands can be positioned on the self-assembled DNA-structure in arbitrary patterns. This property should allow an accurate positioning of the particles by letting them hybridize on the lattice. We report on our recent experiments on this system and discuss open problems and future applications.

  13. DNA-scaffolded nanoparticle structures

    International Nuclear Information System (INIS)

    Hoegberg, Bjoern; Olin, Haakan

    2007-01-01

    DNA self-assembly is a powerful route to the production of very small, complex structures. When used in combination with nanoparticles it is likely to become a key technology in the production of nanoelectronics in the future. Previously, demonstrated nanoparticle assemblies have mainly been periodic and highly symmetric arrays, unsuited as building blocks for any complex circuits. With the invention of DNA-scaffolded origami reported earlier this year (Rothemund P W K 2006 Nature 440 (7082) 297-302), a new route to complex nanostructures using DNA has been opened. Here, we give a short review of the field and present the current status of our experiments were DNA origami is used in conjunction with nanoparticles. Gold nanoparticles are functionalized with thiolated single stranded DNA. Strands that are complementary to the gold particle strands can be positioned on the self-assembled DNA-structure in arbitrary patterns. This property should allow an accurate positioning of the particles by letting them hybridize on the lattice. We report on our recent experiments on this system and discuss open problems and future applications

  14. Symmetric configurations highlighted by collective quantum coherence

    Energy Technology Data Exchange (ETDEWEB)

    Obster, Dennis [Radboud University, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Sasakura, Naoki [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan)

    2017-11-15

    Recent developments in quantum gravity have shown the Lorentzian treatment to be a fruitful approach towards the emergence of macroscopic space-times. In this paper, we discuss another related aspect of the Lorentzian treatment: we argue that collective quantum coherence may provide a simple mechanism for highlighting symmetric configurations over generic non-symmetric ones. After presenting the general framework of the mechanism, we show the phenomenon in some concrete simple examples in the randomly connected tensor network, which is tightly related to a certain model of quantum gravity, i.e., the canonical tensor model. We find large peaks at configurations invariant under Lie-group symmetries as well as a preference for charge quantization, even in the Abelian case. In future study, this simple mechanism may provide a way to analyze the emergence of macroscopic space-times with global symmetries as well as various other symmetries existing in nature, which are usually postulated. (orig.)

  15. Hardware Realization of Chaos-based Symmetric Video Encryption

    KAUST Repository

    Ibrahim, Mohamad A.

    2013-01-01

    This thesis reports original work on hardware realization of symmetric video encryption using chaos-based continuous systems as pseudo-random number generators. The thesis also presents some of the serious degradations caused by digitally

  16. Renormalization of period doubling in symmetric four-dimensional volume-preserving maps

    International Nuclear Information System (INIS)

    Mao, J.; Greene, J.M.

    1987-01-01

    We have determined three maps (truncated at quadratic terms) that are fixed under the renormalization operator of pitchfork period doubling in symmetric four-dimensional volume-preserving maps. Each of these contains the previously known two-dimensional area-preserving map that is fixed under the period-doubling operator. One of these three fixed maps consists of two uncoupled two-dimensional (nonlinear) area-preserving fixed maps. The other two contain also the two-dimensional area-preserving fixed map coupled (in general) with a linear two-dimensional map. The renormalization calculation recovers all numerical results for the pitchfork period doubling in the symmetric four-dimensional volume-preserving maps, reported by Mao and Helleman [Phys. Rev. A 35, 1847 (1987)]. For a large class of nonsymmetric four-dimensional volume-preserving maps, we found that the fixed maps are the same as those for the symmetric maps

  17. Symmetrical Location Characteristics of Corticospinal Tract Associated With Hand Movement in the Human Brain: A Probabilistic Diffusion Tensor Tractography.

    Science.gov (United States)

    Lee, Dong-Hoon; Lee, Do-Wan; Han, Bong-Soo

    2016-04-01

    The purpose of this study is to elucidate the symmetrical characteristics of corticospinal tract (CST) related with hand movement in bilateral hemispheres using probabilistic fiber tracking method. Seventeen subjects were participated in this study. Fiber tracking was performed with 2 regions of interest, hand activated functional magnetic resonance imaging (fMRI) results and pontomedullary junction in each cerebral hemisphere. Each subject's extracted fiber tract was normalized with a brain template. To measure the symmetrical distributions of the CST related with hand movement, the laterality and anteriority indices were defined in upper corona radiata (CR), lower CR, and posterior limb of internal capsule. The measured laterality and anteriority indices between the hemispheres in each different brain location showed no significant differences with P the measured indices among 3 different brain locations in each cerebral hemisphere with P the hand CST had symmetric structures in bilateral hemispheres. The probabilistic fiber tracking with fMRI approach demonstrated that the hand CST can be successfully extracted regardless of crossing fiber problem. Our analytical approaches and results seem to be helpful for providing the database of CST somatotopy to neurologists and clinical researches.

  18. Mapping the Zambian prison health system: An analysis of key structural determinants.

    Science.gov (United States)

    Topp, Stephanie M; Moonga, Clement N; Luo, Nkandu; Kaingu, Michael; Chileshe, Chisela; Magwende, George; Henostroza, German

    2017-07-01

    Health and health service access in Zambian prisons are in a state of 'chronic emergency'. This study aimed to identify major structural barriers to strengthening the prison health systems. A case-based analysis drew on key informant interviews (n = 7), memos generated during workshops (n = 4) document review and investigator experience. Structural determinants were defined as national or macro-level contextual and material factors directly or indirectly influencing prison health services. The analysis revealed that despite an favourable legal framework, four major and intersecting structural factors undermined the Zambian prison health system. Lack of health financing was a central and underlying challenge. Weak health governance due to an undermanned prisons health directorate impeded planning, inter-sectoral coordination, and recruitment and retention of human resources for health. Outdated prison infrastructure simultaneously contributed to high rates of preventable disease related to overcrowding and lack of basic hygiene. These findings flag the need for policy and administrative reform to establish strong mechanisms for domestic prison health financing and enable proactive prison health governance, planning and coordination.

  19. Meta-Key: A Secure Data-Sharing Protocol under Blockchain-Based Decentralised Storage Architecture

    OpenAIRE

    Fu, Yue

    2017-01-01

    In this paper a secure data-sharing protocol under blockchain-based decentralised storage architecture is proposed, which fulfils users who need to share their encrypted data on-cloud. It implements a remote data-sharing mechanism that enables data owners to share their encrypted data to other users without revealing the original key. Nor do they have to download on-cloud data with re-encryption and re-uploading. Data security as well as efficiency are ensured by symmetric encryption, whose k...

  20. Experimental technique of calibration of symmetrical air pollution ...

    Indian Academy of Sciences (India)

    Based on the inherent property of symmetry of air pollution models, a Symmetrical Air Pollution. Model ... process is in compliance with air pollution regula- ..... Ground simulation is achieved through MATLAB package which is based on least-.

  1. An iteration for indefinite and non-symmetric systems and its application to the Navier-Stokes equations

    Energy Technology Data Exchange (ETDEWEB)

    Wathen, A. [Oxford Univ. (United Kingdom); Golub, G. [Stanford Univ., CA (United States)

    1996-12-31

    A simple fixed point linearisation of the Navier-Stokes equations leads to the Oseen problem which after appropriate discretisation yields large sparse linear systems with coefficient matrices of the form (A B{sup T} B -C). Here A is non-symmetric but its symmetric part is positive definite, and C is symmetric and positive semi-definite. Such systems arise in other situations. In this talk we will describe and present some analysis for an iteration based on an indefinite and symmetric preconditioner of the form (D B{sup T} B -C).

  2. Finite element analysis of an inflatable torus considering air mass structural element

    Science.gov (United States)

    Gajbhiye, S. C.; Upadhyay, S. H.; Harsha, S. P.

    2014-01-01

    Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.

  3. Right-handed quark mixings in minimal left-right symmetric model with general CP violation

    International Nuclear Information System (INIS)

    Zhang Yue; Ji Xiangdong; An Haipeng; Mohapatra, R. N.

    2007-01-01

    We solve systematically for the right-handed quark mixings in the minimal left-right symmetric model which generally has both explicit and spontaneous CP violations. The leading-order result has the same hierarchical structure as the left-handed Cabibbo-Kobayashi-Maskawa mixing, but with additional CP phases originating from a spontaneous CP-violating phase in the Higgs vacuum expectation values. We explore the phenomenology entailed by the new right-handed mixing matrix, particularly the bounds on the mass of W R and the CP phase of the Higgs vacuum expectation values

  4. Implementation and Analysis Audio Steganography Used Parity Coding for Symmetric Cryptography Key Delivery

    Directory of Open Access Journals (Sweden)

    Afany Zeinata Firdaus

    2013-12-01

    Full Text Available In today's era of communication, online data transactions is increasing. Various information even more accessible, both upload and download. Because it takes a capable security system. Blowfish cryptographic equipped with Audio Steganography is one way to secure the data so that the data can not be accessed by unauthorized parties. In this study Audio Steganography technique is implemented using parity coding method that is used to send the key cryptography blowfish in e-commerce applications based on Android. The results obtained for the average computation time on stage insertion (embedding the secret message is shorter than the average computation time making phase (extracting the secret message. From the test results can also be seen that the more the number of characters pasted the greater the noise received, where the highest SNR is obtained when a character is inserted as many as 506 characters is equal to 11.9905 dB, while the lowest SNR obtained when a character is inserted as many as 2006 characters at 5,6897 dB . Keywords: audio steganograph, parity coding, embedding, extractin, cryptography blowfih.

