WorldWideScience

Sample records for symbolic state-space exploration

  1. Parallel symbolic state-space exploration is difficult, but what is the alternative?

    Directory of Open Access Journals (Sweden)

    Gianfranco Ciardo

    2009-12-01

    Full Text Available State-space exploration is an essential step in many modeling and analysis problems. Its goal is to find the states reachable from the initial state of a discrete-state model described. The state space can used to answer important questions, e.g., "Is there a dead state?" and "Can N become negative?", or as a starting point for sophisticated investigations expressed in temporal logic. Unfortunately, the state space is often so large that ordinary explicit data structures and sequential algorithms cannot cope, prompting the exploration of (1 parallel approaches using multiple processors, from simple workstation networks to shared-memory supercomputers, to satisfy large memory and runtime requirements and (2 symbolic approaches using decision diagrams to encode the large structured sets and relations manipulated during state-space generation. Both approaches have merits and limitations. Parallel explicit state-space generation is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately limited by the memory and processors available. Symbolic methods are a heuristic that can efficiently encode many, but not all, functions over a structured and exponentially large domain; here the pitfalls are subtler: their performance varies widely depending on the class of decision diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic approaches are often much more efficient than explicit ones for many practical models, we argue for the need to parallelize symbolic state-space generation algorithms, so that we can realize the advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts, and promising directions toward this goal.

  2. Novel Rock Detection Intelligence for Space Exploration Based on Non-Symbolic Algorithms and Concepts

    Science.gov (United States)

    Yildirim, Sule; Beachell, Ronald L.; Veflingstad, Henning

    2007-01-01

    Future space exploration can utilize artificial intelligence as an integral part of next generation space rover technology to make the rovers more autonomous in performing mission objectives. The main advantage of the increased autonomy through a higher degree of intelligence is that it allows for greater utilization of rover resources by reducing the frequency of time consuming communications between rover and earth. In this paper, we propose a space exploration application of our research on a non-symbolic algorithm and concepts model. This model is based on one of the most recent approaches of cognitive science and artificial intelligence research, a parallel distributed processing approach. We use the Mars rovers. Sprit and Opportunity, as a starting point for proposing what rovers in the future could do if the presented model of non-symbolic algorithms and concepts is embedded in a future space rover. The chosen space exploration application for this paper, novel rock detection, is only one of many potential space exploration applications which can be optimized (through reduction of the frequency of rover-earth communications. collection and transmission of only data that is distinctive/novel) through the use of artificial intelligence technology compared to existing approaches.

  3. A Compositional Sweep-Line State Space Exploration Method

    DEFF Research Database (Denmark)

    Kristensen, Lars Michael; Mailund, Thomas

    2002-01-01

    State space exploration is a main approach to verification of finite-state systems. The sweep-line method exploits a certain kind of progress present in many systems to reduce peak memory usage during state space exploration. We present a new sweep-line algorithm for a compositional setting where...

  4. Complexity in Simplicity: Flexible Agent-based State Space Exploration

    DEFF Research Database (Denmark)

    Rasmussen, Jacob Illum; Larsen, Kim Guldstrand

    2007-01-01

    In this paper, we describe a new flexible framework for state space exploration based on cooperating agents. The idea is to let various agents with different search patterns explore the state space individually and communicate information about fruitful subpaths of the search tree to each other...

  5. A Sweep-Line Method for State Space Exploration

    DEFF Research Database (Denmark)

    Christensen, Søren; Kristensen, Lars Michael; Mailund, Thomas

    2001-01-01

    generation, since these states can never be reached again. This in turn reduces the memory used for state space storage during the task of verification. Examples of progress measures are sequence numbers in communication protocols and time in certain models with time. We illustrate the application...... of the method on a number of Coloured Petri Net models, and give a first evaluation of its practicality by means of an implementation based on the Design/CPN state space tool. Our experiments show significant reductions in both space and time used during state space exploration. The method is not specific...... to Coloured Petri Nets but applicable to a wide range of modelling languages....

  6. Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking

    Directory of Open Access Journals (Sweden)

    Christian Appold

    2010-06-01

    Full Text Available One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking.

  7. Mythology, Weltanschauung, symbolic universe and states of consciousness

    Directory of Open Access Journals (Sweden)

    Gert Malan

    2016-07-01

    Full Text Available This article investigates whether different religious (mythological worldviews can be described as alternative and altered states of consciousness (ASCs. Differences between conscious and unconscious motivations for behaviour are discussed before looking at ASCs, Weltanschauung and symbolic universes. Mythology can be described both as Weltanschauung and symbolic universe, functioning on all levels of consciousness. Different Weltanschauungen constitute alternative states of consciousness. Compared to secular worldviews, religious worldviews may be described as ASCs. Thanks to our globalised modern societies, the issue is even more complex, as alternate modernities lead to a symbolic multiverse, with individuals living in a social multiverse. Keyowrds: mythology; Weltanschauung; worldview; symbolic universe; states of consciousness; altered states of consciousness; alternative states of consciousness; symbolic multiverse; social multiverse

  8. Symbols, spaces and materiality: a transmission-based approach to Aegean Bronze Age ritual.

    OpenAIRE

    Briault, C.

    2005-01-01

    This thesis explores the transmission of ritual practices in the second millennium BC Aegean. In contrast to previous approaches, which often overlook gaps in the diachronic record, emphasising continuity in cult practice over very long timescales, it is argued here that through charting the spatial and temporal distributions of three broad material types (cult symbols, spaces and objects), it is possible to document the spread of cult practice over time and space, and, crucially, to monitor ...

  9. Multi-core symbolic bisimulation minimisation

    OpenAIRE

    Dijk, Tom van; Pol, Jaco van de

    2017-01-01

    We introduce parallel symbolic algorithms for bisimulation minimisation, to combat the combinatorial state space explosion along three different paths. Bisimulation minimisation reduces a transition system to the smallest system with equivalent behaviour. We consider strong and branching bisimilarity for interactive Markov chains, which combine labelled transition systems and continuous-time Markov chains. Large state spaces can be represented concisely by symbolic techniques, based on binary...

  10. On the Symbolic Verification of Timed Systems

    DEFF Research Database (Denmark)

    Moeller, Jesper; Lichtenberg, Jacob; Andersen, Henrik Reif

    1999-01-01

    This paper describes how to analyze a timed system symbolically. That is, given a symbolic representation of a set of (timed) states (as an expression), we describe how to determine an expression that represents the set of states that can be reached either by firing a discrete transition...... or by advancing time. These operations are used to determine the set of reachable states symbolically. We also show how to symbolically determine the set of states that can reach a given set of states (i.e., a backwards step), thus making it possible to verify TCTL-formulae symbolically. The analysis is fully...... symbolic in the sense that both the discrete and the continuous part of the state space are represented symbolically. Furthermore, both the synchronous and asynchronous concurrent composition of timed systems can be performed symbolically. The symbolic representations are given as formulae expressed...

  11. The impact of symbolic and non-symbolic quantity on spatial learning.

    Directory of Open Access Journals (Sweden)

    Koleen McCrink

    Full Text Available An implicit mapping of number to space via a "mental number line" occurs automatically in adulthood. Here, we systematically explore the influence of differing representations of quantity (no quantity, non-symbolic magnitudes, and symbolic numbers and directional flow of stimuli (random flow, left-to-right, or right-to-left on learning and attention via a match-to-sample working memory task. When recalling a cognitively demanding string of spatial locations, subjects performed best when information was presented right-to-left. When non-symbolic or symbolic numerical arrays were embedded in these spatial locations, and mental number line congruency prompted, this effect was attenuated and in some cases reversed. In particular, low-performing female participants who viewed increasing non-symbolic number arrays paired with the spatial locations exhibited better recall for left-to-right directional flow information relative to right-to-left, and better processing for the left side of space relative to the right side of space. The presence of symbolic number during spatial learning enhanced recall to a greater degree than non-symbolic number--especially for female participants, and especially when cognitive load is high--and this difference was independent of directional flow of information. We conclude that quantity representations have the potential to scaffold spatial memory, but this potential is subtle, and mediated by the nature of the quantity and the gender and performance level of the learner.

  12. Parties, rituals and symbolisms in schools

    Directory of Open Access Journals (Sweden)

    Ana Cecilia Valencia Aguirre

    2015-07-01

    Full Text Available This paper aims at analyzing school parties from interaction spaces and principals’ narratives in six schools in the state of Jalisco. A party is a ritual where participants share symbols related to imaginary –hence the importance of conducting an analysis for understanding institutions as a symbolic framework. A core argument is that established actors are configured from symbolic practices in the institutional space (schools. The repetition of these practices awash with symbolism leads to daily rituals or micro rituals that are ratified in institutions. Methodologically, interviews and non-participant observation in school interaction spaces were used. Based on the findings, it may be stated that the nuclear family, rooted in the Christian image in which authority is a central point, becomes a fundamental factor in shaping institutional life as well as the imaginary linked to school parties.

  13. Multiple-Symbol Decision-Feedback Space-Time Differential Decoding in Fading Channels

    Directory of Open Access Journals (Sweden)

    Wang Xiaodong

    2002-01-01

    Full Text Available Space-time differential coding (STDC is an effective technique for exploiting transmitter diversity while it does not require the channel state information at the receiver. However, like conventional differential modulation schemes, it exhibits an error floor in fading channels. In this paper, we develop an STDC decoding technique based on multiple-symbol detection and decision-feedback, which makes use of the second-order statistic of the fading processes and has a very low computational complexity. This decoding method can significantly lower the error floor of the conventional STDC decoding algorithm, especially in fast fading channels. The application of the proposed multiple-symbol decision-feedback STDC decoding technique in orthogonal frequency-division multiplexing (OFDM system is also discussed.

  14. The method of covariant symbols in curved space-time

    International Nuclear Information System (INIS)

    Salcedo, L.L.

    2007-01-01

    Diagonal matrix elements of pseudodifferential operators are needed in order to compute effective Lagrangians and currents. For this purpose the method of symbols is often used, which however lacks manifest covariance. In this work the method of covariant symbols, introduced by Pletnev and Banin, is extended to curved space-time with arbitrary gauge and coordinate connections. For the Riemannian connection we compute the covariant symbols corresponding to external fields, the covariant derivative and the Laplacian, to fourth order in a covariant derivative expansion. This allows one to obtain the covariant symbol of general operators to the same order. The procedure is illustrated by computing the diagonal matrix element of a nontrivial operator to second order. Applications of the method are discussed. (orig.)

  15. Statistical Symbolic Execution with Informed Sampling

    Science.gov (United States)

    Filieri, Antonio; Pasareanu, Corina S.; Visser, Willem; Geldenhuys, Jaco

    2014-01-01

    Symbolic execution techniques have been proposed recently for the probabilistic analysis of programs. These techniques seek to quantify the likelihood of reaching program events of interest, e.g., assert violations. They have many promising applications but have scalability issues due to high computational demand. To address this challenge, we propose a statistical symbolic execution technique that performs Monte Carlo sampling of the symbolic program paths and uses the obtained information for Bayesian estimation and hypothesis testing with respect to the probability of reaching the target events. To speed up the convergence of the statistical analysis, we propose Informed Sampling, an iterative symbolic execution that first explores the paths that have high statistical significance, prunes them from the state space and guides the execution towards less likely paths. The technique combines Bayesian estimation with a partial exact analysis for the pruned paths leading to provably improved convergence of the statistical analysis. We have implemented statistical symbolic execution with in- formed sampling in the Symbolic PathFinder tool. We show experimentally that the informed sampling obtains more precise results and converges faster than a purely statistical analysis and may also be more efficient than an exact symbolic analysis. When the latter does not terminate symbolic execution with informed sampling can give meaningful results under the same time and memory limits.

  16. Imagining and Remembering City: Memory, Space and Symbolism of Belgrade

    Directory of Open Access Journals (Sweden)

    Ljiljana Rogač Mijatović

    2014-11-01

    Full Text Available In contemporary “runaway world”, cities are becoming the main reference point of social life, change and development. The author discusses the complex process of articulating city identity and memory, as well as the meanings that arise in the interaction of memory, space and symbols of the city, within urban symbolism and cultural memory approach. What are the strategies of activating the cultural memory through multiple symbol bearers of the city, both tangible and intangible? The case study of the city of Belgrade indicates how the narratives related to memory and symbol bearers can be used in fostering culturally sustainable development of the city.

  17. Safe Exploration of State and Action Spaces in Reinforcement Learning

    OpenAIRE

    Garcia, Javier; Fernandez, Fernando

    2014-01-01

    In this paper, we consider the important problem of safe exploration in reinforcement learning. While reinforcement learning is well-suited to domains with complex transition dynamics and high-dimensional state-action spaces, an additional challenge is posed by the need for safe and efficient exploration. Traditional exploration techniques are not particularly useful for solving dangerous tasks, where the trial and error process may lead to the selection of actions whose execution in some sta...

  18. A MODEL FOR INTEGRATING ACTUAL NEUROTIC OR UNREPRESENTED STATES AND SYMBOLIZED ASPECTS OF INTRAPSYCHIC CONFLICT.

    Science.gov (United States)

    Busch, Fredric N

    2017-01-01

    In psychoanalytic theory, the importance of actual neuroses-considered to be devoid of psychic content-diminished as Freud and subsequent analysts focused on unconscious intrapsychic conflict. This paper explores the relationship between actual neurotic and unrepresented states, which are believed to be best addressed through attention to countertransference, intersubjectivity, and enactments rather than interpretation of intrapsychic conflict. Models suggesting how actual neurotic states and symbolized intrapsychic conflict may interact with each other and environmental stressors are described. Symbolizing actual neurotic states and establishing meaningful linkages between somatic/affective experiences and intrapsychic conflict are viewed as necessary for effective treatment of many disorders. © 2017 The Psychoanalytic Quarterly, Inc.

  19. Scalable Continuous Range Monitoring of Moving Objects in Symbolic Indoor Space

    DEFF Research Database (Denmark)

    Yang, Bin; Lu, Hua; Jensen, Christian Søndergaard

    2009-01-01

    Indoor spaces accommodate large populations of individuals. The continuous range monitoring of such objects can be used as a foundation for a wide variety of applications, e.g., space planning, way finding, and security. Indoor space differs from outdoor space in that symbolic locations, e...

  20. Abstract Expression Grammar Symbolic Regression

    Science.gov (United States)

    Korns, Michael F.

    This chapter examines the use of Abstract Expression Grammars to perform the entire Symbolic Regression process without the use of Genetic Programming per se. The techniques explored produce a symbolic regression engine which has absolutely no bloat, which allows total user control of the search space and output formulas, which is faster, and more accurate than the engines produced in our previous papers using Genetic Programming. The genome is an all vector structure with four chromosomes plus additional epigenetic and constraint vectors, allowing total user control of the search space and the final output formulas. A combination of specialized compiler techniques, genetic algorithms, particle swarm, aged layered populations, plus discrete and continuous differential evolution are used to produce an improved symbolic regression sytem. Nine base test cases, from the literature, are used to test the improvement in speed and accuracy. The improved results indicate that these techniques move us a big step closer toward future industrial strength symbolic regression systems.

  1. United States Human Access to Space, Exploration of the Moon and Preparation for Mars Exploration

    Science.gov (United States)

    Rhatigan, Jennifer L.

    2009-01-01

    In the past, men like Leonardo da Vinci and Jules Verne imagined the future and envisioned fantastic inventions such as winged flying machines, submarines, and parachutes, and posited human adventures like transoceanic flight and journeys to the Moon. Today, many of their ideas are reality and form the basis for our modern world. While individual visionaries like da Vinci and Verne are remembered for the accuracy of their predictions, today entire nations are involved in the process of envisioning and defining the future development of mankind, both on and beyond the Earth itself. Recently, Russian, European, and Chinese teams have all announced plans for developing their own next generation human space vehicles. The Chinese have announced their intention to conduct human lunar exploration, and have flown three crewed space missions since 2003, including a flight with three crew members to test their extravehicular (spacewalking) capabilities in September 2008. Very soon, the prestige, economic development, scientific discovery, and strategic security advantage historically associated with leadership in space exploration and exploitation may no longer be the undisputed province of the United States. Much like the sponsors of the seafaring explorers of da Vinci's age, we are motivated by the opportunity to obtain new knowledge and new resources for the growth and development of our own civilization. NASA's new Constellation Program, established in 2005, is tasked with maintaining the United States leadership in space, exploring the Moon, creating a sustained human lunar presence, and eventually extending human operations to Mars and beyond. Through 2008, the Constellation Program developed a full set of detailed program requirements and is now completing the preliminary design phase for the new Orion Crew Exploration Vehicle (CEV), the Ares I Crew Launch Vehicle, and the associated infrastructure necessary for humans to explore the Moon. Component testing is well

  2. Toeplitz Operators, Pseudo-Homogeneous Symbols, and Moment Maps on the Complex Projective Space

    Directory of Open Access Journals (Sweden)

    Miguel Antonio Morales-Ramos

    2017-01-01

    Full Text Available Following previous works for the unit ball due to Nikolai Vasilevski, we define quasi-radial pseudo-homogeneous symbols on the projective space and obtain the corresponding commutativity results for Toeplitz operators. A geometric interpretation of these symbols in terms of moment maps is developed. This leads us to the introduction of a new family of symbols, extended pseudo-homogeneous, that provide larger commutative Banach algebras generated by Toeplitz operators. This family of symbols provides new commutative Banach algebras generated by Toeplitz operators on the unit ball.

  3. Operator symbols in the description of observable-state systems

    International Nuclear Information System (INIS)

    Lassner, G.A.

    1978-01-01

    For the observable-state system of finite degree of freedom N topological properties of the kernels and symbols belonging to the considered operators are investigated. For the operators of the observable algebra of rho + (delta) kernels and symbols are distributions and for density matrices p they are smooth functions

  4. Multi-core symbolic bisimulation minimisation

    NARCIS (Netherlands)

    Dijk, Tom van; Pol, Jaco van de

    2017-01-01

    We introduce parallel symbolic algorithms for bisimulation minimisation, to combat the combinatorial state space explosion along three different paths. Bisimulation minimisation reduces a transition system to the smallest system with equivalent behaviour. We consider strong and branching

  5. The Organization. Space Symbolic Construction of Sexual Difference

    Directory of Open Access Journals (Sweden)

    Elvia Espinosa

    2012-12-01

    Full Text Available The current work is done under the gender perspective within organizational studies. Gender is used in the social sciences as a category of analysis with a specific meaning: The symbolic and cultural construction of the sexual difference. This construction establishes what is masculine and what is feminine. It sets the “public” space where a paid job could be found and education is ascribed to men, as well as the “private” space where domestic duties are found, maternity, and all that is ascribed to women. This symbolic and cultural construction can be found in the organizational world, but the interactions, result from administrative practices, can modify this gender identity. It is necessary to point out that this article is part of a more general investigation. This investigation was done using a qualitative methodology in which the life histories of female administrators with decision-making positions in their organizations were taken into account. But all research work requires a theoretical reflection. The current work answers such theoretical reflection and showcases some elements to understand the gender category, the organization, and offers also some elements for the possible understanding of gender within the organization and the possibility for reimagining gender identity.

  6. Mythology, Weltanschauung , symbolic universe and states of ...

    African Journals Online (AJOL)

    Mythology can be described both as Weltanschauung and symbolic universe, functioning on all levels of consciousness. Different Weltanschauungen constitute alternative states of consciousness. Compared to secular worldviews, religious worldviews may be described as ASCs. Thanks to our globalised modern societies, ...

  7. Alchemical hermeneutics of the Vesica Piscis: Symbol of depth psychology

    Science.gov (United States)

    O'Dell, Linda Kay

    The purpose of this study was to develop an understanding of the Vesica Piscis as the symbolic frame for depth psychology and the therapeutic relationship. The method of inquiry was hermeneutics and alchemical hermeneutics, informed theoretically by depth psychology. A theoretical description of the nature of the Vesica Piscis as a dynamic template and symbol for depth psychology and the therapeutic relationship resulted. Gathering the components of the therapeutic relationship into the shape of the Vesica Piscis, gave opportunity to explore what might be happening while treatment is taking place: somatically, psychologically, and emotionally. An investigation into the study of Soul placed the work of psychology within the central, innermost sacred space between—known symbolically as the Vesica Piscis. Imbued with a connectedness and relational welcoming, this symbol images the Greek goddess Hekate (Soul), as mediatrix between mind and matter. Psyche (soul), namesake of "psychology," continues her journey of finding meaning making, restitution, and solace in the therapeutic space as imaged by the Vesica Piscis. Her journey, moving through the generations, becomes the journey of the therapeutic process—one that finds resolution in relationship. Psyche is sought out in the macrocosmic archetypal realm of pure energy, the prima material that forms and coalesces both in response and likewise, creates a response through symbols, images, and imagination. The field was explored from the depth psychological perspective as: the unconscious, consciousness, and archetypal, and in physics as: the quantum field, morphic resonance, and the holographic field. Gaining an understanding of the underlying qualities of the field placed the symbol in its embedded context, allowing for further definition as to how the symbol potentially was either an extension of the field, or served as a constellating factor. Depth psychology, as a scientific discipline, is in need of a symbol that

  8. Sweeping the State Space

    DEFF Research Database (Denmark)

    Mailund, Thomas

    The thesis describes the sweep-line method, a newly developed reduction method for alleviating the state explosion problem inherent in explicit-state state space exploration. The basic idea underlying the sweep-line method is, when calculating the state space, to recognise and delete states...... that are not reachable from the currently unprocessed states. Intuitively we drag a sweep-line through the state space with the invariant that all states behind the sweep-line have been processed and are unreachable from the states in front of the sweep-line. When calculating the state space of a system we iteratively...

  9. Talk in Blended-Space Speech Communities: An Exploration of Discursive Practices of a Professional Development Group

    Science.gov (United States)

    Garvin, Tabitha Ann

    2011-01-01

    This study is an exploration of alternative teacher professional development. While using symbolic interactionism for a research lens, it characterizes the discursive practices commonly found in formal, informal, and blended-space speech communities based on the talk within a leadership-development program comprised of five female, church-based…

  10. The rhetoric of disenchantment through symbolism

    Directory of Open Access Journals (Sweden)

    Théophile Munyangeyo

    2012-10-01

    Full Text Available The symbolism of flowers has always been a significant part of cultures around the world due to their functional meaning in daily life. From their decorative to their aromatic role, flowers and their symbolic meaning trigger emotions, convey wishes and represent thoughts that can not be explicitly expressed. In this regard, an elaborate language based on flower symbolism was developed in many societies, to convey clear messages to the recipient. However, in some cultural contexts, although the flower symbolism has social connotations, it is mainly associated with economic references. As flowers are an essential precursor to fruits, they are inevitably a source of expectations and hence foster a set of hopes and dreams, which can ultimately lead to excitement or disappointment.Through a discourse analysis based on factional narratives, this article explores the parameters through which the symbolism of bifaceted meaning of flowers fictionalises a space that refers to the social reality. This association between the fictional world and social reference has highlighted that writing can profoundly be a means of representing social events through the rhetoric of symbolism. Through a sociological reading approach, this paper aims to analyse how the symbolism of flowers informs the rhetoric of disenchantment that can foster a content-based pedagogy in language learning where silencing practices engender imagery to exercise the freedom of expression.

  11. You Pretty Little Flocker: Exploring the Aesthetic State Space of Creative Ecosystems.

    Science.gov (United States)

    Eldridge, Alice

    2015-01-01

    Artificial life models constitute a rich compendium of tools for the generative arts; complex, self-organizing, emergent behaviors have great interactive and generative potential. But how can we go beyond simply visualizing scientific simulations and manipulate these models for use in design and creative art contexts? You Pretty Little Flocker is a proof-of-concept study in expanding and exploring the aesthetic state space of a model for generative design. A modified version of Reynolds' flocking algorithm (1987) is described in which the space of possible images is extended and navigable in a way that at once provides user control and maintains generative autonomy.

  12. Indexing the Trajectories of Moving Objects in Symbolic Indoor Space

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin

    2009-01-01

    . This scenario calls for the indexing of indoor trajectories. Based on an appropriate notion of indoor trajectory and definitions of pertinent types of queries, the paper proposes two R-tree based structures for indexing object trajectories in symbolic indoor space. The RTR-tree represents a trajectory as a set......Indoor spaces accommodate large populations of individuals. With appropriate indoor positioning, e.g., Bluetooth and RFID, in place, large amounts of trajectory data result that may serve as a foundation for a wide variety of applications, e.g., space planning, way finding, and security...... for each index. An empirical performance study suggests that the two indexes are effective, efficient, and robust. The study also elicits the circumstances under which our proposals perform the best....

  13. From the Symbolic Analysis of Virtual Faces to a Smiles Machine.

    Science.gov (United States)

    Ochs, Magalie; Diday, Edwin; Afonso, Filipe

    2016-02-01

    In this paper, we present an application of symbolic data processing for the design of virtual character's smiling facial expressions. A collected database of virtual character's smiles directly created by users has been explored using symbolic data analysis methods. An unsupervised analysis has enabled us to identify the morphological and dynamic characteristics of different types of smiles as well as of combinations of smiles. Based on the symbolic data analysis, to generate different smiling faces, we have developed procedures to automatically reconstitute smiling virtual faces from a point in a multidimensional space corresponding to a principal component analysis plane.

  14. Exploring the Development of Symbolic Function of Consciousness: A Technique

    Directory of Open Access Journals (Sweden)

    Polyakov A.M.,

    2016-07-01

    Full Text Available This article describes studying method which developed the symbolic function mind. It is defined as a functional unit providing the solution of problems by understanding and expression of the reality of the subject-subject relationship using symbols. The symbol understood as a cultural form of presen- tation of subjective reality, mediating the relationship and interaction between two or more subjects. The symbol consists of sense-perception of form and meaning, expressing a subjective reality. The structure of the symbolic function includes the following components: generation and implementation plan, the transformation of symbolic forms, the awareness of the antinomic character, character interpretation. Investigation techiques was developed in accordance with the principles of construction of experimental-genetic method. Empirical criteria for evaluating the level of its development was based on the structure of the symbolic function, and developed a system of assistance for the realization of symbolic meaning. The method allows determine the dynamics and conditions for the development of the symbolic function, its genetic makeup, as well as the form and content of cooperation with con- temporaries.

  15. A discrete phase-space calculus for quantum spins based on a reconstruction method using coherent states

    International Nuclear Information System (INIS)

    Weigert, S.

    1999-01-01

    To reconstruct a mixed or pure quantum state of a spin s is possible through coherent states: its density matrix is fixed by the probabilities to measure the value s along 4s(s+1) appropriately chosen directions in space. Thus, after inverting the experimental data, the statistical operator is parametrized entirely by expectation values. On this basis, a symbolic calculus for quantum spins is developed, the e xpectation-value representation . It resembles the Moyal representation for SU(2) but two important differences exist. On the one hand, the symbols take values on a discrete set of points in phase space only. On the other hand, no quasi-probabilities - that is, phase-space distributions with negative values - are encountered in this approach. (Author)

  16. Exploring the Gendering of Space by Using Memory Work as a Reflexive Research Method

    Directory of Open Access Journals (Sweden)

    Lia Bryant

    2007-09-01

    Full Text Available How can memory work be used as a pathway to reflect on the situatedness of the researcher and field of inquiry? The key aim of this article is to contribute to knowledge about the gendering of space developed by feminist geographers by using memory work as a reflexive research method. The authors present a brief review of feminist literature that covers the local and global symbolic meanings of spaces and the power relations within which space is experienced. From the literature they interpret themes of the interconnections between space, place, and time; sexualization of public space; and the bodily praxis of using space. Memories of gendered bodies and landscapes, movement and restricted space, and the disrupting of space allow the exploration of conceptualizations within the literature as active, situated, fragmented, and contextualized.

  17. Bruce Springsteen as a Symbol

    DEFF Research Database (Denmark)

    Gitz-Johansen, Thomas

    2018-01-01

    The article explores how Bruce Springsteen and his music function as a symbol. The article first presents the Jungian theory of symbols and of music as symbol. The central argument of the article is that, by functioning symbolically, Springsteen has the potential to influence the psyche of his au...

  18. Exploring the Roots of Contested Public Spaces of Cairo : Using Self-organization as Alternative Lens

    NARCIS (Netherlands)

    Saleh, Mohamed; Rokem, Jonathan; Boano, Camillo

    2017-01-01

    For decades, public space as a concept in Egypt has been systematically deprived of its essential symbolic functions. Upon integrating the country into the global model of neoliberalism, the state has adopted public policies on various scales which resulted in a deep-rooted crisis of participation

  19. Analytical exploration of the thermodynamic potentials by using symbolic computation software

    International Nuclear Information System (INIS)

    Hantsaridou, Anastasia P; Polatoglou, Hariton M

    2005-01-01

    Thermodynamics is a very general theory, based on fundamental symmetries. It generalizes classical mechanics and incorporates theoretical concepts such as field and field equations. Although all these ingredients are of the highest importance for a scientist, they are not given the attention they perhaps deserve in most undergraduate courses. Nowadays, powerful computers in conjunction with equally powerful software can ease the exploration of the crucial ideas of thermodynamics. The purpose of the present work is to show how the utilization of symbolic computation software can lead to a complementary understanding of thermodynamics. The method was applied to first and second year physics students in the Aristotle University of Thessaloniki (Greece) during the 2002-2003 academic year. The results indicate that symbolic computation software is appropriate not only for enhancing the teaching of the fundamental principles in thermodynamics and their applications, but also for increasing students' motivation for learning

  20. 14 CFR 95.3 - Symbols.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Symbols. 95.3 Section 95.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES IFR ALTITUDES General § 95.3 Symbols. For the purposes of this part— (a) COP means...

  1. Unsupervised Symbolization of Signal Time Series for Extraction of the Embedded Information

    Directory of Open Access Journals (Sweden)

    Yue Li

    2017-03-01

    Full Text Available This paper formulates an unsupervised algorithm for symbolization of signal time series to capture the embedded dynamic behavior. The key idea is to convert time series of the digital signal into a string of (spatially discrete symbols from which the embedded dynamic information can be extracted in an unsupervised manner (i.e., no requirement for labeling of time series. The main challenges here are: (1 definition of the symbol assignment for the time series; (2 identification of the partitioning segment locations in the signal space of time series; and (3 construction of probabilistic finite-state automata (PFSA from the symbol strings that contain temporal patterns. The reported work addresses these challenges by maximizing the mutual information measures between symbol strings and PFSA states. The proposed symbolization method has been validated by numerical simulation as well as by experimentation in a laboratory environment. Performance of the proposed algorithm has been compared to that of two commonly used algorithms of time series partitioning.

  2. Circular blurred shape model for multiclass symbol recognition.

    Science.gov (United States)

    Escalera, Sergio; Fornés, Alicia; Pujol, Oriol; Lladós, Josep; Radeva, Petia

    2011-04-01

    In this paper, we propose a circular blurred shape model descriptor to deal with the problem of symbol detection and classification as a particular case of object recognition. The feature extraction is performed by capturing the spatial arrangement of significant object characteristics in a correlogram structure. The shape information from objects is shared among correlogram regions, where a prior blurring degree defines the level of distortion allowed in the symbol, making the descriptor tolerant to irregular deformations. Moreover, the descriptor is rotation invariant by definition. We validate the effectiveness of the proposed descriptor in both the multiclass symbol recognition and symbol detection domains. In order to perform the symbol detection, the descriptors are learned using a cascade of classifiers. In the case of multiclass categorization, the new feature space is learned using a set of binary classifiers which are embedded in an error-correcting output code design. The results over four symbol data sets show the significant improvements of the proposed descriptor compared to the state-of-the-art descriptors. In particular, the results are even more significant in those cases where the symbols suffer from elastic deformations.

  3. A Sweep-Line Method for State Space Exploration

    DEFF Research Database (Denmark)

    Christensen, Søren; Kristensen, Lars Michael; Mailund, Thomas

    2001-01-01

    generation, since these states can never be reached again. This in turn reduces the memory used for state space storage during the task of verification. Examples of progress measures are sequence numbers in communication protocols and time in certain models with time. We illustrate the application...

  4. Social Symbolic Work in Context

    DEFF Research Database (Denmark)

    Brincker, Benedikte

    ‘the good organisation’ may offer a supportive organisational framework for social symbolic work, thus promoting regional development in peripheral and poorly developed regions. Exploring what qualifies as a ‘good organisation’, the paper identifies three key elements: management, motivation......This paper reports on a research project that explores social symbolic work. The social symbolic work in question seeks to introduce education in entrepreneurship into the school curriculum in a remote part of Greenland – in order to contribute to regional development. The paper investigates how...

  5. The New National Vision for Space Exploration

    Science.gov (United States)

    Sackheim, Robert L.; Geveden, Rex; King, David A.

    2004-01-01

    could be used to address problems on Earth. Like the explorers of the past and the pioneers of flight in the last century, we cannot today identify all that we will gain from space exploration; we are confident, nonetheless, that the eventual return will be great. Like their efforts, the success of future U.S. space exploration will unfold over generations. The fundamental goal of this new national vision is to advance U.S. scientific, security, and economic interests through a robust space exploration program. In support of this goal, the United States will: 1) Implement a sustained and affordable human and robotic program to explore the solar system and beyond; 2) Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of IMars and other destinations; 3) Develop the innovative technologies, knowledge, and infrastructures both to explore and to support decisions about the destinations for human exploration; and 4) Promote international and commercial participation in exploration to further U.S. scientific, security, and economic interests.

  6. Implementation of cartographic symbols for planetary mapping in geographic information systems

    Science.gov (United States)

    Nass, A.; van Gasselt, S.; Jaumann, R.; Asche, H.

    2011-09-01

    The steadily growing international interest in the exploration of planets in our Solar System and many advances in the development of space-sensor technology have led to the launch of a multitude of planetary missions to Mercury, Venus, the Earth's moon, Mars and various Outer-Solar System objects, such as the Jovian and Saturnian satellites. Camera instruments carried along on these missions image surfaces in different wavelength ranges and under different viewing angles, permitting additional data to be derived, such as spectral data or digital terrain models. Such data enable researchers to explore and investigate the development of planetary surfaces by analyzing and interpreting the inventory of surface units and structures. Results of such work are commonly abstracted and represented in thematic, mostly geological and geomorphological, maps. In order to facilitate efficient collaboration among different planetary research disciplines, mapping results need to be prepared, described, managed, archived, and visualized in a uniform way. These tasks have been increasingly carried out by means of computer-based geographic information systems (GIS or GI systems) which have come to be widely employed in the field of planetary research since the last two decades. In this paper we focus on the simplification of mapping processes, putting specific emphasis on a cartographically correct visualization of planetary mapping data using GIS-based environments. We present and discuss the implementation of a set of standardized cartographic symbols for planetary mapping based on the Digital Cartographic Standard for Geologic Map Symbolization as prepared by the United States Geological Survey (USGS) for the Federal Geographic Data Committee (FGDC). Furthermore, we discuss various options to integrate this symbol catalog into generic GI systems, and more specifically into the Environmental Systems Research Institute's (ESRI) ArcGIS environment, and focus on requirements for

  7. Graphical symbol recognition

    OpenAIRE

    K.C. , Santosh; Wendling , Laurent

    2015-01-01

    International audience; The chapter focuses on one of the key issues in document image processing i.e., graphical symbol recognition. Graphical symbol recognition is a sub-field of a larger research domain: pattern recognition. The chapter covers several approaches (i.e., statistical, structural and syntactic) and specially designed symbol recognition techniques inspired by real-world industrial problems. It, in general, contains research problems, state-of-the-art methods that convey basic s...

  8. Self-symbols as implicit motivators

    NARCIS (Netherlands)

    Holland, R.W.; Wennekers, A.M.; Bijlstra, G.; Jongenelen, M.M.; van Knippenberg, A.

    2009-01-01

    The present research explored the nonconscious motivational influence of self-symbols. In line with recent findings on the motivational influence of positive affect, we hypothesized that positive affect associated with self-symbols may boost motivation. In Study 1 people drank more of a beverage

  9. Self-symbols as implicit motivators

    NARCIS (Netherlands)

    Holland, R.W.; Wennekers, A.M.; Bijlstra, G.; Jongenelen, M.M.; Knippenberg, A.F.M. van

    2009-01-01

    The present research explored the nonconscious motivational influence of self-symbols. In line with recent findings on the motivational influence of positive affect, we hypothesized that positive affect associated with self-symbols may boost motivation. In Study I people drank more of a beverage

  10. A STUDY OF SYMBOLIC RELATIONS IN PUBLIC TRANSPORT

    Directory of Open Access Journals (Sweden)

    ANDREI BALAN

    2011-04-01

    Full Text Available This paper presents an anthropological, exploratory study of the microsocial world of public transport. Our research focuses on the symbolic relations that are being established (verbally or nonverbally between urban transport travellers that do not know each other and the consequences these relations create. Modern urban configuration forces large numbers of individuals to share public space every day. When this space becomes restrictive, symbolic relations and interpersonal behaviors such as territoriality and personal space management become clearer. Due to overcrowding, public transport is the scene of one of the most restrictive public spaces in a city. The challenge was to observe and interpret daily, casual behaviors through a sociological and psychological scheme, following the methodological tradition established by Erving Goffman and the other symbolic interactionists. Finally, our study generates a number of hypotheses and explanatory models for common practices and behaviors in trams and metros regarded from a symbolic perspective.

  11. Building long-term constituencies for space exploration: The challenge of raising public awareness and engagement in the United States and in Europe

    Science.gov (United States)

    Ehrenfreund, P.; Peter, N.; Billings, L.

    2010-08-01

    Space exploration is a multifaceted endeavor and will be a "grand challenge" of the 21st century. It has already become an element of the political agenda of a growing number of countries worldwide. However, the public is largely unaware of space exploration activities and in particular does not perceive any personal benefit. In order to achieve highly ambitious space exploration goals to explore robotically and with humans the inner solar system, space agencies must improve and expand their efforts to inform and raise the awareness of the public about what they are doing, and why. Therefore adopting new techniques aiming at informing and engaging the public using participatory ways, new communication techniques to reach, in particular, the younger generation will be a prerequisite for a sustainable long-term exploration program: as they will enable it and carry most of the associated financial burden. This paper presents an environmental analysis of space exploration in the United States and Europe and investigates the current branding stature of the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). We discuss how improved market research and new branding methods can increase public space awareness and improve the image of NASA and ESA. We propose a new participatory approach to engage the public as major stakeholder (along governments, the industrial space sector and the science community) that may provide sufficient resources for and sustainability of a long-term space exploration program.

  12. 22 CFR 42.11 - Classification symbols.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Classification symbols. 42.11 Section 42.11... NATIONALITY ACT, AS AMENDED Classification and Foreign State Chargeability § 42.11 Classification symbols. A... visa symbol to show the classification of the alien. Immigrants Symbol Class Section of law Immediate...

  13. From Ion Antonescu to the „Saints of the Prison”. Extremist symbols in the public space

    Directory of Open Access Journals (Sweden)

    Alexandru Florian

    2015-08-01

    Full Text Available Memory in the public space is represented by symbols and messages with a powerful ideological and historical meaning. Freedom of expression frames a space of competitive memories. The memories of the Second World War or of the Holocaust can be classified as „god” or „bad” according to the degree to which they rewrite the totalitarian and criminal nature of a political life which too often is characterized as „contradictory”.

  14. Symbol in View of Ambiguity

    Directory of Open Access Journals (Sweden)

    Mohamad reza Yousefi

    2013-11-01

    Full Text Available Abstract Symbol from the perspective of rhetorical word, is phrase or sentence that apparent meaning, also inspires to reader a wide range of semantic.Since exploring the complex social and political ideas in the most mysticalway and indirectreflectionsocial and political thoughts symbolically is easier, so the symbol and symbolism especially in Persian literatureespeciallyin the realm of Persian poetry, has a special appearance.In addition to the factors mentioned in the contemporary literature, according familiar in literature and the emergence of particular schools interest toambiguoussymbolization has spreadfurther, especially the symbol has all the features of art ambiguity in the poem and it isone the major factors causing uncertainty.Thus, the precise definitions and symbols of contemporary poetry could be dominant in the unwinding ambiguous symbol detection of cryptic allusions and metaphors that matches the cursor symbol to help readers.  In the literature, especially language poetry, the inability of language toreflecting obscure mystical ideas, avoid to directexpression of political and social concerns of the reader in the course of participate to creation ambiguous literary works is the main motivation towards symbol and symbolization.According widespread use of symbol and its different of species can be viewed from different perspectives.The creation of ambiguity is the main purposes of using symbols (especially in poetry, so many poets have tried to achieve this goal have to formation of similar symbols and the explanation and resolution of this issue can open new window for understanding the poetry in front of an audience.  In this paper examines the ambiguity of symbols in terms of its precise boundaries are reviewed. Ambiguity is one of the important processes and also is the key Iranian poetry its means is today poetry. In such poetry ambiguity is a need to explore the new world from a different perspective, or explore this

  15. Are symbols useful and culturally acceptable in health-state valuation studies? An exploratory study in a multi-ethnic Asian population

    Directory of Open Access Journals (Sweden)

    Hwee-Lin

    2008-10-01

    Full Text Available Hwee-Lin, Wee1, Shu-Chuen Li2, Xu-Hao Zhang1, Feng Xie3, David Feeny4, Nan Luo5, Yin-Bun Cheung6, David Machin7, Kok-Yong Fong8, Julian Thumboo81Department of Pharmacy, National University of Singapore (NUS, Singapore; 2Discipline of Pharmacy and Experimental Pharmacology, School of Biomedical Sciences, Faculty of Health, University of Newcastle, Newcastle, NSW, Australia; 3McMaster University, Hamilton, Ontario, Canada; 4Kaiser Permanente Northwest Center for Health Research, Portland, OR, USA; 5Department of Community, Occupational and Family Medicine, Yong Loo Lin School of Medicine, NUS, Singapore; 6Clinical Trials and Epidemiology Research Unit, Singapore; 7School of Health and Related Research, University of Sheffield, Sheffield, UK; 8Department of Rheumatology and Immunology, Singapore General Hospital, SingaporeBackground: Symbols have been used in health state valuation studies to help subjects distinguish the severity of various characteristics of a given health state. Symbols used in such studies need to be evaluated for their cross-cultural appropriateness because a given symbol may have different meanings or acceptability in different cultures, which may affect results of such studies.Objectives: To evaluate if using symbols to differentiate health states of different severity is useful and culturally acceptable in a multi-ethnic, urban Asian population.Methods: Using in-depth interviews with adult Chinese, Malay, and Indian Singaporeans conducted in English/mother-tongue, subjects were shown a health state with 6 levels (Health Utilities Index 3 vision, each displayed with a symbol, and asked (1a if symbols were useful in differentiating severity of each level (measured using dichotomous and 0–10 visual analog scale [VAS] scales or (1b offensive and (2 to assess 7 alternative sets of symbols.Results: Of 63 subjects (91% response rate, 18 (29% felt symbols were useful in differentiating severity of each level. Reported usefulness

  16. The symbol grounding problem revisited: a thorough evaluation of the ANS mapping account and the proposal of an alternative account based on symbol-symbol associations.

    Directory of Open Access Journals (Sweden)

    Bert Reynvoet

    2016-10-01

    Full Text Available Recently, a lot of studies in the domain of numerical cognition have been published demonstrating a robust association between numerical symbol processing and individual differences in mathematics achievement. Because numerical symbols are so important for mathematics achievement, many researchers want to provide an answer on the ‘symbol grounding problem’, i.e., how does a symbol acquires its numerical meaning? The most popular account, the ANS mapping account, assumes that a symbol acquires its numerical meaning by being mapped on a non-verbal and Approximate Number System (ANS. Here, we critically evaluate four arguments that are supposed to support this account, i.e., (1 there is an evolutionary system for approximate number processing, (2 non-symbolic and symbolic number processing show the same behavioral effects, (3 non-symbolic and symbolic numbers activate the same brain regions which are also involved in more advanced calculation and (4 non-symbolic comparison is related to the performance on symbolic mathematics achievement tasks. Based on this evaluation, we conclude that all of these arguments and consequently also the mapping account are questionable. Next we explored less popular alternative, where small numerical symbols are initially mapped on a precise representation and then, in combination with increasing knowledge of the counting list result in an independent and exact symbolic system based on order relations between symbols. We evaluate this account by reviewing evidence on order judgement tasks following the same four arguments. Although further research is necessary, the available evidence so far suggests that this symbol-symbol association account should be considered as a worthy alternative of how symbols acquire their meaning.

  17. The Symbol Grounding Problem Revisited: A Thorough Evaluation of the ANS Mapping Account and the Proposal of an Alternative Account Based on Symbol-Symbol Associations.

    Science.gov (United States)

    Reynvoet, Bert; Sasanguie, Delphine

    2016-01-01

    Recently, a lot of studies in the domain of numerical cognition have been published demonstrating a robust association between numerical symbol processing and individual differences in mathematics achievement. Because numerical symbols are so important for mathematics achievement, many researchers want to provide an answer on the 'symbol grounding problem,' i.e., how does a symbol acquires its numerical meaning? The most popular account, the approximate number system ( ANS ) mapping account , assumes that a symbol acquires its numerical meaning by being mapped on a non-verbal and ANS. Here, we critically evaluate four arguments that are supposed to support this account, i.e., (1) there is an evolutionary system for approximate number processing, (2) non-symbolic and symbolic number processing show the same behavioral effects, (3) non-symbolic and symbolic numbers activate the same brain regions which are also involved in more advanced calculation and (4) non-symbolic comparison is related to the performance on symbolic mathematics achievement tasks. Based on this evaluation, we conclude that all of these arguments and consequently also the mapping account are questionable. Next we explored less popular alternative, where small numerical symbols are initially mapped on a precise representation and then, in combination with increasing knowledge of the counting list result in an independent and exact symbolic system based on order relations between symbols. We evaluate this account by reviewing evidence on order judgment tasks following the same four arguments. Although further research is necessary, the available evidence so far suggests that this symbol-symbol association account should be considered as a worthy alternative of how symbols acquire their meaning.

  18. Phase-space exploration in nuclear giant resonance decay

    International Nuclear Information System (INIS)

    Drozdz, S.; Nishizaki, S.; Wambach, J.; Speth, J.

    1995-01-01

    The rate of phase-space exploration in the decay of isovector and isoscalar giant quadrupole resonances in 40 Ca is analyzed. The study is based on the time dependence of the survival probability and of the spectrum of generalized entropies evaluated in the space of one-particle--one-hole (1p-1h) and 2p-2h states. Three different cases for the level distribution of 2p-2h background states, corresponding to (a) high degeneracy, (b) classically regular motion, and (c) classically chaotic motion, are studied. In the latter case the isovector excitation evolves almost statistically while the isoscalar excitation remains largely localized, even though it penetrates the whole available phase space

  19. Deep space telecommunications, navigation, and information management. Support of the space exploration initiative

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    The United States Space Exploration Initiative (SEI) calls for the charting of a new and evolving manned course to the Moon, Mars, and beyond. This paper discusses key challenges in providing effective deep space telecommunications, navigation, and information management (TNIM) architectures and designs for Mars exploration support. The fundamental objectives are to provide the mission with means to monitor and control mission elements, acquire engineering, science, and navigation data, compute state vectors and navigate, and move these data efficiently and automatically between mission nodes for timely analysis and decision-making. Although these objectives do not depart, fundamentally, from those evolved over the past 30 years in supporting deep space robotic exploration, there are several new issues. This paper focuses on summarizing new requirements, identifying related issues and challenges, responding with concepts and strategies which are enabling, and, finally, describing candidate architectures, and driving technologies. The design challenges include the attainment of: 1) manageable interfaces in a large distributed system, 2) highly unattended operations for in-situ Mars telecommunications and navigation functions, 3) robust connectivity for manned and robotic links, 4) information management for efficient and reliable interchange of data between mission nodes, and 5) an adequate Mars-Earth data rate.

  20. SYNERGY OF ULI SYMBOLS AND TEXTILES: AN EXPLORATION ...

    African Journals Online (AJOL)

    NKEM

    These symbols and images were communal more in enjoyment rather than in production in ... means decoration or beautification. uli also served as dress or clothing among some Igbo women .... Organisation (WIPO) Geneva, Switzerland).

  1. JAXA's Space Exploration Scenario

    Science.gov (United States)

    Sato, N. S.

    2018-04-01

    Japan Aerospace Exploration Agency (JAXA) has been studying space exploration scenario, including human exploration for Japan since 2015, which encompasses goals, knowledge gap assessment, and architecture. assessment, and technology roadmap.

