WorldWideScience

Sample records for symmetric fission observed

  1. Symmetric and asymmetric ternary fission of hot nuclei

    International Nuclear Information System (INIS)

    Siwek-Wilczynska, K.; Wilczynski, J.; Leegte, H.K.W.; Siemssen, R.H.; Wilschut, H.W.; Grotowski, K.; Panasiewicz, A.; Sosin, Z.; Wieloch, A.

    1993-01-01

    Emission of α particles accompanying fusion-fission processes in the 40 Ar + 232 Th reaction at E( 40 Ar) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight measurements allowed us to reconstruct the complete kinematics of each ternary event. The coincident energy spectra of α particles were analyzed by using predictions of the energy spectra of the statistical code CASCADE . The analysis clearly demonstrates emission from the composite system prior to fission, emission from fully accelerated fragments after fission, and also emission during scission. The analysis is presented for both symmetric and asymmetric fission. The results have been analyzed using a time-dependent statistical decay code and confronted with dynamical calculations based on a classical one-body dissipation model. The observed near-scission emission is consistent with evaporation from a dinuclear system just before scission and evaporation from separated fragments just after scission. The analysis suggests that the time scale of fission of the hot composite systems is long (about 7x10 -20 s) and the motion during the descent to scission almost completely damped

  2. Kinetic-energy distribution for symmetric fission of 236U

    International Nuclear Information System (INIS)

    Brissot, R.; Bocquet, J.P.; Ristori, C.; Crancon, J.; Guet, C.R.; Nifenecker, H.A.; Montoya, M.

    1980-01-01

    Fission fragment kinetic-energy distributions have been measured at the Grenoble high-flux reactor with the Lohengrin facility. Spurious events were eliminated in the symmetric region by a coherence test based on a time-of-flight measurement of fragment velocities. A Monte-Carlo calculation is then performed to correct the experimental data for neutron evaporation. The difference between the most probable kinetic energy in symmetric fission and the fission in which the heavy fragment is 'magic' (Zsub(H)=50) is found to be approximately =30 MeV. The results suggest that for the symmetric case the total excitation energy available at scission is shared equally among the fragments. (author)

  3. SYMMETRICAL AND ASYMMETRIC TERNARY FISSION OF HOT NUCLEI

    NARCIS (Netherlands)

    SIWEKWILCZYNSKA, K; WILCZYNSKI, J; LEEGTE, HKW; SIEMSSEN, RH; WILSCHUT, HW; GROTOWSKI, K; PANASIEWICZ, A; SOSIN, Z; WIELOCH, A

    Emission of a particles accompanying fusion-fission processes in the Ar-40 + Th-232 reaction at E(Ar-40) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight

  4. Probabilities of symmetric and asymmetric fission in the proton bombardment of Th{sup 232}

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, B J [Atomic Energy Research Establishment, Chemistry Div., Harwell (United Kingdom); Brown, F; Butler, J P

    1957-08-01

    The ratio of symmetric to asymmetric fission in the proton bombardment of Th{sup 232} does not rise steadily with increasing proton energy; a periodic decrease in superposed upon the over-all increase. This is attributed to the changing pattern of various fission reactions, (p,f), (p,nf), etc. (author)

  5. General Description of Fission Observables - JEFF Report 24. GEF Model

    International Nuclear Information System (INIS)

    Schmidt, Karl-Heinz; Jurado, Beatriz; Amouroux, Charlotte

    2014-06-01

    The Joint Evaluated Fission and Fusion (JEFF) Project is a collaborative effort among the member countries of the OECD Nuclear Energy Agency (NEA) Data Bank to develop a reference nuclear data library. The JEFF library contains sets of evaluated nuclear data, mainly for fission and fusion applications; it contains a number of different data types, including neutron and proton interaction data, radioactive decay data, fission yield data and thermal scattering law data. The General fission (GEF) model is based on novel theoretical concepts and ideas developed to model low energy nuclear fission. The GEF code calculates fission-fragment yields and associated quantities (e.g. prompt neutron and gamma) for a large range of nuclei and excitation energy. This opens up the possibility of a qualitative step forward to improve further the JEFF fission yields sub-library. This report describes the GEF model which explains the complex appearance of fission observables by universal principles of theoretical models and considerations on the basis of fundamental laws of physics and mathematics. The approach reveals a high degree of regularity and provides a considerable insight into the physics of the fission process. Fission observables can be calculated with a precision that comply with the needs for applications in nuclear technology. The relevance of the approach for examining the consistency of experimental results and for evaluating nuclear data is demonstrated. (authors)

  6. Calculation of Fission Observables Through Event-by-Event Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, J; Vogt, R

    2009-06-04

    The increased interest in more exclusive fission observables has demanded more detailed models. We present here a new computational model, FREYA, that aims to met this need by producing large samples of complete fission events from which any observable of interest can then be extracted consistently, including arbitrary correlations. The various model assumptions are described and the potential utility of the model is illustrated by means of several novel correlation observables.

  7. Modelling the widths of fission observables in GEF

    Directory of Open Access Journals (Sweden)

    Schmidt K.-H.

    2013-03-01

    Full Text Available The widths of the mass distributions of the different fission channels are traced back to the probability distributions of the corresponding quantum oscillators that are coupled to the heat bath, which is formed by the intrinsic degrees of freedom of the fissioning system under the influence of pairing correlations and shell effects. Following conclusion from stochastic calculations of Adeev and Pashkevich, an early freezing due to dynamical effects is assumed. It is shown that the mass width of the fission channels in low-energy fission is strongly influenced by the zero-point motion of the corresponding quantum oscillator. The observed variation of the mass widths of the asymmetric fission channels with excitation energy is attributed to the energy-dependent properties of the heat bath and not to the population of excited states of the corresponding quantum oscillator.

  8. A time-symmetric Universe model and its observational implication

    International Nuclear Information System (INIS)

    Futamase, T.; Matsuda, T.

    1987-01-01

    A time-symmetric closed-universe model is discussed in terms of the radiation arrow of time. The time symmetry requires the occurrence of advanced waves in the recontracting phase of the Universe. The observational consequences of such advanced waves are considered, and it is shown that a test observer in the expanding phase can observe a time-reversed image of a source of radiation in the future recontracting phase

  9. Time-symmetric universe model and its observational implication

    Energy Technology Data Exchange (ETDEWEB)

    Futamase, T.; Matsuda, T.

    1987-08-01

    A time-symmetric closed-universe model is discussed in terms of the radiation arrow of time. The time symmetry requires the occurrence of advanced waves in the recontracting phase of the Universe. We consider the observational consequences of such advanced waves, and it is shown that a test observer in the expanding phase can observe a time-reversed image of a source of radiation in the future recontracting phase.

  10. Simultaneous fitting of statistical-model parameters to symmetric and asymmetric fission cross sections

    International Nuclear Information System (INIS)

    Mancusi, D; Charity, R J; Cugnon, J

    2013-01-01

    The de-excitation of compound nuclei has been successfully described for several decades by means of statistical models. However, accurate predictions require some fine-tuning of the model parameters. This task can be simplified by studying several entrance channels, which populate different regions of the parameter space of the compound nucleus. Fusion reactions play an important role in this strategy because they minimise the uncertainty on the entrance channel by fixing mass, charge and excitation energy of the compound nucleus. If incomplete fusion is negligible, the only uncertainty on the compound nucleus comes from the spin distribution. However, some de-excitation channels, such as fission, are quite sensitive to spin. Other entrance channels can then be used to discriminate between equivalent parameter sets. The focus of this work is on fission and intermediate-mass-fragment emission cross sections of compound nuclei with 70 70 ≲ A ≲ 240. 240. The statistical de-excitation model is GEMINI++. The choice of the observables is natural in the framework of GEMINI++, which describes fragment emission using a fissionlike formalism. Equivalent parameter sets for fusion reactions can be resolved using the spallation entrance channel. This promising strategy can lead to the identification of a minimal set of physical ingredients necessary for a unified quantitative description of nuclear de-excitation.

  11. Influence of fusion dynamics on fission observables: A multidimensional analysis

    Science.gov (United States)

    Schmitt, C.; Mazurek, K.; Nadtochy, P. N.

    2018-01-01

    An attempt to unfold the respective influence of the fusion and fission stages on typical fission observables, and namely the neutron prescission multiplicity, is proposed. A four-dimensional dynamical stochastic Langevin model is used to calculate the decay by fission of excited compound nuclei produced in a wide set of heavy-ion collisions. The comparison of the results from such a calculation and experimental data is discussed, guided by predictions of the dynamical deterministic HICOL code for the compound-nucleus formation time. While the dependence of the latter on the entrance-channel properties can straigthforwardly explain some observations, a complex interplay between the various parameters of the reaction is found to occur in other cases. A multidimensional analysis of the respective role of these parameters, including entrance-channel asymmetry, bombarding energy, compound-nucleus fissility, angular momentum, and excitation energy, is proposed. It is shown that, depending on the size of the system, apparent inconsistencies may be deduced when projecting onto specific ordering parameters. The work suggests the possibility of delicate compensation effects in governing the measured fission observables, thereby highlighting the necessity of a multidimensional discussion.

  12. Observational signatures of spherically-symmetric black hole spacetimes

    Science.gov (United States)

    De Laurentis, Mariafelicia; Younsi, Ziri; Porth, Oliver; Mizuno, Yosuke; Fromm, Christian; Rezzolla, Luciano; Olivares, Hector

    2017-12-01

    A binary system composed of a supermassive black hole and a pulsar orbiting around it is studied. The motivation for this study arises from the fact that pulsar timing observations have proven to be a powerful tool in identifying physical features of the orbiting companion. In this study, taking into account a general spherically-symmetric metric, we present analytic calculations of the geodesic motion, and the possible deviations with respect to the standard Schwarzschild case of General Relativity. In particular, the advance at periastron is studied with the aim of identifying corrections to General Relativity. A discussion of the motion of a pulsar very close the supermassive central black hole in our Galaxy (Sgr A*) is reported.

  13. Photofission observations in reactor environments using selected fission-product yields

    International Nuclear Information System (INIS)

    Gold, R.; Ruddy, F.H.; Roberts, J.H.

    1982-01-01

    A new method for the observation of photofission in reactor environments is advanced. It is based on the in-situ observation of fission product yield. In fact, at a given in-situ reactor location, the fission product yield is simply a weighted linear combination of the photofission product yield, Y/sub gamma/, and the neutron induced fission product yield, Y/sub n. The weight factors arising in this linear combination are the photofission fraction and neutron induced fission fraction, respectively. This method can be readily implemented with established techniques for measuring in-situ reactor fission product yield. For example, one can use the method based on simultaneous irradiation of radiometric (RM) and solid state track recorder (SSTR) fission monitors. The sensitivity and accuracy and current knowledge of fission product yields. Unique advantages of this method for reactor applications are emphasized

  14. Experimental study of the thermal fission of uranium 235 in the region of symmetrical masses; Contribution a l'etude experimentale de la fission thermique de l'uranium 235 dans la region des masses symetriques

    Energy Technology Data Exchange (ETDEWEB)

    Ribrag, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-03-15

    Energy correlation experiments with fission fragments are strongly perturbed, in the symmetric region, by the detection of spurious events caused by the apparatus. We show that the measurement of an additional parameter, namely the difference in time-of-flight between the fragments, enables us to eliminate these difficulties. In this work we show also an original method of calibration of the time-of-flight set-up. For thermal fission of {sup 235}U, values of mass yields in the symmetric region are found to agree quantitatively with radiochemical values. Moreover, the average total kinetic energy distribution as a function of the pre-neutron emission masses of the fragments has been calculated. This curve presents in the symmetric region a large dip, the value of which takes on the value 21.2 {+-} 0.8 MeV. This value is smaller than previously published results. (author) [French] Les mesures correlees des energies cinetiques des fragments de fission sont fortement perturbees, dans la region symetrique, par la detection d'evenements aberrants d'origine instrumentale. Nous montrons que la mesure d'un parametre supplementaire, a savoir, la difference des temps de vol des deux fragments, nous permet d'eliminer ces difficultes. Dans ce travail, nous indiquons egalement une methode originale de calibration du dispositif de mesure des temps de vol. Dans le cas de la fission thermique de {sup 235}U, nous avons trouve, dans la region symetrique, une courbe de rendement des masses, en accord quantitatif avec les donnees radiochimiques. De plus, nous avons calcule la distribution de l'energie cinetique totale moyenne en fonction de la masse des fragments, avant emission neutronique. Cette courbe presente, dans la region symetrique, un creux important, dont la valeur atteint 21,2 {+-} 0,8 MeV. Cette valeur est inferieure aux resultats precedemment publies. (auteur)

  15. Fission observables from 4D Langevin calculations with macroscopic transport coefficients

    Directory of Open Access Journals (Sweden)

    Usang Mark D.

    2018-01-01

    Full Text Available We have extended the Langevin equations to 4 dimensions (4D by allowing the independent deformation for the left (δ1 and right fragments (δ2 of the fissioning nucleus. At the moment we are only able to use them in conjunction with the macroscopic transport coefficients. Nevertheless, we can see a considerable improvement in the preliminary results for the fission observables, especially those related to the total kinetic energy (TKE of fission fragments. By plotting the TKE distributions we have revealed the super-long fission modes in 236U and super-short fission modes in 257Fm. By plotting the distribution of δ against the fragment’s TKE we have noted a correlation between the values of δ and Brosa’s fission modes. We have found that the standard fission modes correspond to prolate tips of the light fragments while the complementary heavy fragments have oblate fission tips. On the other hand, if both fragments were prolate at the tips, we get super-long fission modes. If both fragments were oblate at the tips, we get super-short fission modes.

  16. Spontaneous fission of 259Md

    International Nuclear Information System (INIS)

    Hulet, E.K.; Wild, J.F.; Lougheed, R.W.; Baisden, P.A.; Landrum, J.H.; Dougan, R.J.; Mustafa, M.; Ghiorso, A.; Nitschke, J.M.

    1979-01-01

    The mass and kinetic energy distributions of fission fragments from the spontaneous fission of th newly discovered nuclide 259 Md were obtained. 259 Md was identified as the E. C. daughter of 259 No, and was found to decay entirely (> 95%) by spontaneous fission with a 95-min half-life. From the kinetic energies measured for 397 pairs of coincident fragments, a mass distribution was derived that is symmetric with sigma = 13 amu. 259 Md, together with 258 Fm and 259 Fm, form a select group of three nuclides whose mass division in spontaneous fission is highly symmetric. Unlike the total-kinetic-energy (TKE) distributions of 258 Fm and 259 Fm, which peak at approx. = to 240 MeV, this distribution for 259 Md is broad and is 50 MeV lower in energy. Analysis of the mass and energy distributions shows that events near mass symmetry also exhibit a broad TKE distribution, with one-third of the symmetric events having TKEs less than 200 MeV. The associated of low TKEs with symmetric mass division in the fission of very heavy actinides is anomalous and inconsistent with theories based upon the emergence of fragment shells near the scission point. Either three-body fragmentation or peculiar fragment shapes are assumed as the cause for the large consumption of Coulomb energy observed for a significant fraction of symmetric fissions in 259 Md. 6 figures

  17. Status of the general description of fission observables by the GEF code

    CERN Document Server

    Jurado, B

    2014-01-01

    The GEneral Fission (GEF) model treats spontaneous fission and fission up to an excitation energy of about 100 MeV of a wide range of heavy nuclei. GEF makes use of general laws of statistical and quantum mechanics, assuring a high predictive power. It is unique in providing a general description of essentially all fission observables in a consistent way while preserving the correlations between all of them. In this contribution we present some of the physical aspects on which the model is based, give an overview on the results that can be obtained with the code and show an example that illustrates how the GEF code can serve as a framework for revealing the sensitivity of the fission observables to some basic nuclear properties.

  18. Boundary stress tensors for spherically-symmetric conformal Rindler observers

    Energy Technology Data Exchange (ETDEWEB)

    Culetu, Hristu [Ovidius University, Constanta (Romania)

    2010-06-15

    The boundary energy-momentum tensors for a static observer in the conformally flat Rindler geometry are considered. We find that the surface energy density is positive far from the Planck world, but that the transversal pressures are negative. The kinematical parameters associated with the nongeodesic congruence of static observers are computed. The entropy S corresponding to the degrees of freedom on the 2-surface of constant {rho} and t equals the horizon entropy of a black hole with a time-dependent mass, and the Padmanabhan expression E = 2ST is obeyed. The 2-surface shear tensor is vanishing, and the coefficient of the bulk viscosity {zeta} is 1/16 {pi}, so the negative pressure due to it acts as a surface tension.

  19. Nash Equilibria in Symmetric Graph Games with Partial Observation

    DEFF Research Database (Denmark)

    Bouyer, Patricia; Markey, Nicolas; Vester, Steen

    2017-01-01

    We investigate a model for representing large multiplayer games, which satisfy strong symmetry properties. This model is made of multiple copies of an arena; each player plays in his own arena, and can partially observe what the other players do. Therefore, this game has partial information...... and symmetry constraints, which make the computation of Nash equilibria difficult. We show several undecidability results, and for bounded-memory strategies, we precisely characterize the complexity of computing pure Nash equilibria for qualitative objectives in this game model....

  20. Nash Equilibria in Symmetric Games with Partial Observation

    DEFF Research Database (Denmark)

    Bouyer, Patricia; Markey, Nicolas; Vester, Steen

    2014-01-01

    We investigate a model for representing large multiplayer games, which satisfy strong symmetry properties. This model is made of multiple copies of an arena; each player plays in his own arena, and can partially observe what the other players do. Therefore, this game has partial information...... and symmetry constraints, which make the computation of Nash equilibria difficult. We show several undecidability results, and for bounded-memory strategies, we precisely characterize the complexity of computing pure Nash equilibria (for qualitative objectives) in this game model....

  1. Finding a spherically symmetric cosmology from observations in observational coordinates — advantages and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, M.E. [Departamento de Física-Matemática, Instituto de Física, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, 21.945-970, Rio de Janeiro, R.J. (Brazil); Stoeger, W.R., E-mail: mearaujo@me.com, E-mail: wstoeger@as.arizona.edu [Vatican Observatory Research Group, Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)

    2011-07-01

    One of the continuing challenges in cosmology has been to determine the large-scale space-time metric from observations with a minimum of assumptions — without, for instance, assuming that the universe is almost Friedmann-Lemaître-Robertson-Walker (FLRW). If we are lucky enough this would be a way of demonstrating that our universe is FLRW, instead of presupposing it or simply showing that the observations are consistent with FLRW. Showing how to do this within the more general spherically symmetric, inhomogeneous space-time framework takes us a long way towards fulfilling this goal. In recent work researchers have shown how this can be done both in the traditional Lemaître-Tolman-Bondi (LTB) 3 + 1 coordinate framework, and in the observational coordinate (OC) framework, in which the radial coordinate y is null (light-like) and measured down the past light cone of the observer. In this paper we investigate the stability of solutions, and the use of data in the OC field equations including their time evolution — i.e. our procedure is not restricted to our past light cone — and compare both approaches with respect to the singularity problem at the maximum of the angular-diameter distance, the stability of solutions, and the use of data in the field equations. We also compare the two approaches with regard to determining the cosmological constant Λ. This allows a more detailed account and assessment of the OC integration procedure, and enables a comparison of the relative advantages of the two equivalent solution frameworks. Both formulations and integration procedures should, in principle, lead to the same results. However, as we show in this paper, the OC procedure manifests certain advantages, particularly in the avoidance of coordinate singularities at the maximum of the angular-diameter distance, and in the stability of the solutions obtained. This particular feature is what allows us to do the best fitting of the data to smooth data functions and the

  2. Aerial Observations of Symmetric Instability at the North Wall of the Gulf Stream

    Science.gov (United States)

    Savelyev, I.; Thomas, L. N.; Smith, G. B.; Wang, Q.; Shearman, R. K.; Haack, T.; Christman, A. J.; Blomquist, B.; Sletten, M.; Miller, W. D.; Fernando, H. J. S.

    2018-01-01

    An unusual spatial pattern on the ocean surface was captured by thermal airborne swaths taken across a strong sea surface temperature front at the North Wall of the Gulf Stream. The thermal pattern on the cold side of the front resembles a staircase consisting of tens of steps, each up to ˜200 m wide and up to ˜0.3°C warm. The steps are well organized, clearly separated by sharp temperature gradients, mostly parallel and aligned with the primary front. The interpretation of the airborne imagery is aided by oceanographic measurements from two research vessels. Analysis of the in situ observations indicates that the front was unstable to symmetric instability, a type of overturning instability that can generate coherent structures with similar dimensions to the temperature steps seen in the airborne imagery. It is concluded that the images capture, for the first time, the surface temperature field of symmetric instability turbulence.

  3. Fission mass yields of excited medium heavy nuclei

    International Nuclear Information System (INIS)

    Sandulescu, A.; Depta, K.; Herrmann, R.; Greiner, W.; Scheid, W.

    1985-01-01

    The mass distributions resulting from the fission of excited medium mass nuclei are discussed on the basis of the fragmentation theory. It is shown that very asymmetric fission events can be expected with rates which are only a few orders of magnitude smaller than the rates for symmetric fission. As an example a calculation of the fission mass distribution of the excited 172 Yb compound nucleus is presented. This mass distribution reveals observable structures over the entire range of the mass asymmetry due to valleys in the potential energy surface for fission fragments with closed proton and neutron shells

  4. Influence of primary fragment excitation energy and spin distributions on fission observables

    Science.gov (United States)

    Litaize, Olivier; Thulliez, Loïc; Serot, Olivier; Chebboubi, Abdelaziz; Tamagno, Pierre

    2018-03-01

    Fission observables in the case of 252Cf(sf) are investigated by exploring several models involved in the excitation energy sharing and spin-parity assignment between primary fission fragments. In a first step the parameters used in the FIFRELIN Monte Carlo code "reference route" are presented: two parameters for the mass dependent temperature ratio law and two constant spin cut-off parameters for light and heavy fragment groups respectively. These parameters determine the initial fragment entry zone in excitation energy and spin-parity (E*, Jπ). They are chosen to reproduce the light and heavy average prompt neutron multiplicities. When these target observables are achieved all other fission observables can be predicted. We show here the influence of input parameters on the saw-tooth curve and we discuss the influence of a mass and energy-dependent spin cut-off model on gamma-rays related fission observables. The part of the model involving level densities, neutron transmission coefficients or photon strength functions remains unchanged.

  5. Symmetric splitting of very light systems

    International Nuclear Information System (INIS)

    Grotowski, K.; Majka, Z.; Planeta, R.

    1985-01-01

    Fission reactions that produce fragments close to one half the mass of the composite system are traditionally observed in heavy nuclei. In light systems, symmetric splitting is rarely observed and poorly understood. It would be interesting to verify the existence of the symmetric splitting of compound nuclei with A 12 C + 40 Ca, 141 MeV 9 Be + 40 Ca and 153 MeV 6 Li + 40 Ca. The out-of-plane correlation of symmetric products was also measured for the reaction 186 MeV 12 C + 40 Ca. The coincidence measurements of the 12 C + 40 Ca system demonstrated that essentially all of the inclusive yield of symmetric products around 40 0 results from a binary decay. To characterize the dependence of the symmetric splitting process on the excitation energy of the 12 C + 40 C system, inclusive measurements were made at bombarding energies of 74, 132, 162, and 185 MeV

  6. Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions

    Science.gov (United States)

    Scazza, F.; Hofrichter, C.; Höfer, M.; de Groot, P. C.; Bloch, I.; Fölling, S.

    2014-10-01

    Spin-exchanging interactions govern the properties of strongly correlated electron systems such as many magnetic materials. When orbital degrees of freedom are present, spin exchange between different orbitals often dominates, leading to the Kondo effect, heavy fermion behaviour or magnetic ordering. Ultracold ytterbium or alkaline-earth ensembles have attracted much recent interest as model systems for these effects, with two (meta-) stable electronic configurations representing independent orbitals. We report the observation of spin-exchanging contact interactions in a two-orbital SU(N)-symmetric quantum gas realized with fermionic 173Yb. We find strong inter-orbital spin exchange by spectroscopic characterization of all interaction channels and demonstrate SU(N = 6) symmetry within our measurement precision. The spin-exchange process is also directly observed through the dynamic equilibration of spin imbalances between ensembles in separate orbitals. The realization of an SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route to quantum simulations with extended symmetries and with orbital magnetic interactions, such as the Kondo lattice model.

  7. Observation of Bloch oscillations in complex PT-symmetric photonic lattices

    Science.gov (United States)

    Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf

    2015-01-01

    Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations. PMID:26639941

  8. Impact of material thicknesses on fission observables obtained with the FALSTAFF experimental setup

    Directory of Open Access Journals (Sweden)

    Thulliez L.

    2017-01-01

    Full Text Available In the past years, the fission studies have been mainly focused on thermal fission because most of the current nuclear reactors work in this energy domain. With the development of GEN-IV reactor concepts, mainly working in the fast energy domain, new nuclear data are needed. The FALSTAFF spectrometer under development at CEA-Saclay, France, is a two-arm spectrometer which will provide mass yields before (2V method and after (EV method neutron evaporation and consequently will have access to the neutron multiplicity as a function of mass. The axial ionization chamber, in addition to the kinetic energy value, will measure the energy loss profile of the fragment along its track. This energy loss profile will give information about the fragment nuclear charge. This paper will focus on recent developments on the FALSTAFF design. A special attention will be paid to the impact of the detector material thickness on the uncertainty of different observables.

  9. Experimental Observation and Theoretical Description of Multisoliton Fission in Shallow Water

    Science.gov (United States)

    Trillo, S.; Deng, G.; Biondini, G.; Klein, M.; Clauss, G. F.; Chabchoub, A.; Onorato, M.

    2016-09-01

    We observe the dispersive breaking of cosine-type long waves [Phys. Rev. Lett. 15, 240 (1965)] in shallow water, characterizing the highly nonlinear "multisoliton" fission over variable conditions. We provide new insight into the interpretation of the results by analyzing the data in terms of the periodic inverse scattering transform for the Korteweg-de Vries equation. In a wide range of dispersion and nonlinearity, the data compare favorably with our analytical estimate, based on a rigorous WKB approach, of the number of emerging solitons. We are also able to observe experimentally the universal Fermi-Pasta-Ulam recurrence in the regime of moderately weak dispersion.

  10. Nuclear fission studies: from LOHENGRIN to FIPPS

    International Nuclear Information System (INIS)

    Chebboubi, Abdelaziz

    2015-01-01

    Nuclear fission consists in splitting a nucleus, in general an actinide, into smaller nuclei. Despite nuclear fission was discovered in 1939 by Hahn and Strassman, fission models cannot predict the fission observables with an acceptable accuracy for nuclear fuel cycle studies for instance. Improvement of fission models is an important issue for the knowledge of the process itself and for the applications. To reduce uncertainties of the nuclear data used in a nuclear reactor simulation, a validation of the models hypothesis is mandatory. In this work, two features of the nuclear fission were investigated in order to test the resistance of the theories. One aspect is the study of the symmetric fission fragments through the measurement of their yield and kinetic energy distribution. The other aspect is the study of the fission fragment angular momentum.Two techniques are available to assess the angular momentum of a fission fragment. The first one is to look at the properties of the prompt gamma. The new spectrometer FIPPS (Fission Product Prompt gamma-ray Spectrometer), is currently under development at the ILL and will combine a fission filter with a large array of gamma and neutron detectors in order to respond to these issues. The first part of this work is dedicated to the study of the properties of a Gas Filled Magnet (GFM) which is the type of fission filter considered for the FIPPS project.The second part of this work deals with the measurement of isomeric yields and evaluations of the angular momentum distribution of fission fragments. The study of the spherical nucleus 132 Sn shed the light on the current limits of fission models. Finally, the last part of this work is about the measurement of the yields and kinetic energy distributions of symmetric fission fragments. Since models predict the existence of fission modes, the symmetry region is a suitable choice to investigate this kind of prediction. In parallel with all these studies, an emphasis on the

  11. Methods to Collect, Compile, and Analyze Observed Short-lived Fission Product Gamma Data

    Energy Technology Data Exchange (ETDEWEB)

    Finn, Erin C.; Metz, Lori A.; Payne, Rosara F.; Friese, Judah I.; Greenwood, Lawrence R.; Kephart, Jeremy D.; Pierson, Bruce D.; Ellis, Tere A.

    2011-09-29

    A unique set of fission product gamma spectra was collected at short times (4 minutes to 1 week) on various fissionable materials. Gamma spectra were collected from the neutron-induced fission of uranium, neptunium, and plutonium isotopes at thermal, epithermal, fission spectrum, and 14-MeV neutron energies. This report describes the experimental methods used to produce and collect the gamma data, defines the experimental parameters for each method, and demonstrates the consistency of the measurements.

  12. Observations of fission-tracks in zircons by atomic force microscope

    International Nuclear Information System (INIS)

    Ohishi, Shinnosuke; Hasebe, Noriko

    2012-01-01

    The fission-track (FT) method is a dating technique based on the observation of damage (tracks) by spontaneous fission of 238 U left in a mineral. The date is calculated from the track density and the uranium concentration in the mineral. This is possible because the number of tracks is a function of uranium concentration and time since the start of track accumulation. Usually, the number of tracks is counted under an optical microscope after etching (chemical expansion of a track). However, as FT density per unit area rises, it becomes difficult to count the number of tracks. This is due to the fact that FTs overlap one another and are unable to be readily distinguished. This research examines the potential of atomic force microscope (AFM) for FT dating using zircons, which are likely to show higher FT density than other minerals due to their high U concentrations. To obtain an AFM image for a sample prepared for FT dating, removing the static electricity of the sample is essential to avoid an unexpected movement of the cantilever. A grain should be wider than about 30 μm to bring the cantilever on the mineral surface. Polishing with a fine grained compound is very important. There is not much difference in sharpness between images by AC mode (scanning with vibrating cantilever at a constant cycle) and Contact mode (scanning with the cantilever always in close contact with the surface). To confirm how tracks can be identified with the AFM, an AFM image was compared with an image obtained with the optical microscope. When change in the number of tracks and their shapes were observed through stepwise etching, the track expanded as the etching time increased. In addition, the etching rate was slower for large tracks than those for small tracks. This implied that the AFM can be used to observe etching of zircons with different degrees of nuclear fission damage. A track that could not be seen with the optical microscope due to insufficient etching could be observed by

  13. Actinide neutron-induced fission up to 20 MeV

    International Nuclear Information System (INIS)

    Maslov, V.M.

    2001-01-01

    Fission and total level densities modelling along with double-humped fission barrier parameters allow to describe available actinide neutron-induced fission cross section data in the incident neutron energy range of ∼ 10 keV - 20 MeV. Saddle asymmetries relevant to shell correction model calculations influence fission barriers, extracted by cross section data analysis. The inner barrier was assumed axially symmetric in case of U, Np and Pu neutron-deficient nuclei. It is shown that observed irregularities in neutron-induced fission cross section data in the energy range of 0.5-3 MeV could be attributed to the interplay of few-quasiparticle excitations in the level density of fissioning and residual nuclei. Estimates of first-chance fission cross section and secondary neutron spectrum model were validated by 238 U fission, (n,2n) and (n,3n) data description up to 20 MeV. (author)

  14. Actinide neutron-induced fission up to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V M [Radiation Physics and Chemistry Problems Institute, Minsk-Sosny (Belarus)

    2001-12-15

    Fission and total level densities modelling along with double-humped fission barrier parameters allow to describe available actinide neutron-induced fission cross section data in the incident neutron energy range of {approx} 10 keV - 20 MeV. Saddle asymmetries relevant to shell correction model calculations influence fission barriers, extracted by cross section data analysis. The inner barrier was assumed axially symmetric in case of U, Np and Pu neutron-deficient nuclei. It is shown that observed irregularities in neutron-induced fission cross section data in the energy range of 0.5-3 MeV could be attributed to the interplay of few-quasiparticle excitations in the level density of fissioning and residual nuclei. Estimates of first-chance fission cross section and secondary neutron spectrum model were validated by {sup 238}U fission, (n,2n) and (n,3n) data description up to 20 MeV. (author)

  15. Light nuclides observed in the fission and fragmentation of 238U

    International Nuclear Information System (INIS)

    Ricciardi, M.V.; Schmidt, K.H.; Benlliure, J.

    2001-05-01

    Light nuclides produced in collisions of 1 A.GeV 238 U with protons and titanium have been fully identified with a high-resolution forward magnetic spectrometer, the fragment separator (FRS), at GSI, and for each nuclide an extremely precise determination of the velocity has been performed. The so-obtained information on the velocity shows that the very asymmetric fission of uranium, in the 238 U + p reaction, produces neutron-rich isotopes of elements down to around charge 10. New important features of the fragmentation of 238 U, concerning the velocity and the N/Z-ratio of these light fragments, and a peculiar even-odd structure in N=Z nuclei, have also been observed. (orig.)

  16. Systematic features of mass yield curves in low-energy fission of actinides

    International Nuclear Information System (INIS)

    Nagame, Yuichiro

    1999-01-01

    Characteristics of mass yield curves in fission of wide range of nuclides from pre-actinides through transactinides are reviewed and the following points are discussed. (1) Systematic trends of the mass yield distributions in low-energy proton-induced fission of actinides and in spontaneous fission of actinides are discussed in terms of weighted mean mass numbers of the light and heavy asymmetric mass yield peaks and widths of the heavy asymmetric mass yields. (2) Gross features of the two kinds of mass yield curves, symmetric and asymmetric ones, as a function of a fissioning nucleus. (3) Competition between the symmetric and asymmetric fission as a function of not only Z (proton number) but also N (neutron number) of a fissioning nucleus. (4) Experimental verification of the existence of two kinds of deformation paths in low energy fission of actinides; the first path is initiated at higher threshold energy and ends with elongated scission configuration, giving a final mass yield distribution centered around the symmetric mass division, 'symmetric fission path'. In the second path, a fissioning nucleus experiences lower threshold energy and results in more compact scission configuration, which gives a double humped mass distribution always centered around A=140 for the heavier fragment, 'asymmetric fission path'. (5) Interpretation of the 'bimodal fission' observed in the spontaneous fission of heavy actinides as the presence of the two fission paths of the ordinary asymmetric one and a strongly shell-affected symmetric path from the systematic analysis of scission configurations. (6) A dynamical fission process deduced from the analysis of the experimental mass yield curves and the correlation data of neutron multiplicity and fragment mass and total kinetic energy. (7) Prediction of the characteristics of gross properties of fission in superheavy nuclei around 280 114. (8) Characteristics of highly asymmetric fission: formation cross section as a function of

  17. Ternary fission

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs

  18. Neutron emission as a probe of fusion-fission and quasi-fission dynamics

    International Nuclear Information System (INIS)

    Hinde, D.J.

    1991-01-01

    Pre- and post scission neutron yeilds have been measured as a function of projectile mass, compound nucleus fissility, and fission mass-split and total kinetic energy (TKE) for 27 fusion-fission and quasi-fission reactions induced by beams of 16,18 O, 40 Ar and 64 Ni. A new method of interpretation of experimental pre-scission neutron multiplicities ν-pre and mean kinetic energies ε ν allows the extraction of fission time scales with much less uncertainty than previously, all fusion-fission results being consistent with a dynamical time scale of (35±15) x 10 -21 s for symmetric fission. All reactions show that ν-pre falls quite rapidly with increasing mass-asymmetry; evidence is presented that for fusion-fission reactions this is partly due to a reduction of the dynamical fission time scale with mass-asymmetry. For quasi-fission, the data indicate that the pre-scission multiplicity and mean neutron kinetic energy are very sensitive to the final mass-asymmetry, but that the time scale is virtually independent of mass-asymmetry. It is concluded that for fusion-fission there is no dependence of ν-pre on TKE, whilst for 64 Ni-induced quasi-fission reactions, a strong increase of ν-pre with decreasing TKE is observed, probably largely caused by neutron emission during the acceleration time of the fission fragments in these fast reactions. Interpretation of post-scission multiplicities in terms of fragment excitation energies leads to deduced time scales consistent with those determined from the pre-scission data. 54 refs., 17 tabs., 25 figs

  19. Nuclear fission: a review of experimental advances and phenomenology

    Science.gov (United States)

    Andreyev, A. N.; Nishio, K.; Schmidt, K.-H.

    2018-01-01

    In the last two decades, through technological, experimental and theoretical advances, the situation in experimental fission studies has changed dramatically. With the use of advanced production and detection techniques both much more detailed and precise information can now be obtained for the traditional regions of fission research and, crucially, new regions of nuclei have become routinely accessible for fission studies. This work first of all reviews the recent developments in experimental fission techniques, in particular the resurgence of transfer-induced fission reactions with light and heavy ions, the emerging use of inverse-kinematic approaches, both at Coulomb and relativistic energies, and of fission studies with radioactive beams. The emphasis on the fission-fragment mass and charge distributions will be made in this work, though some of the other fission observables, such as prompt neutron and γ-ray emission will also be reviewed. A particular attention will be given to the low-energy fission in the so far scarcely explored nuclei in the very neutron-deficient lead region. They recently became the focus for several complementary experimental studies, such as β-delayed fission with radioactive beams at ISOLDE(CERN), Coulex-induced fission of relativistic secondary beams at FRS(GSI), and several prompt fusion–fission studies. The synergy of these approaches allows a unique insight in the new region of asymmetric fission around {\\hspace{0pt}}180 Hg, recently discovered at ISOLDE. Recent extensive theoretical efforts in this region will also be outlined. The unprecedented high-quality data for fission fragments, completely identified in Z and A, by means of reactions in inverse kinematics at FRS(GSI) and VAMOS(GANIL) will be also reviewed. These experiments explored an extended range of mercury-to-californium elements, spanning from the neutron-deficient to neutron-rich nuclides, and covering both asymmetric, symmetric and transitional fission regions

  20. Binary scission configurations in fission of light actinides

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuki, Tsutomu [Tohoku Univ., Sendai (Japan). Lab. of Nuclear Science; Nagame, Y.; Nishinaka, I.; Tsukada, K.; Ikezoe, H.; Tanikawa, M.; Zhao, Y.L.; Sueki, K.; Nakahara, H.

    1997-07-01

    Mass and kinetic energy distributions of fission fragments have been accurately measured by a double velocity time-of-flight technique in the 13 MeV proton-induced fissions of {sup 232}Th and {sup 238}U. A binary structure is observed in total kinetic energy distributions in the fragments with mass number around A=130 for both the fissions, indicating that there are at least two kinds of scission configurations. A correlation between the scission configurations and mass yield distributions reveals that elongated scission configurations are associated with the symmetric mass distribution and compact scission configurations with the asymmetric mass distribution. (author)

  1. Observation of new spontaneous fission activities from elements 100 to 105

    International Nuclear Information System (INIS)

    Somerville, L.P.

    1982-03-01

    Several new Spontaneous Fission (SF) activities have been found. No definite identification could be made for any of the new SF activities; however, half-lives and possible assignments to element-104 isotopes consistent with several cross bombardments include 257 Rf(3.8 s, 14% SF), 258 Rf(13 ms), 259 Rf(approx. 3 s, 8% SF), 260 Rf(approx. 20 ms), and 262 Rf(approx. 50 ms). The 80-ms SF activity claimed by the Dubna group for the discovery of element 104 ( 260 104) was not observed. A difficulty exists in the interpretation that 260 Rf is a approx. 20-ms SF activity: in order to be correct, for example, the SF activities with half-lives between 14 and 24 ms produced in the reactions 109- to 119-MeV 18 O + 248 Cm, 88- to 100-MeV 15 N + 249 Bk, and 96-MeV 18 O + 249 Cf must be other nuclides due to their large production cross sections, or the cross sections for production of 260 Rf must be enhanced by unknown mechanisms. Based on calculated total production cross sections a possible approx. 1% electron-capture branch in 258 Lr(4.5 s) to the SF emitter 258 No(1.2 ms) and an upper limit of 0.05% for SF branching in 254 No(55 s) were determined. Other measured half-lives from unknown nuclides produced in respective reactions include approx. 1.6 s ( 18 O + 248 CM), indications of a approx. 47-s SF activity (75-MeV 12 C + 249 Cf), and two or more SF activities with 3 s less than or equal to T/sub 1/2/ less than or equal to 60 s ( 18 O + 249 Bk). The most exciting conclusion of this work is that if the tentative assignments to even-even element 104 isotopes are correct, there would be a sudden change in the SF half-life systematics at element 104 which has been predicted theoretically and attributed to the disappearance of the second hump of the double-humped fission barrier

  2. Structures of the neutron-rich nuclei observed in fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Ramayya, A. V.; Hamilton, J. H.; Goodin, C. J.; Brewer, N. T.; Hwang, J. K. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 (United States); Luo, Y. X. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 USA and Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Liu, S. H. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 USA and UNRIB/Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831 (United States); Rasmussen, J. O.; Lee, I. Y. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Stone, N. J. [Department of Physics, Oxford University, Oxford OX1 3PU (United Kingdom); Daniel, A. V. [Flerov Laboratory of Nuclear Reactions, JINR, Dubna (Russian Federation); Zhu, S. J. [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2014-08-14

    Analysis of high statistics triple coincidence fission γ data from {sup 252}Cf at Gammasphere including angular correlations yielded well-expanded high-spin level schemes with more complete and reliable spin/parity assignments for {sup 82}Ge, {sup 118,120,122}Cd and {sup 114,115}Rh. Both the quasi-particle/hole couplings and quasi-rotational degrees of freedom are implied to play roles in these Cd isotopes. Evidence for triaxial shapes and octupole components in the Cd isotopes is presented. These Cd isotopes may have triaxial deformations. High-spin level schemes of {sup 114,115}Rh have been established for the first time. The existence of a relatively large signature splitting and an yrare band shows typical features of a triaxially deformed nucleus. Possible excited deformed rotational bands are observed, for the first time, in {sup 82}Ge. From the multipole mixing ratio measurement, the ground state configurations of {sup 109,111}Ru, as well as excited states in {sup 103,107}Mo and {sup 111}Ru were determined.

  3. Observed mass distribution of spontaneous fission fragments from samples of lime - an SSNTD study

    CERN Document Server

    Paul, D; Ghose, D; Sastri, R C

    1999-01-01

    SSNTD is one of the most commonly used detectors in the studies involving nuclear phenomena. The ease of registration of the presence of alpha particles and fission fragments has made it particularly suitable in studies where stable long exposures are needed to extract reliable information. Studies on the presence of alpha emitting nuclides in the environment assume importance since they are found to be carcinogenic. Lime samples from Silchar in Assam of Eastern India have shown the presence of spontaneous fission fragments besides alphas. In the present study we look at the ratio of the average mass distribution of these fission fragments, that gives us an indication of the presence of the traces of transuranic elements.

  4. Study of hypernuclei fission

    International Nuclear Information System (INIS)

    Malek, F.

    1990-01-01

    This work is about PS177 experience made on LEAR machine at CERN in 1988. The annihilation reaction of anti protons on a target of Bismuth or Uranium is studied. Lambda particles are produced by this reaction, in the nucleus in 2% of cases 7.1 10 -3 hypernuclei by stopped antiproton in the target are produced. The prompt hypernucleus fission probability of uranium is 75% and that of Bismuth 10%. The mass distribution of fission fragments is symmetrical ((≡ the excitation energy of the nucleus is very high). If the nucleus hasn't fissioned, the non-mesonic lambda decay, gives it an energy of 100 MeV, what allows to fission later. This fission is delayed because the hypernucleus lifetime is 1.3 +0.25 -0.21 10 -10 sec for Bismuth [fr

  5. Fission gas release modelling: developments arising from instrumented fuel assemblies, out-of-pile experiments and microstructural observations

    International Nuclear Information System (INIS)

    Leech, N.A.; Smith, M.R.; Pearce, J.H.; Ellis, W.E.; Beatham, N.

    1990-01-01

    This paper reviews the development of fission gas release modelling in thermal reactor fuel (both steady-state and transient) and in particular, illustrates the way in which experimental data have been, and continue to be, the main driving force behind model development. To illustrate this point various aspects of fuel performance are considered: temperature calculation, steady-state and transient fission gas release, grain boundary gas atom capacity and microstructural phenomena. The sources of experimental data discussed include end-of-life fission gas release measurements, instrumented fuel assemblies (e.g. rods with internal pressure transducers, fuel centre thermocouples), swept capsule experiments, out-of-pile annealing experiments and microstructural techniques applied during post-irradiation evaluation. In the case of the latter, the benefit of applying many observation and analysis techniques on the same fuel samples (the approach adopted at NRL Windscale) is emphasized. This illustrates a shift of emphasis in the modelling field from the development of large, complex thermo-mechanical computer codes to the assessment of key experimental data in order to develop and evaluate sub-models which correctly predict the observed behaviour. (author)

  6. Evidence for nonequilibrium particle emission before symmetric disintegration of a composite system formed in the 16O+40Ca reaction at 230 MeV

    International Nuclear Information System (INIS)

    Brzychczyk, J.; Grotowski, K.; Majka, Z.; Micek, S.; Planeta, R.; Fabris, D.; Hagel, K.; Natowitz, J.B.; Nebbia, G.; Belery, P.; Cohilis, P.; El Masri, Y.; Gregoire, G.

    1987-01-01

    Measurement of fragment-fragment correlations in the reaction of 230 MeV 16 O with 40 Ca and of 280 MeV 32 S with 24 Mg have been used to isolate processes in which symmetric decay follows nonequilibrium emission of one or two alpha particles. At the higher energy per nucleon, in contrast to previous observations for lower velocity projectiles, nonequilibrium emission followed by symmetric decay has approximately the same probability as the symmetric fission following complete fusion. (orig.)

  7. Investigation of exotic fission modes

    International Nuclear Information System (INIS)

    Poenaru, D. N.; Gherghescu, R. A.; Greiner, W.; Nagame, Y.; Hamilton, J. H.; Ramayya, A. V.