  5. A Paley-Wiener theorem for reductive symmetric spaces

    NARCIS (Netherlands)

    Ban, E.P. van den; Schlichtkrull, H.

    2006-01-01

    Let X = G/H be a reductive symmetric space and K a maximal compact subgroup of G. The image under the Fourier transform of the space of K-finite compactly supported smooth functions on X is characterized.

  6. Symmetric and Programmable Multi-Chip Module for Low-Power Prototyping System

    OpenAIRE

    Yen, Mao-Hsu; Chen, Sao-Jie; Lan, Sanko H.

    2001-01-01

    The advantages of a Multi-Chip Module (MCM) product are its low-power and small-size. But the design of an MCM system usually requires weeks of engineering effort, thus we need a generic MCM substrate with programmable interconnections to accelerate system prototyping. In this paper, we propose a Symmetric and Programmable MCM (SPMCM) substrate for this purpose. This SPMCM substrate consists of a symmetrical array of slots for bare-chip attachment and Field Programmable Interco...

  7. Cuspidal discrete series for semisimple symmetric spaces

    DEFF Research Database (Denmark)

    Andersen, Nils Byrial; Flensted-Jensen, Mogens; Schlichtkrull, Henrik

    2012-01-01

    We propose a notion of cusp forms on semisimple symmetric spaces. We then study the real hyperbolic spaces in detail, and show that there exists both cuspidal and non-cuspidal discrete series. In particular, we show that all the spherical discrete series are non-cuspidal. (C) 2012 Elsevier Inc. All...

  8. Symmetric intersections of Rauzy fractals | Sellami | Quaestiones ...

    African Journals Online (AJOL)

    In this article we study symmetric subsets of Rauzy fractals of unimodular irreducible Pisot substitutions. The symmetry considered is re ection through the origin. Given an unimodular irreducible Pisot substitution, we consider the intersection of its Rauzy fractal with the Rauzy fractal of the reverse substitution. This set is ...

  9. Symmetrical and overloaded effect of diffusion in information filtering

    Science.gov (United States)

    Zhu, Xuzhen; Tian, Hui; Chen, Guilin; Cai, Shimin

    2017-10-01

    In physical dynamics, mass diffusion theory has been applied to design effective information filtering models on bipartite network. In previous works, researchers unilaterally believe objects' similarities are determined by single directional mass diffusion from the collected object to the uncollected, meanwhile, inadvertently ignore adverse influence of diffusion overload. It in some extent veils the essence of diffusion in physical dynamics and hurts the recommendation accuracy and diversity. After delicate investigation, we argue that symmetrical diffusion effectively discloses essence of mass diffusion, and high diffusion overload should be published. Accordingly, in this paper, we propose an symmetrical and overload penalized diffusion based model (SOPD), which shows excellent performances in extensive experiments on benchmark datasets Movielens and Netflix.

  10. Continuous symmetric reductions of the Adler-Bobenko-Suris equations

    International Nuclear Information System (INIS)

    Tsoubelis, D; Xenitidis, P

    2009-01-01

    Continuously symmetric solutions of the Adler-Bobenko-Suris class of discrete integrable equations are presented. Initially defined by their invariance under the action of both of the extended three-point generalized symmetries admitted by the corresponding equations, these solutions are shown to be determined by an integrable system of partial differential equations. The connection of this system to the Nijhoff-Hone-Joshi 'generating partial differential equations' is established and an auto-Baecklund transformation and a Lax pair for it are constructed. Applied to the H1 and Q1 δ=0 members of the Adler-Bobenko-Suris family, the method of continuously symmetric reductions yields explicit solutions determined by the Painleve trancendents

  11. Experimental and numerical investigation of the iso-thermal flow characteristics within a cylindrical chamber with multiple planar-symmetric impinging jets

    Science.gov (United States)

    Long, Shen; Lau, Timothy C. W.; Chinnici, Alfonso; Tian, Zhao Feng; Dally, Bassam B.; Nathan, Graham J.

    2017-10-01

    We present a joint experimental and numerical study of the flow structure within a cylindrical chamber generated by planar-symmetric isothermal jets, under conditions of relevance to a wide range of practical applications, including the Hybrid Solar Receiver Combustor (HSRC) technology. The HSRC features a cavity with a coverable aperture to allow it to be operated as either a combustion chamber or a solar receiver, with multiple burners to direct a flame into the chamber and a heat exchanger that absorbs the heat from both energy sources. In this study, we assess the cases of two or four inlet jets (simulating the burners), configured in a planar-symmetric arrangement and aligned at an angle to the axis (αj) over the range of 0°-90°, at a constant inlet Reynolds number of ReD = 10 500. The jets were positioned in the same axial plane near the throat and interact with each other and the cavity walls. Measurements obtained with particle image velocimetry were used together with numerical modeling employing Reynolds-averaged Navier-Stokes methods to characterize the large-scale flow field within selected configurations of the device. The results reveal a significant dependence of the mean flow-field on αj and the number of inlet jets (Nj). Four different flow regimes with key distinctive features were identified within the range of αj and Nj considered here. It was also found that αj has a controlling influence on the extent of back-flow through the throat, the turbulence intensity, the flow stability, and the dominant recirculation zone, while Nj has a secondary influence on the turbulence intensity, the flow stability, and the transition between each flow regime.

  12. Symmetric functions and orthogonal polynomials

    CERN Document Server

    Macdonald, I G

    1997-01-01

    One of the most classical areas of algebra, the theory of symmetric functions and orthogonal polynomials has long been known to be connected to combinatorics, representation theory, and other branches of mathematics. Written by perhaps the most famous author on the topic, this volume explains some of the current developments regarding these connections. It is based on lectures presented by the author at Rutgers University. Specifically, he gives recent results on orthogonal polynomials associated with affine Hecke algebras, surveying the proofs of certain famous combinatorial conjectures.

  13. Baryon symmetric big-bang cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Stecker, F.W.

    1978-04-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.

  14. Baryon symmetric big-bang cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1978-04-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation

  15. Bright Solitons in a PT-Symmetric Chain of Dimers

    Directory of Open Access Journals (Sweden)

    Omar B. Kirikchi

    2016-01-01

    Full Text Available We study the existence and stability of fundamental bright discrete solitons in a parity-time- (PT- symmetric coupler composed by a chain of dimers that is modelled by linearly coupled discrete nonlinear Schrödinger equations with gain and loss terms. We use a perturbation theory for small coupling between the lattices to perform the analysis, which is then confirmed by numerical calculations. Such analysis is based on the concept of the so-called anticontinuum limit approach. We consider the fundamental onsite and intersite bright solitons. Each solution has symmetric and antisymmetric configurations between the arms. The stability of the solutions is then determined by solving the corresponding eigenvalue problem. We obtain that both symmetric and antisymmetric onsite mode can be stable for small coupling, in contrast to the reported continuum limit where the antisymmetric solutions are always unstable. The instability is either due to the internal modes crossing the origin or the appearance of a quartet of complex eigenvalues. In general, the gain-loss term can be considered parasitic as it reduces the stability region of the onsite solitons. Additionally, we analyse the dynamic behaviour of the onsite and intersite solitons when unstable, where typically it is either in the form of travelling solitons or soliton blow-ups.

  16. Zirconium and Titanium Propylene Polymerization Precatalysts Supported by a Fluxional C 2 -Symmetric Bis(anilide)pyridine Ligand

    KAUST Repository

    Tonks, Ian A.

    2012-03-12

    Titanium and zirconium complexes supported by a bis(anilide)pyridine ligand (NNN = pyridine-2,6-bis(N-mesitylanilide)) have been synthesized and crystallographically characterized. C 2-symmetric bis(dimethylamide) complexes were generated from aminolysis of M(NMe 2) 4 with the neutral, diprotonated NNN ligand or by salt metathesis of the dipotassium salt of NNN with M(NMe 2) 2Cl 2. In contrast to the case for previously reported pyridine bis(phenoxide) complexes, the ligand geometry of these complexes appears to be dictated by chelate ring strain rather than metal-ligand π bonding. The crystal structures of the five-coordinate dihalide complexes (NNN)MCl 2 (M = Ti, Zr) display a C 1-symmetric geometry with a stabilizing ipso interaction between the metal and the anilido ligand. Coordination of THF to (NNN)ZrCl 2 generates a six-coordinate C 2-symmetric complex. Facile antipode interconversion of the C 2 complexes, possibly via flat C 2v intermediates, has been investigated by variable-temperature 1H NMR spectroscopy for (NNN)MX 2(THF) n (M = Ti, Zr; X = NMe 2, Cl) and (NNN)Zr(CH 2Ph) 2. These complexes were tested as propylene polymerization precatalysts, with most complexes giving low to moderate activities (10 2-10 4 g/(mol h)) for the formation of stereoirregular polypropylene. © 2012 American Chemical Society.