  2. On Modeling Affect in Audio with Non-Linear Symbolic Dynamics

    Directory of Open Access Journals (Sweden)

    Pauline Mouawad

    2017-09-01

    Full Text Available The discovery of semantic information from complex signals is a task concerned with connecting humans’ perceptions and/or intentions with the signals content. In the case of audio signals, complex perceptions are appraised in a listener’s mind, that trigger affective responses that may be relevant for well-being and survival. In this paper we are interested in the broader question of relations between uncertainty in data as measured using various information criteria and emotions, and we propose a novel method that combines nonlinear dynamics analysis with a method of adaptive time series symbolization that finds the meaningful audio structure in terms of symbolized recurrence properties. In a first phase we obtain symbolic recurrence quantification measures from symbolic recurrence plots, without the need to reconstruct the phase space with embedding. Then we estimate symbolic dynamical invariants from symbolized time series, after embedding. The invariants are: correlation dimension, correlation entropy and Lyapunov exponent. Through their application for the logistic map, we show that our measures are in agreement with known methods from literature. We further show that one symbolic recurrence measure, namely the symbolic Shannon entropy, correlates positively with the positive Lyapunov exponents. Finally we evaluate the performance of our measures in emotion recognition through the implementation of classification tasks for different types of audio signals, and show that in some cases, they perform better than state-of-the-art methods that rely on low-level acoustic features.

  3. Numerical and symbolic scientific computing

    CERN Document Server

    Langer, Ulrich

    2011-01-01

    The book presents the state of the art and results and also includes articles pointing to future developments. Most of the articles center around the theme of linear partial differential equations. Major aspects are fast solvers in elastoplasticity, symbolic analysis for boundary problems, symbolic treatment of operators, computer algebra, and finite element methods, a symbolic approach to finite difference schemes, cylindrical algebraic decomposition and local Fourier analysis, and white noise analysis for stochastic partial differential equations. Further numerical-symbolic topics range from

  4. Social Foundations of Human Space Exploration

    CERN Document Server

    Dator, James A

    2012-01-01

    Social Foundations of Human Space Exploration presents a uniquely human perspective on the quest to explore space and to understand the universe through the lens of the arts, humanities, and social sciences. It considers early stories about the universe in various cultures; recent space fiction; the origins and cultural rationale for the space age; experiences of humans in space and their emerging interactions with robots and artificial intelligence; how humans should treat environments and alien life; and the alternative futures of space exploration and settlement.

  5. Symbol in Point View of Ambiguity

    Directory of Open Access Journals (Sweden)

    Dr. M. R. Yousefi

    Full Text Available Symbol from the perspective of rhetorical word, is phrase or sentence that apparent meaning, also inspires to reader a wide range of semantic.Since exploring the complex social and political ideas in the most mysticalway and indirectreflectionsocial and political thoughts symbolically is easier, so the symbol and symbolism especially in Persian literatureespeciallyin the realm of Persian poetry, has a special appearance.In addition to the factors mentioned in the contemporary literature, according familiar in literature and the emergence of particular schools interest toambiguoussymbolization has spreadfurther, especially the symbol has all the features of art ambiguity in the poem and it isone the major factors causing uncertainty.Thus, the precise definitions and symbols of contemporary poetry could be dominant in the unwinding ambiguous symbol detection of cryptic allusions and metaphors that matches the cursor symbol to help readers.In the literature, especially language poetry, the inability of language toreflecting obscure mystical ideas, avoid to directexpression of political and social concerns of the reader in the course of participate to creation ambiguous literary works is the main motivation towards symbol and symbolization.According widespread use of symbol and its different of species can be viewed from different perspectives.The creation of ambiguity is the main purposes of using symbols (especially in poetry, so many poets have tried to achieve this goal have to formation of similar symbols and the explanation and resolution of this issue can open new window for understanding the poetry in front of an audience.In this paper examines the ambiguity of symbols in terms of its precise boundaries are reviewed. Ambiguity is one of the important processes and also is the key Iranian poetry; its means is today poetry. In such poetry ambiguity is a need to explore the new world from a different perspective, or explore this complex world

  6. Symbolic Multidimensional Scaling

    NARCIS (Netherlands)

    P.J.F. Groenen (Patrick); Y. Terada

    2015-01-01

    markdownabstract__Abstract__ Multidimensional scaling (MDS) is a technique that visualizes dissimilarities between pairs of objects as distances between points in a low dimensional space. In symbolic MDS, a dissimilarity is not just a value but can represent an interval or even a histogram. Here,

  7. Powering the Space Exploration Initiative

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1991-01-01

    The Space Exploration Initiative (SEI) establishes the long-term goal of returning to the Moon and then exploring Mars. One of the prerequisites of SEI is the Exploration Technology Program which includes program elements on space nuclear power and surface solar power. These program elements in turn build upon the ongoing NASA research and technology base program in space energy conversion. There is a wide range of missions in NASA's strategic planning and most would benefit from power sources with improved efficiency, lighter weight and reduced cost

  8. Space Science in Action: Space Exploration [Videotape].

    Science.gov (United States)

    1999

    In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…

  9. Use of language in symbolic play of toddlers

    OpenAIRE

    Knap, Petra

    2015-01-01

    The purpose of the thesis is to determine which materials encourage language development during symbolic play, how often do children in the first age group engage in symbolic play, and how can the teacher influence speech development during this activity. The theoretical part defines play, focusing on symbolic play. It also describes the role of the preschool teacher during play and explores the speech of younger children during symbolic play. The empirical part of the thesis examines whic...

  10. 14 CFR 97.3 - Symbols and terms used in procedures.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Symbols and terms used in procedures. 97.3 Section 97.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES STANDARD INSTRUMENT PROCEDURES General § 97.3 Symbols and...

  11. Visual Language of World War I Propaganda on a Symbolical Plane: How a Visual Symbol is Created

    Directory of Open Access Journals (Sweden)

    Boris Petrović

    2016-10-01

    Full Text Available This work seeks to explore how certain symbols, built over time within a certain cultural context (in this case, said context being the one of western European culture, are re-contextualized within a given situation (World War I to better serve the means of propaganda. How can a visual representation of a certain symbol, thousands of years old and deeply rooted in cultural heritage, be repurposed and reshaped within months? Also, the article aims to explore the connection between the visual cannon of Orthodox icons and World War I propaganda posters.

  12. Proportional Symbol Mapping in R

    Directory of Open Access Journals (Sweden)

    Susumu Tanimura

    2006-01-01

    Full Text Available Visualization of spatial data on a map aids not only in data exploration but also in communication to impart spatial conception or ideas to others. Although recent carto-graphic functions in R are rapidly becoming richer, proportional symbol mapping, which is one of the common mapping approaches, has not been packaged thus far. Based on the theories of proportional symbol mapping developed in cartography, the authors developed some functions for proportional symbol mapping using R, including mathematical and perceptual scaling. An example of these functions demonstrated the new expressive power and options available in R, particularly for the visualization of conceptual point data.

  13. Advanced Solid State Lighting for AES Deep Space Hab

    Data.gov (United States)

    National Aeronautics and Space Administration — The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in...

  14. Symbol-stream Combiner: Description and Demonstration Plans

    Science.gov (United States)

    Hurd, W. J.; Reder, L. J.; Russell, M. D.

    1984-01-01

    A system is described and demonstration plans presented for antenna arraying by symbol stream combining. This system is used to enhance the signal-to-noise ratio of a spacecraft signals by combining the detected symbol streams from two or more receiving stations. Symbol stream combining has both cost and performance advantages over other arraying methods. Demonstrations are planned on Voyager 2 both prior to and during Uranus encounter. Operational use is possible for interagency arraying of non-Deep Space Network stations at Neptune encounter.

  15. Symbolic behavior in regular classrooms. A specification of symbolic and non-symbolic behavior

    Directory of Open Access Journals (Sweden)

    Stefan eBillinger

    2011-06-01

    Full Text Available Students’ capabilities to use symbolic information in classroom setting could be expected to influence their possibilities to be active and participating. The development of strategies for teachers to compensate for reduced capability need specific operational definition of symbolic behavior. Fifty-three students, aged 11 to 13 years old, 29 boys and 24 girls, from three classes in the same Swedish compulsory regular school participated in the current study. After a short training sequence 25 students (47% were defined as showing symbolic behavior (symbolic, and 28 students (53% were not (non-symbolic, based on their follow-up test performances. Symbolic and non-symbolic differed significantly on post test performances (p. < .05. Surprisingly, non-symbolic behavior deteriorated their performance, while symbolic enhanced their performance (p. < .05. The results indicate that the operational definition used in the present study may be useful in further studies relating the capability to show symbolic behavior and students’ activity and participation in classroom settings.

  16. Fock space, symbolic algebra, and analytical solutions for small stochastic systems.

    Science.gov (United States)

    Santos, Fernando A N; Gadêlha, Hermes; Gaffney, Eamonn A

    2015-12-01

    Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics.

  17. GENDERED SPACE IN WEST SUMBA TRADITIONAL HOUSES

    Directory of Open Access Journals (Sweden)

    Esti Asih NURDIAH

    2015-12-01

    Full Text Available Rendell stated that gender representation underlined the production of space in architecture both symbolically and functionally in certain cultures (Rendell et al. 2000. Thus, an exploration on the spatial functionality of traditional houses could show how cultural gender rules and roles generate the spatial arrangements. This empirical research explored the traditional houses in two kampongs: Tarung and Ratenggaro of West Sumba, Indonesia, which spaces are divided into two distinct spaces: male’s space and female’s space, each with its own entrance. This firm division leads to the questions on its relation with the traditional gender roles are represented inside the house. Interestingly, the spatial arrangement is not intended to create separation between men and women inside the house or to pose that the status and roles of men are higher than those of women. The research found that the space separation actually is a manifestation of the dynamic roles of male and female members of the house and the circular arrangement of the space around the fireplace at the centre of the house follows the dynamic of gender duality in Sumba culture.

  18. Contextualizing symbol, symbolizing context

    Science.gov (United States)

    Maudy, Septiani Yugni; Suryadi, Didi; Mulyana, Endang

    2017-08-01

    When students learn algebra for the first time, inevitably they are experiencing transition from arithmetic to algebraic thinking. Once students could apprehend this essential mathematical knowledge, they are cultivating their ability in solving daily life problems by applying algebra. However, as we dig into this transitional stage, we identified possible students' learning obstacles to be dealt with seriously in order to forestall subsequent hindrance in studying more advance algebra. We come to realize this recurring problem as we undertook the processes of re-personalization and re-contextualization in which we scrutinize the very basic questions: 1) what is variable, linear equation with one variable and their relationship with the arithmetic-algebraic thinking? 2) Why student should learn such concepts? 3) How to teach those concepts to students? By positioning ourselves as a seventh grade student, we address the possibility of children to think arithmetically when confronted with the problems of linear equation with one variable. To help them thinking algebraically, Bruner's modes of representation developed contextually from concrete to abstract were delivered to enhance their interpretation toward the idea of variables. Hence, from the outset we designed the context for student to think symbolically initiated by exploring various symbols that could be contextualized in order to bridge student traversing the arithmetic-algebraic fruitfully.

  19. The Turkish Tea Garden : Exploring a 'Third Space' with cultural resonances

    NARCIS (Netherlands)

    Wohl, Sharon

    2017-01-01

    This article examines the history, use, and significance of the Turkish Tea Garden or Cay Bahcesi, positing that these gardens offer unique democratic spaces for public discourse set within the polis. The article unpacks the historical, cultural, and symbolic features of these gardens, and the role

  20. Automatic Generation of Symbolic Model for Parameterized Synchronous Systems

    Institute of Scientific and Technical Information of China (English)

    Wei-Wen Xu

    2004-01-01

    With the purpose of making the verification of parameterized system more general and easier, in this paper, a new and intuitive language PSL (Parameterized-system Specification Language) is proposed to specify a class of parameterized synchronous systems. From a PSL script, an automatic method is proposed to generate a constraint-based symbolic model. The model can concisely symbolically represent the collections of global states by counting the number of processes in a given state. Moreover, a theorem has been proved that there is a simulation relation between the original system and its symbolic model. Since the abstract and symbolic techniques are exploited in the symbolic model, state-explosion problem in traditional verification methods is efficiently avoided. Based on the proposed symbolic model, a reachability analysis procedure is implemented using ANSI C++ on UNIX platform. Thus, a complete tool for verifying the parameterized synchronous systems is obtained and tested for some cases. The experimental results show that the method is satisfactory.

  1. Symbol synchronization for the TDRSS decoder

    Science.gov (United States)

    Costello, D. J., Jr.

    1983-01-01

    Each 8 bits out of the Viterbi decoder correspond to one symbol of the R/S code. Synchronization must be maintained here so that each 8-bit symbol delivered to the R/S decoder corresponds to an 8-bit symbol from the R/S encoder. Lack of synchronization, would cause an error in almost every R/S symbol since even a - 1-bit sync slip shifts every bit in each 8-bit symbol by one position, therby confusing the mapping betweeen 8-bit sequences and symbols. The error correcting capability of the R/S code would be exceeded. Possible ways to correcting this condition include: (1) designing the R/S decoder to recognize the overload and shifting the output sequence of the inner decoder to establish a different sync state; (2) using the characteristics of the inner decoder to establish symbol synchronization for the outer code, with or without a deinterleaver and an interleaver; and (3) modifying the encoder to alternate periodically between two sets of generators.

  2. The hippocampus facilitates integration within a symbolic field.

    Science.gov (United States)

    Cornelius, John Thor

    2017-10-01

    This paper attempts to elaborate a fundamental brain mechanism involved in the creation and maintenance of symbolic fields of thought. It will integrate theories of psychic spaces as explored by Donald Winnicott and Wilfred Bion with the neuroscientific examinations of those with bilateral hippocampal injury to show how evidence from both disciplines sheds important light on this aspect of mind. Possibly originating as a way of maintaining an oriented, first person psychic map, this capacity allows individuals a dynamic narrative access to a realm of layered elements and their connections. If the proposed hypothesis is correct, the hippocampus facilitates the integration of this symbolic field of mind, where narrative forms of thinking, creativity, memory, and dreaming are intertwined. Without the hippocampus, there is an inability to engage many typical forms of thought itself. Also, noting the ways these individuals are not impaired supports theories about other faculties of mind, providing insight into their possible roles within human thought. The evidence of different systems working in conjunction with the symbolic field provides tantalizing clues about these fundamental mechanisms of brain and mind that are normally seamlessly integrated, and hints at future areas of clinical and laboratory research, both within neuroscience and psychoanalysis. © 2017 The Authors. The International Journal of Psychoanalysis published by John Wiley & Sons Ltd on behalf of Institute of Psychoanalysis.

  3. 14 CFR 221.200 - Content and explanation of abbreviations, reference marks and symbols.

    Science.gov (United States)

    2010-01-01

    ..., reference marks and symbols. 221.200 Section 221.200 Aeronautics and Space OFFICE OF THE SECRETARY... § 221.200 Content and explanation of abbreviations, reference marks and symbols. (a) Content. The format..., reference marks and symbols. Abbreviations, reference marks and symbols which are used in the tariff shall...

  4. Symbolic Processing Combined with Model-Based Reasoning

    Science.gov (United States)

    James, Mark

    2009-01-01

    A computer program for the detection of present and prediction of future discrete states of a complex, real-time engineering system utilizes a combination of symbolic processing and numerical model-based reasoning. One of the biggest weaknesses of a purely symbolic approach is that it enables prediction of only future discrete states while missing all unmodeled states or leading to incorrect identification of an unmodeled state as a modeled one. A purely numerical approach is based on a combination of statistical methods and mathematical models of the applicable physics and necessitates development of a complete model to the level of fidelity required for prediction. In addition, a purely numerical approach does not afford the ability to qualify its results without some form of symbolic processing. The present software implements numerical algorithms to detect unmodeled events and symbolic algorithms to predict expected behavior, correlate the expected behavior with the unmodeled events, and interpret the results in order to predict future discrete states. The approach embodied in this software differs from that of the BEAM methodology (aspects of which have been discussed in several prior NASA Tech Briefs articles), which provides for prediction of future measurements in the continuous-data domain.

  5. Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

    Energy Technology Data Exchange (ETDEWEB)

    Kamiński, Wojciech, E-mail: wkaminsk@fuw.edu.pl [Wydział Fizyki, Uniwersytet Warszawski, Hoża 69, 00-681, Warsaw (Poland); Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Max Planck Institute for Gravitational Physics, Am Mühlenberg 1, D-14476 Potsdam (Germany); Steinhaus, Sebastian, E-mail: steinhaus.sebastian@gmail.com [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Max Planck Institute for Gravitational Physics, Am Mühlenberg 1, D-14476 Potsdam (Germany)

    2013-12-15

    We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol.

  6. Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

    International Nuclear Information System (INIS)

    Kamiński, Wojciech; Steinhaus, Sebastian

    2013-01-01

    We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol

  7. Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

    Science.gov (United States)

    Kamiński, Wojciech; Steinhaus, Sebastian

    2013-12-01

    We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j symbol using a coherent state approach, in particular we succeed in computing the determinant of the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point analysis with respect to the smearing parameters. This allows us to transform the variables from group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor. Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms, prove some of their properties and derive a recursion relation for the full 6j symbol.

  8. 'O' Rose Thou Art Sick': Floral Symbolism in William Blake's Poetry

    Directory of Open Access Journals (Sweden)

    Noelia Malla

    2014-04-01

    Full Text Available The primary aim of this paper is to analyse the symbolic implications of floral imagery in William Blake’s poetry. More specifically, this study explores the process of floral (resignification of William Blake’s Songs of Innocence (1789 and Songs of Experience (1794 as case studies. Since “Without contraries [there] is no progression” (Marriage of Heaven and Hell, plate 3, it can be argued that the Songs represent contrary aspects of the human condition that far from contradicting each other, establish a static contrast of shifting tensions and revaluation of the flower-image not only as a perfect symbol of the “vegetable” life rooted to the Earth but also as a figure longing to be free. In some sense at some level, the poetic-prophetic voice asserts in the Songs of Experience the state of corruption where man has fallen into. Ultimately, this study will explore how the failure to overcome the contrast that is suggested in the Songs will be deepened by the tragedy of Thel, which is symbolized by all unborn forces of life, all sterile seeds as an ultimate means of metaphorical regeneration throughout Poetry which constitutes in itself the Poet Prophet’s own means of transcending through art.

  9. 10. Creativity and Innovation in Visual Arts through Form and Space Having Symbolic Value

    Directory of Open Access Journals (Sweden)

    Iaţeşen Mihai – Cosmin

    2017-03-01

    Full Text Available The numerous plastic approaches of form in the 20th century are characterized by creativity and innovation. Form, as expression of an artistic language, is the cause and effect for the cultural evolution of a particular spatial-temporal area. The invention of forms depending on the factors which will impose them in a particular socio-cultural context and location environment is not everything. The challenges of the act of creation are far more complex. For the art of the 20th century, the role of the type of expression in visual or gestural language proved much more convincing and meaningful as to the data or phenomena occurring in immediate reality. The personality of the artist, his cultural character, his media coverage and exterior influences of his inner world, his preceding experiences and receiver’s contacts in a specific area are the factors that influence the relation between the work of art and the audience against a particular spatial-temporal background. The psychological and sensory processes in works of plastic art are spatially configured in structures, which leads to self-confession. The artist filters the information and the elements of exterior reality through the vision of his imagination and power of expression specific to his inner self, and turns them into values through the involvement of his state of mind. Constantin Brâncuşi is the sculptor whose role was considered exponential as he revolutionized modern artistic vision by integrating and creating space-form relations through symbol. Throughout his complex work - the Group of Monumental Sculptures of Tg. Jiu, the artist renewed the language of the sculpture-specific means of expression, though archaic forms, by restoring traditional art. Archetypes often make reference to the initial and ideal form and they represent the primitive and native models composing it. Form attracts, polarizes and integrates the energy of the matter outside the human body, and art acquires

  10. Carrier tracking by smoothing filter improves symbol SNR

    Science.gov (United States)

    Pomalaza-Raez, Carlos A.; Hurd, William J.

    1986-01-01

    The potential benefit of using a smoothing filter to estimate carrier phase over use of phase locked loops (PLL) is determined. Numerical results are presented for the performance of three possible configurations of the deep space network advanced receiver. These are residual carrier PLL, sideband aided residual carrier PLL, and finally sideband aiding with a Kalman smoother. The average symbol signal to noise ratio (SNR) after losses due to carrier phase estimation error is computed for different total power SNRs, symbol rates and symbol SNRs. It is found that smoothing is most beneficial for low symbol SNRs and low symbol rates. Smoothing gains up to 0.4 dB over a sideband aided residual carrier PLL, and the combined benefit of smoothing and sideband aiding relative to a residual carrier loop is often in excess of 1 dB.

  11. Why We Explore: The Value of Space Exploration for Future Generations

    Science.gov (United States)

    Cook, Stephen A.; Armstrong, Robert C., Jr.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) and its industry partners are making measurable progress toward delivering new human space transportation capabilities to serve as the catalyst for a new era of discovery, as directed by the U.S. Vision for Space Exploration. In the interest of ensuring prolonged support, the Agency encourages space advocates of all stripes to accurately portray both the tangible and intangible benefits of space exploration, especially its value for future generations. This may be done not only by emphasizing the nation's return on its aerospace investment, but also by highlighting enabling security features and by promoting the scientific and technological benefits that accrue from the human exploration of space. As America embarks on a new era of leadership and international partnership on the next frontier, we are poised to master space by living off-planet on the Moon to prepare astronauts for longer journeys to Mars. These and other relevant facts should be clearly in the view of influential decision-makers and the American taxpayers, and we must increasingly involve those on whom the long-term sustainability of space exploration ultimately depends: America's youth. This paper will examine three areas of concrete benefits for future generations: fundamental security, economic enterprise, and high-technology advancements spurred by the innovation that scientific discovery demands.

  12. Experimental targeting of chaos via controlled symbolic dynamics

    International Nuclear Information System (INIS)

    Corron, Ned J.; Pethel, Shawn D.

    2003-01-01

    In this Letter, we report experimental targeting in a chaotic system by controlling symbolic dynamics. We acquire and control an electronic circuit using small perturbations to elicit a desired objective state starting from an arbitrary, uncontrolled state. The control perturbations are calculated using a symbolic targeting sequence and applied using dynamic limiting control

  13. Active Affordance Learning in Continuous State and Action Spaces

    NARCIS (Netherlands)

    Wang, C.; Hindriks, K.V.; Babuska, R.

    2014-01-01

    Learning object affordances and manipulation skills is essential for developing cognitive service robots. We propose an active affordance learning approach in continuous state and action spaces without manual discretization of states or exploratory motor primitives. During exploration in the action

  14. Super Global Projects and Environmentally Friendly Technologies Used in Space Exploration: Realities and Prospects of the Space Age

    Directory of Open Access Journals (Sweden)

    Sergey Krichevsky

    2018-02-01

    technologies within space exploration area, but it states the necessity of controlling and managing the transition towards such environmentally friendly options. A new wave of space awareness and exploration is currently arising in the world, whereas the boundaries of space activities are being constantly expanding. Consequently, the humanity is bound to reach a new level of space study by working out and implementing the global strategy aimed at synthesizing new super global programs and efficient eco-technologies and projects in the paradigm of balanced sustainable “green” development on Earth and in the Universe. To achieve these objectives successfully there is a need for anticipatory philosophical reflection and interdisciplinary examination of recent projects and technologies in space exploration in order to study and correct them

  15. Assessing Space Exploration Technology Requirements as a First Step Towards Ensuring Technology Readiness for International Cooperation in Space Exploration

    Science.gov (United States)

    Laurini, Kathleen C.; Hufenbach, Bernhard; Satoh, Maoki; Piedboeuf, Jean-Claude; Neumann, Benjamin

    2010-01-01

    Advancing critical and enhancing technologies is considered essential to enabling sustainable and affordable human space exploration. Critical technologies are those that enable a certain class of mission, such as technologies necessary for safe landing on the Martian surface, advanced propulsion, and closed loop life support. Others enhance the mission by leading to a greater satisfaction of mission objectives or increased probability of mission success. Advanced technologies are needed to reduce mass and cost. Many space agencies have studied exploration mission architectures and scenarios with the resulting lists of critical and enhancing technologies being very similar. With this in mind, and with the recognition that human space exploration will only be enabled by agencies working together to address these challenges, interested agencies participating in the International Space Exploration Coordination Group (ISECG) have agreed to perform a technology assessment as an important step in exploring cooperation opportunities for future exploration mission scenarios. "The Global Exploration Strategy: The Framework for Coordination" was developed by fourteen space agencies and released in May 2007. Since the fall of 2008, several International Space Exploration Coordination Group (ISECG) participating space agencies have been studying concepts for human exploration of the moon. They have identified technologies considered critical and enhancing of sustainable space exploration. Technologies such as in-situ resource utilization, advanced power generation/energy storage systems, reliable dust resistant mobility systems, and closed loop life support systems are important examples. Similarly, agencies such as NASA, ESA, and Russia have studied Mars exploration missions and identified critical technologies. They recognize that human and robotic precursor missions to destinations such as LEO, moon, and near earth objects provide opportunities to demonstrate the

  16. Symbolic Play in the Treatment of Autism in Children.

    Science.gov (United States)

    Voyat, Gilbert

    1982-01-01

    Explores the role of symbolic play in the cognitive and psychic development of the normal child and describes the autistic child. Reviews a model treatment program for autism developed at the City College of New York, discussing the therapeutic role of symbolic play in that model. (Author/MJL)

  17. NASA's Space Launch System: An Enabling Capability for International Exploration

    Science.gov (United States)

    Creech, Stephen D.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions.

  18. A Management Model for International Participation in Space Exploration Missions

    Science.gov (United States)

    George, Patrick J.; Pease, Gary M.; Tyburski, Timothy E.

    2005-01-01

    This paper proposes an engineering management model for NASA's future space exploration missions based on past experiences working with the International Partners of the International Space Station. The authors have over 25 years of combined experience working with the European Space Agency, Japan Aerospace Exploration Agency, Canadian Space Agency, Italian Space Agency, Russian Space Agency, and their respective contractors in the design, manufacturing, verification, and integration of their elements electric power system into the United States on-orbit segment. The perspective presented is one from a specific sub-system integration role and is offered so that the lessons learned from solving issues of technical and cultural nature may be taken into account during the formulation of international partnerships. Descriptions of the types of unique problems encountered relative to interactions between international partnerships are reviewed. Solutions to the problems are offered, taking into consideration the technical implications. Through the process of investigating each solution, the important and significant issues associated with working with international engineers and managers are outlined. Potential solutions are then characterized by proposing a set of specific methodologies to jointly develop spacecraft configurations that benefits all international participants, maximizes mission success and vehicle interoperability while minimizing cost.

  19. New NASA Technologies for Space Exploration

    Science.gov (United States)

    Calle, Carlos I.

    2015-01-01

    NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.

  20. Rendezvous and Docking for Space Exploration

    Science.gov (United States)

    Machula, M. F.; Crain, T.; Sandhoo, G. S.

    2005-01-01

    To achieve the exploration goals, new approaches to exploration are being envisioned that include robotic networks, modular systems, pre-positioned propellants and in-space assembly in Earth orbit, Lunar orbit and other locations around the cosmos. A fundamental requirement for rendezvous and docking to accomplish in-space assembly exists in each of these locations. While existing systems and technologies can accomplish rendezvous and docking in low earth orbit, and rendezvous and docking with crewed systems has been successfully accomplished in low lunar orbit, our capability must extend toward autonomous rendezvous and docking. To meet the needs of the exploration vision in-space assembly requiring both crewed and uncrewed vehicles will be an integral part of the exploration architecture. This paper focuses on the intelligent application of autonomous rendezvous and docking technologies to meet the needs of that architecture. It also describes key technology investments that will increase the exploration program's ability to ensure mission success, regardless of whether the rendezvous are fully automated or have humans in the loop.

  1. Space exploration and colonization - Towards a space faring society

    Science.gov (United States)

    Hammond, Walter E.

    1990-01-01

    Development trends of space exploration and colonization since 1957 are reviewed, and a five-phase evolutionary program planned for the long-term future is described. The International Geosphere-Biosphere program which is intended to provide the database on enviromental changes of the earth as a global system is considered. Evolution encompasses the anticipated advantages of such NASA observation projects as the Hubble Space Telescope, the Gamma Ray Observatory, the Advanced X-Ray Astrophysics Facility, and the Cosmic Background Explorer. Attention is given to requirements for space colonization, including development of artificial gravity and countermeasures to mitigate zero gravity problems; robotics and systems aimed to minimize human exposure to the space environment; the use of nuclear propulsion; and international collaboration on lunar-Mars projects. It is recommended that nuclear energy sources be developed for both propulsion and as extraterrestrial power plants.

  2. Carrier tracking by smoothing filter can improve symbol SNR

    Science.gov (United States)

    Hurd, W. J.; Pomalaza-Raez, C. A.

    1985-01-01

    The potential benefit of using a smoothing filter to estimate carrier phase over use of phase locked loops (PLL) is determined. Numerical results are presented for the performance of three possible configurations of the deep space network advanced receiver. These are residual carrier PLL, sideband aided residual carrier PLL, and finally sideband aiding with a Kalman smoother. The average symbol signal to noise ratio (CNR) after losses due to carrier phase estimation error is computed for different total power SNRs, symbol rates and symbol SNRs. It is found that smoothing is most beneficial for low symbol SNRs and low symbol rates. Smoothing gains up to 0.4 dB over a sideband aided residual carrier PLL, and the combined benefit of smoothing and sideband aiding relative to a residual carrier loop is often in excess of 1 dB.

  3. Applied Nanotechnology for Human Space Exploration

    Science.gov (United States)

    Yowell, Leonard L.

    2007-01-01

    A viewgraph presentation describing nanotechnology for human space exploration is shown. The topics include: 1) NASA's Strategic Vision; 2) Exploration Architecture; 3) Future Exploration Mission Requirements Cannot be met with Conventional Materials; 4) Nanomaterials: Single Wall Carbon Nanotubes; 5) Applied Nanotechnology at JSC: Fundamentals to Applications; 6) Technology Readiness Levels (TRL); 7) Growth, Modeling, Diagnostics and Production; 8) Characterization: Purity, Dispersion and Consistency; 9) Processing; 10) Nanoelectronics: Enabling Technologies; 11) Applications for Human Space Exploration; 12) Exploration Life Support: Atmosphere Revitalization System; 13) Advanced and Exploration Life Support: Regenerable CO2 Removal; 14) Exploration Life Support: Water Recovery; 15) Advanced Life Support: Water Disinfection/Recovery; 16) Power and Energy: Supercapacitors and Fuel Cells; 17) Nanomaterials for EMI Shielding; 18) Active Radiation Dosimeter; 19) Advanced Thermal Protection System (TPS) Repair; 20) Thermal Radiation and Impact Protection (TRIPS); 21) Nanotechnology: Astronaut Health Management; 22) JSC Nanomaterials Group Collaborations.

  4. Pioneers in Astronomy and Space Exploration

    CERN Document Server

    2013-01-01

    The pioneers of astronomy and space exploration have advanced humankind's understanding of the universe. These individuals include earthbound theorists such as Aristotle, Ptolemy, and Galileo, as well as those who put their lives on the line travelling into the great unknown. Readers chronicle the lives of individuals positioned at the vanguard of astronomical discovery, laying the groundwork for space exploration past, present, and yet to come.

  5. Interaction Challenges in Human-Robot Space Exploration

    Science.gov (United States)

    Fong, Terrence; Nourbakhsh, Illah

    2005-01-01

    In January 2004, NASA established a new, long-term exploration program to fulfill the President's Vision for U.S. Space Exploration. The primary goal of this program is to establish a sustained human presence in space, beginning with robotic missions to the Moon in 2008, followed by extended human expeditions to the Moon as early as 2015. In addition, the program places significant emphasis on the development of joint human-robot systems. A key difference from previous exploration efforts is that future space exploration activities must be sustainable over the long-term. Experience with the space station has shown that cost pressures will keep astronaut teams small. Consequently, care must be taken to extend the effectiveness of these astronauts well beyond their individual human capacity. Thus, in order to reduce human workload, costs, and fatigue-driven error and risk, intelligent robots will have to be an integral part of mission design.

  6. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  7. The relationship between symbolic interactionism and interpretive description.

    Science.gov (United States)

    Oliver, Carolyn

    2012-03-01

    In this article I explore the relationship between symbolic interactionist theory and interpretive description methodology. The two are highly compatible, making symbolic interactionism an excellent theoretical framework for interpretive description studies. The pragmatism underlying interpretive description supports locating the methodology within this cross-disciplinary theory to make it more attractive to nonnursing researchers and expand its potential to address practice problems across the applied disciplines. The theory and method are so compatible that symbolic interactionism appears to be part of interpretive description's epistemological foundations. Interpretive description's theoretical roots have, to date, been identified only very generally in interpretivism and the philosophy of nursing. A more detailed examination of its symbolic interactionist heritage furthers the contextualization or forestructuring of the methodology to meet one of its own requirements for credibility.

  8. On the Computational Complexity of the Languages of General Symbolic Dynamical Systems and Beta-Shifts

    DEFF Research Database (Denmark)

    Simonsen, Jakob Grue

    2009-01-01

    We consider the computational complexity of languages of symbolic dynamical systems. In particular, we study complexity hierarchies and membership of the non-uniform class P/poly. We prove: 1.For every time-constructible, non-decreasing function t(n)=@w(n), there is a symbolic dynamical system...... with language decidable in deterministic time O(n^2t(n)), but not in deterministic time o(t(n)). 2.For every space-constructible, non-decreasing function s(n)=@w(n), there is a symbolic dynamical system with language decidable in deterministic space O(s(n)), but not in deterministic space o(s(n)). 3.There...... are symbolic dynamical systems having hard and complete languages under @?"m^l^o^g^s- and @?"m^p-reduction for every complexity class above LOGSPACE in the backbone hierarchy (hence, P-complete, NP-complete, coNP-complete, PSPACE-complete, and EXPTIME-complete sets). 4.There are decidable languages of symbolic...

  9. Matching Element Symbols with State Abbreviations: A Fun Activity for Browsing the Periodic Table of Chemical Elements

    Science.gov (United States)

    Woelk, Klaus

    2009-01-01

    A classroom activity is presented in which students are challenged to find matches between the United States two-letter postal abbreviations for states and chemical element symbols. The activity aims to lessen negative apprehensions students might have when the periodic table of the elements with its more than 100 combinations of letters is first…

  10. MEMS applications in space exploration

    Science.gov (United States)

    Tang, William C.

    1997-09-01

    Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. MEMS is one of the key enabling technology to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.

  11. Ethics and public integrity in space exploration

    Science.gov (United States)

    Greenstone, Adam F.

    2018-02-01

    This paper discusses the National Aeronautics and Space Administration's (NASA) work to support ethics and public integrity in human space exploration. Enterprise Risk Management (ERM) to protect an organization's reputation has become widespread in the private sector. Government ethics law and practice is integral to a government entity's ERM by managing public sector reputational risk. This activity has also increased on the international plane, as seen by the growth of ethics offices in UN organizations and public international financial institutions. Included in this area are assessments to ensure that public office is not used for private gain, and that external entities are not given inappropriate preferential treatment. NASA has applied rules supporting these precepts to its crew since NASA's inception. The increased focus on public sector ethics principles for human activity in space is important because of the international character of contemporary space exploration. This was anticipated by the 1998 Intergovernmental Agreement for the International Space Station (ISS), which requires a Code of Conduct for the Space Station Crew. Negotiations among the ISS Partners established agreed-upon ethics principles, now codified for the United States in regulations at 14 C.F.R. § 1214.403. Understanding these ethics precepts in an international context requires cross-cultural dialogue. Given NASA's long spaceflight experience, a valuable part of this dialogue is understanding NASA's implementation of these requirements. Accordingly, this paper will explain how NASA addresses these and related issues, including for human spaceflight and crew, as well as the development of U.S. Government ethics law which NASA follows as a U.S. federal agency. Interpreting how the U.S. experience relates constructively to international application involves parsing out which dimensions relate to government ethics requirements that the international partners have integrated into the

  12. Technology transfer from the space exploration initiative

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Space exploration has demonstrated that it stimulates the national economy by creating new and improved products, increased employment, and provides a stimulus to education. The exploration of the Moon and Mars under the Space Exploration Initiative has the potential of accelerating this stimulates to the economy. It is difficult to identify all of the concrete ways this will be accomplished. However, many areas can be identified. The space exploration building blocks of power, propulsion, spacecraft, robotics, rovers, mining and manufacturing, communications, navigation, habitats, life support and infrastructures are reviewed to identify possible technology areas. For example, better means for working in hazardous areas and handling hazardous waste are potential outcomes of this initiative. Methods to produce higher quality goods and improve America's competitiveness in manufacturing will undoubtedly evolve from the need to produce products that must last many years in the harsh environments of space and planetary surfaces. Some ideas for technology transfer are covered in this paper

  13. Lisbon Symbol Database (LSD): Subjective norms for 600 symbols.

    Science.gov (United States)

    Prada, Marília; Rodrigues, David; Silva, Rita R; Garrido, Margarida V

    2016-12-01

    This article presents subjective rating norms for a new set of 600 symbols, depicting various contents (e.g., transportation, technology, and leisure activities) that can be used by researchers in different fields. Symbols were evaluated for aesthetic appeal, familiarity, visual complexity, concreteness, valence, arousal, and meaningfulness. The normative data were obtained from 388 participants, and no gender differences were found. Descriptive results (means, standard deviations, and confidence intervals) for each symbol in each dimension are presented. Overall, the dimensions were highly correlated. Additionally, participants were asked to briefly describe the meaning of each symbol. The results indicate that the present symbol set is varied, allowing for the selection of exemplars with different levels on the seven examined dimensions. This set of symbols constitutes a tool with potential for research in different areas. The database with all of the symbols is available as supplemental materials.

  14. SpaceExplorer

    DEFF Research Database (Denmark)

    Hansen, Thomas Riisgaard

    2007-01-01

    Web pages are designed to be displayed on a single screen, but as more and more screens are being introduced in our surroundings a burning question becomes how to design, interact, and display web pages on multiple devices and displays. In this paper I present the SpaceExplorer prototype, which...... is able to display standard HTML web pages on multiple displays with only a minor modification to the language. Based on the prototype a number of different examples are presented and discussed and some preliminary findings are presented....

  15. Theoretical and methodological bases of studying the symbolization of social and political reality in transit societies

    Directory of Open Access Journals (Sweden)

    O. V. Slavina

    2014-10-01

    Full Text Available This article is an attempt to form a methodological foundation to explore the process of symbolic constructioning of reality in the political systems in a state of democratic transition. From the author’s point of view, such transit systems differ with the phenomenal features of transitional type of sign-symbolic context. There are the most significant of them: the confrontation of symbols of old and new, and the formation of public anxiety due to violation of the established values (significant symbols. The result of these processes is the emergence of the conditions for increasing capacity of perception of new symbols (re-symbolization, transmigration of symbolic forms, the appearance of spontaneous symbolic interactions in the community in the form of political protests, rallies, and panic. In this regard, it is necessary to understand the possibilities of the productive management of the collective consciousness in transit period to achieve mental solidarity of concrete society with democratic values. To perform this task, author develops the appropriate tools, which are based on the phenomenological theory, the Schutz’s theory of the constitution of the multiple realities, the philosophy of symbolic forms of E. Cassirer, the theory of social construction of P. Berger and T. Luckmann, as well as Lotman’s semiotic concept. It is concluded that in the collision of alternative symbolic projects of social order it is advisable to resort to controlled symbolization (the production of special symbolic codes of political legitimation. At the same time it is important to understand the mechanisms of auto- symbolization of the society (changing of mass consciousness by virtue of the progressive development of the political culture of people. Careless use of these technologies in the countries with non-consolidated democracy may become a factor of destabilization and formation of the conditions for authoritarian rollback.

  16. Shape space exploration of constrained meshes

    KAUST Repository

    Yang, Yongliang; Yang, Yijun; Pottmann, Helmut; Mitra, Niloy J.

    2011-01-01

    We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

  17. Shape space exploration of constrained meshes

    KAUST Repository

    Yang, Yongliang

    2011-12-12

    We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

  18. Nutrition for Space Exploration

    Science.gov (United States)

    Smith, Scott M.

    2005-01-01

    Nutrition has proven to be critical throughout the history of human exploration, on both land and water. The importance of nutrition during long-duration space exploration is no different. Maintaining optimal nutritional status is critical for all bodily systems, especially in light of the fact that that many are also affected by space flight itself. Major systems of concern are bone, muscle, the cardiovascular system, the immune system, protection against radiation damage, and others. The task ahead includes defining the nutritional requirements for space travelers, ensuring adequacy of the food system, and assessing crew nutritional status before, during, and after flight. Accomplishing these tasks will provide significant contributions to ensuring crew health on long-duration missions. In addition, development and testing of nutritional countermeasures to effects of space flight is required, and assessment of the impact of other countermeasures (such as exercise and pharmaceuticals) on nutrition is also critical for maintaining overall crew health. Vitamin D stores of crew members are routinely low after long-duration space flight. This occurs even when crew members take vitamin D supplements, suggesting that vitamin D metabolism may be altered during space flight. Vitamin D is essential for efficient absorption of calcium, and has numerous other benefits for other tissues with vitamin D receptors. Protein is a macronutrient that requires additional study to define the optimal intake for space travelers. Administration of protein to bed rest subjects can effectively mitigate muscle loss associated with disuse, but too much or too little protein can also have negative effects on bone. In another bed rest study, we found that the ratio of protein to potassium was correlated with the level of bone resorption: the higher the ratio, the more bone resorption. These relationships warrant further study to optimize the beneficial effect of protein on both bone and muscle

  19. Model-Based Trade Space Exploration for Near-Earth Space Missions

    Science.gov (United States)

    Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain

    2005-01-01

    We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.

  20. Nuclear Energy in Space Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1968-01-01

    Nuclear space programs under development by the Atomic Energy Commission are reviewed including the Rover Program, systems for nuclear rocket propulsion and, the SNAP Program, systems for generating electric power in space. The letters S-N-A-P stands for Systems for Nuclear Auxiliary Power. Some of the projected uses of nuclear systems in space are briefly discussed including lunar orbit, lunar transportation from lunar orbit to lunar surface and base stations; planetary exploration, and longer space missions. The limitations of other sources of energy such as solar, fuel cells, and electric batteries are discussed. The excitement and visionary possibilities of the Age of Space are discussed.

  1. Alternate symbol inversion for improved symbol synchronization in convolutionally coded systems

    Science.gov (United States)

    Simon, M. K.; Smith, J. G.

    1980-01-01

    Inverting alternate symbols of the encoder output of a convolutionally coded system provides sufficient density of symbol transitions to guarantee adequate symbol synchronizer performance, a guarantee otherwise lacking. Although alternate symbol inversion may increase or decrease the average transition density, depending on the data source model, it produces a maximum number of contiguous symbols without transition for a particular class of convolutional codes, independent of the data source model. Further, this maximum is sufficiently small to guarantee acceptable symbol synchronizer performance for typical applications. Subsequent inversion of alternate detected symbols permits proper decoding.

  2. State space model extraction of thermohydraulic systems – Part I: A linear graph approach

    International Nuclear Information System (INIS)

    Uren, K.R.; Schoor, G. van

    2013-01-01

    Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex ® model of the U-tube. Flownex ® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state

  3. Reversibility and the structure of the local state space

    International Nuclear Information System (INIS)

    Al-Safi, Sabri W; Richens, Jonathan

    2015-01-01

    The richness of quantum theory’s reversible dynamics is one of its unique operational characteristics, with recent results suggesting deep links between the theory’s reversible dynamics, its local state space and the degree of non-locality it permits. We explore the delicate interplay between these features, demonstrating that reversibility places strong constraints on both the local and global state space. Firstly, we show that all reversible dynamics are trivial (composed of local transformations and permutations of subsytems) in maximally non-local theories whose local state spaces satisfy a dichotomy criterion; this applies to a range of operational models that have previously been studied, such as d-dimensional ‘hyperballs’ and almost all regular polytope systems. By separately deriving a similar result for odd-sided polygons, we show that classical systems are the only regular polytope state spaces whose maximally non-local composites allow for non-trivial reversible dynamics. Secondly, we show that non-trivial reversible dynamics do exist in maximally non-local theories whose state spaces are reducible into two or more smaller spaces. We conjecture that this is a necessary condition for the existence of such dynamics, but that reversible entanglement generation remains impossible even in this scenario. (paper)

  4. Exploring Engaged Spaces in Community-University Partnership

    Science.gov (United States)

    Davies, Ceri; Gant, Nick; Millican, Juliet; Wolff, David; Prosser, Bethan; Laing, Stuart; Hart, Angie

    2016-01-01

    The Community University Partnership Programme (CUPP) has been operating at the University of Brighton for the past 10 years. This article explores the different types of space we think need to exist to support a variety of partnership and engaged work. We therefore explore our understandings of shared or "engaged" spaces as a physical,…

  5. Preamble and pilot symbol design for channel estimation in OFDM systems with null subcarriers

    Directory of Open Access Journals (Sweden)

    Ohno Shuichi

    2011-01-01

    Full Text Available Abstract In this article, design of preamble for channel estimation and pilot symbols for pilot-assisted channel estimation in orthogonal frequency division multiplexing system with null subcarriers is studied. Both the preambles and pilot symbols are designed to minimize the l 2 or the l ∞ norm of the channel estimate mean-squared errors (MSE in frequency-selective environments. We use convex optimization technique to find optimal power distribution to the preamble by casting the MSE minimization problem into a semidefinite programming problem. Then, using the designed optimal preamble as an initial value, we iteratively select the placement and optimally distribute power to the selected pilot symbols. Design examples consistent with IEEE 802.11a as well as IEEE 802.16e are provided to illustrate the superior performance of our proposed method over the equi-spaced equi-powered pilot symbols and the partially equi-spaced pilot symbols.

  6. Human Factors in Space Exploration

    Science.gov (United States)

    Jones, Patricia M.; Fiedler, Edna

    2010-01-01

    The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et ai, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et aI., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et ai, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on sorne of the latest research results as well as the latest challenges still facing the field.

  7. MODERN ROUTES TO EXPLORE CONCRETE’S COMPLEX PORE SPACE

    Directory of Open Access Journals (Sweden)

    Piet Stroeven

    2011-05-01

    Full Text Available This paper concentrates on discrete element computer-simulation of concrete. It is argued on the basis of stochastic heterogeneity theory that modern concurrent-algorithm-based systems should be employed for the assessment of pore characteristics underlying durability performance of cementitious materials. The SPACE system was developed at Delft University of Technology for producing realistic schematizations of realcrete for a wide range of other particle packing problems, involving aggregate and fresh cement, and for the purpose of exploring characteristics in the hardened state of concrete, including of the pore network structure because of obvious durability problems. Since structure-sensitive properties are involved, schematization of reality should explicitly deal with the configuration of the cement particles in the fresh state. The paper concentrates on the stereological and mathematical morphology operations executed to acquire information on particle size, global porosity, and on distribution of porosity and of the connected pore fraction as a result of the near neighbourhood of aggregate grains. Goal is to provide information obtained along different exploration routes of concrete's pore space for setting up a pore network modelling approach. This type of methodological papers is scarce in concrete technology, if not missing at all. Technical publications that report on obtained results in our investigations are systematically referred to.

  8. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    Science.gov (United States)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  9. Symbolic dynamics and description of complexity

    International Nuclear Information System (INIS)

    Hao Bailin.

    1992-10-01

    Symbolic dynamics provides a general framework to describe complexity of dynamical behaviour. After a discussion of the state of the filed special emphasis will be made on the role of transfer matrix (the Stefan matrix) both in deriving the grammar from known symbolic dynamics and in extracting the rules from experimental data. The block structure of the Stefan matrix may serve as another indicator of complexity of the associated dynamics. (author). 33 refs, 6 figs

  10. Space exploration

    CERN Document Server

    2009-01-01

    Space Exploration, is one book in the Britannica Illustrated Science Library Series that is correlated to the science curriculum in grades 5-8. The Britannica Illustrated Science Library is a visually compelling set that covers earth science, life science, and physical science in 16 volumes.  Created for ages 10 and up, each volume provides an overview on a subject and thoroughly explains it through detailed and powerful graphics-more than 1,000 per volume-that turn complex subjects into information that students can grasp.  Each volume contains a glossary with full definitions for vocabulary help and an index.

  11. The Role of Cis-Lunar Space in Future Global Space Exploration

    Science.gov (United States)

    Bobskill, Marianne R.; Lupisella, Mark L.

    2012-01-01

    Cis-lunar space offers affordable near-term opportunities to help pave the way for future global human exploration of deep space, acting as a bridge between present missions and future deep space missions. While missions in cis-lunar space have value unto themselves, they can also play an important role in enabling and reducing risk for future human missions to the Moon, Near-Earth Asteroids (NEAs), Mars, and other deep space destinations. The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Team (HAT) has been analyzing cis-lunar destination activities and developing notional missions (or "destination Design Reference Missions" [DRMs]) for cis-lunar locations to inform roadmap and architecture development, transportation and destination elements definition, operations, and strategic knowledge gaps. The cis-lunar domain is defined as that area of deep space under the gravitational influence of the earth-moon system. This includes a set of earth-centered orbital locations in low earth orbit (LEO), geosynchronous earth orbit (GEO), highly elliptical and high earth orbits (HEO), earth-moon libration or "Lagrange" points (E-ML1 through E-ML5, and in particular, E-ML1 and E-ML2), and low lunar orbit (LLO). To help explore this large possibility space, we developed a set of high level cis-lunar mission concepts in the form of a large mission tree, defined primarily by mission duration, pre-deployment, type of mission, and location. The mission tree has provided an overall analytical context and has helped in developing more detailed design reference missions that are then intended to inform capabilities, operations, and architectures. With the mission tree as context, we will describe two destination DRMs to LEO and GEO, based on present human space exploration architectural considerations, as well as our recent work on defining mission activities that could be conducted with an EML1 or EML2 facility, the latter of which will be an emphasis of this

  12. Toward a global space exploration program: A stepping stone approach

    Science.gov (United States)

    Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret

    2012-01-01

    In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging

  13. Private space exploration: A new way for starting a spacefaring society?

    Science.gov (United States)

    Genta, Giancarlo

    2014-11-01

    Since the beginning space was an exclusive domain of public organizations, the role of privates is becoming more and more important, and not only in commercial activities. However, the main international treaties dealing with this subject are still based on the assumption that space activities are mostly reserved to states. In the last decade the idea that the role of privates could include the management of space infrastructures and launch vehicles gained support and now private launch services are a reality. An even wider role of privates is now advocated and private exploration and exploitation missions are discussed. This requires that space activity in general can generate an attractive return and those business models are identified.