    2002-01-01

    Fission approach to the cluster radioactivities and α-decay has been systematically developed during the last two decades. A more complex process, the ternary fission, was observed since 1946 both in neutron-induced and spontaneous fission. We obtained interesting results concerning the binary fission saddle-point reflection asymmetric nuclear shapes, and we can explain how a possible nuclear quasimolecular state is formed during the 10 Be accompanied cold fission of 252 Cf. The equilibrium nuclear shapes in fission theory are usually determined by minimizing the deformation energy for a given surface equation. We developed a method allowing to obtain a very general saddle-point shape as a solution of a differential equation without an a priori introduction of a shape parametrization. In the approach based on a liquid drop model (LDM), saddle-point shapes are always reflection symmetric: the deformation energy increases with the mass-asymmetry parameter η = (A 1 - A 2 )/(A 1 + A 2 ). By adding the shell corrections to the LDM deformation energy, we obtained minima at a finite mass asymmetry for parent nuclei 238 U, 232,228 Th in agreement with experiments. This correction was calculated phenomenologically. A technique based on the fragment identification by using triple γ coincidences in the large arrays of Ge-detectors, like GAMMASPHERE, was employed at Vanderbilt University to discover new characteristics of the fission process, and new decay modes. The possibility of a whole family of new decay modes, the multicluster accompanied fission, was envisaged. Besides the fission into two or three fragments, a heavy or superheavy nucleus spontaneously breaks into four, five or six nuclei of which two are asymmetric or symmetric heavy fragments and the others are light clusters, e.g. α-particles, 10 Be, 14 C, or combinations of them. Examples were presented for the two-, three- and four cluster accompanied cold fission of 252 Cf and 262 Rf, in which the emitted

  8. New type of asymmetric fission in proton-rich nuclei

    CERN Document Server

    Andreyev, A N; Huyse, M; Van Duppen, P; Antalic, S; Barzakh, A; Bree, N; Cocolios, T E; Comas, V F; Diriken, J; Fedorov, D; Fedosseev, V; Franchoo, S; Heredia, J A; Ivanov, O; Koster, U; Marsh, B A; Nishio, K; Page, R D; Patronis, N; Seliverstov, M; Tsekhanovich, I; Van den Bergh, P; Van De Walle, J; Venhart, M; Vermote, S; Veselsky, M; Wagemans, C; Ichikawa, T; Iwamoto, A; Moller, P; Sierk, A J

    2010-01-01

    A very exotic process of ${\\beta}$-delayed fission of $^{180}$Tl is studied in detail by using resonant laser ionization with subsequent mass separation at ISOLDE (CERN). In contrast to common expectations, the fission-fragment mass distribution of the post-${\\beta}$-decay daughter nucleus $^{180}$Hg (N/Z=1.25) is asymmetric. This asymmetry is more surprising since a mass-symmetric split of this extremely neutron-deficient nucleus would lead to two $^{90}$Zr fragments, with magic N=50 and semimagic Z=40. This is a new type of asymmetric fission, not caused by large shell effects related to fragment magic proton and neutron numbers, as observed in the actinide region. The newly measured branching ratio for $\\beta$-delayed fission of $^{180}$Tl is 3.6(7)×10$^{-3}$%, approximately 2 orders of magnitude larger than in an earlier study.

  9. VLA observations of a highly symmetric OH maser in a bipolar nebula

    International Nuclear Information System (INIS)

    Morris, M.; Bowers, P.F.; Turner, B.E.

    1982-01-01

    The Very Large Array was used to map 1667 MHz OH maser emission from the bipolar nebula OH 231.8+4.2 at 23 distinct velocities within the unusual, 100 km s -1 wide profile. The source is large (approx.10''equivalent3 x 10 17 cm) and well resolved, and displays ordered large-scale velocity gradients. At most velocities, the maser maps display an unmistakable symmetry about the bipolar axis defined by the optical and infrared reflection nebulae. Most of the data can be accounted for by an axisymmetric model in which the measuring OH is concentrated toward the system's equatorial plane and is expanding radially away from the central star. The observation of complete rings of maser emission at some velocities, however, shows that the maser is also present at high latitudes above the equatorial plane. A model which incorporates these features plus other known aspects of bipolar nebulae is presented and discussed

  10. Fission fragment mass distribution in the 13C+182W and 176Yb reactions

    International Nuclear Information System (INIS)

    Ramachandran, K.; Hinde, D.J.; Dasgupta, M.; Williams, E.; Wakhle, A.; Luong, D.H.; Evers, M.; Carter, I.P.; Das, S.

    2014-01-01

    Fission fragment mass distributions have been measured for many systems and found to be asymmetric in the fission of nuclei with nucleon number A in the range 228-258 and proton number Z in the range 90-100. For lighter systems, it has been observed that fission fragment mass distributions are usually symmetric. At high excitation energies the shell effects are expected to vanish and the nuclei are expected to behave like a charged liquid drop; hence, only symmetric fission is expected for all the nuclei. Even after much experimental and theoretical work in this field, the rate of damping of shell effects with excitation energy is not well known. This abstract reports our measurements with 13 C beams on 182 W and 176 Yb targets

  11. Delayed fission

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-07-01

    Delayed fission is a nuclear decay process that couples {beta} decay and fission. In the delayed fission process, a parent nucleus undergoes {beta} decay and thereby populates excited states in the daughter. If these states are of energies comparable to or greater than the fission barrier of the daughter, then fission may compete with other decay modes of the excited states in the daughter. In this paper, mechanism and some experiments of the delayed fission will be discussed. (author)

  12. Dynamical fission life-times deduced from gamma-ray emission observed in the fusion-fission reaction : Ne-20 on Bi-209.

    NARCIS (Netherlands)

    vanderPloeg, H; Bacelar, JCS; Buda, A; Dioszegi, [No Value; vantHof, G; vanderWoude, A

    1996-01-01

    The gamma-ray emission spectra between 4 and 20 MeV have been measured for the fusion-fission reactions Ne-20 on Bi-209 --> Np-229* at beam energies 150, 186 and 220 MeV. In addition for the latter experiment the angular dependence of the gamma-ray emission with respect to the spin axis has been

  13. Spin measurement for symmetric fission states of sup 24 Mg. A new angle on the sup 12 C+ sup 12 C interaction

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, B.R.; Bennett, S.J.; Freer, M.; Murgatroyd, J.T. (School of Physics and Space Research, Birmingham Univ. (United Kingdom)); Gyapong, G.J.; Jarvis, N.S.; Jones, C.D.; Watson, D.L. (Dept. of Physics, York Univ. (United Kingdom)); Brown, J.D.; Rae, W.D.M.; Smith, A.E. (Dept. of Nuclear Physics, Oxford Univ. (United Kingdom)); Lilley, J.S. (Daresbury Lab., Warrington (United Kingdom))

    1991-09-19

    A new high resolution measurement of the {sup 12}C({sup 24}Mg, {sup 12}C{sup 12}C){sup 12}C breakup reaction has been performed. Sequential breakup is observed from specific states in {sup 24}Mg at excitation energies ranging from 20 to 26 MeV. Angular correlation measurements indicate that states with spins ranging from J=4 to 8 are populated. These states are consistent with superdeformed shape isomeric bands predicted by cranked cluster model and Nilsson-Strutinsky calculations. (orig.).

  14. Mass distributions in monoenergetic-neutron-induced fission of 232Th

    International Nuclear Information System (INIS)

    Glendenin, L.E.; Gindler, J.E.; Ahmad, I.; Henderson, D.J.; Meadows, J.W.

    1980-01-01

    Fission product yields for 38 masses were determined for the fission of 232 Th with essentially monoenergetic neutrons of 2.0, 3.0, 4.0, 5.9, 6.4, 6.9, 7.6, and 8.0 MeV. Fission product activities were measured by Ge(Li) γ-ray spectrometry of irradiated 232 Th foils and by chemical separation of the fission product elements followed by β counting. The mass yield data for 232 Th(n,f ) show a sensitive increase of fission yields in the near-symmetric mass region (valley) with increasing incident neutron energy E/sub n/ and a pronounced dip in yield at the onset of second-chance fission just above the neutron binding energy (at approx. 6 MeV) where the excitation energy is lowered by competition with neutron evaporation prior to fission. The effect of second-chance fission is also seen in the yields of asymmetric peak products. A distinct third peak is observed at symmetry in the valley of the mass distribution, and enhanced yields are observed in the asymmetric peaks at masses associated with even Z (proton pairing effect). The fission yeilds of 232 Th(n,f ) are compared with those of 238 U(n,f ) and 232 Th

  15. Observation of fission residues in the 16O + 181Ta system at Elab ≈ 6 MeV/A

    Directory of Open Access Journals (Sweden)

    Singh B. P.

    2011-10-01

    Full Text Available Present paper reports on the production cross-section of 24 fission like events (30 ≤ Z ≤ 60 formed via complete fusion-fission and/or incomplete fusion-fission processes in 16O+181Ta system at energies ≈ 6 MeV/A. Experiments have been performed using the recoil-catcher technique followed by off-line γ-spectroscopy. The measured cross-section of fission-like events is satisfactorily described by a statistical model code. Further, an attempt has been made to study the mass and isotopic yield distributions of fission fragments. The variance of the presently measured isotopic yield distributions has been found to be in agreement with the literature values for some other fissioning systems.

  16. Fast fission phenomena

    International Nuclear Information System (INIS)

    Gregoire, Christian.

    1982-03-01

    Experimental studies of fast fission phenomena are presented. The paper is divided into three parts. In the first part, problems associated with fast fission processes are examined in terms of interaction potentials and a dynamic model is presented in which highly elastic collisions, the formation of compound nuclei and fast fission appear naturally. In the second part, a description is given of the experimental methods employed, the observations made and the preliminary interpretation of measurements suggesting the occurence of fast fission processes. In the third part, our dynamic model is incorporated in a general theory of the dissipative processes studied. This theory enables fluctuations associated with collective variables to be calculated. It is applied to highly inelastic collisions, to fast fission and to the fission dynamics of compound nuclei (for which a schematic representation is given). It is with these calculations that the main results of the second part can be interpreted [fr

  17. Symmetric textures

    International Nuclear Information System (INIS)

    Ramond, P.

    1993-01-01

    The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures

  18. On the frequency distributions per unit area of the projected and etchable lengths of surface-intersecting fission tracks: influences of track revelation, observation and measurement

    International Nuclear Information System (INIS)

    Jonckheere, R.; Haute, P. van den

    1999-01-01

    In addition to the statistical bounds discussed, thermal history analysis based on the projected and etchable length distributions of surface intersecting fission tracks is limited by systematic factors related to track revelation, observation and measurement. The effects of track revelation, in particular, distort these distributions in the length intervals of interest. An observation threshold poses a problem if it is described by a critical angle θ c , but not if it is described by other criteria proposed in the literature. Measurement imprecisions, predictably, blur the thermal history information contained in these distributions. Measurements of semi-confined tracks, added as a result of surface etching, are a more promising alternative to confined track length measurements for accessing the thermal history record in the fission track length distribution. On the other hand, measurements of the projected lengths of surface intersecting tracks offer the theoretical possibility of determining the true volumetric density N and true mean length m of an arbitrary population of fission tracks, thus allowing direct determination of the corrected age of samples with complex thermal histories. On a methodical level, knowledge of N and m allows to determine the efficiency with which fission tracks are counted under the optical microscope under exactly the same conditions as those under which fission track counts for routine dating purposes are performed

  19. Nuclear fission

    International Nuclear Information System (INIS)

    Kodama, T.

    1981-01-01

    The nuclear fission process is pedagogically reviewed from a macroscopic-microscopic point of view. The Droplet model is considered. The fission dynamics is discussed utilizing path integrals and semiclassical methods. (L.C.) [pt

  20. Fission product yields from 6 to 9 MeV neutron induced fission of 235U and 238U

    International Nuclear Information System (INIS)

    Chapman, T.C.

    1978-01-01

    The yields of 28 mass chains have been measured for fission of 235 U and 238 U induced by neutrons at four different energies from 6.0 to 9.1 MeV. This is the first experimental measurement where sufficient energy resolution was obtained to observe the effect of the onset of second-chance fission in the case of symmetric fission. The 111 Ag results are compared with measurements at other neutron energies and with previous theoretical predictions. Several of the nuclide results are presented in graphical form, and all nuclide results are presented in tabular form, as a function of neutron energy. The mass chains measured range from 84 to 156, and their half-lives range from 18 minutes to 30 years

  1. Experimental approach to fission process of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi [Osaka Univ., Toyonaka (Japan). Faculty of Science

    1997-07-01

    From experimental views, it seems likely that the mechanism of nuclear fission process remains unsolved even after the Bohr and Weeler`s study in 1939. Especially, it is marked in respect of mass distribution in unsymmetric nuclear fission. The energy dependency of mass distribution can be explained with an assumption of 2-mode nuclear fission. Further, it was demonstrated that the symmetrical fission components and the unsymmetrical ones have different saddle and fission points. Thus, the presence of the 2-mode fission mechanism was confirmed. Here, transition in the nuclear fission mechanism and its cause were investigated here. As the cause of such transition, plausible four causes; a contribution of multiple-chance fission, disappearance of shell effects, beginning of fission following collective excitation due to GDR and nuclear phase transition were examined in the condition of excitation energy of 14.0 MeV. And it was suggested that the transition in the nuclear fission concerned might be related to phase transition. In addition, the mechanism of nuclear fission at a low energy and multi-mode hypothesis were examined by determination of the energy for thermal neutron fission ({sup 233,235}U and {sup 239}Pu) and spontaneous nuclear fission ({sup 252}Cf). (M.N.)

  2. Elastocapillary Instability in Mitochondrial Fission

    Science.gov (United States)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  3. Asymmetric fission of 47V induced by the 23Na+24Mg reaction

    International Nuclear Information System (INIS)

    Beck, C.; Djerroud, B.; Haas, F.; Freeman, R.M.; Hachem, A.; Heusch, B.; Morsad, A.; Vuillet-A-Cilles, M.; Sanders, S.J.

    1993-01-01

    The properties of fully energy-damped processes (deep-inelastic orbiting, fusion-evaporation, and fusion-fission processes) have been investigated in the nearly mass-symmetric entrance-channel 23 Na + 24 Mg reaction leading to the 47 V compound nucleus. By comparison with previous data for the mass-asymmetric 35 Cl + 12 C reaction forming the same compound system at the same excitation energy, no entrance-channel effects are observed in either the evaporation residue or the fusion-fission yields. This is in contrast to the situation with the 28 Si + 12 C and 24 Mg + 16 O reactions where an orbiting process is evident. The asymmetrical elemental distributions of the fusion-fission fragments of the massA=47 system are well described by a transition-state model that accounts for the spin and mass-asymmetry dependence of the fission saddle point

  4. Evidence for bimodal fission in the heaviest elements

    International Nuclear Information System (INIS)

    Hulet, E.K.; Wild, J.F.; Lougheed, R.W.

    1987-08-01

    We have measured the mass and kinetic-energy partitioning in the spontaneous fission of five heavy nuclides: 258 Fm, 259 Md, 260 Md 258 No, and 260 [104]. Each was produced by heavy-ion reactions with either 248 Cm, 249 Bk, or 254 Es targets. Energies of correlated fragments from the isotopes with millisecond half lives, 258 No and 260 [104], were measured on-line by a special rotating-wheel instrument, while the others were determined off-line after mass separation. All fissioned with mass distributions that were symmetric. Total-kinetic-energy distributions peaked near either 200 or 235 MeV. Surprisingly, because only a single Gaussian energy distribution had been observed previously in actinide fission, these energy distributions were skewed upward or downward from the peak in each case, except for 260 [104], indicating a composite of two energy distributions. We were able to fit accurately two Gaussian curves to the gross energy distributions from the four remaining nuclides. From the multiple TKE distributions and the shapes of the mass distributions, we conclude that there is a low-energy fission component with liquid-drop characteristics which is admixed with a much higher-energy component due to closed fragment shells. We now have further evidence for this conclusion from measurements of the neutron multiplicity in the spontaneous fission of 260 Md. 25 refs., 9 figs

  5. Microscopic Theory of Fission

    International Nuclear Information System (INIS)

    Younes, W; Gogny, D

    2008-01-01

    In recent years, the microscopic method has been applied to the notoriously difficult problem of nuclear fission with unprecedented success. In this paper, we discuss some of the achievements and promise of the microscopic method, as embodied in the Hartree-Fock method using the Gogny finite-range effective interaction, and beyond-mean-field extensions to the theory. The nascent program to describe induced fission observables using this approach at the Lawrence Livermore National Laboratory is presented

  6. Weak-field limit of Kaluza-Klein models with spherically symmetric static scalar field. Observational constraints

    Energy Technology Data Exchange (ETDEWEB)

    Zhuk, Alexander [The International Center of Future Science of the Jilin University, Changchun City (China); Odessa National University, Astronomical Observatory, Odessa (Ukraine); Chopovsky, Alexey; Fakhr, Seyed Hossein [Odessa National University, Astronomical Observatory, Odessa (Ukraine); Shulga, Valerii [The International Center of Future Science of the Jilin University, Changchun City (China); Institut of Radio Astronomy of National Academy of Sciences of Ukraine, Kharkov (Ukraine); Wei, Han [The International Center of Future Science of the Jilin University, Changchun City (China)

    2017-11-15

    In a multidimensional Kaluza-Klein model with Ricci-flat internal space, we study the gravitational field in the weak-field limit. This field is created by two coupled sources. First, this is a point-like massive body which has a dust-like equation of state in the external space and an arbitrary parameter Ω of equation of state in the internal space. The second source is a static spherically symmetric massive scalar field centered at the origin where the point-like massive body is. The found perturbed metric coefficients are used to calculate the parameterized post-Newtonian (PPN) parameter γ. We define under which conditions γ can be very close to unity in accordance with the relativistic gravitational tests in the solar system. This can take place for both massive or massless scalar fields. For example, to have γ ∼ 1 in the solar system, the mass of scalar field should be μ >or similar 5.05 x 10{sup -49} g ∝ 2.83 x 10{sup -16} eV. In all cases, we arrive at the same conclusion that to be in agreement with the relativistic gravitational tests, the gravitating mass should have tension: Ω = -1/2. (orig.)

  7. Sequential fission process observed in the reaction (16.7 MeV/u) 238U + nat.Au using mica as dielectric track detector

    International Nuclear Information System (INIS)

    Shahzad, Muhammad Ikram; Qureshi, Imtinan Elahi; Manzoor, Shahid; Khan, Hameed Ahmed

    1999-01-01

    The evidence of sequential fission has been found in the heavy-ion reaction (16.7 MeV/u) 238 U + nat. Au, using muscovite mica as Dielectric Track Detector (DTD) placed in a 2π-geometry configuration. The reaction products originating from the interactions of 238 U ions with the atoms of gold were registered in the detector in the form of tracks and identified for performing a detailed kinematical analysis. For this purpose the spherical polar coordinates of the correlated tracks of the multipronged events have been analyzed on an event-by-event basis. Automatic, semi-automatic and manual measuring methods have been employed to collect and manipulate the track data. The known characteristics of binary and ternary events observed in the reaction have been used for the calibration of the detectors. The computed masses, Q-values and relative velocities of the reaction products determined in this analysis are compared with theoretical predictions based on sequential fission process. Agreement within one standard deviation with respect to the experimental values has been found for the majority of analyzed events. Therefore, it is concluded that three particles in the exit channel of the reaction are produced in two successive steps. In the first step of the reaction, two intermediate nuclei are formed as a result of an inelastic collision between projectile and target atoms while in the second step the fission of one of the intermediate nuclei of the previous step takes place. Furthermore no proximity effects have been observed

  8. MMS Observations of Large Guide Field Symmetric Reconnection Between Colliding Reconnection Jets at the Center of a Magnetic Flux Rope at the Magnetopause

    Science.gov (United States)

    Oieroset, M.; Phan, T. D.; Haggerty, C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R. E.; Mozer, F. S.; hide

    2016-01-01

    We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric Inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (d(sub i) width) current sheet (at approximately 12 d(sub i) downstream of the X line) was well resolved by MMS, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.

  9. Charge and mass distribution in 20Ne induced fission of 181Ta

    International Nuclear Information System (INIS)

    Tripathi, R.; Sudarshan, K.; Goswami, A.; Reddy, A.V.R.; Guin, R.

    2005-01-01

    Charge and mass distribution studies have been carried out at E lab =180 MeV in 20 Ne induced fission of 181 Ta. The mass distribution has been found to be symmetric. The width of the mass distribution has been theoretically calculated using the random neck rupture of Brosa et al. A good agreement between the calculated and experimental mass distribution has been observed. (author)

  10. Coulomb fission and transfer fission at heavy ion collisions

    International Nuclear Information System (INIS)

    Himmele, G.

    1981-01-01

    In the present thesis the first direct evidence of nuclear fission after inelastic scattering of heavy ions (sup(183,184)W, 152 Sm → 238 U; 184 W → 232 Th; 184 W, 232 Th → 248 Cm) is reported. Experiments which were performed at the UNILAC of the Gesellschaft fuer Schwerionenforschung in Darmstadt show the observed heavy ion induced fission possesses significant properties of the Coulomb fission. The observed dependence of the fission probability for inelastic scattering on the projectile charge proves that the nuclear fission is mediated by the electromagnetic interaction between heavy ions. This result suggests moreover a multiple Coulomb-excitation preceding the fission. Model calculations give a first indication, that the Coulomb fission proceeds mainly from the higher β phonons. In the irradiation with 184 W the fission probability of 232 Th is for all incident energies about 40% smaller that at 238 U. The target dependence of the Coulomb fission however doesn't allow, to give quantitative statements about the position and B(E2)-values of higher lying β phonons. (orig./HSI) [de

  11. Proton induced fission of {sup 232}Th at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Gikal, K. B., E-mail: kgikal@mail.ru; Kozulin, E. M.; Bogachev, A. A. [JINR, Flerov Laboratory of Nuclear Reactions (Russian Federation); Burtebaev, N. T.; Edomskiy, A. V. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Itkis, I. M.; Itkis, M. G.; Knyazhev, G. N. [JINR, Flerov Laboratory of Nuclear Reactions (Russian Federation); Kovalchuk, K. V.; Kvochkina, T. N. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Piasecki, E. [Heavy Ion Laboratory of Warsaw University (Poland); Rubchenya, V. A. [University of Jyväskylä, Department of Physics (Finland); Sahiev, S. K. [Institute of Nuclear Physics of Ministry of Energy of the Republic of Kazakhstan (Kazakhstan); Trzaska, W. H. [University of Jyväskylä, Department of Physics (Finland); Vardaci, E. [INFN Napoli, Dipartimento di Scienze Fisiche dell’Università di Napoli (Italy)

    2016-12-15

    The mass-energy distributions and cross sections of proton-induced fission of {sup 232}Th have been measured at the proton energies of 7, 10, 13, 20, 40, and 55 MeV. Experiments were carried out at the proton beam of the K-130 cyclotron of the JYFL Accelerator Laboratory of the University of Jyväskylä and U-150m cyclotron of the Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan. The yields of fission fragments in the mass range A = 60–170 a.m.u. have been measured up to the level of 10−4%. The three humped shape of the mass distribution up has been observed at higher proton energies. The contribution of the symmetric component grows up with increasing proton incident energy; although even at 55 MeV of proton energy the shoulders in the mass energy distribution clearly indicate the asymmetric fission peaks. Evolution of shell structure was observed in the fission fragment mass distributions even at high excitation energy.

  12. Charged particle-induced nuclear fission reactions – Progress and ...

    Indian Academy of Sciences (India)

    attracting the attention of the investigators right from the beginning of nuclear fis- ... the change from mass asymmetric division to symmetric division as A and N/Z values .... (a) Schematic of the fissioning nucleus showing the decision making.

  13. Fusion-fission type collisions

    International Nuclear Information System (INIS)

    Oeschler, H.

    1980-01-01

    Three examples of fusion-fission type collisions on medium-mass nuclei are investigated whether the fragment properties are consistent with fission from equilibrated compound nuclei. Only in a very narrow band of angular momenta the data fulfill the necessary criteria for this process. Continuous evolutions of this mechnism into fusion fission and into a deep-inelastic process and particle emission prior to fusion have been observed. Based on the widths of the fragment-mass distributions of a great variety of data, a further criterion for the compound-nucleus-fission process is tentatively proposed. (orig.)

  14. Post-scission fission theory: Neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1997-01-01

    A survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N (E) and the average prompt neutron multiplicity bar ν p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the recent models. In particular, the dependencies of N (E) and bar ν p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N (E, E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limitations to current (and future) approaches

  15. Sequential fission process observed in the reaction (16.7 MeV/u) {sup 238}U + {sup nat.}Au using mica as dielectric track detector

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, Muhammad Ikram; Qureshi, Imtinan Elahi; Manzoor, Shahid; Khan, Hameed Ahmed

    1999-01-04

    The evidence of sequential fission has been found in the heavy-ion reaction (16.7 MeV/u) {sup 238}U + {sup nat.}Au, using muscovite mica as Dielectric Track Detector (DTD) placed in a 2{pi}-geometry configuration. The reaction products originating from the interactions of {sup 238}U ions with the atoms of gold were registered in the detector in the form of tracks and identified for performing a detailed kinematical analysis. For this purpose the spherical polar coordinates of the correlated tracks of the multipronged events have been analyzed on an event-by-event basis. Automatic, semi-automatic and manual measuring methods have been employed to collect and manipulate the track data. The known characteristics of binary and ternary events observed in the reaction have been used for the calibration of the detectors. The computed masses, Q-values and relative velocities of the reaction products determined in this analysis are compared with theoretical predictions based on sequential fission process. Agreement within one standard deviation with respect to the experimental values has been found for the majority of analyzed events. Therefore, it is concluded that three particles in the exit channel of the reaction are produced in two successive steps. In the first step of the reaction, two intermediate nuclei are formed as a result of an inelastic collision between projectile and target atoms while in the second step the fission of one of the intermediate nuclei of the previous step takes place. Furthermore no proximity effects have been observed.

  16. Ternary fission

    Indian Academy of Sciences (India)

    the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the competition between different geometries as well as different positioning of the fragments. Also, an attempt was made to calculate the mass distribution of ternary fission process within the ...

  17. Challenging fission dynamics around the barrier: The case of {sup 34}S + {sup 186}W

    Energy Technology Data Exchange (ETDEWEB)

    Kozulin, E.M.; Itkis, I.; Knyazheva, G.; Novikov, K.; Bogachev, A.; Dmitriev, S.; Loktev, T. [Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions, Dubna (Russian Federation); Vardaci, E. [Dipartamento di Scienze Fisiche, Napoli (Italy); INFN, Napoli (Italy); Harca, I.M. [Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reactions, Dubna (Russian Federation); Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Bucharest - Magurele (Romania); Universitatea din Bucuresti, Facultatea de Fizica, Bucharest (Romania); Schmitt, C.; Piot, J. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, Caen (France); Azaiez, F.; Matea, I.; Verney, D.; Gottardo, A. [Universite Paris-Saclay, IPN, CNRS/IN2P3, Orsay (France); Dorvaux, O. [Universite de Strasbourg, IPHC, CNRS/IN2P3, Strasbourg (France); Chubarian, G. [Texas A and M University, Cyclotron Institute, College Station, TX (United States); Trzaska, W.H. [Accelerator Laboratory of University of Jyvaskyla (JYFL), Jyvaskyla (Finland); Hanappe, F. [Universite Libre de Bruxelles (ULB), Bruxelles (Belgium); Borcea, C.; Calinescu, S.; Petrone, C. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Bucharest - Magurele (Romania)

    2016-09-15

    The current status of fission dynamics studies in heavy-ion collisions around the Coulomb barrier is illustrated with the {sup 34}S + {sup 186}W reaction. The fission-fragment mass and total kinetic energy were measured at the ALTO facility at IPN Orsay, France, with a dedicated set-up using the (v, E) approach. The measurement reveals the presence of an asymmetric fission component on top of a predominantly symmetric distribution. The asymmetric structure, pointed out for the first time, is discussed along with results of previous experiments studying the same reaction. While these analyses suggested the contribution from either quasi-fission or pre-equilibrium fission, we offer an alternative interpretation, in terms of shell-driven compound-nucleus fission. The present measurement demonstrates the critical influence of resolution when addressing puzzling cases, situated at the crossroads of the various channels opened in a heavy-ion collision. Current status in the field clearly calls for innovative measurements involving manifold correlations and new observables. The outcome of the attempt done in this work in this direction, based on the coincident measurement of prompt γ-rays is reported, and encouraging perspectives are discussed. (orig.)

  18. Low energy nuclear fission

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1982-02-01

    In these lectures we present the liquid drop model of fission and compare some of its prediction with experiment. The liquid drop analogy allows to define in a rather simple and intuitive way a number of useful concepts and possible observables. We then discuss, using the example of the oscillator model, the generality of shell effects. We show how a synthesis of the liquid drop model and of the shell model can be made using the Strutinsky shell averaging procedure. Some experimental data related to the existence of shape isomers are presented and discussed. We conclude by discussing some aspects, both experimental and theoretical, of fission dynamics

  19. Low energy nuclear fission

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1980-08-01

    In these lectures the liquid drop model of fission is presented and some of its predictions compared with experiment. The liquid drop analogy allows to define in a rather simple and intuitive way a number of useful concepts and possible observables. It is shown how a synthesis of the liquid drop model and of the shell model can be made using the Strutinsky shell averaging procedure. Some experimental data related to the existence of shape isomers are presented and discussed. We conclude by discussing some aspects, both experimental and theoretical, of fission dynamics

  20. Formation of fission-fragment mass distribution for nuclei lighter than thorium

    International Nuclear Information System (INIS)

    Itkis, M.G.; Mul'gin, S.I.; Rusanov, A.Y.; Okolovich, A.N.; Smirenkin, G.N.

    1986-01-01

    A phenomenological approach to description of fission-fragment mass distribution Y(M) for nuclei in the vicinity of Pb is developed and used to extract from the experimental Y(M) data the nuclear deformation potential energy V(M) and its components: the macroscopic (liquid-drop) part and the shell correction in the transition state. The results of the analysis are compared with the theoretically obtained V(M) and Y(M). The three-hump fragment-mass distributions observed in Ra fission are satisfactorily described within the framework of the approach developed. The properties of the symmetric and asymmetric fission valleys and the related Y(M) components are discussed

  1. Symmetric splitting of very light systems

    International Nuclear Information System (INIS)

    Grotowski, K.; Majka, Z.; Planeta, R.

    1984-01-01

    Inclusive and coincidence measurements have been performed to study symmetric products from the reactions 74--186 MeV 12 C+ 40 Ca, 141 MeV 9 Be+ 40 Ca, and 153 MeV 6 Li+ 40 Ca. The binary decay of the composite system has been verified. Energy spectra, angular distributions, and fragment correlations are presented. The total kinetic energies for the symmetric products from these very light composite systems are compared to liquid drop model calculations and fission systematics

  2. First-Principles Quantum Dynamics of Singlet Fission: Coherent versus Thermally Activated Mechanisms Governed by Molecular π Stacking

    Science.gov (United States)

    Tamura, Hiroyuki; Huix-Rotllant, Miquel; Burghardt, Irene; Olivier, Yoann; Beljonne, David

    2015-09-01

    Singlet excitons in π -stacked molecular crystals can split into two triplet excitons in a process called singlet fission that opens a route to carrier multiplication in photovoltaics. To resolve controversies about the mechanism of singlet fission, we have developed a first principles nonadiabatic quantum dynamical model that reveals the critical role of molecular stacking symmetry and provides a unified picture of coherent versus thermally activated singlet fission mechanisms in different acenes. The slip-stacked equilibrium packing structure of pentacene derivatives is found to enhance ultrafast singlet fission mediated by a coherent superexchange mechanism via higher-lying charge transfer states. By contrast, the electronic couplings for singlet fission strictly vanish at the C2 h symmetric equilibrium π stacking of rubrene. In this case, singlet fission is driven by excitations of symmetry-breaking intermolecular vibrations, rationalizing the experimentally observed temperature dependence. Design rules for optimal singlet fission materials therefore need to account for the interplay of molecular π -stacking symmetry and phonon-induced coherent or thermally activated mechanisms.

  3. Fission modelling with FIFRELIN

    International Nuclear Information System (INIS)

    Litaize, Olivier; Serot, Olivier; Berge, Leonie

    2015-01-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e - ). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  4. Mechanisms of fission neutron emission

    International Nuclear Information System (INIS)

    Maerten, H.

    1991-01-01

    The time evolution in fission is the starting point for discussing not only the main mechanism of fission neutron emission, the evaporation from fully accelerated fragments, but also possible secondary ones connected with dynamical features of nuclear fission. ''Asymptotic'' conditions as relevant for describing the particle release from highly excited, rapidly moving fragments are defined. Corresponding statistical model approaches to fission neutron emission, based on the adequate consideration of the intricate fragment occurrence probability, reproduce most of the experimental data. The remarkable influence of fission modes on neutron observables is analyzed in the framework of a macroscopic-microscopic scission point model consistent with energy conservation. Finally, chances and deficiencies for solving the mechanism puzzle are summarized. (author). 87 refs, 21 figs

  5. Fusion-Fission like studies from medium heavy to light compound systems

    International Nuclear Information System (INIS)

    Heusch, B.

    1991-01-01

    It has been shown that for systems as light as A CN = 47 up to systems just above the Businaro Gallone point in the mass region of 100 to 110 the probability for a system to deexcite by the fission channel, is not negligible. As predicted, the asymmetrical separation becomes dominant when the A CN mass is decreasing but the symmetrical mode remains measurable. The ambiguities in the measured outgoing fragment distributions arise from the competition with IMF emissions as well as dynamical fission processes which depend strongly on the studied system. Fully relaxed DIC has also be used to interpret the results. I tried to show that precise checks on the behavior of two neighbouring systems as well as search for entrance channel effect and/or energy dependence bring evidence enough that the deexcitation of the compound nucleus can account for the symmetric and asymmetric fission channels as well as IMF emissions. This is strongly supported by different recent calculations all done in this frame. These all conclusions indicate also that the RLDM fails in the data interpretation. The strength of the fission channel depends strongly on the possibilities a system has to deexcite. For very light systems especially the number of open channels available determines directly the flux repartition between direct or compound processes and therefore very large differences in the general behaviour of two neighbouring systems can be observed. 15 figs

  6. Fission meter

    Science.gov (United States)

    Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  7. Phanerozoic burial and exhumation history of southernmost Norway estimated from apatite fission-track analysis data and geological observations

    Science.gov (United States)

    Japsen, Peter; Green, Paul F.; Bonow, Johan M.; Chalmers, James A.; Rasmussen, Erik S.

    2016-04-01

    We present new apatite fission-track analysis (AFTA) data from 27 basement samples from Norway south of ~60°N. The data define three events of cooling and exhumation that overlap in time with events defined from AFTA in southern Sweden (Japsen et al. 2015). The samples cooled below palaeotemperatures of >100°C in a major episode of Triassic cooling as also reported by previous studies (Rohrman et al. 1995). Our study area is just south of the Hardangervidda where Cambrian sediments and Caledonian nappes are present. We thus infer that these palaeotemperatures reflect heating below a cover that accumulated during the Palaeozoic and Triassic. By Late Triassic, this cover had been removed from the Utsira High, off SW Norway, resulting in deep weathering of a granitic landscape (Fredin et al. 2014). Our samples were therefore at or close to the surface at this time. Palaeotemperatures reached ~80°C prior to a second phase of cooling and exhumation in the Jurassic, following a phase of Late Triassic - Jurassic burial. Upper Jurassic sandstones rest on basement near Bergen, NW of our study area (Fossen et al. 1997), and we infer that the Jurassic event led to complete removal of any remaining Phanerozoic cover in the region adjacent to the evolving rift system prior to Late Jurassic subsidence and burial. The data reveal a third phase of cooling in the early Miocene when samples that are now near sea level cooled below palaeotemperatures of ~60°C. For likely values of the palaeogeothermal gradient, such palaeotemperatures correspond to burial below rock columns that reach well above the present-day landscape where elevations rarely exceed 1 km above sea level. This implies that the present-day landscape was shaped by Neogene erosion. This is in agreement with the suggestion of Lidmar-Bergström et al. (2013) that the near-horizontal Palaeic surfaces of southern Norway are the result of Cenozoic erosion to sea level followed by uplift to their present elevations in a

  8. Causal symmetric spaces

    CERN Document Server

    Olafsson, Gestur; Helgason, Sigurdur

    1996-01-01

    This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces

  9. Bimodal nature in low-energy fission of light actinides

    International Nuclear Information System (INIS)

    Nagame, Yuichiro; Nishinaka, Ichiro; Tsukada, Kazuaki; Ikezoe, Hiroshi; Otsuki, Tsutomu; Sueki, Keisuke; Nakahara, Hiromichi; Kudo, Hisaaki.

    1995-01-01

    To solve various problems in the mass division process of light actinoids, some experiments on the basis of bimodal fission were carried. Mass and kinetic energy distribution of Th-232 and U-238 were determined. Pa-225 (N= 134) and Pa-227 (N=136), fission nuclei, were produced by Bi-209 + 0-16 and Bi-209 + 0-18 heavy ion nucleus reactions, and the mass yield distribution were determined by the time-of-flight method and the radiochemical procedure. From the results, two independent deforming processes were proved in the fission process of light actinoid nuclei. On the deforming process through the low fission barrier, nucleus fissioned after small deformation under the influence of stabilization of the shell structure of fission product. In the case of process through the high barrier, however, the nucleus fissioned after large deformation. The unsymmetrical mass division was derived from the former and the symmetrical one from the latter. (S.Y.)

  10. Sequential and double sequential fission observed in heavy ion interaction of (11.67 MeV/u){sup 197}Au projectile with {sup 197}Au target

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, Tabassum [Gomal University, Dera Ismail Khan (Pakistan). Dept. of Physics; Khan, Ehsan Ullah [COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan). Dept. of Physics; Baluch, Javaid Jahan [COMSATS Institute of Information Technology (CIIT), Abbottabad, (Pakistan). Dept. of Environmental Sciences; Shafi-Ur-Rehman, [PAEC, Dera Ghazi Khan (Pakistan). ISL Project; Matiullah, [PINSTECH, Nilore, Islamabad (Pakistan). Physics Div.; Rafique, Muhammad [University of Azad Jammu and Kashmir, Muzaffarabad (Pakistan). Dept. of Physics

    2009-09-15

    The heavy ion interaction of 11.67 MeV/u {sup 197}Au+ {sup 197}Au has been investigated using mica as a passive detector. By employing Solid State Nuclear Track Detection Technique the data of elastic scattering as well as inelastic reaction channel was collected. The off-line data analysis of multi-pronged events was performed by measuring the three-dimensional geometrical coordinates of correlated tracks on event-by-event basis. Multi pronged events observed in this reaction were due to sequential and double sequential fission. Using a computer code PRONGY based on the procedure of internal calibration, it was possible to derive quantities like mass transfer, total kinetic energy loss and scattering angles. (author)

  11. Sequential and double sequential fission observed in heavy ion interaction of (11.67 MeV/u)197Au projectile with 197Au target

    International Nuclear Information System (INIS)

    Nasir, Tabassum; Khan, Ehsan Ullah; Baluch, Javaid Jahan; Shafi-Ur-Rehman; Matiullah; Rafique, Muhammad

    2009-01-01

    The heavy ion interaction of 11.67 MeV/u 197 Au+ 197 Au has been investigated using mica as a passive detector. By employing Solid State Nuclear Track Detection Technique the data of elastic scattering as well as inelastic reaction channel was collected. The off-line data analysis of multi-pronged events was performed by measuring the three-dimensional geometrical coordinates of correlated tracks on event-by-event basis. Multi pronged events observed in this reaction were due to sequential and double sequential fission. Using a computer code PRONGY based on the procedure of internal calibration, it was possible to derive quantities like mass transfer, total kinetic energy loss and scattering angles. (author)

  12. Fission dynamics of superheavy nuclei formed in uranium induced reactions

    International Nuclear Information System (INIS)

    Gurjit Kaur; Sandhu, Kirandeep; Sharma, Manoj K.

    2017-01-01

    The compound nuclear system follows symmetric fission if the competing processes such as quasi-elastic, deep inelastic, quasi-fission etc are absent. The contribution of quasi fission events towards the fusion-fission mechanism depends on the entrance channel asymmetry of reaction partners, deformations and orientations of colliding nuclei beside the dependence on energy and angular momentum. Usually the 209 Bi and 208 Pb targets are opted for the production of superheavy nuclei with Z CN =104-113. The nuclei in same mass/charge range can also be synthesized using actinide targets + light projectiles (i.e. asymmetric reaction partners) via hot fusion interactions. These actinide targets are prolate deformed which prefer the compact configurations at above barrier energies, indicating the occurrence of symmetric fission events. Here an attempt is made to address the dynamics of light superheavy system (Z CN =104-106), formed via hot fusion interactions involving actinide targets

  13. Determination of the fission barrier height in fission of heavy radioactive beams induced by the (d,p)-transfer

    CERN Multimedia

    A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...

  14. Ideological Fission

    DEFF Research Database (Denmark)

    Christiansen, Steen Ledet

    ; it is a materialisation of an ideological fission which attempts to excise certain ideological constructions, yet paradoxically casting them in a form that is recognizable and familiar. The monstrous metonomy which is used shows us glimpses of a horrid being, intended to vilify the attack on New York City. However......, it is a being which is reminiscent of earlier monsters - from Godzilla to The Blob. It is evident that the Cloverfield monster is a paradoxical construction which attempts to articulate fear and loathing about terrorism, but ends up trapped in an ideological dead-end maze, unable to do anything other than...

  15. Mica fission detectors

    International Nuclear Information System (INIS)

    Wong, C.; Anderson, J.D.; Hansen, L.; Lehn, A.V.; Williamson, M.A.

    1977-01-01

    The present development status of the mica fission detectors is summarized. It is concluded that the techniques have been refined and developed to a state such that the mica fission counters are a reliable and reproducible detector for fission events

  16. Facade Layout Symmetrization

    KAUST Repository

    Jiang, Haiyong

    2016-04-11

    We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.

  17. Symmetrization of Facade Layouts

    KAUST Repository

    Jiang, Haiyong; Yan, Dong-Ming; Dong, Weiming; Wu, Fuzhang; Nan, Liangliang; Zhang, Xiaopeng

    2016-01-01

    We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.

  18. Facade Layout Symmetrization

    KAUST Repository

    Jiang, Haiyong; Dong, Weiming; Yan, Dongming; Zhang, Xiaopeng

    2016-01-01

    We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.

  19. Symmetrization of Facade Layouts

    KAUST Repository

    Jiang, Haiyong

    2016-02-26

    We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.

  20. Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O+232Th reaction

    Directory of Open Access Journals (Sweden)

    R. Léguillon

    2016-10-01

    Full Text Available It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O+232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation–dissipation model.

  1. Fission theory and actinide fission data

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1975-06-01

    The understanding of the fission process has made great progress recently, as a result of the calculation of fission barriers, using the Strutinsky prescription. Double-humped shapes were obtained for nuclei in the actinide region. Such shapes could explain, in a coherent manner, many different phenomena: fission isomers, structure in near-threshold fission cross sections, intermediate structure in subthreshold fission cross sections and anisotropy in the emission of the fission fragments. A brief review of fission barrier calculations and relevant experimental data is presented. Calculations of fission cross sections, using double-humped barrier shapes and fission channel properties, as obtained from the data discussed previously, are given for some U and Pu isotopes. The fission channel theory of A. Bohr has greatly influenced the study of low-energy fission. However, recent investigation of the yields of prompt neutrons and γ rays emitted in the resonances of {sup 235}U and {sup 239}Pu, together with the spin determination for many resonances of these two nuclei cannot be explained purely in terms of the Bohr theory. Variation in the prompt neutron and γ-ray yields from resonance to resonance does not seem to be due to such fission channels, as was thought previously, but to the effect of the (n,γf) reaction. The number of prompt fission neutrons and the kinetic energy of the fission fragments are affected by the energy balance and damping or viscosity effects in the last stage of the fission process, from saddle point to scission. These effects are discussed for some nuclei, especially for {sup 240}Pu.

  2. New fission valley for 258Fm and nuclei beyond

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1986-01-01

    Experimental results on the fission properties of nuclei close to 264 Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus 258 Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic energy peaked at about 235 MeV whereas 256 Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic energy peaked at about 200 MeV. Qualitatively, these sudden changes hve been postulated to be due to the emergence of fragment shells in symmetric fission products close to 132 Sn. A quantitative calculation that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. The implications of the new fission valley on the stability of the heaviest elements is discussed. 33 refs., 12 figs

  3. Chemical Production using Fission Fragments

    International Nuclear Information System (INIS)

    Dawson, J. K.; Moseley, F.

    1960-01-01

    Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author) [fr

  4. Physics and chemistry of fission

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: In the pleasant and hospitable atmosphere of the Kernforschungsanlage Juelich in the Federal Republic of Germany, the IAEA symposium on the Physics and Chemistry of Fission took place. Almost 200 scientists attended, 154 abstracts were submitted, and 57 papers presented, but more important than the numbers was the quality of the contributions and the progress reported at the symposium. The neutron was discovered almost 50 years ago; 40 years ago the idea of nuclear fission was born. Since then, a number of laboratories have worked hard to explain the phenomenon of fission One would expect that by now scientists would know exactly what happens in a nucleus before and during the process of fission, particularly as there are hundreds of power and research reactors in operation, and fission of uranium isotopes is the basis of their functioning. At first glance, fission seems a simple process: a neutron hits and penetrates the uranium nucleus which becomes excited, i.e. has a surplus of energy. One way to get rid of this energy is for the nucleus to split into two parts; additional products of this process are energy and more neutrons. Nature, however, seems to dislike such straightforward explanations. In the case of fission, scientists have observed a number of phenomena which disagree with a simple model. Sometimes, a nucleus will split into two parts without being 'attacked' by a neutron; this spontaneous fission opens up a new line of fission research and several contributions at the symposium reported on sophisticated experiments designed to unravel some of its specific details. Sometimes, a fissioning nucleus will emit another particle: ternary fission has become a powerful tool for studying the properties of nuclei during the fission process. For the scientist, it is fascinating to observe how the nucleus behaves during fission. They invent models which are supposed to reproduce the most probable course of events leading to fission. In one of these

  5. Nuclear fission and reactions

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The nuclear fission research programs are designed to elucidate basic features of the fission process. Specifically, (1) factors determining how nucleons of a fissioning nucleus are distributed between two fission fragments, (2) factors determining kinetic energy and excitation energies of fragments, and (3) factors controlling fission lifetimes. To these ends, fission studies are reported for several heavy elements and include investigations of spontaneous and neutron-induced fission, heavy ion reactions, and high energy proton reactions. The status of theoretical research is also discussed. (U.S.)