  17. An Efficient Symmetric Searchable Encryption Scheme for Cloud Storage

    Directory of Open Access Journals (Sweden)

    Xiuxiu Jiang

    2017-05-01

    Full Text Available Symmetric searchable encryption for cloud storage enables users to retrieve the documents they want in a privacy-preserving way, which has become a hotspot of research. In this paper, we propose an efficient keyword search scheme over encrypted cloud data. We firstly adopt a structure named as inverted matrix (IM to build search index. The IM is consisted of index vectors, each of which is associated with a keyword. Then we map a keyword to an address used to locate the corresponding index vector. Finally, we mask index vectors with pseudo-random bits to obtain an encrypted enlarged inverted matrix (EEIM. Through the security analysis and experimental evaluation, we demonstrate the privacy and efficiency of our scheme respectively. In addition, we further consider two extended practical search situations, i.e., occurrence queries and dynamic user management, and then give two relevant schemes.

  18. Application Of The Bertlmann-Martin Inequalities To Super Symmetric Partners

    International Nuclear Information System (INIS)

    IGHEZOU, F.Z.; KERRIS, A.T.; MESSAMAH, J.; LOMBARD, R.J.

    2011-01-01

    The purpose of the present study is to discuss some general aspects of the Bertlmann and Martin inequalities (BMI) in the case of the super symmetric partners. The (BMI) have been established by minoring the multipole sum rules according to a method initiated by Bertlmann and Martin. Application to different potentials and generalizations were derived and tested in various papers. We present new concepts of super symmetry in quantum mechanics (SUSYQM) and apply them to two exactly solvable potentials in the one dimensional space. We apply the (BMI) to their super symmetric partners and we examine the degree of saturation of the (BMI)

  19. Norm estimates of complex symmetric operators applied to quantum systems

    International Nuclear Information System (INIS)

    Prodan, Emil; Garcia, Stephan R; Putinar, Mihai

    2006-01-01

    This paper communicates recent results in the theory of complex symmetric operators and shows, through two non-trivial examples, their potential usefulness in the study of Schroedinger operators. In particular, we propose a formula for computing the norm of a compact complex symmetric operator. This observation is applied to two concrete problems related to quantum mechanical systems. First, we give sharp estimates on the exponential decay of the resolvent and the single-particle density matrix for Schroedinger operators with spectral gaps. Second, we provide new ways of evaluating the resolvent norm for Schroedinger operators appearing in the complex scaling theory of resonances

  20. The space-time outside a source of gravitational radiation: the axially symmetric null fluid

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L. [Universidad Central de Venezuela, Escuela de Fisica, Facultad de Ciencias, Caracas (Venezuela, Bolivarian Republic of); Universidad de Salamanca, Instituto Universitario de Fisica Fundamental y Matematicas, Salamanca (Spain); Di Prisco, A. [Universidad Central de Venezuela, Escuela de Fisica, Facultad de Ciencias, Caracas (Venezuela, Bolivarian Republic of); Ospino, J. [Universidad de Salamanca, Departamento de Matematica Aplicada and Instituto Universitario de Fisica Fundamental y Matematicas, Salamanca (Spain)

    2016-11-15

    We carry out a study of the exterior of an axially and reflection symmetric source of gravitational radiation. The exterior of such a source is filled with a null fluid produced by the dissipative processes inherent to the emission of gravitational radiation, thereby representing a generalization of the Vaidya metric for axially and reflection symmetric space-times. The role of the vorticity, and its relationship with the presence of gravitational radiation is put in evidence. The spherically symmetric case (Vaidya) is, asymptotically, recovered within the context of the 1 + 3 formalism. (orig.)

  1. High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite

    Energy Technology Data Exchange (ETDEWEB)

    Khamlich, S., E-mail: skhamlich@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape Province (South Africa); Abdullaeva, Z. [Department of Materials Science and Engineering, Kumamoto University, 860-8555 (Japan); Kennedy, J.V. [National Isotope Centre, GNS Science, 30 Gracefield Road, P.O. Box 31312, Lower Hutt, 5010 (New Zealand); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape Province (South Africa)

    2017-05-31

    Highlights: • A symmetric supercapacitor device based on NiF-G/ZHCNs composite materials electrodes was successfully fabricated. • The fabricated device exhibited high specific areal capacitance of 222 mF cm{sup −2} at 1.0 mA cm{sup −2} current density. • Excellent cycling performance with 96% specific capacitance retention after 5000 cycles was achieved. - Abstract: In this work, zinc hydroxychloride nanosheets (ZHCNs) were deposited on 3d graphene-nickel foam (NiF-G) by employing a simple hydrothermal synthesis method to form NiF-G/ZHCNs composite electrode materials. The fabricated NiF-G/ZHCNs electrode revealed a well-developed pore structures with high specific surface area of 119 m{sup 2} g{sup −1}, and used as electrode materials for symmetric supercapacitor with aqueous alkaline electrolyte. The specific areal capacitance and electron charge transfer resistance (R{sub ct}) were 222 mF cm{sup −2} (at current density of 1.0 mA cm{sup −2}) and 1.63 Ω, respectively, in a symmetric two-electrode system. After 5000 cycles with galvanostatic charge/discharge, the device can maintain 96% of its initial capacitance under 1.0 mA cm{sup −2} and showed low R{sub ct} of about 9.84 Ω. These results indicate that NiF-G/ZHCNs composite is an excellent electrode material for electrochemical energy storage devices.

  2. The Lp Spectrum of Locally Symmetric Spaces with Small Fundamental Group

    International Nuclear Information System (INIS)

    Weber, Andreas

    2009-01-01

    We determine the L p spectrum of the Laplace-Beltrami operator on certain complete locally symmetric spaces M whose universal covering X is a symmetric space of non-compact type with rank one. More precisely, we show that the L p spectra of M and X coincide if the fundamental group of M is small and if the injectivity radius of M is bounded away from zero. In the L 2 case, the restriction on the injectivity radius is not needed

  3. A see-saw scenario of an $A_4$ flavour symmetric standard model

    CERN Document Server

    Dinh, Dinh Nguyen; Văn, Phi Quang; Vân, Nguyen Thi Hông

    2016-01-01

    A see-saw scenario for an $A_4$ flavour symmetric standard model is presented. As before, the see-saw mechanism can be realized in several models of different types depending on different ways of neutrino mass generation corresponding to the introduction of new fields with different symmetry structures. In the present paper, a general desription of all these see-saw types is made with a more detailed investigation on type-I models. As within the original see-saw mechanism, the symmetry structure of the standard model fields decides the number and the symmetry structure of the new fields. In a model considered here, the scalar sector consists of three standard-model-Higgs-like iso-doublets ($SU_L(2)$-doublets) forming an $A_4$ triplet. The latter is a superposition of three mass-eigen states, one of which could be identified with the recently discovered Higgs boson. A possible relation to the still-deliberated 750 GeV diphoton resonance at the 13 TeV LHC collisions is also discussed. In the lepton sector, the ...

  4. Two-parametric PT-symmetric quartic family

    International Nuclear Information System (INIS)

    Eremenko, Alexandre; Gabrielov, Andrei

    2012-01-01

    We describe a parametrization of the real spectral locus of the two-parametric family of PT-symmetric quartic oscillators. For this family, we find a parameter region where all eigenvalues are real, extending the results of Dorey et al (2007 J. Phys. A: Math Theor. 40 R205–83) and Shin (2005 J. Phys. A: Math. Gen. 38 6147–66; 2002 Commun. Math. Phys. 229 543–64). (paper)

  5. Identification of a key structural element for protein folding within beta-hairpin turns.

    Science.gov (United States)

    Kim, Jaewon; Brych, Stephen R; Lee, Jihun; Logan, Timothy M; Blaber, Michael

    2003-05-09

    Specific residues in a polypeptide may be key contributors to the stability and foldability of the unique native structure. Identification and prediction of such residues is, therefore, an important area of investigation in solving the protein folding problem. Atypical main-chain conformations can help identify strains within a folded protein, and by inference, positions where unique amino acids may have a naturally high frequency of occurrence due to favorable contributions to stability and folding. Non-Gly residues located near the left-handed alpha-helical region (L-alpha) of the Ramachandran plot are a potential indicator of structural strain. Although many investigators have studied mutations at such positions, no consistent energetic or kinetic contributions to stability or folding have been elucidated. Here we report a study of the effects of Gly, Ala and Asn substitutions found within the L-alpha region at a characteristic position in defined beta-hairpin turns within human acidic fibroblast growth factor, and demonstrate consistent effects upon stability and folding kinetics. The thermodynamic and kinetic data are compared to available data for similar mutations in other proteins, with excellent agreement. The results have identified that Gly at the i+3 position within a subset of beta-hairpin turns is a key contributor towards increasing the rate of folding to the native state of the polypeptide while leaving the rate of unfolding largely unchanged.

  6. SUSY formalism for the symmetric double well potential

    Indian Academy of Sciences (India)

    Using first- and second-order supersymmetric Darboüx formalism and starting with symmetric double well potential barrier we have obtained a class of exactly solvable potentials subject to moving boundary condition. The eigenstates are also obtained by the same technique.

  7. Time-invariant PT product and phase locking in PT -symmetric lattice models

    Science.gov (United States)

    Joglekar, Yogesh N.; Onanga, Franck Assogba; Harter, Andrew K.

    2018-01-01

    Over the past decade, non-Hermitian, PT -symmetric Hamiltonians have been investigated as candidates for both a fundamental, unitary, quantum theory and open systems with a nonunitary time evolution. In this paper, we investigate the implications of the former approach in the context of the latter. Motivated by the invariance of the PT (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of PT -symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave-function phases at adjacent sites occurs in the PT -symmetry-broken region. Our results pave the way towards understanding the physically observable implications of time invariants in the nonunitary dynamics produced by PT -symmetric Hamiltonians.