  14. Space Biology and Medicine. Volume I; Space and Its Exploration

    Science.gov (United States)

    Nicogossian, Arnauld E.; Mohler, Stanley R.; Gazenko, Oleg G.; Grigoryev, Anatoliy I.

    1993-01-01

    Perhaps one of the greatest gifts that has been given to the people of the world in the last few hundred years has been an emerging sense of the place of our planet and its inhabitants within the context of the vast universe. Our knowledge of the rest of the universe has not come quickly, nor was the process of attaining it only recently begun; however, the unprecedented acceleration of that process has benefitted from a fundamental new aspect of our species that has only manifested itself in the last 30 years or so, the ability to travel in space. Before the space age, the Universe was studied only through observations from the Earth. All that has changed with the beginning of the space age. Machines built by humans have flown to all but one of the nine planets that revolve around our Sun, have ventured billions of miles from the Earth and looked back, and have landed on three other worlds. Spacecraft in orbit around the Earth have viewed the sky at a vast number of electromagnetic wavelengths, detecting the shape of the galaxy and the universe, and even measuring the remnants of the universe's beginning. Human explorers have ventured forth, first for short stays in orbit, then, later, walking upon the Moon and living for long periods in space. As they did so, billions of people on the Earth came to view the Earth in a fundamentally different way, not just as the familiar day to- day backdrop for their lives, but as a small oasis suspended in the night sky above an alien landscape. It is this new view of the Earth that is the true gift of space exploration. Space exploration has at once given us a new perspective on the value of our world, and a new perspective from which to understand how it operates. It has shown us that the Earth is by far the most precious place in the solar system in terms of supporting human life, while revealing that other destinations may still be compelling. The exploration of space has at once become a challenge for humanity to overcome

  15. Anomaly Detection and Diagnosis Algorithms for Discrete Symbols

    Data.gov (United States)

    National Aeronautics and Space Administration — We present a set of novel algorithms which we call sequenceMiner that detect and characterize anomalies in large sets of high-dimensional symbol sequences that arise...

  16. The mathematica guidebook for symbolics

    CERN Document Server

    Trott, Michael

    2006-01-01

    Mathematica is today's most advanced technical computing system. It features a rich programming environment, two-and three-dimensional graphics capabilities and hundreds of sophisticated, powerful programming and mathematical functions using state-of-the-art algorithms. Combined with a user-friendly interface, and a complete mathematical typesetting system, Mathematica offers an intuitive easy-to-handle environment of great power and utility. "The Mathematica GuideBook for Symbolics" (code and text fully tailored for Mathematica 5.1) deals with Mathematica's symbolic mathematical capabilities. Structural and mathematical operations on single and systems of polynomials are fundamental to many symbolic calculations and they are covered in considerable detail. The solution of equations and differential equations, as well as the classical calculus operations (differentiation, integration, summation, series expansion, limits) are exhaustively treated. Generalized functions and their uses are discussed. In addition...

  17. Technology Applications that Support Space Exploration

    Science.gov (United States)

    Henderson, Edward M.; Holderman, Mark L.

    2011-01-01

    Several enabling technologies have been identified that would provide significant benefits for future space exploration. In-Space demonstrations should be chosen so that these technologies will have a timely opportunity to improve efficiencies and reduce risks for future spaceflight. An early window exists to conduct ground and flight demonstrations that make use of existing assets that were developed for the Space Shuttle and the Constellation programs. The work could be mostly performed using residual program civil servants, existing facilities and current commercial launch capabilities. Partnering these abilities with the emerging commercial sector, along with other government agencies, academia and with international partners would provide an affordable and timely approach to get the launch costs down for these payloads, while increasing the derived benefits to a larger community. There is a wide scope of varied technologies that are being considered to help future space exploration. However, the cost and schedule would be prohibitive to demonstrate all these in the near term. Determining which technologies would yield the best return in meeting our future space needs is critical to building an achievable Space Architecture that allows exploration beyond Low Earth Orbit. The best mix of technologies is clearly to be based on our future needs, but also must take into account the availability of existing assets and supporting partners. Selecting those technologies that have complimentary applications will provide the most knowledge, with reasonable cost, for future use The plan is to develop those applications that not only mature the technology but actually perform a useful task or mission. These might include such functions as satellite servicing, a propulsion stage, processing lunar regolith, generating and transmitting solar power, cryogenic fluid transfer and storage and artificial gravity. Applications have been selected for assessment for future

  18. The sound symbolism bootstrapping hypothesis for language acquisition and language evolution.

    Science.gov (United States)

    Imai, Mutsumi; Kita, Sotaro

    2014-09-19

    Sound symbolism is a non-arbitrary relationship between speech sounds and meaning. We review evidence that, contrary to the traditional view in linguistics, sound symbolism is an important design feature of language, which affects online processing of language, and most importantly, language acquisition. We propose the sound symbolism bootstrapping hypothesis, claiming that (i) pre-verbal infants are sensitive to sound symbolism, due to a biologically endowed ability to map and integrate multi-modal input, (ii) sound symbolism helps infants gain referential insight for speech sounds, (iii) sound symbolism helps infants and toddlers associate speech sounds with their referents to establish a lexical representation and (iv) sound symbolism helps toddlers learn words by allowing them to focus on referents embedded in a complex scene, alleviating Quine's problem. We further explore the possibility that sound symbolism is deeply related to language evolution, drawing the parallel between historical development of language across generations and ontogenetic development within individuals. Finally, we suggest that sound symbolism bootstrapping is a part of a more general phenomenon of bootstrapping by means of iconic representations, drawing on similarities and close behavioural links between sound symbolism and speech-accompanying iconic gesture. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Cross-spectrum symbol synchronization

    Science.gov (United States)

    Mccallister, R. D.; Simon, M. K.

    1981-01-01

    A popular method of symbol synchronization exploits one aspect of generalized harmonic analysis, normally referred to as the cross-spectrum. Utilizing nonlinear techniques, the input symbol energy is effectively concentrated onto multiples of the symbol clock frequency, facilitating application of conventional phase lock synchronization techniques. A general treatment of the cross-spectrum technique is developed and shown to be applicable across a broad class of symbol modulation formats. An important specific symbol synchronization application is then treated, focusing the general development to provide both insight and quantitative measure of the performance impact associated with variation in these key synchronization parameters: symbol modulation format, symbol transition probability, symbol energy to noise density ratio, and symbol rate to filter bandwidth ratio.

  20. Deformed two-photon squeezed states in noncommutative space

    International Nuclear Information System (INIS)

    Zhang Jianzu

    2004-01-01

    Recent studies on nonperturbation aspects of noncommutative quantum mechanics explored a new type of boson commutation relations at the deformed level, described by deformed annihilation-creation operators in noncommutative space. This correlated boson commutator correlates different degrees of freedom, and shows an essential influence on dynamics. This Letter devotes to the development of formalism of deformed two-photon squeezed states in noncommutative space. General representations of deformed annihilation-creation operators and the consistency condition for the electromagnetic wave with a single mode of frequency in noncommunicative space are obtained. Two-photon squeezed states are studied. One finds that variances of the dimensionless Hermitian quadratures of the annihilation operator in one degree of freedom include variances in the other degree of freedom. Such correlations show the new feature of spatial noncommutativity and allow a deeper understanding of the correlated boson commutator

  1. Strategies For Human Exploration Leading To Human Colonization of Space

    Science.gov (United States)

    Smitherman, David; Everett, Harmon

    2009-01-01

    Enabling the commercial development of space is key to the future colonization of space and key to a viable space exploration program. Without commercial development following in the footsteps of exploration it is difficult to justify and maintain public interest in the efforts. NASA's exploration program has suffered from the lack of a good commercial economic strategy for decades. Only small advances in commercial space have moved forward, and only up to Earth orbit with the commercial satellite industry. A way to move beyond this phase is to begin the establishment of human commercial activities in space in partnership with the human exploration program. In 2007 and 2008, the authors researched scenarios to make space exploration and commercial space development more feasible as part of their graduate work in the Space Architecture Program at the Sasakawa International Center for Space Architecture at the University of Houston, Houston, Texas. Through this research it became apparent that the problems facing future colonization are much larger than the technology being developed or the international missions that our space agencies are pursuing. These issues are addressed in this paper with recommendations for space exploration, commercial development, and space policy that are needed to form a strategic plan for human expansion into space. In conclusion, the authors found that the current direction in space as carried out by our space agencies around the world is definitely needed, but is inadequate and incapable of resolving all of the issues that inhibit commercial space development. A bolder vision with strategic planning designed to grow infrastructures and set up a legal framework for commercial markets will go a long way toward enabling the future colonization of space.

  2. Water: A Critical Material Enabling Space Exploration

    Science.gov (United States)

    Pickering, Karen D.

    2014-01-01

    Water is one of the most critical materials in human spaceflight. The availability of water defines the duration of a space mission; the volume of water required for a long-duration space mission becomes too large, heavy, and expensive for launch vehicles to carry. Since the mission duration is limited by the amount of water a space vehicle can carry, the capability to recycle water enables space exploration. In addition, water management in microgravity impacts spaceflight in other respects, such as the recent emergency termination of a spacewalk caused by free water in an astronaut's spacesuit helmet. A variety of separation technologies are used onboard spacecraft to ensure that water is always available for use, and meets the stringent water quality required for human space exploration. These separation technologies are often adapted for use in a microgravity environment, where water behaves in unique ways. The use of distillation, membrane processes, ion exchange and granular activated carbon will be reviewed. Examples of microgravity effects on operations will also be presented. A roadmap for future technologies, needed to supply water resources for the exploration of Mars, will also be reviewed.

  3. Symbolic Number Comparison Is Not Processed by the Analog Number System: Different Symbolic and Non-symbolic Numerical Distance and Size Effects

    Directory of Open Access Journals (Sweden)

    Attila Krajcsi

    2018-02-01

    Full Text Available HIGHLIGHTSWe test whether symbolic number comparison is handled by an analog noisy system.Analog system model has systematic biases in describing symbolic number comparison.This suggests that symbolic and non-symbolic numbers are processed by different systems.Dominant numerical cognition models suppose that both symbolic and non-symbolic numbers are processed by the Analog Number System (ANS working according to Weber's law. It was proposed that in a number comparison task the numerical distance and size effects reflect a ratio-based performance which is the sign of the ANS activation. However, increasing number of findings and alternative models propose that symbolic and non-symbolic numbers might be processed by different representations. Importantly, alternative explanations may offer similar predictions to the ANS prediction, therefore, former evidence usually utilizing only the goodness of fit of the ANS prediction is not sufficient to support the ANS account. To test the ANS model more rigorously, a more extensive test is offered here. Several properties of the ANS predictions for the error rates, reaction times, and diffusion model drift rates were systematically analyzed in both non-symbolic dot comparison and symbolic Indo-Arabic comparison tasks. It was consistently found that while the ANS model's prediction is relatively good for the non-symbolic dot comparison, its prediction is poorer and systematically biased for the symbolic Indo-Arabic comparison. We conclude that only non-symbolic comparison is supported by the ANS, and symbolic number comparisons are processed by other representation.

  4. Images and symbols in the Argentinean public opinion on the nuclear energy and the environment: 'The necessity of a new communicational strategy'

    International Nuclear Information System (INIS)

    Chahab, M.

    2006-01-01

    The present work expresses some ideas on certain characteristics of the public opinion in Argentina with regard to the perception that one has of the use of the nuclear energy and the care of the environment. The work tried to explain the reasons that although Argentina has a long tradition and a considerable international prestige in the generation, investigation and controls of the nuclear energy, at the same time, the argentinean public opinion has not shown in favor of the development of the same one, perceiving that the use of this energy would bring problems for the environment. In the work it was to explain some of the reasons of this opinion state that takes it as a psychological state of people, and that would have elements, symbols and negative interior images in people that work as strongly ingrained beliefs so that the fellows ponder to the nuclear option as the one that less it is wanted for the development of the country. The idea was also developed that these images and negative symbols toward the development of the nuclear energy could have origin in information of the massive media of communication, among other sources that could be persuading to the public opinion through the repetition and to study in depth of these messages toward psychological states contrary to the development of the nuclear energy. The present work tried to explore and to describe this internal universe of the argentinean public opinion with the objective of outlining mechanisms, strategies or action plans from the institutions linked to the nuclear energy that try to open the internal space of people toward an approach more positive with the perception of the development of the nuclear energy in its links with the environment. On this objective, the present work outlined the idea that the opening of the perceptive mark in people would have that to generate it 'not in opposition to the existent beliefs' but trying to win alternative mental spaces in the people. In this space

  5. Human Space Exploration: The Moon, Mars, and Beyond

    Science.gov (United States)

    Sexton, Jeffrey D.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed, to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. Why the Moon? Many questions about the Moon's potential resources and how its history is linked to that of Earth were spurred by the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment for extended expeditions. The Moon also will serve as a training ground before embarking on the longer, more difficult trip to Mars. NASA plans to build a lunar outpost at one of the lunar poles, learn to live off the land, and reduce dePendence on Earth for longer missions. America needs to extend its ability to survive in hostile environments close to our home planet before astronauts will reach Mars, a planet very much like Earth. NASA has worked with scientists to define lunar exploration goals and is addressing the opportunities for a range of scientific study on Mars. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I

  6. Global partnerships: Expanding the frontiers of space exploration education

    Science.gov (United States)

    MacLeish, Marlene Y.; Akinyede, Joseph O.; Goswami, Nandu; Thomson, William A.

    2012-11-01

    Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the "inspirational and educational value of space exploration" [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics' (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2]. Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives. This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed

  7. Symbolism in prehistoric man.

    Science.gov (United States)

    Facchini, F

    2000-12-01

    The aptitude for symbolization, characteristic of man, is revealed not only in artistic representations and funerary practices. It is exhibited by every manifestation of human activity or representation of natural phenomena that assumes or refers to a meaning. We can recognize functional symbolism (tool-making, habitative or food technology), social symbolism, (language and social communication) and spiritual symbolism (funerary practices and artistic expressions). On the basis of these concepts, research into symbolism in prehistoric man allows us to recognize forms of symbolism already in the manifestations of the most ancient humans, starting with Homo habilis (or rudolfensis). Toolmaking, social organization and organization of the territory are oriented toward survival and the life of the family group. They attest to symbolic behaviors and constitute symbolic systems by means of which man expresses himself, lives and transmits his symbolic world. The diverse forms of symbolism are discussed with reference to the different phases of prehistoric humanity.

  8. The Space Medicine Exploration Medical Condition List

    Science.gov (United States)

    Watkins, Sharmi; Barr, Yael; Kerstman, Eric

    2011-01-01

    Exploration Medical Capability (ExMC) is an element of NASA s Human Research Program (HRP). ExMC's goal is to address the risk of the "Inability to Adequately Recognize or Treat an Ill or Injured Crewmember." This poster highlights the approach ExMC has taken to address this risk. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to define the set of medical conditions that are most likely to occur during exploration space flight missions. The list was derived from the International Space Station Medical Checklist, the Shuttle Medical Checklist, in-flight occurrence data from the Lifetime Surveillance of Astronaut Health, and NASA subject matter experts. The list of conditions was further prioritized for eight specific design reference missions with the assistance of the ExMC Advisory Group. The purpose of the SMEMCL is to serve as an evidence-based foundation for the conditions that could affect a crewmember during flight. This information is used to ensure that the appropriate medical capabilities are available for exploration missions.

  9. Can symbols be ‘promoted’ or ‘demoted’?: Symbols as religious phenomena

    Directory of Open Access Journals (Sweden)

    Jaco Beyers

    2013-03-01

    Full Text Available Religious symbols are part of our world, relating to another world. In order to understand the process by which symbols grow and develop, the particular context of a symbol is important. In this article a particular theory as to what symbols are, is presented. Religion presupposes the existence of two worlds: this-worldly (profane and the other-worldly (sacred. The means of communication and reference between these two worlds are symbols. Two examples are investigated so as to indicate how symbols can over time either be demoted or promoted. In the case of the Asherah and asherah as related in the Old Testament a demotion of a symbol is illustrated. The growth of ancient Egyptian religion is an example of a possible promotion of symbols. The conditions under which these processes can occur are investigated.

  10. SYMBOLIC LANDSCAPE OF CONSCIOUSNESS: MAN BETWEEN REPRESENTATIONALISM, FUNCTIONALISM AND RELATIVISM

    Directory of Open Access Journals (Sweden)

    P. V. Kretov

    2017-12-01

    Full Text Available Purpose. The aim of the study is to clarify the changed interpretation of symbol in the context of the ontological turn in cultural anthropology and philosophical anthropology and their correlation with the functioning of the semantic field of culture, and in particular with religious symbols. The paper also considers an epistemological-ideological positions of representationalism, functionalism and relativism with respect to philosopheme of symbol. Methodology. The authors implemented theoretical and conceptual analysis in synchronic and diachronic aspects, the methodology of comparative consideration of the character within the analytical and existential paradigms in the 20th century philosophy. Originality. The work presents the study of correlation between aspect consideration of the nature and specific character in representationalism, functionalism and relativism within the philosophical projects of the cognitive position. The authors substantiated the position of symbol ontologization in the contemporary cultural and philosophical anthropology and the importance of convergence of the symbol concept and philosopheme with the concepts of an object and a thing. They fixed the value of the ontological turn in cultural anthropology for philosophical anthropology. The authors specifically examined the correlation between the declared symbol interpretation, project of object-oriented ontology and the modern philosophy of science. They substantiated ontological concept of symbolic landscape of modern philosophical anthropology, social philosophy and philosophy of mind. The symbol and religious symbolism have the significant importance for human identity, the symbol is considered to be the tool of human’s self-knowledge. Conclusions. The paper outlines the specific character of existence of symbol philosopheme in communicative field of modern man, the social media space, in particular the role of religious symbols for the construction of

  11. Modular Power Standard for Space Explorations Missions

    Science.gov (United States)

    Oeftering, Richard C.; Gardner, Brent G.

    2016-01-01

    Future human space exploration will most likely be composed of assemblies of multiple modular spacecraft elements with interconnected electrical power systems. An electrical system composed of a standardized set modular building blocks provides significant development, integration, and operational cost advantages. The modular approach can also provide the flexibility to configure power systems to meet the mission needs. A primary goal of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project is to establish a Modular Power Standard that is needed to realize these benefits. This paper is intended to give the space exploration community a "first look" at the evolving Modular Power Standard and invite their comments and technical contributions.

  12. Wavelet characterization of Hörmander symbol class Sm ρ, δ Sm ρ ...

    Indian Academy of Sciences (India)

    ... non-regular symbol operators, we establish sharp 2-continuity which is better than Calderón and Vaillancourt's result, and establish L p ( 1 ≤ p ≤ ∞ ) continuity which is new and sharp. Our new idea is to analyse the symbol operators in phase space with relative wavelets, and to establish the kernel distribution property ...

  13. Expressions of manipulator kinematic equations via symbolic computation

    International Nuclear Information System (INIS)

    Sasaki, Shinobu

    1993-09-01

    While it is simple in principle to determine the position and orientation of the manipulator hand, its computational process has been regarded as extremely laborious since trigonometric functions must be calculated many times in operations of revolute or rotation. Due to development of a general class of kinematic algorithm based on iterative methods, however, we have come to a satisfactory settlement of this problem. In the present article, we consider to construct symbolic kinematic equations in an automatic fashion making use of the algorithm. To this end, recursive expressions are applied to a symbolic computation system REDUCE. As a concrete result, a complete kinematic model for a six-jointed arm having all kinematic attributes is provided. Together with work space analysis, the computer-aided generation of kinematic equations in symbolic form will serve to liberate us from their cumbersome derivations. (author)

  14. Applications of MEMS for Space Exploration

    Science.gov (United States)

    Tang, William C.

    1998-03-01

    Space exploration in the coming century will emphasize cost effectiveness and highly focused mission objectives, which will result in frequent multiple missions that broaden the scope of space science and to validate new technologies on a timely basis. Micro Electro Mechanical Systems (MEMS) is one of the key enabling technologies to create cost-effective, ultra-miniaturized, robust, and functionally focused spacecraft for both robotic and human exploration programs. Examples of MEMS devices at various stages of development include microgyroscope, microseismometer, microhygrometer, quadrupole mass spectrometer, and micropropulsion engine. These devices, when proven successful, will serve as models for developing components and systems for new-millennium spacecraft.

  15. Memory Efficient Data Structures for Explicit Verification of Timed Systems

    DEFF Research Database (Denmark)

    Taankvist, Jakob Haahr; Srba, Jiri; Larsen, Kim Guldstrand

    2014-01-01

    Timed analysis of real-time systems can be performed using continuous (symbolic) or discrete (explicit) techniques. The explicit state-space exploration can be considerably faster for models with moderately small constants, however, at the expense of high memory consumption. In the setting of timed......-arc Petri nets, we explore new data structures for lowering the used memory: PTries for efficient storing of configurations and time darts for semi-symbolic description of the state-space. Both methods are implemented as a part of the tool TAPAAL and the experiments document at least one order of magnitude...... of memory savings while preserving comparable verification times....

  16. Marshall Space Flight Center - Launching the Future of Science and Exploration

    Science.gov (United States)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  17. Deep space telecommunications, navigation, and information management - Support of the Space Exploration Initiative

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    1990-10-01

    The principal challenges in providing effective deep space navigation, telecommunications, and information management architectures and designs for Mars exploration support are presented. The fundamental objectives are to provide the mission with the means to monitor and control mission elements, obtain science, navigation, and engineering data, compute state vectors and navigate, and to move these data efficiently and automatically between mission nodes for timely analysis and decision making. New requirements are summarized, and related issues and challenges including the robust connectivity for manned and robotic links, are identified. Enabling strategies are discussed, and candidate architectures and driving technologies are described.

  18. Symbolic PathFinder: Symbolic Execution of Java Bytecode

    Science.gov (United States)

    Pasareanu, Corina S.; Rungta, Neha

    2010-01-01

    Symbolic Pathfinder (SPF) combines symbolic execution with model checking and constraint solving for automated test case generation and error detection in Java programs with unspecified inputs. In this tool, programs are executed on symbolic inputs representing multiple concrete inputs. Values of variables are represented as constraints generated from the analysis of Java bytecode. The constraints are solved using off-the shelf solvers to generate test inputs guaranteed to achieve complex coverage criteria. SPF has been used successfully at NASA, in academia, and in industry.

  19. 2D-Zernike Polynomials and Coherent State Quantization of the Unit Disc

    Energy Technology Data Exchange (ETDEWEB)

    Thirulogasanthar, K., E-mail: santhar@gmail.com [Concordia University, Department of Comuter Science and Software Engineering (Canada); Saad, Nasser, E-mail: nsaad@upei.ca [University of Prince Edward Island, Department of mathematics and Statistics (Canada); Honnouvo, G., E-mail: g-honnouvo@yahoo.fr [McGill University, Department of Mathematics and Statistics (Canada)

    2015-12-15

    Using the orthonormality of the 2D-Zernike polynomials, reproducing kernels, reproducing kernel Hilbert spaces, and ensuring coherent states attained. With the aid of the so-obtained coherent states, the complex unit disc is quantized. Associated upper symbols, lower symbols and related generalized Berezin transforms also obtained. A number of necessary summation formulas for the 2D-Zernike polynomials proved.

  20. Space exploration - Present and future challenges

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    Our future deep-space exploration faces many daunting challenges, but three of them loom high above the rest: physiological debilitation, radiation sickness and psychological stress. Many measures are presently being developed to reduce these difficulties. However, in the long run, two important new developments are required: abundant supply of power, and advanced space propulsion. The future looks bright, however. While the road is a long one, it is now well defined and many exciting explorations are within near-term reach.BiographyDr. Chang-Diaz graduated from MIT in the field of applied plasma physics and fusion research. He has been a NASA space shuttle astronaut on seven missions between 1986 and 2002. As director of the ASP Laboratory in Houston, he continues research on plasma rockets.For more details: see www.jsc.nasa.gov/Bios/htmlbios/chang.htmlNote: Tea and coffee will be served at 16:00 hrs.

  1. The primal scene and symbol formation.

    Science.gov (United States)

    Niedecken, Dietmut

    2016-06-01

    This article discusses the meaning of the primal scene for symbol formation by exploring its way of processing in a child's play. The author questions the notion that a sadomasochistic way of processing is the only possible one. A model of an alternative mode of processing is being presented. It is suggested that both ways of processing intertwine in the "fabric of life" (D. Laub). Two clinical vignettes, one from an analytic child psychotherapy and the other from the analysis of a 30 year-old female patient, illustrate how the primal scene is being played out in the form of a terzet. The author explores whether the sadomasochistic way of processing actually precedes the "primal scene as a terzet". She discusses if it could even be regarded as a precondition for the formation of the latter or, alternatively, if the "combined parent-figure" gives rise to ways of processing. The question is being left open. Finally, it is shown how both modes of experiencing the primal scene underlie the discoursive and presentative symbol formation, respectively. Copyright © 2015 Institute of Psychoanalysis.

  2. State Space Modeling Using SAS

    Directory of Open Access Journals (Sweden)

    Rajesh Selukar

    2011-05-01

    Full Text Available This article provides a brief introduction to the state space modeling capabilities in SAS, a well-known statistical software system. SAS provides state space modeling in a few different settings. SAS/ETS, the econometric and time series analysis module of the SAS system, contains many procedures that use state space models to analyze univariate and multivariate time series data. In addition, SAS/IML, an interactive matrix language in the SAS system, provides Kalman filtering and smoothing routines for stationary and nonstationary state space models. SAS/IML also provides support for linear algebra and nonlinear function optimization, which makes it a convenient environment for general-purpose state space modeling.

  3. Appropriateness of using a symbol to identify dementia and/or delirium: a systematic review.

    Science.gov (United States)

    Hines, Sonia; Abbey, Jenny; Wilson, Jacinda; Sacre, Sandy

    2009-01-01

    Alzheimer's Australia contracted the Dementia Collaborative Research Centre - Consumers, Carers and Social Research to conduct a systematic review to explore the appropriateness of a symbol for dementia.The concept of a symbol for people with dementia was an outcome of the Alzheimer's Australia National Consumer Summit on Dementia held in Canberra in October 2005. People living with dementia and their carers identified that a national symbol would be helpful in order to encourage appropriate treatment of people with dementia.Funding was provided as part of the Australian Government's Dementia Initiative to Alzheimer's Australia to work in collaboration with the Queensland University of Technology and Catholic Health Australia to explore, through research, the viability and potential impact of such a symbol in a range of care settings. The main objective of this systematic review was to evaluate any published and unpublished evidence regarding the appropriateness of developing a symbol for dementia and/or delirium, which could be used in a variety of settings to indicate that a person has dementia and/or delirium. A literature search was performed using the following databases: Ageline, APAIS Health, CINAHL, Dissertations and Theses Abstracts, Embase, MEDLINE, PsycEXTRAS, PsycINFO, PsycArticles, Current Contents, LegalTrac, Health and Society, Sociological Abstracts, Family and Society, CINCH, and Hein Online databases. The reference lists of articles retrieved were hand searched, as well as a range of literature from health, legal, ethical and emergency services. Grey literature was searched for using a number of Internet sites, and personal email communication with authors of relevant studies and known researchers in the field was initiated. Papers were retrieved if they provided information about attitudes or perceptions towards the appropriateness of symbols, identifiers or alerts used to inform others that someone has dementia, delirium and/or another medical

  4. Product Lifecycle Management and Sustainable Space Exploration

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.; Grieves, Michael

    2011-01-01

    This slide presentation reviews the use of product lifecycle management (PLM) in the general aerospace industry, its use and development at NASA and at Marshall Space Flight Center, and how the use of PLM can lead to sustainable space exploration.

  5. Priorities in national space strategies and governance of the member states of the European Space Agency

    Science.gov (United States)

    Adriaensen, Maarten; Giannopapa, Christina; Sagath, Daniel; Papastefanou, Anastasia

    2015-12-01

    The European Space Agency (ESA) has twenty Member States with a variety of strategic priorities and governance structures regarding their space activities. A number of countries engage in space activities exclusively though ESA, while others have also their own national space programme. Some consider ESA as their prime space agency and others have additionally their own national agency with respective programmes. The main objective of this paper is to provide an up-to date overview and a holistic assessment of strategic priorities and the national space governance structures in 20 ESA Member States. This analysis and assessment has been conducted by analysing the Member States public documents, information provided at ESA workshop on this topic and though unstructured interviews. The paper is structured to include two main elements: priorities and trends in national space strategies and space governance in ESA Member States. The first part of this paper focuses on the content and analysis of the national space strategies and indicates the main priorities and trends in Member States. The priorities are categorised with regards to technology domains, the role of space in the areas of sustainability and the motivators that boost engagement in space. These vary from one Member State to another and include with different levels of engagement in technology domains amongst others: science and exploration, navigation, Earth observation, human space flight, launchers, telecommunications, and integrated applications. Member States allocate a different role of space as enabling tool adding to the advancement of sustainability areas including: security, resources, environment and climate change, transport and communication, energy, and knowledge and education. The motivators motivating reasoning which enhances or hinders space engagement also differs. The motivators identified are industrial competitiveness, job creation, technology development and transfer, social benefits

  6. Concealed identification symbols and nondestructive determination of the identification symbols

    Science.gov (United States)

    Nance, Thomas A.; Gibbs, Kenneth M.

    2014-09-16

    The concealing of one or more identification symbols into a target object and the subsequent determination or reading of such symbols through non-destructive testing is described. The symbols can be concealed in a manner so that they are not visible to the human eye and/or cannot be readily revealed to the human eye without damage or destruction of the target object. The identification symbols can be determined after concealment by e.g., the compilation of multiple X-ray images. As such, the present invention can also provide e.g., a deterrent to theft and the recovery of lost or stolen objects.

  7. Commercialization is Required for Sustainable Space Exploration and Development

    Science.gov (United States)

    Martin, Gary L.; Olson, John M.

    2009-01-01

    The U.S. Space Exploration policy outlines an exciting new direction in space for human and robotic exploration and development beyond low Earth orbit. Pressed by this new visionary guidance, human civilization will be able to methodically build capabilities to move off Earth and into the solar system in a step-by-step manner, gradually increasing the capability for humans to stay longer in space and move further away from Earth. The new plans call for an implementation that would create an affordable and sustainable program in order to span over generations of explorers, each new generation pushing back the boundaries and building on the foundations laid by the earlier. To create a sustainable program it is important to enable and encourage the development of a selfsupporting commercial space industry leveraging both traditional and non-traditional segments of the industrial base. Governments will not be able to open the space frontier on their own because their goals change over relatively short timescales and because the large costs associated with human spaceflight cannot be sustained. A strong space development industrial sector is needed that can one day support the needs of commercial space enterprises as well as provide capabilities that the National Aeronautics and Space Administration (NASA) and other national space agencies can buy to achieve their exploration goals. This new industrial space sector will someday provide fundamental capabilities like communications, power, logistics, and even cargo and human space transportation, just as commercial companies are able to provide these services on Earth today. To help develop and bolster this new space industrial sector, NASA and other national space agencies can enable and facilitate it in many ways, including reducing risk by developing important technologies necessary for commercialization of space, and as a paying customer, partner, or anchor tenant. This transition from all or mostly government

  8. Evolution of space drones for planetary exploration: A review

    Science.gov (United States)

    Hassanalian, M.; Rice, D.; Abdelkefi, A.

    2018-02-01

    In the past decade, there has been a tendency to design and fabricate drones which can perform planetary exploration. Generally, there are various ways to study space objects, such as the application of telescopes and satellites, launching robots and rovers, and sending astronauts to the targeted solar bodies. However, due to the advantages of drones compared to other approaches in planetary exploration, ample research has been carried out by different space agencies in the world, including NASA to apply drones in other solar bodies. In this review paper, several studies which have been performed on space drones for planetary exploration are consolidated and discussed. Design and fabrication challenges of space drones, existing methods for their flight tests, different methods for deployment and planet entry, and various navigation and control approaches are reviewed and discussed elaborately. Limitations of applying space drones, proposed solutions for future space drones, and recommendations are also presented and discussed.

  9. Symbolic markers and institutional innovation in transforming urban spaces

    OpenAIRE

    Dembski, S.

    2012-01-01

    The current round of urban transformation has resulted in a need for modes of representation for the emerging city of the 21st century. Many urban regions therefore seek to identify the iconic objects and devices that could function as bearers of a new metropolitan identity. A variety of such expressions, which are labelled ‘symbolic markers’, are employed in planning practices to organise focus and to mobilise social energies in line with a certain project mission. This thesis argues that th...

  10. Space science--a fountain of exploration and discovery

    International Nuclear Information System (INIS)

    Gu Yidong

    2014-01-01

    Space science is a major part of space activities, as well as one of the most active areas in scientific exploration today. This paper gives a brief introduction regarding the main achievements in space science involving solar physics and space physics, space astronomy, moon and planetary science, space geo- science, space life science, and micro- gravity science. At the very frontier of basic research, space science should be developed to spearhead breakthroughs in China's fundamental sciences. (author)

  11. Symbolic and non symbolic numerical representation in adults with and without developmental dyscalculia

    Directory of Open Access Journals (Sweden)

    Furman Tamar

    2012-11-01

    Full Text Available Abstract Background The question whether Developmental Dyscalculia (DD; a deficit in the ability to process numerical information is the result of deficiencies in the non symbolic numerical representation system (e.g., a group of dots or in the symbolic numerical representation system (e.g., Arabic numerals has been debated in scientific literature. It is accepted that the non symbolic system is divided into two different ranges, the subitizing range (i.e., quantities from 1-4 which is processed automatically and quickly, and the counting range (i.e., quantities larger than 4 which is an attention demanding procedure and is therefore processed serially and slowly. However, so far no study has tested the automaticity of symbolic and non symbolic representation in DD participants separately for the subitizing and the counting ranges. Methods DD and control participants undergo a novel version of the Stroop task, i.e., the Enumeration Stroop. They were presented with a random series of between one and nine written digits, and were asked to name either the relevant written digit (in the symbolic task or the relevant quantity of digits (in the non symbolic task while ignoring the irrelevant aspect. Result DD participants, unlike the control group, didn't show any congruency effect in the subitizing range of the non symbolic task. Conclusion These findings suggest that DD may be impaired in the ability to process symbolic numerical information or in the ability to automatically associate the two systems (i.e., the symbolic vs. the non symbolic. Additionally DD have deficiencies in the non symbolic counting range.

  12. Symbolic and non symbolic numerical representation in adults with and without developmental dyscalculia.

    Science.gov (United States)

    Furman, Tamar; Rubinsten, Orly

    2012-11-28

    The question whether Developmental Dyscalculia (DD; a deficit in the ability to process numerical information) is the result of deficiencies in the non symbolic numerical representation system (e.g., a group of dots) or in the symbolic numerical representation system (e.g., Arabic numerals) has been debated in scientific literature. It is accepted that the non symbolic system is divided into two different ranges, the subitizing range (i.e., quantities from 1-4) which is processed automatically and quickly, and the counting range (i.e., quantities larger than 4) which is an attention demanding procedure and is therefore processed serially and slowly. However, so far no study has tested the automaticity of symbolic and non symbolic representation in DD participants separately for the subitizing and the counting ranges. DD and control participants undergo a novel version of the Stroop task, i.e., the Enumeration Stroop. They were presented with a random series of between one and nine written digits, and were asked to name either the relevant written digit (in the symbolic task) or the relevant quantity of digits (in the non symbolic task) while ignoring the irrelevant aspect. DD participants, unlike the control group, didn't show any congruency effect in the subitizing range of the non symbolic task. These findings suggest that DD may be impaired in the ability to process symbolic numerical information or in the ability to automatically associate the two systems (i.e., the symbolic vs. the non symbolic). Additionally DD have deficiencies in the non symbolic counting range.

  13. From space exploration to commercialisation

    NARCIS (Netherlands)

    Tkatchova, S.A.

    2006-01-01

    Space exploration has captured the imagination and dreams of many scientists, engineers and visionaries.The ISS is being built by five ISS partners; NASA, RSA, ESA, CSA and JAXA. ISS commercialisation is the process by which ISS products and services are sold to private companies, without

  14. The belives on the asphalt. Sacred sites as means of appropriation of the public space in México City

    Directory of Open Access Journals (Sweden)

    María Ana Portal

    2009-07-01

    Full Text Available This paper explores how residents of México City appropriate public spaces by transforming local places into sacred sites.  This sacred quality is achieved by installing crucifixes, altars and niches for virgins and saints.  These symbols of folk religion not only adorn public sites, but also offer protection, serve as mnemonic devices and manage spatial liminality -all this in a chaotic city where public spaces are considered to be almost extinct.  These elements -- faces, proper names, common religious symbols- mark “anonymous” urban spaces, generating meaning and memory for inhabitants.  In this fashion, public spaces become a scenario for projecting personal elements of  neighborhood groups.

  15. Transformation of Socioeconomic Space: The Role of the State

    Directory of Open Access Journals (Sweden)

    Alexander Nikolaevich Shvetsov

    2015-03-01

    Full Text Available Modern Russia is traditionally characterized by a special and strong public participation in solving problems of spatial development. Thus, the state has following diverse roles: 1 the creator of the modern space configuration; 2 the mastermind and main driving force of modern spatial transformations; 3 the regulator and investor of these processes; 4 the main sponsor and beneficiary of space transformation; and, finally, the hostage of its own dominance in the processes of spatial transformation. However, stereotypes are being gradually overcome and public policy in the area of spatial transformations focuses not only on «public projects» but also on self-development of regions, combined with the interests of big business which plays an increasing role in the transformation of socioeconomic space. The article reveals the meaning and content of the problem of systemic interaction between the state and space concerning the modernization of the country. The author explores the range of fundamental research and applied issues resulting from the contradictory combination of traditional (historical stereotypes and the latest Russian circumstances. These issues determine the background, nature and consequences of state impacts on socio-economic space, as well as the composition, content and validity of the used instruments

  16. A struggle on two fronts: boundary drawing in the lower region of the social space and the symbolic market for 'down-to-earthness'.

    Science.gov (United States)

    Jarness, Vegard; Flemmen, Magne Paalgard

    2017-12-26

    In this article we use qualitative interviews to examine how Norwegians possessing low volumes of cultural and economic capital demarcate themselves symbolically from the lifestyles of those above and below them in social space. In downward boundary drawing, a range of types of people are regarded as inferior because of perceived moral and aesthetic deficiencies. In upward boundary drawing, anti-elitist sentiments are strong: people practising resource-demanding lifestyles are viewed as harbouring 'snobbish' and 'elitist' attitudes. However, our analysis suggests that contemporary forms of anti-elitism are far from absolute, as symbolic expressions of privilege are markedly less challenged if they are parcelled in a 'down-to-earth' attitude. Previous studies have shown attempts by the privileged to downplay differences in cross-class encounters, accompanied by displays of openness and down-to-earthness. Our findings suggest that there is in fact a symbolic 'market' for such performances in the lower region of social space. This cross-class sympathy, we argue, helps naturalize, and thereby legitimize, class inequalities. The implications of this finding are outlined with reference to current scholarly debates about politics and populism, status and recognition and intersections between class and gender in the structuring of social inequalities. The article also contributes key methodological insights into the mapping of symbolic boundaries. Challenging Lamont's influential framework, we demonstrate that there is a need for a more complex analytical strategy rather than simply measuring the 'relative salience' of various boundaries in terms of their occurrence in qualitative interview data. In distinguishing analytically between usurpationary and exclusionary boundary strategies, we show that moral boundaries in particular can take on qualitatively different forms and that subtypes of boundaries are sometimes so tightly intertwined that separating them to measure

  17. Children’s Non-symbolic, Symbolic Addition and Their Mapping Capacity at 4–7 Years Old

    Directory of Open Access Journals (Sweden)

    Yanjun Li

    2017-07-01

    Full Text Available The study aimed to examine the developmental trajectories of non-symbolic and symbolic addition capacities in children and the mapping ability between these two. We assessed 106 4- to 7-year-old children and found that 4-year-olds were able to do non-symbolic addition but not symbolic addition. Five-year-olds and older were able to do symbolic addition and their performance in symbolic addition exceeded non-symbolic addition in grade 1 (approximate age 7. These results suggested non-symbolic addition ability emerges earlier and is less affected by formal mathematical education than symbolic addition. Meanwhile, we tested children’s bi-directional mapping ability using a novel task and found that children were able to map between symbolic and non-symbolic representations of number at age 5. Their ability in mapping non-symbolic to symbolic number became more proficient in grade 1 (approximate age 7. This suggests children at age 7 have developed a relatively mature symbolic representation system.

  18. Symbolic Solution Approach to Wind Turbine based on Doubly Fed Induction Generator Model

    DEFF Research Database (Denmark)

    Cañas–Carretón, M.; Gómez–Lázaro, E.; Martín–Martínez, S.

    2015-01-01

    –order induction generator is selected to model the electric machine, being this approach suitable to estimate the DFIG performance under transient conditions. The corresponding non–linear integro-differential equation system has been reduced to a linear state-space system by using an ad-hoc local linearization......This paper describes an alternative approach based on symbolic computations to simulate wind turbines equipped with Doubly–Fed Induction Generator (DFIG). The actuator disk theory is used to represent the aerodynamic part, and the one-mass model simulates the mechanical part. The 5th...

  19. State-space Manifold and Rotating Black Holes

    CERN Document Server

    Bellucci, Stefano

    2010-01-01

    We study a class of fluctuating higher dimensional black hole configurations obtained in string theory/ $M$-theory compactifications. We explore the intrinsic Riemannian geometric nature of Gaussian fluctuations arising from the Hessian of the coarse graining entropy, defined over an ensemble of brane microstates. It has been shown that the state-space geometry spanned by the set of invariant parameters is non-degenerate, regular and has a negative scalar curvature for the rotating Myers-Perry black holes, Kaluza-Klein black holes, supersymmetric $AdS_5$ black holes, $D_1$-$D_5$ configurations and the associated BMPV black holes. Interestingly, these solutions demonstrate that the principal components of the state-space metric tensor admit a positive definite form, while the off diagonal components do not. Furthermore, the ratio of diagonal components weakens relatively faster than the off diagonal components, and thus they swiftly come into an equilibrium statistical configuration. Novel aspects of the scali...

  20. Variable Vector Countermeasure Suit for Space Habitation and Exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — The "Variable Vector Countermeasure Suit (V2Suit) for Space Habitation and Exploration" is a visionary system concept that will revolutionize space missions by...

  1. Essential elements of a framework for future space exploration and use: the role of science

    Science.gov (United States)

    Rummel, John; Ehrenfreund, Pascale

    The objective of the COSPAR Panel on Exploration (PEX) is to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. The Outer Space Treaty (OST) of 1967 provides (Article I) for “exploration and use of outer space” as well as an obligation for States to authorize and supervise space activities (Article VI) so “that national activities are carried out in conformity with the provisions set forth in the. . Treaty,” while the provisions of Article IX of the Treaty include pursuing “studies of outer space, including the Moon and other celestial bodies, and conduct[ing] exploration of them so as to avoid their harmful contamination." In short, the Treaty provides for many activities to take place in outer space, but it also leaves to the future the definitions of “harmful contamination,” “adverse changes,” and even “use.” In order to provide for both protection and use in outer space, and therefore to provide for both scientific and economic exploration, an extension of the OST (or its replacement) will be required. Whatever policy choices are made in constructing such a framework, it is clear that scientific understanding of the solar system, and each of its individual planetary bodies, will be required to determine the balance—and it may be a dynamic balance—between protection and use of outer space environments. This paper will consider the role of scientific advice and continuing research and education within such a framework, and as an essential complement to the necessary regulation distinguishing between protection and use of different locations in outer space.

  2. 'demoted'?: Symbols as religious phenomena

    African Journals Online (AJOL)

    2013-03-06

    Mar 6, 2013 ... process by which symbols grow and develop, the particular context of a symbol is important. In this article a particular theory as to what symbols are, is presented. ... of communication and reference between these two worlds are symbols. .... from a psychological perspective, understands symbols as a.

  3. Cooperating expert systems for space station power distribution management

    International Nuclear Information System (INIS)

    Nguyen, T.A.; Chiou, W.C.

    1986-01-01

    In a complex system such as the manned Space Station, it is deemed necessary that many expert systems must perform tasks in a concurrent and cooperative manner. An important question to arise is: what cooperative-task-performing models are appropriate for multiple expert systems to jointly perform tasks. The solution to this question will provide a crucial automation design criteria for the Space Station complex systems architecture. Based on a client/server model for performing tasks, the authors have developed a system that acts as a front-end to support loosely-coupled communications between expert systems running on multiple Symbolics machines. As an example, they use the two ART*-based expert systems to demonstrate the concept of parallel symbolic manipulation for power distribution management and dynamic load planner/scheduler in the simulated Space Station environment. This on-going work will also explore other cooperative-task-performing models as alternatives which can evaluate inter and intra expert system communication mechanisms. It will serve as a testbed and a bench-marking tool for other Space Station expert subsystem communication and information exchange

  4. Cooperating Expert Systems For Space Station Power Distribution Management

    Science.gov (United States)

    Nguyen, T. A.; Chiou, W. C.

    1987-02-01

    In a complex system such as the manned Space Station, it is deem necessary that many expert systems must perform tasks in a concurrent and cooperative manner. An important question arise is: what cooperative-task-performing models are appropriate for multiple expert systems to jointly perform tasks. The solution to this question will provide a crucial automation design criteria for the Space Station complex systems architecture. Based on a client/server model for performing tasks, we have developed a system that acts as a front-end to support loosely-coupled communications between expert systems running on multiple Symbolics machines. As an example, we use two ART*-based expert systems to demonstrate the concept of parallel symbolic manipulation for power distribution management and dynamic load planner/scheduler in the simulated Space Station environment. This on-going work will also explore other cooperative-task-performing models as alternatives which can evaluate inter and intra expert system communication mechanisms. It will be served as a testbed and a bench-marking tool for other Space Station expert subsystem communication and information exchange.

  5. Presence Experiences - the eventalisation of urban space

    DEFF Research Database (Denmark)

    Pløger, John

    2010-01-01

    Cultural events are, as part of an urban development strategy, about (symbolic) representations, but for the human beings participating in the event it may include acts of in/visibility (anonymity versus expressivity) and different articulations of meaning or subjectivity in space. A particular...... of space that make these events a desired experience and the qualities of the presence-experience more desired than, for instance, the political content of the event. Why it is so is theoretically and philosophically explored by discussing the expressive signification of such events. If expressive...

  6. Enabling Sustainable Exploration through the Commercial Development of Space

    Science.gov (United States)

    Nall, Mark; Casas, Joseph

    2003-01-01

    The commercial development of space offers enabling benefits to space exploration. This paper examines how those benefits can be realized, and how the Space Product Development Office of the National Aeronautics and Space Administration is taking the first steps towards opening the space frontier through vital and sustainable industrial development. The Space Product Development Office manages 15 Commercial Space Centers that partner with US industry to develop opportunities for commerce in space. This partnership directly benefits NASA exploration in four primary ways. First, by actively involving traditional and non-traditional companies in commercial space activities, it seeks and encourages to the maximum extent possible the fullest commercial use of space, as directed by NASA's charter. Second, the commercial research and technologies pursued and developed in the program often have direct applicability to NASA priority mission areas. This dual use strategy for research and technology has the potential to greatly expand what the NASA scientific community can do. Third, the commercial experiment hardware developed by the Commercial Space Centers and their industrial partners is available for use by NASA researchers in support of priority NASA research. By utilizing low cost and existing commercial hardware, essential NASA research can be more readily accomplished. Fourth, by assisting industry in understanding the use of the environment of space and in helping industry enhance the tools and technologies for NASA and commercial space systems, the market for commercial space utilization and the capability for meeting the future growing market needs is being developed. These two activities taken together form the beginning of a new space economy that will enable sustainable NASA exploration of the universe.