  6. Measurements of fission yields

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    2000-01-01

    After some historical introductory remarks on the discovery of nuclear fission and early fission yield determinations, the present status of knowledge on fission yields is briefly reviewed. Practical and fundamental reasons motivating the pursuit of fission yield measurements in the coming century are pointed out. Recent results and novel techniques are described that promise to provide new interesting insights into the fission process during the next century. (author)

  7. Radiochemical studies on fission

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on nuclear chemistry; topics considered include: recoil range and kinetic energy distribution in the thermal neutron ftssion of /sup 245/Cm; mass distribution and recoil range measurements in the reactor neutron-induced fission of /sup 232/U; fission yields in the thermal neutron fission of /sup 241/PU highly asymmetric binary fission of uranium induced by reactor neutrons; and nuclear charge distribution in low energy fission. ( DHM)

  8. Low-energy fission systematics of the fermium isotopes: the transition from mass asymmetry at fermium-254 to symmetry at fermium-259

    International Nuclear Information System (INIS)

    Hoffman, D.C.

    1976-01-01

    Recent measurements have shown that 259 Fm gives the highest total kinetic energy release and the most symmetric mass division so far observed for spontaneous fission. These results continue the trends observed previously in the fermium isotopes toward higher total kinetic energies and more symmetric mass division with increasing mass of the fermium isotopes. The transition from asymmetric mass division ( 254 Fm) to highly favored symmetric mass division ( 259 Fm) now appears to have been completed. These features are consistent with the simple postulate that the more neutron-rich fermium isotopes show an increase in the yield of symmetric fragments and in the total kinetic energy because symmetric mass division of fermium (Z = 100) nuclei results in two fragments which have the magic proton number of 50 and are close to the magic neutron number of 82. The proximity of the fragments to the doubly magic configuration seems to have a profound effect on the mass division and total kinetic energy release in fission

  9. On Symmetric Polynomials

    OpenAIRE

    Golden, Ryan; Cho, Ilwoo

    2015-01-01

    In this paper, we study structure theorems of algebras of symmetric functions. Based on a certain relation on elementary symmetric polynomials generating such algebras, we consider perturbation in the algebras. In particular, we understand generators of the algebras as perturbations. From such perturbations, define injective maps on generators, which induce algebra-monomorphisms (or embeddings) on the algebras. They provide inductive structure theorems on algebras of symmetric polynomials. As...

  10. Dynamic of fission and quasi-fission revealed by pre-scission neutron evaporation

    International Nuclear Information System (INIS)

    Hinde, D.J.

    1991-06-01

    The dependence of pre-scission neutron multiplicities (ν-pre) on the mass-split and total kinetic energy (TKE) in fusion-fission and quasi-fission has been measured for a wide range of projectile-target combinations. the data indicate that the fusion-fission time scale is shorter for asymmetric splits than for symmetric splits, whilst there is no dependence on TKE. For quasi-fission reactions induced using 64 Ni projectiles, ν-pre falls rapidly with increasing TKE, indicating that these neutrons are emitted near to or after scission. A new interpretation of both neutron multiplicities and mean energies (the neutron clock-thermometer) allows the extraction of time scales with much less uncertainty than previously, and also gives information about the deformation from which the neutrons are emitted. 15 refs., 13 figs

  11. Scission-point model of nuclear fission based on deformed-shell effects

    International Nuclear Information System (INIS)

    Wilkins, B.D.; Steinberg, E.P.; Chasman, R.R.

    1976-01-01

    A static model of nuclear fission is proposed based on the assumption of statistical equilibrium among collective degrees of freedom at the scission point. The relative probabilities of formation of complementary fission fragment pairs are determined from the relative potential energies of a system of two nearly touching, coaxial spheroids with quadrupole deformations. The total potential energy of the system at the scission point is calculated as the sum of liquid-drop and shell- and pairing-correction terms for each spheroid, and Coulomb and nuclear potential terms describing the interaction between them. The fissioning system at the scission point is characterized by three parameters: the distance between the tips of the spheroids (d), the intrinsic excitation energy of the fragments (tau/sub int/), and a collective temperature (T/sub coll/). No attempt is made to adjust these parameters to give optimum fits to experimental data, but rather, a single choice of values for d, tau/sub int/, and T/sub coll/ is used in the calculations for all fissioning systems. The general trends of the distributions of mass, nuclear charge, and kinetic energy in the fission of a wide range of nuclides from Po to Fm are well reproduced in the calculations. The major influence of the deformed-shell corrections for neutrons is indicated and provides a convenient framework for the interpretation of observed trends in the data and for the prediction of new results. The scission-point configurations derived from the model provide an interpretation of the ''saw-tooth'' neutron emission curve as well as previously unexplained observations on the variation of TKE for isotopes of U, Pu, Cm, and Cf; structure in the width of total kinetic energy release as a function of fragment mass ratio; and a difference in threshold energies for symmetric and asymmetric mass splits in the fission of Ra and Ac isotopes

  12. Fission products collecting devices

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshi

    1979-01-01

    Purpose: To enable fission products trap with no contamination to coolants and cover gas by the provision of a fission products trap above the upper part of a nuclear power plant. Constitution: Upon fuel failures in a reactor core, nuclear fission products leak into coolants and move along the flow of the coolants to the coolants above the reactor core. The fission products are collected in a trap container and guided along a pipeline into fission products detector. The fission products detector monitors the concentration of the fission products and opens the downstream valve of the detector when a predetermined concentration of the fission products is detected to introduce the fission products into a waste gas processing device and release them through the exhaust pipe. (Seki, T.)

  13. Energy released in fission

    International Nuclear Information System (INIS)

    James, M.F.

    1969-05-01

    The effective energy released in and following the fission of U-235, Pu-239 and Pu-241 by thermal neutrons, and of U-238 by fission spectrum neutrons, is discussed. The recommended values are: U-235 ... 192.9 ± 0.5 MeV/fission; U-238 ... 193.9 ± 0.8 MeV/fission; Pu-239 ... 198.5 ± 0.8 MeV/fission; Pu-241 ... 200.3 ± 0.8 MeV/fission. These values include all contributions except from antineutrinos and very long-lived fission products. The detailed contributions are discussed, and inconsistencies in the experimental data are pointed out. In Appendix A, the contribution to the total useful energy release in a reactor from reactions other than fission are discussed briefly, and in Appendix B there is a discussion of the variations in effective energy from fission with incident neutron energy. (author)

  14. Fission properties of very heavy actinides

    International Nuclear Information System (INIS)

    Hoffman, D.C.

    1979-01-01

    The existing data on neutron-emission, kinetic-energy and mass distributions, and half-lives for spontaneous fission of the heavy actinides are reviewed. A comparison of the data for the Fm isotopes with heavier and lighter nuclides suggests that the properties of the heavy Fm isotopes may be unique and can qualitatively be explained on the basis of fragment shell effects, i.e., symmetric fission results in two fragments with configurations close to the doubly magic 132 Sn nucleus. The effect of excitation energy and the use of systematics and theoretical predictions of fission properties and half-lives in the identification of new heavy element isotopes is discussed. 54 references

  15. Symmetric cryptographic protocols

    CERN Document Server

    Ramkumar, Mahalingam

    2014-01-01

    This book focuses on protocols and constructions that make good use of symmetric pseudo random functions (PRF) like block ciphers and hash functions - the building blocks for symmetric cryptography. Readers will benefit from detailed discussion of several strategies for utilizing symmetric PRFs. Coverage includes various key distribution strategies for unicast, broadcast and multicast security, and strategies for constructing efficient digests of dynamic databases using binary hash trees.   •        Provides detailed coverage of symmetric key protocols •        Describes various applications of symmetric building blocks •        Includes strategies for constructing compact and efficient digests of dynamic databases

  16. HAC and fission reactors

    International Nuclear Information System (INIS)

    Fujiwara, I.; Moriyama, H.; Tachikawa, E.

    1984-01-01

    In the fission process, newly formed fission products undergo hot atom reactions due to their energetic recoil and abnormal positive charge. The hot atom reactions of the fission products are usually accompanied by secondary effects such as radiation damage, especially in condensed phase. For reactor safety it is valuable to know the chemical behaviour and the release behaviour of these radioactive fission products. Here, the authors study the chemical behaviour and the release behaviour of the fission products from the viewpoint of hot atom chemistry (HAC). They analyze the experimental results concerning fission product behaviour with the help of the theories in HAC and other neighboring fields such as radiation chemistry. (Auth.)

  17. Fission before mass equilibration in heavy ion reactions

    International Nuclear Information System (INIS)

    Yadav, C.; Thomas, R.G.; Mohanty, A.K.

    2013-01-01

    For compound nucleus (CN) fission, it is expected that the width of the fragment mass distribution is independent of the entrance channel. In quasifission reaction, however, recent experiments reported anomalous broadening of mass distribution for more symmetric systems forming the same compound nucleus in fissile (fissility ∼ 0.8) and less fissile (fissility ∼ 0.7) systems. These measurements have not shown any mass-angle correlation, but width of fission fragment mass distribution was found to be consistently higher than that expected for fusion-fission

  18. Fission Research at IRMM

    Directory of Open Access Journals (Sweden)

    Al-Adili A.

    2010-03-01

    Full Text Available Fission Research at JRC-IRMM has a longstanding tradition. The present paper is discussing recent investigations of fission fragment properties of 238 U(n,f, 234 U(n,f, prompt neutron emission in fission of 252 Cf(SF as well as the prompt fission neutron spectrum of 235 U(n,f and is presenting the most important results.

  19. Equilibrium fission model calculations

    International Nuclear Information System (INIS)

    Beckerman, M.; Blann, M.

    1976-01-01

    In order to aid in understanding the systematics of heavy ion fission and fission-like reactions in terms of the target-projectile system, bombarding energy and angular momentum, fission widths are calculated using an angular momentum dependent extension of the Bohr-Wheeler theory and particle emission widths using angular momentum coupling

  20. Maximally Symmetric Composite Higgs Models.

    Science.gov (United States)

    Csáki, Csaba; Ma, Teng; Shu, Jing

    2017-09-29

    Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.

  1. Centrioles in Symmetric Spaces

    OpenAIRE

    Quast, Peter

    2011-01-01

    We describe all centrioles in irreducible simply connected pointed symmetric spaces of compact type in terms of the root system of the ambient space, and we study some geometric properties of centrioles.

  2. A symmetrical rail accelerator

    International Nuclear Information System (INIS)

    Igenbergs, E.

    1991-01-01

    This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator

  3. Symmetric eikonal expansion

    International Nuclear Information System (INIS)

    Matsuki, Takayuki

    1976-01-01

    Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)

  4. Mass dependence of positive pion-induced fission

    International Nuclear Information System (INIS)

    Khan, H.A.; Khan, N.A.; Peterson, R.J.

    1991-01-01

    Fission cross sections for a range of targets have been measured by solid-state track detectors following 80 and 100 MeV π + bombardment. Fission probabilities have been inferred by comparison to computed reaction cross sections. Fission probabilities for heavy targets agree with those for other probes of comparable energy and with statistical calculations. Probabilities for lighter targets are much above those previously observed or computed. Ternary fission cross sections and multiplicities of light fragments have also been determined

  5. Dynamical features of nuclear fission

    Indian Academy of Sciences (India)

    Wheeler underestimates several observables in heavy-ion-induced ... excitation energies, there may not be sufficient nuclei near the fission barrier after the .... Dissipation in nuclear dynamics in the mean-field regime accounts for the coupling of the .... barrier for different isotopes of Fr. The lines are drawn to guide the eye.

  6. Axi-symmetric patterns of active polar filaments on spherical and composite surfaces

    Science.gov (United States)

    Srivastava, Pragya; Rao, Madan

    2014-03-01

    Experiments performed on Fission Yeast cells of cylindrical and spherical shapes, rod-shaped bacteria and reconstituted cylindrical liposomes suggest the influence of cell geometry on patterning of cortical actin. A theoretical model based on active hydrodynamic description of cortical actin that includes curvature-orientation coupling predicts spontaneous formation of acto-myosin rings, cables and nodes on cylindrical and spherical geometries [P. Srivastava et al, PRL 110, 168104(2013)]. Stability and dynamics of these patterns is also affected by the cellular shape and has been observed in experiments performed on Fission Yeast cells of spherical shape. Motivated by this, we study the stability and dynamics of axi-symmetric patterns of active polar filaments on the surfaces of spherical, saddle shaped and conical geometry and classify the stable steady state patterns on these surfaces. Based on the analysis of the fluorescence images of Myosin-II during ring slippage we propose a simple mechanical model for ring-sliding based on force balance and make quantitative comparison with the experiments performed on Fission Yeast cells. NSF Grant DMR-1004789 and Syracuse Soft Matter Program.

  7. Cluster decay analysis and related structure effects of fissionable ...

    Indian Academy of Sciences (India)

    2015-08-01

    Aug 1, 2015 ... Collective clusterization approach of dynamical cluster decay model (DCM) has been ... fusion–fission process resulting in the emission of symmetric and/or ... represents the relative separation distance between two fragments or clusters ... decay constant λ or decay half-life T1/2 is defined as λ = (ln 2/T1/2) ...

  8. The Growth of Sea cucumber Stichopus herrmanni After Transverse Induced Fission in Two and Three Fission Plane

    Directory of Open Access Journals (Sweden)

    Retno Hartati

    2016-06-01

    Full Text Available Transverse induced fission proven could be done in Teripang Tril, Stichopus herrmanni. This present works aimed to analyze wound recovery, regeneration period and growth of Teripang Trill  after asexual reproduction by fission using two and three fission plane. Observations were made every day until the sea cucumber body separated into two or more (depending on treatment and reared for 16 weeks.  The results showed that there are differences in wound recovery, regeneration period and growth of S. herrmanni depend on their different fission plane. The wound recovery and regeneration period (days of anterior, middle and posterior individu S. herrmanni resulted from two and three fission plane were varied but the two fission plane the anterior individu recover for longer period than posterior part and  the wound recover process in both end for thee fission plane was same. Average growth of anterior and posterior fragment were longer for two fission plane than three fission plane.  The middle fragment (M1 and M2 both fission plane was able to grow but very low.  It showed that three fission plane gave very slow growth in every fragment of the body. Keywords: growth, post-fission, fission plane, Stichopus herrmanni

  9. Theory of neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1989-01-01

    Following a summary of the observables in neutron emission in fission, a brief history is given of theoretical representations of the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity /bar /nu///sub p/. This is followed by descriptions, together with examples, of modern approaches to the calculation of these quantities including recent advancements. Emphasis will be placed upon the predictability and accuracy of the modern approaches. In particular, the dependence of N(E) and /bar /nu///sub p/ on the fissioning nucleus and its excitation energy will be discussed, as will the effects of and competition between first-, second- and third-chance fission in circumstances of high excitation energy. Finally, properties of neutron-rich (fission-fragment) nuclei are discussed that must be better known to calculate N(E) and /bar /nu///sub p/ with higher accuracy than is currently possible. 17 refs., 11 figs

  10. Experimental survey of the potential energy surfaces associated with fission

    International Nuclear Information System (INIS)

    Britt, H.C.

    1980-01-01

    Progress in the experimental determination of the properties of the potential energy surface associated with fission is reviewed. The importance of nuclear symmetry effects on the calculation of fission widths is demonstrated. Evidence is presented for the fragmentation of the mass-asymmetric second barrier in the thorium region and the axial asymmetric first barrier in the californium region. Detailed analyses of experimental data suggest the presence of two parallel second barriers; the normal mass-asymmetric, axial-symmetric barrier and a slightly higher mass-symmetric, axial-asymmetric barrier. Experimental barrier parameters are determined systematically and compared with calculations from various theoretical models. Techniques for expanding fission probability measurements to higher energies are discussed. (author)

  11. First detection in gamma-rays of a young radio galaxy: Fermi -LAT observations of the compact symmetric object PKS 1718−649

    Energy Technology Data Exchange (ETDEWEB)

    Migliori, G.; Loh, A.; Corbel, S. [Laboratoire AIM (CEA/IRFU—CNRS/INSU—Université Paris Diderot), CEA DSM/SAp, F-91191 Gif-sur-Yvette (France); Siemiginowska, A.; Sobolewska, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ostorero, L. [Dipartimento di Fisica, Università degli Studi di Torino and Istituto Nazionale di Fisica Nucleare (INFN), Via P. Giuria 1, I-10125 Torino (Italy); Stawarz, Ł., E-mail: giulia.migliori@cea.fr [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Kraków (Poland)

    2016-04-20

    We report the γ -ray detection of a young radio galaxy, PKS 1718−649, belonging to the class of compact symmetric objects (CSOs), with the Large Area Telescope (LAT) on board the Fermi satellite. The third Fermi Gamma-ray LAT catalog (3FGL) includes an unassociated γ -ray source, 3FGL J1728.0−6446, located close to PKS 1718−649. Using the latest Pass 8 calibration, we confirm that the best-fit 1 σ position of the γ -ray source is compatible with the radio location of PKS 1718−649. Cross-matching of the γ -ray source position with the positions of blazar sources from several catalogs yields negative results. Thus, we conclude that PKS 1718−649 is the most likely counterpart to the unassociated LAT source. We obtain a detection test statistics TS ∼ 36 (>5 σ ) with a best-fit photon spectral index Γ = 2.9 ± 0.3 and a 0.1–100 GeV photon flux density F {sub 0.1−100} {sub GeV} = (11.5 ± 0.3) × 10{sup −9} ph cm{sup −2} s{sup −1}. We argue that the linear size (∼2 pc), the kinematic age (∼100 years), and the source distance ( z = 0.014) make PKS 1718−649 an ideal candidate for γ -ray detection in the framework of the model proposing that the most compact and the youngest CSOs can efficiently produce GeV radiation via inverse-Compton scattering of the ambient photon fields by the radio lobe non-thermal electrons. Thus, our detection of the source in γ -rays establishes young radio galaxies as a distinct class of extragalactic high-energy emitters and yields a unique insight on the physical conditions in compact radio lobes interacting with the interstellar medium of the host galaxy.

  12. Fission level densities

    International Nuclear Information System (INIS)

    Maslov, V.M.

    1998-01-01

    Fission level densities (or fissioning nucleus level densities at fission saddle deformations) are required for statistical model calculations of actinide fission cross sections. Back-shifted Fermi-Gas Model, Constant Temperature Model and Generalized Superfluid Model (GSM) are widely used for the description of level densities at stable deformations. These models provide approximately identical level density description at excitations close to the neutron binding energy. It is at low excitation energies that they are discrepant, while this energy region is crucial for fission cross section calculations. A drawback of back-shifted Fermi gas model and traditional constant temperature model approaches is that it is difficult to include in a consistent way pair correlations, collective effects and shell effects. Pair, shell and collective properties of nucleus do not reduce just to the renormalization of level density parameter a, but influence the energy dependence of level densities. These effects turn out to be important because they seem to depend upon deformation of either equilibrium or saddle-point. These effects are easily introduced within GSM approach. Fission barriers are another key ingredients involved in the fission cross section calculations. Fission level density and barrier parameters are strongly interdependent. This is the reason for including fission barrier parameters along with the fission level densities in the Starter File. The recommended file is maslov.dat - fission barrier parameters. Recent version of actinide fission barrier data obtained in Obninsk (obninsk.dat) should only be considered as a guide for selection of initial parameters. These data are included in the Starter File, together with the fission barrier parameters recommended by CNDC (beijing.dat), for completeness. (author)

  13. The symmetric extendibility of quantum states

    International Nuclear Information System (INIS)

    Nowakowski, Marcin L

    2016-01-01

    Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states. (paper)

  14. Multiparty symmetric sum types

    DEFF Research Database (Denmark)

    Nielsen, Lasse; Yoshida, Nobuko; Honda, Kohei

    2010-01-01

    This paper introduces a new theory of multiparty session types based on symmetric sum types, by which we can type non-deterministic orchestration choice behaviours. While the original branching type in session types can represent a choice made by a single participant and accepted by others...... determining how the session proceeds, the symmetric sum type represents a choice made by agreement among all the participants of a session. Such behaviour can be found in many practical systems, including collaborative workflow in healthcare systems for clinical practice guidelines (CPGs). Processes...... with the symmetric sums can be embedded into the original branching types using conductor processes. We show that this type-driven embedding preserves typability, satisfies semantic soundness and completeness, and meets the encodability criteria adapted to the typed setting. The theory leads to an efficient...

  15. Counting with symmetric functions

    CERN Document Server

    Mendes, Anthony

    2015-01-01

    This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics.  It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions.  Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions.  Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4.  The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enu...

  16. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard

    2010-01-01

    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....

  17. Angular distributions in quasi-fission reactions

    International Nuclear Information System (INIS)

    Luetzenkirchen, K.; Kratz, J.V.; Lucas, R.; Poitou, J.; Gregoire, C.; Wirth, G.; Bruechle, W.; Suemmerer, K.

    1985-10-01

    Angular distributions for fission-like fragments were measured in the systems 50 Ti, 56 Fe + 208 Pb by applying an off-line KX-ray activation technique. The distributions d 2 sigma/dTHETAdZ exhibit forward-backward asymmetries that are strongly Z-dependent. They result from a process (quasi-fission) which yields nearly symmetric masses in times comparable to the rotational period of the composite system. A method for obtaining the variance of the tilting angular momentum, K 0 2 , from these skewed, differential angular distributions is described. The results indicate that the tilting mode is not fully excited in quasi-fission reactions. The results are compared to the sum of the variances of all statistical spin components, measured via γ-multiplicities. Integration of the angular distributions d 2 sigma/dTHETAdZ over all values of Z yields integral angular distributions dsigma/dTHETA and dsigma/dΩ symmetric around 90 0 . The associated unusually large anisotropies do not at all provide an adequate basis for tests or modifications of the transition state theory. A deconvolution of d 2 sigma/dTHETAdZ is performed with gaussian distributions depending on rotational angles ΔTHETA extending over a range of up to 540 0 . From the mean values a time scale for the evolution of K 0 is calculated. (orig.)

  18. Fission, fusion and photonuclear physics. Chapter 2

    International Nuclear Information System (INIS)

    Mazur, C.; Ribrag, M.

    Pronounced structures in the time of flight distribution of fission fragments, having a given energy, were recently reported. This experiment has been reproduced with a better time resolution and structures are not observed [fr

  19. Modeling Intracellular Oscillations and Polarity Transition in Fission Yeast

    Science.gov (United States)

    Drake, Tyler; Das, Maitreyi; Verde, Fulvia; Vavylonis, Dimitrios

    2011-03-01

    Fission yeast, a pill-shaped model organism, restricts growth to its tips. These cells maintain an asymmetric growth state, growing at only one tip, until they meet length and cell-cycle requirements. With these met, they grow at both. The mechanism of this transition, new-end take-off (NETO), remains unclear. We find that NETO occurs due to long-range competition for fast-diffusing signaling protein Cdc42 between the old and new tips. From experimental results, we suppose that symmetric tips compete for Cdc42, which triggers growth. We describe a symmetric growth model based on competition between tips. This model restricts short cells to monopolar states while allowing longer cells to be bipolar. Autocatalytic Cdc42 recruiting at both cells tips leads to broken symmetry, and the recruiting cuts off as tip Cdc42 levels saturate. Non-linear differential equations describe the model, with stable attractors indicating valid distributions. Linear stability analysis and numerical methods identify stable fixed points over a twofold increase in cell length. The model reproduces qualitative behavior of the organism. We show that observed pole-to-pole Cdc42 oscillations may facilitate the polarity transition and discuss their relationship to the Min system in E. Coli.

  20. Theoretical Description of the Fission Process

    International Nuclear Information System (INIS)

    Nazarewicz, Witold

    2009-01-01

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation's nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic

  1. How fission was discovered

    International Nuclear Information System (INIS)

    Fluegge, S.

    1989-01-01

    After the great survey of neutron induced radioactivity by Fermi and co-workers, the laboratories in Paris and Berlin-Dahlen tried to disentangle the complex results found in uranium. At that time neutron sources were small, activities low, and equipment very simple. Chemistry beyond uranium still was unknown. Hahn and Meitner believed to have observed three transuranic isomeric chains, a doubtful result even then. Early in 1938, Curie and Savic in Paris found an activity interpreted to be actinium, and Hahn and Meitner another to be radium. Both interpretations seemed impossible from energy considerations. Hahn and Strassmann, therefore, continued this work and succeeded to separate the new activity from radium. There remained no doubt that a barium isotope had been produced, the uranium nucleus splitting in the yet-unknown process we now call fission

  2. Fission product yields

    International Nuclear Information System (INIS)

    Valenta, V.; Hep, J.

    1978-01-01

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235 U, 239 Pu, 241 Pu and for fast fission (approximately 1 MeV) of 235 U, 238 U, 239 Pu, 241 Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  3. Fission neutron multiplicity calculations

    International Nuclear Information System (INIS)

    Maerten, H.; Ruben, A.; Seeliger, D.

    1991-01-01

    A model for calculating neutron multiplicities in nuclear fission is presented. It is based on the solution of the energy partition problem as function of mass asymmetry within a phenomenological approach including temperature-dependent microscopic energies. Nuclear structure effects on fragment de-excitation, which influence neutron multiplicities, are discussed. Temperature effects on microscopic energy play an important role in induced fission reactions. Calculated results are presented for various fission reactions induced by neutrons. Data cover the incident energy range 0-20 MeV, i.e. multiple chance fission is considered. (author). 28 refs, 13 figs

  4. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  5. Distributed Searchable Symmetric Encryption

    NARCIS (Netherlands)

    Bösch, C.T.; Peter, Andreas; Leenders, Bram; Lim, Hoon Wei; Tang, Qiang; Wang, Huaxiong; Hartel, Pieter H.; Jonker, Willem

    Searchable Symmetric Encryption (SSE) allows a client to store encrypted data on a storage provider in such a way, that the client is able to search and retrieve the data selectively without the storage provider learning the contents of the data or the words being searched for. Practical SSE schemes

  6. Fusion-fission of heavy systems

    International Nuclear Information System (INIS)

    Rivet, M.F.; Alami, R.; Borderie, B.; Fuchs, H.; Gardes, D.; Gauvin, H.

    1988-01-01

    The influence of the entrance channel on fission processes was studied by forming the same composite system by two different target-projectile combinations ( 40 Ar + 209 Bi and 56 Fe + 187 Re, respectively). Compound nucleus fission and quasi fission were observed and the analysis was performed in the framework of the extra-extra-push model, which provides a qualitative interpretation of the results; limits for the extra-extra-push threshold are given, but problems with quantitative predictions for the extra-push are noted. (orig.)

  7. Fission cross-section calculations and the multi-modal fission model

    International Nuclear Information System (INIS)

    Hambsch, F.J.

    2004-01-01

    New, self consistent, neutron-induced reaction cross section calculations for 235,238 U, 237 Np have been performed. The statistical model code STATIS was improved to take into account the multimodality of the fission process. The three most dominant fission modes, the two asymmetric standards I (S1) and standard II (S2) modes and the symmetric superlong (SL) mode have been taken into account. De-convoluted fission cross sections for those modes for 235,238 U(n,f) and 237 Np(n,f) based on experimental branching ratios, were calculated for the first time up to the second chance fission threshold. For 235 U(n,f), the calculations being made up to 28 MeV incident neutron energy, higher fission chances have been considered. This implied the need for additional calculations for the neighbouring isotopes. As a side product also mass yield distributions could be calculated at energies hitherto not accessible by experiment. Experimental validation of the predictions is being envisaged

  8. The nuclear fission

    International Nuclear Information System (INIS)

    Fiorentino, J.

    1983-01-01

    The nuclear fission process considering initially the formation of compound nucleus and finishing with radioactive decay of fission products is studied. The process is divided in three parts which consist of the events associated to the nucleus of intermediate transitional state, the scission configuration, and the phenomenum of post scission. (M.C.K.) [pt

  9. Fission gas detection system

    International Nuclear Information System (INIS)

    Colburn, R.P.

    1984-01-01

    A device for collecting fission gas released by failed fuel rods which device uses a filter adapted to pass coolant but to block passage of fission gas bubbles due to the surface tension of the bubbles. The coolant may be liquid metal. (author)

  10. Muon-induced fission

    International Nuclear Information System (INIS)

    Polikanov, S.

    1980-01-01

    A review of recent experimental results on negative-muon-induced fission, both of 238 U and 232 Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238 U. (author)

  11. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  12. The fusion-fission process in the reaction {sup 34}S+{sup 186}W near the interaction barrier

    Energy Technology Data Exchange (ETDEWEB)

    Harca, I. M. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, (FLNR JINR) Dubna, Russia and Faculty of Physics, University of Bucharest - P.O. Box MG 11, RO 77125, Bucharest-Magurele (Romania); Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, (FLNR JINR) Dubna (Russian Federation); Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D. [IPN, CNRS/IN2P3, Univ. Paris-Sud, 91405 Orsay (France); Chubarian, G. [Cyclotron Institute, Texas A and M University, College Station, TX 77843-3366 (United States); Hanappe, F. [Universite Libre de Bruxelles (ULB), Bruxelles (Belgium); Piot, J.; Schmitt, C. [GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Trzaska, W. H. [Accelerator Laboratory of University of Jyväskylä (JYFL), Jyväskylä (Finland); Vardaci, E. [Dipartamento di Scienze Fisiche and INFN (INFN-Na), Napoli (Italy)

    2015-02-24

    The reaction {sup 34}S+{sup 186}W at E{sub lab}=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF–γ coincidence method is of better use then the γ – γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  13. The nuclear fission process

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Fifty years after its discovery, the nuclear fission phenomenon is of recurring interest. When its fundamental physics aspects are considered, fission is viewed in a very positive way, which is reflected in the great interest generated by the meetings and large conferences organized for the 50th anniversary of its discovery. From a purely scientific and practical point of view, a new book devoted to the (low energy) nuclear fission phenomenon was highly desirable considering the tremendous amount of new results obtained since the publication of the book Nuclear Fission by Vandenbosch and Huizenga in 1973 (Academic Press). These new results could be obtained thanks to the growth of technology, which enabled the construction of powerful new neutron sources, particle and heavy ion accelerators, and very performant data-acquisition and computer systems. The re-invention of the ionization chamber, the development of large fission fragment spectrometers and sophisticated multiparameter devices, and the production of exotic isotopes also contributed significantly to an improved understanding of nuclear fission. This book is written at a level to introduce graduate students to the exciting subject of nuclear fission. The very complete list of references following each chapter also makes the book very useful for scientists, especially nuclear physicists. The book has 12 chapters covering the fission barrier and the various processes leading to fission as well as the characteristics of the various fission reaction products. In order to guarantee adequate treatment of the very specialized research fields covered, several distinguished scientists actively involved in some of these fields were invited to contribute their expertise as authors or co-authors of the different chapters

  14. Symmetric waterbomb origami.

    Science.gov (United States)

    Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong

    2016-06-01

    The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.

  15. Symmetric modular torsatron

    Science.gov (United States)

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  16. Sexual differentiation in fission yeast

    DEFF Research Database (Denmark)

    Egel, R; Nielsen, O; Weilguny, D

    1990-01-01

    The regulation of sexual reproduction in yeast constitutes the highest level of differentiation observed in these unicellular organisms. The various ramifications of this system involve DNA rearrangement, transcriptional control, post-translational modification (such as protein phosphorylation) a......) and receptor/signal processing. A few basic similarities are common to both fission and budding yeasts. The wiring of the regulatory circuitry, however, varies considerably between these divergent yeast groups....

  17. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    2009-01-01

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  18. Symmetric vectors and algebraic classification

    International Nuclear Information System (INIS)

    Leibowitz, E.

    1980-01-01

    The concept of symmetric vector field in Riemannian manifolds, which arises in the study of relativistic cosmological models, is analyzed. Symmetric vectors are tied up with the algebraic properties of the manifold curvature. A procedure for generating a congruence of symmetric fields out of a given pair is outlined. The case of a three-dimensional manifold of constant curvature (''isotropic universe'') is studied in detail, with all its symmetric vector fields being explicitly constructed

  19. {sup 252}Cf spontaneous prompt fission neutron spectrum measured at 0 degree and 180 degree relative to the fragment motion

    Energy Technology Data Exchange (ETDEWEB)

    Shanglian, Bao; Jinquan, Liu [Beijing Univ., BJ (China); Batenkov, O I; Blinov, M V; Smirnov, S N [V.G. Khlopin Radium Institute, ST. Petersburg (Russian Federation)

    1994-09-01

    The {sup 252}Cf spontaneous prompt fission neutron spectrum at 0 degree and 180 degree relative to the motion direction of corresponding fission fragments was measured. High angular resolution for fragment measurements and high energy resolution for neutron measurements were obtained using multi-parameter TOF spectrometer. The results showed that there is a symmetric distribution of `forward` and `backward` for low energy in C.M.S. neutrons, which was an evidence of nonequilibrium neutrons existed in fission process.

  20. Fission-product yields for thermal-neutron fission of curium-243

    International Nuclear Information System (INIS)

    Breederland, D.G.

    1982-01-01

    Cumulative fission yields for 25 gamma rays emitted during the decay of 23 fission products produced by thermal-neutron fission of 243 Cm have been determined. Using Ge(Li) spectroscopy, 33 successive pulse-height spectra of gamma rays emitted from a 77-ng sample of 243 Cm over a period of approximately two and one-half months were analyzed. Reduction of these spectra resulted in the identification and matching of gamma-ray energies and half-lives to specific radionuclides. Using these results, 23 cumulative fission-product yields were calculated. Only those radionuclides having half-lives between 6 hours and 65 days were observed. Prior to this experiment, no fission-product yields had been recorded for 243 Cm

  1. Representations of locally symmetric spaces

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1995-09-01

    Locally symmetric spaces in reference to globally and Hermitian symmetric Riemannian spaces are studied. Some relations between locally and globally symmetric spaces are exhibited. A lucid account of results on relevant spaces, motivated by fundamental problems, are formulated as theorems and propositions. (author). 10 refs

  2. Fission dynamics in the proton induced fission of heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rubchenya, V.A. E-mail: rubchen@phys.jyu.fi; Trzaska, W.H.; Itkis, I.M.; Itkis, M.G.; Kliman, J.; Kniajeva, G.N.; Kondratiev, N.A.; Kozulin, E.M.; Krupa, L.; Pokrovski, I.V.; Voskressenski, V.M.; Hanappe, F.; Materna, T.; Dorvaux, O.; Stuttge, L.; Chubarian, G.; Khlebnikov, S.V.; Vakhtin, D.N.; Lyapin, V.G

    2004-04-05

    Multi-parameter correlation study of the reaction {sup 242}Pu(p, f) at E{sub p} 13, 20 and 55 MeV has been carried out. Fission fragment mass and kinetic energy distributions and the double differential neutron spectra have been measured. It was observed that the two-humped shape of mass distributions prevailed up to highest proton energy. Manifestation of the nuclear shell Z 28 near fragment mass A{sub fr} = 70 has been detected. The experimental results were analyzed in the framework of a time-dependent statistical model with inclusion of nuclear friction effects in the fission process. The multi-parameter correlation study of the reaction.

  3. Low-energy nuclear fission and our understanding of the nucleus

    International Nuclear Information System (INIS)

    Hall, H.L.; Hoffman, D.C.

    1990-01-01

    The interactions between experimental discoveries in low-energy nuclear fission and the theoretical understanding of the structure of the nucleus are reviewed. The history of this synergistic relationship begins with the discovery of fission, the development of the liquid-drop model and the experimental evidence for magic numbers, continues through the development of the shell model, the experimental discovery of shape isomerism, the double-humped fission barrier the spontaneous fission half-life disaster, the discovery of symmetric mass division in spontaneous fission and theoretical treatments based on different paths to scission. It concludes with a brief review of current experimental and theoretical understanding of low-energy fission and the prospects for future developments. (author) 150 refs.; 5 figs.; 1 tab

  4. Fission fragment spins and spectroscopy

    International Nuclear Information System (INIS)

    Durell, J.L.

    1988-01-01

    Prompt γ-ray coincidence experiments have been carried out on γ-rays emitted from post-neutron emission fission fragments produced by the aup 19F + 197 Au and 18 O + 232 Th reactions. Decay schemes have been established for even-even nuclei ranging from 78 Se to 148 Nd. Many new states with spin up to ∼ 12h have been observed. Apart from providing a wealth of new information on the spectroscopy of neutron-rich nuclei, the data have been analyzed to determine the average spin of primary fission fragments as a function of fragment mass. The results suggest that the fragment spins are determined by the temperature and shape of the primary fragments at or near to scission

  5. Theoretical descriptions of neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1991-01-01

    Brief descriptions are given of the observables in neutron emission in fission together with early theoretical representations of two of these observables, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity ν-bar p . This is followed by summaries, together with examples, of modern approaches to the calculation of these two quantities. Here, emphasis is placed upon the predictability and accuracy of the new approaches. In particular, the dependencies of N(E) and ν-bar p upon the fissioning nucleus and its excitation energy are discussed. Then, recent work in multiple-chance fission and other recent work involving new measurements are presented and discussed. Following this, some properties of fission fragments are mentioned that must be better known and better understood in order to calculate N(E) and ν-bar p with higher accuracy than is currently possible. In conclusion, some measurements are recommended for the purpose of benchmarking simultaneous calculations of neutron emission and gamma emission in fission. (author). 32 refs, 26 figs

  6. Mass and energy distribution of fragments of sup 232 Th nucleus fission by 21-26. 4 MeV. alpha. -particles. Massovye i ehnergeticheskie raspredeleniya oskolkov deleniya yadra sup 232 Th. alpha. -chastitsami s ehnergiyami 21-26,4 MehV

    Energy Technology Data Exchange (ETDEWEB)

    Zaika, N I; Kibkalo, Yu V; Parlag, O A; Sikora, D I; Tokarev, V P; Shityuk, V A [AN Ukrainskoj SSR, Kiev (Ukrainian SSR). Inst. Yadernykh Issledovanij

    1989-04-01

    Two-parameter measurements of the mass and energy distributions of fission products in the fission of {sup 232}Th by 21.0-26.4 MeV {alpha}-particles (h=1 MeV) are conducted using the correlation method. The obtained results show that in the region under investigation the average total kinetic energies of the fission products E-bar{sub k} have no noticeable variations within the experimental error of {plus minus} 1.5 MeV and the dispersion {sigma}{sup 2}E{sub k} slowly increases. For the E-bar{sub k} mass dependence of heavy fraction the maximum is observed at A=132, that confirms a hypothesis on the influence of the closed-shell effects at the magic numbers of Z=50 and N=82. Assuming the existence of different barrier values for two models of the fission the ratio of symmetric and asymmetric fission yields are analyzed in the statistical model. It is shown that the barrier difference for two modes of fission is 1.3-1.4 MeV, which is in good agreement with the model of two fission modes.

  7. Observations on the geometries of etched fission and alpha-recoil tracks with reference to models of track revelation in minerals

    International Nuclear Information System (INIS)

    Jonckheere, R.; Enkelmann, E.; Stuebner, K.

    2005-01-01

    The kinetic and atomistic theories of crystal growth and dissolution are used to interpret the shapes and orientations of fission-track, recoil-track and dislocation etch pits in tri-octahedral phlogopite and di-octahedral muscovite. An atomistic approach combined with symmetry considerations lead to the identification of the periodic bond chains that determine the etch pit morphologies and relative etch rates at a chemical level: O-Mg-O in phlogopite, O-Mg-O-Fe in biotite and O-Al-O in muscovite. Using first-order estimates of the bond strengths, it is possible to account for the relative track etch rates in these minerals. The reported, sometimes simultaneous, occurrence of triangular, polygonal and hexagonal etch pit contours in phlogopite, some of which violate the crystal symmetry, suggests that the cohesion of the phlogopite lattice is lost over a much larger radius than that of the track core around the trajectories of particles for which the energy loss exceeds a threshold value. This is interpreted as an indication of pronounced sublattice and anisotropic effects during track registration

  8. Denudation and uplift of the Mawson Escarpment (eastern Lambert Graben, Antarctica) as indicated by apatite fission track data and geomorphological observation

    Science.gov (United States)

    Lisker, F.; Gibson, H.; Wilson, C.J.; Läufer, A.

    2007-01-01

    Analysis of three vertical profiles from the southern Mawson Escarpment (Lambert Graben) reveals apatite fission track (AFT) ages ranging from 102±20 to 287±23 Ma and mean lengths of 12.2 to 13.0 μm. Quantitative thermal histories derived from these data consistently indicate onset of slow cooling below 110°C began sometime prior to 300 Ma, and a second stage of rapid cooling from paleotemperatures up to ≤100°C to surface temperatures occurred in the Late Cretaceous – Paleocene. The first cooling phase refers to Carboniferous – Jurassic basement denudation up to 5 km associated with the initial rifting of the Lambert Graben. The presence of the ancient East Antarctic Erosion Surface and rapid Late Cretaceous – Paleocene cooling indicate a second denudational episode during which up to 4.5 km of sedimentary cover rocks were removed, and that is likely linked to the Cretaceous Gondwana breakup between Antarctica and India and subsequent passive continental margin formation.

  9. Fission in a Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.

  10. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1992-01-01

    Classical dynamical calculations of the heavy ion induced fission processes have been performed for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus. As a result prescission lifetimes were obtained and compared with the experimental values. The comparison between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. (orig.)

  11. Correlated prompt fission data in transport simulations

    Science.gov (United States)

    Talou, P.; Vogt, R.; Randrup, J.; Rising, M. E.; Pozzi, S. A.; Verbeke, J.; Andrews, M. T.; Clarke, S. D.; Jaffke, P.; Jandel, M.; Kawano, T.; Marcath, M. J.; Meierbachtol, K.; Nakae, L.; Rusev, G.; Sood, A.; Stetcu, I.; Walker, C.

    2018-01-01

    Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n - n, n - γ, and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in

  12. Correlated prompt fission data in transport simulations

    Energy Technology Data Exchange (ETDEWEB)

    Talou, P.; Jaffke, P.; Kawano, T.; Stetcu, I. [Los Alamos National Laboratory, Nuclear Physics Group, Theoretical Division, Los Alamos, NM (United States); Vogt, R. [Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, Livermore, CA (United States); University of California, Physics Department, Davis, CA (United States); Randrup, J. [Lawrence Berkeley National Laboratory, Nuclear Science Division, Berkeley, CA (United States); Rising, M.E.; Andrews, M.T.; Sood, A. [Los Alamos National Laboratory, Monte Carlo Methods, Codes, and Applications Group, Los Alamos, NM (United States); Pozzi, S.A.; Clarke, S.D.; Marcath, M.J. [University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, MI (United States); Verbeke, J.; Nakae, L. [Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, Livermore, CA (United States); Jandel, M. [Los Alamos National Laboratory, Nuclear and Radiochemistry Group, Los Alamos, NM (United States); University of Massachusetts, Department of Physics and Applied Physics, Lowell, MA (United States); Meierbachtol, K. [Los Alamos National Laboratory, Nuclear Engineering and Nonproliferation, Los Alamos, NM (United States); Rusev, G.; Walker, C. [Los Alamos National Laboratory, Nuclear and Radiochemistry Group, Los Alamos, NM (United States)

    2018-01-15

    Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n-n, n-γ, and γ-γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX-PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation

  13. Holographic Spherically Symmetric Metrics

    Science.gov (United States)

    Petri, Michael

    The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.

  14. Weakly Interacting Symmetric and Anti-Symmetric States in the Bilayer Systems

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Tomaka, G.; Ploch, D.

    We have studied the parallel magneto-transport in DQW-structures of two different potential shapes: quasi-rectangular and quasi-triangular. The quantum beats effect was observed in Shubnikov-de Haas (SdH) oscillations for both types of the DQW structures in perpendicular magnetic filed arrangement. We developed a special scheme for the Landau levels energies calculation by means of which we carried out the necessary simulations of beating effect. In order to obtain the agreement between our experimental data and the results of simulations, we introduced two different quasi-Fermi levels which characterize symmetric and anti-symmetric states in DQWs. The existence of two different quasi Fermi-Levels simply means, that one can treat two sub-systems (charge carriers characterized by symmetric and anti-symmetric wave functions) as weakly interacting and having their own rate of establishing the equilibrium state.