  8. Geometric morphometrics of functionally distinct floral organs in Iris pumila: Analyzing patterns of symmetric and asymmetric shape variations

    Directory of Open Access Journals (Sweden)

    Radović Sanja

    2017-01-01

    Full Text Available The Iris flower is a complex morphological structure composed of two trimerous whorls of functionally distinct petaloid organs (the falls and the standards, one whorl of the stamens and one tricarpellary gynoecium. The petal-like style arms of the carpels are banded over the basal part of the falls, forming three pollination tunnels, each of which is perceived by the Iris pollinators as a single bilaterally symmetrical flower. Apart from the stamens, all petaloid floral organs are preferentially involved in advertising rewards to potential pollinators. Here we used the methods of geometric morphometrics to explore the shape variation in falls, standards and style arms of the Iris pumila flowers and to disentangle the symmetric and the asymmetric component of the total shape variance. Our results show that symmetric variation contributes mostly to the total shape variance in each of the three floral organs. Fluctuating asymmetry (FA was the dominant component of the asymmetric shape variation in the falls and the standards, but appeared to be marginally significant in the style arms. The values of FA indexes for the shape of falls (insects’ landing platforms and for the shape of standards (long-distance reward signals were found to be two orders of magnitude greater compared to that of the style arms. Directional asymmetry appeared to be very low, but highly statistically significant for all analyzed floral organs. Because floral symmetry can reliably indicate the presence of floral rewards, an almost perfect symmetry recorded for the style arm shape might be the outcome of pollinator preferences for symmetrical pollination units. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 173007

  9. Analysis of the symmetric configuration of the circle of Willis in a series of autopsied corpses.

    Science.gov (United States)

    Stojanović, Nebojga; Stefanović, Ivica; Kostić, Aleksandar; Radisavejević, Misa; Stojanov, Dragan; Petrović, Sladjana

    2015-04-01

    The forming of the blood vessels network configuration at the base of the brain and interconnecting of blood vessels during the embryogenesis is directly related to the phylogenetic development of the brain and brain structures. A blood vessel configuration at the brain base, in the form of a ring or a hexagon, stands in direct relation to the perfusion needs of certain parts of the brain during its primary differentiation. The aim of this paper was to determine the incidence of certain blood vessel configurations at the base of the brain and understanding their symmetry or asymmetry. Analysis of the blood vessels at the base of the brain was performed on the autopsied subjects. The object of observation was the anterior segment of the circle of Willis consisting of C1- a. carotis interna (ICA), above a. communicaus posterior (PcoA), the segment A1 a. cerebri anterior (ACA) from a. carotis interna bifurcation to the a. communicans anterior (AcoA) and a communicans anterior itself, as well as the posterior segment consisting of PcoA and the segment P1--a. cerebri posterior (PCA) from the a. basilaris bifurcation to the PcoA. For the purpose of grouping the findings, the four basic configuration types of the circle of Willis were identified based on its symmetry or asymmetry. Type-A (symmetric circle of Willis), type-B (asymmetric circle of Willis' due to the unilateral hypoplastic A1-ACA); type-C (symmetric circle of Willis with bilateral symmetric changes on PcoA) and type-D (asymmetric circle of Willis due to the asymmetric changes on PcoA). Autosy was performed on 56 corpses. A total of 41 (73.2%) subjects were recorded with a symmetric configuration of the circle of Willis', of which 27 (48.2%) subjects had type A and 14 (25%) type C. The asymmetric configuration was present in 15 (26.8%) subjects, of whom 9 (16%) had type B and 6 (10.8%) subjects, of whom 9 (16%) had type B and 6 (10.8%) type D. The symmetric Willis group (73.2%) did not have a homogeneous

  10. Analysis of the symmetric configuration of the circle of Willis in a series of autopsied corpses

    Directory of Open Access Journals (Sweden)

    Stojanović Nebojša

    2015-01-01

    Full Text Available Introduction. The forming of the blood vessels network configuration at the base of the brain and interconnecting of blood vessels during the embryogenesis is directly related to the phylogenetic development of the brain and brain structures. A blood vessel configuration at the brain base, in the form of a ring or a hexagon, stands in direct relation to the perfusion needs of certain parts of the brain during its primary differentiation. The aim of this paper was to determine the incidence of certain blood vessel configurations at the base of the brain and understanding their symmetry or asymmetry. Methods. Analysis of the blood vessels at the base of the brain was performed on the autopsied subjects. The object of observation was the anterior segment of the circle of Willis consisting of C1- a. carotis interna (ICA, above a. communicaus posterior (PcoA, the segment A1 a. cerebri anterior (ACA from a. carotis interna bifurcation to the a. communicans anterior (AcoA and a. communicans anterior itself, as well as the posterior segment consisting of PcoA and the segment P1 - a. cerebri posterior (PCA from the a. basilaris bifurcation to the PcoA. For the purpose of grouping the findings, the four basic configuration types of the circle of Willis were identified based on its symmetry or asymmetry. Type-A (symmetric circle of Willis, type-B (asymmetric circle of Willis' due to the unilateral hypoplastic A1-ACA; type-C (symmetric circle of Willis with bilateral symmetric changes on PcoA and type-D (asymmetric circle of Willis due to the asymmetric changes on PcoA. Results. Autopsy was performed on 56 corpses. A total of 41 (73.2% subjects were recorded with a symmetric configuration of the circle of Willis', of which 27 (48.2% subjects had type A and 14 (25% type C. The asymmetric configuration was present in 15 (26.8% subjects, of whom 9 (16% had type B and 6 (10.8% type D. The symmetric Willis group (73.2% did not have a homogeneous finding that

  11. Non-symmetric forms of non-linear vibrations of flexible cylindrical panels and plates under longitudinal load and additive white noise

    Science.gov (United States)

    Krysko, V. A.; Awrejcewicz, J.; Krylova, E. Yu; Papkova, I. V.; Krysko, A. V.

    2018-06-01

    Parametric non-linear vibrations of flexible cylindrical panels subjected to additive white noise are studied. The governing Marguerre equations are investigated using the finite difference method (FDM) of the second-order accuracy and the Runge-Kutta method. The considered mechanical structural member is treated as a system of many/infinite number of degrees of freedom (DoF). The dependence of chaotic vibrations on the number of DoFs is investigated. Reliability of results is guaranteed by comparing the results obtained using two qualitatively different methods to reduce the problem of PDEs (partial differential equations) to ODEs (ordinary differential equations), i.e. the Faedo-Galerkin method in higher approximations and the 4th and 6th order FDM. The Cauchy problem obtained by the FDM is eventually solved using the 4th-order Runge-Kutta methods. The numerical experiment yielded, for a certain set of parameters, the non-symmetric vibration modes/forms with and without white noise. In particular, it has been illustrated and discussed that action of white noise on chaotic vibrations implies quasi-periodicity, whereas the previously non-symmetric vibration modes are closer to symmetric ones.

  12. Mass generation for Abelian spin-1 particles via a symmetric tensor

    International Nuclear Information System (INIS)

    Dalmazi, D.; Mendonça, E.L.

    2012-01-01

    In the topologically massive BF model (TMBF) the photon becomes massive via coupling to an antisymmetric tensor, without breaking the U(1) gauge symmetry. There is no need of a Higgs field. The TMBF model is dual to a first-order (in derivatives) formulation of the Maxwell-Proca theory where the antisymmetric field plays the role of an auxiliary field. Since the Maxwell-Proca theory also admits a first-order version which makes use of an auxiliary symmetric tensor, we investigate here a possible generalization of the TMBF model where the photon acquires mass via coupling to a symmetric tensor. We show that it is indeed possible to build up dual models to the Maxwell-Proca theory where the U(1) gauge symmetry is manifest without Higgs field, but after a local field redefinition the vector field eats up the trace of the symmetric tensor and becomes massive. So the explicit U(1) symmetry can be removed unlike the TMBF model.