  7. Symbolic and non-symbolic number magnitude processing in children with developmental dyscalculia.

    Science.gov (United States)

    Castro Cañizares, Danilka; Reigosa Crespo, Vivian; González Alemañy, Eduardo

    2012-11-01

    The aim of this study was to evaluate if children with Developmental Dyscalculia (DD) exhibit a general deficit in magnitude representations or a specific deficit in the connection of symbolic representations with the corresponding analogous magnitudes. DD was diagnosed using a timed arithmetic task. The experimental magnitude comparison tasks were presented in non-symbolic and symbolic formats. DD and typically developing (TD) children showed similar numerical distance and size congruity effects. However, DD children performed significantly slower in the symbolic task. These results are consistent with the access deficit hypothesis, according to which DD children's deficits are caused by difficulties accessing magnitude information from numerical symbols rather than in processing numerosities per se.

  8. Exploring a Third Space for Sustainable Educational Development—HIV/AIDS Prevention, Zambia

    Directory of Open Access Journals (Sweden)

    Ellen Carm

    2018-03-01

    Full Text Available This study was conducted in Zambia from 2002 to 2008, a country greatly affected by the HIV (Human Immunodeficiency Virus/AIDS (Acquired Immune Deficiency Syndrome epidemic. The global, national, as well as local discourses on spread and mitigation were clustered around scientific knowledge and the local context and cultural traditions. The education sector struggled with implementing the national HIV/AIDS education strategy but by a broader stakeholder involvement, and a close collaboration between the educational sector and tribal chiefs and their traditional internal structures, a localized approach emerged. The overall objective of the paper is to illustrate how a multi-voiced strategy can bring about sustainable change, illustrated by this study. The study used qualitative constructivist and grounded theoretical approaches, and applied the third generation of cultural and historical activity theory (CHAT as an analytical tool. Bernstein’s concept, symbolic control, contributes to a broader understanding of the underlying processes and outcomes of the study. The findings revealed that the strategically monitored multi-voiced participation of local stakeholders created a learning space where both scientific and indigenous knowledge were blended, and thereby creating solutions to preventive action meeting the local needs. The study exemplifies these processes by identifying contradictions between the various levels and activity systems involved, by listing some of their characteristics, manifestations and finally their negotiated solutions. These solutions, or the third space interventions, the outcome of the multi-voiced participation, is in the paper used to explore a theoretical framework for an ethical and decolonized development strategy; a precondition for sustained local development.

  9. Animated symbols

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth

    2008-01-01

    an analytic working model called Animated Symbols concerning critical reflection in a dialogic learning process. The model shows dialogue as interactions that involve two types of transformation: inner ‘learning processes' and outer signs and symbols. The classroom-based research study is part of a Ph...

  10. New symbol launched to warn public about radiation dangers. Supplementary symbol aims to help reduce needless deaths and injuries

    International Nuclear Information System (INIS)

    2007-01-01

    Full text: With radiating waves, a skull and crossbones and a running person, a new ionizing radiation warning symbol is being introduced to supplement the traditional international symbol for radiation, the three cornered trefoil. The new symbol is being launched today by the IAEA and the International Organization for Standardization (ISO) to help reduce needless deaths and serious injuries from accidental exposure to large radioactive sources. It will serve as a supplementary warning to the trefoil, which has no intuitive meaning and little recognition beyond those educated in its significance. 'I believe the international recognition of the specific expertise of both organizations will ensure that the new standard will be accepted and applied by governments and industry to improve the safety of nuclear applications, protection of people and the environment', said Ms. Eliana Amaral, Director, Division of Radiation, Transport and Waste Safety, IAEA. The new symbol is aimed at alerting anyone, anywhere to the potential dangers of being close to a large source of ionizing radiation, the result of a five-year project conducted in 11 countries around the world. The symbol was tested with different population groups - mixed ages, varying educational backgrounds, male and female - to ensure that its message of 'danger- stay away' was crystal clear and understood by all. 'We can't teach the world about radiation,' said Carolyn Mac Kenzie, an IAEA radiation specialist who helped develop the symbol, 'but we can warn people about dangerous sources for the price of sticker.' The new symbol, developed by human factor experts, graphic artists, and radiation protection experts, was tested by the Gallup Institute on a total of 1 650 individuals in Brazil, Mexico, Morocco, Kenya, Saudi Arabia, China, India, Thailand, Poland, Ukraine and the United States. The symbol is intended for IAEA Category 1, 2 and 3 sources defined as dangerous sources capable of death or serious injury

  11. New symbol launched to warn public about radiation dangers. Supplementary symbol aims to help reduce needless deaths and injuries

    International Nuclear Information System (INIS)

    2007-01-01

    Full text: With radiating waves, a skull and crossbones and a running person, a new ionizing radiation warning symbol is being introduced to supplement the traditional international symbol for radiation, the three cornered trefoil. The new symbol is being launched today by the IAEA and the International Organization for Standardization (ISO) to help reduce needless deaths and serious injuries from accidental exposure to large radioactive sources. It will serve as a supplementary warning to the trefoil, which has no intuitive meaning and little recognition beyond those educated in its significance. 'I believe the international recognition of the specific expertise of both organizations will ensure that the new standard will be accepted and applied by governments and industry to improve the safety of nuclear applications, protection of people and the environment', said Ms. Eliana Amaral, Director, Division of Radiation, Transport and Waste Safety, IAEA. The new symbol is aimed at alerting anyone, anywhere to the potential dangers of being close to a large source of ionizing radiation, the result of a five-year project conducted in 11 countries around the world. The symbol was tested with different population groups - mixed ages, varying educational backgrounds, male and female - to ensure that its message of 'danger- stay away' was crystal clear and understood by all. 'We can't teach the world about radiation,' said Carolyn Mac Kenzie, an IAEA radiation specialist who helped develop the symbol, 'but we can warn people about dangerous sources for the price of sticker.' The new symbol, developed by human factor experts, graphic artists, and radiation protection experts, was tested by the Gallup Institute on a total of 1 650 individuals in Brazil, Mexico, Morocco, Kenya, Saudi Arabia, China, India, Thailand, Poland, Ukraine and the United States. The symbol is intended for IAEA Category 1, 2 and 3 sources defined as dangerous sources capable of death or serious injury

  12. New symbol launched to warn public about radiation dangers. Supplementary symbol aims to help reduce needless deaths and injuries

    International Nuclear Information System (INIS)

    2007-01-01

    Full text: With radiating waves, a skull and crossbones and a running person, a new ionizing radiation warning symbol is being introduced to supplement the traditional international symbol for radiation, the three cornered trefoil. The new symbol is being launched today by the IAEA and the International Organization for Standardization (ISO) to help reduce needless deaths and serious injuries from accidental exposure to large radioactive sources. It will serve as a supplementary warning to the trefoil, which has no intuitive meaning and little recognition beyond those educated in its significance. 'I believe the international recognition of the specific expertise of both organizations will ensure that the new standard will be accepted and applied by governments and industry to improve the safety of nuclear applications, protection of people and the environment', said Ms. Eliana Amaral, Director, Division of Radiation, Transport and Waste Safety, IAEA. The new symbol is aimed at alerting anyone, anywhere to the potential dangers of being close to a large source of ionizing radiation, the result of a five-year project conducted in 11 countries around the world. The symbol was tested with different population groups - mixed ages, varying educational backgrounds, male and female - to ensure that its message of 'danger- stay away' was crystal clear and understood by all. 'We can't teach the world about radiation,' said Carolyn Mac Kenzie, an IAEA radiation specialist who helped develop the symbol, 'but we can warn people about dangerous sources for the price of sticker.' The new symbol, developed by human factor experts, graphic artists, and radiation protection experts, was tested by the Gallup Institute on a total of 1 650 individuals in Brazil, Mexico, Morocco, Kenya, Saudi Arabia, China, India, Thailand, Poland, Ukraine and the United States. The symbol is intended for IAEA Category 1, 2 and 3 sources defined as dangerous sources capable of death or serious injury

  13. New symbol launched to warn public about radiation dangers. Supplementary symbol aims to help reduce needless deaths and injuries

    International Nuclear Information System (INIS)

    2007-01-01

    Full text: With radiating waves, a skull and crossbones and a running person, a new ionizing radiation warning symbol is being introduced to supplement the traditional international symbol for radiation, the three cornered trefoil. The new symbol is being launched today by the IAEA and the International Organization for Standardization (ISO) to help reduce needless deaths and serious injuries from accidental exposure to large radioactive sources. It will serve as a supplementary warning to the trefoil, which has no intuitive meaning and little recognition beyond those educated in its significance. 'I believe the international recognition of the specific expertise of both organizations will ensure that the new standard will be accepted and applied by governments and industry to improve the safety of nuclear applications, protection of people and the environment', said Ms. Eliana Amaral, Director, Division of Radiation, Transport and Waste Safety, IAEA. The new symbol is aimed at alerting anyone, anywhere to the potential dangers of being close to a large source of ionizing radiation, the result of a five-year project conducted in 11 countries around the world. The symbol was tested with different population groups - mixed ages, varying educational backgrounds, male and female - to ensure that its message of 'danger- stay away' was crystal clear and understood by all. 'We can't teach the world about radiation,' said Carolyn Mac Kenzie, an IAEA radiation specialist who helped develop the symbol, 'but we can warn people about dangerous sources for the price of sticker.' The new symbol, developed by human factor experts, graphic artists, and radiation protection experts, was tested by the Gallup Institute on a total of 1 650 individuals in Brazil, Mexico, Morocco, Kenya, Saudi Arabia, China, India, Thailand, Poland, Ukraine and the United States. The symbol is intended for IAEA Category 1, 2 and 3 sources defined as dangerous sources capable of death or serious injury

  14. Space Launch System for Exploration and Science

    Science.gov (United States)

    Klaus, K.

    2013-12-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a

  15. Symbolic BDD and ADD Algorithms for Energy Games

    Directory of Open Access Journals (Sweden)

    Shahar Maoz

    2016-11-01

    Full Text Available Energy games, which model quantitative consumption of a limited resource, e.g., time or energy, play a central role in quantitative models for reactive systems. Reactive synthesis constructs a controller which satisfies a given specification, if one exists. For energy games a synthesized controller ensures to satisfy not only the safety constraints of the specification but also the quantitative constraints expressed in the energy game. A symbolic algorithm for energy games, recently presented by Chatterjee et al., is symbolic in its representation of quantitative values but concrete in the representation of game states and transitions. In this paper we present an algorithm that is symbolic both in the quantitative values and in the underlying game representation. We have implemented our algorithm using two different symbolic representations for reactive games, Binary Decision Diagrams (BDD and Algebraic Decision Diagrams (ADD. We investigate the commonalities and differences of the two implementations and compare their running times on specifications of energy games.

  16. SYMBOL AND LOGO. THE WAY IN WHICH YOUNG PEOPLE IN KRAKOW PERCEIVE SYMBOLS

    Directory of Open Access Journals (Sweden)

    Marta Jarzyna

    2006-01-01

    Full Text Available Symbols are essential elements of each culture. Thanks to them the meaning is created and tradition is kept alive. Advertising and marketing specialist quite often use the meanings of the symbols to create trademarks. In this way specialists refer to the assotiations rooted in the tradition.In my article I am trying to answer following questions: Has logo become symbol? Has logo taken over all the function of the symbol? Can we tell the difference between the meaning of the advertisement and the cultural meaning? I also want to find out, what people understand through the meaning of the symbol. Therfore I have conducted the survey among the high school students and the customers of three banks of Krakow. My researches have shown that most young people find it difficult to define the meaning of the symbol. Moreover high school students cannot show the difference between the symbol and the trade mark.

  17. Symbol Formation Reconsidered

    DEFF Research Database (Denmark)

    Wagoner, Brady

    2013-01-01

    them vis-à-vis other research at Clark and in American psychology more generally. The second two articles analyse Werner and Kaplan’s notions of ‘distancing’ and ‘physiognomic metaphor’, showing their roots in naturphilosophie and comparing them with contemporary theories. The last four articles apply......Werner and Kaplan’s Symbol formation was published 50 years ago but its insights have yet to be adequately explored by psychology and other social sciences. This special issue aims to revisit this seminal work in search of concepts to work on key issues facing us today. This introductory article...... begins with a brief outline and contextualization of the book as well as of the articles that this special issue comprises. The first two articles were written by contributors who were part of the Werner era at Clark University. They explore the key concepts of the organismic and development, and situate...

  18. Enabling Rapid Naval Architecture Design Space Exploration

    Science.gov (United States)

    Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri

    2011-01-01

    Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.

  19. Noncoherent Symbol Synchronization Techniques

    Science.gov (United States)

    Simon, Marvin

    2005-01-01

    Traditional methods for establishing symbol synchronization (sync) in digital communication receivers assume that carrier sync has already been established, i.e., the problem is addressed at the baseband level assuming that a 'perfect' estimate of carrier phase is available. We refer to this approach as coherent symbol sync. Since, for NRZ signaling, a suppressed carrier sync loop such as an I-Q Costas loop includes integrate-and-dump (I and D) filters in its in-phase (1) and quadrature (Q) arms, the traditional approach is to first track the carrier in the absence of symbol sync information, then feed back the symbol sync estimate to these filters, and then iterate between the two to a desirable operating level In this paper, we revisit the symbol sync problem by examining methods for obtaining such sync in the absence of carrier phase information, i.e., so-called noncoherent symbol sync loops. We compare the performance of these loops with that of a well-known coherent symbol sync loop and examine the conditions under which one is preferable over the other.

  20. The role of nuclear reactors in space exploration and development

    International Nuclear Information System (INIS)

    Lipinski, R.J.

    2000-01-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of 238 Pu for power and typically generate 235 U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. One reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new frontier for their children and their grandchildren. They pave the way for all life on earth to move out into the solar system. At one time, humans built

  1. Micro-Inspector Spacecraft for Space Exploration Missions

    Science.gov (United States)

    Mueller, Juergen; Alkalai, Leon; Lewis, Carol

    2005-01-01

    NASA is seeking to embark on a new set of human and robotic exploration missions back to the Moon, to Mars, and destinations beyond. Key strategic technical challenges will need to be addressed to realize this new vision for space exploration, including improvements in safety and reliability to improve robustness of space operations. Under sponsorship by NASA's Exploration Systems Mission, the Jet Propulsion Laboratory (JPL), together with its partners in government (NASA Johnson Space Center) and industry (Boeing, Vacco Industries, Ashwin-Ushas Inc.) is developing an ultra-low mass (missions. The micro-inspector will provide remote vehicle inspections to ensure safety and reliability, or to provide monitoring of in-space assembly. The micro-inspector spacecraft represents an inherently modular system addition that can improve safety and support multiple host vehicles in multiple applications. On human missions, it may help extend the reach of human explorers, decreasing human EVA time to reduce mission cost and risk. The micro-inspector development is the continuation of an effort begun under NASA's Office of Aerospace Technology Enabling Concepts and Technology (ECT) program. The micro-inspector uses miniaturized celestial sensors; relies on a combination of solar power and batteries (allowing for unlimited operation in the sun and up to 4 hours in the shade); utilizes a low-pressure, low-leakage liquid butane propellant system for added safety; and includes multi-functional structure for high system-level integration and miniaturization. Versions of this system to be designed and developed under the H&RT program will include additional capabilities for on-board, vision-based navigation, spacecraft inspection, and collision avoidance, and will be demonstrated in a ground-based, space-related environment. These features make the micro-inspector design unique in its ability to serve crewed as well as robotic spacecraft, well beyond Earth-orbit and into arenas such

  2. Home-school Relations--An Exploration from the Perspective of Social Psychology.

    Science.gov (United States)

    Pang, I-wah

    2000-01-01

    Explores home-school relations by using three social psychology theories: (1) symbolic interactionism; (2) social exchange theory; and (3) reference group theory. States that these theories can contribute to the understanding and development of home-school relations in Hong Kong (China). (CMK)

  3. [Symbol: see text]2 Optimized predictive image coding with [Symbol: see text]∞ bound.

    Science.gov (United States)

    Chuah, Sceuchin; Dumitrescu, Sorina; Wu, Xiaolin

    2013-12-01

    In many scientific, medical, and defense applications of image/video compression, an [Symbol: see text]∞ error bound is required. However, pure[Symbol: see text]∞-optimized image coding, colloquially known as near-lossless image coding, is prone to structured errors such as contours and speckles if the bit rate is not sufficiently high; moreover, most of the previous [Symbol: see text]∞-based image coding methods suffer from poor rate control. In contrast, the [Symbol: see text]2 error metric aims for average fidelity and hence preserves the subtlety of smooth waveforms better than the ∞ error metric and it offers fine granularity in rate control, but pure [Symbol: see text]2-based image coding methods (e.g., JPEG 2000) cannot bound individual errors as the [Symbol: see text]∞-based methods can. This paper presents a new compression approach to retain the benefits and circumvent the pitfalls of the two error metrics. A common approach of near-lossless image coding is to embed into a DPCM prediction loop a uniform scalar quantizer of residual errors. The said uniform scalar quantizer is replaced, in the proposed new approach, by a set of context-based [Symbol: see text]2-optimized quantizers. The optimization criterion is to minimize a weighted sum of the [Symbol: see text]2 distortion and the entropy while maintaining a strict [Symbol: see text]∞ error bound. The resulting method obtains good rate-distortion performance in both [Symbol: see text]2 and [Symbol: see text]∞ metrics and also increases the rate granularity. Compared with JPEG 2000, the new method not only guarantees lower [Symbol: see text]∞ error for all bit rates, but also it achieves higher PSNR for relatively high bit rates.

  4. Symbol generators with program control

    International Nuclear Information System (INIS)

    Gryaznov, V.M.; Tomik, J.

    1974-01-01

    Methods of constructing symbol generators are described which ensure a program variation of symbol shape and setup. The symbols are formed on the basis of a point microraster. A symbol description code contains information on a symbol shape, with one digit corresponding to each microraster element. For a microraster discrete by-pass the description code is transformed into succession of illuminating pulses by means of a shift register

  5. The quantum state vector in phase space and Gabor's windowed Fourier transform

    International Nuclear Information System (INIS)

    Bracken, A J; Watson, P

    2010-01-01

    Representations of quantum state vectors by complex phase space amplitudes, complementing the description of the density operator by the Wigner function, have been defined by applying the Weyl-Wigner transform to dyadic operators, linear in the state vector and anti-linear in a fixed 'window state vector'. Here aspects of this construction are explored, and a connection is established with Gabor's 'windowed Fourier transform'. The amplitudes that arise for simple quantum states from various choices of windows are presented as illustrations. Generalized Bargmann representations of the state vector appear as special cases, associated with Gaussian windows. For every choice of window, amplitudes lie in a corresponding linear subspace of square-integrable functions on phase space. A generalized Born interpretation of amplitudes is described, with both the Wigner function and a generalized Husimi function appearing as quantities linear in an amplitude and anti-linear in its complex conjugate. Schroedinger's time-dependent and time-independent equations are represented on phase space amplitudes, and their solutions described in simple cases.

  6. Political symbols and political transitions

    Directory of Open Access Journals (Sweden)

    Herrero de Miñón, Miguel

    2006-11-01

    Full Text Available Politics, Law and Psychology are fields that come together in the symbolic. This text takes evidence from those three areas to develop an analysis of political symbols and political transitions. The development of the analysis goes through three stages. The first succinctly describes the concept of transition and its meaning. The second closely examines the notion of the symbol, in terms of its definition, to explain aspects that allow us to understand it, characterise it and make its functions clear. Finally, from the author's experience as a witness and as an actor, I suggest three ways of understanding symbols in the processes of political transition: as symbols of change, as symbols of acknowledgment, and as symbols of support.

  7. Operator ordering in quantum optics theory and the development of Dirac's symbolic method

    International Nuclear Information System (INIS)

    Fan Hongyi

    2003-01-01

    We present a general unified approach for arranging quantum operators of optical fields into ordered products (normal ordering, antinormal ordering, Weyl ordering (or symmetric ordering)) by fashioning Dirac's symbolic method and representation theory. We propose the technique of integration within an ordered product (IWOP) of operators to realize our goal. The IWOP makes Dirac's representation theory and the symbolic method more transparent and consequently more easily understood. The beauty of Dirac's symbolic method is further revealed. Various applications of the IWOP technique, such as in developing the entangled state representation theory, nonlinear coherent state theory, Wigner function theory, etc, are presented. (review article)

  8. Communication-Oriented Design Space Exploration for Reconfigurable Architectures

    Directory of Open Access Journals (Sweden)

    Gogniat Guy

    2007-01-01

    Full Text Available Many academic works in computer engineering focus on reconfigurable architectures and associated tools. Fine-grain architectures, field programmable gate arrays (FPGAs, are the most well-known structures of reconfigurable hardware. Dedicated tools (generic or specific allow for the exploration of their design space to choose the best architecture characteristics and/or to explore the application characteristics. The aim is to increase the synergy between the application and the architecture in order to get the best performance. However, there is no generic tool to perform such an exploration for coarse-grain or heterogeneous-grain architectures, just a small number of very specific tools are able to explore a limited set of architectures. To address this major lack, in this paper we propose a new design space exploration approach adapted to fine- and coarse-grain granularities. Our approach combines algorithmic and architecture explorations. It relies on an automatic estimation tool which computes the communication hierarchical distribution and the architectural processing resources use rate for the architecture under exploration. Such an approach forwards the rapid definition of efficient reconfigurable architectures dedicated to one or several applications.

  9. ORNAMENTAL ART AND SYMBOLISM: ACTIVATORS OF HISTORICAL REGENERATION FOR KAZAKHSTAN’S LANDSCAPE ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    Akmaral Ardasher Yussupova

    2017-11-01

    Full Text Available The use of symbolism in contemporary architecture is increasingly gaining momentum, especially so in the Eastern countries currently undergoing rapid economic development. Sociologically, this phenomenon can be related to a desire to manifest a vast wealth of national art and respond to the globalisation and unification of world culture. Taking this tendency as a prompt, this study explores different ways of implementing symbolic ornaments in landscape architecture. Traditionally architecture has been defined through and judged against culturally acceptable criteria that set the norm for appropriate form and expression. Yet, technical advances have altered this process and contributed to a certain level of oblivion of traditional architectural form. Thus, the meaning of many Kazakh ornaments has been lost through time. On one hand, this paper collects historical information on the semiotics of Kazakh ornaments and on the other hand, it conducts field studies focusing on the cultural tradition of the native people in Eurasia. The study introduces the use of symbolism in landscape architecture as an aspiration for luck and prosperity which then dictates the quality of the landscape compositions. The findings show that the use of symbolic ornamentation in architecture is not bound to specific geographic areas but rather motivated by broader underlying principles. Through analytical exploration of different cultures and their use of symbols in architecture, this study identifies four main categories of architectural symbolism relating to floral, zoomorphic, geometric and cosmogonic patterns. Each nation then recognises its own identity in the semiotics of those patterns and incorporates them in the urban realm as part of its cultural legacy.

  10. Tobacco branding, plain packaging, pictorial warnings, and symbolic consumption.

    Science.gov (United States)

    Hoek, Janet; Gendall, Philip; Gifford, Heather; Pirikahu, Gill; McCool, Judith; Pene, Gina; Edwards, Richard; Thomson, George

    2012-05-01

    We use brand association and symbolic consumption theory to explore how plain cigarette packaging would influence the identities young adults cocreate with tobacco products. Group discussions and in-depth interviews with 86 young adult smokers and nonsmokers investigated how participants perceive tobacco branding and plain cigarette packaging with larger health warnings. We examined the transcript data using thematic analysis and explored how removing tobacco branding and replacing this with larger warnings would affect the symbolic status of tobacco brands and their social connotations. Smokers used tobacco brand imagery to define their social attributes and standing, and their connection with specific groups. Plain cigarette packaging usurped this process by undermining aspirational connotations and exposing tobacco products as toxic. Replacing tobacco branding with larger health warnings diminishes the cachet brand insignia creates, weakens the social benefits brands confer on users, and represents a potentially powerful policy measure.

  11. Evaluating Russian space nuclear reactor technology for United States applications

    International Nuclear Information System (INIS)

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-01-01

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch

  12. Exploring the architectural trade space of NASAs Space Communication and Navigation Program

    Science.gov (United States)

    Sanchez, M.; Selva, D.; Cameron, B.; Crawley, E.; Seas, A.; Seery, B.

    NASAs Space Communication and Navigation (SCaN) Program is responsible for providing communication and navigation services to space missions and other users in and beyond low Earth orbit. The current SCaN architecture consists of three independent networks: the Space Network (SN), which contains the TDRS relay satellites in GEO; the Near Earth Network (NEN), which consists of several NASA owned and commercially operated ground stations; and the Deep Space Network (DSN), with three ground stations in Goldstone, Madrid, and Canberra. The first task of this study is the stakeholder analysis. The goal of the stakeholder analysis is to identify the main stakeholders of the SCaN system and their needs. Twenty-one main groups of stakeholders have been identified and put on a stakeholder map. Their needs are currently being elicited by means of interviews and an extensive literature review. The data will then be analyzed by applying Cameron and Crawley's stakeholder analysis theory, with a view to highlighting dominant needs and conflicting needs. The second task of this study is the architectural tradespace exploration of the next generation TDRSS. The space of possible architectures for SCaN is represented by a set of architectural decisions, each of which has a discrete set of options. A computational tool is used to automatically synthesize a very large number of possible architectures by enumerating different combinations of decisions and options. The same tool contains models to evaluate the architectures in terms of performance and cost. The performance model uses the stakeholder needs and requirements identified in the previous steps as inputs, and it is based in the VASSAR methodology presented in a companion paper. This paper summarizes the current status of the MIT SCaN architecture study. It starts by motivating the need to perform tradespace exploration studies in the context of relay data systems through a description of the history NASA's space communicati

  13. The transformative potential of institutions: how symbolic markers can institute new social meaning in changing cities

    NARCIS (Netherlands)

    Dembski, S.; Salet, W.

    2010-01-01

    Planners use symbolic markers in order to frame processes of urban change and to mobilise actors. How can we explain the fact that in some cases the symbolisation of new urban spaces manages to enhance and enlarge the meaning of social change while in other cases the symbolic markers remain

  14. Condensed State Spaces for Symmetrical Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1996-01-01

    equivalence classes of states and equivalence classes of state changes. It is then possible to construct a condensed state space where each node represents an equivalence class of states while each arc represents an equivalence class of state changes. Such a condensed state space is often much smaller than...... the full state space and it is also much faster to construct. Nevertheless, it is possible to use the condensed state space to verify the same kind of behavioural properties as the full state space. Hence, we do not lose analytic power. We define state spaces and condensed state spaces for a language......-nets (or Petri nets in general) - although such knowledge will, of course, be a help. The first four sections of the paper introduce the basic concepts of CP-nets. The next three sections deal with state spaces, condensed state spaces and computer tools for state space analysis. Finally, there is a short...

  15. The role of nuclear reactors in space exploration and development

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, R.J.

    2000-07-01

    The United States has launched more than 20 radioisotopic thermoelectric generators (RTGs) into space over the past 30 yr but has launched only one nuclear reactor, and that was in 1965. Russia has launched more than 30 reactors. The RTGs use the heat of alpha decay of {sup 238}Pu for power and typically generate <1 kW of electricity. Apollo, Pioneer, Voyager, Viking, Galileo, Ulysses, and Cassini all used RTGs. Space reactors use the fission energy of {sup 235}U; typical designs are for 100 to 1000 kW of electricity. The only US space reactor launch (SNAP-10A) was a demonstration mission. One reason for the lack of space reactor use by the United States was the lack of space missions that required high power. But, another was the assumed negative publicity that would accompany a reactor launch. The net result is that all space reactor programs after 1970 were terminated before an operating space reactor could be developed, and they are now many years from recovering the ability to build them. Two major near-term needs for space reactors are the human exploration of Mars and advanced missions to and beyond the orbit of Jupiter. To help obtain public acceptance of space reactors, one must correct some of the misconceptions concerning space reactors and convey the following facts to the public and to decision makers: Space reactors are 1000 times smaller in power and size than a commercial power reactor. A space reactor at launch is only as radioactive as a pile of dirt 60 m (200 ft) across. A space reactor contains no plutonium at launch. It does not become significantly radioactive until it is turned on, and it will be engineered so that no launch accident can turn it on, even if that means fueling it after launch. The reactor will not be turned on until it is in a high stable orbit or even on an earth-escape trajectory for some missions. The benefits of space reactors are that they give humanity a stairway to the planets and perhaps the stars. They open a new

  16. Evaluating Space Weather Architecture Options to Support Human Deep Space Exploration of the Moon and Mars

    Science.gov (United States)

    Parker, L.; Minow, J.; Pulkkinen, A.; Fry, D.; Semones, E.; Allen, J.; St Cyr, C.; Mertens, C.; Jun, I.; Onsager, T.; Hock, R.

    2018-02-01

    NASA's Engineering and Space Center (NESC) is conducting an independent technical assessment of space environment monitoring and forecasting architecture options to support human and robotic deep space exploration.

  17. Advanced Technologies for Robotic Exploration Leading to Human Exploration: Results from the SpaceOps 2015 Workshop

    Science.gov (United States)

    Lupisella, Mark L.; Mueller, Thomas

    2016-01-01

    This paper will provide a summary and analysis of the SpaceOps 2015 Workshop all-day session on "Advanced Technologies for Robotic Exploration, Leading to Human Exploration", held at Fucino Space Center, Italy on June 12th, 2015. The session was primarily intended to explore how robotic missions and robotics technologies more generally can help lead to human exploration missions. The session included a wide range of presentations that were roughly grouped into (1) broader background, conceptual, and high-level operations concepts presentations such as the International Space Exploration Coordination Group Roadmap, followed by (2) more detailed narrower presentations such as rover autonomy and communications. The broader presentations helped to provide context and specific technical hooks, and helped lay a foundation for the narrower presentations on more specific challenges and technologies, as well as for the discussion that followed. The discussion that followed the presentations touched on key questions, themes, actions and potential international collaboration opportunities. Some of the themes that were touched on were (1) multi-agent systems, (2) decentralized command and control, (3) autonomy, (4) low-latency teleoperations, (5) science operations, (6) communications, (7) technology pull vs. technology push, and (8) the roles and challenges of operations in early human architecture and mission concept formulation. A number of potential action items resulted from the workshop session, including: (1) using CCSDS as a further collaboration mechanism for human mission operations, (2) making further contact with subject matter experts, (3) initiating informal collaborative efforts to allow for rapid and efficient implementation, and (4) exploring how SpaceOps can support collaboration and information exchange with human exploration efforts. This paper will summarize the session and provide an overview of the above subjects as they emerged from the SpaceOps 2015

  18. Second International workshop Geometry and Symbolic Computation

    CERN Document Server

    Walczak, Paweł; Geometry and its Applications

    2014-01-01

    This volume has been divided into two parts: Geometry and Applications. The geometry portion of the book relates primarily to geometric flows, laminations, integral formulae, geometry of vector fields on Lie groups, and osculation; the articles in the applications portion concern some particular problems of the theory of dynamical systems, including mathematical problems of liquid flows and a study of cycles for non-dynamical systems. This Work is based on the second international workshop entitled "Geometry and Symbolic Computations," held on May 15-18, 2013 at the University of Haifa and is dedicated to modeling (using symbolic calculations) in differential geometry and its applications in fields such as computer science, tomography, and mechanics. It is intended to create a forum for students and researchers in pure and applied geometry to promote discussion of modern state-of-the-art in geometric modeling using symbolic programs such as Maple™ and Mathematica®, as well as presentation of new results. ...

  19. Reciprocity Laws for the Higher Tame Symbol and the Witt Symbol on an Algebraic Surface

    OpenAIRE

    Syder, Kirsty

    2013-01-01

    Parshin's higher Witt pairing on an arithmetic surface can be combined with the higher tame pairing to form a symbol taking values in the absolute abelian Galois group of the function field. We prove reciprocity laws for this symbol using techniques of Morrow for the Witt symbol and Romo for the higher tame symbol.

  20. Symbolic PathFinder v7

    DEFF Research Database (Denmark)

    Luckow, Kasper Søe; Păsăreanu, Corina

    2014-01-01

    We describe Symbolic PathFinder v7 in terms of its updated design addressing the changes of Java PathFinder v7 and of its new optimization when computing path conditions. Furthermore, we describe the Symbolic Execution Tree Extension; a newly added feature that allows for outputting the symbolic...... execution tree that characterizes the execution paths covered during symbolic execution. The new extension can be tailored to the needs of subsequent analyses/processing facilities, and we demonstrate this by presenting SPF-Visualizer, which is a tool for customizable visualization of the symbolic execution...

  1. Effect of Translucency on Transparency and Symbol Learning for Children with and without Cerebral Palsy

    Science.gov (United States)

    Huang, Chih-Hsiung; Chen, Ming-Chung

    2011-01-01

    Based on the concept of iconicity, the iconicity hypothesis was emphasized for decades. The aims of this study were to explore the effect of translucency on transparency and symbol learning for children with and without cerebral palsy. Twenty children with cerebral palsy and forty typical peers participated in the study. Ten symbols with high…

  2. Ionizing-radiation warning - Supplementary symbol

    International Nuclear Information System (INIS)

    2007-01-01

    This International Standard specifies the symbol to warn of the presence of a dangerous level of ionizing radiation from a high-level sealed radioactive source that can cause death or serious injury if handled carelessly. This symbol is not intended to replace the basic ionizing radiation symbol [ISO 361, ISO 7010:2003, Table 1 (Reference number W003)], but to supplement it by providing further information on the danger associated with the source and the necessity for untrained or uninformed members of the public to stay away from it. This symbol is recommended for use with International Atomic Energy Agency (IAEA) Category 1, 2, and 3 sealed radioactive sources. These sources are defined by the IAEA as having the ability to cause death or serious injuries. The paper informs about scope, shape, proportions and colour of the symbol, and application of the symbol. An annex provides the technical specifications of the symbol

  3. My Life with State Space Models

    DEFF Research Database (Denmark)

    Lundbye-Christensen, Søren

    2007-01-01

    . The conceptual idea behind the state space model is that the evolution over time in the object we are observing and the measurement process itself are modelled separately. My very first serious analysis of a data set was done using a state space model, and since then I seem to have been "haunted" by state space...

  4. Space Exploration: Challenges in Medicine, Research, and Ethics

    Science.gov (United States)

    Davis, Jeffrey R.

    2007-01-01

    This viewgraph presentation describes the challenges that space exploration faces in terms of medicine, research and ethics. The topics include: 1) Effects of Microgravity on Human Physiology; 2) Radiation; 3) Bone; 4) Behavior and Performance; 5) Muscle; 6) Cardiovascular; 7) Neurovestibular; 8) Food and Nutrition; 9) Immunology and Hematology; 10) Environment; 11) Exploration; 12) Building Block Approach; 13) Exploration Issues; 14) Life Sciences Contributions; 15) Health Care; and 17) Habitability.

  5. Fast Maximum-Likelihood Decoder for Quasi-Orthogonal Space-Time Block Code

    Directory of Open Access Journals (Sweden)

    Adel Ahmadi

    2015-01-01

    Full Text Available Motivated by the decompositions of sphere and QR-based methods, in this paper we present an extremely fast maximum-likelihood (ML detection approach for quasi-orthogonal space-time block code (QOSTBC. The proposed algorithm with a relatively simple design exploits structure of quadrature amplitude modulation (QAM constellations to achieve its goal and can be extended to any arbitrary constellation. Our decoder utilizes a new decomposition technique for ML metric which divides the metric into independent positive parts and a positive interference part. Search spaces of symbols are substantially reduced by employing the independent parts and statistics of noise. Symbols within the search spaces are successively evaluated until the metric is minimized. Simulation results confirm that the proposed decoder’s performance is superior to many of the recently published state-of-the-art solutions in terms of complexity level. More specifically, it was possible to verify that application of the new algorithms with 1024-QAM would decrease the computational complexity compared to state-of-the-art solution with 16-QAM.

  6. Manned Mission Space Exploration Utilizing a Flexible Universal Module

    Science.gov (United States)

    Humphries, P.; Barez, F.; Gowda, A.

    2018-02-01

    The proposed ASMS, Inc. "Flexible Universal Module" is in support of NASA's Deep Space Gateway project. The Flexible Universal Module provides a possible habitation or manufacturing environment in support of Manned Mission for Space Exploration.

  7. Integrated Systems Health Management for Space Exploration

    Science.gov (United States)

    Uckun, Serdar

    2005-01-01

    Integrated Systems Health Management (ISHM) is a system engineering discipline that addresses the design, development, operation, and lifecycle management of components, subsystems, vehicles, and other operational systems with the purpose of maintaining nominal system behavior and function and assuring mission safety and effectiveness under off-nominal conditions. NASA missions are often conducted in extreme, unfamiliar environments of space, using unique experimental spacecraft. In these environments, off-nominal conditions can develop with the potential to rapidly escalate into mission- or life-threatening situations. Further, the high visibility of NASA missions means they are always characterized by extraordinary attention to safety. ISHM is a critical element of risk mitigation, mission safety, and mission assurance for exploration. ISHM enables: In-space maintenance and repair; a) Autonomous (and automated) launch abort and crew escape capability; b) Efficient testing and checkout of ground and flight systems; c) Monitoring and trending of ground and flight system operations and performance; d) Enhanced situational awareness and control for ground personnel and crew; e) Vehicle autonomy (self-sufficiency) in responding to off-nominal conditions during long-duration and distant exploration missions; f) In-space maintenance and repair; and g) Efficient ground processing of reusable systems. ISHM concepts and technologies may be applied to any complex engineered system such as transportation systems, orbital or planetary habitats, observatories, command and control systems, life support systems, safety-critical software, and even the health of flight crews. As an overarching design and operational principle implemented at the system-of-systems level, ISHM holds substantial promise in terms of affordability, safety, reliability, and effectiveness of space exploration missions.

  8. Clutter-free Visualization of Large Point Symbols at Multiple Scales by Offset Quadtrees

    Directory of Open Access Journals (Sweden)

    ZHANG Xiang

    2016-08-01

    Full Text Available To address the cartographic problems in map mash-up applications in the Web 2.0 context, this paper studies a clutter-free technique for visualizing large symbols on Web maps. Basically, a quadtree is used to select one symbol in each grid cell at each zoom level. To resolve the symbol overlaps between neighboring quad-grids, multiple offsets are applied to the quadtree and a voting strategy is used to compute the significant level of symbols for their selection at multiple scales. The method is able to resolve spatial conflicts without explicit conflict detection, thus enabling a highly efficient processing. Also the resulting map forms a visual hierarchy of semantic importance. We discuss issues such as the relative importance, symbol-to-grid size ratio, and effective offset schemes, and propose two extensions to make better use of the free space available on the map. Experiments were carried out to validate the technique,which demonstrates its robustness and efficiency (a non-optimal implementation leads to a sub-second processing for datasets of a 105 magnitude.

  9. Nuclear data needs for the space exploration initiative

    International Nuclear Information System (INIS)

    Howe, S.D.; Auchampaugh, G.

    1991-01-01

    On July 20, 1989, the President of the United States announced a new direction for the US Space Program. The new Space Exploration Initiative (SEI) is intended to emplace a permanent base on the Lunar surface and a manned outpost on the Mars surface by 2019. In order to achieve this ambitious challenge, new, innovative and robust technologies will have to be developed to support crew operations. Nuclear power and propulsion have been recognized as technologies that are at least mission enhancing and, in some scenarios, mission enabling. Because of the extreme operating conditions present in a nuclear rocket core, accurate modeling of the rocket will require cross section data sets which do not currently exist. In order to successfully achieve the goals of the SEI, major obstacles inherent in long duration space travel will have to be overcome. One of these obstacles is the radiation environment to which the astronauts will be exposed. In general, an unshielded crew will be exposed to roughly one REM per week in free space. For missions to Mars, the total dose could exceed more than one-half the total allowed lifetime level. Shielding of the crew may be possible, but accurate assessments of shield composition and thickness are critical if shield masses are to be kept at acceptable levels. In addition, the entire ship design may be altered by the differential neutron production by heavy ions (Galactic Cosmic Rays) incident on ship structures. The components of the radiation environment, current modeling capability and envisioned experiments will be discussed

  10. Different spaces : Exploring Facebook as heterotopia

    NARCIS (Netherlands)

    Rymarczuk, R.; Derksen, Maarten

    2014-01-01

    In this paper we explore the space of Facebook, and use Michel Foucault’s concept of heterotopia to describe it. We show that the heterotopic nature of Facebook explains not only much of its attraction, but even more the discomfort that many people, users as well as non–users, experience in it.

  11. Opportunities and challenges of international coordination efforts in space exploration - the DLR perspective

    Science.gov (United States)

    Boese, Andrea

    The German Aerospace Center and German Space Agency DLR has defined internationalisation one of the four pillars of its corporate strategy. Driven by global challenges, national space agencies like DLR are seeking partnerships to contribute to essential societal needs, such as human welfare, sustainability of life, economic development, security, culture and knowledge. All partnerships with both traditional and non-traditional partners must reflect a balanced approach between national requirements and needs of the international community. In view of the challenges emerging from this complexity, endeavours like space exploration must be built on mutual cooperation especially in a challenging political environment. Effective and efficient exploitation of existing expertise, human resources, facilities and infrastructures require consolidated actions of stakeholders, interest groups and authorities. This basic principle applies to any space exploration activity. DLR is among the agencies participating in the International Space Exploration Coordination Group (ISECG) from its beginning in 2007. The strategic goals of DLR regarding space exploration correspond to the purpose of ISECG as a forum to share objectives and plans to take concrete steps towards partnerships for a globally coordinated effort in space exploration. DLR contributes to ISECG publications especially the “Global Exploration Roadmap” and the “Benefits stemming from Space Exploration” to see those messages reflected that support cooperation with internal and external exploration stakeholders in science and technology and communication with those in politics and society. DLR provides input also to other groups engaging in space exploration. However, taking into account limited resources and expected results, the effectiveness of multiple coordination and planning mechanisms needs to be discussed.

  12. Using a symbolic process model as input for model-based fMRI analysis : Locating the neural correlates of problem state replacements

    NARCIS (Netherlands)

    Borst, J.P.; Taatgen, N.A.; Van Rijn, D.H.

    2011-01-01

    In this paper, a model-based analysis method for fMRI is used with a high-level symbolic process model. Participants performed a triple-task in which intermediate task information needs to be updated frequently. Previous work has shown that the associated resource - the problem state resource - acts

  13. Pekong, the symbol identity of Chinese at Pekan Labuhan Medan Indonesia

    Science.gov (United States)

    Siagian, M.

    2018-02-01

    Urban architecture has always been combined by physical and non-physical components. The physical is formed by spatial pattern, space and history. The non physical is formed by social and cultural life of the community. The combination of that space would give the meaning as a place for the people that use it. Pekong has existed since 1890 in the area of Pekan Labuhan. The presence of two Pekongs in this area gives the symbol for distribution patterns of Chinese residential and community in Pekan Labuhan district. Symbolizing the Pekongs is sourced from being able to shape and influence the components such as the market, shophouses, and houses. Beside that the Pekongs also identify of districts and social influence of the community. The component activities enliven Pekongs make spaces for Pekongs grow to become a magnificent buildings in the comunity settlement. The aim of this research is to examine and describe the Pekong that has became the identity and attraction to the area. By using the qualitative method this research found that the Pekongs are the important buildings in identifying of the district.

  14. Self-organisation of symbolic information

    Science.gov (United States)

    Feistel, R.

    2017-01-01

    Information is encountered in two different appearances, in native form by arbitrary physical structures, or in symbolic form by coded sequences of letters or the like. The self-organised emergence of symbolic information from structural information is referred to as a ritualisation transition. Occurring at some stage in evolutionary history, ritualisation transitions have in common that after the crossover, arbitrary symbols are issued and recognised by information-processing devices, by transmitters and receivers in the sense of Shannon's communication theory. Symbolic information-processing systems exhibit the fundamental code symmetry whose key features, such as largely lossless copying or persistence under hostile conditions, may elucidate the reasons for the repeated successful occurrence of ritualisation phenomena in evolution history. Ritualisation examples are briefly reviewed such as the origin of life, the appearance of human languages, the establishment of emergent social categories such as money, or the development of digital computers. In addition to their role as carriers of symbolic information, symbols are physical structures which also represent structural information. For a thermodynamic description of symbols and their arrangements, it appears reasonable to distinguish between Boltzmann entropy, Clausius entropy and Pauling entropy. Thermodynamic properties of symbols imply that their lifetimes are limited by the 2nd law.

  15. Gemini Space Program emblem

    Science.gov (United States)

    1965-01-01

    The insignia of the Gemini space program is a disc of dark blue as a background for a gold Zodiac Gemini symbol. A white star on each of the two vertical curves of the Gemini symbol represent the Gemini twins, Pollux and Castor.

  16. The influence of math anxiety on symbolic and non-symbolic magnitude processing.

    Science.gov (United States)

    Dietrich, Julia F; Huber, Stefan; Moeller, Korbinian; Klein, Elise

    2015-01-01

    Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS), which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed.

  17. The influence of math anxiety on symbolic and non-symbolic magnitude processing

    Directory of Open Access Journals (Sweden)

    Julia Felicitas Dietrich

    2015-10-01

    Full Text Available Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS, which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed.

  18. Propulsion Health Management System Development for Affordable and Reliable Operation of Space Exploration Systems

    Science.gov (United States)

    Melcher, Kevin J.; Maul, William A.; Garg, Sanjay

    2007-01-01

    The constraints of future Exploration Missions will require unique integrated system health management capabilities throughout the mission. An ambitious launch schedule, human-rating requirements, long quiescent periods, limited human access for repair or replacement, and long communication delays, all require an integrated approach to health management that can span distinct, yet interdependent vehicle subsystems, anticipate failure states, provide autonomous remediation and support the Exploration Mission from beginning to end. Propulsion is a critical part of any space exploration mission, and monitoring the health of the propulsion system is an integral part of assuring mission safety and success. Health management is a somewhat ubiquitous technology that encompasses a large spectrum of physical components and logical processes. For this reason, it is essential to develop a systematic plan for propulsion health management system development. This paper provides a high-level perspective of propulsion health management systems, and describes a logical approach for the future planning and early development that are crucial to planned space exploration programs. It also presents an overall approach, or roadmap, for propulsion health management system development and a discussion of the associated roadblocks and challenges.

  19. A Situation Awareness Assistant for Human Deep Space Exploration

    Science.gov (United States)

    Boy, Guy A.; Platt, Donald

    2013-01-01

    This paper presents the development and testing of a Virtual Camera (VC) system to improve astronaut and mission operations situation awareness while exploring other planetary bodies. In this embodiment, the VC is implemented using a tablet-based computer system to navigate through inter active database application. It is claimed that the advanced interaction media capability of the VC can improve situation awareness as the distribution of hu man space exploration roles change in deep space exploration. The VC is being developed and tested for usability and capability to improve situation awareness. Work completed thus far as well as what is needed to complete the project will be described. Planned testing will also be described.

  20. Mathematical symbol hypothesis recognition with rejection option

    OpenAIRE

    Julca-Aguilar , Frank; Hirata , Nina ,; Viard-Gaudin , Christian; Mouchère , Harold; Medjkoune , Sofiane

    2014-01-01

    International audience; In the context of handwritten mathematical expressions recognition, a first step consist on grouping strokes (segmentation) to form symbol hypotheses: groups of strokes that might represent a symbol. Then, the symbol recognition step needs to cope with the identification of wrong segmented symbols (false hypotheses). However, previous works on symbol recognition consider only correctly segmented symbols. In this work, we focus on the problem of mathematical symbol reco...

  1. Vision of Space Exploration Possibilities and limits of a human space conquest.

    Science.gov (United States)

    Zelenyi, Lev

    Few generations of a schoolboys, which later become active and productive space researchers, have been brought up on a science fiction books. These books told us about travels to other Galaxies with velocities larger then velocity of light, meetings with friendly aliens (necessarily with communistic mentalities in Soviet Union books), star wars with ugly space monsters (in the western hemisphere books), etc. Beginning of Space age (4/10/1957) opened the door to a magic box, full of scientific discoveries, made mostly by robotic satellites and spacecraft. However, already the first human space trips clearly demonstrated that space is vigorously hostile to a human beings. Space medicine during the years since Gagarin flight, made an outstanding progress in supporting human presence at orbital stations, but the radiation hazards and problem of hypomagnetism are still opened and there is no visible path to their solution. So the optimistic slogan of 60-ies “Space is Our Place” is not supported by an almost half a century practice. Space never will be a comfortable place for soft and vulnerable humans? There is a general consensus that man will be on Mars during this century (or even its first part). This is very difficult but task it seems to be realistic after the significant advance of modern technologies will be made. But, is there any real need for humans to travel beyond the Mars orbit or to the inner regions of the Solar system? Will the age of Solar system exploration comes to its logical as it was described by Stanislav Lem in his famous book “Return from stars”? The author of this talk has more questions than answers, and thinks that PEX1 Panel on Exploration is just a right place to discuss these usually by passed topics.

  2. Symbolic Uses of the Berlin Wall, 1961-1989.

    Science.gov (United States)

    Bruner, Michael S.