  15. Correlation of errors in the Monte Carlo fission source and the fission matrix fundamental-mode eigenvector

    International Nuclear Information System (INIS)

    Dufek, Jan; Holst, Gustaf

    2016-01-01

    Highlights: • Errors in the fission matrix eigenvector and fission source are correlated. • The error correlations depend on coarseness of the spatial mesh. • The error correlations are negligible when the mesh is very fine. - Abstract: Previous studies raised a question about the level of a possible correlation of errors in the cumulative Monte Carlo fission source and the fundamental-mode eigenvector of the fission matrix. A number of new methods tally the fission matrix during the actual Monte Carlo criticality calculation, and use its fundamental-mode eigenvector for various tasks. The methods assume the fission matrix eigenvector is a better representation of the fission source distribution than the actual Monte Carlo fission source, although the fission matrix and its eigenvectors do contain statistical and other errors. A recent study showed that the eigenvector could be used for an unbiased estimation of errors in the cumulative fission source if the errors in the eigenvector and the cumulative fission source were not correlated. Here we present new numerical study results that answer the question about the level of the possible error correlation. The results may be of importance to all methods that use the fission matrix. New numerical tests show that the error correlation is present at a level which strongly depends on properties of the spatial mesh used for tallying the fission matrix. The error correlation is relatively strong when the mesh is coarse, while the correlation weakens as the mesh gets finer. We suggest that the coarseness of the mesh is measured in terms of the value of the largest element in the tallied fission matrix as that way accounts for the mesh as well as system properties. In our test simulations, we observe only negligible error correlations when the value of the largest element in the fission matrix is about 0.1. Relatively strong error correlations appear when the value of the largest element in the fission matrix raises

  16. Nuclear molecules in low energy fission of actinides?

    International Nuclear Information System (INIS)

    Pyatkov, Yu.V.; Pashkevich, V.V.; Tishchenko, V.G.; Unzhakova, A.V.; )

    2000-01-01

    A comparison is presented of the fine structure (FS) of the both energy-mass and energy-charge distributions of the fission fragments of thermal neutron induced fission of uranium in the data obtained at different spectrometers. Some peculiarities of the FS observed can be treated as a manifestation of two different types of collective vibrations of the fissioning system on its way to scission [ru

  17. Symmetry of neutron-induced 235U fission at individual resonances. III

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, G A; Bayhurst, B P; Prestwood, R J; Gilmore, J S; Knobeloch, G W [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1970-05-15

    A number of experiments have been described in recent years which document variations in the yields of symmetric or near-symmetric fission products at resonances in 235-U and 239-Pu neutron-induced fission. In the case of 239-Pu fission it has been demonstrated in a statistically significant sample of s-wave neutron resonances (J{sup {pi}} = 0{sup +} or 1{sup +}) that the 0{sup +} levels have a characteristic 115Cd yield which is a factor of four higher than the yield at 1{sup +} levels. The fission widths of the J = 0 levels are larger than the J = 1 levels by a factor of ten. The populations of the two groups are in reasonable agreement with the expected (2J + 1) distributions. Previous efforts to obtain equally detailed data in 235-U fission and 233-U fission by the 'wheel' technique have not been entirely successful due in large part to the high level densities in the epithermal excitation functions of these nuclides and the consequent difficulty in characterizing fission yields in a sufficiently large and well-resolved sample of levels. In a recent 'wheel' experiment (late summer, 1969) vith a 235-U target the energy resolution was sufficiently improved in the region 20 eV-60 eV to allow characterization of a sample of 38 reasonably well-resolved levels by their relative symmetry of fission. (author)

  18. Reexamination of fission fragment angular distributions and the fission process: Formalism

    International Nuclear Information System (INIS)

    Bond, P.D.

    1985-01-01

    The theory of fission fragment angular distributions is examined and the universally used expression is found to be valid only under restrictive assumptions. A more general angular distribution formula is derived and applied to recent data of high spin systems. At the same time it is shown that the strong anisotropies observed from such systems can be understood without changing the essential basis of standard fission theory. The effects of reaction mechanisms other than complete fusion on fission fragment angular distributions are discussed and possible angular distribution signatures of noncompound nucleus formation are mentioned

  19. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  20. A viewpoint on nearly conformally symmetric manifold

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1990-06-01

    Some observations, with definition, on Nearly Conformally Symmetric (NCS) manifold are made. A number of theorems concerning conformal change of metric and parallel tensors on NCS manifolds are presented. It is illustrated that a manifold M = R n-1 x R + 1 , endowed with a special metric, is NCS but not of harmonic curvature. (author). 8 refs

  1. Evaluation of mass distribution data from 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    Liu Tingjin

    2003-01-01

    The mass distribution data of 252 Cf spontaneous fission were evaluated based on 7 sets of available experimental data. The measured data were corrected for the standards and γ intensity used by using the new evaluated ones. The errors were made necessary adjusting. The evaluated experimental data were fitted with spline function without any restriction and with symmetric restriction. These two sets of fit data were recommended as reference data of the mass distribution of 252 Cf spontaneous fission. The errors of the recommended data were considerably reduced comparing with the measured ones. The light and heavy peaks are not completely symmetric. Also there are fine structures on the right side of the light peak at A=109-111 and left side of the heavy peak at A=137-139. These should be paid attention and studied further. (author)

  2. Calculated fission properties of the heaviest elements

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1986-09-01

    A quantitative calculation is presented that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. For the macroscopic part a Yukawa-plus-exponential model is used and for the microscopic part a folded-Yukawa single-particle potential is used. The three-quadratic-surface parameterization generates shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. The results of the calculations in terms of potential-energy surfaces and fission half-lives are presented for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. 53 refs., 15 figs., 1 tab

  3. Possible Mechanisms of Ternary Fission in the 197Au+197 Au System at 15 AMeV

    International Nuclear Information System (INIS)

    Jun-Long, Tian; Xian, Li; Shi-Wei, Yan; Xi-Zhen, Wu; Zhu-Xia, Li

    2009-01-01

    Ternary fission in 197 Au+ 197 Au collisions at 15 A MeV is investigated by using the improved quantum molecular dynamical (ImQMD) model. The experimental mass distributions for each of the three fragments are reproduced for the first time without any freely adjusting parameters. The mechanisms of ternary fission in central and semi-central collisions are dynamically studied. In direct prolate ternary fission, two necks are found to be formed almost simultaneously and rupture sequentially in a very short time interval. Direct oblate ternary fission is a very rare fission event, in which three necks are formed and rupture simultaneously, forming three equally sized fragments along space-symmetric directions in the reaction plane. In sequential ternary fission a binary division is followed by another binary fission event after hundreds of fm/c. (nuclear physics)

  4. Correlation studies of neutron multiplicities in the 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    Alkhazov, I.D.; Dmitriev, V.D.; Kovalenko, S.S.; Kuznetsov, A.V.; Malkin, L.Z.; Petrzhak, K.A.; Petrov, B.F.; Shpakov, V.I.

    1988-01-01

    Correlations between the numbers of neutrons emitted by the 252 Cf spontaneous fission fragments have been studied as a function of the fragment mass and total kinetic energy. Behaviour of the neutron number dispersions and covariances was studied for the region of symmetric fission. Parameters of the complementary fragment excitation energy distribution (mean values, dispersions, covariances) were determined. Various factors describing correlations between the complementary fragment excitation energies are considered

  5. Potentials of fissioning plasmas

    International Nuclear Information System (INIS)

    Karlheinz, Thom.

    1979-01-01

    Successful experiments with the nuclear pumping of lasers have demonstrated that in gaseous medium the kinetic energy of fission fragments can be converted directly into non-equilibrium optical radiation. This confirms the concept that the fissioning medium in a gas-phase nuclear reactor shows an internal structure such as a plasma in nearly thermal equilibrium varying up to a state of extreme-non-equilibrium. The accompanying variations of temperatures, pressure and radiative spectrum suggest wide ranges of applications. For example, in the gas-phase fission reactor concept enriched uranium hexafluoride or an uranium plasma replaces conventional fuel elements and permits operation above the melting point of solid materials. This potential has been motivation for the US National Aeronautics and Space Administration (NASA) to conduct relevant research for high specific impulse propulsion in space. The need to separate the high temperature gaseous fuel from the surfaces of a containing vessel and to protect them against thermal radiation has led to the concept of an externally moderated reactor in which the fissioning gaseous material is suspended by fluid dynamic means and the flow of opaque buffer gas removes the power. The gaseous nuclear fuel can slowly be circulated through the reactor for continuous on-site reprocessing including the annihilation of transuranium actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides at fission when being fed back into the reactor. An equilibrium of the generation and destruction of such actinides can thus be achieved. These characteristics and the unique radiative properties led to the expectation that the gas-phase fission reactor could feature improved safety, safeguarding and economy, in addition to new technologies such as processing, photochemistry and the transmission of power over large distances in space

  6. Symmetric extendibility of quantum states

    OpenAIRE

    Nowakowski, Marcin L.

    2015-01-01

    Studies on symmetric extendibility of quantum states become especially important in a context of analysis of one-way quantum measures of entanglement, distilabillity and security of quantum protocols. In this paper we analyse composite systems containing a symmetric extendible part with a particular attention devoted to one-way security of such systems. Further, we introduce a new one-way monotone based on the best symmetric approximation of quantum state. We underpin those results with geome...

  7. A symmetric safety valve

    International Nuclear Information System (INIS)

    Burtraw, Dallas; Palmer, Karen; Kahn, Danny

    2010-01-01

    How to set policy in the presence of uncertainty has been central in debates over climate policy. Concern about costs has motivated the proposal for a cap-and-trade program for carbon dioxide, with a 'safety valve' that would mitigate against spikes in the cost of emission reductions by introducing additional emission allowances into the market when marginal costs rise above the specified allowance price level. We find two significant problems, both stemming from the asymmetry of an instrument that mitigates only against a price increase. One is that most important examples of price volatility in cap-and-trade programs have occurred not when prices spiked, but instead when allowance prices collapsed. Second, a single-sided safety valve may have unintended consequences for investment. We illustrate that a symmetric safety valve provides environmental and welfare improvements relative to the conventional one-sided approach.

  8. New experimental approaches to investigate the fission dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Benlliure, J., E-mail: j.benlliure@usc.es; Rodríguez-Sánchez, J. L.; Alvarez-Pol, H.; Ayyad, Y.; Cortina-Gil, D.; Paradela, C.; Pietras, B.; Ramos, D.; Vargas, J. [Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Audouin, L.; Boutoux, G. [Institut de Physique Nucléaire d’Orsay, F-91406 Orsay (France); Bélier, G.; Chatillon, A.; Gorbinet, T.; Laurent, B.; Martin, J.-F.; Pellereau, E.; Taïeb, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Casarejos, E. [Universidad de Vigo, E-36200 Vigo (Spain); Heinz, A. [Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); and others

    2016-07-07

    The first ever achieved full identification of both fission fragments, in atomic and mass number, made it possible to define new observables sensitive to the fission dynamics along the fission path up to the scission point. Moreover, proton-induced fission of {sup 208}Pb at high energies offers optimal conditions for the investigation of dissipative, and transient effects, because of the high-excitation energy of the fissioning nuclei, its low angular momentum, and limited shape distortion by the reaction. In this work we show that the charge distribution of the final fission fragments can constrain the ground-to-saddle dynamics while the mass distribution is sensitive to the dynamics until the scission point.

  9. Fission Reaction Event Yield Algorithm FREYA 2.0.2

    Science.gov (United States)

    Verbeke, J. M.; Randrup, J.; Vogt, R.

    2018-01-01

    FREYA (Fission Reaction Event Yield Algorithm) is a fission event generator which models complete fission events. As such, it automatically includes fluctuations as well as correlations between observables, resulting from conservation of energy and momentum. The purpose of this paper is to present the main differences between FREYA versions 1.0 and 2.0.2 : additional fissionable isotopes, angular momentum conservation, Giant Dipole Resonance form factor for the statistical emission of photons, improved treatment of fission photon emission using RIPL database, and dependence on the incident neutron direction. FREYA 2.0.2 has been integrated into the LLNL Fission Library 2.0.2, which has itself been integrated into MCNP6.2, TRIPOLI-4.10, and can be called from Geant4.10.

  10. Symmetric q-Bessel functions

    Directory of Open Access Journals (Sweden)

    Giuseppe Dattoli

    1996-05-01

    Full Text Available q analog of bessel functions, symmetric under the interchange of q and q^ −1 are introduced. The definition is based on the generating function realized as product of symmetric q-exponential functions with appropriate arguments. Symmetric q-Bessel function are shown to satisfy various identities as well as second-order q-differential equations, which in the limit q → 1 reproduce those obeyed by the usual cylindrical Bessel functions. A brief discussion on the possible algebraic setting for symmetric q-Bessel functions is also provided.

  11. Theory of neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1998-01-01

    A survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity bar ν p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and some examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the recent models. In particular, the dependencies of N(E) and bar ν p upon the fissioning nucleus and its excitation energy are treated in detail for the Los Alamos model. Recent work in the calculation of the prompt fission neutron spectrum matrix N(E, E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of the ability to calculate these observables with confidence, the direction of future theoretical efforts, and limitations to current (and future) approaches. This paper is an extension of a similar paper presented at the International Centre for Theoretical Physics in 1996

  12. Theoretical models of neutron emission in fission

    International Nuclear Information System (INIS)

    Madland, D.G.

    1992-01-01

    A brief survey of theoretical representations of two of the observables in neutron emission in fission is given, namely, the prompt fission neutron spectrum N(E) and the average prompt neutron multiplicity bar v p . Early representations of the two observables are presented and their deficiencies are discussed. This is followed by summaries and examples of recent theoretical models for the calculation of these quantities. Emphasis is placed upon the predictability and accuracy of the new models. In particular, the dependencies of N(E) and bar v p upon the fissioning nucleus and its excitation energy are treated. Recent work in the calculation of the prompt fission neutron spectrum matrix N(E,E n ), where E n is the energy of the neutron inducing fission, is then discussed. Concluding remarks address the current status of our ability to calculate these observables with confidence, the direction of future theoretical efforts, and limititations to current and future calculations. Finally, recommendations are presented as to which model should be used currently and which model should be pursued in future efforts

  13. Estimation of penetration depth of fission products in cladding Hull

    International Nuclear Information System (INIS)

    Kim, Hee Moon; Jung, Yang Hong; Yoo, Byong Ok; Choo, Yong Sun; Hong, Kwon Pyo

    2005-01-01

    A disposal and a reprocessing for spent fuel rod with high burnup need de-cladding procedure. Pellet in this rod has been separated from a cladding hull to reduce a radioactivity of hull by chemical and mechanical methods. But fission products and actinides(U,Pu) still remain inside of cladding hull by chemical bonding and fission spike, which is called as 'contamination'. More specific removal of this contamination would have been considered. In this study, the sorts of fission products and penetration depth in hull were observed by EPMA test. To analyze this behavior, SRIM 2000 code was also used as energies of fission products and an oxide thickness of hull

  14. Angular-momentum-bearing modes in fission

    International Nuclear Information System (INIS)

    Moretto, L.G.; Peaslee, G.F.; Wozniak, G.J.

    1989-03-01

    The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs

  15. Effects of nuclear structure on quasi-fission

    International Nuclear Information System (INIS)

    Simenel, Cedric; Wakhle, Aditya; Hinde, D.J.; Rietz, R. du; Dasgupta, M.; Evers, M.; Lin, C.J.; Luong, D.H.; Avez, B.

    2012-01-01

    The quasi-fission mechanism hinders fusion of heavy systems because of a mass flow between the reactants, leading to a re-separation of more symmetric fragments in the exit channel. A good understanding of the competition between fusion and quasi-fission mechanisms is expected to be of great help to optimize the formation and study of heavy and superheavy nuclei. Quantum microscopic models, such as the time-dependent Hartree-Fock approach, allow for a treatment of all degrees of freedom associated to the dynamics of each nucleon. This provides a description of the complex reaction mechanisms, such as quasi-fission, with no parameter adjusted on reaction mechanisms. In particular, the role of the deformation and orientation of a heavy target, as well as the entrance channel magicity and isospin are investigated with theoretical and experimental approaches. (authors)

  16. Mass dependence of azimuthal asymmetry in the fission of {sup 232}Th and {sup 233,235,236,238}U by polarized photons

    Energy Technology Data Exchange (ETDEWEB)

    Denyak, V.V. [National Science Center ' ' Kharkov Institute of Physics and Technology' ' , Kharkiv (Ukraine); Pele Pequeno Principe Research Institute, Curitiba (Brazil); Khvastunov, V.M. [National Science Center ' ' Kharkov Institute of Physics and Technology' ' , Kharkiv (Ukraine); Paschuk, S.A. [Federal University of Technology - Parana, Curitiba (Brazil); Schelin, H.R. [Federal University of Technology - Parana, Curitiba (Brazil); Pele Pequeno Principe Research Institute, Curitiba (Brazil)

    2013-04-15

    Fission of the even-even nuclei {sup 232}Th, {sup 236,238}U and even-odd nuclei {sup 233,235}U by linearly polarized photons has been studied at excitation energies in the region of a giant dipole resonance. The performed investigations unambiguously showed the existence of the fragment mass dependence of the cross section azimuthal asymmetry in the photofission of {sup 236}U and {sup 238}U. In addition, the obtained results provided the first evidence for the possible difference between the asymmetry values in asymmetric and symmetric mass distribution regions in the case of {sup 236}U. The measured cross section azimuthal asymmetry of the fission of {sup 232}Th does not show any fragment mass dependence. In the even-odd nuclei {sup 233}U and {sup 235}U the difference between the far-asymmetric and other mass distribution regions was also observed but with the statistical uncertainty not small enough for definitive conclusion. (orig.)

  17. Mass dependence of azimuthal asymmetry in the fission of 232Th and 233,235,236,238U by polarized photons

    International Nuclear Information System (INIS)

    Denyak, V.V.; Khvastunov, V.M.; Paschuk, S.A.; Schelin, H.R.

    2013-01-01

    Fission of the even-even nuclei 232 Th, 236,238 U and even-odd nuclei 233,235 U by linearly polarized photons has been studied at excitation energies in the region of a giant dipole resonance. The performed investigations unambiguously showed the existence of the fragment mass dependence of the cross section azimuthal asymmetry in the photofission of 236 U and 238 U. In addition, the obtained results provided the first evidence for the possible difference between the asymmetry values in asymmetric and symmetric mass distribution regions in the case of 236 U. The measured cross section azimuthal asymmetry of the fission of 232 Th does not show any fragment mass dependence. In the even-odd nuclei 233 U and 235 U the difference between the far-asymmetric and other mass distribution regions was also observed but with the statistical uncertainty not small enough for definitive conclusion. (orig.)

  18. Nuclear fission and neutron-induced fission cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    James, G.D.; Lynn, J.E.; Michaudon, A.; Rowlands, J.; de Saussure, G.

    1981-01-01

    A general presentation of current knowledge of the fission process is given with emphasis on the low energy fission of actinide nuclei and neutron induced fission. The need for and the required accuracy of fission cross section data in nuclear energy programs are discussed. A summary is given of the steps involved in fission cross section measurement and the range of available techniques. Methods of fission detection are described with emphasis on energy dependent changed and detector efficiency. Examples of cross section measurements are given and data reduction is discussed. The calculation of fission cross sections is discussed and relevant nuclear theory including the formation and decay of compound nuclei and energy level density is introduced. A description of a practical computation of fission cross sections is given.

  19. The evaluation for reference fission yield of 238U fission

    International Nuclear Information System (INIS)

    Liang Qichang; Liu Tingjin

    1998-01-01

    In the fission yield data evaluation and measurement, the reference yield is very important, good or poor recommended or measurement values depend upon the reference data to a great extent. According to the CRP's requirement, the evaluation of reference fission yields have been and will be carried out in CNDC, as a part of the whole work (contract No.9504/R 0 /Regular Budget Fund), the evaluation for 29 reference fission yields of 15 product nuclides from 238 U fission have been completed

  20. Fuel morphology effects on fission product release

    International Nuclear Information System (INIS)

    Osetek, D.J.; Hartwell, J.K.; Cronenberg, A.W.

    1986-01-01

    Results are presented of fission product release behavior observed during four severe fuel damage tests on bundles of UO 2 fuel rods. Transient temperatures up to fuel melting were obtained in the tests that included both rapid and slow cooldown, low and high (36 GWd/t) burnup fuel and the addition of Ag-In-Cd control rods. Release fractions of major fission product species and release rates of noble gas species are reported. Significant differences in release behavior are discussed between heatup and cooldown periods, low and high burnup fuel and long- and short-lived fission products. Explanations for the observed differences are offered that relate fuel morphology changes to the releases

  1. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  2. Application of fission track analysis to hydrocarbon exploration

    International Nuclear Information System (INIS)

    Duddy, I.R.; Green, P.F.; Gleadow, A.J.W.; Marshallsea, S.; Tingate, P.; Laslett, G.M.; Hegarty, K.A.; Lovering, J.F.

    1985-01-01

    The temperature range over which fission tracks in apatite show observable annealing effects coincides with that responsible for the maximum generation of liquid hydrocarbons. Work is currently in progress in a number of Australian and overseas sedimentary basins, applying Apatite Fission Track Analysis (AFTA) to investigate the thermal evolution of these hydrocarbon prospective regions

  3. Fusion--fission energy systems, some utility perspectives

    International Nuclear Information System (INIS)

    Huse, R.A.; Burger, J.M.; Lotker, M.

    1974-01-01

    Some of the issues that are important in assessing fusion-- fission energy systems from a utility perspective are discussed. A number of qualitative systems-oriented observations are given along with some economic quantification of the benefits from fusion--fission hybrids and their allowed capital cost. (U.S.)

  4. Fission product detection

    International Nuclear Information System (INIS)

    Liatard, E.; Akrouf, S.; Bruandet, J.F

    1987-01-01

    The response of photovoltaic cells to heavy ions and fission products have been tested on beam. Their main advantages are their extremely low price, their low sensitivity to energetic light ions with respect to fission products, and the possibility to cut and fit them together to any shape without dead zone. The time output signals of a charge sensitive preamplifier connected to these cells allows fast coincidences. A resolution of 12ns (F.W.H.M.) have been measured between two cells [fr

  5. Fission of heavy hypernuclei

    International Nuclear Information System (INIS)

    Nifenecker, H.

    1993-01-01

    The results on delayed and prompt fission of heavy hypernuclei obtained by the LEAR PS177 collaboration are recalled and discussed. It is shown that the hypernuclei life-times can be explained in term of a weak strangeness violating lambda-nucleon interaction with a cross section close to 6.0 10 -15 barns. The lambda attachment function is shown to be sensitive to the scission configuration, just before fission, and to the neck dynamics. This function provides a new way to study the nuclear scission process. (author)

  6. Fission gas measuring technology

    International Nuclear Information System (INIS)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok.

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs

  7. Fission gas measuring technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs.

  8. Analytic description of the fusion and fission processes through compact quasi-molecular shapes

    International Nuclear Information System (INIS)

    Royer, G.; Normand, C.; Druet, E.

    1997-01-01

    Recent studies have shown that the characteristics of the entrance and exit channels through compact quasi-molecular shapes are compatible with the experimental data on fusion, fission and cluster radioactivity when the deformation energy is determined within a generalized liquid drop model. Analytic expressions allowing to calculate rapidly the main characteristics of this deformation path through necked shapes with quasi-spherical ends are presented now; namely formulas for the fusion and fission barrier heights, the fusion barrier radius, the symmetric fission barriers and the proximity energy. (author)

  9. Fission Product Library and Resource

    Energy Technology Data Exchange (ETDEWEB)

    Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Padgett, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-29

    Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.

  10. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    The fission-like configurations are used for the total deformation energy calculations. A ... oscillator potential for the two fission fragment regions reads as ... Beyond this limit, the contribution of more remote levels is negligible. Once the density ...

  11. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  12. Conformally symmetric traversable wormholes

    International Nuclear Information System (INIS)

    Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.

    2007-01-01

    Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced

  13. Photon and proton induced fission on heavy nuclei at intermediate energies

    Directory of Open Access Journals (Sweden)

    Andrade-II E.

    2014-04-01

    Full Text Available We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremmstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments.

  14. Photon and proton induced fission on heavy nuclei at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Andrade-II, E.; Karapetyan, G.S.; Deppman, A.; Guimaraes, V. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica; Balabekyan, A.R. [Yerevan State University, Alex Manoogian 1, Yerevan (Armenia); Demekhina, N.A. [Yerevan Physics Institute, Alikhanyan Brothers 2, Yerevan (Armenia); Joint Institute for Nuclear Research (JINR), Flerov Laboratory of Nuclear Reactions (LNR), Moscow (Russian Federation)

    2014-07-01

    We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on {sup 241}Am, {sup 238}U, and {sup 237}Np targets and the Bremsstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on {sup 232}Th and {sup 238}U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments. (author)

  15. Process for treating fission waste

    International Nuclear Information System (INIS)

    Rohrmann, C.A.; Wick, O.J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste

  16. Signatures of fission dynamics in highly excited nuclei produced in 197AU(800 A MeV) on proton collisions

    International Nuclear Information System (INIS)

    Benlliure, J.; Armbruster, P.; Bernas, M.

    2001-09-01

    197 Au(800 A MeV)-on-proton collisions are used to investigate the fission dynamics at high excitation energy. The kinematic properties together with the isotopic identification of the fission fragments allow to determine the mass, charge and excitation energy of the fissioning nucleus at saddle. The comparison of these observables and the measured total fission cross section with model calculations evidences a clear hindrance of fission at high excitation energy that can be explained in terms of nuclear dissipation. Assuming a statistical evaporation for other de-excitation channels than fission, an estimated value of the transient time of fission of (3 ± 1) . 10 -21 s is obtained. (orig.)

  17. Spherically symmetric self-similar universe

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, C C [Toronto Univ., Ontario (Canada)

    1979-10-01

    A spherically symmetric self-similar dust-filled universe is considered as a simple model of a hierarchical universe. Observable differences between the model in parabolic expansion and the corresponding homogeneous Einstein-de Sitter model are considered in detail. It is found that an observer at the centre of the distribution has a maximum observable redshift and can in principle see arbitrarily large blueshifts. It is found to yield an observed density-distance law different from that suggested by the observations of de Vaucouleurs. The use of these solutions as central objects for Swiss-cheese vacuoles is discussed.

  18. 50 years of nuclear fission

    International Nuclear Information System (INIS)

    Hilscher, D.

    1989-01-01

    The article tells the story of the discovery of nuclear fission in Berlin 50 years ago by Otto Hahn and Fritz Strassmann in cooperation with Lise Meitner. 50 years later nuclear fission is still a subject of research. Some question remain unanswered. Selected new research results are used to discuss the dynamics of the collective movement of the elementary nuclear fission process. (orig.) [de

  19. Fission dynamics of hot nuclei

    Indian Academy of Sciences (India)

    2014-04-05

    Apr 5, 2014 ... across the fission barrier is very small or in other words, the fission barrier is much ... of this shape evolution, the gross features of the fissioning nucleus can be described ..... [7] Y Abe, C Gregoire and H Delagrange, J. Phys.

  20. Status of fission yield measurements

    International Nuclear Information System (INIS)

    Maeck, W.J.

    1979-01-01

    Fission yield measurement and yield compilation activities in the major laboratories of the world are reviewed. In addition to a general review of the effort of each laboratory, a brief summary of yield measurement activities by fissioning nuclide is presented. A new fast reactor fission yield measurement program being conducted in the US is described

  1. High energy {gamma} emission in the spontaneous fission of {sup 252}Cf; Emission {gamma} de grande energie dans la fission spontanee de {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Badimon, C.; Barreau, G.; Doan, T.P.; Pedemay, G. [Centre d`Etudes Nucleaires, Bordeaux-1 Univ., 33 Gradignan (France); Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Thiesen, Ch. [Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France); Belier, G.; Meot, M.V. [CEA Centre d`Etudes de Bruyeres-le-Chatel, 91 (France); Astier, A.; Ducroux, L.; Meyer, M.; Redon, N. [Inst.de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)

    1997-06-01

    The prompt {gamma} emission in the spontaneous fission of {sup 252}Cf is characterized by an energy spectrum which extends up to 20 MeV. It was established that the spectrum presents in the neighbourhood of symmetric fission an intensity bump in the 3-8 MeV {gamma} energy interval. The origin of this phenomenon is still not well understood, so that it was found interesting to carry out new measurements. The spectrum of the {gamma} rays emitted in spontaneous fission of {sup 252}Cf has been measurement in the EUROGAM II multidetector using photovoltaic cells to detect fragments. The aim of the experiment was to investigate the {gamma} yield enhancement which appears for mass fragment ratio near 132/120. This enhancement was found to be composed of two peaks located at 4 MeV and 5.5 MeV respectively. The results obtained confirm the intensity bound in the 3-8 MeV region but this augmentation reaches the maximum when the heavy fragment is near the mass 132. Beyond mass 140 the phenomenon diminish and the {gamma} spectrum regains the behaviour expected for a statistic emission. The additional structure at 5.5 MeV does not vary with excitation energy while the excitation function of the 4 MeV structure is more structured and presents a maximum when the excitation energy is near 8 MeV. It is likely that all or part of this observed phenomenon is due to a particular excitation mode of this isotope associated for instance with a low energy dipole resonance. A theoretical study of this collective effect is under way 3 refs.

  2. The discovery of fission

    International Nuclear Information System (INIS)

    McKay, H.A.C.

    1978-01-01

    In this article by the retired head of the Separation Processes Group of the Chemistry Division, Atomic Energy Research Establishment, Harwell, U.K., the author recalls what he terms 'an exciting drama, the unravelling of the nature of the atomic nucleus' in the years before the Second World War, including the discovery of fission. 12 references. (author)

  3. Simultaneous measurement of neutrons and fission fragments of thermal neutron fission of U-233

    International Nuclear Information System (INIS)

    Itsuro Kimura; Katsuhisa Nishio; Yoshihiro Nakagome

    2000-01-01

    The multiplicity and the energy of prompt neutrons from the fragments for 233 U(n th , f) were measured as functions of fragment mass and total kinetic energy. Average neutron energy against the fragment mass showed a nearly symmetric distribution about the half mass division with two valleys at 98 and 145 u. The slope of the neutron multiplicity with total kinetic energy depended on the fragment mass and showed the minimum at about 130 u. The obtained neutron data were applied to determine the total excitation energy of the system, and the resulting value in the typical asymmetric fission lied between 22 and 25 MeV. The excitation energy agreed with that determined by subtracting the total kinetic energy from the Q-value within 1 MeV, thus satisfied the energy conservation. In the symmetric fission, where the mass yield was drastically suppresses, the total excitation energy is significantly large and reaches to about 40 MeV, suggesting that fragment pairs are preferentially formed in a compact configuration at the scission point [ru

  4. Investigation of delayed fission gas release

    International Nuclear Information System (INIS)

    Cayet, Nicolas

    1996-05-01

    The study of the fission gas release process in the high burnup rig IFA-562 has revealed a particular fuel behaviour: a delay in the fission gas release process. It appeared that an important release of gas was measured by the pressure transducers once the power had decreased, whereas, during steady-state operation, the pressure did not increase very much. After examinations, the gap size has been concluded to be the main parameter involving this delay. However the burnup could have been a potential factor, its role is mainly to close the gap by swelling. The observations of low burnup rods have shown the same delayed fission gas release, the gap being small by design and closed essentially by thermal expansion. The study of the kinetics has demonstrated the time-independency of the phenomenon. Thus the proposed mechanism driving this delayed fission gas release would involve three consecutives stages. During steady-state, the gas is released into the interlinkage network of grain boundary bubbles and cracks. Due to the closed gap, the gas is trapped in some void volumes, unable to escape the pellet. During power reduction, the gap and some old/new cracks open, immediately providing a path for the gas to the pressure transducers and explaining this delay in the fission gas release. (author)

  5. Chemistry of fission products for accident analysis

    International Nuclear Information System (INIS)

    Potter, P.E.

    1985-01-01

    Current knowledge concerning the chemical state of the fission product elements during the development of accidents in water reactor systems is reviewed in this paper. The fission product elements which have been considered are Cs, I, Te, Sr and Ba but aspects of the behavior of Mo, Ru and the lanthanides are also discussed. Some features of the reactions of the various species of these elements with other components of the reactor systems are described. The importance of having an adequate knowledge of thermodynamic data and phase equilibria of relatively simple systems in order to interpret experimental observations on complex multi-component systems is stressed

  6. Exact axially symmetric galactic dynamos

    Science.gov (United States)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  7. Staggering of angular momentum distribution in fission

    Science.gov (United States)

    Tamagno, Pierre; Litaize, Olivier

    2018-03-01

    We review here the role of angular momentum distributions in the fission process. To do so the algorithm implemented in the FIFRELIN code [?] is detailed with special emphasis on the place of fission fragment angular momenta. The usual Rayleigh distribution used for angular momentum distribution is presented and the related model derivation is recalled. Arguments are given to justify why this distribution should not hold for low excitation energy of the fission fragments. An alternative ad hoc expression taking into account low-lying collectiveness is presented as has been implemented in the FIFRELIN code. Yet on observables currently provided by the code, no dramatic impact has been found. To quantify the magnitude of the impact of the low-lying staggering in the angular momentum distribution, a textbook case is considered for the decay of the 144Ba nucleus with low excitation energy.

  8. Staggering of angular momentum distribution in fission

    Directory of Open Access Journals (Sweden)

    Tamagno Pierre

    2018-01-01

    Full Text Available We review here the role of angular momentum distributions in the fission process. To do so the algorithm implemented in the FIFRELIN code [?] is detailed with special emphasis on the place of fission fragment angular momenta. The usual Rayleigh distribution used for angular momentum distribution is presented and the related model derivation is recalled. Arguments are given to justify why this distribution should not hold for low excitation energy of the fission fragments. An alternative ad hoc expression taking into account low-lying collectiveness is presented as has been implemented in the FIFRELIN code. Yet on observables currently provided by the code, no dramatic impact has been found. To quantify the magnitude of the impact of the low-lying staggering in the angular momentum distribution, a textbook case is considered for the decay of the 144Ba nucleus with low excitation energy.

  9. Fusion-fission in Ar-heavy nuclei collisions

    International Nuclear Information System (INIS)

    Zaric, Alexandre

    1984-01-01

    Fusion-fission products have been studied for three reactions: Ar + Au, Ar + Bi and Ar + U (5.25-7.5 MeV/u). By measuring symmetric fragmentation components (fission-like events), cross sections for fusion were deduced and compared with the prediction of static and dynamic models. With increasing projectile energy, the width of the mass distributions strongly increases for the two lighter systems. By contrast, for Ar + U it remains essentially constant at a very large value. These results clearly demonstrate that the large increase of the width of the mass distribution cannot be attributed simply to large values of the angular momentum. However, they can be explained by the occurrence of a different dissipative process, fast fission, which can be expected if there is no barrier to fission. For the reaction Ar + Au, the total kinetic-energy distributions were also studied in detail. In this case fast fission occurs only at high incident energy. The average total kinetic energy (TKE) was found to be constant with increasing energy. (author) [fr

  10. Asymmetry of mass and charge division in spontaneous fission

    International Nuclear Information System (INIS)

    Chakraborty, P.P.; Iyer, M.R.; Ganguly, A.K.

    The order-disorder model (ODM) has been used to explain asymmetry of mass and charge division and related phenomena in fission. According to this model the fission process involves two steps consisting of charge polarisation into two impending fragments with beta stable neutron numbers and subsequent distribution of the balance neutrons between the two. The statistics developed on the principle of equal a priori probability of all charge polarisation is used. The shell effects comes into play only in deciding stable neutron number for the charges. The total isotopic yield distribution for a number of fission reactions are presented. These show asymmetry in the actinide region which reduces with increasing mass/charge of the fissioning nuclide and bunching of the higher z peaks. The mass yields obtained therefrom for a number of fission reactions are compared with experimental results. Though there is general agreement with experimental data, the peaks of the distributions are slightly shifted away from the symmetric point and the distributions are somewhat narrower. Charge distribution parameters obtained from these results are also presented. The model predicts preference of asymmetric division for super heavy nuclides. (author)

  11. Semiclassical approach to sequential fission in peripheral heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Strazzeri Andrea

    2016-01-01

    Full Text Available A closed-form theoretical approach describing in a single picture both the evaporation component and the fast nonequilibrium component of the sequential fission of projectilelike fragments in a semiperipheral heavy-ion collision is derived and then applied to the dynamical fission observed in the 124Sn+64Ni semiperipheral collision at 35A MeV. Information on opposite polarization effects of the fissioning projectilelike fragments and on their “formation-to-fast fission lifetimes” are obtained.

  12. Insights into nuclear structure and the fission process from spontaneous fission

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, J.H.; Butler-Moore, K.; Ramayya, A.V. [Vanderbilt Univ., Nashville, TN (United States)] [and others

    1993-12-31

    The {gamma}-rays emitted following spontaneous and induced fission are rich sources of information about the structure of neutron-rich nuclei and about the fission process itself. The study of spontaneous fissioning isotopes with large Ge detector arrays are providing a wealth of such information as seen, for example, in recent reports. In this paper we present some of our most recent results on nuclear structure studies and conclusions on the fission process itself. In our work, we have employed in spontaneous fission, a triple gamma coincidence study for the first time and a high resolution, X-ray detector-{gamma}-coincidence study. These data provide powerful ways of separating the gamma rays which belong to a particular nucleus. The triple coincidence technique was used to uniquely identify the levels in {sup 136}Te and higher spin states in its N=84 isotones, {sup 138}Xe and {sup 140}Ba{sup 171}. Some other examples of the level structures observed in the low and high mass partners are presented, including a detailed analysis of the backbending of the moment of inertia in {sup 112,114,116}Pd. Finally, we present the first examples of how our analysis allows one to extract a detailed picture of the dependence of the angular momentum on the mass and atomic numbers of the fission fragments and of the long-sought neutron multiplicity distribution from zero-n to ten-n as a function of the charge and mass asymmetry.

  13. Neutron induced current pulses in fission chambers

    International Nuclear Information System (INIS)

    Taboas, A.L.; Buck, W.L.

    1978-01-01

    The mechanism of neutron induced current pulse generation in fission chambers is discussed. By application of the calculated detector transfer function to proposed detector current pulse shapes, and by comparison with actually observed detector output voltage pulses, a credible, semi-empirical, trapezoidal pulse shape of chamber current is obtained

  14. Is the Universe matter-antimatter symmetric

    International Nuclear Information System (INIS)

    Alfven, H.

    1976-09-01

    According to the symmetric cosmology there should be antimatter regions in space which are equally as large as the matter regions. The regions of different kind are separated by Leidenfrost layers, which may be very thin and not observable from a distance. This view has met resistance which in part is based on the old view that the dilute interstellar and intergalactic medium is more or less homogeneous. However, through space research in the magnetosphere and interplanetary space we know that thin layers, dividing space into regions of different magnetisation, exist and based on this it is concluded that space in general has a cellular structure. This result may break down the psychological resistance to the symmetric theory. The possibility that every second star in our galaxy consists of antimatter is discussed, and it is shown that this view is not in conflict with any observations. As most stars are likely to be surrounded by solar systems of a structure like our own, it is concluded that collisions between comets and antistars (or anticomets and stars) would be rather frequent. Such collisions would result in phenomena of the same type as the observed cosmic γ-ray bursts. Another support for the symmetric cosmology is the continuous X-ray background radiation. Also many of the observed large energy releases in cosmos are likely to be due to annihilation

  15. A threshold for dissipative fission

    International Nuclear Information System (INIS)

    Thoennessen, M.; Bertsch, G.F.

    1993-01-01

    The empirical domain of validity of statistical theory is examined as applied to fission data on pre-fission data on pre-fission neutron, charged particle, and γ-ray multiplicities. Systematics are found of the threshold excitation energy for the appearance of nonstatistical fission. From the data on systems with not too high fissility, the relevant phenomenological parameter is the ratio of the threshold temperature T thresh to the (temperature-dependent) fission barrier height E Bar (T). The statistical model reproduces the data for T thresh /E Bar (T) thresh /E Bar (T) independent of mass and fissility of the systems

  16. Fission yield correlation generation and impact on nuclear problems - 15570

    International Nuclear Information System (INIS)

    Fiorito, L.; Stankovskiy, A.; Van den Eynde, G.

    2015-01-01

    In our work we defined a scheme to update fission yields and their covariance matrices. We implemented a Generalised Linear Least Square (GLLS) updating procedure to produce inter-isotope fission yield correlations. At each update, a constraining equation was selected and the related set of observables calculated using the prior knowledge of the fission yield data and uncertainties. Then, available extra information on each observable was introduced into the system - e.g. a data set of direct measurements or uncertainties. Our GLLS-based updating tool calculates best-estimate posterior fission yields and covariance matrices which merge both the extra and prior data. The major result of the update is the generation of fission yield correlations. We created complete updated covariance matrices for 6 nuclides (Th 232 , U 233 , U 235 , U 238 , Pu 239 and Pu 241 ) and a total of 14 fissioning systems using the JEFF-3.1.1 files. The fission yield covariance matrices were tested against the criticality and nuclide inventory calculations of the REBUS single pin benchmark after one irradiation cycle. It appears that fission yield correlations reduce the uncertainties to a very great extent, which in many cases are 4 times smaller than those obtained with uncorrelated data

  17. True ternary fission of 252Cf

    International Nuclear Information System (INIS)

    Vijayaraghavan, K.R.; Balasubramaniam, M.; Oertzen, W. von

    2014-01-01

    Splitting of heavy radioactive nucleus into three fragments is known as ternary fission. If the size of the fragments are almost equal it is referred to as true ternary fission. Recently, Yu. V. Pyatkov et al observed/reported the experimental observation of true ternary fission in 252 Cf. In this work, the possibilities of different true ternary fission modes of 252 Cf through potential energy surface (PES) calculations based on three cluster model (TCM) are discussed. In TCM a condition on the mass numbers of the fission fragments is implied as A 1 ≥ A 2 ≥ A 3 in order to avoid repetition of combinations. Due to this condition, the values of Z 3 vary from 0 to 36 and Z 2 vary from 16 to 51. Of the different pairs having similar (Z 2 , Z 3 ) with different potential energy, a pair possessing minimum potential energy is chosen. Thus identified favourable combinations are plotted. For the PES calculations the arrangement of the fragments is considered in the order of A 1 +A 2 +A 3 . i.e. the heavy and the lightest fragments are kept at the ends. It is seen that the deepest minimum in the PES occurs for Z 3 =2 labelled as (Z 2 ; 2) indicating He accompanied breakup as the most favourable one. Of which, the breakup with Z 2 around 46 to 48 is the least (shown by dashed (Z 1 = 50) and dotted (Z 1 = 52) lines indicating a constant Z 1 value). The other notable minima in the PES are labelled and they correspond to the (Z 2 , Z 3 ) pairs viz., (20, 20), (28, 20), (28, 28) and (32, 32). Of these four minima, the first three are associated with the magic numbers 20 and 28. For Z 3 =20, there are two minimums at (20,20) and (28,20) among them (28,20) is the lowest minimum through which the minimum-path passes, and it is the ternary decay observed by Yu. V. Pyatkov et al. The fourth minima is the most interesting due to the fact that it corresponds to true ternary fission mode with Z 2 =32, Z 3 =32 and Z 1 =34. The minimum potential energy path also goes through this true

  18. Barium 139 as Fission Indicator

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1943-07-01

    This report is based on a measurement performed at the Cavendish Laboratory (Cambridge) by E. Broda in December 1943 where a technique has been worked out for measuring the fission density in a uranium containing medium in relative units by determining the amount of a suitable fission product formed. Generally a given fission product will be formed in natural uranium by slow neutron fission of U235 or by fast neutron fission of either U235 or U238. It is intended to translate the relative units into absolute units by comparison of the Ba yield with the indication of UF6 fission chamber in the same medium. This has to be done separately for fast and slow neutron fission as the yields may be different. Another application of the technique developed is the measurement of thermal neutron density in an uraniferous medium without using a detector subject to variations of sensitivity according to the properties of the medium. (nowak)

  19. Mesotherapy for benign symmetric lipomatosis.

    Science.gov (United States)

    Hasegawa, Toshio; Matsukura, Tomoyuki; Ikeda, Shigaku

    2010-04-01

    Benign symmetric lipomatosis, also known as Madelung disease, is a rare disorder characterized by fat distribution around the shoulders, arms, and neck in the context of chronic alcoholism. Complete excision of nonencapsulated lipomas is difficult. However, reports describing conservative therapeutic measures for lipomatosis are rare. The authors present the case of a 42-year-old man with a diagnosis of benign symmetric lipomatosis who had multiple, large, symmetrical masses in his neck. Multiple phosphatidylcholine injections in the neck were administered 4 weeks apart, a total of seven times to achieve lipolysis. The patient's lipomatosis improved in response to the injections, and he achieved good cosmetic results. Intralesional injection, termed mesotherapy, using phosphatidylcholine is a potentially effective therapy for benign symmetric lipomatosis that should be reconsidered as a therapeutic option for this disease.

  20. Looking for symmetric Bell inequalities

    OpenAIRE

    Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano

    2010-01-01

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell e...

  1. Dynamic effects in neutron induced fission of 230Th and 232Th

    International Nuclear Information System (INIS)

    Trochon, J.; Frehaut, J.; Pranal, Y.; Simon, G.; Boldeman, J.W.

    1982-09-01

    The fission fragment characteristics of the two thorium isotopes 230 Th and 232 Th have been measured in an attempt to study the evolution of the fissioning nucleus from saddle point to scission. The partial fission channel at the saddle point have been deduced from a fission fragment angular distribution and fission cross section analysis. Changes with energy in the average number of prompt neutron (νsub(p)) emitted per fission and the total fragment kinetic energy (TKE) have been observed in the fission threshold region. A rather good fit of νsub(p) and TKE values has been obtained on the basis of a correlation of these quantities and the partial fission channel ratios. This leads to expect for these isotopes a passage from saddle point to scission sufficiently rapid for the coupling between collective and intrinsic excitation to be very weak [fr

  2. Spherically symmetric charged compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chowdhury, Sourav Roy [Seth Anandaram Jaipuria College, Department of Physics, Kolkata, West Bengal (India)

    2015-08-15

    In this article we consider the static spherically symmetric metric of embedding class 1. When solving the Einstein-Maxwell field equations we take into account the presence of ordinary baryonic matter together with the electric charge. Specific new charged stellar models are obtained where the solutions are entirely dependent on the electromagnetic field, such that the physical parameters, like density, pressure etc. do vanish for the vanishing charge. We systematically analyze altogether the three sets of Solutions I, II, and III of the stellar models for a suitable functional relation of ν(r). However, it is observed that only the Solution I provides a physically valid and well-behaved situation, whereas the Solutions II and III are not well behaved and hence not included in the study. Thereafter it is exclusively shown that the Solution I can pass through several standard physical tests performed by us. To validate the solution set presented here a comparison has also been made with that of the compact stars, like RX J 1856 - 37, Her X - 1, PSR 1937+21, PSRJ 1614-2230, and PSRJ 0348+0432, and we have shown the feasibility of the models. (orig.)