  13. Axion-photon conversion in space and in low symmetrical dielectric crystals

    International Nuclear Information System (INIS)

    Gorelik, V S

    2016-01-01

    The opportunities of axions detection as the result of axion-photon conversion processes in the space and in low symmetrical dielectric crystals are discussed. In accordance with the modern theory predictions, axions are pseudoscalar vacuum particles having very small (0.001-1.0 meV) rest energy. The possibility of axions conversion into photons and vice-versa processes in vacuum at the presence of outer magnetic field has been analyzed before. Pseudoscalar (axion type) modes are existing in some types of crystals. Polar pseudoscalar lattice and exciton modes in low symmetrical crystals are strongly interacted with axions. In this work, optical excitation of axion-type modes in low symmetrical crystals is proposed for observation of axion - photon conversion processes. Instead of outer magnetic field, the crystalline field of such crystals may be used. The experimental schemes for axion-photon conversion processes observation with recording the secondary emission of luminescence, infrared or Stimulated Raman Scattering in some dielectric crystals are discussed. (paper)

  14. Fourier inversion on a reductive symmetric space

    NARCIS (Netherlands)

    Ban, E.P. van den

    1999-01-01

    Let X be a semisimple symmetric space. In previous papers, [8] and [9], we have dened an explicit Fourier transform for X and shown that this transform is injective on the space C 1 c (X) ofcompactly supported smooth functions on X. In the present paper, which is a continuation of these papers, we

  15. Baryon symmetric big bang cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1978-01-01

    It is stated that the framework of baryon symmetric big bang (BSBB) cosmology offers our greatest potential for deducting the evolution of the Universe because its physical laws and processes have the minimum number of arbitrary assumptions about initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the Universe and how galaxies and galaxy clusters are formed. BSBB cosmology also provides the only acceptable explanation at present for the origin of the cosmic γ-ray background radiation. (author)

  16. Symmetric lithium-ion cell based on lithium vanadium fluorophosphate with ionic liquid electrolyte

    International Nuclear Information System (INIS)

    Plashnitsa, Larisa S.; Kobayashi, Eiji; Okada, Shigeto; Yamaki, Jun-ichi

    2011-01-01

    Lithium vanadium fluorophosphate, LiVPO 4 F, was utilized as both cathode and anode for fabrication of a symmetric lithium-ion LiVPO 4 F//LiVPO 4 F cell. The electrochemical evolution of the LiVPO 4 F//LiVPO 4 F cell with the commonly used organic electrolyte LiPF 6 /EC-DMC has shown that this cell works as a secondary battery, but exhibits poor durability at room temperature and absolutely does not work at increased operating temperatures. To improve the performance and safety of this symmetric battery, we substituted a non-flammable ionic liquid (IL) LiBF 4 /EMIBF 4 electrolyte for the organic electrolyte. The symmetric battery using the IL electrolyte was examined galvanostatically at different rates and operating temperatures within the voltage range of 0.01-2.8 V. It was demonstrated that the IL-based symmetric cell worked as a secondary battery with a Coulombic efficiency of 77% at 0.1 mA cm -2 and 25 o C. It was also found that the use of the IL electrolyte instead of the organic one resulted in the general reduction of the first discharge capacity by about 20-25% but provided much more stable behavior and a longer cycle life. Moreover, an increase of the discharge capacity of the IL-based symmetric battery up to 120 mA h g -1 was observed when the operating temperature was increased up to 80 o C at 0.1 mA cm -2 . The obtained electrochemical behavior of both symmetric batteries was confirmed by complex-impedance measurements at different temperatures and cycling states. The thermal stability of LiVPO 4 F with both the IL and organic electrolytes was also examined.

  17. Rings of continuous functions, symmetric products, and Frobenius algebras

    International Nuclear Information System (INIS)

    Buchstaber, Viktor M; Rees, E G

    2004-01-01

    A constructive proof is given for the classical theorem of Gel'fand and Kolmogorov (1939) characterising the image of the evaluation map from a compact Hausdorff space X into the linear space C(X)* dual to the ring C(X) of continuous functions on X. Our approach to the proof enabled us to obtain a more general result characterising the image of the evaluation map from the symmetric products Sym n (X) into C(X)*. A similar result holds if X=C m and leads to explicit equations for symmetric products of affine algebraic varieties as algebraic subvarieties in the linear space dual to the polynomial ring. This leads to a better understanding of the algebra of multisymmetric polynomials. The proof of all these results is based on a formula used by Frobenius in 1896 in defining higher characters of finite groups. This formula had no further applications for a long time; however, it has appeared in several independent contexts during the last fifteen years. It was used by A. Wiles and R.L. Taylor in studying representations and by H.-J. Hoehnke and K.W. Johnson and later by J. McKay in studying finite groups. It plays an important role in our work concerning multivalued groups. Several properties of this remarkable formula are described. It is also used to prove a theorem on the structure constants of Frobenius algebras, which have recently attracted attention due to constructions taken from topological field theory and singularity theory. This theorem develops a result of Hoehnke published in 1958. As a corollary, a direct self-contained proof is obtained for the fact that the 1-, 2-, and 3-characters of the regular representation determine a finite group up to isomorphism. This result was first published by Hoehnke and Johnson in 1992

  18. On some homological functors of a Bieberbach group with symmetric point group

    Science.gov (United States)

    Ting, Tan Yee; Idrus, Nor'ashiqin Mohd; Masri, Rohaidah; Ladi, Nor Fadzilah Abdul

    2017-05-01

    Bieberbach groups with symmetric point group are polycyclic. The properties of the groups can be explored by computing their homological functors. In this paper, some homological functors of a Bieberbach group with symmetric point group, such as the Schur multiplier and the G-trivial subgroup of the nonabelian tensor square, are generalized up to finite dimension and are represented in the form of direct product of cyclic groups.

  19. Information Retrieval and Criticality in Parity-Time-Symmetric Systems.

    Science.gov (United States)

    Kawabata, Kohei; Ashida, Yuto; Ueda, Masahito

    2017-11-10

    By investigating information flow between a general parity-time (PT-)symmetric non-Hermitian system and an environment, we find that the complete information retrieval from the environment can be achieved in the PT-unbroken phase, whereas no information can be retrieved in the PT-broken phase. The PT-transition point thus marks the reversible-irreversible criticality of information flow, around which many physical quantities such as the recurrence time and the distinguishability between quantum states exhibit power-law behavior. Moreover, by embedding a PT-symmetric system into a larger Hilbert space so that the entire system obeys unitary dynamics, we reveal that behind the information retrieval lies a hidden entangled partner protected by PT symmetry. Possible experimental situations are also discussed.

  20. Symmetrical waveguide devices fabricated by direct UV writing

    DEFF Research Database (Denmark)

    Færch, Kjartan Ullitz; Svalgaard, Mikael

    2002-01-01

    Power splitters and directional couplers fabricated by direct UV writing in index matched silica-on-silicon samples can suffer from an asymmetrical device performance, even though the UV writing is carried out in a symmetrical fashion. This effect originates from a reduced photosensitivity...

  1. Crystal Structure of PKG I:cGMP Complex Reveals a cGMP-Mediated Dimeric Interface that Facilitates cGMP-Induced Activation

    KAUST Repository

    Kim, Jeong Joo

    2016-04-09

    Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is a key regulator of smooth muscle and vascular tone and represents an important drug target for treating hypertensive diseases and erectile dysfunction. Despite its importance, its activation mechanism is not fully understood. To understand the activation mechanism, we determined a 2.5 Å crystal structure of the PKG I regulatory (R) domain bound with cGMP, which represents the activated state. Although we used a monomeric domain for crystallization, the structure reveals that two R domains form a symmetric dimer where the cGMP bound at high-affinity pockets provide critical dimeric contacts. Small-angle X-ray scattering and mutagenesis support this dimer model, suggesting that the dimer interface modulates kinase activation. Finally, structural comparison with the homologous cyclic AMP-dependent protein kinase reveals that PKG is drastically different from protein kinase A in its active conformation, suggesting a novel activation mechanism for PKG. Kim et al. obtain the first crystal structure of the PKG I R domain bound with cGMP representing its activated state. It reveals a symmetric R dimer where cGMP molecules provide dimeric contacts. This R-R interaction prevents the high-affinity inhibitory interaction between R-C domain and sustains activation. © 2016 Elsevier Ltd.

  2. Crystal Structure of PKG I:cGMP Complex Reveals a cGMP-Mediated Dimeric Interface that Facilitates cGMP-Induced Activation

    KAUST Repository

    Kim, Jeong  Joo; Lorenz, Robin; Arold, Stefan T.; Reger, Albert  S.; Sankaran, Banumathi; Casteel, Darren  E.; Herberg, Friedrich  W.; Kim, Choel

    2016-01-01

    Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is a key regulator of smooth muscle and vascular tone and represents an important drug target for treating hypertensive diseases and erectile dysfunction. Despite its importance, its activation mechanism is not fully understood. To understand the activation mechanism, we determined a 2.5 Å crystal structure of the PKG I regulatory (R) domain bound with cGMP, which represents the activated state. Although we used a monomeric domain for crystallization, the structure reveals that two R domains form a symmetric dimer where the cGMP bound at high-affinity pockets provide critical dimeric contacts. Small-angle X-ray scattering and mutagenesis support this dimer model, suggesting that the dimer interface modulates kinase activation. Finally, structural comparison with the homologous cyclic AMP-dependent protein kinase reveals that PKG is drastically different from protein kinase A in its active conformation, suggesting a novel activation mechanism for PKG. Kim et al. obtain the first crystal structure of the PKG I R domain bound with cGMP representing its activated state. It reveals a symmetric R dimer where cGMP molecules provide dimeric contacts. This R-R interaction prevents the high-affinity inhibitory interaction between R-C domain and sustains activation. © 2016 Elsevier Ltd.

  3. Symmetric Electrode Spanning Narrows the Excitation Patterns of Partial Tripolar Stimuli in Cochlear Implants.

    Science.gov (United States)

    Luo, Xin; Wu, Ching-Chih

    2016-12-01

    In cochlear implants (CIs), standard partial tripolar (pTP) mode reduces current spread by returning a fraction of the current to two adjacent flanking electrodes within the cochlea. Symmetric electrode spanning (i.e., separating both the apical and basal return electrodes from the main electrode by one electrode) has been shown to increase the pitch of pTP stimuli, when the ratio of intracochlear return current was fixed. To explain the pitch increase caused by symmetric spanning in pTP mode, this study measured the electrical potentials of both standard and symmetrically spanned pTP stimuli on a main electrode EL8 in five CI ears using electrical field imaging (EFI). In addition, the spatial profiles of evoked compound action potentials (ECAP) and the psychophysical forward masking (PFM) patterns were also measured for both stimuli. The EFI, ECAP, and PFM patterns of a given stimulus differed in shape details, reflecting the different levels of auditory processing and different ratios of intracochlear return current across the measurement methods. Compared to the standard pTP stimuli, the symmetrically spanned pTP stimuli significantly reduced the areas under the curves of the normalized EFI and PFM patterns, without shifting the pattern peaks and centroids (both around EL8). The more focused excitation patterns with symmetric spanning may have caused the previously reported pitch increase, due to an interaction between pitch and timbre perception. Being able to reduce the spread of excitation, pTP mode symmetric spanning is a promising stimulation strategy that may further increase spectral resolution and frequency selectivity with CIs.