    1989-01-01

    Examines samples from public discourse during the period 1961-1989, which reveal several different symbolic uses of the Berlin Wall. Suggests these differences reflect the never-completed struggle between the United States and the Soviet Union. (KEH)

  3. From outer space to Earth-The social significance of isolated and confined environment research in human space exploration

    Science.gov (United States)

    Tachibana, Koji; Tachibana, Shoichi; Inoue, Natsuhiko

    2017-11-01

    Human space exploration requires massive budgets every fiscal year. Especially under severe financial constraint conditions, governments are forced to justify to society why spending so much tax revenue for human space exploration is worth the cost. The value of human space exploration might be estimated in many ways, but its social significance and cost-effectiveness are two key ways to gauge that worth. Since these measures should be applied country by country because sociopolitical conditions differ in each country and must be taken into consideration, the study on the social significance of human space exploration must take the coloration of a case-study. This paper, focusing on the case of Japan with surveying Japanese literary and national documents as well as taking its sociopolitical conditions into account, examines the social significance of human space exploration. First, we give an overview of the circumstances surrounding Japan's human space exploration program. Derived from the statements of such relevant parties as scholars, journalists, policy makers, and astronauts, this overview indicates that the main concerns about human space exploration in Japan are its social significance and cost-effectiveness (Section 1). Next, an overview of behavioral science-an essential field for human space exploration (referred to in this paper as space behavioral science) that provides support for astronauts-is presented from the perspective of stress research in isolated and confined environments (Section 2). We then give two examples of where such knowledge from space behavioral science research has been applied to terrestrial isolated and confined environments. One is JAXA's support in 2009 for people who were vulnerable to infection by a new strain of flu and accordingly placed in an isolated and confined facility under the Infectious Disease Law and the Quarantine Law. The other is NASA's support in 2010 for Chilean mine workers who were trapped 700 m

  4. Exploring resting-state EEG brain oscillatory activity in relation to cognitive functioning in multiple sclerosis.

    Science.gov (United States)

    Keune, Philipp M; Hansen, Sascha; Weber, Emily; Zapf, Franziska; Habich, Juliane; Muenssinger, Jana; Wolf, Sebastian; Schönenberg, Michael; Oschmann, Patrick

    2017-09-01

    Neurophysiologic monitoring parameters related to cognition in Multiple Sclerosis (MS) are sparse. Previous work reported an association between magnetoencephalographic (MEG) alpha-1 activity and information processing speed. While this remains to be replicated by more available electroencephalographic (EEG) methods, also other established EEG markers, e.g. the slow-wave/fast-wave ratio (theta/beta ratio), remain to be explored in this context. Performance on standard tests addressing information processing speed and attention (Symbol-Digit Modalities Test, SDMT; Test of Attention Performance, TAP) was examined in relation to resting-state EEG alpha-1 and alpha-2 activity and the theta/beta ratio in 25MS patients. Increased global alpha-1 and alpha-2 activity and an increased frontal theta/beta ratio (pronounced slow-wave relative to fast-wave activity) were associated with lower SDMT processing speed. In an exploratory analysis, clinically impaired attention was associated with a significantly increased frontal theta/beta ratio whereas alpha power did not show sensitivity to clinical impairment. EEG global alpha power and the frontal theta/beta ratio were both associated with attention. The theta/beta ratio involved potential clinical sensitivity. Resting-state EEG recordings can be obtained during the routine clinical process. The examined resting-state measures may represent feasible monitoring parameters in MS. This notion should be explored in future intervention studies. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  5. Symbolic signal processing

    International Nuclear Information System (INIS)

    Rechester, A.B.; White, R.B.

    1993-01-01

    Complex dynamic processes exhibit many complicated patterns of evolution. How can all these patterns be recognized using only output (observational, experimental) data without prior knowledge of the equations of motion? The powerful method for doing this is based on symbolic dynamics: (1) Present output data in symbolic form (trial language). (2) Topological and metric entropies are constructed. (3) Develop algorithms for computer optimization of entropies. (4) By maximizing entropies, find the most appropriate symbolic language for the purpose of pattern recognition. (5) Test this method using a variety of dynamical models from nonlinear science. The authors are in the process of applying this method for analysis of MHD fluctuations in tokamaks

  6. A space exploration strategy that promotes international and commercial participation

    Science.gov (United States)

    Arney, Dale C.; Wilhite, Alan W.; Chai, Patrick R.; Jones, Christopher A.

    2014-01-01

    NASA has created a plan to implement the Flexible Path strategy, which utilizes a heavy lift launch vehicle to deliver crew and cargo to orbit. In this plan, NASA would develop much of the transportation architecture (launch vehicle, crew capsule, and in-space propulsion), leaving the other in-space elements open to commercial and international partnerships. This paper presents a space exploration strategy that reverses that philosophy, where commercial and international launch vehicles provide launch services. Utilizing a propellant depot to aggregate propellant on orbit, smaller launch vehicles are capable of delivering all of the mass necessary for space exploration. This strategy has benefits to the architecture in terms of cost, schedule, and reliability.

  7. Urban Space Explorer: A Visual Analytics System for Urban Planning.

    Science.gov (United States)

    Karduni, Alireza; Cho, Isaac; Wessel, Ginette; Ribarsky, William; Sauda, Eric; Dou, Wenwen

    2017-01-01

    Understanding people's behavior is fundamental to many planning professions (including transportation, community development, economic development, and urban design) that rely on data about frequently traveled routes, places, and social and cultural practices. Based on the results of a practitioner survey, the authors designed Urban Space Explorer, a visual analytics system that utilizes mobile social media to enable interactive exploration of public-space-related activity along spatial, temporal, and semantic dimensions.

  8. Building on 50 Years of Systems Engineering Experience for a New Era of Space Exploration

    Science.gov (United States)

    Dumbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul K.

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States (US) capability for both crew and heavy cargo to low-Earth orbit to construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I crew launch vehicle and the Ares V cargo launch vehicle. The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion crew exploration vehicle, while the heavy-lift Ares V will carry the Altair lunar lander, as well as the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. NASA's Marshall Space Flight Center manages the Shuttle's propulsion elements and is managing the design and development of the Ares rockets, along with a host of other engineering assignments in the field of scientific space exploration. Specifically, the Marshall Center's Engineering Directorate houses the skilled workforce and unique facilities needed to build capable systems upon the foundation laid by the Mercury, Gemini, Apollo, and Shuttle programs. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level testing activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural

  9. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2015-01-01

    A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and

  10. Space Sciences Education and Outreach Project of Moscow State University

    Science.gov (United States)

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space

  11. Preaching to the converted? An analysis of the UK public for space exploration.

    Science.gov (United States)

    Entradas, Marta; Miller, Steve; Peters, Hans Peter

    2013-04-01

    This article presents the results of a survey carried out at two space outreach events in the UK aimed at characterising "the public for space exploration" and measuring public support for space exploration. Attitude towards space exploration and policy preferences were used as measures of public support. The sample involved 744 respondents and was mainly composed of adults between 25 and 45 years old, with men slightly over-represented compared with women. Findings revealed that males appeared to be stronger supporters than females - men had a more positive attitude towards space exploration and stronger space policy preferences. Because mixed groups tend to come together to such events we argue that male respondents would be more likely to be part of the "attentive" and "interested" public who come to outreach activities and bring a less interested public with them.

  12. Aging and the number sense: preserved basic non-symbolic numerical processing and enhanced basic symbolic processing

    Directory of Open Access Journals (Sweden)

    Jade Eloise eNorris

    2015-07-01

    Full Text Available Aging often leads to general cognitive decline in domains such as memory and attention. The effect of aging on numerical cognition, particularly on foundational numerical skills known as the Number Sense, is not well known. Early research focused on the effect of aging on arithmetic. Recent studies have begun to investigate the impact of healthy aging on basic numerical skills, but focused on non-symbolic quantity discrimination alone. Moreover, contradictory findings have emerged. The current study aimed to further investigate the impact of aging on basic non-symbolic and symbolic numerical skills. A group of 25 younger (18-25 and 25 older adults (60-77 participated in non-symbolic and symbolic numerical comparison tasks. Mathematical and spelling abilities were also measured. Results showed that aging had no effect on foundational non-symbolic numerical skills, as both groups performed similarly (RTs, accuracy and Weber fractions (w. All participants showed decreased non-symbolic acuity (accuracy and w in trials requiring inhibition. However, aging appears to be associated with a greater decline in discrimination speed in such trials. Furthermore, aging seems to have a positive impact on mathematical ability and basic symbolic numerical processing, as older participants attained significantly higher mathematical achievement scores, and performed significantly better on the symbolic comparison task than younger participants. The findings suggest that aging and its lifetime exposure to numbers may lead to better mathematical achievement and stronger basic symbolic numerical skills. Our results further support the observation that basic non-symbolic numerical skills are resilient to aging, but that aging may exacerbate poorer performance on trials requiring inhibitory processes. These findings lend further support to the notion that preserved basic numerical skills in aging may reflect the preservation of an innate, primitive and embedded Number

  13. State Space Analysis of Hierarchical Coloured Petri Nets

    DEFF Research Database (Denmark)

    Christensen, Søren; Kristensen, Lars Michael

    2003-01-01

    In this paper, we consider state space analysis of Coloured Petri Nets. It is well-known that almost all dynamic properties of the considered system can be verified when the state space is finite. However, state space analysis is more than just formulating a set of formal requirements and invokin...... supporting computation and storage of state spaces which exploi the hierarchical structure of the models....... in which formal verification, partial state spaces, and analysis by means of graphical feedback and simulation are integrated entities. The focus of the paper is twofold: the support for graphical feedback and the way it has been integrated with simulation, and the underlying algorithms and data-structures......In this paper, we consider state space analysis of Coloured Petri Nets. It is well-known that almost all dynamic properties of the considered system can be verified when the state space is finite. However, state space analysis is more than just formulating a set of formal requirements and invoking...

  14. Human Space Exploration and Human Space Flight: Latency and the Cognitive Scale of the Universe

    Science.gov (United States)

    Lester, Dan; Thronson, Harley

    2011-01-01

    The role of telerobotics in space exploration as placing human cognition on other worlds is limited almost entirely by the speed of light, and the consequent communications latency that results from large distances. This latency is the time delay between the human brain at one end, and the telerobotic effector and sensor at the other end. While telerobotics and virtual presence is a technology that is rapidly becoming more sophisticated, with strong commercial interest on the Earth, this time delay, along with the neurological timescale of a human being, quantitatively defines the cognitive horizon for any locale in space. That is, how distant can an operator be from a robot and not be significantly impacted by latency? We explore that cognitive timescale of the universe, and consider the implications for telerobotics, human space flight, and participation by larger numbers of people in space exploration. We conclude that, with advanced telepresence, sophisticated robots could be operated with high cognition throughout a lunar hemisphere by astronauts within a station at an Earth-Moon Ll or L2 venue. Likewise, complex telerobotic servicing of satellites in geosynchronous orbit can be carried out from suitable terrestrial stations.

  15. Statistical Software for State Space Methods

    Directory of Open Access Journals (Sweden)

    Jacques J. F. Commandeur

    2011-05-01

    Full Text Available In this paper we review the state space approach to time series analysis and establish the notation that is adopted in this special volume of the Journal of Statistical Software. We first provide some background on the history of state space methods for the analysis of time series. This is followed by a concise overview of linear Gaussian state space analysis including the modelling framework and appropriate estimation methods. We discuss the important class of unobserved component models which incorporate a trend, a seasonal, a cycle, and fixed explanatory and intervention variables for the univariate and multivariate analysis of time series. We continue the discussion by presenting methods for the computation of different estimates for the unobserved state vector: filtering, prediction, and smoothing. Estimation approaches for the other parameters in the model are also considered. Next, we discuss how the estimation procedures can be used for constructing confidence intervals, detecting outlier observations and structural breaks, and testing model assumptions of residual independence, homoscedasticity, and normality. We then show how ARIMA and ARIMA components models fit in the state space framework to time series analysis. We also provide a basic introduction for non-Gaussian state space models. Finally, we present an overview of the software tools currently available for the analysis of time series with state space methods as they are discussed in the other contributions to this special volume.

  16. Symbol synchronization in convolutionally coded systems

    Science.gov (United States)

    Baumert, L. D.; Mceliece, R. J.; Van Tilborg, H. C. A.

    1979-01-01

    Alternate symbol inversion is sometimes applied to the output of convolutional encoders to guarantee sufficient richness of symbol transition for the receiver symbol synchronizer. A bound is given for the length of the transition-free symbol stream in such systems, and those convolutional codes are characterized in which arbitrarily long transition free runs occur.

  17. 7 CFR 29.1008 - Combination symbols.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Combination symbols. 29.1008 Section 29.1008..., 13, 14 and Foreign Type 92) § 29.1008 Combination symbols. A color or group symbol used with another symbol to form the third factor of a grademark to denote a particular side or characteristic of the...

  18. State Space Methods for Timed Petri Nets

    DEFF Research Database (Denmark)

    Christensen, Søren; Jensen, Kurt; Mailund, Thomas

    2001-01-01

    it possible to condense the usually infinite state space of a timed Petri net into a finite condensed state space without loosing analysis power. The second method supports on-the-fly verification of certain safety properties of timed systems. We discuss the application of the two methods in a number......We present two recently developed state space methods for timed Petri nets. The two methods reconciles state space methods and time concepts based on the introduction of a global clock and associating time stamps to tokens. The first method is based on an equivalence relation on states which makes...

  19. The Analysis of Mythological Symbols in Shahnameh

    Directory of Open Access Journals (Sweden)

    موسی پرنیان

    2012-05-01

    Full Text Available Recognizing symbols of Shahnameh requires an understanding of the context and condition of creation and emergence of symbol, myth and epic. Symbol has a relationship with consciousness and unconsciousness of man and constitutes the language of mythologies, legends, and epics. Thus the language of mythological and epic works is symbolic. The main theme in Iranian mythologies is the dual nature of creation, and during the passage from myth to epic the conflict between the two forces of good and evil appear in various aspects of existence. Some characters that represent symbolic and coded concepts more than other elements can be considered as symbols of the evolution of gods to kings and against them there are devilish kings as symbols of drought (Apush. The other symbolic elements analyzed in this study are: epic-romance stories, imaginary creatures, symbolic dreams of kings and heroes, symbolic numbers, symbolic patterns of flags, the symbolism of water, fire and charisma The findings of the study illustrate that people, more than other elements, are the constitutive elements of mythological symbols, and the tension between these human elements depicts the mutual conflict between good and evil in Ferdowsi’s Shahnameh. Like other elements, symbolic characters (especially kings are of symbolic value and constitute a part of constructing elements of mythological symbols in Shahname. Moreover their reputation is dependent on the extent of their benefit from “God charisma“ as the most pivotal element of their personality. Kings like Afrasiab and Zahak, due to lack of it, are the most disreputable kings. On the other hand, Fereidoon and Kaikhosro are on the top of the most reputable kings because of continuous benefit from that. This study has been conducted on the basis of library resources and has applied a descriptive-analytic method.

  20. Technology Assessment in Support of the Presidential Vision for Space Exploration

    Science.gov (United States)

    Weisbin, Charles R.; Lincoln, William; Mrozinski, Joe; Hua, Hook; Merida, Sofia; Shelton, Kacie; Adumitroaie, Virgil; Derleth, Jason; Silberg, Robert

    2006-01-01

    This paper discusses the process and results of technology assessment in support of the United States Vision for Space Exploration of the Moon, Mars and Beyond. The paper begins by reviewing the Presidential Vision: a major endeavor in building systems of systems. It discusses why we wish to return to the Moon, and the exploration architecture for getting there safely, sustaining a presence, and safely returning. Next, a methodology for optimal technology investment is proposed with discussion of inputs including a capability hierarchy, mission importance weightings, available resource profiles as a function of time, likelihoods of development success, and an objective function. A temporal optimization formulation is offered, and the investment recommendations presented along with sensitivity analyses. Key questions addressed are sensitivity of budget allocations to cost uncertainties, reduction in available budget levels, and shifting funding within constraints imposed by mission timeline.

  1. Nuclear Energy for Space Exploration

    Science.gov (United States)

    Houts, Michael G.

    2010-01-01

    Nuclear power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system. Fusion and antimatter systems may also be viable in the future

  2. Nuclear reactors; graphical symbols

    International Nuclear Information System (INIS)

    1987-11-01

    This standard contains graphical symbols that reveal the type of nuclear reactor and is used to design graphical and technical presentations. Distinguishing features for nuclear reactors are laid down in graphical symbols. (orig.) [de

  3. 6j symbols for the modular double, quantum hyperbolic geometry, and supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Teschner, J.; Vartanov, G.S.

    2012-02-15

    We revisit the definition of the 6j-symbols from the modular double of U{sub q}(sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for this object. This is used to briefly discuss possible applications to quantum hyperbolic geometry, and to the study of certain supersymmetric gauge theories. We show, in particular, that the b-6j symbol has leading semiclassical asymptotics given by the volume of a non-ideal tetrahedron. We furthermore observe a close relation with the problem to quantize natural Darboux coordinates for moduli spaces of flat connections on Riemann surfaces related to the Fenchel-Nielsen coordinates. Our new integral representations finally indicate a possible interpretation of the b-6j symbols as partition functions of three-dimensional N=2 supersymmetric gauge theories. (orig.)

  4. 6j symbols for the modular double, quantum hyperbolic geometry, and supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Teschner, J.; Vartanov, G.S.

    2012-02-01

    We revisit the definition of the 6j-symbols from the modular double of U q (sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for this object. This is used to briefly discuss possible applications to quantum hyperbolic geometry, and to the study of certain supersymmetric gauge theories. We show, in particular, that the b-6j symbol has leading semiclassical asymptotics given by the volume of a non-ideal tetrahedron. We furthermore observe a close relation with the problem to quantize natural Darboux coordinates for moduli spaces of flat connections on Riemann surfaces related to the Fenchel-Nielsen coordinates. Our new integral representations finally indicate a possible interpretation of the b-6j symbols as partition functions of three-dimensional N=2 supersymmetric gauge theories. (orig.)

  5. Symbolic Violence and Victimisation

    DEFF Research Database (Denmark)

    Pedersen, Bodil Maria

    2009-01-01

    has been criticised for over-generalisations, as well as for disregarding culture and the embeddedness of psychological problems in situated societal processes. The proposed paper is a contribution to this critique. It will draw on Bourdieu's concept of symbolic violence (1992). The concept connects......Nay (1999). It also undertakes a critical discussion of symbolic violence in the meanings given to victimisation and its aftermaths, as when conceptualised with the help of PTSD (e.g. may the use of concepts of this kind and the practices developed in relation to it constitute symbolic violence...... and contribute to victimisation?) Furthermore the analysis aims at unfolding an understanding of victimisation inclusive of connections between cultural/ societal practices, aspects of symbolic violence and lives of concrete subjects. The discussion takes its point of departure in theoretical deliberations...

  6. Wernher von Braun: Reflections on His Contributions to Space Exploration

    Science.gov (United States)

    Goldman, Arthur E.

    2012-01-01

    In 1950, Dr. Wernher von Braun and approximately 100 of his team members came to Huntsville, Alabama, to begin work with the Army on what would later become America's historic space program. He would later serve as the first director of the Marshall Space Flight Center and led the development of the Saturn V launch vehicle that launched seven crewed American mission to the moon, as well as America s first space station, Skylab. Von Braun is best known for his team s technical achievements. He realized his dream of exploring outer space by helping place humans on the moon. His engineering and managerial talent during the Apollo era had contributed to a technological revolution. He was by all accounts a good engineer, but he was only one among many. What set Von Braun apart were his charisma, his vision, and his leadership skills. He inspired loyalty and dedication in the people around him. He understood the importance of communicating his vision to his team, to political and business leaders and the public. Today, the Marshall Center continues his vision by pursuing engineering and scientific projects that will continue to open space to exploration. This presentation will discuss Von Braun's impact on Huntsville, the Marshall Center, the nation and the world and look at his contributions in context of where world space exploration is today.

  7. Persian Gardens: Meanings, Symbolism, and Design

    Directory of Open Access Journals (Sweden)

    Leila Mahmoudi Farahani

    2016-01-01

    Full Text Available Culture and identity in a society can be represented in the architecture and the meanings intertwined with it. In this sense, the architecture and design are the interface for transferring meaning and identity to the nation and future generations. Persian gardens have been evolved through the history of Persian Empire in regard to the culture and beliefs of the society. This paper aims to investigate the patterns of design and architecture in Persian gardens and the meanings intertwined with their patterns and significant elements such as water and trees. Persian gardens are not only about geometries and shapes; but also manifest different design elements, each representing a specific symbol and its significance among the society. This paper seeks to explore Persian gardens in terms of their geometric structure, irrigation system, network construction and pavilions alongside design qualities such as hierarchy, symmetry, centrality, rhythm and harmony. In the second stage, the paper investigates the fundamental symbols and their philosophy in the creation of Persian gardens and in relation to the architecture and design.

  8. Alenia Spazio: Space Programs for Solar System Exploration .

    Science.gov (United States)

    Ferri, A.

    Alenia Spazio is the major Italian space industry and one of the largest in Europe, with 2,400 highly skilled employees and 16,000 square meters of clean rooms and laboratories for advanced technological research that are among the most modern and well-equipped in Europe. The company has wide experience in the design, development, assembly, integration, verification and testing of complete space systems: satellites for telecommunications and navigation, remote sensing, meteorology and scientific applications; manned systems and space infrastructures; launch, transport and re-entry systems, and control centres. Alenia Spazio has contributed to the construction of over 200 satellites and taken part in the most important national and international space programmes, from the International Space Station to the new European global navigation system Galileo. Focusing on Solar System exploration, in the last 10 years the Company took part, with different roles, to the major European and also NASA missions in the field: Rosetta, Mars Express, Cassini; will soon take part in Venus Express, and is planning the future with Bepi Colombo, Solar Orbiter, GAIA and Exomars. In this paper, as in the presentation, a very important Earth Observation mission is also presented: GOCE. All in all, the Earth is by all means part of the Solar system as well and we like to see it as a planet to be explored.

  9. The symbolic constitution of addiction: language, alienation, ambivalence.

    Science.gov (United States)

    Kemp, Ryan

    2012-07-01

    The author offers an articulation of addiction, via existential-phenomenology and Lacanian psychoanalysis, where it is argued that the addicted subject is constituted via a symbolic structuring evolving from societal practices, laws and the effects of language. Language carries a heritage, which bears on the knowledge and practices of designated subjects and practitioners of that discourse. Addiction, as one particular form of embodied existence and knowledgeable practice, finds expression through the speech and habits of the addict. Addiction, it is argued, is symbolically saturated with ambivalence and alienation. Also the addict is described as the complete modern technocratic subject, consumed by the ideology of consumption. The clinical implications are briefly explored where it is noted that two major approaches to addiction, namely 12-step fellowships and motivational interviewing, both attend to language as a critical component of their treatment approach.

  10. Observing eye movements and the influence of cognition during a symbol search task: a comparison across three age groups.

    Science.gov (United States)

    Perrin, Maxine; Robillard, Manon; Roy-Charland, Annie

    2017-12-01

    This study examined eye movements during a visual search task as well as cognitive abilities within three age groups. The aim was to explore scanning patterns across symbol grids and to better understand the impact of symbol location in AAC displays on speed and accuracy of symbol selection. For the study, 60 students were asked to locate a series of symbols on 16 cell grids. The EyeLink 1000 was used to measure eye movements, accuracy, and response time. Accuracy was high across all cells. Participants had faster response times, longer fixations, and more frequent fixations on symbols located in the middle of the grid. Group comparisons revealed significant differences for accuracy and reaction times. The Leiter-R was used to evaluate cognitive abilities. Sustained attention and cognitive flexibility scores predicted the participants' reaction time and accuracy in symbol selection. Findings suggest that symbol location within AAC devices and individuals' cognitive abilities influence the speed and accuracy of retrieving symbols.

  11. Advances in Autonomous Systems for Missions of Space Exploration

    Science.gov (United States)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost

  12. Novelty Search for Soft Robotic Space Exploration

    NARCIS (Netherlands)

    Methenitis, G.; Hennes, D.; Izzo, D.; Visser, A.

    2015-01-01

    The use of soft robots in future space exploration is still a far-fetched idea, but an attractive one. Soft robots are inherently compliant mechanisms that are well suited for locomotion on rough terrain as often faced in extra-planetary environments. Depending on the particular application and

  13. Novelty search for soft robotic space exploration

    NARCIS (Netherlands)

    G. Methenitis (Georgios); D. Hennes; D. Izzo; A. Visser

    2015-01-01

    textabstractThe use of soft robots in future space exploration is still a far-fetched idea, but an attractive one. Soft robots are inherently compliant mechanisms that are well suited for locomotion on rough terrain as often faced in extra-planetary environments. Depending on the particular

  14. Composing the Symbolic

    Directory of Open Access Journals (Sweden)

    Daniela Sacco

    2015-11-01

    Full Text Available An excerpt from Sergei M. Eisenstein's memoirs describing a night visit to the museum of Chichén Itzá in Mexico is set forth as a real life example reflecting, both from a visual and theoretical perspective, the architecture of Aby Warburg's Bilderatlas Mnemosyne and his concept of Denkraum. Drawing upon Warburg's own writings and F. T. Vischer's theory of symbol, the paper looks at Eisenstein's experience at the museum as highlighting the dynamic relation between man's religious/magical and scientific/rational psychic poles, and the in-between space of thought inherent to the concept of Denkraum and visually represented by the empty dark intervals separating the images in the Bilderatlas. Adding significance to its argumentation, the paper also hints at an affinity between Eisenstein's film montaging and Warburg's image assembling criteria.

  15. [Pierre Bourdieu: sociology as a "symbolic revolution"].

    Science.gov (United States)

    Suaud, Charles

    2014-03-01

    The article combines two objectives: understand the genesis and development of the sociology of Bourdieu in connection with his social and intellectual positioning. The sociology of Bourdieu is a theory of Action which reconciles the double requirement of objectification and taking account of the practical logic bound by social agents. From the character both objective and subjective of social space, he analyzes how different institutions (firstly School) are doing that mental structures match the objective structures of society. By making acceptable reality and registering it in the body, these instances contribute to reproduce social divisions and participate in the work of domination. Gradually, Bourdieu develops a general theory about Power, which leads to a sociology of State. But he refuses any sociological fatalism. Because he perceived homologies between the sociologist and the artist facing the social order, each in their own way, he devoted two researches to Flaubert and Manet, seized in the same enterprise of aesthetic subversion he described as a 'symbolic revolution'. In many aspects, the sociology of Bourdieu opens ways of looking for an objectification of caregivers and their practices.

  16. Towards an imaginal dialogue: archetypal symbols between Eastern Orthodox Christianity and Islam

    Directory of Open Access Journals (Sweden)

    Ali Qadir

    2016-12-01

    Full Text Available This paper explores the potential for a dialogue between religious traditions based on art, in order to complement the dominant channels that rely on conceptual meanings. Building on a theoretical framework of post-Jungian archetypal psychology – as developed by James Hillman and Henry Corbin – we propose that the utility of such a dialogue inheres in the notion of an imaginal realm, or mundus imaginalis. In the first part of the paper we highlight three key features of this notion: the distinction between the imaginal and the imaginary; the significance of a culturally differentiated collective unconscious; and a reflection of the imaginal in practice rather than conceptually. We emphasize the materiality of sacred symbols that emerge from the imaginal realm. In the second part, we illustrate the importance of two archetypal symbols: the fish and the chalice. The significance of these symbols in history and in the practices of communities of believers is discussed. Thirdly, we discuss specific features of the dialogue emerging from these ubiquitous archetypal symbols.

  17. Deficient symbol processing in Alzheimer disease.

    Science.gov (United States)

    Toepper, Max; Steuwe, Carolin; Beblo, Thomas; Bauer, Eva; Boedeker, Sebastian; Thomas, Christine; Markowitsch, Hans J; Driessen, Martin; Sammer, Gebhard

    2014-01-01

    Symbols and signs have been suggested to improve the orientation of patients suffering from Alzheimer disease (AD). However, there are hardly any studies that confirm whether AD patients benefit from signs or symbols and which symbol characteristics might improve or impede their symbol comprehension. To address these issues, 30 AD patients and 30 matched healthy controls performed a symbol processing task (SPT) with 4 different item categories. A repeated-measures analysis of variance was run to identify impact of different item categories on performance accuracy in both the experimental groups. Moreover, SPT scores were correlated with neuropsychological test scores in a broad range of other cognitive domains. Finally, diagnostic accuracy of the SPT was calculated by a receiver-operating characteristic curve analysis. Results revealed a global symbol processing dysfunction in AD that was associated with semantic memory and executive deficits. Moreover, AD patients showed a disproportional performance decline at SPT items with visual distraction. Finally, the SPT total score showed high sensitivity and specificity in differentiating between AD patients and healthy controls. The present findings suggest that specific symbol features impede symbol processing in AD and argue for a diagnostic benefit of the SPT in neuropsychological assessment.

  18. Sound Symbolism in Basic Vocabulary

    Directory of Open Access Journals (Sweden)

    Søren Wichmann

    2010-04-01

    Full Text Available The relationship between meanings of words and their sound shapes is to a large extent arbitrary, but it is well known that languages exhibit sound symbolism effects violating arbitrariness. Evidence for sound symbolism is typically anecdotal, however. Here we present a systematic approach. Using a selection of basic vocabulary in nearly one half of the world’s languages we find commonalities among sound shapes for words referring to same concepts. These are interpreted as due to sound symbolism. Studying the effects of sound symbolism cross-linguistically is of key importance for the understanding of language evolution.

  19. The symbolism of zombie

    Directory of Open Access Journals (Sweden)

    Nadine BOUDOU

    2015-07-01

    Full Text Available The objective of this article is to show why the zombie can be presented as a justifiable object of search for the symbolic communication. The zombie exists as symbol because the word the leading to a qualification became of current usage, what allows a widened communication. The diversity of the interpretations that he makes possible testifies of its ambivalence. That he is defined as a symbol or as a metaphor we shall see that, far from being that a lasted fad, the zombie is rich in different senses.

  20. Symbol Stream Combining Versus Baseband Combining for Telemetry Arraying

    Science.gov (United States)

    Divsalar, D.

    1983-01-01

    The objectives of this article are to investigate and analyze the problem of combining symbol streams from many Deep Space Network stations to enhance bit signal-to-noise ratio and to compare the performance of this combining technique with baseband combining. Symbol stream combining (SSC) has some advantages and some disadvantages over baseband combining (BBC). The SSC suffers almost no loss in combining the digital data and no loss due to the transmission of the digital data by microwave links between the stations. The BBC suffers 0.2 dB loss due to alignment and combining the IF signals and 0.2 dB loss due to transmission of signals by microwave links. On the other hand, the losses in the subcarrier demodulation assembly (SDA) and in the symbol synchronization assembly (SSA) for SSC are more than the losses in the SDA and SSA for BBC. It is shown that SSC outperforms BBC by about 0.35 dB (in terms of the required bit energy-to-noise spectral density for a bit error rate of 1,000) for an array of three DSN antennas, namely 64 m, 34m(T/R) and 34m(R).

  1. Efficient Implementation of a Symbol Timing Estimator for Broadband PLC.

    Science.gov (United States)

    Nombela, Francisco; García, Enrique; Mateos, Raúl; Hernández, Álvaro

    2015-08-21

    Broadband Power Line Communications (PLC) have taken advantage of the research advances in multi-carrier modulations to mitigate frequency selective fading, and their adoption opens up a myriad of applications in the field of sensory and automation systems, multimedia connectivity or smart spaces. Nonetheless, the use of these multi-carrier modulations, such as Wavelet-OFDM, requires a highly accurate symbol timing estimation for reliably recovering of transmitted data. Furthermore, the PLC channel presents some particularities that prevent the direct use of previous synchronization algorithms proposed in wireless communication systems. Therefore more research effort should be involved in the design and implementation of novel and robust synchronization algorithms for PLC, thus enabling real-time synchronization. This paper proposes a symbol timing estimator for broadband PLC based on cross-correlation with multilevel complementary sequences or Zadoff-Chu sequences and its efficient implementation in a FPGA; the obtained results show a 90% of success rate in symbol timing estimation for a certain PLC channel model and a reduced resource consumption for its implementation in a Xilinx Kyntex FPGA.

  2. Efficient Implementation of a Symbol Timing Estimator for Broadband PLC

    Directory of Open Access Journals (Sweden)

    Francisco Nombela

    2015-08-01

    Full Text Available Broadband Power Line Communications (PLC have taken advantage of the research advances in multi-carrier modulations to mitigate frequency selective fading, and their adoption opens up a myriad of applications in the field of sensory and automation systems, multimedia connectivity or smart spaces. Nonetheless, the use of these multi-carrier modulations, such as Wavelet-OFDM, requires a highly accurate symbol timing estimation for reliably recovering of transmitted data. Furthermore, the PLC channel presents some particularities that prevent the direct use of previous synchronization algorithms proposed in wireless communication systems. Therefore more research effort should be involved in the design and implementation of novel and robust synchronization algorithms for PLC, thus enabling real-time synchronization. This paper proposes a symbol timing estimator for broadband PLC based on cross-correlation with multilevel complementary sequences or Zadoff-Chu sequences and its efficient implementation in a FPGA; the obtained results show a 90% of success rate in symbol timing estimation for a certain PLC channel model and a reduced resource consumption for its implementation in a Xilinx Kyntex FPGA.

  3. Explaining public support for space exploration funding in America: A multivariate analysis

    Science.gov (United States)

    Nadeau, François

    2013-05-01

    Recent studies have identified the need to understand what shapes public attitudes toward space policy. I address this gap in the literature by developing a multivariate regression model explaining why many Americans support government spending on space exploration. Using pooled data from the 2006 and 2008 General Social Surveys, the study reveals that spending preferences on space exploration are largely apolitical and associated instead with knowledge and opinions about science. In particular, the odds of wanting to increase funding for space exploration are significantly higher for white, male Babyboomers with a higher socio-economic status, a fondness for organized science, and a post-secondary science education. As such, I argue that public support for NASA's spending epitomizes what Launius termed "Apollo Nostalgia" in American culture. That is, Americans benefitting most from the old social order of the 1960s developed a greater fondness for science that makes them more likely to lament the glory days of space exploration. The article concludes with suggestions for how to elaborate on these findings in future studies.

  4. Anomaly Detection in Gas Turbine Fuel Systems Using a Sequential Symbolic Method

    Directory of Open Access Journals (Sweden)

    Fei Li

    2017-05-01

    Full Text Available Anomaly detection plays a significant role in helping gas turbines run reliably and economically. Considering the collective anomalous data and both sensitivity and robustness of the anomaly detection model, a sequential symbolic anomaly detection method is proposed and applied to the gas turbine fuel system. A structural Finite State Machine is used to evaluate posterior probabilities of observing symbolic sequences and the most probable state sequences they may locate. Hence an estimation-based model and a decoding-based model are used to identify anomalies in two different ways. Experimental results indicate that both models have both ideal performance overall, but the estimation-based model has a strong robustness ability, whereas the decoding-based model has a strong accuracy ability, particularly in a certain range of sequence lengths. Therefore, the proposed method can facilitate well existing symbolic dynamic analysis- based anomaly detection methods, especially in the gas turbine domain.

  5. [Rod of Asclepius. Symbol of medicine].

    Science.gov (United States)

    Young, Pablo; Finn, Bárbara C; Bruetman, Julio E; Cesaro Gelos, Jorge; Trimarchi, Hernán

    2013-09-01

    Symbolism is one of the most archaic forms of human thoughts. Symbol derives from the Latin word symbolum, and the latter from the Greek symbolon or symballo, which means "I coincide, I make matches". The Medicine symbol represents a whole series of historical and ethical values. Asclepius Rod with one serpent entwined, has traditionally been the symbol of scientific medicine. In a misconception that has lasted 500 years, the Caduceus of Hermes, entwined by two serpents and with two wings, has been considered the symbol of Medicine. However, the Caduceus is the current symbol of Commerce. Asclepius Rod and the Caduceus of Hermes represent two professions, Medicine and Commerce that, in ethical practice, should not be mixed. Physicians should be aware of their real emblem, its historical origin and meaning.

  6. Contribution to comprehending symbolism and meaning of architectural form

    Directory of Open Access Journals (Sweden)

    Alihodžić Rifat

    2017-01-01

    Full Text Available Architectural form and space, from the very beginning of their creation, weren’t only elements reflecting mere act of building; as the act of human actions, they included proper symbolic presentation of a creator's perception of the world. The initial point is that each physical, therefore each architectural form, speaks volumes on more than just their purpose, so it can have symbolic meanings, being proved in history of architecture for such a long time. While observing architectural form, these two questions impose. The first question refers to identifying usable purpose of particular facility, in other words, its function. The second question imposes to identify what are the things that we are reminded of concerning that particular facility. This second question represents search for the meaning in each form that mankind instinctively longs to identify in order to comprehend the world we live in. No matter if we are in natural or building area, everything we are surrounded by has got specific forms recalling certain associations. The aim of this paper is to indicate that pictures appearing as a consequence of close forms and designs represent associations and they should not be compared to symbols. The goal of this research is to contribute to clearer seeing of symbolism of architectural form, in which situations it exists and whether it exists in contemporary architectural forms. This work is based on elements of Gestalt observation theory.

  7. Power system requirements and selection for the space exploration initiative

    International Nuclear Information System (INIS)

    Biringer, K.L.; Bartine, D.E.; Buden, D.; Foreman, J.; Harrison, S.

    1991-01-01

    The Space Exploration Initiative (SEI) seeks to reestablish a US program of manned and unmanned space exploration. The President has called for a program which includes a space station element, a manned habitation of the moon, and a human exploration of Mars. The NASA Synthesis Group has developed four significantly different architectures for the SEI program. One key element of a space exploration effort is the power required to support the missions. The Power Speciality Team of the Synthesis Group was tasked with assessing and evaluating the power requirements and candidate power technologies for such missions. Inputs to the effort came from existing NASA studies as well as other governments agency inputs such as those from DOD and DOE. In addition, there were industry and university briefings and results of solicitations from the AIAA and the general public as part of the NASA outreach effort. Because of the variety of power needs in the SEI program, there will be a need for multiple power system technologies including solar, nuclear and electrochemical. Due to the high rocket masses required to propel payloads to the moon and beyond to Mars, there is great emphasis placed on the need for high power density and high energy density systems. Power system technology development work is needed results will determine the ultimate technology selections. 23 refs., 10 figs

  8. Epoxy/UHMWPE Composite Hybridized with Gadolinium Nanoparticles for Space Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract Deep space radiations pose a major threat to the astronauts and their space craft during the long duration space exploration expeditions [1]. Ultra High...

  9. Projective loop quantum gravity. I. State space

    Science.gov (United States)

    Lanéry, Suzanne; Thiemann, Thomas

    2016-12-01

    Instead of formulating the state space of a quantum field theory over one big Hilbert space, it has been proposed by Kijowski to describe quantum states as projective families of density matrices over a collection of smaller, simpler Hilbert spaces. Beside the physical motivations for this approach, it could help designing a quantum state space holding the states we need. In a latter work by Okolów, the description of a theory of Abelian connections within this framework was developed, an important insight being to use building blocks labeled by combinations of edges and surfaces. The present work generalizes this construction to an arbitrary gauge group G (in particular, G is neither assumed to be Abelian nor compact). This involves refining the definition of the label set, as well as deriving explicit formulas to relate the Hilbert spaces attached to different labels. If the gauge group happens to be compact, we also have at our disposal the well-established Ashtekar-Lewandowski Hilbert space, which is defined as an inductive limit using building blocks labeled by edges only. We then show that the quantum state space presented here can be thought as a natural extension of the space of density matrices over this Hilbert space. In addition, it is manifest from the classical counterparts of both formalisms that the projective approach allows for a more balanced treatment of the holonomy and flux variables, so it might pave the way for the development of more satisfactory coherent states.

  10. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  11. NMR-CT image and symbol phantoms

    International Nuclear Information System (INIS)

    Hongo, Syozo; Yamaguchi, Hiroshi; Takeshita, Hiroshi

    1990-01-01

    We have developed Japanese phantoms in two procedures. One is described as a mathematical expression. Another is 'symbol phantoms' in 3 dimensional picture-elements, each of which symbolize an organ name. The concept and the algorithm of the symbol phantom enables us to make a phantom for a individual in terms of all his transversal section images. We got 85 transversal section images of head and trunk parts, and those of 40 legs parts by using NMR-CT. We have made the individual phantom for computation of organ doses. The transversal section images were not so clear to identify all organs needed to dose estimation that we had to do hand-editing the shapes of organs with viewing a typical section images: we could not yet make symbol phantom in a automatic editing. Symbols were coded to be visual cords as ASCII characters. After we got the symbol phantom of the first stage, we can edit it easily using a word-processor. Symbol phantom could describe more freely the shape of organs than mathematical phantom. Symbol phantom has several advantages to be an individual phantom, but the only difficult point is how to determine its end-point as a reference man when we apply the method to build the reference man. (author)

  12. An FMRI-compatible Symbol Search task.

    Science.gov (United States)

    Liebel, Spencer W; Clark, Uraina S; Xu, Xiaomeng; Riskin-Jones, Hannah H; Hawkshead, Brittany E; Schwarz, Nicolette F; Labbe, Donald; Jerskey, Beth A; Sweet, Lawrence H

    2015-03-01

    Our objective was to determine whether a Symbol Search paradigm developed for functional magnetic resonance imaging (FMRI) is a reliable and valid measure of cognitive processing speed (CPS) in healthy older adults. As all older adults are expected to experience cognitive declines due to aging, and CPS is one of the domains most affected by age, establishing a reliable and valid measure of CPS that can be administered inside an MR scanner may prove invaluable in future clinical and research settings. We evaluated the reliability and construct validity of a newly developed FMRI Symbol Search task by comparing participants' performance in and outside of the scanner and to the widely used and standardized Symbol Search subtest of the Wechsler Adult Intelligence Scale (WAIS). A brief battery of neuropsychological measures was also administered to assess the convergent and discriminant validity of the FMRI Symbol Search task. The FMRI Symbol Search task demonstrated high test-retest reliability when compared to performance on the same task administered out of the scanner (r=.791; pSymbol Search (r=.717; pSymbol Search task were also observed. The FMRI Symbol Search task is a reliable and valid measure of CPS in healthy older adults and exhibits expected sensitivity to the effects of age on CPS performance.

  13. Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    Science.gov (United States)

    Singh, Bhim S.

    1998-01-01

    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.

  14. General Symbol Machines: The First Stage in the Evolution of Symbolic Communication

    Directory of Open Access Journals (Sweden)

    Thomas E. Dickins

    2003-01-01

    Full Text Available Humans uniquely form stimulus equivalence (SE classes of abstract and unrelated stimuli, i.e. if taught to match A with B and B with C, they will spontaneously match B with A, and C with B, (the relation of symmetry, and A with C (transitivity. Other species do not do this. The SE ability is possibly the consequence of a specific selection event in the Homo lineage. SE is of interest because it appears to demonstrate a facility that is core to symbolic behavior. Linguistic symbols, for example, are arbitrarily and symmetrically related to their referent such that the term banana has no resemblance to bananas but when processed can be used to discriminate bananas. Equally when bananas are perceived the term banana is readily produced. This relation is arguably the defining mark of symbolic representation. In this paper I shall detail the SE phenomenon and argue that it is evidence for a cognitive device that I term a General Symbol Machine (GSM. The GSM not only sets the background condition for subsequent linguistic evolution but also for other symbolic behaviors such as mathematical reasoning. In so doing the GSM is not particularly domain-specific. The apparent domain-specificity of, for example, natural language is a consequence of other computational developments. This introduces complexity to evolutionary arguments about cognitive architecture.

  15. Space Exploration: Manned and Unmanned Flight. Aerospace Education III.

    Science.gov (United States)

    Coard, E. A.

    This book, for use only in the Air Force ROTC training program, deals with the idea of space exploration. The possibility of going into space and subsequent moon landings have encouraged the government and scientists to formulate future plans in this field. Brief descriptions (mostly informative in nature) of these plans provide an account of…

  16. Multiple symbol differential detection

    Science.gov (United States)

    Divsalar, Dariush (Inventor); Simon, Marvin K. (Inventor)

    1991-01-01

    A differential detection technique for multiple phase shift keying (MPSK) signals is provided which uses a multiple symbol observation interval on the basis of which a joint decision is made regarding the phase of the received symbols. In accordance with the invention, a first difference phase is created between first and second received symbols. Next, the first difference phase is correlated with the possible values thereof to provide a first plurality of intermediate output signals. A second difference phase is next created between second and third received symbols. The second difference phase is correlated with plural possible values thereof to provide a second plurality of intermediate output signals. Next, a third difference phase is created between the first and third symbols. The third difference phase is correlated with plural possible values thereof to provide a third plurality of intermediate output signals. Each of the first plurality of intermediate outputs are combined with each of the second plurality of intermediate outputs and each of the third plurality of intermediate outputs to provide a plurality of possible output values. Finally, a joint decision is made by choosing from the plurality of possible output values the value which represents the best combined correlation of the first, second and third difference values with the possible values thereof.

  17. Moral Geography and Exploration of the Moral Possibility Space

    Directory of Open Access Journals (Sweden)

    Bongrae Seok

    2017-12-01

    Full Text Available This article reviews Owen Flanagan’s latest book “The Geography of Morals, Varieties of Moral Possibilities” (2017. By exploring the space of moral possibility (i.e., diverse options and viewpoints of morality from different philosophical and religious traditions throughout the world, Flanagan argues that ethics is not simply a study of a priori conditions of normative rules and ideal values but a process of developing a careful understanding of varying conditions of human ecology and building practical views on living good life. The goal of this geographical exploration of the moral possibility space is surveying different traditions of morality and finding tractable ways of human flourishing. This article, by following the chapters of his book, explains his views on moral diversity and his interdisciplinary and naturalistic approach to ethics. It also discusses interactive and dynamic ways to expand the moral possibility space.

  18. Pathos and the Mundane in the Symbolic Space of 1956 Revolution: the Case of Corvin-passage, Budapest

    Directory of Open Access Journals (Sweden)

    Ágnes Erőss

    2016-11-01

    Full Text Available The Corvin passage is one of the most important symbolic spaces of 1956 revolution in Hungary. The majority of armed conflicts took place in Budapest, where the largest resistance group had to battle against Soviet tanks in the neighbourhood of the Corvin Passage. This study aims to highlight the fact that, even though a general shift has taken place from the pre-1990 policy to ‘forget’ to today’s established remembrance practices, the Corvin Passage still does not have a prominent position as a major historic site. Our research is based on a study of relevant national and international literature, on an analysis of documents relating to tourism site management, on historical sources related to the Corvin Passage, and on a content analysis of guide-books and websites. The authors would tribute to 70 anniversary of treading out of Hungarian revolution and war of independence with this paper.

  19. Advanced Solid State Lighting for AES Deep Space Hab Project

    Science.gov (United States)

    Holbert, Eirik

    2015-01-01

    The advanced Solid State Lighting (SSL) assemblies augmented 2nd generation modules under development for the Advanced Exploration Systems Deep Space Habitat in using color therapy to synchronize crew circadian rhythms. Current RGB LED technology does not produce sufficient brightness to adequately address general lighting in addition to color therapy. The intent is to address both through a mix of white and RGB LEDs designing for fully addressable alertness/relaxation levels as well as more dramatic circadian shifts.

  20. Multifunctional, Nanostructured Metal Rubber Protective Films for Space Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed revolutionary nanostructured, yet macroscale, multifunctional Metal RubberTM films. In support of NASA's Vision for Space Exploration, low...

  1. Multifunctional, Nanostructured Metal Rubber Protective Films for Space Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed revolutionary nanostructured, yet macroscale, multifunctional Metal RubberTM films. In support of NASA's Vision for Space Exploration, low...

  2. National Aeronautics and Space Administration Exploration Systems Interim Strategy

    Science.gov (United States)

    2004-01-01

    Contents include the following: 1. The Exploration Systems Mission Directorate within NASA. Enabling the Vision for Space Exploration. The Role of the Directorate. 2. Strategic Context and Approach. Corporate Focus. Focused, Prioritized Requirements. Spiral Transformation. Management Rigor. 3. Achieving Directorate Objectives. Strategy to Task Process. Capability Development. Research and Technology Development. 4. Beyond the Horizon. Appendices.

  3. Three near term commercial markets in space and their potential role in space exploration

    Science.gov (United States)

    Gavert, Raymond B.

    2001-02-01

    Independent market studies related to Low Earth Orbit (LEO) commercialization have identified three near term markets that have return-on-investment potential. These markets are: (1) Entertainment (2) Education (3) Advertising/sponsorship. Commercial activity is presently underway focusing on these areas. A private company is working with the Russians on a commercial module attached to the ISS that will involve entertainment and probably the other two activities as well. A separate corporation has been established to commercialize the Russian Mir Space Station with entertainment and promotional advertising as important revenue sources. A new startup company has signed an agreement with NASA for commercial media activity on the International Space Station (ISS). Profit making education programs are being developed by a private firm to allow students to play the role of an astronaut and work closely with space scientists and astronauts. It is expected that the success of these efforts on the ISS program will extend to exploration missions beyond LEO. The objective of this paper is to extrapolate some of the LEO commercialization experiences to see what might be expected in space exploration missions to Mars, the Moon and beyond. .