  3. Fusion-fission dynamics

    International Nuclear Information System (INIS)

    Blocki, J.; Planeta, R.; Brzychczyk, J.; Grotowski, K.

    1991-04-01

    Classical dynamical calculations of the heavy ion induced fission process for the reactions 40 Ar+ 141 Pr, 20 Ne+ 165 Ho and 12 C+ 175 Lu leading to the iridium like nucleus have been performed. As a result prescission lifetimes were obtained and compared with the experimental values. The agreement between the calculated and experimental lifetimes indicates that the one-body dissipation picture is much more relevant in describing the fusion-fission dynamics than the two-body one. Somewhat bigger calculated times than the experimental ones in case of the C+Lu reaction at 16 MeV/nucleon may be a signal on the energy range applicability of the one-body dissipation model. (author)

  4. Fission of highly excited nuclei investigated in complete kinematic measurements

    International Nuclear Information System (INIS)

    Rodriguez-Sanchez, J. L.; Benlliure, J.; Taieb, J.; Avarez-Pol, H.; Audouin, L.; Ayyad, Y.; Belier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelic-Heil, A.; Kurz, N.; Laurent, B.; Martin, J. F.; Paradela, C.; Pellereau, E.; Pietras, B.; Prochazka, A.; Ramos, D.; Rodriguez-Tajes, C.; Rossi, D.; Simon, H.; Tassan-Got, L.; Vargas, J.; Voss, B.

    2013-01-01

    Fission is an extremely complex mechanism that requires a dynamical approach to describe the evolution of the process in terms of intrinsic and collective excitations of the nuclear constituents. In order to determine these effects a complex experimental setup was mounted at GSI, which allowed us for the first time the full identification in charge and mass of all fission fragments thanks to a magnetic separation and the use of the inverse kinematic technique. Moreover, we also measured the neutron multiplicities and the light-charged particles emitted in coincidence with fission. These complete kinematic measurements will be used to define sensitive observables to dissipative and transient effects in fission. In this manuscript we present the first results for the total fission cross sections. (authors)

  5. The fission track method

    International Nuclear Information System (INIS)

    Hansen, K.

    1990-01-01

    During the last decade fission track (FT) analysis has evolved as an important tool in exploration for hydrocarbon resources. Most important is this method's ability to yield information about temperatures at different times (history), and thus relate oil generation and time independently of other maturity parameters. The purpose of this paper is to introduce the basics of the method and give an example from the author's studies. (AB) (14 refs.)

  6. Meiotic non-disjunction induced by fission neutrons relative to X-rays observed in mouse secondary spermatocytes. Pt. 1. The response of different cell stages to a single radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Russo, A.; Pacchierotti, F.; Metalli, P. (Nuclear Energy Agency, Rome (Italy). Div. of Physics and Biomedical Sciences)

    1983-03-01

    (C57BL/CnexC3H/Cne)F/sub 1/ male mice were irradiated with 2 Gy of 250-kV X-rays or 0.56 Gy of attenuated fission spectrum neutrons, and killed at various times after treatment. Second meiotic metaphases of spermatogenetic cells irradiated in various meiotic and premeiotic stages were observed. These stages were first meiotic metaphase, diplotene, late pachytene, mid-pachytene, zygotene, pre-leptotene and spermatogonia. Cells were classified by chromosome counting, and those with 18 <=n<=22 were recorded. An index of induction of non-disjunction events was obtained by the frequency of hyper-haploid spermatocytes relative to the sum of hyper-haploid and normal haploid spreads. The frequency of hyper-haploid spermatocytes was 0.7+-0.4 in control mice. It was higher after treatment with both types of radiation at all meiotic stages tested, with a peak of induction at and shortly before metaphase I-diakinesis (16-19%). Irradiated gonial cells also yielded values higher than did controls. The difference was statistically significant after irradiation with neutrons, showing that radiation can induce non-disjunction events in stem cells.

  7. [Fission product yields of 60 fissioning reactions]. Final report

    International Nuclear Information System (INIS)

    Rider, B.F.

    1995-01-01

    In keeping with the statement of work, I have examined the fission product yields of 60 fissioning reactions. In co-authorship with the UTR (University Technical Representative) Talmadge R. England ''Evaluation and Compilation of Fission Product Yields 1993,'' LA-UR-94-3106(ENDF-349) October, (1994) was published. This is an evaluated set of fission product Yields for use in calculation of decay heat curves with improved accuracy has been prepared. These evaluated yields are based on all known experimental data through 1992. Unmeasured fission product yields are calculated from charge distribution, pairing effects, and isomeric state models developed at Los Alamos National Laboratory. The current evaluation has been distributed as the ENDF/B-VI fission product yield data set

  8. Hemi-fused structure mediates and controls fusion and fission in live cells.

    Science.gov (United States)

    Zhao, Wei-Dong; Hamid, Edaeni; Shin, Wonchul; Wen, Peter J; Krystofiak, Evan S; Villarreal, Seth A; Chiang, Hsueh-Cheng; Kachar, Bechara; Wu, Ling-Gang

    2016-06-23

    Membrane fusion and fission are vital for eukaryotic life. For three decades, it has been proposed that fusion is mediated by fusion between the proximal leaflets of two bilayers (hemi-fusion) to produce a hemi-fused structure, followed by fusion between the distal leaflets, whereas fission is via hemi-fission, which also produces a hemi-fused structure, followed by full fission. This hypothesis remained unsupported owing to the lack of observation of hemi-fusion or hemi-fission in live cells. A competing fusion hypothesis involving protein-lined pore formation has also been proposed. Here we report the observation of a hemi-fused Ω-shaped structure in live neuroendocrine chromaffin cells and pancreatic β-cells, visualized using confocal and super-resolution stimulated emission depletion microscopy. This structure is generated from fusion pore opening or closure (fission) at the plasma membrane. Unexpectedly, the transition to full fusion or fission is determined by competition between fusion and calcium/dynamin-dependent fission mechanisms, and is notably slow (seconds to tens of seconds) in a substantial fraction of the events. These results provide key missing evidence in support of the hemi-fusion and hemi-fission hypothesis in live cells, and reveal the hemi-fused intermediate as a key structure controlling fusion and fission, as fusion and fission mechanisms compete to determine the transition to fusion or fission.

  9. Microscopic description of 258Fm fission dynamic with pairing

    Directory of Open Access Journals (Sweden)

    Scamps Guillaume

    2016-01-01

    Full Text Available Fission dynamic remains a challenge for nuclear microscopic theories. In order to understand the dynamic of the last stage of the fission process, the time-dependent Hartree-Fock approach with BCS pairing is applied to the describe the fission of the 258Fm. A good agreement is found for the one-body observables: the total kinetic energy and the average mass asymmetry. The non-physical dependence of two-body observables with the initial shape is discussed.

  10. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L.; Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G.; Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W.; Dichter, B.; Kaufman, S.; Videbaek, F.; Fraenkel, Z.; Mamane, G.; Cebra, D.; Westfall, G.D.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.)

  11. Fission Detection Using the Associated Particle Technique

    International Nuclear Information System (INIS)

    R.P. Keegan; J.P. Hurley; J.R. Tinsley; R. Trainham; S.C. Wilde

    2008-01-01

    A beam of tagged 14 MeV neutrons from the deuterium-tritium (DT) reaction is used to induce fission in a target composed of depleted uranium. The generator yield is 10 7 neutrons/second radiated into a 4 x 4 in. NaI detectors are used for gamma-ray detection. The fission process is known to produce multiple gamma-rays and neutrons. Triple coincidences (α-γ-γ) are measured as a function of neutron flight time up to 90 ns after fission, where the α-particle arises from the DT reaction. A sudden increase in the triple coincidence rate at the location of the material is used to localize and detect fission in the interrogated target. Comparisons are made with experiment runs where lead, tungsten, and iron were used as target materials. The triple coincidence response profile from depleted uranium is noted to be different to those observed from the other target materials. The response from interrogation targets composed of fissile material is anticipated to be even more unique than that observed from depleted uranium

  12. Fission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.

    1989-01-01

    A systematic study of reaction mechanisms at intermediate energies (50--100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: the reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicity of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. 7 figs

  13. Prediction of fission mass-yield distributions based on cross section calculations

    International Nuclear Information System (INIS)

    Hambsch, F.-J.; G.Vladuca; Tudora, Anabella; Oberstedt, S.; Ruskov, I.

    2005-01-01

    For the first time, fission mass-yield distributions have been predicted based on an extended statistical model for fission cross section calculations. In this model, the concept of the multi-modality of the fission process has been incorporated. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) modes and the symmetric superlong (SL) mode are taken into account. De-convoluted fission cross sections for S1, S2 and SL modes for 235,238 U(n, f) and 237 Np(n, f), based on experimental branching ratios, were calculated for the first time in the incident neutron energy range from 0.01 to 5.5 MeV providing good agreement with the experimental fission cross section data. The branching ratios obtained from the modal fission cross section calculations have been used to deduce the corresponding fission yield distributions, including mean values also for incident neutron energies hitherto not accessible to experiment

  14. Averaging in spherically symmetric cosmology

    International Nuclear Information System (INIS)

    Coley, A. A.; Pelavas, N.

    2007-01-01

    The averaging problem in cosmology is of fundamental importance. When applied to study cosmological evolution, the theory of macroscopic gravity (MG) can be regarded as a long-distance modification of general relativity. In the MG approach to the averaging problem in cosmology, the Einstein field equations on cosmological scales are modified by appropriate gravitational correlation terms. We study the averaging problem within the class of spherically symmetric cosmological models. That is, we shall take the microscopic equations and effect the averaging procedure to determine the precise form of the correlation tensor in this case. In particular, by working in volume-preserving coordinates, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. We find that the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background must be of the form of a spatial curvature. Inhomogeneities and spatial averaging, through this spatial curvature correction term, can have a very significant dynamical effect on the dynamics of the Universe and cosmological observations; in particular, we discuss whether spatial averaging might lead to a more conservative explanation of the observed acceleration of the Universe (without the introduction of exotic dark matter fields). We also find that the correlation tensor for a non-FLRW background can be interpreted as the sum of a spatial curvature and an anisotropic fluid. This may lead to interesting effects of averaging on astrophysical scales. We also discuss the results of averaging an inhomogeneous Lemaitre-Tolman-Bondi solution as well as calculations of linear perturbations (that is, the backreaction) in an FLRW background, which support the main conclusions of the analysis

  15. A small flat fission chamber

    International Nuclear Information System (INIS)

    Li Yijun; Wang Dalun; Chen Suhe

    1999-01-01

    With fission materials of depleted uranium, natural uranium, enriched uranium, 239 Pu, and 237 Np, the authors have designed and made a series of small flat fission chamber. The authors narrated the construction of the fission chamber and its technological process of manufacture, and furthermore, the authors have measured and discussed the follow correct factor, self-absorption, boundary effect, threshold loss factor, bottom scatter and or so

  16. Fission barriers of light nuclei

    International Nuclear Information System (INIS)

    Grotowski, K.; Planeta, R.; Blann, M.; Komoto, T.

    1989-01-01

    Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems

  17. Singlet fission in pentacene dimers

    Science.gov (United States)

    Zirzlmeier, Johannes; Lehnherr, Dan; Coto, Pedro B.; Chernick, Erin T.; Casillas, Rubén; Basel, Bettina S.; Thoss, Michael; Tykwinski, Rik R.; Guldi, Dirk M.

    2015-01-01

    Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photon-to-current conversion efficiencies beyond the 30% Shockley–Queisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule. PMID:25858954

  18. Nuclear Forensics and Radiochemistry: Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-07

    Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution.

  19. Micro plate fission chamber development

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Jiang Li; Liu Rong; Wang Dalun

    2014-01-01

    To conduct the measurement of neutron flux and the fission rate distribution at several position in assemblies, the micro plate fission chamber was designed and fabricated. Since the requirement of smaller volume and less structure material was taken into consideration, it is convinient, commercial and practical to use fission chamber to measure neutron flux in specific condition. In this paper, the structure of fission chamber and process of fabrication were introduced and performance test result was presented. The detection efficiency is 91.7%. (authors)

  20. Fission yield measurements at IGISOL

    Science.gov (United States)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  1. Fission yield measurements at IGISOL

    Directory of Open Access Journals (Sweden)

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  2. Fission gas release at high burn-up: beyond the standard diffusion model

    International Nuclear Information System (INIS)

    Landskron, H.; Sontheimer, F.; Billaux, M.R.

    2002-01-01

    At high burn-up standard diffusion models describing the release of fission gases from nuclear fuel must be extended to describe the experimental loss of xenon observed in the fuel matrix of the rim zone. Marked improvements of the prediction of integral fission gas release of fuel rods as well as of radial fission gas profiles in fuel pellets are achieved by using a saturation concept to describe fission gas behaviour not only in the pellet rim but also as an additional fission gas path in the whole pellet. (author)

  3. Harmonic analysis on symmetric spaces

    CERN Document Server

    Terras, Audrey

    This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards’s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random  matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.

  4. Study on the effect factor of the absolute fission rates measured by depleted uranium fission chamber

    International Nuclear Information System (INIS)

    Jiang Li; Liu Rong; Wang Dalun; Wang Mei; Lin Jufang; Wen Zhongwei

    2003-01-01

    The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural of the fission chamber, etc

  5. Energy from nuclear fission()

    Science.gov (United States)

    Ripani, M.

    2015-08-01

    The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  6. Looking for symmetric Bell inequalities

    International Nuclear Information System (INIS)

    Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano

    2010-01-01

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.

  7. Symmetric normalisation for intuitionistic logic

    DEFF Research Database (Denmark)

    Guenot, Nicolas; Straßburger, Lutz

    2014-01-01

    We present two proof systems for implication-only intuitionistic logic in the calculus of structures. The first is a direct adaptation of the standard sequent calculus to the deep inference setting, and we describe a procedure for cut elimination, similar to the one from the sequent calculus......, but using a non-local rewriting. The second system is the symmetric completion of the first, as normally given in deep inference for logics with a DeMorgan duality: all inference rules have duals, as cut is dual to the identity axiom. We prove a generalisation of cut elimination, that we call symmetric...

  8. Diagrams for symmetric product orbifolds

    International Nuclear Information System (INIS)

    Pakman, Ari; Rastelli, Leonardo; Razamat, Shlomo S.

    2009-01-01

    We develop a diagrammatic language for symmetric product orbifolds of two-dimensional conformal field theories. Correlation functions of twist operators are written as sums of diagrams: each diagram corresponds to a branched covering map from a surface where the fields are single-valued to the base sphere where twist operators are inserted. This diagrammatic language facilitates the study of the large N limit and makes more transparent the analogy between symmetric product orbifolds and free non-abelian gauge theories. We give a general algorithm to calculate the leading large N contribution to four-point correlators of twist fields.

  9. Looking for symmetric Bell inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Bancal, Jean-Daniel; Gisin, Nicolas [Group of Applied Physics, University of Geneva, 20 rue de l' Ecole-de Medecine, CH-1211 Geneva 4 (Switzerland); Pironio, Stefano, E-mail: jean-daniel.bancal@unige.c [Laboratoire d' Information Quantique, Universite Libre de Bruxelles (Belgium)

    2010-09-24

    Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.

  10. Symmetric autocompensating quantum key distribution

    Science.gov (United States)

    Walton, Zachary D.; Sergienko, Alexander V.; Levitin, Lev B.; Saleh, Bahaa E. A.; Teich, Malvin C.

    2004-08-01

    We present quantum key distribution schemes which are autocompensating (require no alignment) and symmetric (Alice and Bob receive photons from a central source) for both polarization and time-bin qubits. The primary benefit of the symmetric configuration is that both Alice and Bob may have passive setups (neither Alice nor Bob is required to make active changes for each run of the protocol). We show that both the polarization and the time-bin schemes may be implemented with existing technology. The new schemes are related to previously described schemes by the concept of advanced waves.

  11. Measurement of Fission Product Yields from Fast-Neutron Fission

    Science.gov (United States)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  12. The total kinetic energy release in the fast neutron-induced fission of {sup 232}Th

    Energy Technology Data Exchange (ETDEWEB)

    King, Jonathan; Yanez, Ricardo; Loveland, Walter; Barrett, J. Spencer; Oscar, Breland [Oregon State University, Dept. of Chemistry, Corvallis, OR (United States); Fotiades, Nikolaos; Tovesson, Fredrik; Young Lee, Hye [Los Alamos National Laboratory, Physics Division, Los Alamos, NM (United States)

    2017-12-15

    The post-emission total kinetic energy release (TKE) in the neutron-induced fission of {sup 232}Th was measured (using white spectrum neutrons from LANSCE) for neutron energies from E{sub n} = 3 to 91 MeV. In this energy range the average post-neutron total kinetic energy release decreases from 162.3 ± 0.3 at E{sub n} = 3 MeV to 154.9 ± 0.3 MeV at E{sub n} = 91 MeV. Analysis of the fission mass distributions indicates that the decrease in TKE with increasing neutron energy is a combination of increasing yields of symmetric fission (which has a lower associated TKE) and a decrease in the TKE release in asymmetric fission. (orig.)

  13. Tip model of cold fission

    International Nuclear Information System (INIS)

    Goennenwein, F.; Boersig, B.

    1991-01-01

    Cold fission is defined to be the limiting case of nuclear fission where virtually all of the available energy is converted into the total kinetic energy of the fragments. The fragments have, therefore, to be born in or at least close to their respective ground states. Starting from the viewpoint that cold fission corresponds to most compact scission configurations, energy constraints have been exploited to calculate minimum tip distances between the two nascent fragments in binary fission. Crucial input parameters to this tip model of cold fission are the ground-state deformations of fragment nuclei. It is shown that the minimum tip distances being compatible with energy conservation vary strongly with both the mass and charge fragmentation of the fission prone nucleus. The tip distances refer to nuclei with equivalent sharp surfaces. In keeping with the size of the surface width of leptodermous nuclei, only configurations where the tip distances are smaller than a few fm may be considered as valid scission configurations. From a comparison with experimental data on cold fission this critical tip distance appears to be 3.0 fm for the model parameters chosen. Whenever the model calculation yields tip distances being smaller than the critical value, a necessary condition for attaining cold fission is considered to be fulfilled. It is shown that this criterion allows to understand in fair agreement with experiment which mass fragmentations are susceptible to lead to cold fission and which fragment-charge divisions are the most favored in each isobaric mass chain. Being based merely on energy arguments, the model cannot aim at predicting fragment yields in cold fission. However, the tip model proposed appears well suited to delineate the phase space where cold fission phenomena may come into sight. (orig.)

  14. Inhibition of peroxisome fission, but not mitochondrial fission, increases yeast chronological lifespan

    NARCIS (Netherlands)

    Lefevre, Sophie D; Kumar, Sanjeev; van der Klei, Ida J

    2015-01-01

    Mitochondria are key players in ageing and cell death. It has been suggested that mitochondrial fragmentation, mediated by the Dnm1/Fis1 organelle fission machinery, stimulates ageing and cell death. This was based on the observation that Saccharomyces cerevisiae Δdnm1 and Δfis1 mutants show an

  15. Fission fragment driven neutron source

    Science.gov (United States)

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  16. Neutron multiplicity of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrahman, Y S [Physics department, mu` rah university Al-Karak, (Jordan)

    1995-10-01

    The total average neutron multiplicity of the fission fragments produced by the spontaneous fission of {sup 248} Cm has been measured. This measurement has been done by using a new experimental technique. This technique mainly depends on {gamma}-{gamma} coincidence using a very high resolution high purity germanium (HPGe) detector. 2 figs.

  17. Fission throughout the periodic table

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1989-04-01

    The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs

  18. Symmetric relations of finite negativity

    NARCIS (Netherlands)

    Kaltenbaeck, M.; Winkler, H.; Woracek, H.; Forster, KH; Jonas, P; Langer, H

    2006-01-01

    We construct and investigate a space which is related to a symmetric linear relation S of finite negativity on an almost Pontryagin space. This space is the indefinite generalization of the completion of dom S with respect to (S.,.) for a strictly positive S on a Hilbert space.

  19. Tilting-connected symmetric algebras

    OpenAIRE

    Aihara, Takuma

    2010-01-01

    The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.

  20. Symmetric group representations and Z

    OpenAIRE

    Adve, Anshul; Yong, Alexander

    2017-01-01

    We discuss implications of the following statement about the representation theory of symmetric groups: every integer appears infinitely often as an irreducible character evaluation, and every nonnegative integer appears infinitely often as a Littlewood-Richardson coefficient and as a Kronecker coefficient.

  1. Symmetric Key Authentication Services Revisited

    NARCIS (Netherlands)

    Crispo, B.; Popescu, B.C.; Tanenbaum, A.S.

    2004-01-01

    Most of the symmetric key authentication schemes deployed today are based on principles introduced by Needham and Schroeder [15] more than twenty years ago. However, since then, the computing environment has evolved from a LAN-based client-server world to include new paradigms, including wide area

  2. Quantum systems and symmetric spaces

    International Nuclear Information System (INIS)

    Olshanetsky, M.A.; Perelomov, A.M.

    1978-01-01

    Certain class of quantum systems with Hamiltonians related to invariant operators on symmetric spaces has been investigated. A number of physical facts have been derived as a consequence. In the classical limit completely integrable systems related to root systems are obtained

  3. The symmetric longest queue system

    NARCIS (Netherlands)

    van Houtum, Geert-Jan; Adan, Ivo; van der Wal, Jan

    1997-01-01

    We derive the performance of the exponential symmetric longest queue system from two variants: a longest queue system with Threshold Rejection of jobs and one with Threshold Addition of jobs. It is shown that these two systems provide lower and upper bounds for the performance of the longest queue

  4. Fission gas release of MOX with heterogeneous structure

    International Nuclear Information System (INIS)

    Nakae, N.; Akiyama, H.; Kamimura, K; Delville, R.; Jutier, F.; Verwerft, M.; Miura, H.; Baba, T.

    2015-01-01

    It is very useful for fuel integrity evaluation to accumulate knowledge base on fuel behavior of uranium and plutonium mixed oxide (MOX) fuel used in light water reactors (LWRs). Fission gas release is one of fuel behaviors which have an impact on fuel integrity evaluation. Fission gas release behavior of MOX fuels having heterogeneous structure is focused in this study. MOX fuel rods with a heterogeneous fuel microstructure were irradiated in Halden reactor (IFA-702) and the BR-3/BR-2 CALLISTO Loop (CHIPS program). The 85 Kr gamma spectrometry measurements were carried out in specific cycles in order to examine the concerned LHR (Linear Heat Rate) for fission gas release in the CHIPS program. The concerned LHR is defined in this paper to be the LHR at which a certain additional fission gas release thermally occurs. Post-irradiation examination was performed to understand the fission gas release behavior in connection with the pellet microstructure. The followings conclusions can be made from this study. First, the concerned LHR for fission gas release is estimated to be in the range of 20-23 kW/m with burnup over 37 GWd/tM. It is moreover guessed that the concerned LHR for fission gas release tends to decrease with increasing burnup. Secondly It is observed that FGR (fission gas release rate) is positively correlated with LHR when the LHR exceeds the concerned value. Thirdly, when burnup dependence of fission gas release is discussed, effective burnup should be taken into account. The effective burnup is defined as the burnup at which the LHR should be exceed the concerned value at the last time during all the irradiation period. And fourthly, it appears that FGR inside Pu spots is higher than outside and that retained (not released) fission gases mainly exist in the fission gas bubbles. Since fission gases in bubbles are considered to be easily released during fuel temperature increase, this information is very important to estimate fission gas release behavior

  5. Symmetric imaging findings in neuroradiology

    International Nuclear Information System (INIS)

    Zlatareva, D.

    2015-01-01

    Full text: Learning objectives: to make a list of diseases and syndromes which manifest as bilateral symmetric findings on computed tomography and magnetic resonance imaging; to discuss the clinical and radiological differential diagnosis for these diseases; to explain which of these conditions necessitates urgent therapy and when additional studies and laboratory can precise diagnosis. There is symmetry in human body and quite often we compare the affected side to the normal one but in neuroradiology we might have bilateral findings which affected pair structures or corresponding anatomic areas. It is very rare when clinical data prompt diagnosis. Usually clinicians suspect such an involvement but Ct and MRI can reveal symmetric changes and are one of the leading diagnostic tool. The most common location of bilateral findings is basal ganglia and thalamus. There are a number of diseases affecting these structures symmetrically: metabolic and systemic diseases, intoxication, neurodegeneration and vascular conditions, toxoplasmosis, tumors and some infections. Malformations of cortical development and especially bilateral perisylvian polymicrogyria requires not only exact report on the most affected parts but in some cases genetic tests or combination with other clinical symptoms. In the case of herpes simplex encephalitis bilateral temporal involvement is common and this finding very often prompt therapy even before laboratory results. Posterior reversible encephalopathy syndrome (PReS) and some forms of hypoxic ischemic encephalopathy can lead to symmetric changes. In these acute conditions MR plays a crucial role not only in diagnosis but also in monitoring of the therapeutic effect. Patients with neurofibromatosis type 1 or type 2 can demonstrate bilateral optic glioma combined with spinal neurofibroma and bilateral acoustic schwanoma respectively. Mirror-image aneurysm affecting both internal carotid or middle cerebral arteries is an example of symmetry in

  6. Modelling animal group fission using social network dynamics.

    Directory of Open Access Journals (Sweden)

    Cédric Sueur

    Full Text Available Group life involves both advantages and disadvantages, meaning that individuals have to compromise between their nutritional needs and their social links. When a compromise is impossible, the group splits in order to reduce conflict of interests and favour positive social interactions between its members. In this study we built a dynamic model of social networks to represent a succession of temporary fissions involving a change in social relations that could potentially lead to irreversible group fission (i.e. no more group fusion. This is the first study that assesses how a social network changes according to group fission-fusion dynamics. We built a model that was based on different parameters: the group size, the influence of nutritional needs compared to social needs, and the changes in the social network after a temporary fission. The results obtained from this theoretical data indicate how the percentage of social relation transfer, the number of individuals and the relative importance of nutritional requirements and social links influence the average number of days before irreversible fission occurs. The greater the nutritional needs and the higher the transfer of social relations during temporary fission, the fewer days will be observed before an irreversible fission. It is crucial to bridge the gap between the individual and the population level if we hope to understand how simple, local interactions may drive ecological systems.

  7. Fission-product SiC reaction in HTGR fuel

    International Nuclear Information System (INIS)

    Montgomery, F.

    1981-01-01

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels

  8. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, M.

    1984-09-01

    This is the tenth issue of a report series on Fission Product Data, which informs us about all the activities in this field, which are planned, ongoing, or have recently been completed. The types of activities included are measurements, compilations and evaluations of: fission product yields (neutron induced and spontaneous fission), neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data of fission products, lumped fission product data (decay heat, absorption, etc.). There is also a section with recent references relative to fission product nuclear data

  9. Robust singlet fission in pentacene thin films with tuned charge transfer interactions.

    Science.gov (United States)

    Broch, K; Dieterle, J; Branchi, F; Hestand, N J; Olivier, Y; Tamura, H; Cruz, C; Nichols, V M; Hinderhofer, A; Beljonne, D; Spano, F C; Cerullo, G; Bardeen, C J; Schreiber, F

    2018-03-05

    Singlet fission, the spin-allowed photophysical process converting an excited singlet state into two triplet states, has attracted significant attention for device applications. Research so far has focused mainly on the understanding of singlet fission in pure materials, yet blends offer the promise of a controlled tuning of intermolecular interactions, impacting singlet fission efficiencies. Here we report a study of singlet fission in mixtures of pentacene with weakly interacting spacer molecules. Comparison of experimentally determined stationary optical properties and theoretical calculations indicates a reduction of charge-transfer interactions between pentacene molecules with increasing spacer molecule fraction. Theory predicts that the reduced interactions slow down singlet fission in these blends, but surprisingly we find that singlet fission occurs on a timescale comparable to that in pure crystalline pentacene. We explain the observed robustness of singlet fission in such mixed films by a mechanism of exciton diffusion to hot spots with closer intermolecular spacings.

  10. Magnetospectroscopy of symmetric and anti-symmetric states in double quantum wells

    Science.gov (United States)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Ploch, D.; Tomaka, G.; Furdak, M.; Kolek, A.; Stadler, A.; Mleczko, K.; Zak, D.; Strupinski, W.; Jasik, A.; Jakiela, R.

    2008-02-01

    The experimental results obtained for magnetotransport in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells are reported. A beating effect occurring in the Shubnikov-de Haas (SdH) oscillations was observed for both types of structures at low temperatures in the parallel transport when the magnetic field was perpendicular to the layers. An approach for the calculation of the Landau level energies for DQW structures was developed and then applied to the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to account for the observed magnetotransport phenomena (SdH and integer quantum Hall effect), one should introduce two different quasi-Fermi levels characterizing two electron subsystems regarding the symmetry properties of their states, symmetric and anti-symmetric ones, which are not mixed by electron-electron interaction.

  11. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    Behrens, J.W.; Carlson, A.D.

    1989-01-01

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately

  12. Microscopic theory of nuclear fission: a review

    Science.gov (United States)

    Schunck, N.; Robledo, L. M.

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract

  13. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    Behrens, J.W.; Carlson, A.D.

    1989-01-01

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty years with nuclear fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately

  14. Nuclear fission and fission-product spectroscopy: 3. International workshop on nuclear fission and fission-product spectroscopy

    International Nuclear Information System (INIS)

    Goutte, Heloise; Fioni, Gabriele; Faust, Herbert; Goutte, Dominique

    2005-01-01

    The present book contains the proceedings of the third workshop in a series of workshops previously held in Seyssins in 1994 and 1998. The meeting was jointly organized by different divisions of CEA and two major international laboratories. In the opening address, Prof. B. Bigot, the French High Commissioner for Atomic Energy, outlined France's energy policy for the next few decades. He emphasized the continuing progress of nuclear fission in both technical and economic terms, allowing it to contribute to the energy needs of the planet even more in the future than it does today. Such progress implies a very strong link between fundamental and applied research based on experimental and theoretical approaches. The workshop gathered the different nuclear communities studying the fission process, including topics as the following: - nuclear fission experiments, - spectroscopy of neutron rich nuclei, - fission data evaluation, - theoretical aspects of nuclear fission, - and innovative nuclear systems and new facilities. The scientific program was suggested by an International Advisory Committee. About 100 scientists from 13 different countries attended the conference in the friendly working atmosphere of the Castle of Cadarache in the heart of the Provence. The proceedings of the workshop were divided into 11 sections addressing the following subject matters: 1. Cross sections and resonances (5 papers); 2. Fission at higher energies - I (5 papers); 3. Fission: mass and charge yields (4 papers); 4. Light particles and cluster emission (4 papers); 5. Spectroscopy of neutron rich nuclei (5 papers); 6. Resonances, barriers, and fission times (5 papers); 7. Fragment excitation and neutron emission (4 papers); 8. Mass and energy distributions (4 papers); 9. Needs for nuclear data and new facilities - I (4 papers); 10. Angular momenta and fission at higher Energies - II (3 papers); 11. New facilities - II (2 papers). A poster session of 8 presentations completed the workshop

  15. Parity-Time Symmetric Photonics

    KAUST Repository

    Zhao, Han

    2018-01-17

    The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy to the complex quantum potentials, photonics provides an ideal platform for visualization of many conceptually striking predictions from the non-Hermitian quantum theory. A rapidly developing field has emerged, namely, PT symmetric photonics, demonstrating intriguing optical phenomena including eigenstate coalescence and spontaneous PT symmetry breaking. The advance of quantum physics, as the feedback, provides photonics with brand-new paradigms to explore the entire complex permittivity plane for novel optical functionalities. Here, we review recent exciting breakthroughs in PT symmetric photonics while systematically presenting their underlying principles guided by non-Hermitian symmetries. The potential device applications for optical communication and computing, bio-chemical sensing, and healthcare are also discussed.

  16. Homotheties of cylindrically symmetric static spacetimes

    International Nuclear Information System (INIS)

    Qadir, A.; Ziad, M.; Sharif, M.

    1998-08-01

    In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)

  17. Characteristics of diallyl phthalate resin as a fission track detector

    CERN Document Server

    Tsuruta, T

    1999-01-01

    Diallyl phthalate (DAP) resin plates were irradiated with fission fragments, and then etched in aqueous solution of KOH. Etched tracks were observed and counted by using an optical microscope. The detection efficiency of fission fragments was about 100% for both perpendicular and random incidence. DAP plates were insensitive to alpha particles and fast neutrons. These characteristics are suitable for detecting selected fission fragments, which coexist with alpha particles or fast neutrons. DAP plates are valuable for quantitative analysis of fissionable materials and neutron dosimetry. DAP and allyl diglycol carbonate (CR-39) were formed into copolymers in various ratios. The copolymers showed intermediate characteristics between DAP and CR-39. The fabrication of the copolymers made it possible to control the discrimination level for detection of heavy charged particles.

  18. Ternary fission in an effective liquid drop model

    International Nuclear Information System (INIS)

    Duarte, Sergio B.; Tavares, Odilon A.P.; Dimarco, A.; Goncalves, Marcello; Guzman, Fernando; Trallero-Herrera, Carlos; Rodriguez, Oscar; Garcia, Fermin

    2001-01-01

    Full text follows: The nuclear partition in three fragments has been observed in recent experiments for fission process of 252 Cf and 24 '0 Pu. We apply the Effective Liquid Drop Model (ELDM), successfully used for discussing binary cold fission and cluster emissions for a three center geometric shape parametrization, describing the quasi-molecular deformation which can lead to ternary fragmentation. A preliminary calculation for rates of these processes are performed and the results are compared to the rate of the dominant binary fission process. A large range of parent nuclei (spherical and deformed) is covered in the calculation. The purpose is to point out others possible ternary fission process experimentally measurable. (author)

  19. Fission barriers and asymmetric ground states in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Rutz, K.; Reinhard, P.G.; Greiner, W.

    1995-01-01

    The symmetric and asymmetric fission path for 240 Pu, 232 Th and 226 Ra is investigated within the relativistic mean-field model. Standard parametrizations which are well fitted to nuclear ground-state properties are found to deliver reasonable qualitative and quantitative features of fission, comparable to similar nonrelativistic calculations. Furthermore, stable octupole deformations in the ground states of radium isotopes are investigated. They are found in a series of isotopes, qualitatively in agreement with nonrelativistic models. But the quantitative details differ amongst the models and between the various relativistic parametrizations. (orig.)

  20. Gamma Radiation from Fission Fragments

    International Nuclear Information System (INIS)

    Higbie, Jack

    1969-10-01

    The gamma radiation from the fragments of the thermal neutron fission of 235 U has been investigated, and the preliminary data are presented here with suggestions for further lines of research and some possible interpretations of the data. The data have direct bearing on the fission process and the mode of fragment de-excitation. The parameters measured are the radiation decay curve for the time interval (1 - 7) x 10 -10 sec after fission, the photon yield, the total gamma ray energy yield, and the average photon energy. The last three quantities are measured as a function of the fragment mass

  1. Energy partition in nuclear fission

    International Nuclear Information System (INIS)

    Ruben, A.; Maerten, H.; Seeliger, D.

    1990-01-01

    A scission point model (two spheroid model TSM) including semi-empirical temperature-dependent shell correction energies for deformed fragments at scission is presented. It has been used to describe the mass-asymmetry-dependent partition of the total energy release on both fragments from spontaneous and induced fission. Characteristic trends of experimental fragment energy and neutron multiplicity data as function of incidence energy in the Th-Cf region of fissioning nuclei are well reproduced. Based on model applications, information on the energy dissipated during the descent from second saddle of fission barrier to scission point have been deduced. (author). 39 refs, 13 figs

  2. Gamma Radiation from Fission Fragments

    Energy Technology Data Exchange (ETDEWEB)

    Higbie, Jack

    1969-10-15

    The gamma radiation from the fragments of the thermal neutron fission of {sup 235}U has been investigated, and the preliminary data are presented here with suggestions for further lines of research and some possible interpretations of the data. The data have direct bearing on the fission process and the mode of fragment de-excitation. The parameters measured are the radiation decay curve for the time interval (1 - 7) x 10{sup -10} sec after fission, the photon yield, the total gamma ray energy yield, and the average photon energy. The last three quantities are measured as a function of the fragment mass.

  3. Fission-product source terms

    International Nuclear Information System (INIS)

    Lorenz, R.A.

    1981-01-01

    This presentation consists of a review of fission-product source terms for light water reactor (LWR) fuel. A source term is the quantity of fission products released under specified conditions that can be used to calculate the consequences of the release. The source term usually defines release from breached fuel-rod cladding but could also describe release from the primary coolant system, the reactor containment shell, or the site boundary. The source term would be different for each locality, and the chemical and physical forms of the fission products could also differ

  4. The spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  5. The spectroscopy of fission fragments

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1998-01-01

    High-resolution measurements on γ rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author)

  6. 3He/4He production ratios by tetrahedral symmetric condensation

    International Nuclear Information System (INIS)

    Takahashi, Akito

    2006-01-01

    The present paper treats application of the Electronic Quasi-Particle Expansion Theory (EQPET) model for Tetrahedral Symmetric Condensate (TSC) of H/D mixed systems for Pd host metal. Production ratios of 3 He/ 4 He for multi-body fusion reactions in H/D mixed TSC systems are calculated as a function of H/D mixing ratio. The model is further extended to treat direct nuclear interactions between host-metal nucleus and TSC of pure four protons (or four deuterons), since TSC can become very small (far less than 1 pm radius) charge-neutral pseudo-particle. Results for the case of Ni + 4p/TSC are discussed with Ni + p capture reactions and Ni + 4p fission reactions. (authors)

  7. Fission product release from SLOWPOKE-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harnden-Gillis, A M.C. [Queen` s Univ., Kingston, ON (Canada). Dept. of Physics

    1994-12-31

    Increasing radiation fields at several SLOWPOKE-2 reactors fuelled with highly enriched uranium aluminum alloy fuel have begun to interfere with the daily operation of these reactors. To investigate this phenomenon, samples of reactor container water and gas from the headspace were obtained at four SLOWPOKE-2 reactor facilities and examined by gamma ray spectroscopy methods. These radiation fields are due to the circulation of fission products within the reactor container vessel. The most likely source of the fission product release is an area of uranium-bearing material exposed to the coolant at the end weld line which originated at the time of fuel fabrication. The results of this study are compared with observations from an underwater visual examination of one core and the metallographic examination of archived fuel elements. 19 refs., 4 tabs., 8 figs.

  8. On symmetric structures of order two

    Directory of Open Access Journals (Sweden)

    Michel Bousquet

    2008-04-01

    Full Text Available Let (ω n 0 < n be the sequence known as Integer Sequence A047749 http://www.research.att.com/ njas/sequences/A047749 In this paper, we show that the integer ω n enumerates various kinds of symmetric structures of order two. We first consider ternary trees having a reflexive symmetry and we relate all symmetric combinatorial objects by means of bijection. We then generalize the symmetric structures and correspondences to an infinite family of symmetric objects.

  9. Event-by-Event Simulation of Induced Fission

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R; Randrup, J

    2007-12-13

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either deexcite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission prefragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.

  10. Event-by-Event Simulation of Induced Fission

    Science.gov (United States)

    Vogt, Ramona; Randrup, Jørgen

    2008-04-01

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either de-excite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission pre-fragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.

  11. Event-by-Event Simulation of Induced Fission

    International Nuclear Information System (INIS)

    Vogt, Ramona; Randrup, Joergen

    2008-01-01

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either de-excite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission pre-fragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented

  12. Event-by-Event Simulation of Induced Fission

    International Nuclear Information System (INIS)

    Vogt, R; Randrup, J

    2007-01-01

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either deexcite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission prefragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented

  13. Fission of Polyanionic Metal Clusters

    Science.gov (United States)

    König, S.; Jankowski, A.; Marx, G.; Schweikhard, L.; Wolfram, M.

    2018-04-01

    Size-selected dianionic lead clusters Pbn2 -, n =34 - 56 , are stored in a Penning trap and studied with respect to their decay products upon photoexcitation. Contrary to the decay of other dianionic metal clusters, these lead clusters show a variety of decay channels. The mass spectra of the fragments are compared to the corresponding spectra of the monoanionic precursors. This comparison leads to the conclusion that, in the cluster size region below about n =48 , the fission reaction Pbn2 -→Pbn-10 -+Pb10- is the major decay process. Its disappearance at larger cluster sizes may be an indication of a nonmetal to metal transition. Recently, the pair of Pb10- and Pbn-10 - were observed as pronounced fragments in electron-attachment studies [S. König et al., Int. J. Mass Spectrom. 421, 129 (2017), 10.1016/j.ijms.2017.06.009]. The present findings suggest that this combination is the fingerprint of the decay of doubly charged lead clusters. With this assumption, the dianion clusters have been traced down to Pb212 -, whereas the smallest size for the direct observation was as high as n =28 .

  14. Fission dynamics with systems of intermediate fissility

    Indian Academy of Sciences (India)

    results concerning nuclear dissipation and fission time-scale obtained from several of these studies. In particular ... alent to the assumption that fission is delayed, namely, that the fission probability is not .... parameters to be adjusted on the experimental data. ..... (b) Time distribution of all fission events for the 132Ce nucleus.

  15. Exploratory study of fission product yield determination from photofission of 239Pu at 11 MeV with monoenergetic photons

    Science.gov (United States)

    Bhike, Megha; Tornow, W.; Krishichayan, Tonchev, A. P.

    2017-02-01

    Measurements of fission product yields play an important role for the understanding of fundamental aspects of the fission process. Recently, neutron-induced fission product-yield data of 239Pu at energies below 4 MeV revealed an unexpected energy dependence of certain fission fragments. In order to investigate whether this observation is prerogative to neutron-induced fission, a program has been initiated to measure fission product yields in photoinduced fission. Here we report on the first ever photofission product yield measurement with monoenergetic photons produced by Compton back-scattering of FEL photons. The experiment was performed at the High-Intensity Gamma-ray Source at Triangle Universities Nuclear Laboratory on 239Pu at Eγ=11 MeV. In this exploratory study the yield of eight fission products ranging from 91Sr to 143Ce has been obtained.

  16. Fission gas in thoria

    Energy Technology Data Exchange (ETDEWEB)

    Kuganathan, Navaratnarajah, E-mail: n.kuganathan@imperial.ac.uk [Department of Materials, Faculty of Engineering, Imperial College, London, SW7 2AZ (United Kingdom); Ghosh, Partha S. [Material Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Galvin, Conor O.T. [Department of Materials, Faculty of Engineering, Imperial College, London, SW7 2AZ (United Kingdom); Arya, Ashok K. [Material Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Dutta, Bijon K. [Homi Bhabha National Institute, Trombay, Mumbai 400 094 (India); Dey, Gautam K. [Material Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Grimes, Robin W. [Department of Materials, Faculty of Engineering, Imperial College, London, SW7 2AZ (United Kingdom)

    2017-03-15

    The fission gases Xe and Kr, formed during normal reactor operation, are known to degrade fuel performance, particularly at high burn-up. Using first-principles density functional theory together with a dispersion correction (DFT + D), in ThO{sub 2} we calculate the energetics of neutral and charged point defects, the di-vacancy (DV), different neutral tri-vacancies (NTV), the charged tetravacancy (CTV) defect cluster geometries and their interaction with Xe and Kr. The most favourable incorporation point defect site for Xe or Kr in defective ThO{sub 2} is the fully charged thorium vacancy. The lowest energy NTV in larger supercells of ThO{sub 2} is NTV3, however, a single Xe atom is most stable when accommodated within a NTV1. The di-vacancy (DV) is a significantly less favoured incorporation site than the NTV1 but the CTV offers about the same incorporation energy. Incorporation of a second gas atom in a NTV is a high energy process and more unfavourable than accommodation within an existing Th vacancy. The bi-NTV (BNTV) cluster geometry studied will accommodate one or two gas atoms with low incorporation energies but the addition of a third gas atom incurs a high energy penalty. The tri-NTV cluster (TNTV) forms a larger space which accommodates three gas atoms but again there is a penalty to accommodate a fourth gas atom. By considering the energy to form the defect sites, solution energies were generated showing that in ThO{sub 2−x} the most favourable solution equilibrium site is the NTV1 while in ThO{sub 2} it is the DV. - Highlights: • We have considered Xe and Kr in point defects and defect clusters (neutral and charged) using Density Functional Theory (DFT) with a dispersion correction. • The most favourable charge state for a point defect (vacancy or interstitial) is that with full ionic charge and we have found that in all cases gas atoms occupy the fully charged vacancy sites. • The number of fission gas atoms accommodated in ThO{sub 2} is

  17. Chemical effects of fission recoils

    International Nuclear Information System (INIS)

    Meisels, G.G.; Freeman, J.P.; Gregory, J.P.; Richardson, W.C.; Sroka, G.J.

    1978-01-01

    The production of nitrogen from nitrous oxide at high density was employed to investigate the energy deposition efficiency of fission recoils produced from fission of U 235 in uranium-palladium foils clad with platinum. Nitrogen production varied linearly with fission recoil dose from 1.1 x 10 20 to 9.0 x 10 20 eV, and was independent of density between 12.5 and 127.5 g l -1 N 2 O. 16.2 +- 0.8% of the fission recoil energy was deposited external to the foil. Electron microprobe analysis showed some unevenness of new foil and polymer buildup on the surface after irradiation of ethylene-oxygen mixtures. Subsequent irradiation in the presence of nitrous oxide restored some of the original efficiency. This is ascribed to chemical oxidation of the polymer induced by reactive intermediates produced from nitrous oxide. (author)

  18. Extraction chromatography of fission products

    International Nuclear Information System (INIS)

    Bonnevie-Svendsen, M.; Goon, K.