  4. Path integral representation of the symmetric Rosen-Morse potential

    International Nuclear Information System (INIS)

    Duru, I.H.

    1983-09-01

    An integral formula for the Green's function of symmetric Rosen-Morse potential is obtained by solving path integrals. The correctly normalized wave functions and bound state energy spectrum are derived. (author)

  5. Thermal properties of self-gravitating plane-symmetric configuration

    Energy Technology Data Exchange (ETDEWEB)

    Hara, T; Ikeuchi, S [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, D

    1976-09-01

    As a limiting case of rotating stars, thermal properties of infinite plane-symmetric self-gravitating gas are investigated. Such a configuration is characterized by surface density of the plane instead of stellar mass. In the Kelvin contraction, temperature of the interior decreases, if the surface density is kept constant. If the accretion of matter takes place, or if the angular momenta are transferred outward, the surface density will increase. In this case, the temperature of the interior may increase. When a nuclear burning is ignited, it is thermally unstable in most cases, even when electrons are non-degenerate. This thermal instability is one of the essential differences of the plane-symmetric configuration from the spherical star. Such instabilities are computed for different cases of nuclear fuels. This type of nuclear instability is the same phenomenon as thermal instability of a thin shell burning in a spherical star.

  6. The inverse spatial Laplacian of spherically symmetric spacetimes

    International Nuclear Information System (INIS)

    Fernandes, Karan; Lahiri, Amitabha

    2017-01-01

    We derive the inverse spatial Laplacian for static, spherically symmetric backgrounds by solving Poisson’s equation for a point source. This is different from the electrostatic Green function, which is defined on the four dimensional static spacetime, while the equation we consider is defined on the spatial hypersurface of such spacetimes. This Green function is relevant in the Hamiltonian dynamics of theories defined on spherically symmetric backgrounds, and closed form expressions for the solutions we find are absent in the literature. We derive an expression in terms of elementary functions for the Schwarzschild spacetime, and comment on the relation of this solution with the known Green function of the spacetime Laplacian operator. We also find an expression for the Green function on the static pure de-Sitter space in terms of hypergeometric functions. We conclude with a discussion of the constraints of the electromagnetic field. (paper)

  7. Comparison of symmetric and asymmetric double quantum well extended-cavity diode lasers for broadband passive mode-locking at 780  nm.

    Science.gov (United States)

    Christopher, Heike; Kovalchuk, Evgeny V; Wenzel, Hans; Bugge, Frank; Weyers, Markus; Wicht, Andreas; Peters, Achim; Tränkle, Günther

    2017-07-01

    We present a compact, mode-locked diode laser system designed to emit a frequency comb in the wavelength range around 780 nm. We compare the mode-locking performance of symmetric and asymmetric double quantum well ridge-waveguide diode laser chips in an extended-cavity diode laser configuration. By reverse biasing a short section of the diode laser chip, passive mode-locking at 3.4 GHz is achieved. Employing an asymmetric double quantum well allows for generation of a mode-locked optical spectrum spanning more than 15 nm (full width at -20  dB) while the symmetric double quantum well device only provides a bandwidth of ∼2.7  nm (full width at -20  dB). Analysis of the RF noise characteristics of the pulse repetition rate shows an RF linewidth of about 7 kHz (full width at half-maximum) and of at most 530 Hz (full width at half-maximum) for the asymmetric and symmetric double quantum well devices, respectively. Investigation of the frequency noise power spectral density at the pulse repetition rate shows a white noise floor of approximately 2100  Hz 2 /Hz and of at most 170  Hz 2 /Hz for the diode laser employing the asymmetric and symmetric double quantum well structures, respectively. The pulse width is less than 10 ps for both devices.

  8. Harmonic maps of the bounded symmetric domains

    International Nuclear Information System (INIS)

    Xin, Y.L.

    1994-06-01

    A shrinking property of harmonic maps into R IV (2) is proved which is used to classify complete spacelike surfaces of the parallel mean curvature in R 4 2 with a reasonable condition on the Gauss image. Liouville-type theorems of harmonic maps from the higher dimensional bounded symmetric domains are also established. (author). 25 refs

  9. Symmetric approximations of the Navier-Stokes equations

    International Nuclear Information System (INIS)

    Kobel'kov, G M

    2002-01-01

    A new method for the symmetric approximation of the non-stationary Navier-Stokes equations by a Cauchy-Kovalevskaya-type system is proposed. Properties of the modified problem are studied. In particular, the convergence as ε→0 of the solutions of the modified problem to the solutions of the original problem on an infinite interval is established

  10. A viewpoint on nearly conformally symmetric manifold

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1990-06-01

    Some observations, with definition, on Nearly Conformally Symmetric (NCS) manifold are made. A number of theorems concerning conformal change of metric and parallel tensors on NCS manifolds are presented. It is illustrated that a manifold M = R n-1 x R + 1 , endowed with a special metric, is NCS but not of harmonic curvature. (author). 8 refs

  11. Fourier transforms on a semisimple symmetric space

    NARCIS (Netherlands)

    Ban, E.P. van den; Schlichtkrull, H.

    1994-01-01

    Let G=H be a semisimple symmetric space, that is, G is a connected semisimple real Lie group with an involution ?, and H is an open subgroup of the group of xed points for ? in G. The main purpose of this paper is to study an explicit Fourier transform on G=H. In terms of general representation

  12. Fourier transforms on a semisimple symmetric space

    NARCIS (Netherlands)

    Ban, E.P. van den; Carmona, J.; Delorme, P.

    1997-01-01

    Let G=H be a semisimple symmetric space, that is, G is a connected semisimple real Lie group with an involution ?, and H is an open subgroup of the group of xed points for ? in G. The main purpose of this paper is to study an explicit Fourier transform on G=H. In terms of general representation

  13. Construction of symmetric Hadamard matrices of order 4v for v = 47, 73, 113

    Directory of Open Access Journals (Sweden)

    Balonin N. A.

    2018-01-01

    Full Text Available We continue our systematic search for symmetric Hadamard matrices based on the so called propus construction. In a previous paper this search covered the orders 4v with odd v ≤ 41. In this paper we cover the cases v = 43, 45, 47, 49, 51. The odd integers v < 120 for which no symmetric Hadamard matrices of order 4v are known are the following: 47, 59, 65, 67, 73, 81, 89, 93, 101, 103, 107, 109, 113, 119. By using the propus construction, we found several symmetric Hadamard matrices of order 4v for v = 47, 73, 113.

  14. Resistor Networks based on Symmetrical Polytopes

    Directory of Open Access Journals (Sweden)

    Jeremy Moody

    2015-03-01

    Full Text Available This paper shows how a method developed by Van Steenwijk can be generalized to calculate the resistance between any two vertices of a symmetrical polytope all of whose edges are identical resistors. The method is applied to a number of cases that have not been studied earlier such as the Archimedean polyhedra and their duals in three dimensions, the regular polytopes in four dimensions and the hypercube in any number of dimensions.

  15. Various scattering properties of a new PT-symmetric non-Hermitian potential

    International Nuclear Information System (INIS)

    Ghatak, Ananya; Mandal, Raka Dona Ray; Mandal, Bhabani Prasad

    2013-01-01

    We complexify a 1-d potential V(x)=V 0 cosh 2 μ(tanh[(x−μd)/d]+tanh(μ)) 2 which exhibits bound, reflecting and free states to study various properties of a non-Hermitian system. This potential turns out a PT-symmetric non-Hermitian potential when one of the parameters (μ,d) becomes imaginary. For the case of μ→iμ, we have an entire real bound state spectrum. Explicit scattering states are constructed to show reciprocity at certain discrete values of energy even though the potential is not parity symmetric. Coexistence of deep energy minima of transmissivity with the multiple spectral singularities (MSS) is observed. We further show that this potential becomes invisible from the left (or right) at certain discrete energies. The penetrating states in the other case (d→id) are always reciprocal even though it is PT-invariant and no spectral singularity (SS) is present in this case. The presence of MSS and reflectionlessness is also discussed for the free states in the later case. -- Highlights: •Existence of multiple spectral singularities (MSS) in PT-symmetric non-Hermitian system is shown. •Reciprocity is restored at discrete positive energies even for parity non-invariant complex system. •Co-existence of MSS with deep energy minima of transitivity is obtained. •Possibilities of both unidirectional and bidirectional invisibility are explored for a non-Hermitian system. •Penetrating states are shown to be reciprocal for all energies for PT-symmetric system