  4. Academic [Activities]: Looking for Symbols in the Built Landscape; What Is Service?

    Science.gov (United States)

    Charney, Len; Sims, Cheryl

    1999-01-01

    Describes two experiential, academic activities for middle and high school students. Includes target group, group size, time and space requirements, activity level, props/preparation, and instructions. The activities enable students to identify the symbolic value of community places and architecture or raise student awareness about the…

  5. Design space pruning through hybrid analysis in system-level design space exploration

    NARCIS (Netherlands)

    Piscitelli, R.; Pimentel, A.D.

    2012-01-01

    System-level design space exploration (DSE), which is performed early in the design process, is of eminent importance to the design of complex multi-processor embedded system archi- tectures. During system-level DSE, system parameters like, e.g., the number and type of processors, the type and size

  6. State-Space Formulation for Circuit Analysis

    Science.gov (United States)

    Martinez-Marin, T.

    2010-01-01

    This paper presents a new state-space approach for temporal analysis of electrical circuits. The method systematically obtains the state-space formulation of nondegenerate linear networks without using concepts of topology. It employs nodal/mesh systematic analysis to reduce the number of undesired variables. This approach helps students to…

  7. High-Efficiency Reliable Stirling Generator for Space Exploration Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs advanced power-conversion technologies to improve the efficiency and reliability of power conversion for space exploration missions. We propose to develop...

  8. Product Lifecycle Management and the Quest for Sustainable Space Exploration Solutions

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.

    2010-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Engineering Directorate at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center, total lifecycle costs are important variables for critical decisionmaking. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful tool to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This paper will demonstrate how the Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions. It has been 30 years since the United States fielded the Space Shuttle. The next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. The outcome is a better use of scarce resources, along with more focus on stakeholder and customer requirements, as a new portfolio of enabling tools becomes second nature to the workforce. This paper will use the design and manufacturing processes, which have transitioned to digital-based activities, to show how PLM supports the comprehensive systems engineering and integration function. It also will go through a launch countdown scenario where an anomaly is detected to show how the virtual vehicle created from paperless processes will help solve technical challenges and improve the likelihood of launching on schedule, with

  9. The space shuttle program from challenge to achievement: Space exploration rolling on tires

    Science.gov (United States)

    Felder, G. L.

    1985-01-01

    The Space Shuttle Transportation System is the first space program to employ the pneumatic tire as a part of space exploration. For aircraft tires, this program establishes new expectations as to what constitutes acceptable performance within a set of tough environmental and operational conditions. Tire design, stresses the usual low weight, high load, high speed, and excellent air retention features but at extremes well outside industry standards. Tires will continue to be an integral part of the Shuttle's landing phase in the immediate future since they afford a unique combination of directional control, braking traction, flotation and shock absorption not available by other systems.

  10. Designing personal grief rituals: An analysis of symbolic objects and actions.

    Science.gov (United States)

    Sas, Corina; Coman, Alina

    2016-10-01

    Personal grief rituals are beneficial in dealing with complicated grief, but challenging to design, as they require symbolic objects and actions meeting clients' emotional needs. The authors reported interviews with 10 therapists with expertise in both grief therapy and grief rituals. Findings indicate three types of rituals supporting honoring, letting go, and self transformation, with the latter being particularly complex. Outcomes also point to a taxonomy of ritual objects for framing and remembering ritual experience, and for capturing and processing grief. Besides symbolic possessions, the authors identified other types of ritual objects including transformational and future-oriented ones. Symbolic actions include creative craft of ritual objects, respectful handling, disposal, and symbolic play. They conclude with theoretical implications of these findings, and a reflection on their value for tailored, creative co-design of grief rituals. In particular, several implications for designing grief rituals were identified that include accounting for the client's need, selecting (or creating) the most appropriate objects and actions from the identified types, integrating principles of both grief and art/drama therapy, exploring clients' affinity for the ancient elements as medium of disposal in letting go rituals, and the value of technology for recording and reflecting on ritual experience.

  11. Exact and approximate probabilistic symbolic execution for nondeterministic programs

    DEFF Research Database (Denmark)

    Luckow, Kasper Søe; Păsăreanu, Corina S.; Dwyer, Matthew B.

    2014-01-01

    Probabilistic software analysis seeks to quantify the likelihood of reaching a target event under uncertain environments. Recent approaches compute probabilities of execution paths using symbolic execution, but do not support nondeterminism. Nondeterminism arises naturally when no suitable probab...... Java programs. We show that our algorithms significantly improve upon a state-of-the-art statistical model checking algorithm, originally developed for Markov Decision Processes....... probabilistic model can capture a program behavior, e.g., for multithreading or distributed systems. In this work, we propose a technique, based on symbolic execution, to synthesize schedulers that resolve nondeterminism to maximize the probability of reaching a target event. To scale to large systems, we also...

  12. Enabling MPSoC design space exploration on FPGAs

    NARCIS (Netherlands)

    Shabbir, A.; Kumar, A.; Mesman, B.; Corporaal, H.; Hussain, D.M.A.; Rajput, A.Q.K.; Chowdhry, B.S.; Gee, Q.

    2009-01-01

    Future applications for embedded systems demand chip multiprocessor designs to meet real-time deadlines. These multiprocessors are increasingly becoming heterogeneous for reasons of cost and power. Design space exploration (DSE) of application mapping becomes a major design decision in such systems.

  13. A new interpretation of the symbolic codes for the Henon Map. II

    International Nuclear Information System (INIS)

    Yamaguchi, Yoshihiro; Tanikawa, Kiyotaka

    2011-01-01

    A certain region in the phase space for the area- and orientation-preserving Heon map is filled with the resonance chains. Taking this fact into account, the concept of block word has been introduced in the preceding paper. The concept of resonance chains in the symbol plane is also introduced and the marquetry structure of the symbol plane is investigated. If the orbit in the horseshoe travels over the resonance chains, the orbit is represented by a block word sequence. There are four purposes discussed in this paper. The first purpose is to introduce a new concept of parity to characterize the periodic orbits. The second is to study the detailed structure of the symbol plane. The third is to clarify the behaviors of symmetric periodic orbits in the resonance chain and determine their block word sequences. The fourth is to propose an improved construction method to make a braid for a non-Birkhoff periodic orbit in a resonance chain. (author)

  14. Symbolic aesthetics in steel structural systems

    Directory of Open Access Journals (Sweden)

    Usama Abdul-Mun'em Khuraibet

    2015-02-01

    Full Text Available The aesthetic expression and its orders are important for steel structures forming. Steel structures are a compilation of structural elements, where its shapes have standard dimensions and pre-fabricated. As the steel construction systems not only aim to achieve the functional requirements for users, but must also have the symbolic aesthetics which provides visually and cognitive expression for viewers. In this sense the research interested in expressional aesthetics in these systems and highlights the importance of attention as structural items. Therefore the visual items which related with steel structures contain some of the most powerful forms of modern architecture, steel structures with a glass cladding, agility and accuracy in manufacture of structural elements as visual items, structural interest in the forms of spaces which have long span systems or in high buildings are different forms of expression and influence. So the research focuses on the study of those expressive patterns related with the steel construction properties, including the advantages of these systems at the level of strength and firmness, flexibility and economy as well as aesthetic and expression. Accordingly, the research problem concentrated on educational shortage in the study of the structural steel system aspects concerning constructional characteristic, expressive and aesthetic features, and how to deal with them as a language bearing the symbols and meanings which have clear structural style, because it the best ways to make those systems as communication means with users, by premise that the use of expressional symbol in steel construction increases the aesthetic value. Therefore the research aims to reveal the most structural and expressive patterns by analysis the expressional means and steel structural aesthetics.

  15. 36 CFR 264.11 - Use of symbol.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Use of symbol. 264.11 Section... MANAGEMENT Mount St. Helens National Volcanic Monument Symbol § 264.11 Use of symbol. Except as provided in § 264.12, use of the Mount St. Helens National Volcanic Monument official symbol, including a facsimile...

  16. Performance/price estimates for cortex-scale hardware: a design space exploration.

    Science.gov (United States)

    Zaveri, Mazad S; Hammerstrom, Dan

    2011-04-01

    In this paper, we revisit the concept of virtualization. Virtualization is useful for understanding and investigating the performance/price and other trade-offs related to the hardware design space. Moreover, it is perhaps the most important aspect of a hardware design space exploration. Such a design space exploration is a necessary part of the study of hardware architectures for large-scale computational models for intelligent computing, including AI, Bayesian, bio-inspired and neural models. A methodical exploration is needed to identify potentially interesting regions in the design space, and to assess the relative performance/price points of these implementations. As an example, in this paper we investigate the performance/price of (digital and mixed-signal) CMOS and hypothetical CMOL (nanogrid) technology based hardware implementations of human cortex-scale spiking neural systems. Through this analysis, and the resulting performance/price points, we demonstrate, in general, the importance of virtualization, and of doing these kinds of design space explorations. The specific results suggest that hybrid nanotechnology such as CMOL is a promising candidate to implement very large-scale spiking neural systems, providing a more efficient utilization of the density and storage benefits of emerging nano-scale technologies. In general, we believe that the study of such hypothetical designs/architectures will guide the neuromorphic hardware community towards building large-scale systems, and help guide research trends in intelligent computing, and computer engineering. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Three Alternative Symbol-Lock Detectors

    Science.gov (United States)

    Shihabi, Mazen M.; Hinedi, Sami M.; Shah, Biren N.

    1993-01-01

    Three symbol-lock detectors proposed as alternatives in advanced receivers processing non-return-to-zero binary data signals. Two perform operations similar to those of older square-law and absolute-value types. However, integrals computed during nonoverlapping symbol periods and, therefore, only one integrator needed in each such detector. Proposed detectors simpler, but performances worse because noises in overlapping samples correlated, whereas noises in nonoverlapping samples not correlated. Third detector is signal-power-estimator type. Signal integrated during successive half symbol cycles, and therefore only one integrator needed. Half-cycle integrals multiplied to eliminate effect of symbol polarity, and products accumulated during M-cycle observation period to smooth out estimate of signal power. If estimated signal power exceeds threshold, delta, then lock declared.

  18. Applications of symbolic algebraic computation

    International Nuclear Information System (INIS)

    Brown, W.S.; Hearn, A.C.

    1979-01-01

    This paper is a survey of applications of systems for symbomic algebraic computation. In most successful applications, calculations that can be taken to a given order by hand are then extended one or two more orders by computer. Furthermore, with a few notable exceptins, these applications also involve numerical computation in some way. Therefore the authors emphasize the interface between symbolic and numerical computation, including: 1. Computations with both symbolic and numerical phases. 2. Data involving both the unpredictible size and shape that typify symbolic computation and the (usually inexact) numerical values that characterize numerical computation. 3. Applications of one field to the other. It is concluded that the fields of symbolic and numerical computation can advance most fruitfully in harmony rather than in competition. (Auth.)

  19. The Statue of Liberty: The Meaning and Use of a National Symbol. [Lesson Plan].

    Science.gov (United States)

    2001

    The Statue of Liberty, which stands in Upper New York Bay, is a universal symbol of freedom. A gift from France, it originally was conceived as an emblem of the friendship between the people of France and the United States. It has become much more, symbolizing the Mother of Exiles, greeting the millions of immigrants and embodying hope and…

  20. The effects of user factors and symbol referents on public symbol design using the stereotype production method.

    Science.gov (United States)

    Ng, Annie W Y; Siu, Kin Wai Michael; Chan, Chetwyn C H

    2012-01-01

    This study investigated the influence of user factors and symbol referents on public symbol design among older people, using the stereotype production method for collecting user ideas during the symbol design process. Thirty-one older adults were asked to draw images based on 28 public symbol referents and to indicate their familiarity with and ease with which they visualised each referent. Differences were found between the pictorial solutions generated by males and females. However, symbol design was not influenced by participants' education level, vividness of visual imagery, object imagery preference or spatial imagery preference. Both familiar and unfamiliar referents were illustrated pictorially without much difficulty by users. The more visual the referent, the less difficulty the users had in illustrating it. The findings of this study should aid the optimisation of the stereotype production method for user-involved symbol design. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. 7 CFR 29.3012 - Color symbols.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color symbols. 29.3012 Section 29.3012 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Color symbols. As applied to Burley, single color symbols are as follows: L—buff, F—tan, R—red, D—dark...

  2. 7 CFR 29.1066 - Symbol (S).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Symbol (S). 29.1066 Section 29.1066 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1066 Symbol (S). As applied to Flue-cured tobacco the symbol (S) when used (a) as the...

  3. 7 CFR 29.3510 - Color symbols.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color symbols. 29.3510 Section 29.3510 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3510 Color symbols. As applied to Dark Air-cured tobacco, color symbols are L—light brown...

  4. 7 CFR 29.2259 - Color symbols.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color symbols. 29.2259 Section 29.2259 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... symbols. As applied to this type, color symbols are: L—light brown, F—medium brown, D—dark brown, M—mixed...

  5. 7 CFR 29.1007 - Color symbols.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color symbols. 29.1007 Section 29.1007 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1007 Color symbols. As applied to flue-cured tobacco, color symbols are L—lemon, F—orange...

  6. Data science and symbolic AI: Synergies, challenges and opportunities

    KAUST Repository

    Hoehndorf, Robert

    2017-06-02

    Symbolic approaches to artificial intelligence represent things within a domain of knowledge through physical symbols, combine symbols into symbol expressions, and manipulate symbols and symbol expressions through inference processes. While a large part of Data Science relies on statistics and applies statistical approaches to artificial intelligence, there is an increasing potential for successfully applying symbolic approaches as well. Symbolic representations and symbolic inference are close to human cognitive representations and therefore comprehensible and interpretable; they are widely used to represent data and metadata, and their specific semantic content must be taken into account for analysis of such information; and human communication largely relies on symbols, making symbolic representations a crucial part in the analysis of natural language. Here we discuss the role symbolic representations and inference can play in Data Science, highlight the research challenges from the perspective of the data scientist, and argue that symbolic methods should become a crucial component of the data scientists’ toolbox.

  7. Data science and symbolic AI: Synergies, challenges and opportunities

    KAUST Repository

    Hoehndorf, Robert; Queralt-Rosinach, Nú ria

    2017-01-01

    Symbolic approaches to artificial intelligence represent things within a domain of knowledge through physical symbols, combine symbols into symbol expressions, and manipulate symbols and symbol expressions through inference processes. While a large part of Data Science relies on statistics and applies statistical approaches to artificial intelligence, there is an increasing potential for successfully applying symbolic approaches as well. Symbolic representations and symbolic inference are close to human cognitive representations and therefore comprehensible and interpretable; they are widely used to represent data and metadata, and their specific semantic content must be taken into account for analysis of such information; and human communication largely relies on symbols, making symbolic representations a crucial part in the analysis of natural language. Here we discuss the role symbolic representations and inference can play in Data Science, highlight the research challenges from the perspective of the data scientist, and argue that symbolic methods should become a crucial component of the data scientists’ toolbox.

  8. Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration

    Science.gov (United States)

    Soeder, James; Raitano, Paul; McNelis, Anne

    2016-01-01

    As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.

  9. Drop it and run! [New symbol warns of radiation dangers and aims to save lives

    International Nuclear Information System (INIS)

    Lodding, L.

    2007-01-01

    The black-and-yellow trefoil symbol - long the accepted label for denoting radioactive material - is getting a companion. And it's hoped that the new symbol will alert more people to the potential dangers of large sources of ionizing radiation and save lives. Unlike some signs of danger - like the commonly used skull-and-crossbones icon that seems to scream out both 'poison' and 'pirates' the trefoil symbol has little recognition beyond the nuclear community. This was learned from a five-year IAEA-led study to evaluate the best symbol to convey radiation danger. The vast majority of respondents tested in an eleven-country survey had no idea what the symbol meant nor had any knowledge of radiation. In fact, only 6% of those questioned in India, Brazil and Kenya could recognize the trefoil symbol for what it was. What resulted was a recommendation to design a universal system of labelling large radioactive sources. In 2001, IAEA Member States approved the new warning symbol project. The assignment was daunting. How to come up with a symbol that would be universally understood regardless of education, cultural orientation or age? The IAEA has recommended that the symbol be used on IAEA category 1, 2 and 3 sealed radiation sources (dangerous sources that can cause death or serious injury). The symbol was published in February 2007 by the ISO as (Supplementary Ionizing Radiation Warning Symbol : ISO 21482). The next challenge will be to publicize the new symbol within the industry and to obtain consistent implementation on large radioactive source

  10. Space Exploration

    Science.gov (United States)

    Gallagher, Dennis

    2017-01-01

    New range Passage Tomb may be the first structure with known astronomical significance. It was built around 3,200 B.C. in Ireland. It's central passage allows light end-to-end for about 2 weeks around winter solstice. The Sun, Moon, Planets, and Stars held significance in early times due to the seasons, significance for food crops, and mythology. Citation: Corel Photography and Windows to the Universe The Greek may be among the first to pursue analytical interpretations of what they saw in the sky. In about 280 B.C. Aristarchus suggested Earth revolves around the Sun and estimated the distance between. Around 130 B.C. Hipparchus developed the first accurate star map. Today still seek to understand how the universe formed and how we came to be and are we alone. Understanding the causes and consequences of climate change using advanced space missions with major Earth science and applications research. center dotFire the public imagination and inspire students to pursue STEM fields. Train college and graduate students to create a U.S. technical workforce with employees that embody the values of competence, innovation, and service. center dotDrive the technical innovations that enable exploration and become the engine of National economic growth. center dotPartner domestically and internationally to leverage resources to extend the reach of research.

  11. Sound-Symbolism Boosts Novel Word Learning

    Science.gov (United States)

    Lockwood, Gwilym; Dingemanse, Mark; Hagoort, Peter

    2016-01-01

    The existence of sound-symbolism (or a non-arbitrary link between form and meaning) is well-attested. However, sound-symbolism has mostly been investigated with nonwords in forced choice tasks, neither of which are representative of natural language. This study uses ideophones, which are naturally occurring sound-symbolic words that depict sensory…

  12. Symbol-String Sensitivity and Children's Reading

    Science.gov (United States)

    Pammer, Kristen; Lavis, Ruth; Hansen, Peter; Cornelissen, Piers L.

    2004-01-01

    In this study of primary school children, a novel "symbol-string" task is used to assess sensitivity to the position of briefly presented non-alphabetic but letter-like symbols. The results demonstrate that sensitivity in the symbol-string task explains a unique proportion of the variability in children's contextual reading accuracy. Moreover,…

  13. Performance of the split-symbol moments SNR estimator in the presence of inter-symbol interference

    Science.gov (United States)

    Shah, B.; Hinedi, S.

    1989-01-01

    The Split-Symbol Moments Estimator (SSME) is an algorithm that is designed to estimate symbol signal-to-noise ratio (SNR) in the presence of additive white Gaussian noise (AWGN). The performance of the SSME algorithm in band-limited channels is examined. The effects of the resulting inter-symbol interference (ISI) are quantified. All results obtained are in closed form and can be easily evaluated numerically for performance prediction purposes. Furthermore, they are validated through digital simulations.

  14. Symbol recognition with kernel density matching.

    Science.gov (United States)

    Zhang, Wan; Wenyin, Liu; Zhang, Kun

    2006-12-01

    We propose a novel approach to similarity assessment for graphic symbols. Symbols are represented as 2D kernel densities and their similarity is measured by the Kullback-Leibler divergence. Symbol orientation is found by gradient-based angle searching or independent component analysis. Experimental results show the outstanding performance of this approach in various situations.

  15. Sociocultural construction of San Salvador de Jujuy, the symbolic border between Argentina and Bolivia

    Directory of Open Access Journals (Sweden)

    Melina Gaona

    2017-05-01

    Full Text Available The city of San Salvador de Jujuy is analyzed both as a border space and as a city space. Through the systematization of local studies, the aim is to consider the historical, political, socioeconomic, migratory and symbolic elements that create the urban border experience. This contribution focuses on reconstructing the city as a network of senses. It deepens our understanding of migratory flows, the recent political situation, the impact of economic inequality on urbanisms, and the relevance of media and ritual acts in the configuration of dominant senses in cities. In addition, the factors that demarcate the difference and local inequality and the process of peripheralization and impoverishment of the soil are examined. Both the recent political conflicts that affect regional disarticulation and the symbolic disputes that cause tension in national belonging against a strong Andean influence are outlined.

  16. Symbolic dynamics and synchronization of coupled map networks with multiple delays

    International Nuclear Information System (INIS)

    Atay, Fatihcan M.; Jalan, Sarika; Jost, Juergen

    2010-01-01

    We use symbolic dynamics to study discrete-time dynamical systems with multiple time delays. We exploit the concept of avoiding sets, which arise from specific non-generating partitions of the phase space and restrict the occurrence of certain symbol sequences related to the characteristics of the dynamics. In particular, we show that the resulting forbidden sequences are closely related to the time delays in the system. We present two applications to coupled map lattices, namely (1) detecting synchronization and (2) determining unknown values of the transmission delays in networks with possibly directed and weighted connections and measurement noise. The method is applicable to multi-dimensional as well as set-valued maps, and to networks with time-varying delays and connection structure.

  17. Penal symbolism in Serbia in the first half of the 19th century

    Directory of Open Access Journals (Sweden)

    Todorović Miljana

    2011-01-01

    Full Text Available The author explores a scarce and unusual phenomenon for the 19th century Serbia, of the emphasized nexus between crime and penalty. The author marks that special, symbolical relation of penalty, on the one hand, and sanction on the other, as 'penal symbolism'. This term refers to penalization which reflects the ties between crime and punishment by copying crime in terms of modus or place of execution, or by 'punishing' those body parts which partook in committing a crime. The author classifies the examples of preserved judgments and legislations containing penal symbolism to those referring to modus or place of execution of death penalty, those which are examples of penal symbolism related to other sanctions, and those which are examples of the symbolic talion. The author raises the questions of the origin of this phenomenon, as well as of its justification, and aims at providing answers by reconstructing legal and social framework of Serbia in the first half of the 19th century. With this objective in mind, she discusses the development of Criminal Law and its basic features, as well as the development of judiciary, the systematic institutionalization of the network of criminal courts, and, especially, the composition thereof. In the conclusion, the author rejects the possibility that penal symbolism is a product of legal transplantation or that of the continuity of Serbian medieval law. She asserts that the scarcity of material criminal law sources led to judging by 'justice and fairness', and that those facts created conditions for the primitive sense of justice to find its way into judgments and legislations as penal symbolism.

  18. History of international symbol for ionizing radiation

    International Nuclear Information System (INIS)

    Franic, Z.

    1996-01-01

    The year 1996 marks the 50th anniversary of the radiation warning symbol as we currently know it. It was (except the colours used) doodled out at the University of California, Berkeley, sometime in 1946 by a small group of people. The key guy responsible was Nelson Garden, then the head of the Health Chemistry Group, at the Radiation Laboratory. The radiation warning symbol should not be confused with the civil defence symbol (circle divided into six equal sections, three of these being black and three yellow), designed to identify fallout shelters. The basic radiation symbol was eventually internationally standardized by ISO code: 361-1975 (E). Variations of this symbol are frequently used in logotypes radiation protection organizations or associations. Particularly nice are those of International Radiation Protection Association (IRPA) and Croatian Radiation Protection Association (CRPA) that combines traditional Croatian motives with high technology. However, apart from speculations, there is no definite answer why did the Berkeley people chose this particular symbol. Whatever the reason was, it was very good choice because the ionizing radiation symbol is simple, readily identifiable, i.e., not similar to other warning symbols, and discernible at a large distance. (author)

  19. Social Adaptation of New Immigrant Students: Cultural Scripts, Roles, and Symbolic Interactionism

    Science.gov (United States)

    Ukasoanya, Grace

    2014-01-01

    It is important that counselors understand the socio-cultural dimensions of social adaptation among immigrant students. While many psychological theories could provide suitable frameworks for examining these, in this article, I argue that symbolic interactionism could provide an additional valuable framework for (a) exploring the intersections of…

  20. The NASA research and technology program on space power: A key element of the Space Exploration Initiative

    Science.gov (United States)

    Bennett, Gary L.; Brandhorst, Henry W., Jr.; Atkins, Kenneth L.

    1991-01-01

    In July 1989, President Bush announced his space exploration initiative of going back to the Moon to stay and then going to Mars. Building upon its ongoing research and technology base, NASA has established an exploration technology program to develop the technologies needed for piloted missions to the Moon and Mars. A key element for the flights and for the planned bases is power. The NASA research and technology program on space power encompasses power sources, energy storage, and power management.

  1. 7 CFR 29.2509 - Color symbols.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Color symbols. 29.2509 Section 29.2509 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2509 Color symbols. As applied to these types, color symbols are L—light brown, F—medium brown, D—dark brown, M—mixed or variegated VF—greenish...

  2. Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis.

    Science.gov (United States)

    Schneider, Michael; Beeres, Kassandra; Coban, Leyla; Merz, Simon; Susan Schmidt, S; Stricker, Johannes; De Smedt, Bert

    2017-05-01

    Many studies have investigated the association between numerical magnitude processing skills, as assessed by the numerical magnitude comparison task, and broader mathematical competence, e.g. counting, arithmetic, or algebra. Most correlations were positive but varied considerably in their strengths. It remains unclear whether and to what extent the strength of these associations differs systematically between non-symbolic and symbolic magnitude comparison tasks and whether age, magnitude comparison measures or mathematical competence measures are additional moderators. We investigated these questions by means of a meta-analysis. The literature search yielded 45 articles reporting 284 effect sizes found with 17,201 participants. Effect sizes were combined by means of a two-level random-effects regression model. The effect size was significantly higher for the symbolic (r = .302, 95% CI [.243, .361]) than for the non-symbolic (r = .241, 95% CI [.198, .284]) magnitude comparison task and decreased very slightly with age. The correlation was higher for solution rates and Weber fractions than for alternative measures of comparison proficiency. It was higher for mathematical competencies that rely more heavily on the processing of magnitudes (i.e. mental arithmetic and early mathematical abilities) than for others. The results support the view that magnitude processing is reliably associated with mathematical competence over the lifespan in a wide range of tasks, measures and mathematical subdomains. The association is stronger for symbolic than for non-symbolic numerical magnitude processing. So symbolic magnitude processing might be a more eligible candidate to be targeted by diagnostic screening instruments and interventions for school-aged children and for adults. © 2016 John Wiley & Sons Ltd.

  3. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction

    KAUST Repository

    Cui, Xuefeng

    2016-06-15

    Motivation: Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. Method: We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence–structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. Results: We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM–HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods.

  4. Symbols of a cosmic order

    Science.gov (United States)

    Madjid, F. Hadi; Myers, John M.

    2016-10-01

    The world runs on networks over which signals communicate sequences of symbols, e.g. numerals. Examining both engineered and natural communications networks reveals an unsuspected order that depends on contact with an unpredictable entity. This order has three roots. The first is a proof within quantum theory that no evidence can ever determine its explanation, so that an agent choosing an explanation must do so unpredictably. The second root is the showing that clocks that step computers do not "tell time" but serve as self-adjusting symbol-handling agents that regulate "logically synchronized" motion in response to unpredictable disturbances. Such a clock-agent has a certain independence as well as the capacity to communicate via unpredictable symbols with other clock-agents and to adjust its own tick rate in response to that communication. The third root is the noticing of unpredictable symbol exchange in natural systems, including the transmission of symbols found in molecular biology. We introduce a symbol-handling agent as a role played in some cases by a person, for example a physicist who chooses an explanation of given experimental outcomes, and in other cases by some other biological entity, and in still other cases by an inanimate device, such as a computer-based detector used in physical measurements. While we forbear to try to explain the propensity of agents at all levels from cells to civilizations to form and operate networks of logically synchronized symbol-handling agents, we point to this propensity as an overlooked cosmic order, an order structured by the unpredictability ensuing from the proof. Appreciating the cosmic order leads to a conception of agency that replaces volition by unpredictability and reconceives the notion of objectivity in a way that makes a place for agency in the world as described by physics. Some specific implications for physics are outlined.

  5. Law enforcement and the project of descent of the symbolic order

    Directory of Open Access Journals (Sweden)

    Aldacy Rachid Coutinho

    2017-06-01

    Full Text Available This article deals with the registration of the symbolic force of the law, regardless the verification of their effectiveness. The labor law reveals in his regulatory frameworks the correlation of forces of capital and labor in society and thus is exemplary for establishing the existence of laws that have no effect in changing the reality. The recognition that the state creates laws that are not observed and that it is not intended to be fulfilled, does not put away the presence of the authority by violence that establish a symbolic order.

  6. Exploring space-time structure of human mobility in urban space

    Science.gov (United States)

    Sun, J. B.; Yuan, J.; Wang, Y.; Si, H. B.; Shan, X. M.

    2011-03-01

    Understanding of human mobility in urban space benefits the planning and provision of municipal facilities and services. Due to the high penetration of cell phones, mobile cellular networks provide information for urban dynamics with a large spatial extent and continuous temporal coverage in comparison with traditional approaches. The original data investigated in this paper were collected by cellular networks in a southern city of China, recording the population distribution by dividing the city into thousands of pixels. The space-time structure of urban dynamics is explored by applying Principal Component Analysis (PCA) to the original data, from temporal and spatial perspectives between which there is a dual relation. Based on the results of the analysis, we have discovered four underlying rules of urban dynamics: low intrinsic dimensionality, three categories of common patterns, dominance of periodic trends, and temporal stability. It implies that the space-time structure can be captured well by remarkably few temporal or spatial predictable periodic patterns, and the structure unearthed by PCA evolves stably over time. All these features play a critical role in the applications of forecasting and anomaly detection.

  7. Social exclusion – word as a symbol defining the nature of humanity

    Directory of Open Access Journals (Sweden)

    Andrzej Bałandynowicz

    2017-12-01

    Full Text Available The process of objectively deleting the meaning of ideas-symbols plays an important role in the education, teaching, upbringing and universal socialization of man. It is an area of transcultural struggle, which should lead to exposing the total truth about man, recognizing their place in the history of the world. In addition, naming the truth about oneself creates trust and responsibility and thus frees the state of affirmation for the rule of law and a just state. Via autotelic experiences, internal transformations and proactive consciousness, it is oriented on the basis of language and a symbolic universe, personal growth allowing to integrate the human being with the environment, and not to create a civilization of fall based on enslaved existence. This keyword means that people who are pushed outside the symbolic field and the imaginarium are deprived of emotional freedom and the right to freely choose and take responsibility for their actions in order to ensure freedom for the rest of society, the imagination, perception, sensations and feelings of which are fed by hatred, contempt and total isolation.

  8. Two cultures - one symbol

    Directory of Open Access Journals (Sweden)

    O. G. Shostak

    2003-06-01

    Full Text Available This paper is dedicated to the question of similarities in the approach to the multilevel symbolism in Slav and Native American cultures. Ambivalent symbol of the snake is analyzed in the frame of mythological thinking. At the end the author comes to the conclusion that elements of mythological thinking are still present in everyday life and influence human behavior levels

  9. The number and its symbolism in ancient Greece

    Directory of Open Access Journals (Sweden)

    Doc. dr Milena Bogdanović

    2013-07-01

    Full Text Available The symbols are of particular importance. They are the heart of the creative life; rather they are its core. They reveal the secrets of the unconscious mind open to the unknown and the infinite. While talking or gestures while express, we use the symbols, noting it or not. All spiritual science, all art and all art techniques encounter on their way symbols. History confirms that the symbols of each object can be obtained symbolic value, whether natural (rocks, trees, animals, planets, fire, lightning, etc... or abstract (geometrical shape, number, pace, ideas, etc.... The use of numbers as symbols is as old as language itself, but one that precedes writing, which symbolize numbers (that is, where the reality behind the external characters. The sheer numbers and their symbolism in ancient Greece and is closely associated with the philosophy and mathematics (namely arithmetic. They summarize their view of the world and everything around them. This paper draws attention to the symbolism of the numbers that were in ancient Greece.

  10. Trauma and Symbolic Violence

    DEFF Research Database (Denmark)

    Pedersen, Bodil Maria

    2011-01-01

    - to praxis, and drawing on the concept of symbolic violence, this article contributes to their critique. In order to develop the analysis of difficulties victims may experience, they will be reconceptualised using critical psychological concepts such as 1st person perspectives and participation. The analysis...... seeks to undertake a discussion of personal meanings attributed to 'traumatisation'. It raises questions as to whether concepts of this kind and related practices may constitute symbolic violence and contribute to victimisation through looping-processes. Furthermore it aims at unfolding an understanding...... inclusive of connections between societal practices, aspects of symbolic violence, and the conduct of lives. The analysis is based on an empirical study of victimisation through rape and other forms of sexualised coercion....

  11. Space Exploration as a Human Enterprise: The Scientific Interest

    Science.gov (United States)

    Sagan, Carl

    1973-01-01

    Presents examples which illustrate the importance of space exploration in diverse aspects of scientific knowledge. Indicates that human beings are today not wise enough to anticipate the practical benefits of planetary studies. (CC)

  12. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    Science.gov (United States)

    Ohi, Seigo; Roach, Allana-Nicole; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2003-01-01

    It is hypothesized that the hematopoietic stem cell therapy (HSCT) might countermeasure various space-caused disorders so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using animal models of disorders (hindlimb suspension unloading system and beta-thalassemia), the HSCT was tested for muscle loss, immunodeficiency and space anemia. The results indicate feasibility of HSCT for these disorders. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  13. Graphic symbols as "the mind on paper": links between children's interpretive theory of mind and symbol understanding.

    Science.gov (United States)

    Myers, Lauren J; Liben, Lynn S

    2012-01-01

    Children gradually develop interpretive theory of mind (iToM)-the understanding that different people may interpret identical events or stimuli differently. The present study tested whether more advanced iToM underlies children's recognition that map symbols' meanings must be communicated to others when symbols are iconic (resemble their referents). Children (6-9 years; N = 80) made maps using either iconic or abstract symbols. After accounting for age, intelligence, vocabulary, and memory, iToM predicted children's success in communicating symbols' meaning to a naïve map-user when mapping tasks involved iconic (but not abstract) symbols. Findings suggest children's growing appreciation of alternative representations and of the intentional assignment of meaning, and support the contention that ToM progresses beyond mastery of false belief. © 2011 The Authors. Child Development © 2011 Society for Research in Child Development, Inc.

  14. Digital Cities in the making: exploring perceptions of space, agency of actors and heterotopia

    Directory of Open Access Journals (Sweden)

    Asne Kvale Handlykken

    2011-12-01

    Full Text Available

    This paper is an attempt to explore how we imagine, sense and experience spaces in digital cities by a study of the hybrid relations between digital media, users' bodies, architecture and the city. Digital and physical spaces of the city are intertwined, the city and urban places and things become sentient, embedded with sensors and digital infrastructure, challenging traditional notions of space, and how we perceive and experience urban space.  Crucial issues to explore are how interactions and agency operating amongst actors in these spaces; between sentient non-human actors, places and people?  How are spaces of interaction embedded in the city, what characterizes these spaces, can they be explored as heterotopias (Foucault? These processes are a mutual shaping of society and technology, where the role of the imaginary, of mental representations and creation are being transformed.

  15. Habitat Concepts for Deep Space Exploration

    Science.gov (United States)

    Smitherman, David; Griffin, Brand N.

    2014-01-01

    Future missions under consideration requiring human habitation beyond the International Space Station (ISS) include deep space habitats in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar missions, satellite servicing, and Mars vehicle servicing missions. Habitat designs are also under consideration for missions beyond the Earth-Moon system, including transfers to near-Earth asteroids and Mars orbital destinations. A variety of habitat layouts have been considered, including those derived from the existing ISS designs and those that could be fabricated from the Space Launch System (SLS) propellant tanks. This paper presents a comparison showing several options for asteroid, lunar, and Mars mission habitats using ISS derived and SLS derived modules and identifies some of the advantages and disadvantages inherent in each. Key findings indicate that the larger SLS diameter modules offer built-in compatibility with the launch vehicle, single launch capability without on-orbit assembly, improved radiation protection, lighter structures per unit volume, and sufficient volume to accommodate consumables for long duration missions without resupply. The information provided with the findings includes mass and volume comparison data that should be helpful to future exploration mission planning efforts.

  16. Scalable and near-optimal design space exploration for embedded systems

    CERN Document Server

    Kritikakou, Angeliki; Goutis, Costas

    2014-01-01

    This book describes scalable and near-optimal, processor-level design space exploration (DSE) methodologies.  The authors present design methodologies for data storage and processing in real-time, cost-sensitive data-dominated embedded systems.  Readers will be enabled to reduce time-to-market, while satisfying system requirements for performance, area, and energy consumption, thereby minimizing the overall cost of the final design.   • Describes design space exploration (DSE) methodologies for data storage and processing in embedded systems, which achieve near-optimal solutions with scalable exploration time; • Presents a set of principles and the processes which support the development of the proposed scalable and near-optimal methodologies; • Enables readers to apply scalable and near-optimal methodologies to the intra-signal in-place optimization step for both regular and irregular memory accesses.

  17. NASA's Space Launch System: A New Capability for Science and Exploration

    Science.gov (United States)

    Crumbly, Christopher M.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will launch the Orion Multi-Purpose Crew Vehicle (MPCV) and other high-priority payloads into deep space. Its evolvable architecture will allow NASA to begin with human missions beyond the Moon and then go on to transport astronauts or robots to distant places such as asteroids and Mars. Developed with the goals of safety, affordability, and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration. This paper will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability, and will detail the progress that has already been made toward a first launch in 2017. This paper will also explore the requirements needed for human missions to deep-space destinations and for game-changing robotic science missions, and the capability of SLS to meet those requirements and enable those missions, along with the evolution strategy that will increase that capability. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. The SLS will offer a robust way to transport international crews and the air, water, food, and

  18. Solar Electric Propulsion Concepts for Human Space Exploration

    Science.gov (United States)

    Mercer, Carolyn R.; Mcguire, Melissa L.; Oleson, Steven R.; Barrett, Michael J.

    2016-01-01

    Advances in solar array and electric thruster technologies now offer the promise of new, very capable space transportation systems that will allow us to cost effectively explore the solar system. NASA has developed numerous solar electric propulsion spacecraft concepts with power levels ranging from tens to hundreds of kilowatts for robotic and piloted missions to asteroids and Mars. This paper describes nine electric and hybrid solar electric/chemical propulsion concepts developed over the last 5 years and discusses how they might be used for human exploration of the inner solar system.

  19. Symbolic Game Semantics for Model Checking Program Families

    DEFF Research Database (Denmark)

    Dimovski, Aleksandar

    2016-01-01

    represent program families with infinite integers as so-called (finite-state) featured symbolic automata. Specifically designed model checking algorithms are then employed to verify safety of all programs from a family at once and pinpoint those programs that are unsafe (respectively, safe). We present...... a prototype tool implementing this approach, and we illustrate it with several examples....

  20. A model-guided symbolic execution approach for network protocol implementations and vulnerability detection.

    Science.gov (United States)

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Formal techniques have been devoted to analyzing whether network protocol specifications violate security policies; however, these methods cannot detect vulnerabilities in the implementations of the network protocols themselves. Symbolic execution can be used to analyze the paths of the network protocol implementations, but for stateful network protocols, it is difficult to reach the deep states of the protocol. This paper proposes a novel model-guided approach to detect vulnerabilities in network protocol implementations. Our method first abstracts a finite state machine (FSM) model, then utilizes the model to guide the symbolic execution. This approach achieves high coverage of both the code and the protocol states. The proposed method is implemented and applied to test numerous real-world network protocol implementations. The experimental results indicate that the proposed method is more effective than traditional fuzzing methods such as SPIKE at detecting vulnerabilities in the deep states of network protocol implementations.

  1. Anthropomorphiс formidentinents-markers of significative field of catholic ethnoreligious space

    Directory of Open Access Journals (Sweden)

    V. I. Kryachko

    2014-12-01

    Anthropomorphic significative subsystem with its formidentinents­markers of the significative field of Catholic ethnoreligious space includes visualized in space anthropomorphic and personificated symbolic constructions and formelements, that are explicated via objective­material patterns: paintings, architecture, etc., and are often linked with various religious and ethnic symbolic systems.

  2. Space strategy and governance of ESA small member states

    Science.gov (United States)

    Sagath, Daniel; Papadimitriou, Angeliki; Adriaensen, Maarten; Giannopapa, Christina

    2018-01-01

    The European Space Agency (ESA) has twenty-two Member States with a variety of governance structures and strategic priorities regarding their space activities. The objective of this paper is to provide an up-to date overview and a holistic assessment of the national space governance structures and strategic priorities of the eleven smaller Member States (based on annual ESA contributions). A link is made between the governance structure and the main strategic objectives. The specific needs and interests of small and new Member States in the frame of European Space Integration are addressed. The first part of the paper focuses on the national space governance structures in the eleven smaller ESA Member States. The governance models of these Member States are identified including the responsible ministries and the entities entrusted with the implementation of space strategy/policy and programmes of the country. The second part of this paper focuses on the content and analysis of the national space strategies and indicates the main priorities and trends in the eleven smaller ESA Member States. The priorities are categorised with regards to technology domains, the role of space in the areas of sustainability and the motivators for space investments. In a third and final part, attention is given to the specific needs and interests of the smaller Member States in the frame of European space integration. ESA instruments are tailored to facilitate the needs and interests of the eleven smaller and/or new Member States.

  3. Symbolic and Nonsymbolic Equivalence Tasks: The Influence of Symbols on Students with Mathematics Difficulty

    Science.gov (United States)

    Driver, Melissa K.; Powell, Sarah R.

    2015-01-01

    Students often experience difficulty with attaching meaning to mathematics symbols. Many students react to symbols, such as the equal sign, as a command to "do something" or "write an answer" without reflecting upon the proper relational meaning of the equal sign. One method for assessing equal-sign understanding is through…

  4. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  5. Consumers recall and recognition for brand symbols

    OpenAIRE

    Subhani, Muhammad Imtiaz; Hasan, Syed Akif; Osman, Ms. Amber

    2012-01-01

    Brand Symbols are important for any brand in helping consumers to remember one’s brand at the point of purchase. In advertising different ways are used to grab attention in consumers’ mind and majorly it’s through brand recall and recognition. This research captivates the Brand Symbol concept and determines whether symbols play an important role in creating a differential impact with other brands. Secondly, it also answers that whether brand symbol is the cause of creating positive associatio...

  6. A Markovian state-space framework for integrating flexibility into space system design decisions

    Science.gov (United States)

    Lafleur, Jarret M.

    The past decades have seen the state of the art in aerospace system design progress from a scope of simple optimization to one including robustness, with the objective of permitting a single system to perform well even in off-nominal future environments. Integrating flexibility, or the capability to easily modify a system after it has been fielded in response to changing environments, into system design represents a further step forward. One challenge in accomplishing this rests in that the decision-maker must consider not only the present system design decision, but also sequential future design and operation decisions. Despite extensive interest in the topic, the state of the art in designing flexibility into aerospace systems, and particularly space systems, tends to be limited to analyses that are qualitative, deterministic, single-objective, and/or limited to consider a single future time period. To address these gaps, this thesis develops a stochastic, multi-objective, and multi-period framework for integrating flexibility into space system design decisions. Central to the framework are five steps. First, system configuration options are identified and costs of switching from one configuration to another are compiled into a cost transition matrix. Second, probabilities that demand on the system will transition from one mission to another are compiled into a mission demand Markov chain. Third, one performance matrix for each design objective is populated to describe how well the identified system configurations perform in each of the identified mission demand environments. The fourth step employs multi-period decision analysis techniques, including Markov decision processes from the field of operations research, to find efficient paths and policies a decision-maker may follow. The final step examines the implications of these paths and policies for the primary goal of informing initial system selection. Overall, this thesis unifies state-centric concepts of

  7. Symbolic modeling of human anatomy for visualization and simulation

    Science.gov (United States)

    Pommert, Andreas; Schubert, Rainer; Riemer, Martin; Schiemann, Thomas; Tiede, Ulf; Hoehne, Karl H.

    1994-09-01

    Visualization of human anatomy in a 3D atlas requires both spatial and more abstract symbolic knowledge. Within our 'intelligent volume' model which integrates these two levels, we developed and implemented a semantic network model for describing human anatomy. Concepts for structuring (abstraction levels, domains, views, generic and case-specific modeling, inheritance) are introduced. Model, tools for generation and exploration and applications in our 3D anatomical atlas are presented and discussed.

  8. Exact computation of the 9-j symbols

    International Nuclear Information System (INIS)

    Lai Shantao; Chiu Jingnan

    1992-01-01

    A useful algebraic formula for the 9-j symbol has been rewritten for convenient use on a computer. A simple FORTRAN program for the exact computation of 9-j symbols has been written for the VAX with VMS version V5,4-1 according to this formula. The results agree with the approximate values in existing literature. Some specific values of 9-j symbols needed for the intensity and alignments of three-photon nonresonant transitions are tabulated. Approximate 9-j symbol values beyond the limitation of the computer can also be computed by this program. The computer code of the exact computation of 3-j, 6-j and 9-j symbols are available through electronic mail upon request. (orig.)

  9. Anaesthesia in austere environments: literature review and considerations for future space exploration missions.

    Science.gov (United States)

    Komorowski, Matthieu; Fleming, Sarah; Mawkin, Mala; Hinkelbein, Jochen

    2018-01-01

    Future space exploration missions will take humans far beyond low Earth orbit and require complete crew autonomy. The ability to provide anaesthesia will be important given the expected risk of severe medical events requiring surgery. Knowledge and experience of such procedures during space missions is currently extremely limited. Austere and isolated environments (such as polar bases or submarines) have been used extensively as test beds for spaceflight to probe hazards, train crews, develop clinical protocols and countermeasures for prospective space missions. We have conducted a literature review on anaesthesia in austere environments relevant to distant space missions. In each setting, we assessed how the problems related to the provision of anaesthesia (e.g., medical kit and skills) are dealt with or prepared for. We analysed how these factors could be applied to the unique environment of a space exploration mission. The delivery of anaesthesia will be complicated by many factors including space-induced physiological changes and limitations in skills and equipment. The basic principles of a safe anaesthesia in an austere environment (appropriate training, presence of minimal safety and monitoring equipment, etc.) can be extended to the context of a space exploration mission. Skills redundancy is an important safety factor, and basic competency in anaesthesia should be part of the skillset of several crewmembers. The literature suggests that safe and effective anaesthesia could be achieved by a physician during future space exploration missions. In a life-or-limb situation, non-physicians may be able to conduct anaesthetic procedures, including simplified general anaesthesia.

  10. In-Space Propulsion Technologies for Robotic Exploration of the Solar System

    Science.gov (United States)

    Johnson, Les; Meyer, Rae Ann; Frame, Kyle

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.

  11. Product Lifecycle Management and the Quest for Sustainable Space Explorations

    Science.gov (United States)

    Caruso, Pamela W.; Dumbacher, Daniel L.

    2010-01-01

    Product Lifecycle Management (PLM) is an outcome of lean thinking to eliminate waste and increase productivity. PLM is inextricably tied to the systems engineering business philosophy, coupled with a methodology by which personnel, processes and practices, and information technology combine to form an architecture platform for product design, development, manufacturing, operations, and decommissioning. In this model, which is being implemented by the Engineering Directorate at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center, total lifecycle costs are important variables for critical decision-making. With the ultimate goal to deliver quality products that meet or exceed requirements on time and within budget, PLM is a powerful concept to shape everything from engineering trade studies and testing goals, to integrated vehicle operations and retirement scenarios. This paper will demonstrate how the Engineering Directorate is implementing PLM as part of an overall strategy to deliver safe, reliable, and affordable space exploration solutions. It has been 30 years since the United States fielded the Space Shuttle. The next generation space transportation system requires a paradigm shift such that digital tools and knowledge management, which are central elements of PLM, are used consistently to maximum effect. The outcome is a better use of scarce resources, along with more focus on stakeholder and customer requirements, as a new portfolio of enabling tools becomes second nature to the workforce. This paper will use the design and manufacturing processes, which have transitioned to digital-based activities, to show how PLM supports the comprehensive systems engineering and integration function. It also will go through a launch countdown scenario where an anomaly is detected to show how the virtual vehicle created from paperless processes will help solve technical challenges and improve the likelihood of launching on schedule

  12. Biomimetics on seed dispersal: survey and insights for space exploration

    International Nuclear Information System (INIS)

    Pandolfi, Camilla; Izzo, Dario

    2013-01-01

    Seeds provide the vital genetic link and dispersal agent between successive generations of plants. Without seed dispersal as a means of reproduction, many plants would quickly die out. Because plants lack any sort of mobility and remain in the same spot for their entire lives, they rely on seed dispersal to transport their offspring throughout the environment. This can be accomplished either collectively or individually; in any case as seeds ultimately abdicate their movement, they are at the mercy of environmental factors. Thus, seed dispersal strategies are characterized by robustness, adaptability, intelligence (both behavioral and morphological), and mass and energy efficiency (including the ability to utilize environmental sources of energy available): all qualities that advanced engineering systems aim at in general, and in particular those that need to enable complex endeavors such as space exploration. Plants evolved and adapted their strategy according to their environment, and taken together, they enclose many desirable characteristics that a space mission needs to have. Understanding in detail how plants control the development of seeds, fabricate structural components for their dispersal, build molecular machineries to keep seeds dormant up to the right moment and monitor the environment to release them at the right time could provide several solutions impacting current space mission design practices. It can lead to miniaturization, higher integration and packing efficiency, energy efficiency and higher autonomy and robustness. Consequently, there would appear to be good reasons for considering biomimetic solutions from plant kingdom when designing space missions, especially to other celestial bodies, where solid and liquid surfaces, atmosphere, etc constitute and are obviously parallel with the terrestrial environment where plants evolved. In this paper, we review the current state of biomimetics on seed dispersal to improve space mission design

  13. The symbolic economy of drugs.

    Science.gov (United States)

    Lentacker, Antoine

    2016-02-01

    This essay reviews four recent studies representing a new direction in the history of pharmaceuticals and pharmaceutical science. To this end, it introduces the notion of a symbolic economy of drugs, defined as the production, circulation, and reception of signs that convey information about drugs and establish trust in them. Each of the studies under review focuses on one key signifier in this symbolic economy, namely the brand, the patent, the clinical trial, and the drug itself. Drawing on Pierre Bourdieu's theory of the economy of symbolic goods, I conceptualize these signifiers as symbolic assets, that is, as instruments of communication and credit, delivering knowledge, carrying value, and producing authority. The notion of a symbolic economy is offered with a threefold intention. First, I introduce it in order to highlight the implications of historical and anthropological work for a broader theory of the economy of drugs, thus suggesting a language for interdisciplinary conversations in the study of pharmaceuticals. Second, I deploy it in an attempt to emphasize the contributions of the recent scholarship on drugs to a critical understanding of our own contemporary ways of organizing access to drugs and information about drugs. Finally, I suggest ways in which it might be of use to scholars of other commodities and technologies.