    1978-01-01

    Various cases of using extraction chromatography during analysis of fission products are reviewed. The use of the extraction chromatography method is considered while analysing reprocessed products of nuclear fuel for quantitative radiochemical analysis and control of fission product and actinoide separation during extraction and their chemical state in production solutions. The method is used to obtain pure fractions of typical burnup monitors (neodymium, molybdenum, cerium, cesium, europium, lanthanides) during determination of nuclear fuel burnup degree. While studying the nature of nuclear reactions the method is used to separate quickly short-life isotopes, to purify β-radiator fractions before measuring their half-life periods, to enrich isotopes forming with low output during fission. Examples of using extraction chromatography are given to separate long half-life or stable fission products from spent solutions, to control environment object contamination

  19. International handling of fissionable material

    International Nuclear Information System (INIS)

    1975-01-01

    The opinion of the ministry for foreign affairs on international handling of fissionable materials is given. As an introduction a survey is given of the possibilities to produce nuclear weapons from materials used in or produced by power reactors. Principles for international control of fissionable materials are given. International agreements against proliferation of nuclear weapons are surveyed and methods to improve them are proposed. (K.K.)

  20. Theory of nuclear fission: a review

    International Nuclear Information System (INIS)

    Mosel, U.

    1976-01-01

    General properties of nuclear fission are reviewed and related to our present knowledge of fission theory. For this purpose the basic reasons for the shape of the fission barriers are discussed and their consequences compared with experimental results on barrier shapes and structures. Special emphasis is put on the asymmetry of the fission barriers and mass-distributions and its relation to the shells of the nascent fragment shells. Finally the problem of calculating fission cross sections is discussed

  1. A stochastic approach to fission

    International Nuclear Information System (INIS)

    Boilley, D.; Suraud, E.; Abe, Yasuhisa

    1992-01-01

    A microscopically derived Langevin equation is applied to thermally induced nuclear fission. An important memory effect is pointed out. A strong friction coefficient, calculated from microscopic quantities, tends to decrease the stationary limit of the fission rate and to increase the transient time. Fission was described as a diffusion over a barrier of a collective variable, and a Langevin Equation (LE) was used to study the phenomenon. A study of the stationary flow over the saddle point with a Fokker-Planck Equation (FPE), equivalent to the LE was used to give formula for the stationary fission rate (or reaction rate for the chemistry applications). More recently, a complete study of the fission process was performed numerically with both FPE and LE. A long transient time, that could allow more pre-scission neutrons to evaporate, was pointed out. The derivation of this new LE is recalled, followed by the description of the memory dependence and by the effect of a large friction coefficient on the fission rate. (author) 6 refs., 3 figs

  2. Modelling isothermal fission gas release

    International Nuclear Information System (INIS)

    Uffelen, P. van

    2002-01-01

    The present paper presents a new fission gas release model consisting of two coupled modules. The first module treats the behaviour of the fission gas atoms in spherical grains with a distribution of grain sizes. This module considers single atom diffusion, trapping and fission induced re-solution of gas atoms associated with intragranular bubbles, and re-solution from the grain boundary into a few layers adjacent to the grain face. The second module considers the transport of the fission gas atoms along the grain boundaries. Four mechanisms are incorporated: diffusion controlled precipitation of gas atoms into bubbles, grain boundary bubble sweeping, re-solution of gas atoms into the adjacent grains and gas flow through open porosity when grain boundary bubbles are interconnected. The interconnection of the intergranular bubbles is affected both by the fraction of the grain face occupied by the cavities and by the balance between the bubble internal pressure and the hydrostatic pressure surrounding the bubbles. The model is under validation. In a first step, some numerical routines have been tested by means of analytic solutions. In a second step, the fission gas release model has been coupled with the FTEMP2 code of the Halden Reactor Project for the temperature distribution in the pellets. A parametric study of some steady-state irradiations and one power ramp have been simulated successfully. In particular, the Halden threshold for fission gas release and two simplified FUMEX cases have been computed and are summarised. (author)

  3. Status of fission power

    International Nuclear Information System (INIS)

    Levenson, M.

    1977-01-01

    Fission energy is reviewed from the viewpoints of technology, economics, politics, manufacturers, consumers, and foreign countries. Technically, the reactor program is operating and the light water reactor industry shows signs of maturing, although recent business has been disappointing. Marketing of gas-cooled reactors depends, not on technical, but economic and political issues. Liquid metal fast breeder reactors have been demonstrated worldwide, while the gas-cooled fast breeder remains an undemonstrated option. Nuclear plants, currently costing the same as coal plants with scrubbers, are the cheapest option for utilities because most of the cost is imbedded. The defeat of nuclear initiatives in seven states indicates that public feeling is not as anti-nuclear as opponents to nuclear power claim. The harshness of last winter demonstrated the advantages of a power source that is not so sensitive to the weather for reliable operation and transport, as well as low cost energy. Other nations are proceeding to build a nuclear capability, which the U.S. may jeopardize because of concerns about the fuel cycle, nuclear waste disposal, uranium reserves, and nuclear proliferation

  4. Fission fragment angular distributions and fission cross section validation

    International Nuclear Information System (INIS)

    Leong, Lou Sai

    2013-01-01

    The present knowledge of angular distributions of neutron-induced fission is limited to a maximal energy of 15 MeV, with large discrepancies around 14 MeV. Only 238 U and 232 Th have been investigated up to 100 MeV in a single experiment. The n-TOF Collaboration performed the fission cross section measurement of several actinides ( 232 Th, 235 U, 238 U, 234 U, 237 Np) at the n-TOF facility using an experimental set-up made of Parallel Plate Avalanche Counters (PPAC), extending the energy domain of the incident neutron above hundreds of MeV. The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. I will show the methods we used to reconstruct the full angular resolution by the tracking of fission fragments. Below 10 MeV our results are consistent with existing data. For example in the case of 232 Th, below 10 MeV the results show clearly the variation occurring at the first (1 MeV) and second (7 MeV) chance fission, corresponding to transition states of given J and K (total spin and its projection on the fission axis), and a much more accurate energy dependence at the 3. chance threshold (14 MeV) has been obtained. In the spallation domain, above 30 MeV we confirm the high anisotropy revealed in 232 Th by the single existing data set. I'll discuss the implications of this finding, related to the low anisotropy exhibited in proton-induced fission. I also explore the critical experiments which is valuable checks of nuclear data. The 237 Np neutron-induced fission cross section has recently been measured in a large energy range (from eV to GeV) at the n-TOF facility at CERN. When compared to previous measurements, the n-TOF fission cross section appears to be higher by 5-7 % beyond the fission threshold. To check the relevance of n-TOF data, we simulate a criticality experiment performed at Los Alamos with a 6 kg sphere of 237 Np. This

  5. Fission fragment angular distribution in the reaction 28Si+176Yb

    International Nuclear Information System (INIS)

    Tripathi, R.; Sudarshan, K.; Sharma, S.K.; Reddy, A.V.R.; Pujari, P.K.; Dutta, D.; Goswami, A.; Ramachandran, K.

    2009-01-01

    Fission fragment angular distribution has been measured in the reaction 28 Si+ 176 Yb at beam energies of 145 and 155 MeV to investigate the contribution from non-compound nucleus fission. Experiments were carried out at BARC-TIFR Pelletron-LINAC accelerator facility, Mumbai. Experimental angular anisotropies in this reaction were observed to be higher than those calculated using statistical theory, indicating contribution from non-compound nucleus fission in this reaction. (author)

  6. Disintegration constant of uranium-238 by spontaneous fission redetermined by glass track method

    International Nuclear Information System (INIS)

    Lima Medeiros, E. de.

    1978-01-01

    The disintegration constant of U 238 by spontaneous fission using glass as fission fragment detector was redetermined. A film of natural uranium (UO 3 ) prepared by chemical methods on the glass lamina was used in a long time experience of exposure (about 16 years). The good conditions of sample preparation and storage allow to observe, after chemical etching, fission fragment tracks. (M.C.K.) [pt

  7. Radiochemistry and the Study of Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  8. Radiochemistry and the Study of Fission

    International Nuclear Information System (INIS)

    Rundberg, Robert S.

    2016-01-01

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  9. Capture and fission with DANCE and NEUANCE

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T.A.; Chadwick, M.B.; Couture, A.; Fowler, M.M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T.N.; Talou, P.; Ullmann, J.L.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

    2015-12-15

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on {sup 235}U are focused on quantifying the population of short-lived isomeric states in {sup 236}U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables. (orig.)

  10. Charge distributions of fission fragments of low- and high-energy fission of Fm, No, and Rf isotopes

    Science.gov (United States)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2018-03-01

    The charge (mass) distributions of fission fragments resulting from low- and high-energy fission of the even-even nuclei 254 -260 ,264Fm , 258 -264No , and 262 -266Rf are studied with the statistical scission-point model. The calculated results are compared with the available experimental data. In contrast to the experimental data, the calculated mass distribution for 258Fm (s.f.) is strikingly similar to the experimental one for 257Fm (s.f.). The transformation of the shape of charge distribution with increasing isospin and excitation energy occurs gradually and in a similar fashion like that of the mass distribution, but slower. For 254Fm(i.f.), 257Fm(nt h,f), and 260Fm (s.f.), the unexpected difference (symmetric or asymmetric) between the shapes of charge and mass distributions is predicted for the first time. At some critical excitation energy, the saturation of the symmetric component of charge (mass) yields is demonstrated.

  11. Role of effective distance in the fission mechanism study by the double-energy measurement for uranium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto [Osaka Univ., Suita (Japan)] [and others

    1997-09-01

    Fission product kinetic energies were measured by the double-energy method for thermal-neutron fission of {sup 235,233}U and proton-induced fission of {sup 238}U at the 15.8-MeV excitation. From the obtained energy-mass correlation data, the kinetic-energy distribution was constructed from each mass bin to evaluate the first moment of the kinetic energy for a given fragment mass. The resulting kinetic energy was then converted to the effective distance between the charge centers at the moment of scission. The effective distances deduced for the proton-induced fission was concluded to be classified into two constant values, one for asymmetric and the other for symmetric mode, irrespective of the mass though an additional component was further extracted in the asymmetric mass region. This indicates that the fission takes place via two well-defined saddles, followed by the random neck rupture. On the contrary, the effective distances obtained for thermal-neutron induced fission turned out to lie along the contour line at the same level as the equilibrium deformation in the two-dimensional potential map. This strongly suggests that it is essentially a barrier-penetrating type of fission rather than the over-barrier fission. (author). 73 refs.

  12. Role of effective distance in the fission mechanism study by the double-energy measurement for uranium isotopes

    International Nuclear Information System (INIS)

    Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto

    1997-01-01

    Fission product kinetic energies were measured by the double-energy method for thermal-neutron fission of 235,233 U and proton-induced fission of 238 U at the 15.8-MeV excitation. From the obtained energy-mass correlation data, the kinetic-energy distribution was constructed from each mass bin to evaluate the first moment of the kinetic energy for a given fragment mass. The resulting kinetic energy was then converted to the effective distance between the charge centers at the moment of scission. The effective distances deduced for the proton-induced fission was concluded to be classified into two constant values, one for asymmetric and the other for symmetric mode, irrespective of the mass though an additional component was further extracted in the asymmetric mass region. This indicates that the fission takes place via two well-defined saddles, followed by the random neck rupture. On the contrary, the effective distances obtained for thermal-neutron induced fission turned out to lie along the contour line at the same level as the equilibrium deformation in the two-dimensional potential map. This strongly suggests that it is essentially a barrier-penetrating type of fission rather than the over-barrier fission. (author). 73 refs

  13. Sequential character of low-energy ternary and quaternary nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Bulychev, A. O. [Voronezh State University (Russian Federation)

    2016-09-15

    An analysis of low-energy true ternary (quaternary) nuclear fission leads to the conclusion that these fission modes have a sequential two-step (three-step) character such that the emission of a third particle (third and fourth particles) and the separation of fission fragments occur at distinctly different instants, in contrast to the simultaneous emergence of all fission products in the case of onestep ternary (quaternary) fission. This conclusion relies on the following arguments. First, the emission of a third particle (third and fourth particles) from a fissile nucleus is due to a nonevaporative mechanism associated with a nonadiabatic character of the collective deformation motion of this nucleus at the stages preceding its scission. Second, the axial symmetry of the deformed fissile compound nucleus and the direction of its symmetry axis both remain unchanged at all stages of ternary (quaternary) fission. This circumstancemakes it possible to explain themechanism of the appearance of observed anisotropies and T — odd asymmeries in the angular distributions of products of ternary (quaternary) nuclear fission. Third, the T —odd asymmetry discovered experimentally in ternary nuclear fission induced by cold polarized neutrons obeys the T —invariance condition only in the case of a sequential two-step (three-step) character of true ternary (quaternary) nuclear fission. At the same time, this asymmetry is not a T —invariant quantity in the case of the simultaneous emission of products of true ternary (quaternary) nuclear fission from the fissile compound nucleus.

  14. Sequential character of low-energy ternary and quaternary nuclear fission

    International Nuclear Information System (INIS)

    Kadmensky, S. G.; Bulychev, A. O.

    2016-01-01

    An analysis of low-energy true ternary (quaternary) nuclear fission leads to the conclusion that these fission modes have a sequential two-step (three-step) character such that the emission of a third particle (third and fourth particles) and the separation of fission fragments occur at distinctly different instants, in contrast to the simultaneous emergence of all fission products in the case of onestep ternary (quaternary) fission. This conclusion relies on the following arguments. First, the emission of a third particle (third and fourth particles) from a fissile nucleus is due to a nonevaporative mechanism associated with a nonadiabatic character of the collective deformation motion of this nucleus at the stages preceding its scission. Second, the axial symmetry of the deformed fissile compound nucleus and the direction of its symmetry axis both remain unchanged at all stages of ternary (quaternary) fission. This circumstancemakes it possible to explain themechanism of the appearance of observed anisotropies and T — odd asymmeries in the angular distributions of products of ternary (quaternary) nuclear fission. Third, the T —odd asymmetry discovered experimentally in ternary nuclear fission induced by cold polarized neutrons obeys the T —invariance condition only in the case of a sequential two-step (three-step) character of true ternary (quaternary) nuclear fission. At the same time, this asymmetry is not a T —invariant quantity in the case of the simultaneous emission of products of true ternary (quaternary) nuclear fission from the fissile compound nucleus.

  15. Fission blanket benchmark experiment on spherical assembly of uranium and PE with PE reflector

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Tonghua; Lu, Xinxin; Wang, Mei; Han, Zijie, E-mail: neutron_integral@aliyun.com; Jiang, Li; Wen, Zhongwei; Liu, Rong

    2016-04-15

    Highlights: • The fission rate distribution on two depleted uranium assemblies was measured with plate fission chambers. • We do calculations using MCNP code and ENDF/B-V.0 library. • The overestimation of calculations to the measured fission rates was found. • The observed discrepancy are discussed. - Abstract: New concept of fusion-fission hybrid for energy generation has been proposed. To validate the nuclear performance of fission blanket of hybrid, as part of series of validation experiment, two types of fission blanket assemblies were setup in this work and measurements were made of the reaction rate distribution for uranium fission in the spherical assembly of depleted uranium and polyethylene by Plate Fission Chamber (PFC). There are two PFCs in experiment, one is depleted uranium chamber and the other is enriched uranium chamber. The Monte-Carlo transport code MCNP5 and continuous energy cross sections library ENDF/BV.0 were used for the analysis of fission rate distribution in the two types of assemblies. The calculated results were compared with the experimental ones. The overestimation of fission rate for depleted uranium and enriched uranium were found in the inner boundary of the two assemblies. However, the C/E ratio tends to decrease for the distance from the core slightly and the results for enriched uranium are better than that for depleted uranium.

  16. Baryon symmetric big bang cosmology

    International Nuclear Information System (INIS)

    Stecker, F.W.

    1978-01-01

    It is stated that the framework of baryon symmetric big bang (BSBB) cosmology offers our greatest potential for deducting the evolution of the Universe because its physical laws and processes have the minimum number of arbitrary assumptions about initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the Universe and how galaxies and galaxy clusters are formed. BSBB cosmology also provides the only acceptable explanation at present for the origin of the cosmic γ-ray background radiation. (author)

  17. Symmetric functions and orthogonal polynomials

    CERN Document Server

    Macdonald, I G

    1997-01-01

    One of the most classical areas of algebra, the theory of symmetric functions and orthogonal polynomials has long been known to be connected to combinatorics, representation theory, and other branches of mathematics. Written by perhaps the most famous author on the topic, this volume explains some of the current developments regarding these connections. It is based on lectures presented by the author at Rutgers University. Specifically, he gives recent results on orthogonal polynomials associated with affine Hecke algebras, surveying the proofs of certain famous combinatorial conjectures.

  18. Immanant Conversion on Symmetric Matrices

    Directory of Open Access Journals (Sweden)

    Purificação Coelho M.

    2014-01-01

    Full Text Available Letr Σn(C denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C -> Σn (C satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB = dχ·(Φ(Α + αΦ(Β for all matrices A,В ε Σ„(С and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С.

  19. Determination of the effective range of fission fragments in UO2 and of the disintegration constant for the spontaneous fission of Uranium 238

    International Nuclear Information System (INIS)

    Spaggiari, E.R.V.

    1980-01-01

    Results are presented of measurements realized aiming to determine the disintegration constant of spontaneous fission of U-238, with a discussion of the method utilized in the detection of fission tracks in muscovite. Several blades of mica were placed between two cylinders of Uo 2 to be irradiated with the fragments of spontaneous fission of U-238, and the fission tracks duly enlarged after a convenient chemical action were observed with a projection optical microscope. The effective thickness of UO 2 contributing to the observed tracks was measured through the irradiation of mica samples juxtaposed to the UO 2 cylinder, with 14,0 MeV neutrons from the (d,t 2 ) reaction. The detection efficiency of fission tracks originated in that thickness is practically 100% [pt

  20. Advances on fission chamber modelling

    International Nuclear Information System (INIS)

    Filliatre, Philippe; Jammes, Christian; Geslot, Benoit; Veenhof, Rob

    2013-06-01

    In-vessel, online neutron flux measurements are routinely performed in mock-up and material testing reactors by fission chambers. Those measurements have a wide range of applications, including characterization of experimental conditions, reactor monitoring and safety. Depending on the application, detectors may experience a wide range of constraints, of several magnitudes, in term of neutron flux, gamma-ray flux, temperature. Hence, designing a specific fission chamber and measuring chain for a given application is a demanding task. It can be achieved by a combination of experimental feedback and simulating tools, the latter being based on a comprehensive understanding of the underlying physics. A computation route that simulates fission chambers, named CHESTER, is presented. The retrieved quantities of interest are the neutron-induced charge spectrum, the electronic and ionic pulses, the mean current and variance, the power spectrum. It relies on the GARFIELD suite, originally developed for drift chambers, and makes use of the MAGBOLTZ code to assess the drift parameters of electrons within the filling gas, and the SRIM code to evaluate the stopping range of fission products. The effect of the gamma flux is also estimated. Computations made with several fission chambers exemplify the possibilities of the route. A good qualitative agreement is obtained when comparing the results with the experimental data available to date. In a near future, a comprehensive experimental programme will be undertaken to qualify the route using the known neutron sources, mock-up reactors and wide choice of fission chambers, with a stress on the predictiveness of the Campbelling mode. Depending on the results, a refinement of the modelling and an effort on the accuracy of input data are also to be considered. CHESTER will then make it possible to predict the overall sensitivity of a chamber, and to optimize the design for a given application. Another benefit will be to increase the

  1. Fission time-scale in experiments and in multiple initiation model

    Energy Technology Data Exchange (ETDEWEB)

    Karamian, S. A., E-mail: karamian@nrmail.jinr.ru [Joint Institute for Nuclear Research (Russian Federation)

    2011-12-15

    Rate of fission for highly-excited nuclei is affected by the viscose character of the systemmotion in deformation coordinates as was reported for very heavy nuclei with Z{sub C} > 90. The long time-scale of fission can be described in a model of 'fission by diffusion' that includes an assumption of the overdamped diabatic motion. The fission-to-spallation ratio at intermediate proton energy could be influenced by the viscosity, as well. Within a novel approach of the present work, the cross examination of the fission probability, time-scales, and pre-fission neutron multiplicities is resulted in the consistent interpretation of a whole set of the observables. Earlier, different aspects could be reproduced in partial simulations without careful coordination.

  2. Microprobe study of fission product behavior in high-burnup HTR fuels

    International Nuclear Information System (INIS)

    Kleykamp, H.

    Electron microprobe analysis of irradiated coated particles with high burnup (greater than 50 percent fima) gives detailed information on the chemical state and the transport behavior of the fission products in UO 2 and UC 2 kernels and in the coatings. In oxide fuel kernels, metallic inclusions and ceramic precipitations are observed. The solubility behavior of the fission products in the fuel matrix has been investigated. Fission product inclusions could not be detected in carbide fuel kernels; post irradiation annealed UC 2 kernels, however, give information on the element combinations of some fission product phases. Corresponding to the chemical state in the kernel, Cs, Sr, Ba, Pd, Te and the rare earths are released easily and diffuse through the entire pyrocarbon coating. These fission products can be retained by a silicon carbide layer. The initial stage of a corrosive attack of the SiC coating by the fission products is evidenced

  3. Isotopic resolution of fission fragments from 238U + 12C transfer and fusion reactions

    International Nuclear Information System (INIS)

    Caamano, M.; Rejmund, F.; Derkx, X.; Schmidt, K. H.; Andouin, L.; Bacri, C. O.; Barreau, G.; Benlliure, J.; Casarejos, E.; Fernandez-Dominguez, B.; Gaudefroy, L.; Golabek, C.; Jurado, B.; Lemasson, A.; Navin, A.; Rejmund, M.; Roger, T.; Shrivastava, A.; Schmitt, C.; Taieb, J.

    2010-01-01

    Recent results from an experiment at GANIL, performed to investigate the main properties of fission-fragment yields and energy distributions in different fissioning nuclei as a function of the excitation energy, in a neutron-rich region of actinides, are presented. Transfer reactions in inverse kinematics between a 238 U beam and a 12 C target produced different actinides, within a range of excitation energy below 30 MeV. These fissioning nuclei are identified by detecting the target-like recoil, and their kinetic and excitation energy are determined from the reconstruction of the transfer reaction. The large-acceptance spectrometer VAMOS was used to identify the mass, atomic number and charge state of the fission fragments in flight. As a result, the characteristics of the fission-fragment isotopic distributions of a variety of neutron-rich actinides are observed for the first time over the complete range of fission fragments. (authors)

  4. Fission fragment simulation of fusion neutron radiation effects on bulk mechanical properties

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Mitchell, J.B.; Guinan, M.W.; Stuart, R.N.; Borg, R.J.

    1976-01-01

    This research demonstrates the feasibility of using homogeneously-generated fission fragments to simulate high-fluence fusion neutron damage in niobium tensile specimens. This technique makes it possible to measure radiation effects on bulk mechanical properties at high damage states, using conveniently short irradiation times. The primary knock-on spectrum for a fusion reactor is very similar to that produced by fission fragments, and nearly the same ratio of gas atoms to displaced atoms is produced in niobium. The damage from fission fragments is compared to that from fusion neutrons and fission reactor neutrons in terms of experimentally measured yield strength increase, transmission electron microscopy (TEM) observations, and calculated damage energies

  5. Norm estimates of complex symmetric operators applied to quantum systems

    International Nuclear Information System (INIS)

    Prodan, Emil; Garcia, Stephan R; Putinar, Mihai

    2006-01-01

    This paper communicates recent results in the theory of complex symmetric operators and shows, through two non-trivial examples, their potential usefulness in the study of Schroedinger operators. In particular, we propose a formula for computing the norm of a compact complex symmetric operator. This observation is applied to two concrete problems related to quantum mechanical systems. First, we give sharp estimates on the exponential decay of the resolvent and the single-particle density matrix for Schroedinger operators with spectral gaps. Second, we provide new ways of evaluating the resolvent norm for Schroedinger operators appearing in the complex scaling theory of resonances

  6. Topologically protected bound states in photonic parity-time-symmetric crystals.

    Science.gov (United States)

    Weimann, S; Kremer, M; Plotnik, Y; Lumer, Y; Nolte, S; Makris, K G; Segev, M; Rechtsman, M C; Szameit, A

    2017-04-01

    Parity-time (PT)-symmetric crystals are a class of non-Hermitian systems that allow, for example, the existence of modes with real propagation constants, for self-orthogonality of propagating modes, and for uni-directional invisibility at defects. Photonic PT-symmetric systems that also support topological states could be useful for shaping and routing light waves. However, it is currently debated whether topological interface states can exist at all in PT-symmetric systems. Here, we show theoretically and demonstrate experimentally the existence of such states: states that are localized at the interface between two topologically distinct PT-symmetric photonic lattices. We find analytical closed form solutions of topological PT-symmetric interface states, and observe them through fluorescence microscopy in a passive PT-symmetric dimerized photonic lattice. Our results are relevant towards approaches to localize light on the interface between non-Hermitian crystals.

  7. Plane Symmetric Cosmological Model with Quark and Strange ...

    Indian Academy of Sciences (India)

    Keywords. f(R,T) theory of gravity—plane symmetric space-time—quark and strange quark matter—constant deceleration parameter. 1. Introduction. Modern astrophysical observations point out that present expansion of the Universe is an accelerated epoch. The most fascinating evidence for this is found in measurements ...

  8. Is PT -symmetric quantum theory false as a fundamental theory?

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2016-01-01

    Roč. 56, č. 3 (2016), s. 254-257 ISSN 1210-2709 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum mechanics * PT-symmetric representations of observables * masurement outcomes Subject RIV: BE - Theoretical Physics

  9. From ground state to fission fragments: A complex, multi-dimensional multi-path problem

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1992-01-01

    Experimental results on the fission properties of nuclei close to 264 Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus 258 Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic-energy distribution peaked at about 235 MeV whereas 256 Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic-energy distribution peaked at about 200 MeV. Qualitatively, these sudden changes have been postulated to be due to the emergence of fragment shells in symmetric-fission products close to 132 Sn. Here we present a quantitative calculation that shows where high-kinetic-energy symmetric fusion occurs and why it is associated with a sudden and large decrease in fission half-lives. We base our study on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. We use the three-quadratic-surface parameterization to generate the shapes for which the potential-energy surfaces are calculated. The use of this parameterization and the use of the finite-range macroscopic model allows for the study of two touching spheres and similar shapes. Since these shapes are thought to correspond to the scission shapes for the high-kinetic-energy events it is of crucial importance that a continuous sequence of shapes leading from the nuclear ground state to these configurations can be studied within the framework of the model. We present the results of the calculations in terms of potential-energy surfaces and fission half-lives for heavy even nuclei. The surfaces are displayed in the form of contour diagrams as functions of two moments of the shape. They clearly show the appearance of a second fission valley, which leads to scission configurations close to tow touching spheres, for fissioning systems in the vicinity of 264 Fm

  10. Apatite fission track dating and thermal history of Qing-He region in Altay Mountains

    International Nuclear Information System (INIS)

    Bao Zengkuan; Chinese Academy of Sciences, Beijing; Yuan Wanming; Dong Jinquan; Gao Shaokai

    2005-01-01

    Fission track ages (FTA) and track lengths of apatite from Qing-He diorite intrusion in Altay Mountains are measured. Apatite fission track ages of three diorite samples is range from (78±5) Ma to (95 ± 5) Ma, and the lengths of horizontal confined spontaneous fission tracks are (13.2 ± 1.2)-(13.5 ±1.3) μm. The distribution of the track length is narrow and symmetrical with a mean length of approximately 13.3 μm and a standard deviation of around 0.1 μm. The inverse modeling results show that thermal history of this region has four stages, two rapid uplift of this region still existed magmatic intrusion and tectonic movements in Yanshanian. (authors)

  11. Thorium-uranium fission radiography

    Science.gov (United States)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  12. Energy production using fission fragment rockets

    International Nuclear Information System (INIS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: Approximately twice as efficient if one can directly convert the fission fragment energy into electricity; by reducing the buildup of a fission fragment inventory in the reactor one could avoid a Chernobyl type disaster; and collecting the fission fragments outside the reactor could simplify the waste disposal problem. 6 refs., 4 figs., 2 tabs

  13. Contribution to the study of nuclear fission

    International Nuclear Information System (INIS)

    Serot, O.

    2009-09-01

    The author proposes an overview of his research activity during the past fifteen years and more particularly that dealing with nuclear fission. The first part reports works on nucleus physics at the scission via the investigation of ternary fission (experimental procedure, influence of fission modes, influence of resonance spin, influence of excitation energy of the fissioning nucleus, emission probabilities, energy spectra of ternary alphas and tritons, emission mechanism). The second part reports measurements and assessments of neutron-induced fission cross sections. The third part reports the investigation of some properties of fission products (efficiencies, branching ratios of the main delayed neutron precursors)

  14. Muon induced fission and fission track dating of minerals

    International Nuclear Information System (INIS)

    Marques, A.

    1988-01-01

    The effects of muon induced fission on geological dating of samples by the fission track method are evaluated for the case of muscovite minerals. It is found a small but significant effect, greater for the longer ages. Since calculations are developped under the hypothesis of constant atmosphere and primary cosmic ray flux it is suggested that any discrepancy found in ages of very old material that cannot be accounted for by well known environmental influences, be taken as an indication of variation on either the atmospheric stopping power or the intensity of cosmic radiation along the ages. (author) [pt

  15. Nuclear fission and neutron-induced fission cross-sections

    CERN Document Server

    James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E

    2013-01-01

    Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis

  16. Experimental study of fission process by fragment-neutron correlation measurement

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Katsuhisa; Yamamoto, Hideki; Kanno, Ikuo; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan). Faculty of Engineering

    1997-07-01

    Fragment-neutron correlation measurement of {sup 235}U(n{sub th}, f) was carried out. The obtained results showed more statistical accuracy than that of reported thermal neutron reaction. Experimental results and it`s analysis made clear the following facts. The minimum values of <{eta}> (m*) are shown at about 90 and 145 {mu} and <{eta}> (m*) showed the symmetrical form with an axis of symmetrical fission. This tendency is same as the distribution of {sup 252}Cf(s.f). -dV/dTKE(m*) indicates the saw-teethed distribution as same as <{nu}>(m*). The distribution seems depend on stiffness of fission fragment affected by the shell effect. The level density parameter a(m*) of fission fragment obtained from {sup 235}U(n{sub th}, f) expresses the saw-teethed distribution as same as that of {sup 252}Cf(s.f). This distribution can be explained by the empirical equation under consideration of the fission fragment depending on the shell effect and the collective motion. (S.Y.)

  17. Separation of fission products by the use of recoil; Separation des produits de fission par utilisation du recul

    Energy Technology Data Exchange (ETDEWEB)

    Henry, R; Beydon, J; Bardy, A [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    We have studied fission recoil in U{sub 3}O{sub 8} organic solvent mixtures. The organic phase chosen was first naphtalene then terphenyl. Graphite and activated carbon were also tried out as recoil media. We first verified that the fission fragments are ejected from the uranium oxide particles under our experimental conditions. The retention phenomenon observed is due to an adsorption occurring either during irradiation or during the chemical treatment. Using naphthalene or terphenyl, the individual separation of the fission products has made it possible to show the influence of the chemical nature of the recoil medium on the retention of each fission product. We put forward a hypothesis concerning this phenomenon: experiments carried out using 'scavengers', together with kinetic studies make it possible to explain the retention phenomenon and to choose the most favorable conditions for reducing this retention to a low value. The thermal recombination kinetics demonstrate the influence of the fission ion charge on the final value of the retention for a given temperature. The origins of this thermal recombination are discussed. (author) [French] On a etudie le recul de fission dans les melanges U{sub 3}0{sub 8}, phase organique. La phase organique choisie a ete le naphtalene puis le terphenyle. Le graphite et le charbon actif ont egalement ete essayes comme milieux de recul. On a d'abord determine que les fragments de fission sortent des particules d'oxyde d'uranium avec un rendement de 100 pour cent dans nos conditions experimentales. Le phenomene de retention observe est du a une adsorption ayant lieu pendant l'irradiation ou pendant le traitement chimique. Dans le naphtalene et le terphenyle, la separation individuelle des produits de fission a permis de mettre en evidence l'influence de la nature chimique du milieu de recul sur la retention de chaque produit de fission. On avance une hypothese sur ce phenomene: des experiences effectuees avec des 'scavengers

  18. Cosmic ray antimatter and baryon symmetric cosmology

    Science.gov (United States)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1982-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.

  19. Study of transfer induced fission and fusion-fission reactions for 28 Si + 232 Th system at 340 MeV

    International Nuclear Information System (INIS)

    Prete, G.; Rizzi, V.; Fioretto, E.; Cinausero, M.; Shetty, D.V.; Pesente, S.; Brondi, A.; La Rana, G.; Moro, R.; Vardaci, E.; Boiano, A.; Ordine, A.; Gelli, N.; Lucarelli, F.; Bortignon, P.F.; Saxena, A.; Nayak, B.K.; Biswas, D.C.; Choudhury, R.K.; Kapoor, R.S.

    2001-01-01

    Full text: Fission induced by nucleons transfer has been investigated in the reaction 28 Si + 232 Th at 340 MeV. Looking at the projectile-like-fragments (PLF), the fission yield increases as the transfer increases, but a decreases is observed for transfers with DZ . Light charged particles in coincidence with PLF and Fission have been detected with large solid angle and show an increasing multiplicity as the Z of PLF is reduced and a constant value when fission is requested. The present results indicate inhibition of transfer induced fission reaction for higher Z transfer and increasing probability for decay through charged particle evaporation. Fission is the dominant decay process in heavy reactions involving fissile systems but the dynamical evolution of the composite system is largely governed by the formation and decay mechanisms. Important insight into the formation and the survival probability of the heavy composite nuclei formed in heavy ion collisions can be gained by simultaneously investigate the fission process and light particle emission over a continuous range of excitation energy, angular momentum and fissility. This can be achieved by studying fission induced by transfer of nucleons between the interacting projectile and the target nucleus. In the present work, we have carried out measurements on multinucleon transfer induced fission reactions in 28 Si + 232 Th system at Elab = 340 MeV. The experiment has been performed at the Laboratori Nazionale di Legnaro (LNL) using the 8pLP detector in its final configuration with 257 DE-E telescopes. The backward detectors were used to measure both light charged particles and fission fragments. The projectile-like fragments were detected using separate DE-E telescopes around the grazing angle. Two neutron detectors were placed at a distance of 115.5 cm from the target to measure neutrons emitted in coincidence with fission fragments. Here we present the results of the data analysis of transfer induced fission

  20. Report of fission study meeting

    International Nuclear Information System (INIS)

    1986-03-01

    This book is the report of fission Study Meeting held from September 19 to 21, 1985 in the Research Center for Nuclear Physics, Osaka University. The objective of this study meeting was to stimulate the research on nuclear physics in Japan, which began to show new development accompanying the advance of the research on heavy ion nuclear reaction, and to make this a new starting point. More than 50 participants from physical, chemical and engineering fields, who have interest in the theory and experiment related to nuclear fission, gathered, and the meeting was a success beyond expectation. The contents covered a wide range including nuclear smashing reaction as well as nuclear fission in a narrow sense. In this book, the gists of 28 papers are collected. (Kako, I.)

  1. Status of fission yield data

    International Nuclear Information System (INIS)

    England, T.R.; Blachot, J.

    1988-01-01

    In this paper we summarize the current status of the recent US evaluation for 34 fissioning nuclides at one or more neutron incident energies and for spontaneous fission. Currently there are 50 yields sets, and for each we have independent and cumulative yields and uncertainties for approximately 1100 fission products. When finalized the recommended data will become part of Version VI of the US ENDF/B. Other major evaluations in progress that are included in a recently formed IAEA Coordinated Research Program are also summarized. In a second part we review two empirical models in use to estimate independent yields. Comparison of model estimates with measured data is presented, including a comparison with some recent data obtained from Lohengrin (Cf-249 T). 18 refs., 13 figs., 3 tabs

  2. Probabilistic cloning of three symmetric states

    International Nuclear Information System (INIS)

    Jimenez, O.; Bergou, J.; Delgado, A.

    2010-01-01

    We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.

  3. Classification of symmetric toroidal orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-09-15

    We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.

  4. Nonlinear PT-symmetric plaquettes

    International Nuclear Information System (INIS)

    Li Kai; Kevrekidis, P G; Malomed, Boris A; Günther, Uwe

    2012-01-01

    We introduce four basic two-dimensional (2D) plaquette configurations with onsite cubic nonlinearities, which may be used as building blocks for 2D PT-symmetric lattices. For each configuration, we develop a dynamical model and examine its PTsymmetry. The corresponding nonlinear modes are analyzed starting from the Hamiltonian limit, with zero value of the gain–loss coefficient, γ. Once the relevant waveforms have been identified (chiefly, in an analytical form), their stability is examined by means of linearization in the vicinity of stationary points. This reveals diverse and, occasionally, fairly complex bifurcations. The evolution of unstable modes is explored by means of direct simulations. In particular, stable localized modes are found in these systems, although the majority of identified solutions are unstable. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  5. Relativistic fluids in spherically symmetric space

    International Nuclear Information System (INIS)

    Dipankar, R.

    1977-12-01

    Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat

  6. Fissioning of nonlinear ion-acoustic rarefactive pulse in a homogeneous quiescent plasma

    International Nuclear Information System (INIS)

    Saxena, Y.C.; Mattoo, S.K.; Sekar, A.N.

    1982-01-01

    A finite amplitude rarefactive ion-acoustic wave is observed to fission resulting in two minima. After fissioning the two minima travel at different speeds, one at 0.8 Csub(s) and the other at 1.2 Csub(s), where Csub(s) is the ion-acoustic speed. (author)

  7. Yields of correlated fragment pairs and neutron multiplicity in spontaneous fission of {sup 242}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Veselsky, M.; Kliman, J.; Morhaccaron, M. [Institute of Physics of Slovak Academy of Sciences, Dubravska 9, 84228 Bratislava (Slovakia); Ramayya, A.V.; Kormicki, J.; Daniel, A.V. [Physics Department, Vanderbilt University, Nashville (United States)] Rasmussen, J.O. [Lawrence Berkeley National Laboratory, Berkeley (United States)] Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore (United States); Daniel, A.V.; Popeko, G.S.; Oganessian, Yu. Ts. [Joint Institute for Nuclear Research, Dubna (Russia)] Greiner, W. [Institut fur Theoretische Physik, J. W. Goethe Universitaet, Frankfurt a. M. (Germany); Aryaeinejad, R. [Idaho National Engineering Laboratory, Idaho Falls (United States)

    1998-10-01

    Yields of correlated fragment pairs were obtained in spontaneous fission of {sup 242}Pu. Charge, mass and neutron multiplicity distributions of fragment pairs were determined and compared to available data. The yield of cold fission without neutron emission was determined to about 10{percent} for the set of observed correlated fragment pairs. {copyright} {ital 1998 American Institute of Physics.}

  8. Dissipative effects in fission investigated with proton-on-lead reactions

    Directory of Open Access Journals (Sweden)

    Rodríguez-Sánchez J. L.

    2016-01-01

    Full Text Available The complete kinematic measurement of the two fission fragments permitted us to investigate dissipative effects at large deformations, between the saddle-point and the corresponding scission configurations. Up to now, this kind of study has only been performed with fusionfission reactions using a limited number of observables, such as the mass distribution of the fission fragments or the neutron multiplicities. However, the large angular momenta gained by the compound nucleus could affect the conclusions drawn from such experiments. In this work, the use of spallation reactions, where the fissioning systems are produced with low angular momentum, small deformations and high excitation energies, favors the study of dissipation, and allowed us to define new observables, such as postscission neutron multiplicities and the neutron excess of the final fission fragments as a function of the atomic number of the fissioning system. These new observables are used to investigate the dissipation at large deformations.

  9. NEACRP thermal fission product benchmark

    International Nuclear Information System (INIS)

    Halsall, M.J.; Taubman, C.J.

    1989-09-01

    The objective of the thermal fission product benchmark was to compare the range of fission product data in use at the present time. A simple homogeneous problem was set with 200 atoms H/1 atom U235, to be burnt up to 1000 days and then decay for 1000 days. The problem was repeated with 200 atoms H/1 atom Pu239, 20 atoms H/1 atom U235 and 20 atoms H/1 atom Pu239. There were ten participants and the submissions received are detailed in this report. (author)

  10. Search for Singlet Fission Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  11. Fission 99Mo production technology

    International Nuclear Information System (INIS)

    Miao Zengxing; Luo Zhifu; Ma Huimin; Liang Yufu; Yu Ningwen

    2003-01-01

    This paper describes a production technology of fission 99 Mo in the Department Isotope, CIAE. The irradiation target is tubular U-Al alloy containing highly enriched uranium. The target is irradiated in the swimming pool reactor core. The neutron flux is about 4x10 13 /cm 2 .sec. The production scale is 3.7-7.4 TBq (100-200Ci) of fission 99 Mo per batch. Total recovery of 99 Mo is more than 70%. The production practice proves that the process and equipment are safe and reliable. (author)

  12. The wastes of nuclear fission

    International Nuclear Information System (INIS)

    Doubre, H.

    2005-01-01

    In this paper the author presents the problems of the radioactive wastes generated by the nuclear fission. The first part devoted to the fission phenomenon explains the incident neutron energy and the target nuclei role. The second part devoted to the nuclear wastes sources presents the production of wastes upstream of the reactors, in the reactors and why these wastes are dangerous. The third part discusses the radioactive wastes management in France (classification, laws). The last part details the associated research programs: the radionuclides separation, the disposal, the underground storage, the transmutation and the thorium cycle. (A.L.B.)

  13. 40 years of nuclear fission

    International Nuclear Information System (INIS)

    Koch, H.

    1979-01-01

    On the occasion of both the 100th birthday of the discoverer of nuclear fission, Otto Hahn, and the 40th anniversary of this outstanding scientific discovery the historical development is described, which led to nuclear fission. Aspects of scientific life in Berlin and in the whole world at that time are presented, and relations between scientists are characterized by quotations. In particular, stress is laid on the life and activities of Otto Hahn as a human being and as a scientist, and his outstanding scientific achievements are appreciated. (author)

  14. Singlet Fission in Rubrene Derivatives: Impact of Molecular Packing

    KAUST Repository

    Sutton, Christopher

    2017-03-13

    We examine the properties of six recently synthesized rubrene derivatives (with substitutions on the side phenyl rings) that show vastly different crystal structures. In order to understand how packing in the solid state affects the excited states and couplings relevant for singlet fission, the lowest excited singlet (S), triplet (T), multiexciton (TT), and charge-transfer (CT) states of the rubrene derivatives are compared to known singlet fission materials [tetracene, pentacene, 5,12-diphenyltetracene (DPT), and rubrene itself]. While a small difference of less than 0.2 eV is calculated for the S and TT energies, a range of 0.50 to 1.2 eV in the CT energies and nearly 3 orders of magnitude in the electronic couplings are computed for the rubrene derivatives in their crystalline packings, which strongly affects the role of the CT state in facilitating SF. To rationalize experimental observations of singlet fission occurring in amorphous phases of rubrene, DPT, and tetracene, we use molecular dynamics (MD) simulations to assess the impact of molecular packing and orientations and to gain a better understanding of the parameters that control singlet fission in amorphous films compared to crystalline packings. The MD simulations point to a crystalline-like packing for thin films of tetracene; on the other hand, DPT, rubrene, and the rubrene derivatives all show various degrees of disorder with a number of sites that have larger electronic couplings than in the crystal, which can facilitate singlet fission in such thin films. Our analysis underlines the potential of these materials as promising candidates for singlet fission and helps understand how various structural motifs affect the critical parameters that control the ability of a system to undergo singlet fission.

  15. Sommerfeld-Watson transformation for nuclear fission

    International Nuclear Information System (INIS)

    Alexandru, G.

    1978-01-01

    It is proved that the fission matrix element can be written like a Sommerfeld-Watson relation. This leads to a dispersion relation for the fission process in which the substraction term is uniquely determined. (author)

  16. Fission properties of the heaviest elements

    International Nuclear Information System (INIS)

    Moller, P.; Nix, R.

    1995-01-01

    The authors discuss fission properties of the heaviest elements. In particular they focus on stability with respect to spontaneous fission and on the prospects of extending the region of known nuclei beyond the peninsula of currently known nuclides

  17. Fission fragment distributions within dynamical approach

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, K. [Institute of Nuclear, Physics Polish Academy of Sciences, Krakow (Poland); Nadtochy, P.N. [Omsk State Technical University, Omsk (Russian Federation); Ryabov, E.G.; Adeev, G.D. [Omsk State University, Physics Department, Omsk (Russian Federation)

    2017-04-15

    The review covers recent developments and achievements in the dynamical description of fission process at high excitation energy. It is shown that the dynamical approach based on multidimensional Langevin equations combined with the statistical description of nuclear decay by particles evaporation is capable of fairly well describing the formation of fission fragment mass-energy, charge, and angular distributions of fission fragments in coincidence with the pre- and post-scission particle emission. The final yields of fission and evaporation residues channels products could be obtained. The detailed description of fission dynamics allows studying different stages of fission process, indicating the most important ingredients governing fission process and studying in detail such fundamental nuclear properties as nuclear viscosity and fission timescale. The tasks and perspectives of multidimensional dynamical approach are also discussed. (orig.)

  18. Absolute calibration technique for spontaneous fission sources

    International Nuclear Information System (INIS)

    Zucker, M.S.; Karpf, E.