  16. Normalizations of Eisenstein integrals for reductive symmetric spaces

    NARCIS (Netherlands)

    van den Ban, E.P.; Kuit, Job

    2017-01-01

    We construct minimal Eisenstein integrals for a reductive symmetric space G/H as matrix coefficients of the minimal principal series of G. The Eisenstein integrals thus obtained include those from the \\sigma-minimal principal series. In addition, we obtain related Eisenstein integrals, but with

  17. An algebraic approach to the non-symmetric Macdonald polynomial

    International Nuclear Information System (INIS)

    Nishino, Akinori; Ujino, Hideaki; Wadati, Miki

    1999-01-01

    In terms of the raising and lowering operators, we algebraically construct the non-symmetric Macdonald polynomials which are simultaneous eigenfunctions of the commuting Cherednik operators. We also calculate Cherednik's scalar product of them

  18. Determining the drag coefficient of rotational symmetric objects falling through liquids

    International Nuclear Information System (INIS)

    Houari, Ahmed

    2012-01-01

    I will propose here a kinematic approach for measuring the drag coefficient of rotational symmetric objects falling through liquids. For this, I will show that one can obtain a measurement of the drag coefficient of a rotational symmetric object by numerically solving the equation of motion describing its fall through a known liquid contained in a vertical tube. The experimental value of the drag coefficient of an object with a particular shape is obtained by measuring the fall distance of the object at any recorded time along its entire falling path. (paper)

  19. Semantically Secure Symmetric Encryption with Error Correction for Distributed Storage

    Directory of Open Access Journals (Sweden)

    Juha Partala

    2017-01-01

    Full Text Available A distributed storage system (DSS is a fundamental building block in many distributed applications. It applies linear network coding to achieve an optimal tradeoff between storage and repair bandwidth when node failures occur. Additively homomorphic encryption is compatible with linear network coding. The homomorphic property ensures that a linear combination of ciphertext messages decrypts to the same linear combination of the corresponding plaintext messages. In this paper, we construct a linearly homomorphic symmetric encryption scheme that is designed for a DSS. Our proposal provides simultaneous encryption and error correction by applying linear error correcting codes. We show its IND-CPA security for a limited number of messages based on binary Goppa codes and the following assumption: when dividing a scrambled generator matrix G^ into two parts G1^ and G2^, it is infeasible to distinguish G2^ from random and to find a statistical connection between G1^ and G2^. Our infeasibility assumptions are closely related to those underlying the McEliece public key cryptosystem but are considerably weaker. We believe that the proposed problem has independent cryptographic interest.

  20. Radial electric field and ion parallel flow in the quasi-symmetric and Mirror configurations of HSX

    Science.gov (United States)

    Kumar, S. T. A.; Dobbins, T. J.; Talmadge, J. N.; Wilcox, R. S.; Anderson, D. T.

    2018-05-01

    The radial electric field and the ion mean parallel flow are obtained in the helically symmetric experiment stellarator from toroidal flow measurements of C+6 ion at two locations on a flux surface, using the Pfirsch–Schlüter effect. Results from the standard quasi-helically symmetric magnetic configuration are compared with those from the Mirror configuration where the quasi-symmetry is deliberately degraded using auxiliary coils. For similar injected power, the quasi-symmetric configuration is observed to have significantly lower flows while the experimental observations from the Mirror geometry are in better agreement with neoclassical calculations. Indications are that the radial electric field near the core of the quasi-symmetric configuration may be governed by non-neoclassical processes.

  1. Symmetric co-movement between Malaysia and Japan stock markets

    Science.gov (United States)

    Razak, Ruzanna Ab; Ismail, Noriszura

    2017-04-01

    The copula approach is a flexible tool known to capture linear, nonlinear, symmetric and asymmetric dependence between two or more random variables. It is often used as a co-movement measure between stock market returns. The information obtained from copulas such as the level of association of financial market during normal and bullish and bearish markets phases are useful for investment strategies and risk management. However, the study of co-movement between Malaysia and Japan markets are limited, especially using copulas. Hence, we aim to investigate the dependence structure between Malaysia and Japan capital markets for the period spanning from 2000 to 2012. In this study, we showed that the bivariate normal distribution is not suitable as the bivariate distribution or to present the dependence between Malaysia and Japan markets. Instead, Gaussian or normal copula was found a good fit to represent the dependence. From our findings, it can be concluded that simple distribution fitting such as bivariate normal distribution does not suit financial time series data, whose characteristics are often leptokurtic. The nature of the data is treated by ARMA-GARCH with heavy tail distributions and these can be associated with copula functions. Regarding the dependence structure between Malaysia and Japan markets, the findings suggest that both markets co-move concurrently during normal periods.

  2. Even distribution/dividing of single-phase fluids by symmetric bifurcation of flow channels

    International Nuclear Information System (INIS)

    Liu, Hong; Li, Peiwen

    2013-01-01

    Highlights: ► We addressed an issue of distributing a flow to a number of flow channels uniformly. ► The flow distribution is accomplished through bifurcation of channels. ► Some key parameters to the flow distribution uniformity have been identified. ► Flow uniformity was studied for several versions of flow distributor designs. ► A novel fluid packaging device of high efficiency was provided. -- Abstract: This study addresses a fundamental issue of distributing a single-phase fluid flow into a number of flow channels uniformly. A basic mechanism of flow distribution is accomplished through bifurcation of channels that symmetrically split one flow channel into two downstream channels. Applying the basic mechanism, cascades flow distributions are designed to split one flow into a large number of downstream flows uniformly. Some key parameters decisive to the flow distribution uniformity in such a system have been identified, and the flow distribution uniformity of air was studied for several versions of flow distributor designs using CFD analysis. The effect of the key parameters of the flow channel designs to the flow distribution uniformity was investigated. As an example of industrial application, a novel fluid packaging device of high efficiency was proposed and some CFD analysis results for the device were provided. The optimized flow distributor makes a very good uniform flow distribution which will significantly improve the efficiency of fluid packaging. The technology is expected to be of great significance to many industrial devices that require high uniformity of flow distribution

  3. MMS Observations of Large Guide Field Symmetric Reconnection Between Colliding Reconnection Jets at the Center of a Magnetic Flux Rope at the Magnetopause

    Science.gov (United States)

    Oieroset, M.; Phan, T. D.; Haggerty, C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R. E.; Mozer, F. S.; hide

    2016-01-01

    We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric Inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (d(sub i) width) current sheet (at approximately 12 d(sub i) downstream of the X line) was well resolved by MMS, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.

  4. Two-Dimensional Key Table-Based Group Key Distribution in Advanced Metering Infrastructure

    Directory of Open Access Journals (Sweden)

    Woong Go

    2014-01-01

    Full Text Available A smart grid provides two-way communication by using the information and communication technology. In order to establish two-way communication, the advanced metering infrastructure (AMI is used in the smart grid as the core infrastructure. This infrastructure consists of smart meters, data collection units, maintenance data management systems, and so on. However, potential security problems of the AMI increase owing to the application of the public network. This is because the transmitted information is electricity consumption data for charging. Thus, in order to establish a secure connection to transmit electricity consumption data, encryption is necessary, for which key distribution is required. Further, a group key is more efficient than a pairwise key in the hierarchical structure of the AMI. Therefore, we propose a group key distribution scheme using a two-dimensional key table through the analysis result of the sensor network group key distribution scheme. The proposed scheme has three phases: group key predistribution, selection of group key generation element, and generation of group key.

  5. PEO nanocomposite polymer electrolyte for solid state symmetric

    Indian Academy of Sciences (India)

    Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites ...

  6. Plane Symmetric Cosmological Model with Quark and Strange ...

    Indian Academy of Sciences (India)

    Keywords. f(R,T) theory of gravity—plane symmetric space-time—quark and strange quark matter—constant deceleration parameter. 1. Introduction. Modern astrophysical observations point out that present expansion of the Universe is an accelerated epoch. The most fascinating evidence for this is found in measurements ...

  7. Information Theoretic Secret Key Generation: Structured Codes and Tree Packing

    Science.gov (United States)

    Nitinawarat, Sirin

    2010-01-01

    This dissertation deals with a multiterminal source model for secret key generation by multiple network terminals with prior and privileged access to a set of correlated signals complemented by public discussion among themselves. Emphasis is placed on a characterization of secret key capacity, i.e., the largest rate of an achievable secret key,…

  8. Structural basis for the enzymatic formation of the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone.

    Science.gov (United States)

    Schiefner, André; Sinz, Quirin; Neumaier, Irmgard; Schwab, Wilfried; Skerra, Arne

    2013-06-07

    The last step in the biosynthetic route to the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) is catalyzed by Fragaria x ananassa enone oxidoreductase (FaEO), earlier putatively assigned as quinone oxidoreductase (FaQR). The ripening-induced enzyme catalyzes the reduction of the exocyclic double bond of the highly reactive precursor 4-hydroxy-5-methyl-2-methylene-3(2H)-furanone (HMMF) in a NAD(P)H-dependent manner. To elucidate the molecular mechanism of this peculiar reaction, we determined the crystal structure of FaEO in six different states or complexes at resolutions of ≤1.6 Å, including those with HDMF as well as three distinct substrate analogs. Our crystallographic analysis revealed a monomeric enzyme whose active site is largely determined by the bound NAD(P)H cofactor, which is embedded in a Rossmann-fold. Considering that the quasi-symmetric enolic reaction product HDMF is prone to extensive tautomerization, whereas its precursor HMMF is chemically labile in aqueous solution, we used the asymmetric and more stable surrogate product 2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone (EHMF) and the corresponding substrate (2E)-ethylidene-4-hydroxy-5-methyl-3(2H)-furanone (EDHMF) to study their enzyme complexes as well. Together with deuterium-labeling experiments of EDHMF reduction by [4R-(2)H]NADH and chiral-phase analysis of the reaction product EHMF, our data show that the 4R-hydride of NAD(P)H is transferred to the unsaturated exocyclic C6 carbon of HMMF, resulting in a cyclic achiral enolate intermediate that subsequently becomes protonated, eventually leading to HDMF. Apart from elucidating this important reaction of the plant secondary metabolism our study provides a foundation for protein engineering of enone oxidoreductases and their application in biocatalytic processes.

  9. EXCEPTIONAL POINTS IN OPEN AND PT-SYMMETRIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    Hichem Eleuch

    2014-04-01

    Full Text Available Exceptional points (EPs determine the dynamics of open quantum systems and cause also PT symmetry breaking in PT symmetric systems. From a mathematical point of view, this is caused by the fact that the phases of the wavefunctions (eigenfunctions of a non-Hermitian Hamiltonian relative to one another are not rigid when an EP is approached. The system is therefore able to align with the environment to which it is coupled and, consequently, rigorous changes of the system properties may occur. We compare analytically as well as numerically the eigenvalues and eigenfunctions of a 2 × 2 matrix that is characteristic either of open quantum systems at high level density or of PT symmetric optical lattices. In both cases, the results show clearly the influence of the environment on the system in the neighborhood of EPs. Although the systems are very different from one another, the eigenvalues and eigenfunctions indicate the same characteristic features.

  10. Non-Archimedean analogues of orthogonal and symmetric operators

    International Nuclear Information System (INIS)

    Albeverio, S; Bayod, J M; Perez-Garsia, C; Khrennikov, A Yu; Cianci, R

    1999-01-01

    We study orthogonal and symmetric operators on non-Archimedean Hilbert spaces in connection with the p-adic quantization. This quantization describes measurements with finite precision. Symmetric (bounded) operators on p-adic Hilbert spaces represent physical observables. We study the spectral properties of one of the most important quantum operators, namely, the position operator (which is represented on p-adic Hilbert L 2 -space with respect to the p-adic Gaussian measure). Orthogonal isometric isomorphisms of p-adic Hilbert spaces preserve the precision of measurements. We study properties of orthogonal operators. It is proved that every orthogonal operator on non-Archimedean Hilbert space is continuous. However, there are discontinuous operators with dense domain of definition that preserve the inner product. There exist non-isometric orthogonal operators. We describe some classes of orthogonal isometric operators on finite-dimensional spaces. We study some general questions in the theory of non-Archimedean Hilbert spaces (in particular, general connections between the topology, norm and inner product)

  11. Spherical aberration correction with threefold symmetric line currents.

    Science.gov (United States)

    Hoque, Shahedul; Ito, Hiroyuki; Nishi, Ryuji; Takaoka, Akio; Munro, Eric

    2016-02-01

    It has been shown that N-fold symmetric line current (henceforth denoted as N-SYLC) produces 2N-pole magnetic fields. In this paper, a threefold symmetric line current (N3-SYLC in short) is proposed for correcting 3rd order spherical aberration of round lenses. N3-SYLC can be realized without using magnetic materials, which makes it free of the problems of hysteresis, inhomogeneity and saturation. We investigate theoretically the basic properties of an N3-SYLC configuration which can in principle be realized by simple wires. By optimizing the parameters of a system with beam energy of 5.5keV, the required excitation current for correcting 3rd order spherical aberration coefficient of 400 mm is less than 1AT, and the residual higher order aberrations can be kept sufficiently small to obtain beam size of less than 1 nm for initial slopes up to 5 mrad. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Unary self-verifying symmetric difference automata

    CSIR Research Space (South Africa)

    Marais, Laurette

    2016-07-01

    Full Text Available stream_source_info Marais_2016_ABSTRACT.pdf.txt stream_content_type text/plain stream_size 796 Content-Encoding ISO-8859-1 stream_name Marais_2016_ABSTRACT.pdf.txt Content-Type text/plain; charset=ISO-8859-1 18th... International Workshop on Descriptional Complexity of Formal Systems, 5 - 8 July 2016, Bucharest, Romania Unary self-verifying symmetric difference automata Laurette Marais1,2 and Lynette van Zijl1(B) 1 Department of Computer Science, Stellenbosch...

  13. Small diameter symmetric networks from linear groups

    Science.gov (United States)

    Campbell, Lowell; Carlsson, Gunnar E.; Dinneen, Michael J.; Faber, Vance; Fellows, Michael R.; Langston, Michael A.; Moore, James W.; Multihaupt, Andrew P.; Sexton, Harlan B.

    1992-01-01

    In this note is reported a collection of constructions of symmetric networks that provide the largest known values for the number of nodes that can be placed in a network of a given degree and diameter. Some of the constructions are in the range of current potential engineering significance. The constructions are Cayley graphs of linear groups obtained by experimental computation.

  14. A symmetric Roos bound for linear codes

    NARCIS (Netherlands)

    Duursma, I.M.; Pellikaan, G.R.

    2006-01-01

    The van Lint–Wilson AB-method yields a short proof of the Roos bound for the minimum distance of a cyclic code. We use the AB-method to obtain a different bound for the weights of a linear code. In contrast to the Roos bound, the role of the codes A and B in our bound is symmetric. We use the bound

  15. Calculation of the coherent transport properties of a symmetric spin nanocontact

    International Nuclear Information System (INIS)

    Bourahla, B.; Khater, A.; Tigrine, R.

    2009-01-01

    A theoretical study is presented for the coherent transport properties of a magnetic nanocontact. In particular, we study a symmetric nanocontact between two identical waveguides composed of semi-infinite spin ordered ferromagnetic chains. The coherent transmission and reflection scattering cross sections via the nanocontact, for spin waves incident from the bulk waveguide, are calculated with the use of the matching method. The inter-atomic magnetic exchange on the nanocontact is allowed to vary to investigate the consequences of magnetic softening and hardening for the calculated spectra. Transmission spectra underline the filtering properties of the nanocontact. The localized spin density of states in the nanocontact domain is also calculated, and analyzed. The results yield an understanding of the relationship between coherent conductance and the structural configuration of the nanocontact.

  16. Symmetric compression of 'laser greenhouse' targets by a few laser beams

    International Nuclear Information System (INIS)

    Gus'kov, Sergei Yu; Demchenko, N N; Rozanov, Vladislav B; Stepanov, R V; Zmitrenko, N V; Caruso, A; Strangio, C

    2003-01-01

    The possibility of efficient and symmetric compression of a target with a low-density structured absorber by a few laser beams is considered. An equation of state is proposed for a porous medium, which takes into account the special features of the absorption of high-power nanosecond laser pulses. The open version of this target is shown to allow the use of ordinary Gaussian beams, requiring no special profiling of the absorber surface. The conditions are defined under which such targets can be compressed efficiently by only two laser beams (or beam clusters). Simulations show that for a 2.1-MJ laser pulse, a seven-fold gain for the target under study is achieved. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  17. Spherically symmetric self-similar universe

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, C C [Toronto Univ., Ontario (Canada)

    1979-10-01

    A spherically symmetric self-similar dust-filled universe is considered as a simple model of a hierarchical universe. Observable differences between the model in parabolic expansion and the corresponding homogeneous Einstein-de Sitter model are considered in detail. It is found that an observer at the centre of the distribution has a maximum observable redshift and can in principle see arbitrarily large blueshifts. It is found to yield an observed density-distance law different from that suggested by the observations of de Vaucouleurs. The use of these solutions as central objects for Swiss-cheese vacuoles is discussed.

  18. Immanant Conversion on Symmetric Matrices

    Directory of Open Access Journals (Sweden)

    Purificação Coelho M.

    2014-01-01

    Full Text Available Letr Σn(C denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C -> Σn (C satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB = dχ·(Φ(Α + αΦ(Β for all matrices A,В ε Σ„(С and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С.

  19. Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices

    Science.gov (United States)

    Freund, Roland

    1989-01-01

    We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  20. Apparent molal volumes of symmetrical and asymmetrical isomers of tetrabutylammonium bromide in water at several temperatures

    International Nuclear Information System (INIS)

    Moreno, Nicolás; Malagón, Andrés; Buchner, Richard; Vargas, Edgar F.

    2014-01-01

    Highlights: • Apparent molal volumes of five isomers of Bu 4 NBr in water have been measured. • The structural effect of branched and linear chains is discussed. • The structural contributions to the ionic volume were calculated. -- Abstract: Apparent molal volumes of a series of differently substituted quaternary ammonium bromides, namely tetra-iso-butyl-, tetra-sec-butyl-, tetra-n-butyl-, di-n-butyl-di-sec-butyl- and di-n-butyl-di-iso-butylammonium bromide have been determined as a function of molal concentration at (298.15, 303.15 and 308.15) K. Partial molar volumes at infinite dilution and ionic molar volumes of these quaternary ammonium cations were determined. Structural volume contributions to the ionic molar volume were also calculated. The symmetric and asymmetric quaternary ammonium cations are “structure making” ions. The contribution of the branched butyl chains predominates over the linear butyl chains in the asymmetric cations