  14. Integrating GIS and ABM to Explore Spatiotemporal Dynamics

    Science.gov (United States)

    Sun, M.; Jiang, Y.; Yang, C.

    2013-12-01

    Agent-based modeling as a methodology for the bottom-up exploration with the account of adaptive behavior and heterogeneity of system components can help discover the development and pattern of the complex social and environmental system. However, ABM is a computationally intensive process especially when the number of system components becomes large and the agent-agent/agent-environmental interaction is modeled very complex. Most of traditional ABM frameworks developed based on CPU do not have a satisfying computing capacity. To address the problem and as the emergence of advanced techniques, GPU computing with CUDA can provide powerful parallel structure to enable the complex simulation of spatiotemporal dynamics. In this study, we first develop a GPU-based ABM system. Secondly, in order to visualize the dynamics generated from the movement of agent and the change of agent/environmental attributes during the simulation, we integrate GIS into the ABM system. Advanced geovisualization technologies can be utilized for representing the spatiotemporal change events, such as proper 2D/3D maps with state-of-the-art symbols, space-time cube and multiple layers each of which presents pattern in one time-stamp, etc. Thirdly, visual analytics which include interactive tools (e.g. grouping, filtering, linking, etc.) is included in our ABM-GIS system to help users conduct real-time data exploration during the progress of simulation. Analysis like flow analysis and spatial cluster analysis can be integrated according to the geographical problem we want to explore.

  15. Class Explorations in Space: From the Blackboard and History to the Outdoors and Future

    Science.gov (United States)

    Cavicchi, Elizabeth

    2011-11-01

    Our everyday activities occur so seamlessly in the space around us as to leave us unawares of space, its properties, and our use of it. What might we notice, wonder about and learn through interacting with space exploratively? My seminar class took on that question as an opening for personal and group experiences during this semester. In the process, they observe space locally and in the sky, read historical works of science involving space, and invent and construct forms in space. All these actions arise responsively, as we respond to: physical materials and space; historical resources; our seminar participants, and future learners. Checks, revisions and further developments -- on our findings, geometrical constructions, shared or personal inferences---come about observationally and collaboratively. I teach this seminar as an expression of the research pedagogy of critical exploration, developed by Eleanor Duckworth from the work of Jean Piaget, B"arbel Inhelder and the Elementary Science Study. This practice applies the quest for understanding of a researcher to spontaneous interactions evolving within a classroom. The teacher supports students in satisfying and developing their curiosities, which often results in exploring the subject matter by routes that are novel to both teacher and student. As my students ``mess about'' with geometry, string and chalk at the blackboard, in their notebooks, and in response to propositions in Euclid's Elements, they continually imagine further novel venues for using geometry to explore space. Where might their explorations go in the future? I invite you to hear from them directly!

  16. Towards human exploration of space: the THESEUS review series on neurophysiology research priorities.

    Science.gov (United States)

    White, Olivier; Clément, Gilles; Fortrat, Jacques-Olivier; Pavy-LeTraon, Anne; Thonnard, Jean-Louis; Blanc, Stéphane; Wuyts, Floris L; Paloski, William H

    2016-01-01

    The THESEUS project (Towards Human Exploration of Space: a European Strategy), initiated within the seventh Framework Programme by the European Commission, aimed at providing a cross-cutting, life-science-based roadmap for Europe's strategy towards human exploration of long space missions, and its relevance to applications on Earth. This topic was investigated by experts in the field, in the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration. In particular, decades of research have shown that altered gravity impairs neurological responses at large, such as perception, sleep, motor control, and cognitive factors. International experts established a list of key issues that should be addressed in that context and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space.

  17. 7 CFR 29.3013 - Combination color symbols.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Combination color symbols. 29.3013 Section 29.3013..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER... Type 93) § 29.3013 Combination color symbols. As applied to Burley, combination color symbols are as...

  18. Symbolic Time Separation of Events

    DEFF Research Database (Denmark)

    Amon, Tod; Hulgaard, Henrik

    1999-01-01

    We extend the TSE~\\cite{Hulgaard95} timing analysis algorithm into the symbolic domain, that is, we allow symbolic variables to be used to specify unknown parameters of the model (essentially, unknown delays) and verification algorithms which are capable of identifying not just failure or success...

  19. Cultura ciudadana. Renegotiating the Boundary between State and Society

    Directory of Open Access Journals (Sweden)

    Stacey L. Hunt

    2015-05-01

    Full Text Available In this paper I analyze the continued existence of the Colombian state despite widespread crime and violence. Contemporary theorists posit that the state must subscribe to the image of an entity that is relatively autonomous from civil society and able to monopolize violence. However, citizen culture (cultura ciudadana, the innovative crime reduction policy I study here, is based on the premise that the state is unable to provide security for its inhabitants given the existence of a culture of violence. The policy encourages citizens to assume responsibility for their own security provision by adopting a culture of citizenship. I argue that citizen culture functions to legitimize the state despite ongoing violence by transferring responsibility for security provision from the state to civil society. It does so by inundating public space with educational spectacles, symbols, and slogans that circumscribe public debate and instruct citizen’s behavior. Citizen culture uses educational and symbolic programming to shift responsibility for security provision from the state to society, thereby altering the boundary between state and society and redefining the very essence of the modern state.

  20. Symbol interval optimization for molecular communication with drift.

    Science.gov (United States)

    Kim, Na-Rae; Eckford, Andrew W; Chae, Chan-Byoung

    2014-09-01

    In this paper, we propose a symbol interval optimization algorithm in molecular communication with drift. Proper symbol intervals are important in practical communication systems since information needs to be sent as fast as possible with low error rates. There is a trade-off, however, between symbol intervals and inter-symbol interference (ISI) from Brownian motion. Thus, we find proper symbol interval values considering the ISI inside two kinds of blood vessels, and also suggest no ISI system for strong drift models. Finally, an isomer-based molecule shift keying (IMoSK) is applied to calculate achievable data transmission rates (achievable rates, hereafter). Normalized achievable rates are also obtained and compared in one-symbol ISI and no ISI systems.

  1. A model-guided symbolic execution approach for network protocol implementations and vulnerability detection.

    Directory of Open Access Journals (Sweden)

    Shameng Wen

    Full Text Available Formal techniques have been devoted to analyzing whether network protocol specifications violate security policies; however, these methods cannot detect vulnerabilities in the implementations of the network protocols themselves. Symbolic execution can be used to analyze the paths of the network protocol implementations, but for stateful network protocols, it is difficult to reach the deep states of the protocol. This paper proposes a novel model-guided approach to detect vulnerabilities in network protocol implementations. Our method first abstracts a finite state machine (FSM model, then utilizes the model to guide the symbolic execution. This approach achieves high coverage of both the code and the protocol states. The proposed method is implemented and applied to test numerous real-world network protocol implementations. The experimental results indicate that the proposed method is more effective than traditional fuzzing methods such as SPIKE at detecting vulnerabilities in the deep states of network protocol implementations.

  2. Scientific applications of symbolic computation

    International Nuclear Information System (INIS)

    Hearn, A.C.

    1976-02-01

    The use of symbolic computation systems for problem solving in scientific research is reviewed. The nature of the field is described, and particular examples are considered from celestial mechanics, quantum electrodynamics and general relativity. Symbolic integration and some more recent applications of algebra systems are also discussed [fr

  3. Challenging convention: symbolic interactionism and grounded theory.

    Science.gov (United States)

    Newman, Barbara

    2008-01-01

    Not very much is written in the literature about decisions made by researchers and the justifications on method as a result of a particular clinical problem, together with an appropriate and congruent theoretical perspective, particularly for Glaserian grounded theory. I contend the utilisation of symbolic interactionism as a theoretical perspective to inform and guide the evolving research process and analysis of data when using classic or Glaserian grounded theory (GT) method, is not always appropriate. Within this article I offer an analysis of the key issues to be addressed when contemplating the use of Glaserian GT and the utilisation of an appropriate theoretical perspective, rather than accepting convention of symbolic interactionism (SI). The analysis became imperative in a study I conducted that sought to explore the concerns, adaptive behaviours, psychosocial processes and relevant interactions over a 12-month period, among newly diagnosed persons with end stage renal disease, dependent on haemodialysis in the home environment for survival. The reality of perception was central to the end product in the study. Human ethics approval was granted by six committees within New South Wales Health Department and one from a university.

  4. The politics and perils of space exploration who will compete, who will dominate?

    CERN Document Server

    Dawson, Linda

    2017-01-01

    Written by a former Aerodynamics Officer on the space shuttle program, this book provides a complete overview of the “new” U. S. space program, which has changed considerably over the past 50 years.The future of space exploration has become increasingly dependent on other countries and private enterprise. Can private enterprise can fill the shoes of NASA and provide the same expertise and safety measures and lessons learned from NASA? In order to tell this story, it is important to understand the politics of space as well as the dangers, why it is so difficult to explore and utilize the resources of space. Some past and recent triumphs and failures will be discussed, pointing the way to a successful space policy that includes taking risks but also learning how to mitigate them.

  5. Strategy for the Explorer program for solar and space physics

    International Nuclear Information System (INIS)

    1984-01-01

    Contents include: executive summary; the Explorer program - background and current status; strategy - level of activity; solar-terrestrial research (solar physics, space plasma physics, and upper atmospheric physics)

  6. Exploring the Concept of Healing Spaces.

    Science.gov (United States)

    DuBose, Jennifer; MacAllister, Lorissa; Hadi, Khatereh; Sakallaris, Bonnie

    2018-01-01

    Evidence-based design (EBD) research has demonstrated the power of environmental design to support improved patient, family, and staff outcomes and to minimize or avoid harm in healthcare settings. While healthcare has primarily focused on fixing the body, there is a growing recognition that our healthcare system could do more by promoting overall wellness, and this requires expanding the focus to healing. This article explores how we can extend what we know from EBD about health impacts of spatial design to the more elusive goal of healing. By breaking the concept of healing into antecedent components (emotional, psychological, social, behavioral, and functional), this review of the literature presents the existing evidence to identify how healthcare spaces can foster healing. The environmental variables found to directly affect or facilitate one or more dimension of healing were organized into six groups of variables-homelike environment, access to views and nature, light, noise control, barrier-free environment, and room layout. While there is limited scientific research confirming design solutions for creating healing spaces, the literature search revealed relationships that provide a basis for a draft definition. Healing spaces evoke a sense of cohesion of the mind, body, and spirit. They support healing intention and foster healing relationships.

  7. Future spacecraft propulsion systems. Enabling technologies for space exploration. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Czysz, Paul A. [St. Louis Univ., MO (United States). Oliver L. Parks Endowed Chair in Aerospace Engineering; Bruno, Claudio [Univ. degli Studi di Roma (Italy). Dipt. di Meccanica e Aeronautica

    2009-07-01

    In this second edition of Future Spacecraft Propulsion Systems, the authors demonstrate the need to break free from the old established concepts of expendable rockets, using chemical propulsion, and to develop new breeds of launch vehicle capable of both launching payloads into orbit at a dramatically reduced cost and for sustained operations in low-Earth orbit. The next steps to establishing a permanent 'presence' in the Solar System beyond Earth are the commercialisation of sustained operations on the Moon and the development of advanced nuclear or high-energy space propulsion systems for Solar System exploration out to the boundary of interstellar space. In the future, high-energy particle research facilities may one day yield a very high-energy propulsion system that will take us to the nearby stars, or even beyond. Space is not quiet: it is a continuous series of nuclear explosions that provide the material for new star systems to form and provide the challenge to explore. This book provides an assessment of the industrial capability required to construct and operate the necessary spacecraft. Time and distance communication and control limitations impose robotic constraints. Space environments restrict human sustained presence and put high demands on electronic, control and materials systems. This comprehensive and authoritative book puts spacecraft propulsion systems in perspective, from earth orbit launchers to astronomical/space exploration vehicles. It includes new material on fusion propulsion, new figures and updates and expands the information given in the first edition. (orig.)

  8. Finite Word-Length Effects in Digital State-Space Filters

    Directory of Open Access Journals (Sweden)

    B. Psenicka

    1999-12-01

    Full Text Available The state-space description of digital filters involves except the relationship between input and output signals an additional set of state variables. The state-space structures of digital filters have many positive properties compared with direct canonical structures. The main advantage of digital filter structures developed using state-space technique is a smaller sensitivity to quantization effects by fixed-point implementation. In our presentation, the emphasis is on the analysis of coefficient quantization and on existence of zero-input limit cycles in state-space digital filters. The comparison with direct form II structure is presented.

  9. Symbolic Dynamics of Reanalysis Data

    Science.gov (United States)

    Larson, J. W.; Dickens, P. M.

    2003-12-01

    Symbolic dynamics1 is the study of sequences of symbols belonging to a discrete set of elements, the most commmon example being a sequence of ones and zeroes. Often the set of symbols is derived from a timeseries of a continuous variable through the introduction of a partition function--a process called symbolization. Symbolic dynamics has been used widely in the physical sciences; a geophysical example being the application of C1 and C2 complexity2 to hourly precipitation station data3. The C1 and C2 complexities are computed by examining subsequences--or words--of fixed length L in the limit of large values of L. Recent advances in information theory have led to techniques focused on the growth rate of the Shannon entropy and its asymptotic behavior in the limit of long words--levels of entropy convergence4. The result is a set of measures one can use to quantify the amount of memory stored in the sequence, whether or not an observer is able to synchronize to the sequence, and with what confidence it may be predicted. These techniques may also be used to uncover periodic behavior in the sequence. We are currently applying complexity theory and levels of entropy convergence to gridpoint timeseries from the NCAR/NCEP 50-year reanalysis5. Topics to be discussed include: a brief introduction to symbolic dynamics; a description of the partition function/symbolization strategy; a discussion of C1 and C2 complexity and entropy convergence rates and their utility; and example applications of these techniques to NCAR/NCEP 50-reanalyses gridpoint timeseries, resulting in maps of C1 and C2 complexities and entropy convergence rates. Finally, we will discuss how these results may be used to validate climate models. 1{Hao, Bai-Lin, Elementary Symbolic Dynamics and Chaos in Dissipative Systems, Wold Scientific, Singapore (1989)} 2{d'Alessandro, G. and Politi, A., Phys. Rev. Lett., 64, 1609-1612 (1990).} 3{Elsner, J. and Tsonis, A., J. Atmos. Sci., 50, 400-405 (1993).} 4

  10. Seeing the forest for the trees: hybridity and social-ecological symbols, rituals and resilience in postdisaster contexts

    Directory of Open Access Journals (Sweden)

    Keith G. Tidball

    2014-12-01

    Full Text Available The role of community-based natural resources management in the form of "greening" after large scale system shocks and surprises is argued to provide multiple benefits via engagement with living elements of social-ecological systems and subsequent enhanced resilience at multiple scales. The importance of so-called social-ecological symbols, especially the potent hybrid symbols of trees and their handling after a disaster is interrogated. The paper explores the notion of hybridity, and applies it to the hybrid symbol of the tree in postdisaster contexts. The paper briefly highlights three U.S. cases documenting the symbolic roles of trees in a context of significant shock to a social-ecological system: the terrorist attacks on New York City in 2001, the devastating hurricane that struck New Orleans in 2005, and the sudden tornadoes that wreaked havoc upon the small Midwestern city of Joplin, Missouri in 2011.

  11. Astronomical Symbolism in Australian Aboriginal Rock Art

    Science.gov (United States)

    Norris, Ray P.; Hamacher, Duane W.

    2011-05-01

    Traditional Aboriginal Australian cultures include a significant astronomical component, perpetuated through oral tradition and ceremony. This knowledge has practical navigational and calendrical functions, and sometimes extends to a deep understanding of the motion of objects in the sky. Here we explore whether this astronomical tradition is reflected in the rock art of Aboriginal Australians. We find several plausible examples of depictions of astronomical figures and symbols, and also evidence that astronomical observations were used to set out stone arrangements. However, we recognise that the case is not yet strong enough to make an unequivocal statement, and describe our plans for further research.

  12. The rhetoric of disenchantment through symbolism

    OpenAIRE

    Munyangeyo, Théophile

    2012-01-01

    The symbolism of flowers has always been a significant part of cultures around the world due to their functional meaning in daily life. From their decorative to their aromatic role, flowers and their symbolic meaning trigger emotions, convey wishes and represent thoughts that can not be explicitly expressed. In this regard, an elaborate language based on flower symbolism was developed in many societies, to convey clear messages to the recipient. However, in some cultural contexts, although th...

  13. 50 CFR 80.26 - Symbols.

    Science.gov (United States)

    2010-10-01

    ... appropriate symbol(s) on areas, such as wildlife management areas and fishing access facilities, acquired..., losses and damages arising out of any allegedly unauthorized use of any patent, process, idea, method or... and also from any claims, suits, losses and damages arising out of alleged defects in the articles or...

  14. 46 CFR 50.10-25 - Coast Guard Symbol.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Coast Guard Symbol. 50.10-25 Section 50.10-25 Shipping... Definition of Terms Used in This Subchapter § 50.10-25 Coast Guard Symbol. (a) The term Coast Guard Symbol... impression of the Coast Guard Symbol for stamping nameplates and specimens is shown in Figure 50.10-25(b...

  15. A Database Approach to Distributed State Space Generation

    NARCIS (Netherlands)

    Blom, Stefan; Lisser, Bert; van de Pol, Jan Cornelis; Weber, M.

    2007-01-01

    We study distributed state space generation on a cluster of workstations. It is explained why state space partitioning by a global hash function is problematic when states contain variables from unbounded domains, such as lists or other recursive datatypes. Our solution is to introduce a database

  16. A Database Approach to Distributed State Space Generation

    NARCIS (Netherlands)

    Blom, Stefan; Lisser, Bert; van de Pol, Jan Cornelis; Weber, M.; Cerna, I.; Haverkort, Boudewijn R.H.M.

    2008-01-01

    We study distributed state space generation on a cluster of workstations. It is explained why state space partitioning by a global hash function is problematic when states contain variables from unbounded domains, such as lists or other recursive datatypes. Our solution is to introduce a database

  17. Cross-Modal Associations between Sounds and Drink Tastes/Textures: A Study with Spontaneous Production of Sound-Symbolic Words.

    Science.gov (United States)

    Sakamoto, Maki; Watanabe, Junji

    2016-03-01

    Many languages have a word class whose speech sounds are linked to sensory experiences. Several recent studies have demonstrated cross-modal associations (or correspondences) between sounds and gustatory sensations by asking participants to match predefined sound-symbolic words (e.g., "maluma/takete") with the taste/texture of foods. Here, we further explore cross-modal associations using the spontaneous production of words and semantic ratings of sensations. In the experiment, after drinking liquids, participants were asked to express their taste/texture using Japanese sound-symbolic words, and at the same time, to evaluate it in terms of criteria expressed by adjectives. Because the Japanese language has a large vocabulary of sound-symbolic words, and Japanese people frequently use them to describe taste/texture, analyzing a variety of Japanese sound-symbolic words spontaneously produced to express taste/textures might enable us to explore the mechanism of taste/texture categorization. A hierarchical cluster analysis based on the relationship between linguistic sounds and taste/texture evaluations revealed the structure of sensation categories. The results indicate that an emotional evaluation like pleasant/unpleasant is the primary cluster in gustation. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. 21 CFR 1302.03 - Symbol required; exceptions.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Symbol required; exceptions. 1302.03 Section 1302... REQUIREMENTS FOR CONTROLLED SUBSTANCES § 1302.03 Symbol required; exceptions. (a) Each commercial container of... § 1308.31 of this chapter) shall have printed on the label the symbol designating the schedule in which...

  19. 40 CFR 60.581 - Definitions and symbols.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Definitions and symbols. 60.581 Section... Coating and Printing § 60.581 Definitions and symbols. (a) All terms used in this subpart, not defined... solvent vapors emitted from the flexible vinyl or urethane rotogravure printing line. (b) All symbols used...

  20. 32 CFR 310.42 - Reports control symbol.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Reports control symbol. 310.42 Section 310.42... PROGRAM DOD PRIVACY PROGRAM Reports § 310.42 Reports control symbol. Any report established by this subpart in support of the Privacy Program shall be assigned Report Control Symbol DD-COMP(A)1379. ...

  1. State-Space Inference and Learning with Gaussian Processes

    OpenAIRE

    Turner, R; Deisenroth, MP; Rasmussen, CE

    2010-01-01

    18.10.13 KB. Ok to add author version to spiral, authors hold copyright. State-space inference and learning with Gaussian processes (GPs) is an unsolved problem. We propose a new, general methodology for inference and learning in nonlinear state-space models that are described probabilistically by non-parametric GP models. We apply the expectation maximization algorithm to iterate between inference in the latent state-space and learning the parameters of the underlying GP dynamics model. C...

  2. ASAP: An Extensible Platform for State Space Analysis

    DEFF Research Database (Denmark)

    Westergaard, Michael; Evangelista, Sami; Kristensen, Lars Michael

    2009-01-01

    The ASCoVeCo State space Analysis Platform (ASAP) is a tool for performing explicit state space analysis of coloured Petri nets (CPNs) and other formalisms. ASAP supports a wide range of state space reduction techniques and is intended to be easy to extend and to use, making it a suitable tool fo...... for students, researchers, and industrial users that would like to analyze protocols and/or experiment with different algorithms. This paper presents ASAP from these two perspectives....

  3. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication.

    Science.gov (United States)

    MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa

    2016-01-01

    We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically.

  4. Symbolic Spaces in Late Capitalism, Where Art is A Proposal and not a Conclusion

    Directory of Open Access Journals (Sweden)

    Mariano O. de Blas

    2013-06-01

    Full Text Available Capitalism is the predominant conceptual system configuring and forming our reality. It is difficult, perhaps almost impossible, to imagine another one, because we are immersed in the conceptual approaches of this reality, the one of capitalism. Art is able to represent, symbolically and accurately this conceptual reality, but also to encourage us to imagine other realities even if it is only able display this one accurately (without critic. The concept of this reality is based now on consumption through virtual identities. The value of art is affected by this premise, meaning that the artist is valuable mainly because he is converted into a logo, a valuable signature on the work. This phenomenon not only reflects our conceptual approach to reality but also unveils it, revealing new aspects of our reality and what we think about it. However, art is able to go further and present different approaches to our concepts about reality. It could mean that art promotes us to imagine other realities, at least unconsciously, for both art producers and viewers. Finally, this scheme has to be included in a new revolutionary tool, the web, a virtual multidimensional space, where contemporary art takes part. Therefore, in the “space” of the web, art can communicate more than ever and can transform itself and present this transformation beyond the established limits, contributing to produce a more flexible and imaginative way of thinking.

  5. Parameter and State Estimator for State Space Models

    Directory of Open Access Journals (Sweden)

    Ruifeng Ding

    2014-01-01

    Full Text Available This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.

  6. Genetic programming theory and practice XII

    CERN Document Server

    Riolo, Rick; Kotanchek, Mark

    2015-01-01

    These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: gene expression regulation, novel genetic models for glaucoma, inheritable epigenetics, combinators in genetic programming, sequential symbolic regression, system dynamics, sliding window symbolic regression, large feature problems, alignment in the error space, HUMIE winners, Boolean multiplexer funct

  7. UWB Technology and Applications on Space Exploration

    Science.gov (United States)

    Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    Ultra-wideband (UWB), also known as impulse or carrier-free radio technology, is one promising new technology. In February 2002, the Federal Communications Commission (FCC) approved the deployment of this technology. It is increasingly recognized that UWB technology holds great potential to provide significant benefits in many terrestrial and space applications such as precise positioning/tracking and high data rate mobile wireless communications. This talk presents an introduction to UWB technology and some applications on space exploration. UWB is characterized by several uniquely attractive features, such as low impact on other RF systems due to its extremely low power spectral densities, immunity to interference from narrow band RF systems due to its ultra-wide bandwidth, multipath immunity to fading due to ample multipath diversity, capable of precise positioning due to fine time resolution, capable of high data rate multi-channel performance. The related FCC regulations, IEEE standardization efforts and industry activities also will be addressed in this talk. For space applications, some projects currently under development at NASA Johnson Space Center will be introduced. These include the UWB integrated communication and tracking system for Lunar/Mars rover and astronauts, UWB-RFID ISS inventory tracking, and UWB-TDOA close-in high resolution tracking for potential applications on robonaut.

  8. Exploring the Phase Space of a System of Differential Equations: Different Mathematical Registers

    Science.gov (United States)

    Dana-Picard, Thierry; Kidron, Ivy

    2008-01-01

    We describe and analyze a situation involving symbolic representation and graphical visualization of the solution of a system of two linear differential equations, using a computer algebra system. Symbolic solution and graphical representation complement each other. Graphical representation helps to understand the behavior of the symbolic…

  9. Lost in space: design of experiments and scientific exploration in a Hogarth Universe.

    Science.gov (United States)

    Lendrem, Dennis W; Lendrem, B Clare; Woods, David; Rowland-Jones, Ruth; Burke, Matthew; Chatfield, Marion; Isaacs, John D; Owen, Martin R

    2015-11-01

    A Hogarth, or 'wicked', universe is an irregular environment generating data to support erroneous beliefs. Here, we argue that development scientists often work in such a universe. We demonstrate that exploring these multidimensional spaces using small experiments guided by scientific intuition alone, gives rise to an illusion of validity and a misplaced confidence in that scientific intuition. By contrast, design of experiments (DOE) permits the efficient mapping of such complex, multidimensional spaces. We describe simulation tools that enable research scientists to explore these spaces in relative safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Guiding exploration in conformational feature space with Lipschitz underestimation for ab-initio protein structure prediction.

    Science.gov (United States)

    Hao, Xiaohu; Zhang, Guijun; Zhou, Xiaogen

    2018-04-01

    Computing conformations which are essential to associate structural and functional information with gene sequences, is challenging due to the high dimensionality and rugged energy surface of the protein conformational space. Consequently, the dimension of the protein conformational space should be reduced to a proper level, and an effective exploring algorithm should be proposed. In this paper, a plug-in method for guiding exploration in conformational feature space with Lipschitz underestimation (LUE) for ab-initio protein structure prediction is proposed. The conformational space is converted into ultrafast shape recognition (USR) feature space firstly. Based on the USR feature space, the conformational space can be further converted into Underestimation space according to Lipschitz estimation theory for guiding exploration. As a consequence of the use of underestimation model, the tight lower bound estimate information can be used for exploration guidance, the invalid sampling areas can be eliminated in advance, and the number of energy function evaluations can be reduced. The proposed method provides a novel technique to solve the exploring problem of protein conformational space. LUE is applied to differential evolution (DE) algorithm, and metropolis Monte Carlo(MMC) algorithm which is available in the Rosetta; When LUE is applied to DE and MMC, it will be screened by the underestimation method prior to energy calculation and selection. Further, LUE is compared with DE and MMC by testing on 15 small-to-medium structurally diverse proteins. Test results show that near-native protein structures with higher accuracy can be obtained more rapidly and efficiently with the use of LUE. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Messages, meanings and symbols the communication of information

    CERN Document Server

    Meadow, Charles T

    2006-01-01

    A deep and penetrating exploration of the key concepts of information and communications sciences by one of its founders, this book covers everything in its subject that you want to know more about including the bedrock topics of signs, symbols, information, and communication, all considered from an historical and foundational perspective that is satisfying to the beginning student and worthwhile for practitioners of long standing. All the major players are given their role, from Shannon and Weaver to Tim Berners-Lee, with Marshall McLuhan an engaging participant.

  12. Applied cartographic communication: map symbolization for atlases.

    Science.gov (United States)

    Morrison, J.L.

    1984-01-01

    A detailed investigation of the symbolization used on general-purpose atlas reference maps. It indicates how theories of cartographic communication can be put into practice. Two major points emerge. First, that a logical scheme can be constructed from existing cartographic research and applied to an analysis of the choice of symbolization on a map. Second, the same structure appears to allow the cartographer to specify symbolization as a part of map design. An introductory review of cartographic communication is followed by an analysis of selected maps' usage of point, area and line symbols, boundaries, text and colour usage.-after Author

  13. Symbol signing design for older drivers

    Science.gov (United States)

    1997-07-01

    This project evaluated the effectiveness of symbol traffic signs for young, middle-aged and elderly drivers. Daytime legibility distance and comprehension of 85 symbols in the Manual on Uniform Traffic Control Devices (MUTCD) were measured. Legibilit...

  14. Space Commercialization

    Science.gov (United States)

    Martin, Gary L.

    2011-01-01

    A robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector that supports U.S. needs, is globally competitive, and advances U.S. leadership in the generation of new markets and innovation-driven entrepreneurship. Energize competitive domestic industries to participate in global markets and advance the development of: satellite manufacturing; satellite-based services; space launch; terrestrial applications; and increased entrepreneurship. Purchase and use commercial space capabilities and services to the maximum practical extent Actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including measures such as public-private partnerships, . Refrain from conducting United States Government space activities that preclude, discourage, or compete with U.S. commercial space activities. Pursue potential opportunities for transferring routine, operational space functions to the commercial space sector where beneficial and cost-effective.

  15. What’s the problem with symbolic religious establishment? The alienation and symbolic equality accounts

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2017-01-01

    In this chapter I examine two possible reasons, which are prominent but often not systematically discussed in the literature, for thinking even purely symbolic establishment problematic. These are considerations of alienation and symbolic equality. I am only concerned with ways in which establish...... establishment might be normatively problematic even if it does not infringe on religious freedom and does not involve material injustices in other respects....

  16. Designing and evaluating symbols for electronic displays of navigation information : symbol stereotypes and symbol-feature rules

    Science.gov (United States)

    2005-09-30

    There is currently no common symbology standard for the electronic display of navigation information. The wide range of display technology and the different functions these displays support makes it difficult to design symbols that are easily recogni...

  17. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication

    Directory of Open Access Journals (Sweden)

    Tran MinhHai

    2016-01-01

    Full Text Available We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1 estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2 symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically.

  18. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication

    Science.gov (United States)

    MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa

    2016-01-01

    We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically. PMID:27057558

  19. Decision Diagram Based Symbolic Algorithm for Evaluating the Reliability of a Multistate Flow Network

    Directory of Open Access Journals (Sweden)

    Rongsheng Dong

    2016-01-01

    Full Text Available Evaluating the reliability of Multistate Flow Network (MFN is an NP-hard problem. Ordered binary decision diagram (OBDD or variants thereof, such as multivalued decision diagram (MDD, are compact and efficient data structures suitable for dealing with large-scale problems. Two symbolic algorithms for evaluating the reliability of MFN, MFN_OBDD and MFN_MDD, are proposed in this paper. In the algorithms, several operating functions are defined to prune the generated decision diagrams. Thereby the state space of capacity combinations is further compressed and the operational complexity of the decision diagrams is further reduced. Meanwhile, the related theoretical proofs and complexity analysis are carried out. Experimental results show the following: (1 compared to the existing decomposition algorithm, the proposed algorithms take less memory space and fewer loops. (2 The number of nodes and the number of variables of MDD generated in MFN_MDD algorithm are much smaller than those of OBDD built in the MFN_OBDD algorithm. (3 In two cases with the same number of arcs, the proposed algorithms are more suitable for calculating the reliability of sparse networks.

  20. Intuitiveness of Symbol Features for Air Traffic Management

    Science.gov (United States)

    Ngo, Mary Kim; Vu, Kim-Phuong L.; Thorpe, Elaine; Battiste, Vernol; Strybel, Thomas Z.

    2012-01-01

    We present the results of two online surveys asking participants to indicate what type of air traffic information might be conveyed by a number of symbols and symbol features (color, fill, text, and shape). The results of this initial study suggest that the well-developed concepts of ownership, altitude, and trajectory are readily associated with certain symbol features, while the relatively novel concept of equipage was not clearly associated with any specific symbol feature.

  1. Human Capital-Intensive Firms and Symbolic Value Creation

    Directory of Open Access Journals (Sweden)

    Cezanne Cécile

    2014-06-01

    Full Text Available The aim of this paper is to study the process of symbolic value creation of human capital-intensive firms. Human capital is a critical resource for firms’ activities. Nevertheless, this dimension is often obscured by industrial economists. In the light of critical resource theory, we analyze how taking into account the inalienable and inimitable nature of specific human capital entails a reconsideration of the role and boundaries of the firm. We show that the firm seeks to coordinate the specialization of its key partners within the frame of its economic boundaries to ensure the long-term optimization of its potential of value. Therefore, the value of the firm depends on all the resources that the firm coordinates. Then we focus on the way HCIF can create different values. We suggest that the firm builds its competitive advantage on different forms of values, in particular the symbolic value incorporated in human capital. Finally, on the basis of these considerations, we identify the wealth included in the critical resources of the firm and to bring to light the process of symbolic value creation associated with it. We suggest that the firm is the value creating entity and the customer both recognizes and derives the value created from whatever it is that the firm provides. We propose a definition of this value and a schema of its creation process based on management works attempts. We conclude by proposing paths of research that could fruitfully be explored to further develop this new subject.

  2. Giving children space: A phenomenological exploration of student experiences in space science inquiry

    Science.gov (United States)

    Horne, Christopher R.

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived experience of twenty 4th grade students as well as the reflections of two high school students looking back on their 4th grade space science experience. To open the phenomenon more deeply, the concept of space is explored as an overarching theme throughout the text. The writings of several philosophers including Martin Heidegger and Hans-Georg Gadamer are opened up to understand the existential aspects of phenomenology and the act of experiencing the classroom as a lived human experience. The methodological structure for the study is based largely on the work of Max van Manen (2003) in his seminal work, Researching Lived Experience, which describes a structure of human science research. A narrative based on classroom experiences, individual conversations, written reflections, and group discussion provides insight into the students' experiences. Their stories and thoughts reveal the themes of activity , interactivity, and "inquiractivity," each emerging as an essential element of the lived experience in the inquiry-based space science classroom. The metaphor of light brings illumination to the themes. Activity in the classroom is associated with light's constant and rapid motion throughout the Milky Way and beyond. Interactivity is seen through students' interactions just as light's reflective nature is seen through the illumination of the planets. Finally, inquiractivity is connected to questioning, the principal aspect of the inquiry-based classroom just as the sun is the essential source of light in our solar system. As the era of No Child Left Behind fades, and the next generation of science standards emerge, the

  3. Symbol phantoms

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Hongo, Syozo; Takeshita, Hiroshi

    1990-01-01

    We have developed Japanese phantoms in two procedures for computation of organ doses exposed to internal and/or external radiation sources. One method is to make mathematical phantoms on the basis of ORNL mathematical phantoms. Parameters to specify organs of Japanese mathematical phantom are determined by interpolations of the ORNL data, which define the organs of Caucasian males and females of various ages, i.e. new born, 1, 5, 10, 15 years and adult, with survey data for Japanese physiques. Another procedure is to build 'symbol phantoms' for the Japanese public. The concept and its method of the symbol phantom enables us to make a phantom for an individual when we have all of his transversal section images obtained by a medical imaging device like MRI, and thus we may achieve more realistic phantoms for Japanese public than the mathematical phantoms. Both studies are in progress in NIRS. (author)

  4. Multiple-Symbol, Partially Coherent Detection of MPSK

    Science.gov (United States)

    Simon, Marvin K.; Divsalar, Dariush

    1994-01-01

    Proposed method of reception of multiple-phase-shift-keyed (MPSK) radio signals involves multiple-symbol, partially coherent detection. Instead of attempting to determine phase of transmitted signal during each symbol period as in coherent detection, receiver acquires signal data during multiple-symbol observation interval, then produces maximum-likelihood-sequence estimate of phases transmitted during interval. Combination of coherent-reception and incoherent-reception decision rules are used.

  5. Images and symbols of nuclear energy and environment in Argentine public opinion: the need of a new strategy

    International Nuclear Information System (INIS)

    Chahab, Martin

    2006-01-01

    The need to create in the Argentine public opinion new positives symbols and images on nuclear energy and on the benefits of its peaceful applications, is al present so important as the development of new technical tools to improve the nuclear industry. These positives symbols and imagines on nuclear energy must be created in the framework of a joint strategy of all the country's nuclear institutions as well as other public organizations, in view of the new nuclear plan recently announced. This joint strategy will permit to create not only the new positives symbols and images in the public opinion, but also to obtain the support of the mass media and new spaces for negotiation in the national, provincial and municipal levels. (author) [es

  6. Effects of background color and symbol arrangement cues on construction of multi-symbol messages by young children without disabilities: implications for aided AAC design.

    Science.gov (United States)

    Thistle, Jennifer J; Wilkinson, Krista

    2017-09-01

    Children whose speech does not meet their communication needs often benefit from augmentative and alternative communication (AAC). The design of an AAC display may influence the child's ability to communicate effectively. The current study examined how symbol background color cues and symbol arrangement affected construction of multi-symbol messages using line-drawing symbols, by young children with typical development. Participants (N = 52) heard a spoken phrase matching a photograph and selected line drawings within a 4 × 4 array. Friedman two-way ANOVAs evaluated speed and accuracy of multi-symbol message construction under four conditions in which the background color and arrangement of symbols was manipulated. Participants demonstrated significantly faster response times when symbols were arranged by word-class category compared to no symbol arrangement. The majority of children responded faster when symbols had white backgrounds, but this effect failed to reach statistical significance. This study provides preliminary evidence suggesting the importance of symbol arrangement for young children. The findings highlight the need for caution when incorporating background color on displays for young children. Future research is needed to examine the effect of visual cues on children who use AAC and consider additional factors that could influence efficacy of symbol arrangement and background color use.

  7. The Scientific Import of Symbols in Human Knowledge | Agbanusi ...

    African Journals Online (AJOL)

    Symbolism, being the use of symbols to represent ideas, it is generally believed that symbolism is restricted to the Arts, especially logic and literature. However, recent developments have shown that symbolism can be an interesting companion and, in fact, a necessary complement, of science. This work X-Rays the ...

  8. The Polish LGBT movement : symbolic conflict and stigma

    OpenAIRE

    Mossakowski, Tomek

    2011-01-01

    This thesis examines the political activities of the LGBT movement in Poland as it seeks to increase its position on the socio-political landscape and ultimately rid itself of stigma. Using ethnographic data collection at a non-governmental organisation in Warsaw, it discusses the use of symbols and the accumulation of what Bourdieu called symbolic capital. It draws heavily on the theory of Harrison's symbolic conflict and Schwimmer's notions of symbolic and direct competition, while bringing...

  9. An efficient symbolic model checker | Ferdenache | Synthèse: Revue ...

    African Journals Online (AJOL)

    The main of this paper is to design and implement a powerful new tool to check important properties in critical systems based on the concept of symbolic state and DBM data structures (Difference Bound Matrices). The specifications are expressed using timed automata system and realtime logic for properties. The obtained ...

  10. Exploring perturbative conformal field theory in Mellin space

    Energy Technology Data Exchange (ETDEWEB)

    Nizami, Amin A. [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Rudra, Arnab [Center for Quantum Mathematics and Physics (QMAP), Department of Physics,University of California, Davis, 1 Shields Ave, Davis, CA 95616 (United States); Sarkar, Sourav [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, IRIS-Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, 14476 Potsdam (Germany); Verma, Mritunjay [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad-211019 (India)

    2017-01-24

    We explore the Mellin representation of correlation functions in conformal field theories in the weak coupling regime. We provide a complete proof for a set of Feynman rules to write the Mellin amplitude for a general tree level Feynman diagram involving only scalar operators. We find a factorised form involving beta functions associated to the propagators, similar to tree level Feynman rules in momentum space for ordinary QFTs. We also briefly consider the case where a generic scalar perturbation of the free CFT breaks conformal invariance. Mellin space still has some utility and one can consider non-conformal Mellin representations. In this context, we find that the beta function corresponding to conformal propagator uplifts to a hypergeometric function.

  11. Symbolism in European Integration

    DEFF Research Database (Denmark)

    Manners, Ian

    2011-01-01

    Ernst Haas observed over fifty years ago that ‘United Europe' is a resilient, adaptable, unifying, and yet unspecified symbol'. It is precisely this adaptability and ambiguity that has ensures the continuing importance of European studies as a means of understanding ‘the remarkable social...... of social transformation involved' (Calhoun 2003: 18). This article will consider the role of symbolism in European integration as part of answering Craig Calhoun's call for a means of transcending specific regimes of analysis in order to advance European studies....

  12. SYMBOL LEVEL DECODING FOR DUO-BINARY TURBO CODES

    Directory of Open Access Journals (Sweden)

    Yogesh Beeharry

    2017-05-01

    Full Text Available This paper investigates the performance of three different symbol level decoding algorithms for Duo-Binary Turbo codes. Explicit details of the computations involved in the three decoding techniques, and a computational complexity analysis are given. Simulation results with different couple lengths, code-rates, and QPSK modulation reveal that the symbol level decoding with bit-level information outperforms the symbol level decoding by 0.1 dB on average in the error floor region. Moreover, a complexity analysis reveals that symbol level decoding with bit-level information reduces the decoding complexity by 19.6 % in terms of the total number of computations required for each half-iteration as compared to symbol level decoding.

  13. Symbol lock detection implemented with nonoverlapping integration intervals

    Science.gov (United States)

    Shihabi, Mazen M. (Inventor); Hinedi, Sami M. (Inventor); Shah, Biren N. (Inventor)

    1995-01-01

    A symbol lock detector is introduced for an incoming coherent digital communication signal which utilizes a subcarrier modulated with binary symbol data, d(sub k), and known symbol interval T by integrating binary values of the signal over nonoverlapping first and second intervals selected to be T/2, delaying the first integral an interval T/2, and either summing or multiplying the second integral with the first one that preceded it to form a value X(sub k). That value is then averaged over a number M of symbol intervals to produce a static value Y. A symbol lock decision can then be made when the static value Y exceeds a threshold level delta.

  14. 7 CFR 97.900 - Form of official identification symbol.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Form of official identification symbol. 97.900 Section... symbol. The symbol set forth in Figure 1, containing the words “Plant Variety Protection Office” and “U.S. Department of Agriculture,” shall be the official identification symbol of the Plant Variety Protection...

  15. Coherent states in the fermionic Fock space

    International Nuclear Information System (INIS)

    Oeckl, Robert

    2015-01-01

    We construct the coherent states in the sense of Gilmore and Perelomov for the fermionic Fock space. Our treatment is from the outset adapted to the infinite-dimensional case. The fermionic Fock space becomes in this way a reproducing kernel Hilbert space of continuous holomorphic functions. (paper)

  16. Visual Symbolism in Contemporary Theatre Directing in Nigeria ...

    African Journals Online (AJOL)

    This difference is cropped from the director's perception, conception, imaginative and creative impetus. Visual symbolism in the theatre as a medium traverse forms, textures, symbols, lines, lighting, circles and balance in creating an everlasting theatre experience. Visual symbolism is influenced by style, concept, forms, ...

  17. The power of symbolic capital in patient and public involvement in health research.

    Science.gov (United States)

    Locock, Louise; Boylan, Anne-Marie; Snow, Rosamund; Staniszewska, Sophie

    2017-10-01

    Policy-makers and health research funders increasingly require researchers to demonstrate that they have involved patients in the design and conduct of research. However, the extent to which patients and public have the power to get involved on an equal footing is dependent on their economic, cultural, social and symbolic capital. To explore power relations in patient and public involvement (PPI) in research, particularly how patients may wield symbolic capital to develop a more equal relationship. Narrative interviews with a maximum variation sample of 38 people involved as patients, carers or public in health research, analysed thematically. Symbolic capital may be demonstrated in a range of ways (sometimes alongside or in the absence of other forms of capital): illness experience, technical illness knowledge and the challenging outsider. Symbolic capital is unstable and dependent on others for recognition and legitimacy. Nonetheless, participants identify a gradual shift in power relations over time. Research into PPI has been conceptually and theoretically poor, limiting our understanding of its mechanisms and wider contextual elements. Our findings demonstrate the importance of reflecting on the forms of power and capital wielded by the health research community, and of acknowledging the way in which PPI is challenging the status quo. As one of the first papers to conceptualize how different forms of symbolic capital operate and their critical role in challenging the balance of power, our findings may help researchers better plan their PPI activities and reflect on their own power. © 2016 The Authors. Health Expectations Published by John Wiley & Sons Ltd.

  18. An investigation of developmental changes in interpretation and construction of graphic AAC symbol sequences through systematic combination of input and output modalities.

    Science.gov (United States)

    Trudeau, Natacha; Sutton, Ann; Morford, Jill P

    2014-09-01

    While research on spoken language has a long tradition of studying and contrasting language production and comprehension, the study of graphic symbol communication has focused more on production than comprehension. As a result, the relationships between the ability to construct and to interpret graphic symbol sequences are not well understood. This study explored the use of graphic symbol sequences in children without disabilities aged 3;0 to 6;11 (years; months) (n=111). Children took part in nine tasks that systematically varied input and output modalities (speech, action, and graphic symbols). Results show that in 3- and 4-year-olds, attributing meaning to a sequence of symbols was particularly difficult even when the children knew the meaning of each symbol in the sequence. Similarly, while even 3- and 4-year-olds could produce a graphic symbol sequence following a model, transposing a spoken sentence into a graphic sequence was more difficult for them. Representing an action with graphic symbols was difficult even for 5-year-olds. Finally, the ability to comprehend graphic-symbol sequences preceded the ability to produce them. These developmental patterns, as well as memory-related variables, should be taken into account in choosing intervention strategies with young children who use AAC.

  19. Crew roles and interactions in scientific space exploration

    Science.gov (United States)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-10-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members' training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human space flight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future space flight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future space flights.

  20. Assessment of symbolic function in Mexican preschool children

    Directory of Open Access Journals (Sweden)

    N. R. Jiménez Barreto

    2013-04-01

    Full Text Available Development of symbolic function is an important psychological formation of pre-school age and reflects the possibility of the child to use signs and symbols in a conscious way. Assessment of symbolic function can be used as one of preparation for school indicators. The objective of the present study is to characterize the level of symbolic function development in Mexican pre-school children. 59 children were included in the study. The ages of the children were between 5 and 6 years and all of them belonged to sub-urban pre-school institution. All 59 children participated in this study for the first time. Our assessment consisted of specific tasks with symbolic means on materialized, perceptive and verbal levels. Each child was tested individually. Results showed an insufficient development of the symbolic function in all evaluated children. More than 78% of the children showed difficulties during performance in the tasks of assessment; their drawings were undifferentiated and had few essential characteristics. The obtained results show the necessity to implement developmental strategies in order to guarantee the formation of the ability of constant conscious sage of symbolic means at the end of pre-school age.

  1. Matter and symbols of the artificial

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, L.M.

    1998-08-01

    The study of complex systems should be based on a systems-theoretic framework which requires both self-organizing and symbolic dimensions. An inclusive framework based on the notion of semiotics is advanced to build models capable of representing, as well as evolving in their environments, with implications for Artificial Life. Such undertaking is pursued by discussing the ways in which symbol and matter are irreducibly intertwined in evolutionary systems. The problem is thus phrased in terms of the semiotic categories of syntax, semantics, and pragmatics. With this semiotic view of matter and symbols the requirements of semiotic closure are expressed in models with both self-organizing and symbolic characteristics. Situated action and recent developments in the evolution of cellular automata rules to solve non-trivial tasks are discussed in this context. Finally, indirect encoding schemes for genetic algorithms are developed which follow the semiotic framework here proposed.

  2. Symbolic math for computation of radiation shielding

    International Nuclear Information System (INIS)

    Suman, Vitisha; Datta, D.; Sarkar, P.K.; Kushwaha, H.S.

    2010-01-01

    Radiation transport calculations for shielding studies in the field of accelerator technology often involve intensive numerical computations. Traditionally, radiation transport equation is solved using finite difference scheme or advanced finite element method with respect to specific initial and boundary conditions suitable for the geometry of the problem. All these computations need CPU intensive computer codes for accurate calculation of scalar and angular fluxes. Computation using symbols of the analytical expression representing the transport equation as objects is an enhanced numerical technique in which the computation is completely algorithm and data oriented. Algorithm on the basis of symbolic math architecture is developed using Symbolic math toolbox of MATLAB software. Present paper describes the symbolic math algorithm and its application as a case study in which shielding calculation of rectangular slab geometry is studied for a line source of specific activity. Study of application of symbolic math in this domain evolves a new paradigm compared to the existing computer code such as DORT. (author)

  3. Analysing the Effectiveness of the Personality Symbols/Icons

    OpenAIRE

    Halim, İpek

    2012-01-01

    Personality symbol can cover all the identifications of the brand. It can be the face or the soul of the company. Their effect on the brand image is huge. The research focuses on calculating the roles and effectives of the personality symbols. It aims to bring in suggestions for developing a successful personality symbols and lists advantages and disadvantages of different types of personality symbols. It does a detailed copy testing. Apart from conducting focus groups to analyse how the targ...

  4. Symbol Synchronization for Diffusion-Based Molecular Communications.

    Science.gov (United States)

    Jamali, Vahid; Ahmadzadeh, Arman; Schober, Robert

    2017-12-01

    Symbol synchronization refers to the estimation of the start of a symbol interval and is needed for reliable detection. In this paper, we develop several symbol synchronization schemes for molecular communication (MC) systems where we consider some practical challenges, which have not been addressed in the literature yet. In particular, we take into account that in MC systems, the transmitter may not be equipped with an internal clock and may not be able to emit molecules with a fixed release frequency. Such restrictions hold for practical nanotransmitters, e.g., modified cells, where the lengths of the symbol intervals may vary due to the inherent randomness in the availability of food and energy for molecule generation, the process for molecule production, and the release process. To address this issue, we develop two synchronization-detection frameworks which both employ two types of molecule. In the first framework, one type of molecule is used for symbol synchronization and the other one is used for data detection, whereas in the second framework, both types of molecule are used for joint symbol synchronization and data detection. For both frameworks, we first derive the optimal maximum likelihood (ML) symbol synchronization schemes as performance upper bounds. Since ML synchronization entails high complexity, for each framework, we also propose three low-complexity suboptimal schemes, namely a linear filter-based scheme, a peak observation-based scheme, and a threshold-trigger scheme, which are suitable for MC systems with limited computational capabilities. Furthermore, we study the relative complexity and the constraints associated with the proposed schemes and the impact of the insertion and deletion errors that arise due to imperfect synchronization. Our simulation results reveal the effectiveness of the proposed synchronization schemes and suggest that the end-to-end performance of MC systems significantly depends on the accuracy of the symbol

  5. A Learning State-Space Model for Image Retrieval

    Directory of Open Access Journals (Sweden)

    Lee Greg C

    2007-01-01

    Full Text Available This paper proposes an approach based on a state-space model for learning the user concepts in image retrieval. We first design a scheme of region-based image representation based on concept units, which are integrated with different types of feature spaces and with different region scales of image segmentation. The design of the concept units aims at describing similar characteristics at a certain perspective among relevant images. We present the details of our proposed approach based on a state-space model for interactive image retrieval, including likelihood and transition models, and we also describe some experiments that show the efficacy of our proposed model. This work demonstrates the feasibility of using a state-space model to estimate the user intuition in image retrieval.

  6. Examining the Nexus between Grounded Theory and Symbolic Interactionism

    Directory of Open Access Journals (Sweden)

    P. Jane Milliken RN, PhD

    2012-12-01

    Full Text Available Grounded theory is inherently symbolic interactionist; however, not all grounded theory researchers appreciate its importance or benefit from its influence. Elsewhere, we have written about the intrinsic relationship between grounded theory and symbolic interactionism, highlighting the silent, fundamental contribution of symbolic interactionism to the methodology. At the same time, there are significant insights to be had by bringing a conscious awareness of the philosophy of symbolic interactionism to grounded theory research. In this article we discuss the symbolic interactionist concepts of mind, self, and society, and their applicability in grounded theorizing. Our purpose is to highlight foundational concepts of symbolic interactionism and their centrality in the processes of conducting grounded theory research.

  7. Nuclear propulsion for the space exploration initiative

    International Nuclear Information System (INIS)

    Stanley, M.L.

    1991-01-01

    President Bush's speech of July 20, 1989, outlining a goal to go back to the moon and then Mars initiated the Space Exploration Initiative (SEI). The US Department of Defense (DOD), US Department of Energy (DOE), and NASA have been working together in the planning necessary to initiate a program to develop a nuclear propulsion system. Applications of nuclear technology for in-space transfer of personnel and cargo between Earth orbit and lunar or Martian orbit are being considered as alternatives to chemical propulsion systems. Mission and system concept studies conducted over the past 30 yr have consistently indicated that use of nuclear technology can substantially reduce in-space propellant requirements. A variety of nuclear technology options are currently being studied, including nuclear thermal rockets, nuclear electrical propulsion systems, and hybrid nuclear thermal rockets/nuclear electric propulsion concepts. Concept performance in terms of thrust, weight, power, and efficiency are dependent, and appropriate concept application is mission dependent (i.e., lunar, Mars, cargo, personnel, trajectory, transit time, payload). A comprehensive evaluation of mission application, technology performance capability and maturity, technology development programmatics, and safety characteristics is required to optimize both technology and mission selection to support the Presidential initiative

  8. Space Toxicology: Human Health during Space Operations

    Science.gov (United States)

    Khan-Mayberry, Noreen; James, John T.; Tyl, ROchelle; Lam, Chiu-Wing

    2010-01-01

    Space Toxicology is a unique and targeted discipline for spaceflight, space habitation and occupation of celestial bodies including planets, moons and asteroids. Astronaut explorers face distinctive health challenges and limited resources for rescue and medical care during space operation. A central goal of space toxicology is to protect the health of the astronaut by assessing potential chemical exposures during spaceflight and setting safe limits that will protect the astronaut against chemical exposures, in a physiologically altered state. In order to maintain sustained occupation in space on the International Space Station (ISS), toxicological risks must be assessed and managed within the context of isolation continuous exposures, reuse of air and water, limited rescue options, and the need to use highly toxic compounds for propulsion. As we begin to explore other celestial bodies in situ toxicological risks, such as inhalation of reactive mineral dusts, must also be managed.

  9. Exploring the Model Design Space for Battery Health Management

    Science.gov (United States)

    Saha, Bhaskar; Quach, Cuong Chi; Goebel, Kai Frank

    2011-01-01

    Battery Health Management (BHM) is a core enabling technology for the success and widespread adoption of the emerging electric vehicles of today. Although battery chemistries have been studied in detail in literature, an accurate run-time battery life prediction algorithm has eluded us. Current reliability-based techniques are insufficient to manage the use of such batteries when they are an active power source with frequently varying loads in uncertain environments. The amount of usable charge of a battery for a given discharge profile is not only dependent on the starting state-of-charge (SOC), but also other factors like battery health and the discharge or load profile imposed. This paper presents a Particle Filter (PF) based BHM framework with plug-and-play modules for battery models and uncertainty management. The batteries are modeled at three different levels of granularity with associated uncertainty distributions, encoding the basic electrochemical processes of a Lithium-polymer battery. The effects of different choices in the model design space are explored in the context of prediction performance in an electric unmanned aerial vehicle (UAV) application with emulated flight profiles.

  10. Símbolo do coração The heart as symbol

    Directory of Open Access Journals (Sweden)

    Paulo R. Prates

    2005-12-01

    Full Text Available A simbologia foi criada pelo homem pela necessidade de expressar através de objetos ou formas sua religião ou sua arte visual. Muito antes da descoberta da função de bomba impulsionadora do sangue, o coração foi tido como centro da vida, da coragem e da razão. Seu símbolo é o mais universal. De onde, e, quando, surgiu essa representação, sempre despertou a curiosidade dos historiadores, vez que pouco tem a ver com o coração anatômico. Para alguns, sua origem deve-se à semelhança com a folha da hera, que na Antiguidade representava o símbolo da imortalidade e do poder. Abordamos a curiosa origem do símbolo e a finalidade para a qual foi criado.Man created symbols because he needed to express his religion or visual art through objects or shapes. Much before the heart's role in pumping blood was discovered, the organ was seen as the center of life, of courage, and of reason. It is the most universal of symbols. Historians have always been curious as to how and whence this representation appeared, since it has little to do with the anatomical organ. For some, the origin lies in the heart's resemblance to an ivy leaf, which in ancient times was a symbol of immortality and power. The article explores the curious origin of this symbol and the reason it came into being.

  11. Un vérificateur symbolique efficace An efficient symbolic model ...

    African Journals Online (AJOL)

    The main of this paper is to design and implement a powerful new tool to check important properties in critical systems based on the concept of symbolic state and DBM data structures (Difference Bound Matrices). The specifications are expressed using timed automata system and real- time logic for properties. The obtained ...

  12. Sound-symbolism boosts novel word learning

    NARCIS (Netherlands)

    Lockwood, G.F.; Dingemanse, M.; Hagoort, P.

    2016-01-01

    The existence of sound-symbolism (or a non-arbitrary link between form and meaning) is well-attested. However, sound-symbolism has mostly been investigated with nonwords in forced choice tasks, neither of which are representative of natural language. This study uses ideophones, which are naturally

  13. Application of nuclear photon engines for deep-space exploration

    International Nuclear Information System (INIS)

    Gulevich, Andrey V.; Ivanov, Eugeny A.; Kukharchuk, Oleg F.; Poupko, Victor Ya.; Zrodnikov, Anatoly V.

    2001-01-01

    Conception of using the nuclear photon rocket engines for deep space exploration is proposed. Some analytical estimations have been made to illustrate the possibility to travel to 100-10000 AU using a small thrust photon engine. Concepts of high temperature nuclear reactors for the nuclear photon engines are also discussed

  14. Symbolic dynamics of the Lorenz equations

    International Nuclear Information System (INIS)

    Fang Hai-ping; Hao Bailin.

    1994-07-01

    The Lorenz equations are investigated in a wide range of parameters by using the method of symbolic dynamics. First, the systematics of stable periodic orbits in the Lorenz equations is compared with that of the one-dimensional cubic map, which shares the same discrete symmetry with the Lorenz model. The systematics is then ''corrected'' in such a way as to encompass all the known periodic windows of the Lorenz equations with only one exception. Second, in order to justify the above approach and to understand the exceptions, another 1D map with a discontinuity is extracted from an extension of the geometric Lorenz attractor and its symbolic dynamics is constructed. All this has to be done in light of symbolic dynamics of two-dimensional maps. Finally, symbolic dynamics for the actual Poincare return map of the Lorenz equations is constructed in a heuristic way. New periodic windows of the Lorenz equations and their parameters can be predicted from this symbolic dynamics in combination with the 1D cubic map. The extended geometric 2D Lorenz map and the 1D antisymmetric map with a discontinuity describe the topological aspects of the Lorenz equations to high accuracy. (author). 44 refs, 17 figs, 8 tabs

  15. Symbolics in control design: prospects and research issues

    DEFF Research Database (Denmark)

    Christensen, Anders

    1994-01-01

    The symbolic processor is targeted as a novel basic service in computer aided control system design. Basic symbolic tools are exemplified. A design process model is formulated for control design, with subsets manipulator, tools, target and goals. It is argued, that symbolic processing will give...... substantial contributions to future design environments, as it provides flexibility of representation not possible with traditional numerics. Based on the design process, views on research issues in the incorporation of symbolic processing into traditional numerical design environments are given...

  16. Is There "Space" for International Baccalaureate? A Case Study Exploring Space and the Adoption of the IB Middle Year Programme

    Science.gov (United States)

    Monreal, Timothy

    2016-01-01

    Henri Lefebvre (1991) wrote, "[representational] space is alive: it speaks" (p. 42). This article explores how we might "listen" to space in education by examining the role of space in one school's decision to adopt the International Baccalaureate's Middle Years Programme [IB MYP]. It builds upon recent scholarship that applies…

  17. Addressing Human System Risks to Future Space Exploration

    Science.gov (United States)

    Paloski, W. H.; Francisco, D. R.; Davis, J. R.

    2015-01-01

    NASA is contemplating future human exploration missions to destinations beyond low Earth orbit, including the Moon, deep-space asteroids, and Mars. While we have learned much about protecting crew health and performance during orbital space flight over the past half-century, the challenges of these future missions far exceed those within our current experience base. To ensure success in these missions, we have developed a Human System Risk Board (HSRB) to identify, quantify, and develop mitigation plans for the extraordinary risks associated with each potential mission scenario. The HSRB comprises research, technology, and operations experts in medicine, physiology, psychology, human factors, radiation, toxicology, microbiology, pharmacology, and food sciences. Methods: Owing to the wide range of potential mission characteristics, we first identified the hazards to human health and performance common to all exploration missions: altered gravity, isolation/confinement, increased radiation, distance from Earth, and hostile/closed environment. Each hazard leads to a set of risks to crew health and/or performance. For example the radiation hazard leads to risks of acute radiation syndrome, central nervous system dysfunction, soft tissue degeneration, and carcinogenesis. Some of these risks (e.g., acute radiation syndrome) could affect crew health or performance during the mission, while others (e.g., carcinogenesis) would more likely affect the crewmember well after the mission ends. We next defined a set of design reference missions (DRM) that would span the range of exploration missions currently under consideration. In addition to standard (6-month) and long-duration (1-year) missions in low Earth orbit (LEO), these DRM include deep space sortie missions of 1 month duration, lunar orbital and landing missions of 1 year duration, deep space journey and asteroid landing missions of 1 year duration, and Mars orbital and landing missions of 3 years duration. We then

  18. Symbolic violence among adolescents in affective dating relationships

    Directory of Open Access Journals (Sweden)

    Daniela Borges Bittar

    2018-03-01

    Full Text Available ABSTRACT Objective Understanding how adolescents signify their affective relationships and situations of conflict/violence within the dating context. Method A qualitative research with an empirical group comprised of adolescents from a state/public school, using focus group techniques and interviews. The analysis was performed through the interpretation of meanings method based on the hermeneutic-dialectical perspective. Results A total of 19 adolescents participated in the study. Two central theme categories emerged: “Meanings of adolescents’ affective relationships” and “From the (deconstruction of symbolic violence to the expression of other forms of violence”. Conclusion The results show that it is possible to understand situations from affective adolescent relationships in which the legitimation of symbolic violence against women is identified. We believe that acting on the origin of violence at the beginning of adolescents’ relationships is the best way to fight or minimize it, aiming for democratizing gender relations and preventing conjugal violence.

  19. ESA astronaut (and former physicist at CERN) Christer Fuglesang returning a symbolic neutralino particle to CERN Director for research Sergio Bertolucci. Fuglesang flew the neutralino to the International Space Station on the occasion of his STS128 mission in 2009.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    ESA astronaut (and former physicist at CERN) Christer Fuglesang returning a symbolic neutralino particle to CERN Director for research Sergio Bertolucci. Fuglesang flew the neutralino to the International Space Station on the occasion of his STS128 mission in 2009.

  20. Additive Manufacturing and 3D Printing in NASA: An Overview of Current Projects and Future Initiatives for Space Exploration

    Science.gov (United States)

    Clinton, R. G., Jr.

    2014-01-01

    NASA, including each Mission Directorate, is investing in, experimenting with, and/or utilizing AM across a broad spectrum of applications and projects; Centers have created and are continuing to create partnerships with industry, other Government Agencies, other Centers, and Universities; In-house additive manufacturing capability enables rapid iteration of the entire design, development and testing process, increasing innovation and reducing risk and cost to projects; For deep space exploration, AM offers significant reduction to logistics costs and risk by providing ability to create on demand; There are challenges: Overwhelming message from recent JANNAF AM for Propulsion Applications TIM was "certification."; NASA will continue to work with our partners to address this and other challenges to advance the state of the art in AM and incorporate these capabilities into an array of applications from aerospace to science missions to deep space exploration.

  1. Study of space reactors for exploration missions

    Energy Technology Data Exchange (ETDEWEB)

    Cliquet, Elisa; Ruault, Jean-Marc; Masson, Frederic, E-mail: elisa.cliquet@cnes.fr, E-mail: frederic.masson@cnes.fr [Centre National d' Etudes Spatiales (CNES), Paris (France); Roux, Jean-Pierre; Paris, Nicolas; Cazale, Brice; Manifacier, Laurent, E-mail: jean-pierre.roux@areva.com [AREVA TA, Aix en Provence, (France); Poinot-Salanon, Christine, E-mail: christine.poinot@cea.fr [Comissariado a l' Energie Atomique et Aux Energies alternatives (CEA), Paris (France)

    2013-07-01

    Nuclear propulsion has been studied for many decades. The power density of nuclear fission is much higher than chemical process, and for missions to outer solar system requiring several hundred of kilowatts, or for flexible manned missions to Mars requiring several megawatts, nuclear electric propulsion might be the only option offering a reasonable mass in low earth orbit. Despite the existence of low power experiences - SNAP10 in the 60's or Buk/Topaz in the 60-80's - no high power reactor has been developed: investment cost, long term time frame, high technological challenges and radioactive hazards are the main challenges we must overtake. However, it seems reasonable to look at the technical challenges that have to be overcome for a next generation of nuclear electric systems for space exploration. This paper will present some recent studies going on in France, on space reactors for exploration. Three classes of power have been considered: 10kWe, 100kWe, and several megawatts. Available data from previous studies and developments performed in Russia, USA], and Europe, have been collected and gave us a large overview of potential technical solutions. This was the starting point of a trade-off analysis aiming at the selection of the best options, with regards to the technological readiness level in France and Europe. The resulting preliminary designs will be presented and critical technologies needing maturation activities will be highlighted. (author)

  2. Study of space reactors for exploration missions

    International Nuclear Information System (INIS)

    Cliquet, Elisa; Ruault, Jean-Marc; Masson, Frederic; Roux, Jean-Pierre; Paris, Nicolas; Cazale, Brice; Manifacier, Laurent; Poinot-Salanon, Christine

    2013-01-01

    Nuclear propulsion has been studied for many decades. The power density of nuclear fission is much higher than chemical process, and for missions to outer solar system requiring several hundred of kilowatts, or for flexible manned missions to Mars requiring several megawatts, nuclear electric propulsion might be the only option offering a reasonable mass in low earth orbit. Despite the existence of low power experiences - SNAP10 in the 60's or Buk/Topaz in the 60-80's - no high power reactor has been developed: investment cost, long term time frame, high technological challenges and radioactive hazards are the main challenges we must overtake. However, it seems reasonable to look at the technical challenges that have to be overcome for a next generation of nuclear electric systems for space exploration. This paper will present some recent studies going on in France, on space reactors for exploration. Three classes of power have been considered: 10kWe, 100kWe, and several megawatts. Available data from previous studies and developments performed in Russia, USA], and Europe, have been collected and gave us a large overview of potential technical solutions. This was the starting point of a trade-off analysis aiming at the selection of the best options, with regards to the technological readiness level in France and Europe. The resulting preliminary designs will be presented and critical technologies needing maturation activities will be highlighted. (author)

  3. An integrated mission approach to the space exploration initiative will ensure success

    International Nuclear Information System (INIS)

    Coomes, E.P.; Dagle, J.E.; Bamberger, J.A.; Noffsinger, K.E.

    1991-01-01

    The direction of the American space program, as defined by President Bush and the National Commission on Space, is to expand human presence into the solar system. Landing an American on Mars by the 50th anniversary of the Apollo 11 lunar landing is the goal. This challenge has produced a level of excitement among young Americans not seen for nearly three decades. The exploration and settlement of the space frontier will occupy the creative thoughts and energies of generations of Americans well into the next century. The return of Americans to the moon and beyond must be viewed as a national effort with strong public support if it is to become a reality. Key to making this an actuality is the mission approach selected. Developing a permanent presence in space requires a continual stepping outward from Earch in a logical progressive manner. If we seriously plan to go and to stay, then not only must we plan what we are to do and how we are to do it, we must address the logistic support infrastructure that will allow us to stay there once we arrive. A fully integrated approach to mission planning is needed if the Space exploration Initiative (SEI) is to be successful. Only in this way can a permanent human presence in space be sustained. An integrated infrastructure approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI while an early return on investment through technology spin-offs would be an economic benefit by greatly enhancing our international technical competitiveness. If the exploration, development, and colonization of space is to be affordable and acceptable, careful consideration must be given to such things as ''return on investment'' and ''commercial product potential'' of the technologies developed

  4. Presidents as Symbols: An Investigation of John F. Kennedy's, Lyndon B. Johnson's, and Ronald Reagan's Use of Presidential Allusions.

    Science.gov (United States)

    Smith-Howell, Deborah

    This paper presents an examination of United States presidents' names as symbols. In developing the analysis, the paper: (1) reviews multiple perspectives which suggest that allusions to past presidents (such as Thomas Jefferson, Abraham Lincoln, or Franklin Roosevelt) are significant political symbols; (2) discusses how allusions to past…

  5. Images and symbols in the Argentinean public opinion on the nuclear energy and the environment: 'The necessity of a new communicational strategy'; Imagenes y simbolos en la opinion publica argentina sobre la energia nuclear y el medio ambiente: 'La necesidad de una nueva estrategia comunicacional'

    Energy Technology Data Exchange (ETDEWEB)

    Chahab, M. [Autoridad Regulatoria Nuclear Argentina, A. Del Libertador 8250, Buenos Aires (Argentina)]. e-mail: mchahab@sede.arn.gov.ar

    2006-07-01

    The present work expresses some ideas on certain characteristics of the public opinion in Argentina with regard to the perception that one has of the use of the nuclear energy and the care of the environment. The work tried to explain the reasons that although Argentina has a long tradition and a considerable international prestige in the generation, investigation and controls of the nuclear energy, at the same time, the argentinean public opinion has not shown in favor of the development of the same one, perceiving that the use of this energy would bring problems for the environment. In the work it was to explain some of the reasons of this opinion state that takes it as a psychological state of people, and that would have elements, symbols and negative interior images in people that work as strongly ingrained beliefs so that the fellows ponder to the nuclear option as the one that less it is wanted for the development of the country. The idea was also developed that these images and negative symbols toward the development of the nuclear energy could have origin in information of the massive media of communication, among other sources that could be persuading to the public opinion through the repetition and to study in depth of these messages toward psychological states contrary to the development of the nuclear energy. The present work tried to explore and to describe this internal universe of the argentinean public opinion with the objective of outlining mechanisms, strategies or action plans from the institutions linked to the nuclear energy that try to open the internal space of people toward an approach more positive with the perception of the development of the nuclear energy in its links with the environment. On this objective, the present work outlined the idea that the opening of the perceptive mark in people would have that to generate it 'not in opposition to the existent beliefs' but trying to win alternative mental spaces in the people. In

  6. The analysis of actual and symbolic models of secondary school students in Serbia

    Directory of Open Access Journals (Sweden)

    Stepanović Ivana

    2009-01-01

    Full Text Available This paper deals with role models of secondary school students in Serbia. In the course of adolescence, there is a gradual separation from parental figures, and other persons become role models for behavior. For that reason, secondary school population is of interest when analyzing this phenomenon, particularly bearing in mind that role models influence not only social, but also other aspects of development. We analyzed role models from students' personal (actual models and public life (symbolic models. The main aim was to determine who their actual and symbolic models are, and why secondary school students look up to them. Based on the data on secondary school students' actual models, it is possible to identify who important persons from their milieu are and why they are important to them. The data about the categories in which symbolic models can be divided, as well as about their occurrence, indicate the young people's system of values in these analyses. The sample comprises 2426 students from 26 schools in 9 Serbian towns. Actual and symbolic models were examined in separate questions, where students were asked to name up to three people from their private life or the world of celebrities that they look up to. 53,9% of students named their actual models, the most common being their mothers. Nearly half the examinees (49,3% stated their symbolic models are public figures. Most symbolic models are from the world of show-business. The results show that parental figures remain the models of behavior throughout adolescence. The data about the categories of symbolic models show the young are drawn to the world of entertainment and indicate a weak role of schools as a potential source of models in the fields of science and culture who would promote cognitive values.

  7. Handwriting generates variable visual input to facilitate symbol learning

    Science.gov (United States)

    Li, Julia X.; James, Karin H.

    2015-01-01

    Recent research has demonstrated that handwriting practice facilitates letter categorization in young children. The present experiments investigated why handwriting practice facilitates visual categorization by comparing two hypotheses: That handwriting exerts its facilitative effect because of the visual-motor production of forms, resulting in a direct link between motor and perceptual systems, or because handwriting produces variable visual instances of a named category in the environment that then changes neural systems. We addressed these issues by measuring performance of 5 year-old children on a categorization task involving novel, Greek symbols across 6 different types of learning conditions: three involving visual-motor practice (copying typed symbols independently, tracing typed symbols, tracing handwritten symbols) and three involving visual-auditory practice (seeing and saying typed symbols of a single typed font, of variable typed fonts, and of handwritten examples). We could therefore compare visual-motor production with visual perception both of variable and similar forms. Comparisons across the six conditions (N=72) demonstrated that all conditions that involved studying highly variable instances of a symbol facilitated symbol categorization relative to conditions where similar instances of a symbol were learned, regardless of visual-motor production. Therefore, learning perceptually variable instances of a category enhanced performance, suggesting that handwriting facilitates symbol understanding by virtue of its environmental output: supporting the notion of developmental change though brain-body-environment interactions. PMID:26726913

  8. CHRISTIAN SYMBOLISM IN FYODOR DOSTOEVSKY'S NOVEL "THE POSSESSED" ("DEMONS"

    Directory of Open Access Journals (Sweden)

    Sergei Leonidovich Sharakov

    2013-11-01

    Full Text Available The article raises a question of Christian symbolism in Fyodor Dostoevsky’s novel The Possessed (Demons. The introductory part identifies the purpose of a symbol in Christian poetics through the parallel with ancient symbolism. The author makes a conclusion that the functional role of a symbol in the ancient world and Christian tradition is different. Therefore, the ancient symbol involves a number of interrelated categories, such as fate, intuition or conjecture, inspiration, and predictions. Christian symbolism is based on the idea of redemption and moral innocence. Methodologically, the article is based on a cultural and historical approach, as well as on the comparative academic tradition. The overview of Dostoyevsky’s pre-materials for The Possessed (Demons enables us to suggest the use of Christian symbolism in this novel. Hence, the objective of the study is to investigate a composition of images and symbols in this piece of writing, with a special focus on the image of a chronicler since the storyline of the novel is developed through his perception. We make a supposition that there are several levels of Gospel perception in the artistic vision or consciousness of the chronicler, that form the basis of the symbolical composition of the novel. The article sequentially examines the examples of Christian symbolism, including the connection of ideas, characters and storylines of the novel with the Gospel. Then it gives evidence and reasons for the thesis that the Gospel gives the characters of the novel the grounds for shaping their destiny.

  9. Examining the Nexus between Grounded Theory and Symbolic Interactionism

    OpenAIRE

    P. Jane Milliken RN, PhD; Rita Schreiber RN, DNS

    2012-01-01

    Grounded theory is inherently symbolic interactionist; however, not all grounded theory researchers appreciate its importance or benefit from its influence. Elsewhere, we have written about the intrinsic relationship between grounded theory and symbolic interactionism, highlighting the silent, fundamental contribution of symbolic interactionism to the methodology. At the same time, there are significant insights to be had by bringing a conscious awareness of the philosophy of symbolic interac...

  10. Engineering America's Current and Future Space Transportation Systems: 50 Years of Systems Engineering Innovation for Sustainable Exploration

    Science.gov (United States)

    Dmbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States' (U.S.) capability for both crew and heavy cargo to low-Earth orbit to' construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle (Figure 1). The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion Crew Exploration Vehicle, while the heavy-lift Ares V will carry the Altair Lunar Lander and the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level test activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural integrity and to validate computer modeling and simulation (Figure 2), as well as the main propulsion test article analysis to be conducted in the Static Test Stand. These activities also will help prove and refine mission concepts of operation, while supporting the spectrum of design and development work being performed by Marshall's Engineering Directorate, ranging from launch vehicles and lunar rovers to scientific spacecraft and associated experiments

  11. Crew systems: integrating human and technical subsystems for the exploration of space

    Science.gov (United States)

    Connors, M. M.; Harrison, A. A.; Summit, J.

    1994-01-01

    Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.

  12. Studies of phase return map and symbolic dynamics in a periodically driven Hodgkin—Huxley neuron

    International Nuclear Information System (INIS)

    Ding Jiong; Zhang Hong; Tong Qin-Ye; Chen Zhuo

    2014-01-01

    How neuronal spike trains encode external information is a hot topic in neurodynamics studies. In this paper, we investigate the dynamical states of the Hodgkin—Huxley neuron under periodic forcing. Depending on the parameters of the stimulus, the neuron exhibits periodic, quasiperiodic and chaotic spike trains. In order to analyze these spike trains quantitatively, we use the phase return map to describe the dynamical behavior on a one-dimensional (1D) map. According to the monotonicity or discontinuous point of the 1D map, the spike trains are transformed into symbolic sequences by implementing a coarse-grained algorithm — symbolic dynamics. Based on the ordering rules of symbolic dynamics, the parameters of the external stimulus can be measured in high resolution with finite length symbolic sequences. A reasonable explanation for why the nervous system can discriminate or cognize the small change of the external signals in a short time is also presented. (general)

  13. EMD-Based Symbolic Dynamic Analysis for the Recognition of Human and Nonhuman Pyroelectric Infrared Signals

    Directory of Open Access Journals (Sweden)

    Jiaduo Zhao

    2016-01-01

    Full Text Available In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector’s false alarms.

  14. EMD-Based Symbolic Dynamic Analysis for the Recognition of Human and Nonhuman Pyroelectric Infrared Signals.

    Science.gov (United States)

    Zhao, Jiaduo; Gong, Weiguo; Tang, Yuzhen; Li, Weihong

    2016-01-20

    In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR) signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD)-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector's false alarms.

  15. The Symbolic Meaning of Legal Subjectivity

    NARCIS (Netherlands)

    Pessers, D.; van Klink, B.; van Beers, B.; Poort, L.

    2016-01-01

    The legitimacy of the law is not to be found, as is often claimed, in procedural justice, but in the core function of the law: the symbolic insertion of every new generation into the community of legal subjects. This symbolic function is most ambitiously expressed in the Universal Declaration of

  16. CERN and space science

    CERN Multimedia

    2009-01-01

    The connection between CERN and space is tangible this week, as former CERN Fellow and ESA astronaut Christer Fuglesang begins the second week of his mission on space shuttle flight STS-128. I had the pleasure to meet Christer back in October 2008 at an IEEE symposium in Dresden, and he asked me whether we could give him something related to CERN for his official flight kit. We thought of caps and tee-shirts, but in the end decided to give him a neutralino as a symbol of the link between particle physics and the science of the Universe. Neutralinos are theoretical particles that the LHC will be looking for, and if they exist, they’re strong candidates for the Universe’s dark matter. Christer’s neutralino is just a model, of course, escaped from the particle zoo, but what better symbol of the connectedness of science? Christer Fuglesang is not the only link CERN has with the space shuttle programme. We’ve recently learned that...

  17. Synthetic Biology as an Enabling Technology for Space Exploration

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth.

  18. Engineering Evaluation and Assessment (EE and A) Report for the Symbolic and Sub-symbolic Robotics Intelligence Control System (SS-RICS)

    Science.gov (United States)

    2018-04-01

    ARL-TR-8352 ● APR 2018 US Army Research Laboratory Engineering Evaluation and Assessment (EE&A) Report for the Symbolic and Sub...APR 2018 US Army Research Laboratory Engineering Evaluation and Assessment (EE&A) Report for the Symbolic and Sub-symbolic Robotics...Intelligence Control System (SS-RICS) by Troy Dale Kelley and Eric Avery Human Research and Engineering Directorate, ARL Sean McGhee STG Inc

  19. Interactive Building Design Space Exploration Using Regionalized Sensitivity Analysis

    DEFF Research Database (Denmark)

    Østergård, Torben; Jensen, Rasmus Lund; Maagaard, Steffen

    2017-01-01

    simulation inputs are most important and which have negligible influence on the model output. Popular sensitivity methods include the Morris method, variance-based methods (e.g. Sobol’s), and regression methods (e.g. SRC). However, all these methods only address one output at a time, which makes it difficult...... in combination with the interactive parallel coordinate plot (PCP). The latter is an effective tool to explore stochastic simulations and to find high-performing building designs. The proposed methods help decision makers to focus their attention to the most important design parameters when exploring......Monte Carlo simulations combined with regionalized sensitivity analysis provide the means to explore a vast, multivariate design space in building design. Typically, sensitivity analysis shows how the variability of model output relates to the uncertainties in models inputs. This reveals which...

  20. Symbolic computer vector analysis

    Science.gov (United States)

    Stoutemyer, D. R.

    1977-01-01

    A MACSYMA program is described which performs symbolic vector algebra and vector calculus. The program can combine and simplify symbolic expressions including dot products and cross products, together with the gradient, divergence, curl, and Laplacian operators. The distribution of these operators over sums or products is under user control, as are various other expansions, including expansion into components in any specific orthogonal coordinate system. There is also a capability for deriving the scalar or vector potential of a vector field. Examples include derivation of the partial differential equations describing fluid flow and magnetohydrodynamics, for 12 different classic orthogonal curvilinear coordinate systems.

  1. JINGLE: THE SOUNDING SYMBOL

    Directory of Open Access Journals (Sweden)

    Bysko Maxim V.

    2013-12-01

    Full Text Available The article considers the role of jingles in the industrial era, from the occurrence of the regular radio broadcasting, sound films and television up of modern video games, audio and video podcasts, online broadcasts, and mobile communications. Jingles are researched from the point of view of the theory of symbols: the forward motion is detected in the process of development of jingles from the social symbols (radio callsigns to the individual signs-images (ringtones. The role of technical progress in the formation of jingles as important cultural audio elements of modern digital civilization.

  2. State-space prediction model for chaotic time series

    Science.gov (United States)

    Alparslan, A. K.; Sayar, M.; Atilgan, A. R.

    1998-08-01

    A simple method for predicting the continuation of scalar chaotic time series ahead in time is proposed. The false nearest neighbors technique in connection with the time-delayed embedding is employed so as to reconstruct the state space. A local forecasting model based upon the time evolution of the topological neighboring in the reconstructed phase space is suggested. A moving root-mean-square error is utilized in order to monitor the error along the prediction horizon. The model is tested for the convection amplitude of the Lorenz model. The results indicate that for approximately 100 cycles of the training data, the prediction follows the actual continuation very closely about six cycles. The proposed model, like other state-space forecasting models, captures the long-term behavior of the system due to the use of spatial neighbors in the state space.

  3. Information decomposition method to analyze symbolical sequences

    International Nuclear Information System (INIS)

    Korotkov, E.V.; Korotkova, M.A.; Kudryashov, N.A.

    2003-01-01

    The information decomposition (ID) method to analyze symbolical sequences is presented. This method allows us to reveal a latent periodicity of any symbolical sequence. The ID method is shown to have advantages in comparison with application of the Fourier transformation, the wavelet transform and the dynamic programming method to look for latent periodicity. Examples of the latent periods for poetic texts, DNA sequences and amino acids are presented. Possible origin of a latent periodicity for different symbolical sequences is discussed

  4. A Parallel Saturation Algorithm on Shared Memory Architectures

    Science.gov (United States)

    Ezekiel, Jonathan; Siminiceanu

    2007-01-01

    Symbolic state-space generators are notoriously hard to parallelize. However, the Saturation algorithm implemented in the SMART verification tool differs from other sequential symbolic state-space generators in that it exploits the locality of ring events in asynchronous system models. This paper explores whether event locality can be utilized to efficiently parallelize Saturation on shared-memory architectures. Conceptually, we propose to parallelize the ring of events within a decision diagram node, which is technically realized via a thread pool. We discuss the challenges involved in our parallel design and conduct experimental studies on its prototypical implementation. On a dual-processor dual core PC, our studies show speed-ups for several example models, e.g., of up to 50% for a Kanban model, when compared to running our algorithm only on a single core.

  5. NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit

    Science.gov (United States)

    May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit in an austere economic climate. This fact drives the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. To arrive at the current SLS plan, government and industry experts carefully analyzed hundreds of architecture options and arrived at the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. This paper will explore ways to fit this major development within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017. It will explain the SLS Program s long-range plan to keep the budget within bounds, yet evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through a competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface over 4 decades ago. Astronauts train for long-duration voyages on the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. NASA is refining its mission manifest, guided by U.S. Space Policy and the Global Exploration Roadmap. Launching the Orion Multi-Purpose Crew Vehicle s (MPCV s) first autonomous certification flight in 2017, followed by a crewed flight in 2021, the SLS will offer a robust way to transport international crews and the air, water, food, and equipment they need for extended trips to asteroids, Lagrange Points, and Mars. In addition, the SLS will accommodate

  6. Solar Energetic Particles Events and Human Exploration: Measurements in a Space Habitat

    Science.gov (United States)

    Narici, L.; Berrilli, F.; Casolino, M.; Del Moro, D.; Forte, R.; Giovannelli, L.; Martucci, M.; Mergè, M.; Picozza, P.; Rizzo, A.; Scardigli, S.; Sparvoli, R.; Zeitlin, C.

    2016-12-01

    Solar activity is the source of Space Weather disturbances. Flares, CME and coronal holes modulate physical conditions of circumterrestrial and interplanetary space and ultimately the fluxes of high-energy ionized particles, i.e., solar energetic particle (SEP) and galactic cosmic ray (GCR) background. This ionizing radiation affects spacecrafts and biological systems, therefore it is an important issue for human exploration of space. During a deep space travel (for example the trip to Mars) radiation risk thresholds may well be exceeded by the crew, so mitigation countermeasures must be employed. Solar particle events (SPE) constitute high risks due to their impulsive high rate dose. Forecasting SPE appears to be needed and also specifically tailored to the human exploration needs. Understanding the parameters of the SPE that produce events leading to higher health risks for the astronauts in deep space is therefore a first priority issue. Measurements of SPE effects with active devices in LEO inside the ISS can produce important information for the specific SEP measured, relative to the specific detector location in the ISS (in a human habitat with a shield typical of manned space-crafts). Active detectors can select data from specific geo-magnetic regions along the orbits, allowing geo-magnetic selections that best mimic deep space radiation. We present results from data acquired in 2010 - 2012 by the detector system ALTEA inside the ISS (18 SPEs detected). We compare this data with data from the detector Pamela on a LEO satellite, with the RAD data during the Curiosity Journey to Mars, with GOES data and with several Solar physical parameters. While several features of the radiation modulation are easily understood by the effect of the geomagnetic field, as an example we report a proportionality of the flux in the ISS with the energetic proton flux measured by GOES, some features appear more difficult to interpret. The final goal of this work is to find the

  7. The Rhetoric of Disenchantment through Symbolism

    Science.gov (United States)

    Munyangeyo, Théophile

    2012-01-01

    The symbolism of "flowers" has always been a significant part of cultures around the world due to their functional meaning in daily life. From their decorative to their aromatic role, flowers and their symbolic meaning trigger emotions, convey wishes and represent thoughts that can not be explicitly expressed. In this regard, an…

  8. A practical approach for writer-dependent symbol recognition using a writer-independent symbol recognizer.

    Science.gov (United States)

    LaViola, Joseph J; Zeleznik, Robert C

    2007-11-01

    We present a practical technique for using a writer-independent recognition engine to improve the accuracy and speed while reducing the training requirements of a writer-dependent symbol recognizer. Our writer-dependent recognizer uses a set of binary classifiers based on the AdaBoost learning algorithm, one for each possible pairwise symbol comparison. Each classifier consists of a set of weak learners, one of which is based on a writer-independent handwriting recognizer. During online recognition, we also use the n-best list of the writer-independent recognizer to prune the set of possible symbols and thus reduce the number of required binary classifications. In this paper, we describe the geometric and statistical features used in our recognizer and our all-pairs classification algorithm. We also present the results of experiments that quantify the effect incorporating a writer-independent recognition engine into a writer-dependent recognizer has on accuracy, speed, and user training time.

  9. Graphic Symbols as "The Mind on Paper": Links between Children's Interpretive Theory of Mind and Symbol Understanding

    Science.gov (United States)

    Myers, Lauren J.; Liben, Lynn S.

    2012-01-01

    Children gradually develop interpretive theory of mind (iToM)--the understanding that different people may interpret identical events or stimuli differently. The present study tested whether more advanced iToM underlies children's recognition that map symbols' meanings must be communicated to others when symbols are iconic (resemble their…

  10. Handwriting generates variable visual output to facilitate symbol learning.

    Science.gov (United States)

    Li, Julia X; James, Karin H

    2016-03-01

    Recent research has demonstrated that handwriting practice facilitates letter categorization in young children. The present experiments investigated why handwriting practice facilitates visual categorization by comparing 2 hypotheses: that handwriting exerts its facilitative effect because of the visual-motor production of forms, resulting in a direct link between motor and perceptual systems, or because handwriting produces variable visual instances of a named category in the environment that then changes neural systems. We addressed these issues by measuring performance of 5-year-old children on a categorization task involving novel, Greek symbols across 6 different types of learning conditions: 3 involving visual-motor practice (copying typed symbols independently, tracing typed symbols, tracing handwritten symbols) and 3 involving visual-auditory practice (seeing and saying typed symbols of a single typed font, of variable typed fonts, and of handwritten examples). We could therefore compare visual-motor production with visual perception both of variable and similar forms. Comparisons across the 6 conditions (N = 72) demonstrated that all conditions that involved studying highly variable instances of a symbol facilitated symbol categorization relative to conditions where similar instances of a symbol were learned, regardless of visual-motor production. Therefore, learning perceptually variable instances of a category enhanced performance, suggesting that handwriting facilitates symbol understanding by virtue of its environmental output: supporting the notion of developmental change though brain-body-environment interactions. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. United State space programs - Present and planned

    Science.gov (United States)

    Frosch, R. A.

    1978-01-01

    The U.S. space program is considered with reference to the benefits derived by the public. Missions are divided into three categories: the use of near-earth space for remote sensing, communications, and other purposes directly beneficial to human welfare; the scientific exploration of the solar system and observation of the universe as part of the continuing effort to understand the place of earth and man in the cosmos; and the investigation of the sun-earth relationships which are basic to the terrestrial biosphere. Individual projects are described, and it is suggested that the future of space technology in 1978 is comparable to the future of aviation in 1924.

  12. Television Commercials: Symbols, Myths and Metaphors.

    Science.gov (United States)

    Feasley, Florence G.

    Television commercials convey to the audience through symbols, metaphors, and myths the feelings and emotions deeply rooted in our culture. While commercials on one level are concerned with a representation of the product or service, they are on another level a symbol of a larger meaning: love, family, romance, motherhood, or hero worship. A can…

  13. A Dynamic Perspective on Symbolic Co-branding

    DEFF Research Database (Denmark)

    von Wallpach, Sylvia; Backhausen, Mia

    2016-01-01

    brand’s meaning—a challenge that is accentuated when multiple brands form alliances. Focusing on symbolic co-branding, this paper aims to understand how involved brands’ meaning arises from discursive interactions in stakeholder networks (including brand management). A netnographic study in the context...... of lifestyle and fashion blogs provides in-depth insights into the evolvement of two symbolic co-branding processes. The results highlight various stakeholders’ role in and discursive strategies of creating and transferring meaning between involved brands and add unprecedented insights into symbolic co-branding...

  14. Generating and Solving Symbolic Parity Games

    Directory of Open Access Journals (Sweden)

    Gijs Kant

    2014-07-01

    Full Text Available We present a new tool for verification of modal mu-calculus formulae for process specifications, based on symbolic parity games. It enhances an existing method, that first encodes the problem to a Parameterised Boolean Equation System (PBES and then instantiates the PBES to a parity game. We improved the translation from specification to PBES to preserve the structure of the specification in the PBES, we extended LTSmin to instantiate PBESs to symbolic parity games, and implemented the recursive parity game solving algorithm by Zielonka for symbolic parity games. We use Multi-valued Decision Diagrams (MDDs to represent sets and relations, thus enabling the tools to deal with very large systems. The transition relation is partitioned based on the structure of the specification, which allows for efficient manipulation of the MDDs. We performed two case studies on modular specifications, that demonstrate that the new method has better time and memory performance than existing PBES based tools and can be faster (but slightly less memory efficient than the symbolic model checker NuSMV.

  15. Combining metric episodes with semantic event concepts within the Symbolic and Sub-Symbolic Robotics Intelligence Control System (SS-RICS)

    Science.gov (United States)

    Kelley, Troy D.; McGhee, S.

    2013-05-01

    This paper describes the ongoing development of a robotic control architecture that inspired by computational cognitive architectures from the discipline of cognitive psychology. The Symbolic and Sub-Symbolic Robotics Intelligence Control System (SS-RICS) combines symbolic and sub-symbolic representations of knowledge into a unified control architecture. The new architecture leverages previous work in cognitive architectures, specifically the development of the Adaptive Character of Thought-Rational (ACT-R) and Soar. This paper details current work on learning from episodes or events. The use of episodic memory as a learning mechanism has, until recently, been largely ignored by computational cognitive architectures. This paper details work on metric level episodic memory streams and methods for translating episodes into abstract schemas. The presentation will include research on learning through novelty and self generated feedback mechanisms for autonomous systems.

  16. Identified state-space prediction model for aero-optical wavefronts

    Science.gov (United States)

    Faghihi, Azin; Tesch, Jonathan; Gibson, Steve

    2013-07-01

    A state-space disturbance model and associated prediction filter for aero-optical wavefronts are described. The model is computed by system identification from a sequence of wavefronts measured in an airborne laboratory. Estimates of the statistics and flow velocity of the wavefront data are shown and can be computed from the matrices in the state-space model without returning to the original data. Numerical results compare velocity values and power spectra computed from the identified state-space model with those computed from the aero-optical data.

  17. Symbol Recognition using Spatial Relations

    OpenAIRE

    K.C., Santosh; Lamiroy, Bart; Wendling, Laurent

    2012-01-01

    International audience; In this paper, we present a method for symbol recognition based on the spatio-structural description of a 'vocabulary' of extracted visual elementary parts. It is applied to symbols in electrical wiring diagrams. The method consists of first identifying vocabulary elements into different groups based on their types (e.g., circle, corner ). We then compute spatial relations between the possible pairs of labelled vocabulary types which are further used as a basis for bui...

  18. 60 Years of Studying the Earth-Sun System from Space: Explorer 1

    Science.gov (United States)

    Zurbuchen, T.

    2017-12-01

    The era of space-based observation of the Earth-Sun system initiated with the Explorer-1 satellite has revolutionized our knowledge of the Earth, Sun, and the processes that connect them. The space-based perspective has not only enabled us to achieve a fundamentally new understanding of our home planet and the star that sustains us, but it has allowed for significant improvements in predictive capability that serves to protect life, health, and property. NASA has played a leadership role in the United States in creating both the technology and science that has enabled and benefited from these new capabilities, and works closely with partner agencies and around the world to synergistically address these global challenges which are of sufficient magnitude that no one nation or organization can address on their own. Three areas are at the heart of NASA's comprehensive science program: Discovering the secrets of the universe, searching for life elsewhere, and safeguarding and improving life on Earth. Together, these tenets will help NASA lead on a civilization scale. In this talk, a review of these 60 years of advances, a status of current activities, and thoughts about their evolution into the future will be presented.

  19. Of States and Borders on the Internet

    DEFF Research Database (Denmark)

    Shklovski, Irina; Struthers, David

    2010-01-01

    their activity on the Internet as happening within or outside the space of the state to which they felt allegiance and belonging. National borders are demarcated on the Internet through naming via ccTLDs and can result in individual expressions of various types of nationalism online. We find that cc......TLDs are not just symbolic markers but have real meaning and their importance increases in locations where notions of statehood are in flux....

  20. Human factors and nuclear space technology in long-term exploration

    International Nuclear Information System (INIS)

    Brown-VanHoozer, S.A.; VanHoozer, W.R.

    2000-01-01

    Allocation of manual versus automated tasks for operation and maintenance of nuclear power systems in space will be crucial at the onset and at the return of a space flight. Such factors as space adaptation syndrome (SAS), a temporary space motion sickness that has affected 40 to 50% of crew members on past space flights, can result in lost effort ranging from a few hours to a full day. This could have a significant impact on manual performance where high levels of execution are likely to be required in the very early stages of the mission. Other considerations involving higher-level behavioral phenomena such as interpersonal and group processes, individual belief systems, social and motivational factors, and (subjective) cognitive function have received little attention; nevertheless these will be essential elements for success in long-term exploration. Understanding that long-term space flight missions may create groups that become unique societies distinct unto themselves will test current ethical, moral, and social belief systems, requiring one to examine the amalgamation as well as organizational structures for the safety and balance of the crew