    1984-01-01

    An absolute calibration technique for a spontaneously fissioning nuclide (which involves no arbitrary parameters) allows unique determination of the detector efficiency for that nuclide, hence of the fission source strength

  19. Anomalies in the Charge Yields of Fission Fragments from the ^{238}U(n,f) Reaction.

    Science.gov (United States)

    Wilson, J N; Lebois, M; Qi, L; Amador-Celdran, P; Bleuel, D; Briz, J A; Carroll, R; Catford, W; De Witte, H; Doherty, D T; Eloirdi, R; Georgiev, G; Gottardo, A; Goasduff, A; Hadyńska-Klęk, K; Hauschild, K; Hess, H; Ingeberg, V; Konstantinopoulos, T; Ljungvall, J; Lopez-Martens, A; Lorusso, G; Lozeva, R; Lutter, R; Marini, P; Matea, I; Materna, T; Mathieu, L; Oberstedt, A; Oberstedt, S; Panebianco, S; Podolyák, Zs; Porta, A; Regan, P H; Reiter, P; Rezynkina, K; Rose, S J; Sahin, E; Seidlitz, M; Serot, O; Shearman, R; Siebeck, B; Siem, S; Smith, A G; Tveten, G M; Verney, D; Warr, N; Zeiser, F; Zielinska, M

    2017-06-02

    Fast-neutron-induced fission of ^{238}U at an energy just above the fission threshold is studied with a novel technique which involves the coupling of a high-efficiency γ-ray spectrometer (MINIBALL) to an inverse-kinematics neutron source (LICORNE) to extract charge yields of fission fragments via γ-γ coincidence spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and suggests that spherical shell effects in the nascent fission fragments are less important for low-energy fast-neutron-induced fission than for thermal neutron-induced fission. This has consequences for understanding and modeling the fission process, for experimental nuclear structure studies of the most neutron-rich nuclei, for future energy applications (e.g., Generation IV reactors which use fast-neutron spectra), and for the reactor antineutrino anomaly.

  20. Contribution to the study of the influences of the excitation energy on the characteristics of the fission process

    International Nuclear Information System (INIS)

    Wagemans, C.

    1979-01-01

    Neutron induced and spontaneous fission with neutron energies from 10 -2 to 2.10 5 eV have been studied. Thermal neutron induced fission measurements in Pa 231 , Th 232 , Np 237 , U 233 , U 235 , Pu 239 and Pu 241 are reported. Energy and mass distributions of heavy fission fragments due to the spontaneous fission of Pu 240 are compared to the results obtained by thermal neutron fission of Pu 239 ; the events observed with U 236 , Pu 240 , Pa 232 and Np 238 are explained by the Bohr theory of fission channels. Ternary fission phenomena of U 233 , U 235 , Pu 239 , Pa 231 and Np 237 induced by thermal neutrons are explained and compared to models of Carjan and Feather. (MDC)

  1. Computer program FPIP-REV calculates fission product inventory for U-235 fission

    Science.gov (United States)

    Brown, W. S.; Call, D. W.

    1967-01-01

    Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235.

  2. Nuclear fission as a macroscopic quantum tunneling

    International Nuclear Information System (INIS)

    Takigawa, N.

    1995-01-01

    We discuss nuclear fission from the point of view of a macroscopic quantum tunneling, one of whose major interests is to study the effects of environments on the tunneling rate of a macroscopic variable. We show that a vibrational excitation of the fissioning nucleus significantly enhances the fission rate. We show this effect by two different methods. The one is to treat the vibrational excitation as an environmental degree of freedom, the other treats the fission as a two dimensional quantum tunneling. (author)

  3. Symmetric vs. asymmetric stem cell divisions: an adaptation against cancer?

    Directory of Open Access Journals (Sweden)

    Leili Shahriyari

    Full Text Available Traditionally, it has been held that a central characteristic of stem cells is their ability to divide asymmetrically. Recent advances in inducible genetic labeling provided ample evidence that symmetric stem cell divisions play an important role in adult mammalian homeostasis. It is well understood that the two types of cell divisions differ in terms of the stem cells' flexibility to expand when needed. On the contrary, the implications of symmetric and asymmetric divisions for mutation accumulation are still poorly understood. In this paper we study a stochastic model of a renewing tissue, and address the optimization problem of tissue architecture in the context of mutant production. Specifically, we study the process of tumor suppressor gene inactivation which usually takes place as a consequence of two "hits", and which is one of the most common patterns in carcinogenesis. We compare and contrast symmetric and asymmetric (and mixed stem cell divisions, and focus on the rate at which double-hit mutants are generated. It turns out that symmetrically-dividing cells generate such mutants at a rate which is significantly lower than that of asymmetrically-dividing cells. This result holds whether single-hit (intermediate mutants are disadvantageous, neutral, or advantageous. It is also independent on whether the carcinogenic double-hit mutants are produced only among the stem cells or also among more specialized cells. We argue that symmetric stem cell divisions in mammals could be an adaptation which helps delay the onset of cancers. We further investigate the question of the optimal fraction of stem cells in the tissue, and quantify the contribution of non-stem cells in mutant production. Our work provides a hypothesis to explain the observation that in mammalian cells, symmetric patterns of stem cell division seem to be very common.

  4. Neutron gamma competition in fast fission

    International Nuclear Information System (INIS)

    Frehaut, J.

    1989-01-01

    In the present paper we analyse the data we have obtained on the distribution of the gamma-ray energy per fission, as well as on the average energy E-barγ released per fission for the neutron induced fission of several isotopes, in the energy range up to 15 MeV. 6 refs, 9 figs

  5. Fission yield data evaluation system FYDES

    International Nuclear Information System (INIS)

    Liu Tingjin

    1998-01-01

    Taking account of some features of fission yield data, to do the fission yield data evaluation conveniently, a fission yield data evaluation system FYDES has been developed for last two years. Outline of the system, data retrieval and data table standardization, data correction codes, data averaging code, simultaneous evaluation code and data fit programs were introduced

  6. Fission fragment mass and angular distributions

    Indian Academy of Sciences (India)

    2015-07-22

    Jul 22, 2015 ... Synthesis of heavy and superheavy elements is severely hindered by fission and fission-like processes. The probability of these fission-like, non-equilibrium processes strongly depends on the entrance channel parameters. This article attempts to summarize the recent experimental findings and classify the ...

  7. Some aspects of fission and quasifission processes

    Indian Academy of Sciences (India)

    2015-07-22

    Jul 22, 2015 ... In this talk, I will review an incomplete subset of the major milestones in fission research, and briefly discuss some of the topics that I have been involved in during my career. These include studies of vibrational resonances and fission isomers that are caused by the second minimum in the fission barrier in ...

  8. Charged particle-induced nuclear fission reactions

    Indian Academy of Sciences (India)

    The nuclear fission phenomenon continues to be an enigma, even after nearly 75 years of its discovery. Considerable progress has been made towards understanding the fission process. Both light projectiles and heavy ions have been employed to investigate nuclear fission. An extensive database of the properties of ...

  9. Axially symmetric Lorentzian wormholes in general relativity

    International Nuclear Information System (INIS)

    Schein, F.

    1997-11-01

    The field equations of Einstein's theory of general relativity, being local, do not fix the global structure of space-time. They admit topologically non-trivial solutions, including spatially closed universes and the amazing possibility of shortcuts for travel between distant regions in space and time - so-called Lorentzian wormholes. The aim of this thesis is to (mathematically) construct space-times which contain traversal wormholes connecting arbitrary distant regions of an asymptotically flat or asymptotically de Sitter universe. Since the wormhole mouths appear as two separate masses in the exterior space, space-time can at best be axially symmetric. We eliminate the non-staticity caused by the gravitational attraction of the mouths by anchoring them by strings held at infinity or, alternatively, by electric repulsion. The space-times are obtained by surgically grafting together well-known solutions of Einstein's equations along timelike hypersurfaces. This surgery naturally concentrates a non-zero stress-energy tensor on the boundary between the two space-times which can be investigated by using the standard thin shell formalism. It turns out that, when using charged black holes, the provided constructions are possible without violation of any of the energy conditions. In general, observers living in the axially symmetric, asymptotically flat (respectively asymptotically de Sitter) region axe able to send causal signals through the topologically non-trivial region. However, the wormhole space-times contain closed timelike curves. Because of this explicit violation of global hyperbolicity these models do not serve as counterexamples to known topological censorship theorems. (author)

  10. Fission approach to cluster radioactivity

    Indian Academy of Sciences (India)

    2015-08-04

    Aug 4, 2015 ... Also, the analytical superasymmetric fission (ASAF) model is successfully employed to make a systematic search and to predict, with other models, cluster ... those of the staff, the journals, various programmes, and Current Science, has changed from 'ias.ernet.in' (or 'academy.ias.ernet.in') to 'ias.ac.in'. Thus ...

  11. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... Nuclei in the actinide chain and beyond are prone to fission owing to ... mass nuclei are typically more difficult, because the intensity is .... j15/2 neutron alignments in a region where shell stablization effects are crucial.

  12. Space Fission System Test Effectiveness

    International Nuclear Information System (INIS)

    Houts, Mike; Schmidt, Glen L.; Van Dyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky; Salvail, Pat; Harper, Roger

    2004-01-01

    Space fission technology has the potential to enable rapid access to any point in the solar system. If fission propulsion systems are to be developed to their full potential, however, near-term customers need to be identified and initial fission systems successfully developed, launched, and utilized. One key to successful utilization is to develop reactor designs that are highly testable. Testable reactor designs have a much higher probability of being successfully converted from paper concepts to working space hardware than do designs which are difficult or impossible to realistically test. ''Test Effectiveness'' is one measure of the ability to realistically test a space reactor system. The objective of this paper is to discuss test effectiveness as applied to the design, development, flight qualification, and acceptance testing of space fission systems. The ability to perform highly effective testing would be particularly important to the success of any near-term mission, such as NASA's Jupiter Icy Moons Orbiter, the first mission under study within NASA's Project Prometheus, the Nuclear Systems Program

  13. Nuclear fission with inertial confinement

    CERN Document Server

    Koshkarev, D G

    2002-01-01

    The possibility of initiating the explosive fission reaction in a small quantity of fissile material through the heavy ions beam from the powerful accelerator-driver, developed for realization of the thermonuclear synthesis in the deuterium-tritium cylindrical targets with the direct ignition, is considered. The consequences of applying this method in the nuclear engineering are discussed

  14. Preliminary results of total kinetic energy modelling for neutron-induced fission

    International Nuclear Information System (INIS)

    Visan, I.; Giubega, G.; Tudora, A.

    2015-01-01

    The total kinetic energy as a function of fission fragments mass TKE(A) is an important quantity entering in prompt emission calculations. The experimentally distributions of TKE(A) are referring to a limited number of fission systems and incident energies. In the present paper, a preliminary model for TKE calculation in neutron induced fission system is presented. The range of fission fragments is chosen as in the Point by Point treatment. The model needs as input only mass excesses and deformation parameters taken from available nuclear databases being based on the following approximations: total excitation energy of fully accelerated fission fragments TXE is calculated from energy balance of neutron-induced fission systems as sum of the total excitation energy at scission E*sciss and deformation energy Edef. The deformation energy at scission is given by minimizing the potential energy at the scission configuration. At the scission point, the fission system is described by two spheroidal fragments nearly touching by a pre-scission distance or neck caused by the nuclear forces between fragments. Therefore, the Columbian repulsion depending on neck and, consequently, on the fragments deformation at scission, is essentially in TKE determination. An approximation is made based on the fission modes. For the very symmetric fission, the dominant super long channel is characterized by long distance between fragments leading to low TKE values. Due to magic and double-magic shells closure, the dominant S1 fission mode for pairs with heavy fragment mass AH around 130-134 is characterized by spherical heavy fragment shape and easily deformed light fragment. The nearly spherical shape of the complementary fragments are characterized by minimum distance, and consequently to maximum TKE values. The results obtained for TKE(A) are in good agreement with existing experimental data for many neutron induced fission systems, e.g. ''2''3''3&apos

  15. Perspective on the fusion-fission energy concept

    International Nuclear Information System (INIS)

    Liikala, R.C.; Perry, R.T.; Teofilo, V.L.

    1978-01-01

    A concept which has potential for near-term application in the electric power sector of our energy economy is combining fusion and fission technology. The fusion-fission system, called a hybrid, is distinguished from its pure fusion counterpart by incorporation of fertile materials (uranium or thorium) in the blanket region of a fusion machine. The neutrons produced by the fusion process can be used to generate energy through fission events in the blanket or produce fuel for fission reactors through capture events in the fertile material. The performance requirements of the fusion component of hybrids is perceived as being less stringent than those for pure fusion electric power plants. The performance requirements for the fission component of hybrids is perceived as having been demonstrated or could be demonstrated with a modest investment of research and development funds. This paper presents our insights and observations of this concept in the context of why and where it might fit into the picture of meeting our future energy needs. A bibliography of hybrid research is given

  16. Comprehensive asynchronous symmetric rendezvous algorithm in ...

    Indian Academy of Sciences (India)

    Meenu Chawla

    2017-11-10

    Nov 10, 2017 ... Simulation results affirm that CASR algorithm performs better in terms of average time-to-rendezvous as compared ... process; neighbour discovery; symmetric rendezvous algorithm. 1. .... dezvous in finite time under the symmetric model. The CH ..... CASR algorithm in Matlab 7.11 and performed several.

  17. The chemistry of fission products for accident analysis

    International Nuclear Information System (INIS)

    Potter, P.E.

    1985-01-01

    Current knowledge concerning the chemical state of the fission product elements during the development of accidents in water reactor systems is reviewed in this paper. The fission products elements which have been considered are Cs, I, Te, Sr and Ba but aspects of the behaviour of Mo, Ru and the lanthanides are also discussed. Some features of the reactions of the various species of these elements with other components of the reactor systems are described. The importance of having an adequate knowledge of thermodynamic data and phase equilibria of relatively simple systems in order to interpret experimental observations on complex multi-component systems is stressed

  18. Multi-channel probes to understand fission dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-15

    Explaining the origin of the elements is a major outstanding question in nuclear astrophysics. Observed elemental abundance distribution shows strong nuclear physics effects. In conclusion, neutron-induced reactions are important for nuclear astrophysics and applied fields in nuclear energy and security. LANSCE has a program to address many of these questions directly with neutron beams on (near-)stable nuclei. Increasing demand for correlated data to test details of fission models poses additional challenges. Possibilities exist to extend existing experimental efforts to radioactive beam facilities. Kinematic focusing from using inverse kinematics has potential to circumvent some challenges associated with measuring correlations between fission output channels.

  19. Integral measurement of fission products capture in fast breeder reactors

    International Nuclear Information System (INIS)

    Martin Deidier, Loick.

    1979-12-01

    For the SUPERPHENIX reactor project, it was necessary to know fission products capture with about 10% accuracy in the fast breeder reactor spectra. In this purpose, integral measurements have been carried out on the main separated products by different experimental technics (oscillation, activation and irradiation methods), but particularly on irradiated fuel pins from RAPSODIE and PHENIX reactors in order to directly obtain total effect of fission products. Same tendencies have been observed for both enriched uranium fuel and LMFBR characteristic plutonium fuel. All experimental results have been introduced in CARNAVAL cross section set [fr

  20. Assay of low-enriched uranium using spontaneous fission neutrons

    International Nuclear Information System (INIS)

    Zucker, M.S.; Fainberg, A.

    1980-01-01

    Low-enriched uranium oxide in bulk containers can be assayed for safeguards purposes, using the neutrons from spontaneous fission of 238 U as a signature, to complement enrichment and mass measurement. The penetrability of the fast fission neutrons allows the inner portion of bulk samples to register. The measurement may also be useful for measuring moisture content, of significance in process control. The apparatus used can be the same as for neutron correlation counting for Pu assay. The neutron multiplication observed in 238 U is of intrinsic interest

  1. Alkaline glass as induced fission fragment detectors

    International Nuclear Information System (INIS)

    Amorim, A.M.M.

    1986-01-01

    The slide glass, registered trade marks INLAB, INVICT and PERFECTA were compared. For the three kinds of glasses the following studies were done: chemical composition; general dissolution rate for hydrofluoric acid solutions of concentrations between 1 and 10M, at 30 0 C and ultrasound shaking; relative efficiency for recording fission fragment tracks from 252 Cf. The INLAB glass was selected due to the better quality of its surface after chemical etching. The HF concentration 2.5M was determined for chemical etching of INLAB glass, and the optimum etching time was chosen between 8 and 10 minutes. The thermal attenuation of latent tracks in the environmental temperature was observed for intervals uo to 31 days between the detector exposure to the fission fragment source and etching of tracks. Several methods were used for determining the detector parameters, such as: critical angle, angle of the cone and efficiency of etching. The effects of gamma irradiation from 60 Co and reactor neutrons in material properties as track detector were studied. Attenuation of latent tracks and saturation of color centers were observed for doses over 100M Rad. Since this kind of material contains uranium as impurity, uniformely distributed, slide glass were calibrated to be applied as a monitor of thermal neutron flux in nuclear reactor. (Author) [pt

  2. Fission product removal from molten salt using zeolite

    International Nuclear Information System (INIS)

    Pereira, C.; Babcock, B.D.

    1996-01-01

    Spent nuclear fuel (SNF) can be treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. The fuel is dissolved in molten chloride salt. Non-transuranic fission products in the molten salt are ion-exchanged into zeolite A, which is subsequently mixed with glass and consolidated. Zeolite was found to be effective in removing fission product cations from the molten salt. Breakthrough of cesium and the alkaline earths occurred more rapidly than was observed for the rare earths. The effluent composition as a function of time is presented, as well as results for the distribution of fission products along the length of the column. Effects of temperature and salt flow rate are also discussed

  3. Stabilization effect of fission source in coupled Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Borge; Dufek, Jan [Div. of Nuclear Reactor Technology, KTH Royal Institute of Technology, AlbaNova University Center, Stockholm (Sweden)

    2017-08-15

    A fission source can act as a stabilization element in coupled Monte Carlo simulations. We have observed this while studying numerical instabilities in nonlinear steady-state simulations performed by a Monte Carlo criticality solver that is coupled to a xenon feedback solver via fixed-point iteration. While fixed-point iteration is known to be numerically unstable for some problems, resulting in large spatial oscillations of the neutron flux distribution, we show that it is possible to stabilize it by reducing the number of Monte Carlo criticality cycles simulated within each iteration step. While global convergence is ensured, development of any possible numerical instability is prevented by not allowing the fission source to converge fully within a single iteration step, which is achieved by setting a small number of criticality cycles per iteration step. Moreover, under these conditions, the fission source may converge even faster than in criticality calculations with no feedback, as we demonstrate in our numerical test simulations.

  4. Baryon symmetric big bang cosmology

    Science.gov (United States)

    Stecker, F. W.

    1978-01-01

    Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.

  5. Substring-Searchable Symmetric Encryption

    Directory of Open Access Journals (Sweden)

    Chase Melissa

    2015-06-01

    Full Text Available In this paper, we consider a setting where a client wants to outsource storage of a large amount of private data and then perform substring search queries on the data – given a data string s and a search string p, find all occurrences of p as a substring of s. First, we formalize an encryption paradigm that we call queryable encryption, which generalizes searchable symmetric encryption (SSE and structured encryption. Then, we construct a queryable encryption scheme for substring queries. Our construction uses suffix trees and achieves asymptotic efficiency comparable to that of unencrypted suffix trees. Encryption of a string of length n takes O(λn time and produces a ciphertext of size O(λn, and querying for a substring of length m that occurs k times takes O(λm+k time and three rounds of communication. Our security definition guarantees correctness of query results and privacy of data and queries against a malicious adversary. Following the line of work started by Curtmola et al. (ACM CCS 2006, in order to construct more efficient schemes we allow the query protocol to leak some limited information that is captured precisely in the definition. We prove security of our substring-searchable encryption scheme against malicious adversaries, where the query protocol leaks limited information about memory access patterns through the suffix tree of the encrypted string.

  6. Evaporation channel as a tool to study fission dynamics

    Science.gov (United States)

    Di Nitto, A.; Vardaci, E.; La Rana, G.; Nadtochy, P. N.; Prete, G.

    2018-03-01

    The dynamics of the fission process is expected to affect the evaporation residue cross section because of the fission hindrance due to the nuclear viscosity. Systems of intermediate fissility constitute a suitable environment for testing such hypothesis since they are characterized by evaporation residue cross sections comparable or larger than the fission ones. Observables related to emitted charged particles, due to their relatively high emission probability, can be used to put stringent constraints on models describing the excited nucleus decay and to recognize the effects of fission dynamics. In this work model simulations are compared with the experimental data collected via the 32S +100 Mo reaction at Elab = 200 MeV. Consequently we pointed out, exploring an extended set of evaporation channel observables, the limits of the statistical model and the large improvement obtained with a dynamical model. Moreover we stress the importance of using an apparatus covering a large fraction of 4π to extract observables. Finally, we discuss the opportunity to measure more sensitive observables by a new detection device in operation at LNL.

  7. I. Fission Probabilities, Fission Barriers, and Shell Effects. II. Particle Structure Functions

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Kexing [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    In Part I, fission excitation functions of osmium isotopes 185,186, 187, 189 Os produced in 3He +182,183, 184, 186W reactions, and of polonium isotopes 209,210, 211, 212Po produced in 3He/4He + 206, 207, 208Pb reactions, were measured with high precision. These excitation functions have been analyzed in detail based upon the transition state formalism. The fission barriers, and shell effects for the corresponding nuclei are extracted from the detailed analyses. A novel approach has been developed to determine upper limits of the transient time of the fission process. The upper limits are constrained by the fission probabilities of neighboring isotopes. The upper limits for the transient time set with this new method are 15x 10–21 sec and 25x 10–21 sec for 0s and Po compound nuclei, respectively. In Part II, we report on a search for evidence of the optical modulations in the energy spectra of alpha particles emitted from hot compound nuclei. The optical modulations are expected to arise from the ~-particle interaction with the rest of the nucleus as the particle prepares to exit. Some evidence for the modulations has been observed in the alpha spectra measured in the 3He-induced reactions, 3He + natAg in particular. The identification of the modulations involves a technique that subtracts the bulk statistical background from the measured alpha spectra, in order for the modulations to become visible in the residuals. Due to insufficient knowledge of the background spectra, however, the presented evidence should only be regarded as preliminary and tentative.

  8. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    Lammer, G.

    1976-05-01

    The purpose of this series is to inform scientists working on Fission Product Nuclear Data, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. This report consists of reproductions of essentially unaltered original contributions which the authors have sent to IAEA/NDS. The types of activities being included in this report are measurements, compilations and evaluations of: fission product yields; neutron cross-section data of fission products; data related to β-, γ-decay of fission products; delayed neutron data; and fission product decay-heat

  9. Uniqueness of flat spherically symmetric spacelike hypersurfaces admitted by spherically symmetric static spacetimes

    Science.gov (United States)

    Beig, Robert; Siddiqui, Azad A.

    2007-11-01

    It is known that spherically symmetric static spacetimes admit a foliation by flat hypersurfaces. Such foliations have explicitly been constructed for some spacetimes, using different approaches, but none of them have proved or even discussed the uniqueness of these foliations. The issue of uniqueness becomes more important due to suitability of flat foliations for studying black hole physics. Here, flat spherically symmetric spacelike hypersurfaces are obtained by a direct method. It is found that spherically symmetric static spacetimes admit flat spherically symmetric hypersurfaces, and that these hypersurfaces are unique up to translation under the timelike Killing vector. This result guarantees the uniqueness of flat spherically symmetric foliations for such spacetimes.

  10. Long-term repetition priming with symmetrical polygons and words.

    Science.gov (United States)

    Kersteen-Tucker, Z

    1991-01-01

    In two different tasks, subjects were asked to make lexical decisions (word or nonword) and symmetry judgments (symmetrical or nonsymmetrical) about two-dimensional polygons. In both tasks, every stimulus was repeated at one of four lags (0, 1, 4, or 8 items interposed between the first and second stimulus presentations). This paradigm, known as repetition priming, revealed comparable short-term priming (Lag 0) and long-term priming (Lags 1, 4, and 8) both for symmetrical polygons and for words. A shorter term component (Lags 0 and 1) of priming was observed for nonwords, and only very short-term priming (Lag 0) was observed for nonsymmetrical polygons. These results indicate that response facilitation accruing from repeated exposure can be observed for stimuli that have no preexisting memory representations and suggest that perceptual factors contribute to repetition-priming effects.

  11. Measurement of the 235U/238U fission cross section ratio in the 235U fission neutron spectrum

    International Nuclear Information System (INIS)

    Azimi-Garakani, D.; Bagheri-Darbandi, M.

    1983-06-01

    Fission cross section ratio of 235 U to 238 U has been measured in the fast neutron field generated by the 235 U fission plate installed on the thermal column of the Tehran Research Reactor (TRR) with a Makrofol solid state nuclear track detector. The experiments were carried out with a set of total six enriched 235 U and depleted 238 U deposits with different masses and Makrofol films of 0.025mm and 0.060mm thicknesses. The chemically etched tracks were counted by an optical microscope. No significant differences were observed with the thin and the thick films. The results showed that the average fission cross section ratio is 3.83+-0.25. (author)

  12. Fission product behaviour in severe accidents

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Auvinen, A.; Maekynen, J.; Valmari, T.

    1998-01-01

    The understanding of fission product (FP) behaviour in severe accidents is important for source term assessment and accident mitigation measures. For example in accident management the operator needs to know the effect of different actions on the behaviour and release of fission products. At VTT fission product behaviour have been studied in different national and international projects. In this presentation the results of projects in EU funded 4th framework programme Nuclear Fission Safety 1994-1998 are reported. The projects are: fission product vapour/aerosol chemistry in the primary circuit (FI4SCT960020), aerosol physics in containment (FI4SCT950016), revaporisation of test samples from Phebus fission products (FI4SCT960019) and assessment of models for fission product revaporisation (FI4SCT960044). Also results from the national project 'aerosol experiments in the Victoria facility' funded by IVO PE and VTT Energy are reported

  13. Duality, phase structures, and dilemmas in symmetric quantum games

    International Nuclear Information System (INIS)

    Ichikawa, Tsubasa; Tsutsui, Izumi

    2007-01-01

    Symmetric quantum games for 2-player, 2-qubit strategies are analyzed in detail by using a scheme in which all pure states in the 2-qubit Hilbert space are utilized for strategies. We consider two different types of symmetric games exemplified by the familiar games, the Battle of the Sexes (BoS) and the Prisoners' Dilemma (PD). These two types of symmetric games are shown to be related by a duality map, which ensures that they share common phase structures with respect to the equilibria of the strategies. We find eight distinct phase structures possible for the symmetric games, which are determined by the classical payoff matrices from which the quantum games are defined. We also discuss the possibility of resolving the dilemmas in the classical BoS, PD, and the Stag Hunt (SH) game based on the phase structures obtained in the quantum games. It is observed that quantization cannot resolve the dilemma fully for the BoS, while it generically can for the PD and SH if appropriate correlations for the strategies of the players are provided

  14. Material synergism fusion-fission

    International Nuclear Information System (INIS)

    Sankara Rao, K.B.; Raj, B.; Cook, I.; Kohyama, A.; Dudarev, S.

    2007-01-01

    In fission and fusion reactors the common features such as operating temperatures and neutron exposures will have the greatest impact on materials performance and component lifetimes. Developing fast neutron irradiation resisting materials is a common issue for both fission and fusion reactors. The high neutron flux levels in both these systems lead to unique materials problems like void swelling, irradiation creep and helium embitterment. Both fission and fusion rely on ferritic-martensitic steels based on 9%Cr compositions for achieving the highest swelling resistance but their creep strength sharply decreases above ∝ 823K. The use of oxide dispersion strengthened (ODS) alloys is envisaged to increase the operating temperature of blanket systems in the fusion reactors and fuel clad tubes in fast breeder reactors. In view of high operating temperatures, cyclic and steady load conditions and the long service life, properties like creep, low cycle fatigue,fracture toughness and creepfatigue interaction are major considerations in the selection of structural materials and design of components for fission and fusion reactors. Currently, materials selection for fusion systems has to be based upon incomplete experimental database on mechanical properties. The usage of fairly well developed databases, in fission programmes on similar materials, is of great help in the initial design of fusion reactor components. Significant opportunities exist for sharing information on technology of irradiation testing, specimen miniaturization, advanced methods of property measurement, safe windows for metal forming, and development of common materials property data base system. Both fusion and fission programs are being directed to development of clean steels with very low trace and tramp elements, characterization of microstructure and phase stability under irradiation, assessment of irradiation creep and swelling behaviour, studies on compatibility with helium and developing

  15. Measurements of the effective range of fission fragments in UO2 and the disintegration constant for spontaneous fission of 238U

    International Nuclear Information System (INIS)

    Spaggiari, E.R.V.

    1978-01-01

    The results of measuments of the disintegration constant for spontaneous fission in 238 U are presented, with a discussion on the method used for the detection of fission tracks in muscovite mica. Samples of muscovite mica sandwiched between two natural uranium dioxide cylinders were irradiated with fragments of spontaneous fission and the etched tracks counted with projetion optical microscope. The effective thickness of the UO 2 layer which contributed to the observed tracks was measured through irradiation of mica samples, in contact with the UO 2 cylinder with 14,0 MeV neutrons from a (d,t) reaction. (Author) [pt

  16. Measurement of the fission yields of selected prompt and decay fission product gamma-rays of spontaneously fissioning 252Cf and 244Cm

    International Nuclear Information System (INIS)

    Reber, E.L.; Gehrke, R.J.; Aryaeinejad, R.; Hartwell, J.K.

    2005-01-01

    Gamma-ray spectrometry measurements have been made of the fission yields of selected γ -rays emitted by the spontaneously fissioning isotopes 252 Cf and 244 Cm. The measured γ-rays were selected based on their relative abundance in the spectrum and their freedom from interference or, in a few instances, ease of interference correction. From these data and the cumulative and independent yield data of England and Rider, those γ-rays that are primarily produced by radioactive decay, as opposed to direct yield, were converted into the decays per spontaneous fission expressed in percent and compared to cumulative yield values of England and Rider. For those γ-rays whose production is dominated by direct (independent) yield, the ratio of γ-rays per spontaneous fission is reported. The γ-ray yield can be compared to the independent yield values of England and Rider when 100% of the direct feeding passes through the γ-ray. In those cases where both cumulative and independent yields contribute to the observed γ-ray emission rate, a direct comparison is not possible but a method to quantify the contribution from each is proposed. (author)

  17. Fission gas behavior during fast thermal transients

    International Nuclear Information System (INIS)

    Esteves, R.G.

    1976-01-01

    The behavior of non-equilibrium fission in fuel elements undergoing fast thermal transients is analyzed. To facilitate the analysis, a new variable, the equilibrium variable (EV) is defined. This variable, together with bubble radius, completely specifies a bubble with respect to its size and equilibrium condition. The analysis is coded using a two-variable (radius and EV) multigroup numerical approximation that accepts as input the time-temperature history, the time-fission rate history, and the time-thermal gradient history of the fuel element. Studies were performed to test the code for convergence with respect to the time interval and the number of groups chosen. For a series of transient simulation studies, the measurements obtained at HEDL (microscopic examination of intragranular porosity in oxide fuel transient-tested in TREAT) are used. Two different transient histories were selected; the first, a high-temperature transient (HTT) with a peak at 2477 0 K and the second, a low-temperature transient (LTT) with a peak-temperature at 2000 0 K. The LTT was simulated for three different conditions: Bubbles were allowed to move via (a) only biased migration, (b) via random migration, and (c) via both mechanisms. The HTT was also run for both mechanisms. The agreement with HEDL microscopic observations was fair for bubbles smaller than 964 A in diameter, and poor for larger bubbles. Bubbles that grew during the heat-up part of the transient were frozen at a larger size during the cool down

  18. Analytical Study on Propagation Dynamics of Optical Beam in Parity-Time Symmetric Optical Couplers

    International Nuclear Information System (INIS)

    Zhou Zheng; Zhang Li-Juan; Zhu Bo

    2015-01-01

    We present exact analytical solutions to parity-time (PT) symmetric optical system describing light transport in PT-symmetric optical couplers. We show that light intensity oscillates periodically between two waveguides for unbroken PT-symmetric phase, whereas light always leaves the system from the waveguide experiencing gain when light is initially input at either waveguide experiencing gain or waveguide experiencing loss for broken PT-symmetric phase. These analytical results agree with the recent experimental observation reported by Rüter et al. [Nat. Phys. 6 (2010) 192]. Besides, we present a scheme for manipulating PT symmetry by applying a periodic modulation. Our results provide an efficient way to control light propagation in periodically modulated PT-symmetric system by tuning the modulation amplitude and frequency. (paper)

  19. Linac design algorithm with symmetric segments

    International Nuclear Information System (INIS)

    Takeda, Harunori; Young, L.M.; Nath, S.; Billen, J.H.; Stovall, J.E.

    1996-01-01

    The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells and individual cells symmetric in both the CCDTL AND CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. We have implemented a design algorithm in the PARMILA code in which cells and multi-cavity segments are made symmetric, significantly reducing the number of unique components. Using the symmetric algorithm, a sample linac design was generated and its performance compared with a similar one of conventional design

  20. Radiation shielding for fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Laboratory, Tokyo (Japan)

    2000-03-01

    Radiation shielding aspects relating fission reactors have been reviewed. Domestic activities in the past five years have been mainly described concerning nuclear data, calculation methods, shielding and skyshine experiments, Advanced Boiling Water Reactor (ABWR), Advanced Pressurized Water Reactor (APWR), High Temperature Engineering Test Reactor (HTTR), Experimental and Prototype Fast Reactors (JOYO, MONJU), Demonstration FBR, core shroud replacement of BWR, and spent fuel transportation cask and vessel. These studies have valuable information in safety and cost reduction issues of fission reactor design for not only existing reactors but also new reactor concepts in the next century. It has been concluded that we should maintain existing shielding technologies and improve these data and methods for coming generations in the next millennium. (author)

  1. Nuclear Dissipation from Fission Time

    International Nuclear Information System (INIS)

    Gontchar, I.; Morjean, M.; Basnary, S.

    2000-01-01

    Fission times, pre-scission neutron multiplicities and GDR pre-scission γ-ray multiplicities measured for uranium or thorium nuclei formed with temperatures T ∼ 1.8 MeV have been compared with calculations performed with CDSM2, a two-dimensional dynamical model combined with a statistical one. Among the three experimental approaches considered, fission times give access to the most precise pieces of information on nuclear dissipation at high excitation energy. For the temperature range under consideration, an agreement between the model and data is achieved if one-body dissipation is used with a strength factor k red ∼ 0.45 ± 0.10 applied to the wall term for the mononuclear configuration. (authors)

  2. The fusion-fission hybrid

    International Nuclear Information System (INIS)

    Teller, E.

    1985-01-01

    As the history of the development of fusion energy shows, a sustained controlled fusion reaction is much more difficult to produce than rapid uncontrolled release of fusion energy. Currently, the ''magnetic bottle'' technique shows sufficient progress that it might applied for the commercial fuel production of /sup 233/U, suitable for use in fission reactors, by developing a fusion-fission hybrid. Such a device would consist of a fusion chamber core surrounded by a region containing cladded uranium pellets cooled by helium, with lithium salts also present to produce tritium to refuel the fusion process. Successful development of this hybrid might be possible within 10 y, and would provide both experience and funds for further development of controlled fusion energy

  3. Influence of mass-asymmetry and ground state spin on fission fragment angular distributions

    International Nuclear Information System (INIS)

    Thomas, R.G.; Biswas, D.C.; Saxena, A.; Pant, L.M.; Nayak, B.K.; Vind, R.P.; Sahu, P.K.; Sinha, Shrabani; Choudhury, R.K.

    2001-01-01

    The strong influence of the target or/and projectile ground state spin on the anomalously large anisotropies of fission fragments produced in the heavy-ion induced fission of actinide targets were reported earlier. Interestingly, all those systems studied were having a mass asymmetry greater than the Businaro-Gallone critical asymmetry and hence the presence of pre-equilibrium fission was unambiguously ruled out. The observed anisotropies were successfully explained using the ECD-K-States model. It is of interest to know the influence of the target/projectile ground state spin on systems having an entrance channel mass asymmetry less than the critical value where pre-equilibrium fission cannot be ignored. With this motivation we performed measurements of fission fragment angular distributions of the 16 O+ 235 U (spin=7/2) system

  4. Gamma-ray multiplicities in sub-barrier fission of 226Th

    International Nuclear Information System (INIS)

    Chubaryan, G.G.; Hurst, B.J.; O'Kelly, D.J.

    1998-01-01

    The γ rays from the multimodal fission of the 226 Th formed in 18 O + 208 Pb were investigated at the sub-barrier energies. The corresponding excitation energies at the saddle point, E sp * , ranged from 16.4 to 19.2 MeV. The average γ-ray multiplicities and relative γ-ray energies as a function of the mass of the fission fragments exhibit a complex structure and strong variations. Such strong variations have never been previously observed in heavy ion-induced fusion-fission reactions. Obtained results may be explained with the influence of shell effects on the properties of the fission fragments. The present work is one in series of investigations of the multimodal fission phenomena in At-Th region

  5. Nuclear structure in cold rearrangement processes in fission and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Armbruster, P.

    1998-11-01

    In fission and fusion of heavy nuclei large numbers of nucleons are rearranged at a scale of excitation energy very small compared to the binding energy of the nuclei. The energies involved are less than 40 MeV at nuclear temperatures below 1.5 MeV. The shapes of the configurations in the rearrangement of a binary system into a monosystem in fusion, or vice versa in fission, change their elongations by as much as 8 fm, the radius of the monosystem. The dynamics of the reactions macroscopically described by a potential energy surface, inertia parameters, dissipation, and a collision energy is strongly modified by the nuclear structure of the participating nuclei. Experiments showing nuclear structure effects in fusion and fission of the heaviest nuclei are reviewed. The reaction kinematics and the multitude of isotopes involved are investigated by detector techniques and by recoil spectrometers. The advancement of the latter allows to find very small reaction branches in the range of 10{sup -5} to 10{sup -10}. The experiments reveal nuclear structure effects in all stages of the rearrangement processes. These are discussed pointing to analogies in fusion and fission on the microscopic scale, notwithstanding that both processes macroscopically are irreversible. Heavy clusters, as 132Sn, 208Pb, nuclei with closed shell configurations N=82,126, Z=50,82 survive in large parts of the nuclear rearrangement. They determine the asymmetry in the mass distribution of low energy fission, and they allow to synthesise superheavy elements, until now up to element 112. Experiments on the cold rearrangement in fission and fusion are presented. Here, in the range of excitation energies below 12 MeV the phenomena are observed most convincingly. (orig.)

  6. Theories of fission gas behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Dias, J W.C. [Companhia Brasileira de Tecnologia Nuclear, Rio de Janeiro (Brazil). Diretoria de Tecnologia e Desenvolvimento; Merckx, K R

    1976-01-01

    A review is presented of the theoretical developments and experimental evidence that have helped to evolve current models used to describe the behavior of inert fission gases created during the irradiation of reactor fuel materials. The phenomena which are stressed relate primarily to steady state behavior of fuel elements but are also relevant to an understanding of transient behavior. The processes considered include gas atom solubility; gas atom diffusivity; bubble nucleation; and bubble growth by bubble coalescence.

  7. Fission tracks dating for obsidian

    International Nuclear Information System (INIS)

    Picon, C.

    1991-01-01

    Obsidian from South America are dated by fission tracks methods. Samples are irradiated in a nuclear reactor with a flux of 10 15 n/cm 2 . Results, corrected by 'Plateau' methods, are the following: obsidian from Bolivia: 4.14 x 10 6 yr., Ecuador: 8.79 x 10 5 yr., Colombia: 3.52 x 10 6 yr., Peru: 6.55 x 10 6 yr., Chile: 1.13 x 10 6 yr. (MMZ). 5 refs., 3 tabs

  8. The VERDI fission fragment spectrometer

    Directory of Open Access Journals (Sweden)

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  9. The discovery of uranium fission

    International Nuclear Information System (INIS)

    Brix, P.

    1990-01-01

    Uranium was discovered 200 years ago. Its radioactive character was first demonstrated in 1896 and two years later radium was extracted from uranium minerals. In 1911 studies with alpha rays from radioactive decay led to the unexpected discovery of the atomic nucleus. Exposure of beryllium to alpha rays yielded neutrons, first detected in 1932. Starting in 1934, neutron irradiation of uranium produced radioactive substances erroneously attributed to transuranium elements but with confusing properties. Painstaking experiments by chemists left no doubt on 17 December 1938 that barium was produced by these irradiations: the neutrons had split some uranium nuclei. The physics of the fission process was understood two weeks later; after a few months, neutron multiplication was found to be probable. This review deals with the eminent scientists involved, their successes, errors and disappointments, and the unexpected insights which occurred on the paths and detours of scientific research. It is, therefore, instructive also to discuss how fission was not discovered. The momentous discovery must be considered inevitable; the great tragedy was that Germany started World War II just at the time when the possibility of nuclear chain reactions and bombs became known. The consequences and anxieties that remain after 50 years of nuclear fission demand that mankind act with reason and conscience to maintain peace. (author)

  10. Study of α-particle multiplicity in 16O+196Pt fusion-fission reaction

    International Nuclear Information System (INIS)

    Kapoor, K.; Kumar, A.; Bansal, N.

    2016-01-01

    Study of dynamics of fusion-fission reaction is one of the interesting parts of heavy-ion-induced nuclear reaction. Extraction of fission time scales using different probes is of central importance for understanding the dynamics of fusion-fission process. In the past, extensive theoretical and experimental efforts have been made to understand the various aspects of the heavy ion induced fusion-fission reactions. Compelling evidences have been obtained from the earlier studies that the fission decay of hot nuclei is protracted process i.e. slowed down relative to the expectations of the standard statistical model, and large dynamical delays are required due to this hindrance. Nuclear dissipation is assumed to be responsible for this delay and more light particles are expected to be emitted during the fission process. One of neutron multiplicity measurements have been performed for the 16,18 O+ 194,198 Pt populating the CN 210,212,214,216 Rn and observed fission delay due to nuclear viscosity. In order to have complete understanding for the dynamics of 212 Rn nucleus, we measured the charged particle multiplicity for 16 O+ 196 Pt system. Study of charged particles will give us more information about the emitter in comparison to neutrons as charged particles faces Coulomb barrier and are more sensitive probe for understanding the dynamics of fusion-fission reactions. In the present work, we are reporting some of the preliminary results of charged particle multiplicity

  11. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    Energy Technology Data Exchange (ETDEWEB)

    Farget, F.; Schmidt, K.H.; Clement, E.; Delaune, O.; Derkx, X.; Dijon, A.; Golabek, C.; Lemasson, A.; Roger, T.; Schmitt, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Caamano, M.; Ramos, D.; Benlliure, J.; Cortina, D.; Fernandez-Dominguez, B.; Paradela, C. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Rodriguez-Tajes, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Audouin, L. [Universite Paris-Sud 11, CNRS/IN2P3, Institut de Physique Nucleaire, Orsay (France); Casarejos, E. [Universidade de Vigo, Vigo (Spain); Dore, D.; Salsac, M.D. [Centre de Saclay, CEA, Irfu, Gif-sur-Yvette (France); Gaudefroy, L. [CEA DAM Ile-de-France, BP 12, Bruyeres-le-Chatel (France); Heinz, A. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Jurado, B. [Universite Bordeaux, CENBG, UMR 5797 CNRS/IN2P3, Gradignan (France)

    2015-12-15

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus {sup 250}Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission. (orig.)

  12. New isomeric states in 152,154,156Nd produced by spontaneous fission of 252Cf

    International Nuclear Information System (INIS)

    Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Phan, X.H.; Theisen, C.; Belier, G.; Girod, M.; Meot, V.; Peru, S.; Astier, A.; Ducroux, L.; Meyer, M.; Redon, N.

    1998-01-01

    Isomeric states have been observed in fission-fragments produced by spontaneous fission of 252 Cf. These states are found in neutron rich nuclei of different structure and deformations. About 50 isomeric nuclei have been observed using coincidences between γ-rays identified in EUROGAM II and fission fragments detected in photovoltaic cells (SAPhIR). Lifetimes in the range from 20 ns to 2μs have been measured. Presented calculations based on HFB+D1S force on new measured isomeric states in the 152,154,156 Nd show evidence for K-isomers. (orig.)

  13. Studies on fission with ALADIN. Precise and simultaneous measurement of fission yields, total kinetic energy and total prompt neutron multiplicity at GSI

    International Nuclear Information System (INIS)

    Martin, Julie-Fiona; Taieb, Julien; Chatillon, Audrey; Belier, Gilbert; Boutoux, Guillaume; Ebran, Adeline; Gorbinet, Thomas; Grente, Lucie; Laurent, Benoit; Pellereau, Eric; Alvarez-Pol, Hector; Ayyad, Yassid; Benlliure, Jose; Cortina Gil, Dolores; Caamano, Manuel; Fernandez Dominguez, Beatriz; Paradela, Carlos; Ramos, Diego; Rodriguez-Sanchez, Jose-Luis; Vargas, Jossitt; Audouin, Laurent; Tassan-Got, Laurent; Aumann, Thomas; Casarejos, Enrique; Farget, Fanny; Rodriguez-Tajes, Carme; Heinz, Andreas; Jurado, Beatriz; Kelic-Heil, Aleksandra; Kurz, Nikolaus; Nociforo, Chiara; Pietri, Stephane; Rossi, Dominic; Schmidt, Karl-Heinz; Simon, Haik; Voss, Bernd; Weick, Helmut

    2015-01-01

    A novel technique for fission studies, based on the inverse kinematics approach, is presented. Following pioneering work in the nineties, the SOFIA Collaboration has designed and built an experimental set-up dedicated to the simultaneous measurement of isotopic yields, total kinetic energies and total prompt neutron multiplicities, by fully identifying both fission fragments in coincidence, for the very first time. This experiment, performed at GSI, permits to study the fission of a wide variety of fissioning systems, ranging from mercury to neptunium, possibly far from the valley of stability. A first experiment, performed in 2012, has provided a large array of unprecedented data regarding the nuclear fission process. An excerpt of the results is presented. With this solid starter, further improvements of the experimental set-up are considered, which are consistent with the expected developments at the GSI facility, in order to measure more fission observables in coincidence. The completeness reached in the SOFIA data, permits to scrutinize the correlations between the interesting features of fission, offering a very detailed insight in this still unraveled mechanism. (orig.)

  14. Studies on fission with ALADIN. Precise and simultaneous measurement of fission yields, total kinetic energy and total prompt neutron multiplicity at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Julie-Fiona; Taieb, Julien; Chatillon, Audrey; Belier, Gilbert; Boutoux, Guillaume; Ebran, Adeline; Gorbinet, Thomas; Grente, Lucie; Laurent, Benoit; Pellereau, Eric [CEA DAM Bruyeres-le-Chatel, Arpajon (France); Alvarez-Pol, Hector; Ayyad, Yassid; Benlliure, Jose; Cortina Gil, Dolores; Caamano, Manuel; Fernandez Dominguez, Beatriz; Paradela, Carlos; Ramos, Diego; Rodriguez-Sanchez, Jose-Luis; Vargas, Jossitt [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Audouin, Laurent; Tassan-Got, Laurent [CNRS/IN2P3, IPNO, Orsay (France); Aumann, Thomas [Technische Universitaet Darmstadt, Darmstadt (Germany); Casarejos, Enrique [Universidad de Vigo, Vigo (Spain); Farget, Fanny; Rodriguez-Tajes, Carme [CNRS/IN2P3, GANIL, Caen (France); Heinz, Andreas [Chalmers University of Technology, Gothenburg (Sweden); Jurado, Beatriz [CNRS/IN2P3, CENBG, Gradignan (France); Kelic-Heil, Aleksandra; Kurz, Nikolaus; Nociforo, Chiara; Pietri, Stephane; Rossi, Dominic; Schmidt, Karl-Heinz; Simon, Haik; Voss, Bernd; Weick, Helmut [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2015-12-15

    A novel technique for fission studies, based on the inverse kinematics approach, is presented. Following pioneering work in the nineties, the SOFIA Collaboration has designed and built an experimental set-up dedicated to the simultaneous measurement of isotopic yields, total kinetic energies and total prompt neutron multiplicities, by fully identifying both fission fragments in coincidence, for the very first time. This experiment, performed at GSI, permits to study the fission of a wide variety of fissioning systems, ranging from mercury to neptunium, possibly far from the valley of stability. A first experiment, performed in 2012, has provided a large array of unprecedented data regarding the nuclear fission process. An excerpt of the results is presented. With this solid starter, further improvements of the experimental set-up are considered, which are consistent with the expected developments at the GSI facility, in order to measure more fission observables in coincidence. The completeness reached in the SOFIA data, permits to scrutinize the correlations between the interesting features of fission, offering a very detailed insight in this still unraveled mechanism. (orig.)

  15. Modulation of precipitation by conditional symmetric instability release

    OpenAIRE

    Glinton, Michael R.; Gray, Suzanne L.; Chagnon, Jeffrey M.; Morcrette, Cyril J.

    2017-01-01

    Although many theoretical and observational studies have investigated the mechanism of conditional symmetric instability (CSI) release and associated it with mesoscale atmospheric phenomena such as frontal precipitation bands, cloud heads in rapidly developing extratropical cyclones and sting jets, its climatology and contribution to precipitation have not been extensively documented. The aim of this paper is to quantify the contribution of CSI release, yielding slantwise convection, to clima...

  16. Symmetric nuclear matter with Skyrme interaction

    International Nuclear Information System (INIS)

    Manisa, K.; Bicer, A.; Atav, U.

    2010-01-01

    The equation of state (EOS) and some properties of symmetric nuclear matter, such as the saturation density, saturation energy and incompressibility, are obtained by using Skyrme's density-dependent effective nucleon-nucleon interaction.

  17. Performance limitations of translationally symmetric nonimaging devices

    Science.gov (United States)

    Bortz, John C.; Shatz, Narkis E.; Winston, Roland

    2001-11-01

    The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quality, referred to herein as the translational skew invariant, is analogous to the conventional skew invariant, which is conserved in rotationally symmetric optical systems. The invariance of both of these quantities is a consequence of Noether's theorem. We show how performance limits for translationally symmetric nonimaging optical devices can be derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. Examples of computed performance limits are provided. In addition, we show that a numerically optimized non-tracking solar concentrator utilizing symmetry-breaking surface microstructure can overcome the performance limits associated with translational symmetry. The optimized design provides a 47.4% increase in efficiency and concentration relative to an ideal translationally symmetric concentrator.

  18. Symmetrical parahiliar infiltrated, cough and dyspnoea

    International Nuclear Information System (INIS)

    Giraldo Estrada, Horacio; Escalante, Hector

    2004-01-01

    It is the case a patient to who is diagnosed symmetrical parahiliar infiltrated; initially she is diagnosed lymphoma Hodgkin, treaty with radiotherapy and chemotherapy, but the X rays of the thorax demonstrated parahiliars and paramediastinals infiltrated

  19. Introduction to left-right symmetric models

    International Nuclear Information System (INIS)

    Grimus, W.

    1993-01-01

    We motivate left-right symmetric models by the possibility of spontaneous parity breaking. Then we describe the multiplets and the Lagrangian of such models. Finally we discuss lower bounds on the right-handed scale. (author)

  20. A cosmological problem for maximally symmetric supergravity

    International Nuclear Information System (INIS)

    German, G.; Ross, G.G.

    1986-01-01

    Under very general considerations it is shown that inflationary models of the universe based on maximally symmetric supergravity with flat potentials are unable to resolve the cosmological energy density (Polonyi) problem. (orig.)

  1. Theorem on axially symmetric gravitational vacuum configurations

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, A; Le Denmat, G [Paris-6 Univ., 75 (France). Inst. Henri Poincare

    1977-01-24

    A theorem is proved which asserts the non-existence of axially symmetric gravitational vacuum configurations with non-stationary rotation only. The eventual consequences in black-hole physics are suggested.

  2. Study of 235U very asymmetric thermal fission

    International Nuclear Information System (INIS)

    Sida, J.L.

    1989-12-01

    The fission fragment separator Lohengrin of the Institut Laue-Langevin in Grenoble was used to determine the yields of the very asymmetric light fission products (A=84-69) as a function of A, Z, and the kinetic energy E. The proton pairing effect causes fine structures in the mass distribution, in the mean nuclear charge anti Z and its variance σ z , and in the mean kinetic energies of the elements. The neutron pairing effect in the production yields is found for the first time of the same order of magnitude than the proton pairing effect. In the mass region investigated both are the largest observed in fission of 235 U. A decrease in the mean kinetic energy for the isotopes of Ni and Cu was observed. It points to a large deformation at scission. Our results support the view that very asymmetric low-energy fission is a weakly dissipative process. The highly deformed transient system breaks by a slow necking-in process [fr

  3. Symmetric Imidazolium-Based Paramagnetic Ionic Liquids

    Science.gov (United States)

    2017-11-29

    Charts N/A Unclassified Unclassified Unclassified SAR 14 Kamran Ghiassi N/A 1 Symmetric Imidazolium-Based Paramagnetic Ionic Liquids Kevin T. Greeson...NUMBER (Include area code) 29 November 2017 Briefing Charts 01 November 2017 - 30 November 2017 Symmetric Imidazolium-Based Paramagnetic Ionic ... Liquids K. Greeson, K. Ghiassi, J. Alston, N. Redeker, J. Marcischak, L. Gilmore, A. Guenthner Air Force Research Laboratory (AFMC) AFRL/RQRP 9 Antares

  4. The Symmetric Rudin-Shapiro Transform

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour

    2003-01-01

    A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, and symmetric transform given as the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generatin...... large sets of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....

  5. The Symmetric Rudin-Shapiro Transform

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour

    2003-01-01

    A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, symmetric transform, the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generating large sets...... of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....

  6. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Kabir, K.; Saha, S.; Nath, L.M.

    1987-09-01

    Using a model which is based essentially on the chiral SU(2)xSU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenon is expected to be seen in the pion-nucleus interaction. (author). 20 refs

  7. Pion condensation in symmetric nuclear matter

    Science.gov (United States)

    Kabir, K.; Saha, S.; Nath, L. M.

    1988-01-01

    Using a model which is based essentially on the chiral SU(2)×SU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenom is expected to be seen in the pion-nucleus interaction.

  8. Checkpoint independence of most DNA replication origins in fission yeast.

    Science.gov (United States)

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-12-19

    In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (approximately 3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in checkpoint

  9. Fission barriers in the quasi-molecular shape path

    International Nuclear Information System (INIS)

    Royer, G.; Bonilla, C.; Zbiri, K.; Gherghescu, R.A.

    2003-01-01

    New observed phenomena like asymmetric fission of intermediate mass nuclei, nuclear molecules in light nuclei, super and hyperdeformations, cluster radioactivity, fast-fission of heavy systems and fragmentation have renewed interest in investigating the fusion-like fission valley which leads rapidly to two touching spherical fragments and quasi-molecular shapes. Furthermore, rotating super and hyperdeformed nuclear states and superheavy nuclei can be formed only in heavy-ion collisions for which the initial configuration is two close quasi-spherical nuclei. For these shapes the balance between the Coulomb forces and surface tension forces does not allow to link the sheets of the potential energy surface corresponding to one-body shapes and to two separated fragments, respectively. It is necessary to add another term called proximity energy reproducing the finite-range effects of the nuclear force in the neck or the gap between the nascent fission fragments. A generalized liquid drop model has been developed to take into account this nuclear proximity energy, the mass and charge asymmetry, an accurate nuclear radius and the temperature effects. The initial value of the surface energy coefficient has been kept. Microscopic corrections have been determined within the asymmetric two center shell model or simpler algebraic approximations. With this model and deformation valley first studies had led to the following results: (i) good agreement between the potential barrier heights and the experimental fission barrier heights in the whole mass range; (ii) saddle-point corresponding to two separated fragments maintained in unstable equilibrium by the balance between the repulsive Coulomb forces and the attractive proximity forces; (iii) strong enhancement of the maximal angular momentum against fission; (iv) reasonable agreement with experimental data on the double-humped barriers of actinides. Within this same approach we have recently shown that the calculated potential

  10. Checkpoint independence of most DNA replication origins in fission yeast

    Science.gov (United States)

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-01-01

    Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in

  11. Checkpoint independence of most DNA replication origins in fission yeast

    Directory of Open Access Journals (Sweden)

    Scott Donna

    2007-12-01

    Full Text Available Abstract Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU, which limits the pool of deoxyribonucleoside triphosphates (dNTPs and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR or cds1 (which encodes the fission yeast homologue of Chk2. Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3% behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild

  12. Device for measuring fission product density

    International Nuclear Information System (INIS)

    Kaneda, Mitsunori.

    1980-01-01

    Purpose: To determine the fission product density of xenon or the like and enable measurement of real time of fission product density in a reactor by calculating the disintegration and annihilation of the fission product on the basis of neutron detected output. Constitution: The neutron flux in a reactor is detected by a detector, and applied to first and second density calculators. Second fission product density signal of xenon or the like outputted from first device is again inputted to the device to form an annihilation signal due to disintegration to determine the present density of the second fission product of xenon or the like corresponding to the decrease of the neutron due to the poison of xeron or the like. Similarly, second device determines the first fission product density of iodine or the like. (Sekiya, K.)

  13. The resonance neutron fission on heavy nuclei

    International Nuclear Information System (INIS)

    Kopach, Yu.N.; Popov, A.B.; Furman, V.I.; Alfimenkov, V.P.; Lason', L.; Pikel'ner, L.B.; ); Gonin, N.N.; Kozlovskij, L.K.; Tambovtsev, D.I.; Gagarskij, A.M.; Petrov, G.A.; Sokolov, V.E.

    2001-01-01

    A new approach to the description of the fission, similar to the well-known reaction theory and based on the helicity representation for the exit fission channels, is briefly summarized. This approach allows one to connect the multimodal fission representation with A. Bohr's concept of the fission transition states and to obtain formulae for the partial and differential fission cross sections. The formulae are used for analysis of the angular anisotropy of fragments in the neutron resonance induced fission of aligned 235 U nuclei and of the P-even angular forward-backward and right-left correlations of fragments oe the P-odd correlations caused by the interference of s- and p-wave neutron resonances [ru

  14. Dynamical description of the fission process using the TD-BCS theory

    Energy Technology Data Exchange (ETDEWEB)

    Scamps, Guillaume, E-mail: scamps@nucl.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Simenel, Cédric [Department of Nuclear Physics, Research School of Physics and Engineering Australian National University, Canberra, Australian Capital Territory 2601 (Australia); Lacroix, Denis [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, F-91406 Orsay Cedex (France)

    2015-10-15

    The description of fission remains a challenge for nuclear microscopic theories. The time-dependent Hartree-Fock approach with BCS pairing is applied to study the last stage of the fission process. A good agreement is found for the one-body observables: the total kinetic energy and the average mass asymmetry. The non-physical dependence of two-body observables with the initial shape is discussed.

  15. Fission-energy release for 16 fissioning nuclides. Final report

    International Nuclear Information System (INIS)

    Sher, R.

    1981-03-01

    Results are presented of a least-squares evaluation of the components of energy release per fission in 232 Th, 233 U, 235 U, 238 U, 239 Pu, and 241 Pu. For completeness, older (1978) results based on systematics are presented for these and ten other isotopes of interest. There have been recent indications that the delayed energy components may be somewhat higher than those used previously, but the LSQ results do not seem to change significantly when modest (approx. 1 MeV) increases in the total delayed energy are included in the inputs. Additional measurements of most of the energy components are still needed to resolve remaining discrepancies

  16. What do we learn on the dynamics of fission from α-accompanied fission data

    International Nuclear Information System (INIS)

    Guet, C.; Asghar, M.; Nifenecker, H.; Perrin, P.

    1978-01-01

    Measurements of the angular distribution of α-particles emitted by thermal fission of 236 U are presented. Also the dependence of the angular distribution on the kinetic energy of the fission products is studied. (WL) [de

  17. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Science.gov (United States)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  18. (e,e'f) coincidence experiments for fission decay of giant resonances in 235,238U

    International Nuclear Information System (INIS)

    Weber, T.; Heil, R.D.; Kneissl, U.; Pecho, W.; Wilke, W.; Emrich, H.J.; Kihm, T.; Knoepfle, K.T.

    1988-01-01

    Extending previous work on 238 U, 235 U(e,e'f) coincidence data were taken at 4 momentum transfers yielding both E1, E2/E0 and E3 form factors and the respective multipole strength distributions in the giant resonance region of 238 U (4 x x /Γ a is obtained as a function of excitation energy for separated multipoles. The giant E2 resonance exhibits an increased symmetric fission contribution compared to E1 and E3 resonances. (orig.)

  19. Nuclear fission with a Langevin equation

    International Nuclear Information System (INIS)

    Boilley, D.; Suraud, E.; Abe, Yasuhisa

    1992-01-01

    A microscopically derived Langevin equation is applied to thermally induced nuclear fission. An important memory effect is pointed out and discussed. A strong friction coefficient, estimated from microscopic quantities, tends to decrease the stationary limit of the fission rate and to increase the transient time. The calculations are performed with a collective mass depending on the collective variable and with a constant mass. Fission rates calculated at different temperatures are shown and compared with previous available results. (author) 23 refs.; 7 figs

  20. Monte carlo sampling of fission multiplicity.

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, J. S. (John S.)

    2004-01-01

    Two new methods have been developed for fission multiplicity modeling in Monte Carlo calculations. The traditional method of sampling neutron multiplicity from fission is to sample the number of neutrons above or below the average. For example, if there are 2.7 neutrons per fission, three would be chosen 70% of the time and two would be chosen 30% of the time. For many applications, particularly {sup 3}He coincidence counting, a better estimate of the true number of neutrons per fission is required. Generally, this number is estimated by sampling a Gaussian distribution about the average. However, because the tail of the Gaussian distribution is negative and negative neutrons cannot be produced, a slight positive bias can be found in the average value. For criticality calculations, the result of rejecting the negative neutrons is an increase in k{sub eff} of 0.1% in some cases. For spontaneous fission, where the average number of neutrons emitted from fission is low, the error also can be unacceptably large. If the Gaussian width approaches the average number of fissions, 10% too many fission neutrons are produced by not treating the negative Gaussian tail adequately. The first method to treat the Gaussian tail is to determine a correction offset, which then is subtracted from all sampled values of the number of neutrons produced. This offset depends on the average value for any given fission at any energy and must be computed efficiently at each fission from the non-integrable error function. The second method is to determine a corrected zero point so that all neutrons sampled between zero and the corrected zero point are killed to compensate for the negative Gaussian tail bias. Again, the zero point must be computed efficiently at each fission. Both methods give excellent results with a negligible computing time penalty. It is now possible to include the full effects of fission multiplicity without the negative Gaussian tail bias.

  1. Fission-product retention in HTGR fuels

    International Nuclear Information System (INIS)

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed

  2. Measurements of Fission Cross Sections of Actinides

    CERN Multimedia

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  3. Neutron-induced fission cross sections

    International Nuclear Information System (INIS)

    Weigmann, H.

    1991-01-01

    In the history of fission research, neutron-induced fission has always played the most important role. The practical importance of neutron-induced fission rests upon the fact that additional neutrons are produced in the fission process, and thus a chain reaction becomes possible. The practical applications of neutron-induced fission will not be discussed in this chapter, but only the physical properties of one of its characteristics, namely (n,f) cross sections. The most important early summaries on the subject are the monograph edited by Michaudon which also deals with the practical applications, the earlier review article on fission by Michaudon, and the review by Bjornholm and Lynn, in which neutron-induced fission receives major attention. This chapter will attempt to go an intermediate way between the very detailed theoretical treatment in the latter review and the cited monograph which emphasizes the applied aspects and the techniques of fission cross-section measurements. The more recent investigations in the field will be included. Section II will survey the properties of cross sections for neutron-induced fission and also address some special aspects of the experimental methods applied in their measurement. Section Ill will deal with the formal theory of neutron-induced nuclear reactions for the resolved resonance region and the region of statistical nuclear reactions. In Section IV, the fission width, or fission transmission coefficient, will be discussed in detail. Section V will deal with the broader structures due to incompletely damped vibrational resonances, and in particular will address the special case of thorium and neighboring isotopes. Finally, Section VI will briefly discuss parity violation effects in neutron-induced fission. 74 refs., 14 figs., 3 tabs

  4. Fission of nuclei far from stability

    International Nuclear Information System (INIS)

    Schmidt, K.H.; Benlliure, J.; Junghans, A.R.

    2000-11-01

    The secondary-beam facility of GSI provided the technical equipment for a new kind of fission experiment. Fission properties of short-lived neutron-deficient nuclei have been investigated in inverse kinematics. The measured element distributions reveal new kinds of systematics on shell structure and even-odd effects and lead to an improved understanding of structure effects in nuclear fission. Prospects for further experimental studies are discussed. (orig.)

  5. International conference on fifty years research in nuclear fission

    International Nuclear Information System (INIS)

    1989-02-01

    These proceedings contain extended abstracts of the papers presented at the named conference. They deal with static properties of fission, instrumentation for fission studies, fission in compound-nucleus reactions, fission dynamics, fission-like heavy ion reactions, and fusion reactions. See hints under the relevant topics. (HSI)

  6. Fission excitation function for 19F + 194,196,198Pt at near and above barrier energies

    Directory of Open Access Journals (Sweden)

    Singh Varinderjit

    2015-01-01

    Full Text Available Fission excitation functions for 19F + 194,196,198Pt reactions populating 213,215,217Fr compound nuclei are reported. Out of these three compound nuclei, 213Fr is a shell closed (N=126 compound nucleus and the other two are away from the shell closure. From a comparison of the experimental fission cross-sections with the statistical model predictions, it is observed that the fission cross-sections are underestimated by the statistical model predictions using shell corrected finite range rotating liquid drop model (FRLDM fission barriers. Further the FRLDM fission barriers are reduced to fit the fission cross-sections over the entire measured energy range.

  7. Status of fission product yield data

    International Nuclear Information System (INIS)

    Cuninghame, J.G.

    1978-01-01

    The topics covered in this paper are: (a) cumulative yields in thermal neutron fission and in fast fission up to 14 MeV incident neutron energy, (b) dependence of the yields on incident neutron energy and spectrum, (c) independent yields, (d) charge dispersion and distribution, and (e) yields of light particles from ternary fission. The paper reviews information on these subjects for fission of actinides from 232 Th upwards with special emphasis on data published since the 1973 Bologna FPND Panel, compares data sets, and discusses the gaps still to be found in them. (author)

  8. True ternary fission in 310126X

    International Nuclear Information System (INIS)

    Banupriya, B.; Vijayaraghavan, K.R.; Balasubramaniam, M.

    2015-01-01

    All possible combinations are minimized by the two dimensional minimization process and minimized with respect to neutron numbers and proton numbers of the fragments. Potential energy is low and Q - value is high at true ternary fission region. It shows that true ternary mode is the dominant mode in the ternary fission of superheavy nuclei. Also, the results show that the fragments with neutron magic numbers are the dominant one in the ternary fission of superheavy nuclei whereas the fragments with proton magic numbers are the dominant one in the ternary fission of heavy nuclei

  9. Attachment of gaseous fission products to aerosols

    International Nuclear Information System (INIS)

    Skyrme, G.

    1985-01-01

    Accidents may occur in which the integrity of fuel cladding is breached and volatile fission products are released to the containment atmosphere. In order to assess the magnitude of the subsequent radiological hazard it is necessary to know the transport behaviour of such fission products. It is frequently assumed that the fission products remain in the gaseous phase. There is a possibility, however, that they may attach themselves to particles and hence substantially modify their transport properties. This paper provides a theoretical assessment of the conditions under which gaseous fission products may be attached to aerosol particles. Specific topics discussed are: the mass transfer of a gaseous fission product to an isolated aerosol particle in an infinite medium; the rate at which the concentration of fission products in the gas phase diminishes within a container as a result of deposition on a population of particles; and the distribution of deposited fission product between different particle sizes in a log-normal distribution. It is shown that, for a given mass, small particles are more efficient for fission product attachment, and that only small concentrations of such particles may be necessary to achieve rapid attachment. Conditions under which gaseous fission products are not attached to particles are also considered, viz, the competing processes of deposition onto the containment walls and onto aerosol particles, and the possibility of the removal of aerosols from the containment by various deposition processes, or agglomeration, before attachment takes place. (author)

  10. Theoretical Description of the Fission Process

    International Nuclear Information System (INIS)

    Witold Nazarewicz

    2003-01-01

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process

  11. Cold valleys in fusion and fission

    International Nuclear Information System (INIS)

    Misicu, S.

    2003-01-01

    The cold fission configuration after the preformation of the fragments resembles a short-lived dinuclear or quasi-molecular system. The most conceivable scission configuration is given by two fission fragments in touching with the symmetry axes aligned (pole-pole orientation). This conclusion was based on the simple argument that this configuration offers the optimal tunneling time, i.e. the difference between the Coulomb barrier and the decay energy Q is minimal. Other orientations are apparently precluded in cold spontaneous fission and should be regarded as quasi-fission doorways in the synthesis of superheavy elements by cold fusion. (orig.)

  12. Process for the extraction of fission products

    International Nuclear Information System (INIS)

    Anav, M.; Chesne, A.; Leseur, A.; Miquel, P.; Pascard, R.

    1979-01-01

    A process is described for the extraction of fission products contained in irradiated nuclear fuel elements which have been subject to a temperature of at least 1200 0 C during their irradiation prior to dissolving the fuel by the wet process. After mechanically treating the elements in order to decan and/or cut them they are brought into contact with water in order to pass the fission products into aqueous solution. The treated elements are then separated from the thus obtained aqueous solution. At least one of the fission products is then recovered from the aqueous solution. The fission products are iodine, cesium, rubidium and tritium

  13. Theoretical Description of the Fission Process

    Energy Technology Data Exchange (ETDEWEB)

    Witold Nazarewicz

    2003-07-01

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process.

  14. A spin exchange model for singlet fission

    Science.gov (United States)

    Yago, Tomoaki; Wakasa, Masanobu

    2018-03-01

    Singlet fission has been analyzed with the Dexter model in which electron exchange occurs between chromophores, conserving the spin for each electron. In the present study, we propose a spin exchange model for singlet fission. In the spin exchange model, spins are exchanged by the exchange interaction between two electrons. Our analysis with simple spin functions demonstrates that singlet fission is possible by spin exchange. A necessary condition for spin exchange is a variation in exchange interactions. We also adapt the spin exchange model to triplet fusion and triplet energy transfer, which often occur after singlet fission in organic solids.

  15. Fission - track age of the Marjalahti Pallasite

    International Nuclear Information System (INIS)

    Bondar, Yu.V.; Perelygin, V.P.

    2006-01-01

    Full text: Investigation of fossil charged-particle tracks in various mineral phases of extraterrestrial samples is a powerful method for research the early stages of the solar system. Over geological time, meteorites crystals have accumulated a record of tracks produced by heavily charged energetic particles from both internal (spontaneous fission of 238U and some other extinct isotopes) and external sources (galactic cosmic rays with Z>20). The fortunate fact that meteorite grains can accumulate latent and very long-lived tracks since soon after the end of nucleosynthesis in the solar nebula enables one to decode their radiation history and to detect any thermal events in the meteorite cosmic history by revealing these tracks through suitable etching procedures. Only a few minerals in meteorites (mainly phosphates) contain small amount of uranium; the fact that 238 U undergoes fission with fission-decay constant λ f ∼ 8.2x10 -17 yr -1 allows one to use this isotope as a chronometer. By measuring the U concentration in the crystals (by reactor irradiation) and the density of the spontaneous-fission tracks it is relatively easy to calculate the 'fission-track age' if 238 U is the main source of fission tracks. However the fission-track dating of extraterrestrial samples compared with the terrestrial ones has some peculiar features due to presence of a number of other potential track sources except the spontaneous fission of 238 U, such as the spontaneous fission of presently extinct 244 Pu, heavy nuclei of cosmic rays and induced fission by cosmic ray primaries. Only tracks from the spontaneous fission of U and Pu are suitable for fission-track dating. The competing effects of these fissioning elements, whose half-lives differ by a factor of ∼50, form a basis for a fission-track chronology for samples older than ∼ 4.0 Gyr. Over small intervals in time (∼ few x10 8 yr ) the track density from spontaneous fission of 238 U is nearly constant. However, the

  16. The symmetric MSD encoder for one-step adder of ternary optical computer

    Science.gov (United States)

    Kai, Song; LiPing, Yan

    2016-08-01

    The symmetric Modified Signed-Digit (MSD) encoding is important for achieving the one-step MSD adder of Ternary Optical Computer (TOC). The paper described the symmetric MSD encoding algorithm in detail, and developed its truth table which has nine rows and nine columns. According to the truth table, the state table was developed, and the optical-path structure and circuit-implementation scheme of the symmetric MSD encoder (SME) for one-step adder of TOC were proposed. Finally, a series of experiments were designed and performed. The observed results of the experiments showed that the scheme to implement SME was correct, feasible and efficient.

  17. A simple treatment of fission gas for normal and accident conditions

    International Nuclear Information System (INIS)

    Matthews, J.R.; Wood, M.H.

    1980-01-01

    A set of simple modules have been developed to describe fission gas release and swelling in oxide nuclear fuels for use in fuel behaviour codes. The methods used are simplifications of earlier more detailed work and contain several important developments that allow for improved accuracy over earlier simple treatments and the description of the fission gas bubble population with little penalty in computer time or storage. The three modules are: (i) intragranular fission gas behaviour during normal operation, which treats gas bubble nucleation, growth and destruction by fission fragments and the diffusion of gas to the grain boundaries by single gas atom diffusion, (ii) intragranular fission gas behaviour during rapid transients which treats the migration and coalescence of gas bubbles, the sweeping up of fission gas atoms by bubbles and the drift of gas bubbles to the grain boundary under the driving force of the temperature gradient, and (iii) intergranular fission gas behaviour, which treats the growth and interaction of face and edge bubbles on the grain boundary, their interlinkage and gas release. All these models allow for transient behaviour and are compared with experimental observations of both macroscopic swelling and gas release (and retention) and microscopic observations of bubble sizes and concentrations. (author)

  18. Charge degree of freedom as a sensitive probe for fission mechanism

    International Nuclear Information System (INIS)

    Yokoyama, A.; Baba, H.; Takahashi, N.; Duh, M.C.; Saito, T.

    1997-01-01

    The role of the charge degree of freedom in the heavy-ion-induced fission was investigated by carrying out a systematic analysis of radiochemically observed charge distribution in the fission of 238 U with 12 C ions of the incident energy between 85 and 140 MeV, particularly in connection with the energy given to the compound system. The charge distribution was found to follow essentially identical systematics as those which govern the light-ion fission except for the extremely weak energy dependence of the most probable charge Z p . That is, values of the derivative of Z p with respect to the energy were found to be quite small, or nearly zero, in the heavy-ion fission as compared to those of the light-ion fission. According to an analysis combining the derivatives of Z p and fission neutron data, it was deduced that the excess energy given to the fused system was spent completely in the form of pre-scission neutrons and hence the number of post-scission neutrons remained constant as in the case of light-ion fission. The observed charge distribution was reproduced under the conditions that the relaxation of the charge degree of freedom be very fast and that the separation between the two potential fragments at the moment when the charge degree of freedom has been frozen is determined by using Viola's systematics on the fragment kinetic energy. (author)

  19. A position sensitive parallel plate avalanche fission detector for use in particle induced fission coincidence measurements

    NARCIS (Netherlands)

    Plicht, J. van der

    1980-01-01

    A parallel plate avalanche detector developed for the detection of fission fragments in particle induced fission reactions is described. The active area is 6 × 10 cm2; it is position sensitive in one dimension with a resolution of 2.5 mm. The detector can withstand a count rate of 25000 fission

  20. Baby fission chambers; Etude de chambres a fission miniatures

    Energy Technology Data Exchange (ETDEWEB)

    Guery, U; Tachon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The present report is intended, on the one band, as a study of the main types of fission chambers produced to date, and on the other, to deal more generally with this type of detector. Originally, it was with a view to the charting of neutron scatter in 'Proserpine' that the authors undertook the study of these chambers. During the course of the task, it was considered worth tbe trouble of developing its scope to include a more general application: neutron scatter measurement of various energy neutrons within a reduced volume with slight local disturbance. (author) [French] Le present rapport se propose, d'une part, d'exposer les principales realisations de chambres a fission, d'autre part de faire une mise au point a caractere plus general sur ces detecteurs. Au depart, c'est surtout en vue des mesures de densite neutronique dans 'Proserpine' que les auteurs ont etudie ces chambres; au cours de la mise au point, il a paru interessant de developper leur etude pour des applications plus generales: mesures de densites de neutrons de differentes energies dans un element de volume tres reduit et avec faible perturbation locale. (auteur)

  1. Baby fission chambers; Etude de chambres a fission miniatures

    Energy Technology Data Exchange (ETDEWEB)

    Guery, U.; Tachon, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The present report is intended, on the one band, as a study of the main types of fission chambers produced to date, and on the other, to deal more generally with this type of detector. Originally, it was with a view to the charting of neutron scatter in 'Proserpine' that the authors undertook the study of these chambers. During the course of the task, it was considered worth tbe trouble of developing its scope to include a more general application: neutron scatter measurement of various energy neutrons within a reduced volume with slight local disturbance. (author) [French] Le present rapport se propose, d'une part, d'exposer les principales realisations de chambres a fission, d'autre part de faire une mise au point a caractere plus general sur ces detecteurs. Au depart, c'est surtout en vue des mesures de densite neutronique dans 'Proserpine' que les auteurs ont etudie ces chambres; au cours de la mise au point, il a paru interessant de developper leur etude pour des applications plus generales: mesures de densites de neutrons de differentes energies dans un element de volume tres reduit et avec faible perturbation locale. (auteur)

  2. Towards a mechanistic understanding of transient fission gas release

    International Nuclear Information System (INIS)

    Matthews, J.R.; Small, G.J.

    1989-01-01

    Recent experimental results on transient fission gas release from oxide fuels are briefly reviewed. These together with associated microstructural observations are compared with the main models for fission gas behaviour. Single gas atom diffusion, bubble migration, heterogeneous percolation and grain boundary sweeping are examined as possible release mechanisms. The role of gas trapping in bubbles and re-solution by irradiation and thermal processes are included in the comparison. As much of the data, and the main range of interest for light water reactor fuels, is for release during mild transients in fuel with a burn-up below 4%, the role of gas retention on grain boundaries is very important and in some cases dominant. The grain boundaries are found to respond very differently to various gas arrival rates and to local temperature conditions. This can lead to early interlinkage and release in some cases, but retention with accompanying large swelling in others. The role of fission products and the local oxygen content of the fuel are found to be important. The effective fuel stoichiometry is likely to change significantly during transients with substantial effects on the transport processes controlling fission gas behaviour. The results of the evaluation of the models are summarized in mechanism maps for intragranular and grain boundary behaviour. (author). 36 refs, 8 figs

  3. Heavy cluster in cold nuclear rearrangements in fusion and fission

    International Nuclear Information System (INIS)

    Armbruster, P.

    1997-01-01

    The experimental evidence for the appearance of cluster aspects in the dynamics of large rearrangements processes, as fusion and fission, is presented. Clusters in the sense as used in the following are strongly bound, doubly magic neutron rich nuclei as 48 Ca 28 , 78 Ni 50 , 132 Sn 82 , and 208 Pb 126 , the spherical nuclei Z=114 - 126 and N=184, and nuclei with closed shells N=28, 50, 82, and 126, and Z=28, 50, and 82. As with increasing nucleon numbers, the absolute shell corrections to the binding energies increase, the strongest effects are to be observed for the higher shells. The 132 cluster manifests itself in low energy fission (Faissner, H. and Wildermuth, K. Nucl. Phys., 58 (1964) 177). The 208 Pb cluster gave the new radioactivity (Rose, M.J. and Jones G.A., Nature, 307 (1984) 245) and the first superheavy elements (SHE) (Armbruster P., Ann. Rev. Nucl. Part. Sci., 35 (1985) 135-94; Munzenberg, G. Rep. Progr. Phys., 51 (1988) 57). The paper discuss experiments concerning the stability of clusters to intrinsic excitation energy in fusion and fission (Armbruster, P. Lect. Notes Phys., 158 (1982) 1). and the manifestation of clusters in the fusion entrance channel (Armbruster, P., J. Phys. Soc. Jpn., 58 (1989) 232). The importance of compactness of the clustering system seems to be equally decisive in fission and fusion. Finally, it s covered the importance of clusters for the production of SHEs)

  4. Magnetically insulated fission electric cells for direct energy conversion

    International Nuclear Information System (INIS)

    Slutz, S.A.; Seidel, D.B.; Lipinski, R.J.; Rochau, G.E.; Brown, L.C.

    2003-01-01

    The principles of fission electric cells are reviewed. A detailed Monte Carlo model of the efficiency of a fission electric cell is presented and a theory of magnetically insulated fission electric cells (MIFECs) is developed. It is shown that the low operating voltages observed in previous MIFEC experiments were due to nonoptimal magnetic field profiles. Improved magnetic field profiles are presented. It is further shown that the large electric field present in a MIFEC limits the structure of the cathode and can lead to a displacement instability of the cathode toward the anode. This instability places constraints on the number of cells that can be strung together without some external cathode support. The large electric field stress also leads to electrical surface breakdown of the cathode. It is shown that this leads to the formation of a virtual cathode resulting in geometry constraints for spherical cells. Finally it is shown that the requirements of magnetic insulation and high efficiency leads to very low average density of the fissile material. Thus a reactor using fission electric cells for efficient direct energy conversion will be large and require a very large number of cells. This could be mitigated somewhat by the use of exotic fuels

  5. BIVARIATE SYMMETRICAL STATISTICS OF LONG-RANGE DEPENDENT OBSERVATIONS

    NARCIS (Netherlands)

    DEHLING, H; TAQQU, MS

    Let (X(j))j infinity = 1 be a stationary, mean-zero Gaussian sequence with covariances r(k) = EX(k+1)X1 satisfying r(0) = 1 and r(k) = k-D L(k) where D is small and L is slowly varying at infinity. Consider the sequence Y(j) = G(X(j)), j = 1,2,..., where G is any measurable function. We obtain the

  6. Fission Product Sorptivity in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, Jr., Robert V. [Univ. of Missouri, Columbia, MO (United States); Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States); Ghosh, Tushar [Univ. of Missouri, Columbia, MO (United States); Viswanath, Dabir [Univ. of Missouri, Columbia, MO (United States); Walton, Kyle [Univ. of Missouri, Columbia, MO (United States); Haffner, Robert [Univ. of Missouri, Columbia, MO (United States)

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one

  7. Fission fragment excited laser system

    Science.gov (United States)

    McArthur, David A.; Tollefsrud, Philip B.

    1976-01-01

    A laser system and method for exciting lasing action in a molecular gas lasing medium which includes cooling the lasing medium to a temperature below about 150 K and injecting fission fragments through the lasing medium so as to preferentially excite low lying vibrational levels of the medium and to cause population inversions therein. The cooled gas lasing medium should have a mass areal density of about 5 .times. 10.sup.-.sup.3 grams/square centimeter, relaxation times of greater than 50 microseconds, and a broad range of excitable vibrational levels which are excitable by molecular collisions.

  8. Fission tracks diameters in glasses

    International Nuclear Information System (INIS)

    Garzon Ruiperez, L.; Veiguela, J.

    1974-01-01

    Standard glass microscope slides have been irradiated with fission fragments from the uranium. The etching track conditions have been the same for the series, having changed the etching time only for each specimen. For each glass, a minimum of 250 measurements of the tracks diameters have been made, the distributions of which are the bimodal type. Diameters-etching dependence with time is roughly lineal. Energy determinations have been made with the help of the diameters-energy relations. The calculated values agree very well with the know ones. (author) [es

  9. Fission barriers of superheavy nuclei

    International Nuclear Information System (INIS)

    Burvenich, T.

    2001-01-01

    Full text: Self consistent microscopic mean-field models are powerful tools for the description of nuclear structure phenomena in the region of known elements, where they have reached a good quality. Especially the Skyrme-Hartree-Fock (SHF) method and the Relativistic Mean-Field (RMF) model will be considered in the discussion of the properties of these models. When it comes to extrapolation to the region of superheavy elements, though there is agreement concerning the global trends, these model exhibit significant differences in their predictions concerning fission barrier heights and structures. (Author)

  10. Evidence of pair correlations in actinide neutron-induced fission cross sections

    International Nuclear Information System (INIS)

    Maslov, V.M.

    2000-01-01

    It is shown that irregularities in fission cross sections in MeV incident neutron energy region could be attributed to the interplay of few-quasiparticle excitations in the level density of the fissioning and residual nuclei. It is suggested the intrinsic quasiparticle state density modelling approach both at stable and saddle-point deformations. The experimental manifestation of few-quasiparticle irregularities in the level density depends on the fission barrier structure and internal excitation energy at the saddle point, corresponding to the higher barrier hump. The explicit evidence is observed in case of fissile and non-fissile target nuclides [ru

  11. Fusion-fission of heavy systems: influence of the entrance channel mass assymmetry

    International Nuclear Information System (INIS)

    Rivet, M.F.; Alami, R.; Borderie, B.; Fuchs, H.; Gardes, D.; Gauvin, H.

    1988-02-01

    The influence of the entrance channel on fission processes was studied by forming the same composite system by two different target-projectile combinations ( 40 Ar + 209 Bi and 56 Fe + 187 Re, respectively). Compound nucleus fission and quasi fission were observed and the analysis was performed in the framework of the extra-extra-push model, which provides a qualitative interpretation of the results; limits for the extra-extra-push threshold are given, but problems with quantitative predictions for the extra-push are noted

  12. Characterization of the fusion-fission process in light nuclear systems

    International Nuclear Information System (INIS)

    Anjos, R.M. dos.

    1992-01-01

    Fusion cross sections measurements of highly damped processes and elastic scattering were performed for the 16, 17, 18 O + 10, 11 B and 19 F + 9 Be, in the incident energy interval 22 ≤ E LAB ≤ 64 MeV. Evidences are presented that highly damped binary processes observed in these systems are originated from a fusion-fission process rather than a dinuclear ''orbiting'' mechanism. The relative importance of the fusion-fission process in these very light systems is demonstrated both by the experimental results, which indicate a statistically balanced compound nucleus fission process occurrence, and theoretical calculations. (L.C.J.A.)

  13. Resonance structure in the fission of ( sup 235 U+n)

    Energy Technology Data Exchange (ETDEWEB)

    Moore, M.S. (Los Alamos National Lab. (LANL), NM (USA). Physics Div.); Leal, L.C.; De Saussure, G.; Perez, R.B.; Larson, N.M. (Oak Ridge National Lab., TN (USA))

    1989-10-09

    A new multilevel reduced R-matrix analysis of the neutron-induced resonance cross sections of {sup 235}U has been carried out. We used as a constraint in the analysis the angular anisotropy measurements of Pattenden and Postma, obtaining a Bohr-channel (or J, K channel) representation of the resonances in a two-fission vector space for each spin state. Hambsch et al., have reported definitive measurements of the mass- and kinetic-energy distributions of fission fragments of ({sup 235}U+n) in the resonance region and analyzed their results according to the fission-channel representation of Brosa et al., extracting relative contributions of the two asymmetric and one symmetric Brosa fission channels. We have explored the connection between Bohr-channel and asymmetric Brosa-channel representations. The results suggest that a simple rotation of coordinates in channel space may be the only transformation required; the multilevel fit to the total and partial cross sections is invariant to such a transformation. (orig.).

  14. Role of deformed shell effects on the mass asymmetry in nuclear fission of mercury isotopes

    International Nuclear Information System (INIS)

    Panebianco, Stefano; Sida, Jean-Luc; Goutte, Heloise; Lemaitre, Jean-Francois; Dubray, Noel; Hilaire, Stephane

    2012-01-01

    Until now, the mass asymmetry in the nuclear fission process has been understood in terms of the strong influence of the nuclear structure of the nascent fragments. Recently, a surprising asymmetric fission has been discovered in the light mercury region and has been interpreted as the result of the influence of the nuclear structure of the parent nucleus, totally discarding the influence of the fragments' structure. To assess the role of the fragment shell effects in the mass asymmetry in this particular region, a scission-point model, based on a full energy balance between the two nascent fragments, has been developed using one of the best theoretical descriptions of microscopic nuclear structure. As for actinides, this approach shows that the asymmetric splitting of the Hg-180 nucleus and the symmetric one of Hg-198 can be understood on the basis of only the microscopic nuclear structure of the fragments at scission. (authors)

  15. The fission yeast spindle orientation checkpoint: a model that generates tension?

    Science.gov (United States)

    Gachet, Yannick; Reyes, Céline; Goldstone, Sherilyn; Tournier, Sylvie

    2006-10-15

    In all eukaryotes, the alignment of the mitotic spindle with the axis of cell polarity is essential for accurate chromosome segregation as well as for the establishment of cell fate, and thus morphogenesis, during development. Studies in invertebrates, higher eukaryotes and yeast suggest that astral microtubules interact with the cell cortex to position the spindle. These microtubules are thought to impose pushing or pulling forces on the spindle poles to affect the rotation or movement of the spindle. In the fission yeast model, where cell division is symmetrical, spindle rotation is dependent on the interaction of astral microtubules with the cortical actin cytoskeleton. In these cells, a bub1-dependent mitotic checkpoint, the spindle orientation checkpoint (SOC), is activated when the spindles fail to align with the cell polarity axis. In this paper we review the mechanism that orientates the spindle during mitosis in fission yeast, and discuss the consequences of misorientation on metaphase progression. Copyright 2006 John Wiley & Sons, Ltd.

  16. Least squares analysis of fission neutron standard fields

    International Nuclear Information System (INIS)

    Griffin, P.J.; Williams, J.G.

    1997-01-01

    A least squares analysis of fission neutron standard fields has been performed using the latest dosimetry cross sections. Discrepant nuclear data are identified and adjusted spectra for 252 Cf spontaneous fission and 235 U thermal fission fields are presented

  17. Crossing-symmetric solutions to low equations

    International Nuclear Information System (INIS)

    McLeod, R.J.; Ernst, D.J.

    1985-01-01

    Crossing symmetric models of the pion-nucleon interaction in which crossing symmetry is kept to lowest order in msub(π)/msub(N) are investigated. Two iterative techniques are developed to solve the crossing-symmetric Low equation. The techniques are used to solve the original Chew-Low equations and their generalizations to include the coupling to the pion-production channels. Small changes are found in comparison with earlier results which used an iterative technique proposed by Chew and Low and which did not produce crossing-symmetric results. The iterative technique of Chew and Low is shown to fail because of its inability to produce zeroes in the amplitude at complex energies while physical solutions to the model require such zeroes. We also prove that, within the class of solutions such that phase shifts approach zero for infinite energy, the solution to the Low equation is unique. (orig.)

  18. Revisiting the Optical PT-Symmetric Dimer

    Directory of Open Access Journals (Sweden)

    José Delfino Huerta Morales

    2016-08-01

    Full Text Available Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of PT -symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical PT -symmetric dimer, a two-waveguide coupler where the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry-based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar N-waveguide couplers that are the optical realization of the Lorentz group in 2 + 1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of the Ehrenfest theorem.

  19. PT symmetric Aubry–Andre model

    International Nuclear Information System (INIS)

    Yuce, C.

    2014-01-01

    PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists

  20. PT symmetric Aubry–Andre model

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C., E-mail: cyuce@anadolu.edu.tr

    2014-06-13

    PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists.