q-entropy for symbolic dynamical systems
International Nuclear Information System (INIS)
Zhao, Yun; Pesin, Yakov
2015-01-01
For symbolic dynamical systems we use the Carathéodory construction as described in (Pesin 1997 Dimension Theory in Dynamical Systems, ConTemporary Views and Applications (Chicago: University of Chicago Press)) to introduce the notions of q-topological and q-metric entropies. We describe some basic properties of these entropies and in particular, discuss relations between q-metric entropy and local metric entropy. Both q-topological and q-metric entropies are new invariants respectively under homeomorphisms and metric isomorphisms of dynamical systems. (paper)
A Symbolic and Graphical Computer Representation of Dynamical Systems
Gould, Laurence I.
2005-04-01
AUTONO is a Macsyma/Maxima program, designed at the University of Hartford, for solving autonomous systems of differential equations as well as for relating Lagrangians and Hamiltonians to their associated dynamical equations. AUTONO can be used in a number of fields to decipher a variety of complex dynamical systems with ease, producing their Lagrangian and Hamiltonian equations in seconds. These equations can then be incorporated into VisSim, a modeling and simulation program, which yields graphical representations of motion in a given system through easily chosen input parameters. The program, along with the VisSim differential-equations graphical package, allows for resolution and easy understanding of complex problems in a relatively short time; thus enabling quicker and more advanced computing of dynamical systems on any number of platforms---from a network of sensors on a space probe, to the behavior of neural networks, to the effects of an electromagnetic field on components in a dynamical system. A flowchart of AUTONO, along with some simple applications and VisSim output, will be shown.
DEFF Research Database (Denmark)
Simonsen, Jakob Grue
2009-01-01
We consider the computational complexity of languages of symbolic dynamical systems. In particular, we study complexity hierarchies and membership of the non-uniform class P/poly. We prove: 1.For every time-constructible, non-decreasing function t(n)=@w(n), there is a symbolic dynamical system...... with language decidable in deterministic time O(n^2t(n)), but not in deterministic time o(t(n)). 2.For every space-constructible, non-decreasing function s(n)=@w(n), there is a symbolic dynamical system with language decidable in deterministic space O(s(n)), but not in deterministic space o(s(n)). 3.There...... are symbolic dynamical systems having hard and complete languages under @?"m^l^o^g^s- and @?"m^p-reduction for every complexity class above LOGSPACE in the backbone hierarchy (hence, P-complete, NP-complete, coNP-complete, PSPACE-complete, and EXPTIME-complete sets). 4.There are decidable languages of symbolic...
Symbolic Dynamics of Reanalysis Data
Larson, J. W.; Dickens, P. M.
2003-12-01
Symbolic dynamics1 is the study of sequences of symbols belonging to a discrete set of elements, the most commmon example being a sequence of ones and zeroes. Often the set of symbols is derived from a timeseries of a continuous variable through the introduction of a partition function--a process called symbolization. Symbolic dynamics has been used widely in the physical sciences; a geophysical example being the application of C1 and C2 complexity2 to hourly precipitation station data3. The C1 and C2 complexities are computed by examining subsequences--or words--of fixed length L in the limit of large values of L. Recent advances in information theory have led to techniques focused on the growth rate of the Shannon entropy and its asymptotic behavior in the limit of long words--levels of entropy convergence4. The result is a set of measures one can use to quantify the amount of memory stored in the sequence, whether or not an observer is able to synchronize to the sequence, and with what confidence it may be predicted. These techniques may also be used to uncover periodic behavior in the sequence. We are currently applying complexity theory and levels of entropy convergence to gridpoint timeseries from the NCAR/NCEP 50-year reanalysis5. Topics to be discussed include: a brief introduction to symbolic dynamics; a description of the partition function/symbolization strategy; a discussion of C1 and C2 complexity and entropy convergence rates and their utility; and example applications of these techniques to NCAR/NCEP 50-reanalyses gridpoint timeseries, resulting in maps of C1 and C2 complexities and entropy convergence rates. Finally, we will discuss how these results may be used to validate climate models. 1{Hao, Bai-Lin, Elementary Symbolic Dynamics and Chaos in Dissipative Systems, Wold Scientific, Singapore (1989)} 2{d'Alessandro, G. and Politi, A., Phys. Rev. Lett., 64, 1609-1612 (1990).} 3{Elsner, J. and Tsonis, A., J. Atmos. Sci., 50, 400-405 (1993).} 4
Symbolic dynamics of noisy chaos
Energy Technology Data Exchange (ETDEWEB)
Crutchfield, J P; Packard, N H
1983-05-01
One model of randomness observed in physical systems is that low-dimensional deterministic chaotic attractors underly the observations. A phenomenological theory of chaotic dynamics requires an accounting of the information flow fromthe observed system to the observer, the amount of information available in observations, and just how this information affects predictions of the system's future behavior. In an effort to develop such a description, the information theory of highly discretized observations of random behavior is discussed. Metric entropy and topological entropy are well-defined invariant measures of such an attractor's level of chaos, and are computable using symbolic dynamics. Real physical systems that display low dimensional dynamics are, however, inevitably coupled to high-dimensional randomness, e.g. thermal noise. We investigate the effects of such fluctuations coupled to deterministic chaotic systems, in particular, the metric entropy's response to the fluctuations. It is found that the entropy increases with a power law in the noise level, and that the convergence of the entropy and the effect of fluctuations can be cast as a scaling theory. It is also argued that in addition to the metric entropy, there is a second scaling invariant quantity that characterizes a deterministic system with added fluctuations: I/sub 0/, the maximum average information obtainable about the initial condition that produces a particular sequence of measurements (or symbols). 46 references, 14 figures, 1 table.
International Nuclear Information System (INIS)
Li Hongzhe; Tian Bo; Li Lili; Zhang Haiqiang
2010-01-01
The new soliton solutions for the variable-coefficient Boussinesq system, whose applications are seen in fluid dynamics, are studied in this paper with symbolic computation. First, the Painleve analysis is used to investigate its integrability properties. For the identified case we give, the Lax pair of the system is found, and then the Darboux transformation is constructed. At last, some new soliton solutions are presented via the Darboux method. Those solutions might be of some value in fluid dynamics. (general)
Coupled-expanding maps and one-sided symbolic dynamical systems
International Nuclear Information System (INIS)
Shi Yuming; Ju, Hyonhui; Chen Guanrong
2009-01-01
This paper studies relationships between coupled-expanding maps and one-sided symbolic dynamical systems. The concept of coupled-expanding map is extended to a more general one: coupled-expansion for a transitive matrix. It is found that the subshift for a transitive matrix is strictly coupled-expanding for the matrix in certain disjoint compact subsets; the topological conjugacy of a continuous map in its compact invariant set of a metric space to a subshift for a transitive matrix has a close relationship with that the map is strictly coupled-expanding for the matrix in some disjoint compact subsets. A certain relationship between strictly coupled-expanding maps for a transitive matrix in disjoint bounded and closed subsets of a complete metric space and their topological conjugacy to the subshift for the matrix is also obtained. Dynamical behaviors of subshifts for irreducible matrices are then studied and several equivalent statements to chaos are obtained; especially, chaos in the sense of Li-Yorke is equivalent to chaos in the sense of Devaney for the subshift, and is also equivalent to that the domain of the subshift is infinite. Based on these results, several new criteria of chaos for maps are finally established via strict coupled-expansions for irreducible transitive matrices in compact subsets of metric spaces and in bounded and closed subsets of complete metric spaces, respectively, where their conditions are weaker than those existing in the literature.
International Nuclear Information System (INIS)
Mayzelis, Z.A.; Apostolov, S.S.; Melnyk, S.S.; Usatenko, O.V.; Yampol'skii, V.A.
2007-01-01
A theory of symbolic dynamic systems with long-range correlations based on the consideration of the binary N-step Markov chains developed earlier in Phys Rev Lett 2003;90:110601 is generalized to the biased case (non-equal numbers of zeros and unities in the chain). In the model, the conditional probability that the ith symbol in the chain equals zero (or unity) is a linear function of the number of unities (zeros) among the preceding N symbols. The correlation and distribution functions as well as the variance of number of symbols in the words of arbitrary length L are obtained analytically and verified by numerical simulations. A self-similarity of the studied stochastic process is revealed and the similarity group transformation of the chain parameters is presented. The diffusion Fokker-Planck equation governing the distribution function of the L-words is explored. If the persistent correlations are not extremely strong, the distribution function is shown to be the Gaussian with the variance being nonlinearly dependent on L. An equation connecting the memory and correlation function of the additive Markov chain is presented. This equation allows reconstructing a memory function using a correlation function of the system. Effectiveness and robustness of the proposed method is demonstrated by simple model examples. Memory functions of concrete coarse-grained literary texts are found and their universal power-law behavior at long distances is revealed
Energy Technology Data Exchange (ETDEWEB)
Mayzelis, Z.A. [Department of Physics, Kharkov National University, 4 Svoboda Sq., Kharkov 61077 (Ukraine); Apostolov, S.S. [Department of Physics, Kharkov National University, 4 Svoboda Sq., Kharkov 61077 (Ukraine); Melnyk, S.S. [A. Ya. Usikov Institute for Radiophysics and Electronics, Ukrainian Academy of Science, 12 Proskura Street, 61085 Kharkov (Ukraine); Usatenko, O.V. [A. Ya. Usikov Institute for Radiophysics and Electronics, Ukrainian Academy of Science, 12 Proskura Street, 61085 Kharkov (Ukraine)]. E-mail: usatenko@ire.kharkov.ua; Yampol' skii, V.A. [A. Ya. Usikov Institute for Radiophysics and Electronics, Ukrainian Academy of Science, 12 Proskura Street, 61085 Kharkov (Ukraine)
2007-10-15
A theory of symbolic dynamic systems with long-range correlations based on the consideration of the binary N-step Markov chains developed earlier in Phys Rev Lett 2003;90:110601 is generalized to the biased case (non-equal numbers of zeros and unities in the chain). In the model, the conditional probability that the ith symbol in the chain equals zero (or unity) is a linear function of the number of unities (zeros) among the preceding N symbols. The correlation and distribution functions as well as the variance of number of symbols in the words of arbitrary length L are obtained analytically and verified by numerical simulations. A self-similarity of the studied stochastic process is revealed and the similarity group transformation of the chain parameters is presented. The diffusion Fokker-Planck equation governing the distribution function of the L-words is explored. If the persistent correlations are not extremely strong, the distribution function is shown to be the Gaussian with the variance being nonlinearly dependent on L. An equation connecting the memory and correlation function of the additive Markov chain is presented. This equation allows reconstructing a memory function using a correlation function of the system. Effectiveness and robustness of the proposed method is demonstrated by simple model examples. Memory functions of concrete coarse-grained literary texts are found and their universal power-law behavior at long distances is revealed.
Experimental targeting of chaos via controlled symbolic dynamics
International Nuclear Information System (INIS)
Corron, Ned J.; Pethel, Shawn D.
2003-01-01
In this Letter, we report experimental targeting in a chaotic system by controlling symbolic dynamics. We acquire and control an electronic circuit using small perturbations to elicit a desired objective state starting from an arbitrary, uncontrolled state. The control perturbations are calculated using a symbolic targeting sequence and applied using dynamic limiting control
DYNAMICS OF SYMBOLS AS TRANSCULTURAL POETICS
Directory of Open Access Journals (Sweden)
Adilson Vagner de Oliveira
2015-04-01
Full Text Available This paper aims at reflecting on the poetic possibilities of productions that take the encounter of cultures as compositional element to discuss issues beyond the limits of literature and culture. Thus, we sought to demonstrate the dynamics of cross-cultural symbolic systems through the political play A Revolta da Casa dos Ídolos (1978 by Pepetela in order to propose new understandings of the social reality in contemporary Angola.
Symbolic dynamics and description of complexity
International Nuclear Information System (INIS)
Hao Bailin.
1992-10-01
Symbolic dynamics provides a general framework to describe complexity of dynamical behaviour. After a discussion of the state of the filed special emphasis will be made on the role of transfer matrix (the Stefan matrix) both in deriving the grammar from known symbolic dynamics and in extracting the rules from experimental data. The block structure of the Stefan matrix may serve as another indicator of complexity of the associated dynamics. (author). 33 refs, 6 figs
Heart Rate Fragmentation: A Symbolic Dynamical Approach
Directory of Open Access Journals (Sweden)
Madalena D. Costa
2017-11-01
Full Text Available Background: We recently introduced the concept of heart rate fragmentation along with a set of metrics for its quantification. The term was coined to refer to an increase in the percentage of changes in heart rate acceleration sign, a dynamical marker of a type of anomalous variability. The effort was motivated by the observation that fragmentation, which is consistent with the breakdown of the neuroautonomic-electrophysiologic control system of the sino-atrial node, could confound traditional short-term analysis of heart rate variability.Objective: The objectives of this study were to: (1 introduce a symbolic dynamical approach to the problem of quantifying heart rate fragmentation; (2 evaluate how the distribution of the different dynamical patterns (“words” varied with the participants' age in a group of healthy subjects and patients with coronary artery disease (CAD; and (3 quantify the differences in the fragmentation patterns between the two sample populations.Methods: The symbolic dynamical method employed here was based on a ternary map of the increment NN interval time series and on the analysis of the relative frequency of symbolic sequences (words with a pre-defined set of features. We analyzed annotated, open-access Holter databases of healthy subjects and patients with CAD, provided by the University of Rochester Telemetric and Holter ECG Warehouse (THEW.Results: The degree of fragmentation was significantly higher in older individuals than in their younger counterparts. However, the fragmentation patterns were different in the two sample populations. In healthy subjects, older age was significantly associated with a higher percentage of transitions from acceleration/deceleration to zero acceleration and vice versa (termed “soft” inflection points. In patients with CAD, older age was also significantly associated with higher percentages of frank reversals in heart rate acceleration (transitions from acceleration to
Symbolic dynamics of the Lorenz equations
International Nuclear Information System (INIS)
Fang Hai-ping; Hao Bailin.
1994-07-01
The Lorenz equations are investigated in a wide range of parameters by using the method of symbolic dynamics. First, the systematics of stable periodic orbits in the Lorenz equations is compared with that of the one-dimensional cubic map, which shares the same discrete symmetry with the Lorenz model. The systematics is then ''corrected'' in such a way as to encompass all the known periodic windows of the Lorenz equations with only one exception. Second, in order to justify the above approach and to understand the exceptions, another 1D map with a discontinuity is extracted from an extension of the geometric Lorenz attractor and its symbolic dynamics is constructed. All this has to be done in light of symbolic dynamics of two-dimensional maps. Finally, symbolic dynamics for the actual Poincare return map of the Lorenz equations is constructed in a heuristic way. New periodic windows of the Lorenz equations and their parameters can be predicted from this symbolic dynamics in combination with the 1D cubic map. The extended geometric 2D Lorenz map and the 1D antisymmetric map with a discontinuity describe the topological aspects of the Lorenz equations to high accuracy. (author). 44 refs, 17 figs, 8 tabs
Symbol synchronization in convolutionally coded systems
Baumert, L. D.; Mceliece, R. J.; Van Tilborg, H. C. A.
1979-01-01
Alternate symbol inversion is sometimes applied to the output of convolutional encoders to guarantee sufficient richness of symbol transition for the receiver symbol synchronizer. A bound is given for the length of the transition-free symbol stream in such systems, and those convolutional codes are characterized in which arbitrarily long transition free runs occur.
On the Symbolic Verification of Timed Systems
DEFF Research Database (Denmark)
Moeller, Jesper; Lichtenberg, Jacob; Andersen, Henrik Reif
1999-01-01
This paper describes how to analyze a timed system symbolically. That is, given a symbolic representation of a set of (timed) states (as an expression), we describe how to determine an expression that represents the set of states that can be reached either by firing a discrete transition...... or by advancing time. These operations are used to determine the set of reachable states symbolically. We also show how to symbolically determine the set of states that can reach a given set of states (i.e., a backwards step), thus making it possible to verify TCTL-formulae symbolically. The analysis is fully...... symbolic in the sense that both the discrete and the continuous part of the state space are represented symbolically. Furthermore, both the synchronous and asynchronous concurrent composition of timed systems can be performed symbolically. The symbolic representations are given as formulae expressed...
Symbolic Dynamics and Grammatical Complexity
Hao, Bai-Lin; Zheng, Wei-Mou
The following sections are included: * Formal Languages and Their Complexity * Formal Language * Chomsky Hierarchy of Grammatical Complexity * The L-System * Regular Language and Finite Automaton * Finite Automaton * Regular Language * Stefan Matrix as Transfer Function for Automaton * Beyond Regular Languages * Feigenbaum and Generalized Feigenbaum Limiting Sets * Even and Odd Fibonacci Sequences * Odd Maximal Primitive Prefixes and Kneading Map * Even Maximal Primitive Prefixes and Distinct Excluded Blocks * Summary of Results
DESIGN AND IMPLEMENTATION OF DYNAMIC SYMBOLS IN DYNAMIC GIS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Many Internet-GIS have been implemented on the web and they are increasingly bec oming an important part of multimedia cartography that has much more users as co mpared to traditional GIS production media.Internet GIS technology has provided the GIS dynamic information acquisition w ith technical support.Also,the visualization technology of electronic map ha s provided tools for GIS symbols with dynamic characteristics.On the basis of GI S dynamic information acquisition,the design idea and implementation methods of dynamic symbols in dynamic GIS are presented in this article.
Multiplexing symbolic dynamics-based chaos communications using synchronization
International Nuclear Information System (INIS)
Blakely, Jonathan N; Corron, Ned J
2005-01-01
A novel form of multiplexing information-bearing chaotic waveforms is demonstrated experimentally. This scheme dramatically increases the information carrying capacity of a chaotic communication system. In the transmitter, information is encoded in the chaotic waveforms of two electronic circuits using small perturbations to induce the symbolic dynamics to follow a prescribed symbol sequence. Waveforms from each of the drive oscillators are summed to form a single scalar signal that is transmitted to the receiver. Identical oscillators in the receiver synchronize to their counterparts in the drive system, effectively de-multiplexing the transmitted signal. The transmitted information in each channel is extracted from simple return maps of the receiver oscillators
Multiplexing symbolic dynamics-based chaos communications using synchronization
Energy Technology Data Exchange (ETDEWEB)
Blakely, Jonathan N; Corron, Ned J [US Army RDECOM, AMSRD-AMR-WS-ST, Redstone Arsenal, Huntsville, AL 35898 (United States)
2005-01-01
A novel form of multiplexing information-bearing chaotic waveforms is demonstrated experimentally. This scheme dramatically increases the information carrying capacity of a chaotic communication system. In the transmitter, information is encoded in the chaotic waveforms of two electronic circuits using small perturbations to induce the symbolic dynamics to follow a prescribed symbol sequence. Waveforms from each of the drive oscillators are summed to form a single scalar signal that is transmitted to the receiver. Identical oscillators in the receiver synchronize to their counterparts in the drive system, effectively de-multiplexing the transmitted signal. The transmitted information in each channel is extracted from simple return maps of the receiver oscillators.
Real Time Decoding of Color Symbol for Optical Positioning System
Directory of Open Access Journals (Sweden)
Abdul Waheed Malik
2015-01-01
Full Text Available This paper presents the design and real-time decoding of a color symbol that can be used as a reference marker for optical navigation. The designed symbol has a circular shape and is printed on paper using two distinct colors. This pair of colors is selected based on the highest achievable signal to noise ratio. The symbol is designed to carry eight bit information. Real time decoding of this symbol is performed using a heterogeneous combination of Field Programmable Gate Array (FPGA and a microcontroller. An image sensor having a resolution of 1600 by 1200 pixels is used to capture images of symbols in complex backgrounds. Dynamic image segmentation, component labeling and feature extraction was performed on the FPGA. The region of interest was further computed from the extracted features. Feature data belonging to the symbol was sent from the FPGA to the microcontroller. Image processing tasks are partitioned between the FPGA and microcontroller based on data intensity. Experiments were performed to verify the rotational independence of the symbols. The maximum distance between camera and symbol allowing for correct detection and decoding was analyzed. Experiments were also performed to analyze the number of generated image components and sub-pixel precision versus different light sources and intensities. The proposed hardware architecture can process up to 55 frames per second for accurate detection and decoding of symbols at two Megapixels resolution. The power consumption of the complete system is 342mw.
Symbolic-Numeric Integration of the Dynamical Cosserat Equations
Lyakhov, Dmitry A.
2017-08-29
We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \\\\alpha -method illustrating the computational efficiency of our approach for problems in structural mechanics.
Symbolic-Numeric Integration of the Dynamical Cosserat Equations
Lyakhov, Dmitry A.; Gerdt, Vladimir P.; Weber, Andreas G.; Michels, Dominik L.
2017-01-01
We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \\alpha -method illustrating the computational efficiency of our approach for problems in structural mechanics.
Symbolic analysis of spatio-temporal systems: The measurement problem
International Nuclear Information System (INIS)
Brown, R.; Tang, Xianzhu; Tracy, E.R.
1996-01-01
We consider the problem of measuring physical quantities using time-series observations. The approach taken is to validate theoretical models which are derived heuristically or from first principles. The fitting of parameters in such models constitutes the measurement. This is a basic problem in measurement science and a wide array of tools are available. However, an important gap in the present toolkit exists when the system of interest, and hence the models used, exhibit chaotic or turbulent behavior. The development of reliable schemes for analyzing such signals is necessary before one can claim to have a quantitative understanding of the underlying physics. In experimental situations, the number of independently measured time-series is limited, but the number of dynamical degrees of freedom can be large. In addition, the signals of interest will typically be embedded in a noisy background. In the symbol statistics approach, the time-series is coarse-grained and converted into a long, symbol stream. The probability of occurrence of various symbol sequences of fixed length constitutes the symbol statistics. These statistics contain a wealth of information about the underlying dynamics and, as we shall discuss, can be used to validate models. Previously, we have applied this symbolic approach to low dimensional systems with great success. The symbol statistics are robust up to noise/signal ∼20%. At higher noise levels the symbol statistics are biased, but in a relatively simple manner. By including the noise characteristics into the model, we were able to use the symbol statistics to measure parameters even when signal/noise is ∼ O(1). More recently, we have extended the symbolic approach to spatio-temporal systems. We have considered both coupled-map lattices and the complex Ginzburg-Landau equation. This equation arises generically near the onset of instabilities
Alternate symbol inversion for improved symbol synchronization in convolutionally coded systems
Simon, M. K.; Smith, J. G.
1980-01-01
Inverting alternate symbols of the encoder output of a convolutionally coded system provides sufficient density of symbol transitions to guarantee adequate symbol synchronizer performance, a guarantee otherwise lacking. Although alternate symbol inversion may increase or decrease the average transition density, depending on the data source model, it produces a maximum number of contiguous symbols without transition for a particular class of convolutional codes, independent of the data source model. Further, this maximum is sufficiently small to guarantee acceptable symbol synchronizer performance for typical applications. Subsequent inversion of alternate detected symbols permits proper decoding.
New Map Symbol System for Disaster Management
Marinova, Silvia T.
2018-05-01
In the last 10 years Bulgaria was frequently affected by natural and man-made disasters that caused considerable losses. According to the Bulgarian Disaster Management Act (2006) disaster management should be planned at local, regional and national level. Disaster protection is based on plans that include maps such as hazard maps, maps for protection, maps for evacuation planning, etc. Decision-making and cooperation between two or more neighboring municipalities or regions in crisis situation are still rendered difficult because the maps included in the plans differ in scale, colors, map symbols and cartographic design. To improve decision-making process in case of emergency and to reduce the number of human loss and property damages disaster management plans at local and regional level should be supported by detailed thematic maps created in accordance with uniform contents, map symbol system and design. The paper proposes a new symbol system for disaster management that includes a four level hierarchical classification of objects and phenomena according to their type and origin. All objects and phenomena of this classification are divided into five categories: disasters; infrastructure; protection services and infrastructure for protection; affected people and affected infrastructure; operational sites and activities. The symbols of these categories are shown with different background colors and shapes so that they are identifiable. All the symbols have simple but associative design. The new symbol system is used in the design of a series of maps for disaster management at local and regional level.
DEFF Research Database (Denmark)
Perram, John; Andersen, Morten; Ellerkilde, Lars
2005-01-01
' competence was assessed by grading three large scale projects submitted during the course of the semester, supplemented by an oral examination. The oral required students' to discuss their electronic toolbox of symbolic, numerical and graphical code fragments collected from the electronic textbook...
Symbolic mathematical computing: orbital dynamics and application to accelerators
International Nuclear Information System (INIS)
Fateman, R.
1986-01-01
Computer-assisted symbolic mathematical computation has become increasingly useful in applied mathematics. A brief introduction to such capabilitites and some examples related to orbital dynamics and accelerator physics are presented. (author)
Studies of phase return map and symbolic dynamics in a periodically driven Hodgkin—Huxley neuron
International Nuclear Information System (INIS)
Ding Jiong; Zhang Hong; Tong Qin-Ye; Chen Zhuo
2014-01-01
How neuronal spike trains encode external information is a hot topic in neurodynamics studies. In this paper, we investigate the dynamical states of the Hodgkin—Huxley neuron under periodic forcing. Depending on the parameters of the stimulus, the neuron exhibits periodic, quasiperiodic and chaotic spike trains. In order to analyze these spike trains quantitatively, we use the phase return map to describe the dynamical behavior on a one-dimensional (1D) map. According to the monotonicity or discontinuous point of the 1D map, the spike trains are transformed into symbolic sequences by implementing a coarse-grained algorithm — symbolic dynamics. Based on the ordering rules of symbolic dynamics, the parameters of the external stimulus can be measured in high resolution with finite length symbolic sequences. A reasonable explanation for why the nervous system can discriminate or cognize the small change of the external signals in a short time is also presented. (general)
Sternberg, Shlomo
2010-01-01
Celebrated mathematician Shlomo Sternberg, a pioneer in the field of dynamical systems, created this modern one-semester introduction to the subject for his classes at Harvard University. Its wide-ranging treatment covers one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials offer a variety of online components, including PowerPoint lecture slides for professors and MATLAB exercises.""Even though there are many dynamical systems books on the market, this book is bound to become a classic. The the
Quantification of cardiorespiratory interactions based on joint symbolic dynamics.
Kabir, Muammar M; Saint, David A; Nalivaiko, Eugene; Abbott, Derek; Voss, Andreas; Baumert, Mathias
2011-10-01
Cardiac and respiratory rhythms are highly nonlinear and nonstationary. As a result traditional time-domain techniques are often inadequate to characterize their complex dynamics. In this article, we introduce a novel technique to investigate the interactions between R-R intervals and respiratory phases based on their joint symbolic dynamics. To evaluate the technique, electrocardiograms (ECG) and respiratory signals were recorded in 13 healthy subjects in different body postures during spontaneous and controlled breathing. Herein, the R-R time series were extracted from ECG and respiratory phases were obtained from abdomen impedance belts using the Hilbert transform. Both time series were transformed into ternary symbol vectors based on the changes between two successive R-R intervals or respiratory phases. Subsequently, words of different symbol lengths were formed and the correspondence between the two series of words was determined to quantify the interaction between cardiac and respiratory cycles. To validate our results, respiratory sinus arrhythmia (RSA) was further studied using the phase-averaged characterization of the RSA pattern. The percentage of similarity of the sequence of symbols, between the respective words of the two series determined by joint symbolic dynamics, was significantly reduced in the upright position compared to the supine position (26.4 ± 4.7 vs. 20.5 ± 5.4%, p cardiorespiratory interaction that is highly sensitive to the effects of orthostatic challenge.
Characterizing Motif Dynamics of Electric Brain Activity Using Symbolic Analysis
Directory of Open Access Journals (Sweden)
Massimiliano Zanin
2014-10-01
Full Text Available Motifs are small recurring circuits of interactions which constitute the backbone of networked systems. Characterizing motif dynamics is therefore key to understanding the functioning of such systems. Here we propose a method to define and quantify the temporal variability and time scales of electroencephalogram (EEG motifs of resting brain activity. Given a triplet of EEG sensors, links between them are calculated by means of linear correlation; each pattern of links (i.e., each motif is then associated to a symbol, and its appearance frequency is analyzed by means of Shannon entropy. Our results show that each motif becomes observable with different coupling thresholds and evolves at its own time scale, with fronto-temporal sensors emerging at high thresholds and changing at fast time scales, and parietal ones at low thresholds and changing at slower rates. Finally, while motif dynamics differed across individuals, for each subject, it showed robustness across experimental conditions, indicating that it could represent an individual dynamical signature.
Symbolic aesthetics in steel structural systems
Directory of Open Access Journals (Sweden)
Usama Abdul-Mun'em Khuraibet
2015-02-01
Full Text Available The aesthetic expression and its orders are important for steel structures forming. Steel structures are a compilation of structural elements, where its shapes have standard dimensions and pre-fabricated. As the steel construction systems not only aim to achieve the functional requirements for users, but must also have the symbolic aesthetics which provides visually and cognitive expression for viewers. In this sense the research interested in expressional aesthetics in these systems and highlights the importance of attention as structural items. Therefore the visual items which related with steel structures contain some of the most powerful forms of modern architecture, steel structures with a glass cladding, agility and accuracy in manufacture of structural elements as visual items, structural interest in the forms of spaces which have long span systems or in high buildings are different forms of expression and influence. So the research focuses on the study of those expressive patterns related with the steel construction properties, including the advantages of these systems at the level of strength and firmness, flexibility and economy as well as aesthetic and expression. Accordingly, the research problem concentrated on educational shortage in the study of the structural steel system aspects concerning constructional characteristic, expressive and aesthetic features, and how to deal with them as a language bearing the symbols and meanings which have clear structural style, because it the best ways to make those systems as communication means with users, by premise that the use of expressional symbol in steel construction increases the aesthetic value. Therefore the research aims to reveal the most structural and expressive patterns by analysis the expressional means and steel structural aesthetics.
A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics
Yuan, Kai; Liu, Jian; Liu, Kaipei; Tan, Tianyuan
2015-01-01
Background Evaluations of electric power distribution network risks must address the problems of incomplete information and changing dynamics. A risk evaluation framework should be adaptable to a specific situation and an evolving understanding of risk. Methods This study investigates the use of symbolic dynamics to abstract raw data. After introducing symbolic dynamics operators, Kolmogorov-Sinai entropy and Kullback-Leibler relative entropy are used to quantitatively evaluate relationships between risk sub-factors and main factors. For layered risk indicators, where the factors are categorized into four main factors – device, structure, load and special operation – a merging algorithm using operators to calculate the risk factors is discussed. Finally, an example from the Sanya Power Company is given to demonstrate the feasibility of the proposed method. Conclusion Distribution networks are exposed and can be affected by many things. The topology and the operating mode of a distribution network are dynamic, so the faults and their consequences are probabilistic. PMID:25789859
Assessment of the depth of anesthesia based on symbolic dynamics of the EEG
Tupaika, Nadine; Vallverdú Ferrer, Montserrat; Jospin, Mathieu; Jensen, Erik Weber; Struys, Michel M. R. F.; Vereecke, Hugo E. M.; Voss, Andreas; Caminal Magrans, Pere
2010-01-01
Methodologies based on symbolic dynamics have successfully demonstrated to reflect the nonlinear behavior of biological signals. In the present study, symbolic dynamics was applied to the electroencephalogram (EEG) in order to describe the level of depth of anesthesia. The EEG was transformed to symbol sequences. Words of three symbols were built from this symbolic series. The results obtained from the EEGs of 36 patients undergoing anesthesia showed that the probabilities of the ...
Narotam, Pradeep K; Morrison, John F; Schmidt, Michael D; Nathoo, Narendra
2014-04-01
Predictive modeling of emergent behavior, inherent to complex physiological systems, requires the analysis of large complex clinical data streams currently being generated in the intensive care unit. Brain tissue oxygen protocols have yielded outcome benefits in traumatic brain injury (TBI), but the critical physiological thresholds for low brain oxygen have not been established for a dynamical patho-physiological system. High frequency, multi-modal clinical data sets from 29 patients with severe TBI who underwent multi-modality neuro-clinical care monitoring and treatment with a brain oxygen protocol were analyzed. The inter-relationship between acute physiological parameters was determined using symbolic regression (SR) as the computational framework. The mean patient age was 44.4±15 with a mean admission GCS of 6.6±3.9. Sixty-three percent sustained motor vehicle accidents and the most common pathology was intra-cerebral hemorrhage (50%). Hospital discharge mortality was 21%, poor outcome occurred in 24% of patients, and good outcome occurred in 56% of patients. Criticality for low brain oxygen was intracranial pressure (ICP) ≥22.8 mm Hg, for mortality at ICP≥37.1 mm Hg. The upper therapeutic threshold for cerebral perfusion pressure (CPP) was 75 mm Hg. Eubaric hyperoxia significantly impacted partial pressure of oxygen in brain tissue (PbtO2) at all ICP levels. Optimal brain temperature (Tbr) was 34-35°C, with an adverse effect when Tbr≥38°C. Survivors clustered at [Formula: see text] Hg vs. non-survivors [Formula: see text] 18 mm Hg. There were two mortality clusters for ICP: High ICP/low PbtO2 and low ICP/low PbtO2. Survivors maintained PbtO2 at all ranges of mean arterial pressure in contrast to non-survivors. The final SR equation for cerebral oxygenation is: [Formula: see text]. The SR-model of acute TBI advances new physiological thresholds or boundary conditions for acute TBI management: PbtO2≥25 mmHg; ICP≤22 mmHg; CPP≈60-75
Automatic Generation of Symbolic Model for Parameterized Synchronous Systems
Institute of Scientific and Technical Information of China (English)
Wei-Wen Xu
2004-01-01
With the purpose of making the verification of parameterized system more general and easier, in this paper, a new and intuitive language PSL (Parameterized-system Specification Language) is proposed to specify a class of parameterized synchronous systems. From a PSL script, an automatic method is proposed to generate a constraint-based symbolic model. The model can concisely symbolically represent the collections of global states by counting the number of processes in a given state. Moreover, a theorem has been proved that there is a simulation relation between the original system and its symbolic model. Since the abstract and symbolic techniques are exploited in the symbolic model, state-explosion problem in traditional verification methods is efficiently avoided. Based on the proposed symbolic model, a reachability analysis procedure is implemented using ANSI C++ on UNIX platform. Thus, a complete tool for verifying the parameterized synchronous systems is obtained and tested for some cases. The experimental results show that the method is satisfactory.
Quantification of fetal heart rate regularity using symbolic dynamics
van Leeuwen, P.; Cysarz, D.; Lange, S.; Geue, D.; Groenemeyer, D.
2007-03-01
Fetal heart rate complexity was examined on the basis of RR interval time series obtained in the second and third trimester of pregnancy. In each fetal RR interval time series, short term beat-to-beat heart rate changes were coded in 8bit binary sequences. Redundancies of the 28 different binary patterns were reduced by two different procedures. The complexity of these sequences was quantified using the approximate entropy (ApEn), resulting in discrete ApEn values which were used for classifying the sequences into 17 pattern sets. Also, the sequences were grouped into 20 pattern classes with respect to identity after rotation or inversion of the binary value. There was a specific, nonuniform distribution of the sequences in the pattern sets and this differed from the distribution found in surrogate data. In the course of gestation, the number of sequences increased in seven pattern sets, decreased in four and remained unchanged in six. Sequences that occurred less often over time, both regular and irregular, were characterized by patterns reflecting frequent beat-to-beat reversals in heart rate. They were also predominant in the surrogate data, suggesting that these patterns are associated with stochastic heart beat trains. Sequences that occurred more frequently over time were relatively rare in the surrogate data. Some of these sequences had a high degree of regularity and corresponded to prolonged heart rate accelerations or decelerations which may be associated with directed fetal activity or movement or baroreflex activity. Application of the pattern classes revealed that those sequences with a high degree of irregularity correspond to heart rate patterns resulting from complex physiological activity such as fetal breathing movements. The results suggest that the development of the autonomic nervous system and the emergence of fetal behavioral states lead to increases in not only irregular but also regular heart rate patterns. Using symbolic dynamics to
An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication
Directory of Open Access Journals (Sweden)
Tran MinhHai
2016-01-01
Full Text Available We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1 estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2 symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically.
An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication
MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa
2016-01-01
We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically. PMID:27057558
An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication.
MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa
2016-01-01
We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically.
Chaos synchronization basing on symbolic dynamics with nongenerating partition.
Wang, Xingyuan; Wang, Mogei; Liu, Zhenzhen
2009-06-01
Using symbolic dynamics and information theory, we study the information transmission needed for synchronizing unidirectionally coupled oscillators. It is found that when sustaining chaos synchronization with nongenerating partition, the synchronization error will be larger than a critical value, although the required coupled channel capacity can be smaller than the case of using a generating partition. Then we show that no matter whether a generating or nongenerating partition is in use, a high-quality detector can guarantee the lead of the response oscillator, while the lag responding can make up the low precision of the detector. A practicable synchronization scheme basing on a nongenerating partition is also proposed in this paper.
Operator symbols in the description of observable-state systems
International Nuclear Information System (INIS)
Lassner, G.A.
1978-01-01
For the observable-state system of finite degree of freedom N topological properties of the kernels and symbols belonging to the considered operators are investigated. For the operators of the observable algebra of rho + (delta) kernels and symbols are distributions and for density matrices p they are smooth functions
Symbolic dynamics and synchronization of coupled map networks with multiple delays
International Nuclear Information System (INIS)
Atay, Fatihcan M.; Jalan, Sarika; Jost, Juergen
2010-01-01
We use symbolic dynamics to study discrete-time dynamical systems with multiple time delays. We exploit the concept of avoiding sets, which arise from specific non-generating partitions of the phase space and restrict the occurrence of certain symbol sequences related to the characteristics of the dynamics. In particular, we show that the resulting forbidden sequences are closely related to the time delays in the system. We present two applications to coupled map lattices, namely (1) detecting synchronization and (2) determining unknown values of the transmission delays in networks with possibly directed and weighted connections and measurement noise. The method is applicable to multi-dimensional as well as set-valued maps, and to networks with time-varying delays and connection structure.
Directory of Open Access Journals (Sweden)
Attila Krajcsi
2018-02-01
Full Text Available HIGHLIGHTSWe test whether symbolic number comparison is handled by an analog noisy system.Analog system model has systematic biases in describing symbolic number comparison.This suggests that symbolic and non-symbolic numbers are processed by different systems.Dominant numerical cognition models suppose that both symbolic and non-symbolic numbers are processed by the Analog Number System (ANS working according to Weber's law. It was proposed that in a number comparison task the numerical distance and size effects reflect a ratio-based performance which is the sign of the ANS activation. However, increasing number of findings and alternative models propose that symbolic and non-symbolic numbers might be processed by different representations. Importantly, alternative explanations may offer similar predictions to the ANS prediction, therefore, former evidence usually utilizing only the goodness of fit of the ANS prediction is not sufficient to support the ANS account. To test the ANS model more rigorously, a more extensive test is offered here. Several properties of the ANS predictions for the error rates, reaction times, and diffusion model drift rates were systematically analyzed in both non-symbolic dot comparison and symbolic Indo-Arabic comparison tasks. It was consistently found that while the ANS model's prediction is relatively good for the non-symbolic dot comparison, its prediction is poorer and systematically biased for the symbolic Indo-Arabic comparison. We conclude that only non-symbolic comparison is supported by the ANS, and symbolic number comparisons are processed by other representation.
Carrier and symbol synchronization system performance study
Lindsey, W. C.
1976-01-01
Results pertinent to predicting the performance of convolutionally encoded binary phase-shift keyed communication links were presented. The details of the development are provided in four sections. These sections are concerned with developing the bit error probability performance degradations due to PN despreading by a time-shared delay locked loop, the Costas demodulation process, symbol synchronization effects and cycle slipping phenomena in the Costas loop. In addition, Costas cycle slipping probabilities are studied as functions of Doppler count time and signal-to-noise conditions. The effect of cycle slipping in the symbol synchronizer is also studied as a function of channel Doppler and other frequency uncertainties.
Multiformity of inherent randomicity and visitation density in n symbolic dynamics
International Nuclear Information System (INIS)
Zhang Yagang; Wang Changjiang
2007-01-01
The multiformity of inherent randomicity and visitation density in n symbolic dynamics will be clarified in this paper. These stochastic symbolic sequences bear three features. The distribution of frequency, inter-occurrence times and the alignment of two random sequences are amplified in detail. The features of visitation density in surjective maps presents catholicity and the catholicity in n letters randomicity has the same measure foundation. We hope to offer a symbolic platform that satisfies these stochastic properties and to attempt to study certain properties of DNA base sequences, 20 amino acids symbolic sequences of proteid structure, and the time series that can be symbolic in finance market et al
Advanced symbolic analysis for VLSI systems methods and applications
Shi, Guoyong; Tlelo Cuautle, Esteban
2014-01-01
This book provides comprehensive coverage of the recent advances in symbolic analysis techniques for design automation of nanometer VLSI systems. The presentation is organized in parts of fundamentals, basic implementation methods and applications for VLSI design. Topics emphasized include statistical timing and crosstalk analysis, statistical and parallel analysis, performance bound analysis and behavioral modeling for analog integrated circuits . Among the recent advances, the Binary Decision Diagram (BDD) based approaches are studied in depth. The BDD-based hierarchical symbolic analysis approaches, have essentially broken the analog circuit size barrier. In particular, this book • Provides an overview of classical symbolic analysis methods and a comprehensive presentation on the modern BDD-based symbolic analysis techniques; • Describes detailed implementation strategies for BDD-based algorithms, including the principles of zero-suppression, variable ordering and canonical reduction; • Int...
International Nuclear Information System (INIS)
Sun Li-Sha; Kang Xiao-Yun; Zhang Qiong; Lin Lan-Xin
2011-01-01
Based on symbolic dynamics, a novel computationally efficient algorithm is proposed to estimate the unknown initial vectors of globally coupled map lattices (CMLs). It is proved that not all inverse chaotic mapping functions are satisfied for contraction mapping. It is found that the values in phase space do not always converge on their initial values with respect to sufficient backward iteration of the symbolic vectors in terms of global convergence or divergence (CD). Both CD property and the coupling strength are directly related to the mapping function of the existing CML. Furthermore, the CD properties of Logistic, Bernoulli, and Tent chaotic mapping functions are investigated and compared. Various simulation results and the performances of the initial vector estimation with different signal-to-noise ratios (SNRs) are also provided to confirm the proposed algorithm. Finally, based on the spatiotemporal chaotic characteristics of the CML, the conditions of estimating the initial vectors using symbolic dynamics are discussed. The presented method provides both theoretical and experimental results for better understanding and characterizing the behaviours of spatiotemporal chaotic systems. (general)
Sun, Li-Sha; Kang, Xiao-Yun; Zhang, Qiong; Lin, Lan-Xin
2011-12-01
Based on symbolic dynamics, a novel computationally efficient algorithm is proposed to estimate the unknown initial vectors of globally coupled map lattices (CMLs). It is proved that not all inverse chaotic mapping functions are satisfied for contraction mapping. It is found that the values in phase space do not always converge on their initial values with respect to sufficient backward iteration of the symbolic vectors in terms of global convergence or divergence (CD). Both CD property and the coupling strength are directly related to the mapping function of the existing CML. Furthermore, the CD properties of Logistic, Bernoulli, and Tent chaotic mapping functions are investigated and compared. Various simulation results and the performances of the initial vector estimation with different signal-to-noise ratios (SNRs) are also provided to confirm the proposed algorithm. Finally, based on the spatiotemporal chaotic characteristics of the CML, the conditions of estimating the initial vectors using symbolic dynamics are discussed. The presented method provides both theoretical and experimental results for better understanding and characterizing the behaviours of spatiotemporal chaotic systems.
A Dynamic Perspective on Symbolic Co-branding
DEFF Research Database (Denmark)
von Wallpach, Sylvia; Backhausen, Mia
2016-01-01
brand’s meaning—a challenge that is accentuated when multiple brands form alliances. Focusing on symbolic co-branding, this paper aims to understand how involved brands’ meaning arises from discursive interactions in stakeholder networks (including brand management). A netnographic study in the context...... of lifestyle and fashion blogs provides in-depth insights into the evolvement of two symbolic co-branding processes. The results highlight various stakeholders’ role in and discursive strategies of creating and transferring meaning between involved brands and add unprecedented insights into symbolic co-branding...
Reilly, Jamie; Peelle, Jonathan E; Garcia, Amanda; Crutch, Sebastian J
2016-08-01
Biological plausibility is an essential constraint for any viable model of semantic memory. Yet, we have only the most rudimentary understanding of how the human brain conducts abstract symbolic transformations that underlie word and object meaning. Neuroscience has evolved a sophisticated arsenal of techniques for elucidating the architecture of conceptual representation. Nevertheless, theoretical convergence remains elusive. Here we describe several contrastive approaches to the organization of semantic knowledge, and in turn we offer our own perspective on two recurring questions in semantic memory research: (1) to what extent are conceptual representations mediated by sensorimotor knowledge (i.e., to what degree is semantic memory embodied)? (2) How might an embodied semantic system represent abstract concepts such as modularity, symbol, or proposition? To address these questions, we review the merits of sensorimotor (i.e., embodied) and amodal (i.e., disembodied) semantic theories and address the neurobiological constraints underlying each. We conclude that the shortcomings of both perspectives in their extreme forms necessitate a hybrid middle ground. We accordingly propose the Dynamic Multilevel Reactivation Framework-an integrative model predicated upon flexible interplay between sensorimotor and amodal symbolic representations mediated by multiple cortical hubs. We discuss applications of the dynamic multilevel reactivation framework to abstract and concrete concept representation and describe how a multidimensional conceptual topography based on emotion, sensation, and magnitude can successfully frame a semantic space containing meanings for both abstract and concrete words. The consideration of 'abstract conceptual features' does not diminish the role of logical and/or executive processing in activating, manipulating and using information stored in conceptual representations. Rather, it proposes that the materials upon which these processes operate
Reulecke, S; Schulz, S; Bauer, R; Witte, H; Voss, A
2011-01-01
Newborn mammals suffering from moderate hypoxia during or after birth are able to compensate a transitory lack of oxygen by adaptation of their vital functions. However, limited information is available about bivariate couplings of the underlying complex processes controlled by the autonomic nervous system. In this study an animal model of seven newborn piglets (2-3 days old, 1.71 ± 0.15 kg) was used. The aim of this study was to analyze the cardiovascular and cardiorespiratory interactions of autonomous nervous system during sustained hypoxia and the interrelationship of these autonomic time series after induced reoxygenation. For this purpose we applied a new high resolution version of the nonlinear method of Joint Symbolic Dynamics (JSD) for analysis of couplings between heart rate and blood pressure and respiration rate time series, respectively. This new method is characterized by using three defined symbols (JSD3) instead of two and the application of thresholds for the symbol transformation. Our results demonstrate that in contrast to the traditional JSD the comparison of cardiovascular interactions reveals only significant differences between normoxic and hypoxic conditions using JSD3 whereas for cardiorespiratory interactions significant differences were revealed by indices from both JSD2 and JSD3 due to reoxygenation. These results suggest that the application of JSD3 reveals more detailed information about cardiovascular and cardiorespiratory interactions of autonomic regulation and might be useful for monitoring of critical human newborns.
On Modeling Affect in Audio with Non-Linear Symbolic Dynamics
Directory of Open Access Journals (Sweden)
Pauline Mouawad
2017-09-01
Full Text Available The discovery of semantic information from complex signals is a task concerned with connecting humans’ perceptions and/or intentions with the signals content. In the case of audio signals, complex perceptions are appraised in a listener’s mind, that trigger affective responses that may be relevant for well-being and survival. In this paper we are interested in the broader question of relations between uncertainty in data as measured using various information criteria and emotions, and we propose a novel method that combines nonlinear dynamics analysis with a method of adaptive time series symbolization that finds the meaningful audio structure in terms of symbolized recurrence properties. In a first phase we obtain symbolic recurrence quantification measures from symbolic recurrence plots, without the need to reconstruct the phase space with embedding. Then we estimate symbolic dynamical invariants from symbolized time series, after embedding. The invariants are: correlation dimension, correlation entropy and Lyapunov exponent. Through their application for the logistic map, we show that our measures are in agreement with known methods from literature. We further show that one symbolic recurrence measure, namely the symbolic Shannon entropy, correlates positively with the positive Lyapunov exponents. Finally we evaluate the performance of our measures in emotion recognition through the implementation of classification tasks for different types of audio signals, and show that in some cases, they perform better than state-of-the-art methods that rely on low-level acoustic features.
Anomaly Detection in Gas Turbine Fuel Systems Using a Sequential Symbolic Method
Directory of Open Access Journals (Sweden)
Fei Li
2017-05-01
Full Text Available Anomaly detection plays a significant role in helping gas turbines run reliably and economically. Considering the collective anomalous data and both sensitivity and robustness of the anomaly detection model, a sequential symbolic anomaly detection method is proposed and applied to the gas turbine fuel system. A structural Finite State Machine is used to evaluate posterior probabilities of observing symbolic sequences and the most probable state sequences they may locate. Hence an estimation-based model and a decoding-based model are used to identify anomalies in two different ways. Experimental results indicate that both models have both ideal performance overall, but the estimation-based model has a strong robustness ability, whereas the decoding-based model has a strong accuracy ability, particularly in a certain range of sequence lengths. Therefore, the proposed method can facilitate well existing symbolic dynamic analysis- based anomaly detection methods, especially in the gas turbine domain.
Two systems of non-symbolic numerical cognition
Directory of Open Access Journals (Sweden)
Daniel C. Hyde
2011-11-01
Full Text Available Studies of human adults, infants, and non-human animals demonstrate that non-symbolic numerical cognition is supported by at least two distinct cognitive systems: a ‘parallel individuation system’ that encodes the numerical identity of individual items and an ‘approximate number system’ that encodes the approximate numerical magnitude, or numerosity, of a set. The exact nature of these systems, however, have been debated for over a hundred years. Some argue that the non-symbolic representation of small numbers (< 4 is carried out solely by the parallel individuation system and the non-symbolic representation of large numbers (> 4 is carried out solely by the approximate number system. Others argue that all numbers are represented by the approximate number system. This debate has been fueled largely by some studies showing dissociations in processing and other studies showing similar processing of small and large numbers. Recent work has addressed this debate by showing that the two systems are present and distinct from early infancy, persist despite the acquisition of a symbolic number system, activate distinct cortical networks, and engage differentially based attentional constraints. Based on the recent discoveries, I provide a hypothesis that may explain the puzzling findings and makes testable predictions as to when each system will be engaged. In particular, when items are presented under conditions that allow selection of individuals, they will be represented as distinct mental items through parallel individuation and not as a numerical magnitude. In contrast, when items are presented outside attentional limits (e.g. too many, too close together, under high attentional load, they will be represented as a single mental numerical magnitude and not as distinct mental items. These predictions provide a basis on which researchers can further investigate the role of each system in the development of uniquely human numerical thought.
Directory of Open Access Journals (Sweden)
Jiaduo Zhao
2016-01-01
Full Text Available In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector’s false alarms.
Zhao, Jiaduo; Gong, Weiguo; Tang, Yuzhen; Li, Weihong
2016-01-20
In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR) signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD)-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector's false alarms.
Chaos and crises in a model for cooperative hunting: a symbolic dynamics approach.
Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyés, Josep
2009-12-01
In this work we investigate the population dynamics of cooperative hunting extending the McCann and Yodzis model for a three-species food chain system with a predator, a prey, and a resource species. The new model considers that a given fraction sigma of predators cooperates in prey's hunting, while the rest of the population 1-sigma hunts without cooperation. We use the theory of symbolic dynamics to study the topological entropy and the parameter space ordering of the kneading sequences associated with one-dimensional maps that reproduce significant aspects of the dynamics of the species under several degrees of cooperative hunting. Our model also allows us to investigate the so-called deterministic extinction via chaotic crisis and transient chaos in the framework of cooperative hunting. The symbolic sequences allow us to identify a critical boundary in the parameter spaces (K,C(0)) and (K,sigma) which separates two scenarios: (i) all-species coexistence and (ii) predator's extinction via chaotic crisis. We show that the crisis value of the carrying capacity K(c) decreases at increasing sigma, indicating that predator's populations with high degree of cooperative hunting are more sensitive to the chaotic crises. We also show that the control method of Dhamala and Lai [Phys. Rev. E 59, 1646 (1999)] can sustain the chaotic behavior after the crisis for systems with cooperative hunting. We finally analyze and quantify the inner structure of the target regions obtained with this control method for wider parameter values beyond the crisis, showing a power law dependence of the extinction transients on such critical parameters.
Joint symbolic dynamics for the assessment of cardiovascular and cardiorespiratory interactions.
Baumert, Mathias; Javorka, Michal; Kabir, Muammar
2015-02-13
Beat-to-beat variations in heart period provide information on cardiovascular control and are closely linked to variations in arterial pressure and respiration. Joint symbolic analysis of heart period, systolic arterial pressure and respiration allows for a simple description of their shared short-term dynamics that are governed by cardiac baroreflex control and cardiorespiratory coupling. In this review, we discuss methodology and research applications. Studies suggest that analysis of joint symbolic dynamics provides a powerful tool for identifying physiological and pathophysiological changes in cardiovascular and cardiorespiratory control.
Computational complexity of symbolic dynamics at the onset of chaos
Lakdawala, Porus
1996-05-01
In a variety of studies of dynamical systems, the edge of order and chaos has been singled out as a region of complexity. It was suggested by Wolfram, on the basis of qualitative behavior of cellular automata, that the computational basis for modeling this region is the universal Turing machine. In this paper, following a suggestion of Crutchfield, we try to show that the Turing machine model may often be too powerful as a computational model to describe the boundary of order and chaos. In particular we study the region of the first accumulation of period doubling in unimodal and bimodal maps of the interval, from the point of view of language theory. We show that in relation to the ``extended'' Chomsky hierarchy, the relevant computational model in the unimodal case is the nested stack automaton or the related indexed languages, while the bimodal case is modeled by the linear bounded automaton or the related context-sensitive languages.
International Nuclear Information System (INIS)
Kim, Do Hun; Mun, Tae Hun; Kim, Dong Hwan
1999-02-01
This book introduces systems thinking and conceptual tool and modeling tool of dynamics system such as tragedy of single thinking, accessible way of system dynamics, feedback structure and causal loop diagram analysis, basic of system dynamics modeling, causal loop diagram and system dynamics modeling, information delay modeling, discovery and application for policy, modeling of crisis of agricultural and stock breeding products, dynamic model and lesson in ecosystem, development and decadence of cites and innovation of education forward system thinking.
Symbolic simulation of engineering systems on a supercomputer
International Nuclear Information System (INIS)
Ragheb, M.; Gvillo, D.; Makowitz, H.
1986-01-01
Model-Based Production-Rule systems for analysis are developed for the symbolic simulation of Complex Engineering systems on a CRAY X-MP Supercomputer. The Fault-Tree and Event-Tree Analysis methodologies from Systems-Analysis are used for problem representation and are coupled to the Rule-Based System Paradigm from Knowledge Engineering to provide modelling of engineering devices. Modelling is based on knowledge of the structure and function of the device rather than on human expertise alone. To implement the methodology, we developed a production-Rule Analysis System that uses both backward-chaining and forward-chaining: HAL-1986. The inference engine uses an Induction-Deduction-Oriented antecedent-consequent logic and is programmed in Portable Standard Lisp (PSL). The inference engine is general and can accommodate general modifications and additions to the knowledge base. The methodologies used will be demonstrated using a model for the identification of faults, and subsequent recovery from abnormal situations in Nuclear Reactor Safety Analysis. The use of the exposed methodologies for the prognostication of future device responses under operational and accident conditions using coupled symbolic and procedural programming is discussed
International Nuclear Information System (INIS)
Schulz, Steffen; Tupaika, Nadine; Voss, Andreas; Berger, Sandy; Bär, Karl-Jürgen; Haueisen, Jens
2013-01-01
Besides the well-known cardiac risk factors for schizophrenia, increasing concerns have been raised regarding the cardiac side-effects of antipsychotic medications. A bivariate analysis of autonomic regulation, based on cardiovascular coupling, can provide additional information about heart rate (HR) and blood pressure regulatory patterns within the complex interactions of the cardiovascular system. We introduce a new high-resolution coupling analysis method (HRJSD) based on joint symbolic dynamics (JSD), which is characterized by three symbols, a threshold (individual dynamic variability, physiological) for time series transformation and eight coupling pattern families. This is based on a redundancy reduction strategy used to quantify and characterize cardiovascular couplings. In this study, short-term (30 min) HR and systolic blood pressure (SP) time series of 42 unmedicated (UNMED) and 42 medicated patients (MED) suffering from acute schizophrenia were analysed to establish the suitability of the new method for quantifying the effects of antipsychotics on cardiovascular couplings. We were able to demonstrate that HRJSD, applying the threshold based on spontaneous baroreflex sensitivity (BRS) estimation, revealed eight significant pattern families that were able to quantify the anti-cholinergic effects of antipsychotics and the related changes of cardiovascular regulation (coupling) in MED in comparison to UNMED. This was in contrast to the simple JSD, BRS (sequence method) and only partly to standard linear HR variability indices. HRJSD provides strong evidence that autonomic regulation in MED seems to be, to some extent, predominated by invariable HR responses in combination with alternating SP values in contrast to UNMED, indicating an impairment of the baroreflex control feedback loop in MED. Surrogate data analysis was applied to test for the significance and nonlinearity of cardiovascular couplings in the original data due to medical treatment with
A symbolic dynamics approach for the complexity analysis of chaotic pseudo-random sequences
International Nuclear Information System (INIS)
Xiao Fanghong
2004-01-01
By considering a chaotic pseudo-random sequence as a symbolic sequence, authors present a symbolic dynamics approach for the complexity analysis of chaotic pseudo-random sequences. The method is applied to the cases of Logistic map and one-way coupled map lattice to demonstrate how it works, and a comparison is made between it and the approximate entropy method. The results show that this method is applicable to distinguish the complexities of different chaotic pseudo-random sequences, and it is superior to the approximate entropy method
Kelley, Troy D.; Avery, Eric
2010-04-01
This paper will detail the progress on the development of the Symbolic and Subsymbolic Robotics Intelligence Control System (SS-RICS). The system is a goal oriented production system, based loosely on the cognitive architecture, the Adaptive Control of Thought-Rational (ACT-R) some additions and changes. We have found that in order to simulate complex cognition on a robot, many aspects of cognition (long term memory (LTM), perception) needed to be in place before any generalized intelligent behavior can be produced. In working with ACT-R, we found that it was a good instantiation of working memory, but that we needed to add other aspects of cognition including LTM and perception to have a complete cognitive system. Our progress to date will be noted and the challenges that remain will be addressed.
Linearly interpolated sub-symbol optical phase noise suppression in CO-OFDM system.
Hong, Xuezhi; Hong, Xiaojian; He, Sailing
2015-02-23
An optical phase noise suppression algorithm, LI-SCPEC, based on phase linear interpolation and sub-symbol processing is proposed for CO-OFDM system. By increasing the temporal resolution of carrier phase tracking through dividing one symbol into several sub-blocks, i.e., sub-symbols, inter-carrier-interference (ICI) mitigation is achieved in the proposed algorithm. Linear interpolation is employed to obtain a reliable temporal reference for sub-symbol phase estimation. The new algorithm, with only a few number of sub-symbols (N(B) = 4), can provide a considerably larger laser linewidth tolerance than several other ICI mitigation algorithms as demonstrated by Monte-Carlo simulations. Numerical analysis verifies that the best performance is achieved with an optimal and moderate number of sub-symbols. Complexity analysis shows that the required number of complex-valued multiplications is independent of the number of sub-symbols used in the proposed algorithm.
Contextual System of Symbol Structural Recognition based on an Object-Process Methodology
Delalandre, Mathieu
2005-01-01
We present in this paper a symbol recognition system for the graphic documents. This one is based on a contextual approach for symbol structural recognition exploiting an Object-Process Methodology. It uses a processing library composed of structural recognition processings and contextual evaluation processings. These processings allow our system to deal with the multi-representation of symbols. The different processings are controlled, in an automatic way, by an inference engine during the r...
International Nuclear Information System (INIS)
Nishioka, Toshihisa; Takemoto, Yutaka
1988-01-01
Recently, the authors have shown that the combined method of the path-independent J' integral (dynamic J integral) and a moving isoparametric element procedure is an effective tool for the calculation of dynamic stress intensity factors. In the moving element procedure, the nodal pattern of the elements near a crack tip moves according to the motion of the crack-tip. An iterative numerical technique was used in the previous procedure to find the natural coordinates (ξ, η) at the newly created nodes. This technique requires additional computing time because of the nature of iteration. In the present paper, algebraic expressions for the transformation of the global coordinates (x, y) to the natural coordinates (ξ, η) were obtained by using a computerized symbolic manipulation system (REDUCE 3.2). These algebraic expressions are also very useful for remeshing or zooming techniques often used in finite element analysis. The present moving finite element method demonstrates its effectiveness for the simulation of a fast fracture. (author)
Symbol Stream Combining in a Convolutionally Coded System
Mceliece, R. J.; Pollara, F.; Swanson, L.
1985-01-01
Symbol stream combining has been proposed as a method for arraying signals received at different antennas. If convolutional coding and Viterbi decoding are used, it is shown that a Viterbi decoder based on the proposed weighted sum of symbol streams yields maximum likelihood decisions.
Perception and multimeaning analysis of graphic symbols for Thai picture-based communication system.
Chompoobutr, Sarinya; Potibal, Puttachart; Boriboon, Monthika; Phantachat, Wantanee
2013-03-01
Graphic symbols are a vital part of most augmentative and alternative communication systems. Communication fluency of graphic symbol user depends on how well the relationship between symbols and its referents are learnt. The first aim of this study is to survey the perception of the selected graphic symbols across seven age groups of participants with different educational background. Sixty-five individuals identified themselves as Thai and ranged in age from 10 to 50 years participated in the investigation used 64 graphic symbols. The last aim of this study is to demonstrate the analysis of multimeaning graphic symbols, which will be used in Thai Picture-based communication system. The twenty graphic symbols with 9-14 meanings are analyzed in both syntactic and semantic aspects. The meanings are divided into five categories: noun, verb/adjective, size, color and shape. Respect to the first aim, the results suggest that the participants under investigation with different sexes, age groups, as well as various educational levels perceive the features or inherent characteristics of such graphic symbols similarly. The results of the analysis of multimeaning of graphic symbols indicate that the foundation of Minspeak, polysemy and redundancy of the words illustrates the inherit meanings of the real-life objects, and it also conveys that the Thai graphic symbols are influenced by numerous factors in Thai circumstance such as ability, motivation, experience, worldview and culture.
2018-04-01
ARL-TR-8352 ● APR 2018 US Army Research Laboratory Engineering Evaluation and Assessment (EE&A) Report for the Symbolic and Sub...APR 2018 US Army Research Laboratory Engineering Evaluation and Assessment (EE&A) Report for the Symbolic and Sub-symbolic Robotics...Intelligence Control System (SS-RICS) by Troy Dale Kelley and Eric Avery Human Research and Engineering Directorate, ARL Sean McGhee STG Inc
Complexity in Dynamical Systems
Moore, Cristopher David
The study of chaos has shown us that deterministic systems can have a kind of unpredictability, based on a limited knowledge of their initial conditions; after a finite time, the motion appears essentially random. This observation has inspired a general interest in the subject of unpredictability, and more generally, complexity; how can we characterize how "complex" a dynamical system is?. In this thesis, we attempt to answer this question with a paradigm of complexity that comes from computer science, we extract sets of symbol sequences, or languages, from a dynamical system using standard methods of symbolic dynamics; we then ask what kinds of grammars or automata are needed a generate these languages. This places them in the Chomsky heirarchy, which in turn tells us something about how subtle and complex the dynamical system's behavior is. This gives us insight into the question of unpredictability, since these automata can also be thought of as computers attempting to predict the system. In the culmination of the thesis, we find a class of smooth, two-dimensional maps which are equivalent to the highest class in the Chomsky heirarchy, the turning machine; they are capable of universal computation. Therefore, these systems possess a kind of unpredictability qualitatively different from the usual "chaos": even if the initial conditions are known exactly, questions about the system's long-term dynamics are undecidable. No algorithm exists to answer them. Although this kind of unpredictability has been discussed in the context of distributed, many-degree-of -freedom systems (for instance, cellular automata) we believe this is the first example of such phenomena in a smooth, finite-degree-of-freedom system.
Data-driven modelling of LTI systems using symbolic regression
Khandelwal, D.; Toth, R.; Van den Hof, P.M.J.
2017-01-01
The aim of this project is to automate the task of data-driven identification of dynamical systems. The underlying goal is to develop an identification tool that models a physical system without distinguishing between classes of systems such as linear, nonlinear or possibly even hybrid systems. Such
Voss, Andreas; Schroeder, Rico; Caminal Magrans, Pere; Vallverdú Ferrer, Montserrat; Brunel, Helena; Cygankiewicz, I.; Vázquez, Rafael; Bayes de Luna, Antonio
2010-01-01
Chronic heart failure (CHF) is recognized as major and escalating public health problem. Approximately 69% of CHF patients suffer from cardiac death within 5 years after the initial diagnosis. Until now, no generally accepted ECG risk predictors in CHF patients are available. The objective of this study was to investigate the suitability of the new developed non-linear method segmented symbolic dynamics (SSD) for risk stratification in patients with ischemic cardiomyop...
Joint symbolic dynamic analysis of cardiorespiratory interactions in patients on weaning trials.
Caminal, P; Giraldo, B; Zabaleta, H; Vallverdu, M; Benito, S; Ballesteros, D; Lopez-Rodriguez, L; Esteban, A; Baumert, M; Voss, A
2005-01-01
Assessing autonomic control provides information about patho-physiological imbalances. Measures of variability of the cardiac interbeat duration RR(n) and the variability of the breath duration TTot(n) are sensitive to those changes. The interactions between RR(n) and TTot(n) are complex and strongly non-linear. A study of joint symbolic dynamics is presented as a new short-term non-linear analysis method to investigate these interactions in patients on weaning trials. 78 patients from mechanical ventilation are studied: Group A (patients that failed to maintain spontaneous breathing and were reconnected) and Group B (patients with successful trials). Using the concept of joint symbolic dynamics, cardiac and respiratory changes were transformed into a word series, and the probability of occurrence of each word type was calculated and compared between both groups. Significant differences were found in 13 words, and the most significant pn(Wc010, r010): 0.0041 ± 0.0036 (group A) against 0.0012 ± 0.0024 (group B), p-value = 0.00001. The number of seldom occurring word types (forbidden words) also presents significant differences fwcr: 6.9 ± 6.6 against 13.5 ± 5.3, p-value = 0.00004. Joint symbolic dynamics provides an efficient non-linear representation of cardiorespiratory interactions that offers simple physiological interpretations.
Standardization of a Graphic Symbol System as an Alternative Communication Tool for Turkish
Karal, Yasemin; Karal, Hasan; Silbir, Lokman; Altun, Taner
2016-01-01
Graphic symbols are commonly used across countries in order to support individuals with communicative deficiency. The literature review revealed the absence of such a system for Turkish socio-cultural context. In this study, the aim was to develop a symbol system appropriate for the Turkish socio-cultural context. The process began with studies…
Myths, symbols and legends of solar system bodies
Alexander, Rachel
2015-01-01
This book is an amateur astronomer’s guide to the mythology and symbolism associated with the celestial bodies in the Solar System, and even includes some of the legendary tales of people who had or have a connection with these objects. It explores different cultures (for example, the Greco-Roman and the Norse) and different times and how stories were used to explain the worlds they saw above them. You’d be amazed how much of our world today reflects the myths and stories of these cultures! Most amateur astronomers are familiar with the various Solar System objects, but they will be only peripherally aware of what ancient cultures thought of these other worlds. In fact, the mythology of the planets challenges many twenty-first century concepts and beliefs There are other books available on astromythology, but this one focuses mostly on our own Solar System, as opposed to the constellations and deep sky objects. Alexander offers a new angle on timeless subjects and is exciting, informative and dramatic...
Low complexity symbol-wise beamforming for MIMO-OFDM systems
Lee, Hyun Ho
2011-12-01
In this paper, we consider a low complexity symbol-wise beamforming for MIMO-OFDM systems. We propose a non-iterative algorithm for the symbol-wise beamforming, which can provide the performance approaching that of the conventional symbol-wise beamforming based on the iterative algorithm. We demonstrate that our proposed scheme can reduce the computational complexity significantly. From our simulation results, it is evident that our proposed scheme leads to a negligible performance loss compared to the conventional symbol-wise beamforming regardless of spatial correlation or presence of co-channel interference. © 2011 IEEE.
On-line condition monitoring of nuclear systems via symbolic time series analysis
International Nuclear Information System (INIS)
Rajagopalan, V.; Ray, A.; Garcia, H. E.
2006-01-01
This paper provides a symbolic time series analysis approach to fault diagnostics and condition monitoring. The proposed technique is built upon concepts from wavelet theory, symbolic dynamics and pattern recognition. Various aspects of the methodology such as wavelet selection, choice of alphabet and determination of depth of D-Markov Machine are explained in the paper. The technique is validated with experiments performed in a Machine Condition Monitoring (MCM) test bed at the Idaho National Laboratory. (authors)
Preamble and pilot symbol design for channel estimation in OFDM systems with null subcarriers
Directory of Open Access Journals (Sweden)
Ohno Shuichi
2011-01-01
Full Text Available Abstract In this article, design of preamble for channel estimation and pilot symbols for pilot-assisted channel estimation in orthogonal frequency division multiplexing system with null subcarriers is studied. Both the preambles and pilot symbols are designed to minimize the l 2 or the l ∞ norm of the channel estimate mean-squared errors (MSE in frequency-selective environments. We use convex optimization technique to find optimal power distribution to the preamble by casting the MSE minimization problem into a semidefinite programming problem. Then, using the designed optimal preamble as an initial value, we iteratively select the placement and optimally distribute power to the selected pilot symbols. Design examples consistent with IEEE 802.11a as well as IEEE 802.16e are provided to illustrate the superior performance of our proposed method over the equi-spaced equi-powered pilot symbols and the partially equi-spaced pilot symbols.
International Nuclear Information System (INIS)
Chakraborty, Subhadeep; Keller, Eric; Talley, Justin; Srivastav, Abhishek; Ray, Asok; Kim, Seungjin
2009-01-01
This communication introduces a non-intrusive method for void fraction measurement and identification of two-phase flow regimes, based on ultrasonic sensing. The underlying algorithm is built upon the recently reported theory of a statistical pattern recognition method called symbolic dynamic filtering (SDF). The results of experimental validation, generated on a laboratory test apparatus, show a one-to-one correspondence between the flow measure derived from SDF and the void fraction measured by a conductivity probe. A sharp change in the slope of flow measure is found to be in agreement with a transition from fully bubbly flow to cap-bubbly flow. (rapid communication)
The symbol coding language for the BUTs processor of in-core reactor control systems
International Nuclear Information System (INIS)
Vorob'ev, D.M.; Golovanov, M.N.; Levin, G.L.; Parfenova, T.K.; Filatov, V.P.
1978-01-01
A symbolic coding language is described; it has been developed for automation of making up programs for in-core control systems. The systems use the ideology of the CAMAC-VECTOR system and include the BUTs-20 processor. The symbolic coding language has been developed as a programming language of the ASSEMBLER type. Operators of instructions and pseudo-instructions, the rules of reading in the text of the source program, and operator record formats are considered
International Nuclear Information System (INIS)
Noppers, Ernst H.; Keizer, Kees; Milovanovic, Marko; Steg, Linda
2016-01-01
The conceptual model on motivations to adopt sustainable innovations (Noppers et al., 2014) proved to be successful in explaining proxies of the adoption of sustainable innovations: positive evaluations of the utility (instrumental attributes), environmental impact (environmental attributes), and specifically the extent to which the innovation says something about a person (symbolic attributes) increased interest in and intention to adopt sustainable innovations. In this paper, we examined to what extent the evaluations of these three attributes can also explain the actual adoption of smart energy systems that facilitate sustainable energy use. Results showed that adopters of smart energy systems (who agreed to participate in a project in which these systems were tested) evaluated the symbolic attributes of these systems more positively than non-adopters (who did not participate in this project), while both groups did not differ in their evaluation of the instrumental and environmental attributes of smart energy systems. A logistic regression analysis indicated that only evaluations of the symbolic attributes explained actual adoption of smart energy systems. Policy could stress and enhance the symbolic attributes of sustainable innovations to encourage adoption. - Highlights: • What drives consumer adoption of a sustainable innovation? • Evaluation of its symbolic attributes explained adoption of smart energy systems. • Evaluations of its instrumental and environmental attributes did not explain adoption. • Policy could stress and enhance symbolic attributes of smart energy systems.
International Nuclear Information System (INIS)
Azarnoosh, Mahdi; Motie Nasrabadi, Ali; Mohammadi, Mohammad Reza; Firoozabadi, Mohammad
2011-01-01
Highlights: Mental fatigue indices’ variation discussed during simple long-term attentive task. Symbolic dynamics of reaction time and EEG signal determine mental state variation. Nonlinear quantifiers such as entropy can display chaotic behaviors of the brain. Frontal and central lobes of the brain are effective in attention investigations. Mental fatigue causes a reduction in the complexity of the brain’s activity. Abstract: To investigate nonlinear analysis of attention physiological indices this study used a simple repetitive attentive task in four consecutive trials that resulted in mental fatigue. Traditional performance indices, such as reaction time, error responses, and EEG signals, were simultaneously recorded to evaluate differences between the trials. Performance indices analysis demonstrated that a selected task leads to mental fatigue. In addition, the study aimed to find a method to determine mental fatigue based on nonlinear analysis of EEG signals. Symbolic dynamics was selected as a qualitative method used to extract some quantitative qualifiers such as entropy. This method was executed on the reaction time of responses, and EEG signals to distinguish mental states. The results revealed that nonlinear analysis of reaction time, and EEG signals of the frontal and central lobes of the brain could differentiate between attention, and occurrence of mental fatigue in trials. In addition, the trend of entropy variation displayed a reduction in the complexity of mental activity as fatigue occurred.
Brain potentials predict learning, transmission and modification of an artificial symbolic system
DEFF Research Database (Denmark)
Lumaca, Massimo; Baggio, G.
2016-01-01
capacity account for aspects of ‘variation’ observed in symbolic behavior and symbolic systems. We addressed this issue in the domain of auditory processing.We conducted a combined behavioral and EEG study on 2 successive days. On day 1, participants listened to standard and deviant five-tone sequences...... introduces neurophysiological methods into research on cultural transmission and evolution, and relates aspects of variation in symbolic systems to individual differences in neural information processing.......It has recently been argued that symbolic systems evolve while they are being transmitted across generations of learners, gradually adapting to the relevant brain structures and processes. In the context of this hypothesis, little is known on whether individual differences in neural processing...
Symbolic and Sub-Symbolic Robotic Intelligence Control System (SS-RICS) Users Manual
2017-10-01
representations to drive intelligent systems, and the second focuses on a mathematical approach using distributed representations constructed with structures...3.1.1 Zip File • Extract the files from the zip file to a directory on your computer . • Open My Computer . • Browse to the directory where you...instructions. 3.1.2 CD • Open My Computer . • Browse to the CD-ROM drive on your computer . • Find the setup.exe file. Approved for public release
Kelley, Troy D.; McGhee, S.
2013-05-01
This paper describes the ongoing development of a robotic control architecture that inspired by computational cognitive architectures from the discipline of cognitive psychology. The Symbolic and Sub-Symbolic Robotics Intelligence Control System (SS-RICS) combines symbolic and sub-symbolic representations of knowledge into a unified control architecture. The new architecture leverages previous work in cognitive architectures, specifically the development of the Adaptive Character of Thought-Rational (ACT-R) and Soar. This paper details current work on learning from episodes or events. The use of episodic memory as a learning mechanism has, until recently, been largely ignored by computational cognitive architectures. This paper details work on metric level episodic memory streams and methods for translating episodes into abstract schemas. The presentation will include research on learning through novelty and self generated feedback mechanisms for autonomous systems.
Morecroft, John
System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.
Birkhoff, George D
1927-01-01
His research in dynamics constitutes the middle period of Birkhoff's scientific career, that of maturity and greatest power. -Yearbook of the American Philosophical Society The author's great book€¦is well known to all, and the diverse active modern developments in mathematics which have been inspired by this volume bear the most eloquent testimony to its quality and influence. -Zentralblatt MATH In 1927, G. D. Birkhoff wrote a remarkable treatise on the theory of dynamical systems that would inspire many later mathematicians to do great work. To a large extent, Birkhoff was writing about his o
The challenge of the abstract mind: symbols, signs and notational systems in European prehistory
Directory of Open Access Journals (Sweden)
Harald Haarmann
2005-12-01
Full Text Available Since the earliest manifestations of symbolic activity in modern humans (Homo sapiens sapiens in the Upper Palaeolithic, there is evidence for two independent cognitive procedures, for the production of representational images (naturalistic pictures or sculptures and of abstract signs. The use of signs and symbols is attested for archaic humans (Homo neanderthalensis and for Homo erectus while art in naturalistic style is an innovation among modern humans. The symbiotic interaction of the two symbolic capacities is illustrated for the visual heritage of Palaeolithic cave paintings in Southwestern Europe, for rock engravings in the Italian Alps (Val Camonica and for the vivid use of signs and symbols in Southeastern Europe during the Neolithic. Around 5500 BC, sign use in Southeastern Europe reached a sophisticated stage of organization as to produce the earliest writing system of mankind. Since abstractness is the main theme in the visual heritage of the region, this script, not surprisingly, is composed of predominantly abstract signs.
Facchini, F
2000-12-01
The aptitude for symbolization, characteristic of man, is revealed not only in artistic representations and funerary practices. It is exhibited by every manifestation of human activity or representation of natural phenomena that assumes or refers to a meaning. We can recognize functional symbolism (tool-making, habitative or food technology), social symbolism, (language and social communication) and spiritual symbolism (funerary practices and artistic expressions). On the basis of these concepts, research into symbolism in prehistoric man allows us to recognize forms of symbolism already in the manifestations of the most ancient humans, starting with Homo habilis (or rudolfensis). Toolmaking, social organization and organization of the territory are oriented toward survival and the life of the family group. They attest to symbolic behaviors and constitute symbolic systems by means of which man expresses himself, lives and transmits his symbolic world. The diverse forms of symbolism are discussed with reference to the different phases of prehistoric humanity.
Giraldo, Beatriz F; Rodriguez, Javier; Caminal, Pere; Bayes-Genis, Antonio; Voss, Andreas
2015-01-01
Cardiovascular diseases are the first cause of death in developed countries. Using electrocardiographic (ECG), blood pressure (BP) and respiratory flow signals, we obtained parameters for classifying cardiomyopathy patients. 42 patients with ischemic (ICM) and dilated (DCM) cardiomyopathies were studied. The left ventricular ejection fraction (LVEF) was used to stratify patients with low risk (LR: LVEF>35%, 14 patients) and high risk (HR: LVEF≤ 35%, 28 patients) of heart attack. RR, SBP and TTot time series were extracted from the ECG, BP and respiratory flow signals, respectively. The time series were transformed to a binary space and then analyzed using Joint Symbolic Dynamic with a word length of three, characterizing them by the probability of occurrence of the words. Extracted parameters were then reduced using correlation and statistical analysis. Principal component analysis and support vector machines methods were applied to characterize the cardiorespiratory and cardiovascular interactions in ICM and DCM cardiomyopathies, obtaining an accuracy of 85.7%.
Wang, Jinjing (Jenny); Odic, Darko; Halberda, Justin; Feigenson, Lisa
2016-01-01
From early in life, humans have access to an Approximate Number System (ANS) that supports an intuitive sense of numerical quantity. Previous work in both children and adults suggests that individual differences in the precision of ANS representations correlate with symbolic math performance. However, this work has been almost entirely correlational in nature. Here we tested for a causal link between ANS precision and symbolic math performance by asking whether a temporary modulation of ANS precision changes symbolic math performance. First we replicated a recent finding that 5-year-old children make more precise ANS discriminations when starting with easier trials and gradually progressing to harder ones, compared to the reverse. Next, we show that this brief modulation of ANS precision influenced children’s performance on a subsequent symbolic math task, but not a vocabulary task. In a supplemental experiment we present evidence that children who performed ANS discriminations in a random trial order showed intermediate performance both on the ANS task and the symbolic math task, compared to the children who made ordered discriminations. Thus, our results point to a specific causal link from the ANS to symbolic math performance. PMID:27061668
Wang, Jinjing Jenny; Odic, Darko; Halberda, Justin; Feigenson, Lisa
2016-07-01
From early in life, humans have access to an approximate number system (ANS) that supports an intuitive sense of numerical quantity. Previous work in both children and adults suggests that individual differences in the precision of ANS representations correlate with symbolic math performance. However, this work has been almost entirely correlational in nature. Here we tested for a causal link between ANS precision and symbolic math performance by asking whether a temporary modulation of ANS precision changes symbolic math performance. First, we replicated a recent finding that 5-year-old children make more precise ANS discriminations when starting with easier trials and gradually progressing to harder ones, compared with the reverse. Next, we show that this brief modulation of ANS precision influenced children's performance on a subsequent symbolic math task but not a vocabulary task. In a supplemental experiment, we present evidence that children who performed ANS discriminations in a random trial order showed intermediate performance on both the ANS task and the symbolic math task, compared with children who made ordered discriminations. Thus, our results point to a specific causal link from the ANS to symbolic math performance. Copyright © 2016 Elsevier Inc. All rights reserved.
Simon, M. K.
1974-01-01
Multilevel amplitude-shift-keying (MASK) and quadrature amplitude-shift-keying (QASK) as signaling techniques for multilevel digital communications systems, and the problem of providing symbol synchronization in the receivers of such systems are discussed. A technique is presented for extracting symbol sync from an MASK or QASK signal. The scheme is a generalization of the data transition tracking loop used in PSK systems. The performance of the loop was analyzed in terms of its mean-squared jitter and its effects on the data detection process in MASK and QASK systems.
Pikichyan, H. V.
2015-07-01
Employing the cosmologic concepts and astronomical symbols, the features of the ancient subjective approach of the achievement or perception of the knowledge and its systematic delivery ways are presented. In particular, the ancient systems of the natural medical science and the art of astrology are discussed, whereas the relations of the five cosmological elements, three dynamical agents, nine luminaries and twelve zodiac signs are applied. It is pointed out some misunderstandings encountered in the contemporary interpretation on the evaluation of ancient systems of the knowledge.
Dynamic power scaling of an intermediate symbol buffer associated with covariance computations
2014-01-01
An intermediate symbol buffer (ISB) configuration and method is provided such that the ISB memory comprises 15 portions, one for each HSDPA spreading code. Symbols associated with a spreading code are written to the memory portion associated with the same spreading code. When a covariance
Optical MSD symbolic substitution system based on a higher ordered rule
Reddy, A. K.; Mallikarjun, Tatipamula; Raina, J. P.
1992-12-01
The advantages provided by Photonic Computing has been well documented. An Optical arithmetic processor has to take full advantage of the massive parallelism in optical signals. Such a processor, using the Modified - Signed - Digit (MSD) number . (i) representation, has been presented here based (2) on the symbolic substitution 1ogi. The higher order symbolic substitution rules are formulated for the addition operation, which is carried out in just two steps. Based on the addition operation, the other arithmetic operations - subtraction, multiplication and division - are implemented. Finally, the usefulness of this MSD system is studied.
A Prototype Symbolic Model of Canonical Functional Neuroanatomy of the Motor System
Rubin, Daniel L.; Halle, Michael; Musen, Mark; Kikinis, Ron
2008-01-01
Recent advances in bioinformatics have opened entire new avenues for organizing, integrating and retrieving neuroscientific data, in a digital, machine-processable format, which can be at the same time understood by humans, using ontological, symbolic data representations. Declarative information stored in ontological format can be perused and maintained by domain experts, interpreted by machines, and serve as basis for a multitude of decision-support, computerized simulation, data mining, and teaching applications. We have developed a prototype symbolic model of canonical neuroanatomy of the motor system. Our symbolic model is intended to support symbolic lookup, logical inference and mathematical modeling by integrating descriptive, qualitative and quantitative functional neuroanatomical knowledge. Furthermore, we show how our approach can be extended to modeling impaired brain connectivity in disease states, such as common movement disorders. In developing our ontology, we adopted a disciplined modeling approach, relying on a set of declared principles, a high-level schema, Aristotelian definitions, and a frame-based authoring system. These features, along with the use of the Unified Medical Language System (UMLS) vocabulary, enable the alignment of our functional ontology with an existing comprehensive ontology of human anatomy, and thus allow for combining the structural and functional views of neuroanatomy for clinical decision support and neuroanatomy teaching applications. Although the scope of our current prototype ontology is limited to a particular functional system in the brain, it may be possible to adapt this approach for modeling other brain functional systems as well. PMID:18164666
A low-cost system for graphical process monitoring with colour video symbol display units
International Nuclear Information System (INIS)
Grauer, H.; Jarsch, V.; Mueller, W.
1977-01-01
A system for computer controlled graphic process supervision, using color symbol video displays is described. It has the following characteristics: - compact unit: no external memory for image storage - problem oriented simple descriptive cut to the process program - no restriction of the graphical representation of process variables - computer and display independent, by implementation of colours and parameterized code creation for the display. (WB) [de
Does the Approximate Number System Serve as a Foundation for Symbolic Mathematics?
Szkudlarek, Emily; Brannon, Elizabeth M.
2017-01-01
In this article we first review evidence for the approximate number system (ANS), an evolutionarily ancient and developmentally conservative cognitive mechanism for representing number without language. We then critically review five different lines of support for the proposal that symbolic representations of number build upon the ANS, and discuss…
The Picture Exchange Communication System: Digital Photographs versus Picture Symbols
Jonaitis, Carmen
2011-01-01
The Picture Exchange Communication System (PECS) is an augmentative and alternative system (AAC) used to improve and increase communication for children with Autism Spectrum Disorder (ASD) and other developmental disorders. Research addressing the efficacy of this system is increasing; however, there is limited information published that evaluates…
Analysis of an integrated energy system under variable loads through the symbolic exergoeconomics. 2
International Nuclear Information System (INIS)
Lazzaretto, A.; Macor, A.; Mirandola, A.; Reini, M.
1992-01-01
In this paper, the natural gas depressurization plant of the previous paper, containing a turboexpander and two cogeneration engines, is still considered. The aim of the work is to seek to what extent the Symbolic Exergoeconomic procedure can operate independently of a thermodynamic simulator. For this purpose, the results obtained by the two methodologies have to be compared when varying significant thermodynamic parameters of the system. In particular, the isentropic efficiency of the first stage turbine has been modified in a wide range. The results are very close in the hypothesis of linear variations of the symbolic parameters as a function of the turbine efficiency, whereas are not acceptable under the hypotheses of independence of the efficiencies and stability of the exergy bifurcation rations. A close correspondence between the results of the thermodynamic simulator and the symbolic procedure allows the Symbolic Exergoeconomics algorithms to be used as a basis of an optimization process. As already pointed out in previous analyses, the comparison has t be carried out for each step of the annual discretized duration curve of the gas flow rate, since the behavior of the system is very different from one step to another
Brain potentials predict learning, transmission and modification of an artificial symbolic system
DEFF Research Database (Denmark)
Lumaca, Massimo; Baggio, G.
2016-01-01
capacity account for aspects of ‘variation’ observed in symbolic behavior and symbolic systems. We addressed this issue in the domain of auditory processing.We conducted a combined behavioral and EEG study on 2 successive days. On day 1, participants listened to standard and deviant five-tone sequences......: as in previous oddball studies, an mismatch negativity (MMN) was elicited by deviant tones. On day 2, participants learned an artificial signaling system from a trained confederate of the experimenters in a coordination game in which five-tone sequences were associated to affective meanings (emotion......-laden pictures of human faces). In a subsequent game with identical structure, participants transmitted and occasionally changed the signaling system learned during the first game. TheMMNlatency from day 1 predicted learning, transmission and structural modification of signaling systems on day 2. Our study...
Models, Metaphors and Symbols for Information and Knowledge Systems
Directory of Open Access Journals (Sweden)
David Williams
2014-01-01
Full Text Available A literature search indicates that Data, Information and Knowledge continue to be placed into a hierarchical construct where it is considered that information is more valuable than data and that information can be processed into becoming precious knowledge. Wisdom continues to be added to the model to further confuse the issue. This model constrains our ability to think more logically about how and why we develop knowledge management systems to support and enhance knowledge- intensive processes, tasks or projects. This paper seeks to summarise development of the Data-Information-Knowledge-Wisdom hierarchy, explore the extensive criticism of it and present a more logical (and accurate construct for the elements of intellectual capital when developing and managing Knowledge Management Systems.
Implementation of cartographic symbols for planetary mapping in geographic information systems
Nass, A.; van Gasselt, S.; Jaumann, R.; Asche, H.
2011-09-01
The steadily growing international interest in the exploration of planets in our Solar System and many advances in the development of space-sensor technology have led to the launch of a multitude of planetary missions to Mercury, Venus, the Earth's moon, Mars and various Outer-Solar System objects, such as the Jovian and Saturnian satellites. Camera instruments carried along on these missions image surfaces in different wavelength ranges and under different viewing angles, permitting additional data to be derived, such as spectral data or digital terrain models. Such data enable researchers to explore and investigate the development of planetary surfaces by analyzing and interpreting the inventory of surface units and structures. Results of such work are commonly abstracted and represented in thematic, mostly geological and geomorphological, maps. In order to facilitate efficient collaboration among different planetary research disciplines, mapping results need to be prepared, described, managed, archived, and visualized in a uniform way. These tasks have been increasingly carried out by means of computer-based geographic information systems (GIS or GI systems) which have come to be widely employed in the field of planetary research since the last two decades. In this paper we focus on the simplification of mapping processes, putting specific emphasis on a cartographically correct visualization of planetary mapping data using GIS-based environments. We present and discuss the implementation of a set of standardized cartographic symbols for planetary mapping based on the Digital Cartographic Standard for Geologic Map Symbolization as prepared by the United States Geological Survey (USGS) for the Federal Geographic Data Committee (FGDC). Furthermore, we discuss various options to integrate this symbol catalog into generic GI systems, and more specifically into the Environmental Systems Research Institute's (ESRI) ArcGIS environment, and focus on requirements for
Chen, Ming; He, Jing; Cao, Zizheng; Tang, Jin; Chen, Lin; Wu, Xian
2014-09-01
In this paper, we propose and experimentally demonstrate a symbol synchronization and sampling frequency synchronization techniques in real-time direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) system, over 100-km standard single mode fiber (SSMF) using a cost-effective directly modulated distributed feedback (DFB) laser. The experiment results show that the proposed symbol synchronization based on training sequence (TS) has a low complexity and high accuracy even at a sampling frequency offset (SFO) of 5000-ppm. Meanwhile, the proposed pilot-assisted sampling frequency synchronization between digital-to-analog converter (DAC) and analog-to-digital converter (ADC) is capable of estimating SFOs with an accuracy of technique can also compensate SFO effects within a small residual SFO caused by deviation of SFO estimation and low-precision or unstable clock source. The two synchronization techniques are suitable for high-speed DDO-OFDM transmission systems.
A k-Bounded Symbolic Execution for Checking Strong Heap Properties of Open Systems
DEFF Research Database (Denmark)
Lee, Jooyong; Deng, Xianghua; Bogor, Robby
2006-01-01
This paper presents Kiasan, a bounded technique to reason about open systems based on a path sensitive, relatively sound and complete symbolic execution instead of the usual compositional reasoning through weakest precondition calculation that summarizes all execution paths. Kiasan is able to che...... framework and observed that its performance is comparable to ESC/Java on similar scales of problems and behavioral coverage, while providing the ability to check much stronger specifications...
International Nuclear Information System (INIS)
Rechester, A.B.; White, R.B.
1993-01-01
Complex dynamic processes exhibit many complicated patterns of evolution. How can all these patterns be recognized using only output (observational, experimental) data without prior knowledge of the equations of motion? The powerful method for doing this is based on symbolic dynamics: (1) Present output data in symbolic form (trial language). (2) Topological and metric entropies are constructed. (3) Develop algorithms for computer optimization of entropies. (4) By maximizing entropies, find the most appropriate symbolic language for the purpose of pattern recognition. (5) Test this method using a variety of dynamical models from nonlinear science. The authors are in the process of applying this method for analysis of MHD fluctuations in tokamaks
Newman, Aaron J; Supalla, Ted; Fernandez, Nina; Newport, Elissa L; Bavelier, Daphne
2015-09-15
Sign languages used by deaf communities around the world possess the same structural and organizational properties as spoken languages: In particular, they are richly expressive and also tightly grammatically constrained. They therefore offer the opportunity to investigate the extent to which the neural organization for language is modality independent, as well as to identify ways in which modality influences this organization. The fact that sign languages share the visual-manual modality with a nonlinguistic symbolic communicative system-gesture-further allows us to investigate where the boundaries lie between language and symbolic communication more generally. In the present study, we had three goals: to investigate the neural processing of linguistic structure in American Sign Language (using verbs of motion classifier constructions, which may lie at the boundary between language and gesture); to determine whether we could dissociate the brain systems involved in deriving meaning from symbolic communication (including both language and gesture) from those specifically engaged by linguistically structured content (sign language); and to assess whether sign language experience influences the neural systems used for understanding nonlinguistic gesture. The results demonstrated that even sign language constructions that appear on the surface to be similar to gesture are processed within the left-lateralized frontal-temporal network used for spoken languages-supporting claims that these constructions are linguistically structured. Moreover, although nonsigners engage regions involved in human action perception to process communicative, symbolic gestures, signers instead engage parts of the language-processing network-demonstrating an influence of experience on the perception of nonlinguistic stimuli.
C.P.T. de Gouw (Stijn); F.S. de Boer (Frank); W. Ahrendt (Wolfgang); R. Bubel (Richard)
2016-01-01
textabstractWe present a fully abstract weakest precondition calculus and its integration with symbolic execution. Our assertion language allows both specifying and verifying properties of objects at the abstraction level of the programming language, abstracting from a specific implementation of
Symbolic and Numerical Modeling of Nonlinear Dynamics of Particles in Accelerators
Andrianov, Sergey; Sboeva, Ekaterina
2018-02-01
This paper is devoted to one of the methods of symbolic computation, which based on perturbation theory and constructed in the framework of matrix formalism. This method can be used for solving optimization problems and preliminary modeling in accelerator physics. There are presented the main theoretical positions and demonstration the result of this method on example of one of classical problems.
Contextualizing symbol, symbolizing context
Maudy, Septiani Yugni; Suryadi, Didi; Mulyana, Endang
2017-08-01
When students learn algebra for the first time, inevitably they are experiencing transition from arithmetic to algebraic thinking. Once students could apprehend this essential mathematical knowledge, they are cultivating their ability in solving daily life problems by applying algebra. However, as we dig into this transitional stage, we identified possible students' learning obstacles to be dealt with seriously in order to forestall subsequent hindrance in studying more advance algebra. We come to realize this recurring problem as we undertook the processes of re-personalization and re-contextualization in which we scrutinize the very basic questions: 1) what is variable, linear equation with one variable and their relationship with the arithmetic-algebraic thinking? 2) Why student should learn such concepts? 3) How to teach those concepts to students? By positioning ourselves as a seventh grade student, we address the possibility of children to think arithmetically when confronted with the problems of linear equation with one variable. To help them thinking algebraically, Bruner's modes of representation developed contextually from concrete to abstract were delivered to enhance their interpretation toward the idea of variables. Hence, from the outset we designed the context for student to think symbolically initiated by exploring various symbols that could be contextualized in order to bridge student traversing the arithmetic-algebraic fruitfully.
Analysis of an integrated energy system under variable loads through the symbolic exergoeconomics. 1
International Nuclear Information System (INIS)
Lazzaretto, A.; Macor, A.; Mirandola, A.; Reini, M.
1992-01-01
This paper is used to analyze an energy recovery and cogenerative plant made up of a turboexpander of natural gas and two cogenerative engines. By means of a mathematical symbolic computer program, the Symbolic Exergoeconomic methodology obtains the algebraic formulae for the total plant efficiency and any other thermodynamic variable as a function of the exergetic efficiencies of the subsystems, the exergy bifurcation ratios and either the system's input or output flows. The exergy flows of the plant, obtained by the thermodynamic simulator, can be used to calculate the numerical values of the exergetic efficiencies and of the exergy bifurcation ratios. By substituting these values in the symbolic formulae it is possible to numerically evaluate the apportionment of the input resources, throughout the plant structure an its components, on the products of the plant. This is useful to determine the true utilization coefficients of each fuel and to quantify how it affects the total efficiency of the plant. Since the behavior of the plant is much different depending on the value of the gas flow rate at the inlet, the annual gas flow rate duration curve has been discretized into five steps, corresponding to four operating configurations in which different depending on the value of the gas flow rate at the inlet, the annual gas flow rate duration curve has been discretized into five steps, corresponding to four operating configurations in which different sets of components are working; the mentioned procedure has been applied to each operating configuration
DEFF Research Database (Denmark)
Tofts, P.S.; Brix, G; Buckley, D.L.
1999-01-01
We describe a standard set of quantity names and symbols related to the estimation of kinetic parameters from dynamic contrast-enhanced T(1)-weighted magnetic resonance imaging data, using diffusable agents such as gadopentetate dimeglumine (Gd-DTPA). These include a) the volume transfer constant K......-limited conditions K(trans) equals the blood plasma flow per unit volume of tissue; under permeability-limited conditions K(trans) equals the permeability surface area product per unit volume of tissue. We relate these quantities to previously published work from our groups; our future publications will refer...
Fock space, symbolic algebra, and analytical solutions for small stochastic systems.
Santos, Fernando A N; Gadêlha, Hermes; Gaffney, Eamonn A
2015-12-01
Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics.
Origin of symbol-using systems: speech, but not sign, without the semantic urge.
Sereno, Martin I
2014-09-19
Natural language--spoken and signed--is a multichannel phenomenon, involving facial and body expression, and voice and visual intonation that is often used in the service of a social urge to communicate meaning. Given that iconicity seems easier and less abstract than making arbitrary connections between sound and meaning, iconicity and gesture have often been invoked in the origin of language alongside the urge to convey meaning. To get a fresh perspective, we critically distinguish the origin of a system capable of evolution from the subsequent evolution that system becomes capable of. Human language arose on a substrate of a system already capable of Darwinian evolution; the genetically supported uniquely human ability to learn a language reflects a key contact point between Darwinian evolution and language. Though implemented in brains generated by DNA symbols coding for protein meaning, the second higher-level symbol-using system of language now operates in a world mostly decoupled from Darwinian evolutionary constraints. Examination of Darwinian evolution of vocal learning in other animals suggests that the initial fixation of a key prerequisite to language into the human genome may actually have required initially side-stepping not only iconicity, but the urge to mean itself. If sign languages came later, they would not have faced this constraint.
International Nuclear Information System (INIS)
Kobayashi, Yasuhiro; Takamoto, Masanori; Nonaka, Hisanori; Yamada, Naoyuki
1994-01-01
A scheduling system has been developed by integrating symbolic processing functions for constraint handling and modification guidance, with numeric processing functions for schedule optimization and evaluation. The system is composed of an automatic schedule generation module, interactive schedule revision module and schedule evaluation module. The goal of the problem solving is the flattening of the daily resources requirement throughout the scheduling period. The automatic schedule generation module optimizes the initial schedule according to the formulatable portion of requirement description specified in a predicate-like language. A planning engineer refines the near-goal schedule through a knowledge-based interactive optimization process to obtain the goal schedule which fully covers the requirement description, with the interactive schedule revision module and schedule evaluation module. A scheduling system has been implemented on the basis of the proposed problem solving framework and experimentally applied to real-world sized scheduling problems for plant construction. With a result of the overall plant construction scheduling, a section schedule optimization process is described with the emphasis on the symbolic processing functions. (author)
Directory of Open Access Journals (Sweden)
Mohamad Iwan Fitriani
2017-06-01
Full Text Available This research studies headmaster’s systemic and systematic steps on transforming symbolic into substantive characteristics of madrasah. The research was conducted at MA Nahdlatu Al-Wathan Putri Narmada, a female Islamic senior high school, in West Lombok, West Nusa Tenggara (NTB. This study used qualitative approach with a case study design. The results found that the observed symbolic characteristics are physical characteristics which distinguish madrasah from other educational institutions. The substantive characteristic is the characteristic of madrasah rooted in its origin, as a historical-genealogical continuance of pesantren. It also preserves the essential, perennial and contextually philosophical values of Islamic teachings, maintains the characteristics of Islam and follows the government policy at the same time because madrasah is a juridical sub-system of the national education with an Islamic integration. Additionally, the head of a madrasah is a translator of Islamic values in his leadership. These Islamic values should be the basis of systematic and systematic leadership.
A Symbolic Computation Approach to Parameterizing Controller for Polynomial Hamiltonian Systems
Directory of Open Access Journals (Sweden)
Zhong Cao
2014-01-01
Full Text Available This paper considers controller parameterization method of H∞ control for polynomial Hamiltonian systems (PHSs, which involves internal stability and external disturbance attenuation. The aims of this paper are to design a controller with parameters to insure that the systems are H∞ stable and propose an algorithm for solving parameters of the controller with symbolic computation. The proposed parameterization method avoids solving Hamilton-Jacobi-Isaacs equations, and thus the obtained controllers with parameters are relatively simple in form and easy in operation. Simulation with a numerical example shows that the controller is effective as it can optimize H∞ control by adjusting parameters. All these results are expected to be of use in the study of H∞ control for nonlinear systems with perturbations.
Symbolic-Numerical Modeling of the Influence of Damping Moments on Satellite Dynamics
Gutnik, Sergey A.; Sarychev, Vasily A.
2018-02-01
The dynamics of a satellite on a circular orbit under the influence of gravitational and active damping torques, which are proportional to the projections of the angular velocity of the satellite, is investigated. Computer algebra Gröbner basis methods for the determination of all equilibrium orientations of the satellite in the orbital coordinate system with given damping torque and given principal central moments of inertia were used. The conditions of the equilibria existence depending on three damping parameters were obtained from the analysis of the real roots of the algebraic equations spanned by the constructed Gröbner basis. Conditions of asymptotic stability of the satellite equilibria and the transition decay processes of the spatial oscillations of the satellite at different damping parameters have also been obtained.
Xie, Huimin
The following sections are included: * Definition of Dynamical Languages * Distinct Excluded Blocks * Definition and Properties * L and L″ in Chomsky Hierarchy * A Natural Equivalence Relation * Symbolic Flows * Symbolic Flows and Dynamical Languages * Subshifts of Finite Type * Sofic Systems * Graphs and Dynamical Languages * Graphs and Shannon-Graphs * Transitive Languages * Topological Entropy
DEFF Research Database (Denmark)
Frølunde, Lisbeth
2008-01-01
an analytic working model called Animated Symbols concerning critical reflection in a dialogic learning process. The model shows dialogue as interactions that involve two types of transformation: inner ‘learning processes' and outer signs and symbols. The classroom-based research study is part of a Ph...
Lectures on fractal geometry and dynamical systems
Pesin, Yakov
2009-01-01
Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular "chaotic" motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory--Cantor sets, Hausdorff dimension, box dimension--using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples o...
Chen, Wei; Zhang, Junfeng; Gao, Mingyi; Shen, Gangxiang
2018-03-01
High-order modulation signals are suited for high-capacity communication systems because of their high spectral efficiency, but they are more vulnerable to various impairments. For the signals that experience degradation, when symbol points overlap on the constellation diagram, the original linear decision boundary cannot be used to distinguish the classification of symbol. Therefore, it is advantageous to create an optimum symbol decision boundary for the degraded signals. In this work, we experimentally demonstrated the 64-quadrature-amplitude modulation (64-QAM) coherent optical communication system using support-vector machine (SVM) decision boundary algorithm to create the optimum symbol decision boundary for improving the system performance. We investigated the influence of various impairments on the 64-QAM coherent optical communication systems, such as the impairments caused by modulator nonlinearity, phase skew between in-phase (I) arm and quadrature-phase (Q) arm of the modulator, fiber Kerr nonlinearity and amplified spontaneous emission (ASE) noise. We measured the bit-error-ratio (BER) performance of 75-Gb/s 64-QAM signals in the back-to-back and 50-km transmission. By using SVM to optimize symbol decision boundary, the impairments caused by I/Q phase skew of the modulator, fiber Kerr nonlinearity and ASE noise are greatly mitigated.
Recent symbolic summation methods to solve coupled systems of differential and difference equations
International Nuclear Information System (INIS)
Schneider, Carsten; Bluemlein, Johannes; Freitas, Abilio de
2014-07-01
We outline a new algorithm to solve coupled systems of differential equations in one continuous variable x (resp. coupled difference equations in one discrete variable N) depending on a small parameter ε: given such a system and given sufficiently many initial values, we can determine the first coefficients of the Laurent-series solutions in ε if they are expressible in terms of indefinite nested sums and products. This systematic approach is based on symbolic summation algorithms in the context of difference rings/fields and uncoupling algorithms. The proposed method gives rise to new interesting applications in connection with integration by parts (IBP) methods. As an illustrative example, we will demonstrate how one can calculate the ε-expansion of a ladder graph with 6 massive fermion lines.
Receiver IQ mismatch estimation in PDM CO-OFDM system using training symbol
Peng, Dandan; Ma, Xiurong; Yao, Xin; Zhang, Haoyuan
2017-07-01
Receiver in-phase/quadrature (IQ) mismatch is hard to mitigate at the receiver via using conventional method in polarization division multiplexed (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. In this paper, a novel training symbol structure is proposed to estimate IQ mismatch and channel distortion. Combined this structure with Gram Schmidt orthogonalization procedure (GSOP) algorithm, we can get lower bit error rate (BER). Meanwhile, based on this structure one estimation method is deduced in frequency domain which can achieve the estimation of IQ mismatch and channel distortion independently and improve the system performance obviously. Numerical simulation shows that the proposed two methods have better performance than compared method at 100 Gb/s after 480 km fiber transmission. Besides, the calculation complexity is also analyzed.
Recent symbolic summation methods to solve coupled systems of differential and difference equations
Energy Technology Data Exchange (ETDEWEB)
Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, Johannes; Freitas, Abilio de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2014-07-15
We outline a new algorithm to solve coupled systems of differential equations in one continuous variable x (resp. coupled difference equations in one discrete variable N) depending on a small parameter ε: given such a system and given sufficiently many initial values, we can determine the first coefficients of the Laurent-series solutions in ε if they are expressible in terms of indefinite nested sums and products. This systematic approach is based on symbolic summation algorithms in the context of difference rings/fields and uncoupling algorithms. The proposed method gives rise to new interesting applications in connection with integration by parts (IBP) methods. As an illustrative example, we will demonstrate how one can calculate the ε-expansion of a ladder graph with 6 massive fermion lines.
Kuvich, Gary
2004-08-01
Vision is only a part of a system that converts visual information into knowledge structures. These structures drive the vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, which is an interpretation of visual information in terms of these knowledge models. These mechanisms provide a reliable recognition if the object is occluded or cannot be recognized as a whole. It is hard to split the entire system apart, and reliable solutions to the target recognition problems are possible only within the solution of a more generic Image Understanding Problem. Brain reduces informational and computational complexities, using implicit symbolic coding of features, hierarchical compression, and selective processing of visual information. Biologically inspired Network-Symbolic representation, where both systematic structural/logical methods and neural/statistical methods are parts of a single mechanism, is the most feasible for such models. It converts visual information into relational Network-Symbolic structures, avoiding artificial precise computations of 3-dimensional models. Network-Symbolic Transformations derive abstract structures, which allows for invariant recognition of an object as exemplar of a class. Active vision helps creating consistent models. Attention, separation of figure from ground and perceptual grouping are special kinds of network-symbolic transformations. Such Image/Video Understanding Systems will be reliably recognizing targets.
Second International workshop Geometry and Symbolic Computation
Walczak, Paweł; Geometry and its Applications
2014-01-01
This volume has been divided into two parts: Geometry and Applications. The geometry portion of the book relates primarily to geometric flows, laminations, integral formulae, geometry of vector fields on Lie groups, and osculation; the articles in the applications portion concern some particular problems of the theory of dynamical systems, including mathematical problems of liquid flows and a study of cycles for non-dynamical systems. This Work is based on the second international workshop entitled "Geometry and Symbolic Computations," held on May 15-18, 2013 at the University of Haifa and is dedicated to modeling (using symbolic calculations) in differential geometry and its applications in fields such as computer science, tomography, and mechanics. It is intended to create a forum for students and researchers in pure and applied geometry to promote discussion of modern state-of-the-art in geometric modeling using symbolic programs such as Maple™ and Mathematica®, as well as presentation of new results. ...
Image/video understanding systems based on network-symbolic models
Kuvich, Gary
2004-03-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/network models is found. Symbols, predicates and grammars naturally emerge in such networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type relational structure created via multilevel hierarchical compression of visual information. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. Spatial logic and topology naturally present in such structures. Mid-level vision processes like perceptual grouping, separation of figure from ground, are special kinds of network transformations. They convert primary image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models combines learning, classification, and analogy together with higher-level model-based reasoning into a single framework, and it works similar to frames and agents. Computational intelligence methods transform images into model-based knowledge representation. Based on such principles, an Image/Video Understanding system can convert images into the knowledge models, and resolve uncertainty and ambiguity. This allows creating intelligent computer vision systems for design and manufacturing.
National Research Council Canada - National Science Library
Robinson, Christopher
1997-01-01
...) source code formatted specifically for numerical integration. The compiled source code can be accessed and numerically integrated by the dynamic simulation software SIMULINK(registered). SIMULINK(registered...
Directory of Open Access Journals (Sweden)
Troy Dale Kelley
2006-09-01
Full Text Available This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of algorithms at the lowest subsymbolic level. The goal is to create a system that will progress through the same cognitive developmental milestones as do human infants. Common robotics problems of localization, object recognition, and object permanence are addressed within the specified framework.
Directory of Open Access Journals (Sweden)
Troy Dale Kelley
2008-11-01
Full Text Available This paper describes the ongoing development of a robotic control architecture that was inspired by computational cognitive architectures from the discipline of cognitive psychology. The robotic control architecture combines symbolic and subsymbolic representations of knowledge into a unified control structure. The architecture is organized as a goal driven, serially executing, production system at the highest symbolic level; and a multiple algorithm, parallel executing, simple collection of algorithms at the lowest subsymbolic level. The goal is to create a system that will progress through the same cognitive developmental milestones as do human infants. Common robotics problems of localization, object recognition, and object permanence are addressed within the specified framework.
Pilyugin, Sergei Yu
2012-01-01
Dynamical systems are abundant in theoretical physics and engineering. Their understanding, with sufficient mathematical rigor, is vital to solving many problems. This work conveys the modern theory of dynamical systems in a didactically developed fashion.In addition to topological dynamics, structural stability and chaotic dynamics, also generic properties and pseudotrajectories are covered, as well as nonlinearity. The author is an experienced book writer and his work is based on years of teaching.
The Symbolic Role of Organizational Message Artifacts in a Communication System Assessment.
Meyer, John C.
This paper calls for the inclusion of narrative, thematic, and metaphor analysis as organizational assessment or communication audit methods and discusses some practical means of integrating these symbolic interpretational devices. The paper begins by defining the notion of symbol as the message content important to the organizational member. It…
Tonhajzerova, Ingrid; Farsky, Ivan; Mestanik, Michal; Visnovcova, Zuzana; Mestanikova, Andrea; Hrtanek, Igor; Ondrejka, Igor
2016-06-01
We aimed to evaluate complex cardiac sympathovagal control in attention deficit/hyperactivity disorder (ADHD) by using heart rate variability (HRV) nonlinear analysis - symbolic dynamics. We examined 29 boys with untreated ADHD and 25 healthy boys (age 8-13 years). ADHD symptoms were evaluated by ADHD-RS-IV scale. ECG was recorded in 3 positions: baseline supine position, orthostasis, and clinostasis. Symbolic dynamics indices were used for the assessment of complex cardiac sympathovagal regulation: normalised complexity index (NCI), normalised unpredictability index (NUPI), and pattern classification measures (0V%, 1V%, 2LV%, 2UV%). The results showed that HRV complexity was significantly reduced at rest (NUPI) and during standing position (NCI, NUPI) in ADHD group compared to controls. Cardiac-linked sympathetic index 0V% was significantly higher during all posture positions and cardiovagal index 2LV% was significantly lower to standing in boys suffering from ADHD. Importantly, ADHD symptom inattention positively correlated with 0V%, and negatively correlated with NCI, NUPI. Concluding, symbolic dynamics revealed impaired complex neurocardiac control characterised by potential cardiac beta-adrenergic overactivity and vagal deficiency at rest and to posture changes in boys suffering from ADHD that is correlated with inattention. We suggest that symbolic dynamics indices could represent promising cardiac biomarkers in ADHD.
Hong, Xuezhi; Hong, Xiaojian; Zhang, Junwei; He, Sailing
2016-03-07
Two linewidth-tolerant optical phase noise suppression algorithms, non-decision aided sub-symbol optical phase noise suppression (NDA-SPS) and partial-decision aided sub-symbol optical phase noise suppression (PDA-SPS), based on low-complexity time domain sub-symbol processing are proposed for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. High accuracy carrier phase estimation is achieved in the NDA-SPS algorithm without decision error propagation. Compared with NDA-SPS, partial-decision aided estimation is introduced in PDA-SPS to reduce the pilot-overhead by half, yet only a small performance degradation is induced. The principles and computational complexities of the proposed algorithms are theoretically analyzed. By adopting specially designed comb-type pilot subcarriers, multiplier-free observation-based matrix generation is realized in the proposed algorithms. Computationally intensive discrete Fourier transform (DFT) or inverse DFT (IDFT) operations, which are usually carried out in other high-performance inter-carrier-interference (ICI) mitigation algorithms multiple times, are completely avoided. Compared with several other sub-symbol algorithms, the proposed algorithms with lower complexities offer considerably larger laser linewidth tolerances as demonstrated by Monte-Carlo simulations. Numerical analysis verifies that the optimal performance of PDA-SPS can be achieved with moderate numbers of sub-symbols.
Directory of Open Access Journals (Sweden)
Gilpin Adele MK
2011-07-01
Full Text Available Abstract Background The role of psychotherapy in the treatment of traumatic brain injury is receiving increased attention. The evaluation of psychotherapy with these patients has been conducted largely in the absence of quantitative data concerning the therapy itself. Quantitative methods for characterizing the sequence-sensitive structure of patient-therapist communication are now being developed with the objective of improving the effectiveness of psychotherapy following traumatic brain injury. Methods The content of three therapy session transcripts (sessions were separated by four months obtained from a patient with a history of several motor vehicle accidents who was receiving dialectical behavior therapy was scored and analyzed using methods derived from the mathematical theory of symbolic dynamics. Results The analysis of symbol frequencies was largely uninformative. When repeated triples were examined a marked pattern of change in content was observed over the three sessions. The context free grammar complexity and the Lempel-Ziv complexity were calculated for each therapy session. For both measures, the rate of complexity generation, expressed as bits per minute, increased longitudinally during the course of therapy. The between-session increases in complexity generation rates are consistent with calculations of mutual information. Taken together these results indicate that there was a quantifiable increase in the variability of patient-therapist verbal behavior during the course of therapy. Comparison of complexity values against values obtained from equiprobable random surrogates established the presence of a nonrandom structure in patient-therapist dialog (P = .002. Conclusions While recognizing that only limited conclusions can be based on a case history, it can be noted that these quantitative observations are consistent with qualitative clinical observations of increases in the flexibility of discourse during therapy. These
Gils, S; Hoveijn, I; Takens, F; Nonlinear Dynamical Systems and Chaos
1996-01-01
Symmetries in dynamical systems, "KAM theory and other perturbation theories", "Infinite dimensional systems", "Time series analysis" and "Numerical continuation and bifurcation analysis" were the main topics of the December 1995 Dynamical Systems Conference held in Groningen in honour of Johann Bernoulli. They now form the core of this work which seeks to present the state of the art in various branches of the theory of dynamical systems. A number of articles have a survey character whereas others deal with recent results in current research. It contains interesting material for all members of the dynamical systems community, ranging from geometric and analytic aspects from a mathematical point of view to applications in various sciences.
Energy Technology Data Exchange (ETDEWEB)
Jha, Sumit Kumar [University of Central Florida, Orlando; Pullum, Laura L [ORNL; Ramanathan, Arvind [ORNL
2016-01-01
Embedded intelligent systems ranging from tiny im- plantable biomedical devices to large swarms of autonomous un- manned aerial systems are becoming pervasive in our daily lives. While we depend on the flawless functioning of such intelligent systems, and often take their behavioral correctness and safety for granted, it is notoriously difficult to generate test cases that expose subtle errors in the implementations of machine learning algorithms. Hence, the validation of intelligent systems is usually achieved by studying their behavior on representative data sets, using methods such as cross-validation and bootstrapping.In this paper, we present a new testing methodology for studying the correctness of intelligent systems. Our approach uses symbolic decision procedures coupled with statistical hypothesis testing to. We also use our algorithm to analyze the robustness of a human detection algorithm built using the OpenCV open-source computer vision library. We show that the human detection implementation can fail to detect humans in perturbed video frames even when the perturbations are so small that the corresponding frames look identical to the naked eye.
Exploring the Development of Symbolic Function of Consciousness: A Technique
Directory of Open Access Journals (Sweden)
Polyakov A.M.,
2016-07-01
Full Text Available This article describes studying method which developed the symbolic function mind. It is defined as a functional unit providing the solution of problems by understanding and expression of the reality of the subject-subject relationship using symbols. The symbol understood as a cultural form of presen- tation of subjective reality, mediating the relationship and interaction between two or more subjects. The symbol consists of sense-perception of form and meaning, expressing a subjective reality. The structure of the symbolic function includes the following components: generation and implementation plan, the transformation of symbolic forms, the awareness of the antinomic character, character interpretation. Investigation techiques was developed in accordance with the principles of construction of experimental-genetic method. Empirical criteria for evaluating the level of its development was based on the structure of the symbolic function, and developed a system of assistance for the realization of symbolic meaning. The method allows determine the dynamics and conditions for the development of the symbolic function, its genetic makeup, as well as the form and content of cooperation with con- temporaries.
Zhang, Zhen; Zhang, Qianwu; Chen, Jian; Li, Yingchun; Song, Yingxiong
2016-06-13
A low-complexity joint symbol synchronization and SFO estimation scheme for asynchronous optical IMDD OFDM systems based on only one training symbol is proposed. Numerical simulations and experimental demonstrations are also under taken to evaluate the performance of the mentioned scheme. The experimental results show that robust and precise symbol synchronization and the SFO estimation can be achieved simultaneously at received optical power as low as -20dBm in asynchronous OOFDM systems. SFO estimation accuracy in MSE can be lower than 1 × 10-11 under SFO range from -60ppm to 60ppm after 25km SSMF transmission. Optimal System performance can be maintained until cumulate number of employed frames for calculation is less than 50 under above-mentioned conditions. Meanwhile, the proposed joint scheme has a low level of operation complexity comparing with existing methods, when the symbol synchronization and SFO estimation are considered together. Above-mentioned results can give an important reference in practical system designs.
Sequences by Metastable Attractors: Interweaving Dynamical Systems and Experimental Data
Directory of Open Access Journals (Sweden)
Axel Hutt
2017-05-01
Full Text Available Metastable attractors and heteroclinic orbits are present in the dynamics of various complex systems. Although their occurrence is well-known, their identification and modeling is a challenging task. The present work reviews briefly the literature and proposes a novel combination of their identification in experimental data and their modeling by dynamical systems. This combination applies recurrence structure analysis permitting the derivation of an optimal symbolic representation of metastable states and their dynamical transitions. To derive heteroclinic sequences of metastable attractors in various experimental conditions, the work introduces a Hausdorff clustering algorithm for symbolic dynamics. The application to brain signals (event-related potentials utilizing neural field models illustrates the methodology.
Dynamic Systems and Control Engineering
International Nuclear Information System (INIS)
Kim, Jong Seok
1994-02-01
This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.
Dynamic Systems and Control Engineering
Energy Technology Data Exchange (ETDEWEB)
Kim, Jong Seok
1994-02-15
This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.
Joint Symbol Timing and CFO Estimation for OFDM/OQAM Systems in Multipath Channels
Directory of Open Access Journals (Sweden)
Petrella Angelo
2010-01-01
Full Text Available The problem of data-aided synchronization for orthogonal frequency division multiplexing (OFDM systems based on offset quadrature amplitude modulation (OQAM in multipath channels is considered. In particular, the joint maximum-likelihood (ML estimator for carrier-frequency offset (CFO, amplitudes, phases, and delays, exploiting a short known preamble, is derived. The ML estimators for phases and amplitudes are in closed form. Moreover, under the assumption that the CFO is sufficiently small, a closed form approximate ML (AML CFO estimator is obtained. By exploiting the obtained closed form solutions a cost function whose peaks provide an estimate of the delays is derived. In particular, the symbol timing (i.e., the delay of the first multipath component is obtained by considering the smallest estimated delay. The performance of the proposed joint AML estimator is assessed via computer simulations and compared with that achieved by the joint AML estimator designed for AWGN channel and that achieved by a previously derived joint estimator for OFDM systems.
Ahmed, Qasim Zeeshan
2015-02-01
In this paper, a new detector is proposed for an amplify-and-forward (AF) relaying system. The detector is designed to minimize the symbol-error-rate (SER) of the system. The SER surface is non-linear and may have multiple minimas, therefore, designing an SER detector for cooperative communications becomes an optimization problem. Evolutionary based algorithms have the capability to find the global minima, therefore, evolutionary algorithms such as particle swarm optimization (PSO) and differential evolution (DE) are exploited to solve this optimization problem. The performance of proposed detectors is compared with the conventional detectors such as maximum likelihood (ML) and minimum mean square error (MMSE) detector. In the simulation results, it can be observed that the SER performance of the proposed detectors is less than 2 dB away from the ML detector. Significant improvement in SER performance is also observed when comparing with the MMSE detector. The computational complexity of the proposed detector is much less than the ML and MMSE algorithms. Moreover, in contrast to ML and MMSE detectors, the computational complexity of the proposed detectors increases linearly with respect to the number of relays.
Stability of dynamical systems
Liao, Xiaoxin; Yu, P 0
2007-01-01
The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems.ʺ Presents
Smolensky, Paul; Goldrick, Matthew; Mathis, Donald
2014-08-01
Mental representations have continuous as well as discrete, combinatorial properties. For example, while predominantly discrete, phonological representations also vary continuously; this is reflected by gradient effects in instrumental studies of speech production. Can an integrated theoretical framework address both aspects of structure? The framework we introduce here, Gradient Symbol Processing, characterizes the emergence of grammatical macrostructure from the Parallel Distributed Processing microstructure (McClelland, Rumelhart, & The PDP Research Group, 1986) of language processing. The mental representations that emerge, Distributed Symbol Systems, have both combinatorial and gradient structure. They are processed through Subsymbolic Optimization-Quantization, in which an optimization process favoring representations that satisfy well-formedness constraints operates in parallel with a distributed quantization process favoring discrete symbolic structures. We apply a particular instantiation of this framework, λ-Diffusion Theory, to phonological production. Simulations of the resulting model suggest that Gradient Symbol Processing offers a way to unify accounts of grammatical competence with both discrete and continuous patterns in language performance. Copyright © 2013 Cognitive Science Society, Inc.
International Nuclear Information System (INIS)
Posch, H.A.; Narnhofer, H.; Thirring, W.
1990-01-01
We study the dynamics of classical particles interacting with attractive Gaussian potentials. This system is thermodynamically not stable and exhibits negative specific heat. The results of the computer simulation of the dynamics are discussed in comparison with various theories. In particular, we find that the condensed phase is a stationary solution of the Vlasov equation, but the Vlasov dynamics cannot describe the collapse. 14 refs., 1 tab., 11 figs. (Authors)
Ligterink, N.E.
2007-01-01
Functional system dynamics is the analysis, modelling, and simulation of continuous systems usually described by partial differential equations. From the infinite degrees of freedom of such systems only a finite number of relevant variables have to be chosen for a practical model description. The proper input and output of the system are an important part of the relevant variables.
Cardarelli, Roberto; Mann, Christopher; Fulda, Kimberly G; Balyakina, Elizabeth; Espinoza, Anna; Lurie, Sue
2011-12-29
The purpose of this pilot study was to evaluate and refine an adjuvant system of color-specific symbols that are added to medication bottles and to assess whether this system would increase the ability of patients 65 years of age or older in matching their medication to the indication for which it was prescribed. This study was conducted in two phases, consisting of three focus groups of patients from a family medicine clinic (n = 25) and a pre-post medication identification test in a second group of patient participants (n = 100). Results of focus group discussions were used to refine the medication label symbols according to themes and messages identified through qualitative triangulation mechanisms and data analysis techniques. A pre-post medication identification test was conducted in the second phase of the study to assess differences between standard labeling alone and the addition of the refined color-specific symbols. The pre-post test examined the impact of the added labels on participants' ability to accurately match their medication to the indication for which it was prescribed when placed in front of participants and then at a distance of two feet. Participants appreciated the addition of a visual aid on existing medication labels because it would not be necessary to learn a completely new system of labeling, and generally found the colors and symbols used in the proposed labeling system easy to understand and relevant. Concerns were raised about space constraints on medication bottles, having too much information on the bottle, and having to remember what the colors meant. Symbols and colors were modified if they were found unclear or inappropriate by focus group participants. Pre-post medication identification test results in a second set of participants demonstrated that the addition of the symbol label significantly improved the ability of participants to match their medication to the appropriate medical indication at a distance of two feet (p
Shadowing in dynamical systems
Pilyugin, Sergei Yu
1999-01-01
This book is an introduction to the theory of shadowing of approximate trajectories in dynamical systems by exact ones. This is the first book completely devoted to the theory of shadowing. It shows the importance of shadowing theory for both the qualitative theory of dynamical systems and the theory of numerical methods. Shadowing Methods allow us to estimate differences between exact and approximate solutions on infinite time intervals and to understand the influence of error terms. The book is intended for specialists in dynamical systems, for researchers and graduate students in the theory of numerical methods.
Dynamical systems with applications using MATLAB
Lynch, Stephen
2014-01-01
This textbook, now in its second edition, provides a broad introduction to both continuous and discrete dynamical systems, the theory of which is motivated by examples from a wide range of disciplines. It emphasizes applications and simulation utilizing MATLAB®, Simulink®, the Image Processing Toolbox™, and the Symbolic Math Toolbox™, including MuPAD. Features new to the second edition include, sections on series solutions of ordinary differential equations, perturbation methods, normal forms, Gröbner bases, and chaos synchronization; chapters on image processing and binary oscillator computing; hundreds of new illustrations, examples, and exercises with solutions; and over eighty up-to-date MATLAB® program files and Simulink model files available online. These files were voted MATLAB® Central Pick of the Week in July 2013. The hands-on approach of Dynamical Systems with Applications using MATLAB®, Second Edition, has minimal prerequisites, only requiring familiarity with ordinary differential equ...
Invitation to dynamical systems
Scheinerman, Edward R
2012-01-01
This text is designed for those who wish to study mathematics beyond linear algebra but are unready for abstract material. Rather than a theorem-proof-corollary exposition, it stresses geometry, intuition, and dynamical systems. 1996 edition.
Ligterink, N.E.
2007-01-01
Functional system dynamics is the analysis, modelling, and simulation of continuous systems usually described by partial differential equations. From the infinite degrees of freedom of such systems only a finite number of relevant variables have to be chosen for a practical model description. The
International Nuclear Information System (INIS)
Yamaguchi, Hiroshi; Hongo, Syozo; Takeshita, Hiroshi
1990-01-01
We have developed Japanese phantoms in two procedures for computation of organ doses exposed to internal and/or external radiation sources. One method is to make mathematical phantoms on the basis of ORNL mathematical phantoms. Parameters to specify organs of Japanese mathematical phantom are determined by interpolations of the ORNL data, which define the organs of Caucasian males and females of various ages, i.e. new born, 1, 5, 10, 15 years and adult, with survey data for Japanese physiques. Another procedure is to build 'symbol phantoms' for the Japanese public. The concept and its method of the symbol phantom enables us to make a phantom for an individual when we have all of his transversal section images obtained by a medical imaging device like MRI, and thus we may achieve more realistic phantoms for Japanese public than the mathematical phantoms. Both studies are in progress in NIRS. (author)
Channel Estimation and Information Symbol Detection for DS-UWB Communication Systems
Directory of Open Access Journals (Sweden)
Wei Wang
2014-01-01
estimation, the one-step predictor of information symbol is used and the estimation error is also considered as a multiplicative noise. The solutions to the above two problems are obtained by solving a couple of Riccati equations together with two Lyapunov equations.
Scientific applications of symbolic computation
International Nuclear Information System (INIS)
Hearn, A.C.
1976-02-01
The use of symbolic computation systems for problem solving in scientific research is reviewed. The nature of the field is described, and particular examples are considered from celestial mechanics, quantum electrodynamics and general relativity. Symbolic integration and some more recent applications of algebra systems are also discussed [fr
Symbolic computer vector analysis
Stoutemyer, D. R.
1977-01-01
A MACSYMA program is described which performs symbolic vector algebra and vector calculus. The program can combine and simplify symbolic expressions including dot products and cross products, together with the gradient, divergence, curl, and Laplacian operators. The distribution of these operators over sums or products is under user control, as are various other expansions, including expansion into components in any specific orthogonal coordinate system. There is also a capability for deriving the scalar or vector potential of a vector field. Examples include derivation of the partial differential equations describing fluid flow and magnetohydrodynamics, for 12 different classic orthogonal curvilinear coordinate systems.
Dynamics of Information Systems
Hirsch, Michael J; Murphey, Robert
2010-01-01
Our understanding of information and information dynamics has outgrown classical information theory. This book presents the research explaining the importance of information in the evolution of a distributed or networked system. It presents techniques for measuring the value or significance of information within the context of a system
International Nuclear Information System (INIS)
Cugliandolo, Leticia F.
2003-09-01
These lecture notes can be read in two ways. The first two Sections contain a review of the phenomenology of several physical systems with slow nonequilibrium dynamics. In the Conclusions we summarize the scenario for this temporal evolution derived from the solution to some solvable models (p spin and the like) that are intimately connected to the mode coupling approach (and similar ones) to super-cooled liquids. At the end we list a number of open problems of great relevance in this context. These Sections can be read independently of the body of the paper where we present some of the basic analytic techniques used to study the out of equilibrium dynamics of classical and quantum models with and without disorder. We start the technical part by briefly discussing the role played by the environment and by introducing and comparing its representation in the equilibrium and dynamic treatment of classical and quantum systems. We next explain the role played by explicit quenched disorder in both approaches. Later on we focus on analytical techniques; we expand on the dynamic functional methods, and the diagrammatic expansions and resummations used to derive macroscopic equations from the microscopic dynamics. We show why the macroscopic dynamic equations for disordered models and those resulting from self-consistent approximations to non-disordered ones coincide. We review some generic properties of dynamic systems evolving out of equilibrium like the modifications of the fluctuation-dissipation theorem, generic scaling forms of the correlation functions, etc. Finally we solve a family of mean-field models. The connection between the dynamic treatment and the analysis of the free-energy landscape of these models is also presented. We use pedagogical examples all along these lectures to illustrate the properties and results. (author)
Butschli Dynamic Droplet System
DEFF Research Database (Denmark)
Armstrong, R.; Hanczyc, M.
2013-01-01
Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Butschli water-in-oil droplets as a model for further investigation into the development...... reconstructed the Butschli system and observed its life span under a light microscope, observing chemical patterns and droplet behaviors in nearly three hundred replicate experiments. Self-organizing patterns were observed, and during this dynamic, embodied phase the droplets provided a means of introducing...... temporal and spatial order in the system with the potential for chemical programmability. The authors propose that the discrete formation of dynamic droplets, characterized by their lifelike behavior patterns, during a variable window of time (from 30 s to 30 min after the addition of alkaline water...
Complexified dynamical systems
International Nuclear Information System (INIS)
Bender, Carl M; Holm, Darryl D; Hook, Daniel W
2007-01-01
Many dynamical systems, such as the Lotka-Volterra predator-prey model and the Euler equations for the free rotation of a rigid body, are PT symmetric. The standard and well-known real solutions to such dynamical systems constitute an infinitessimal subclass of the full set of complex solutions. This paper examines a subset of the complex solutions that contains the real solutions, namely those having PT symmetry. The condition of PT symmetry selects out complex solutions that are periodic. (fast track communication)
Formalising Symbolic Interactionism
de Nooy, W.
2009-01-01
Symbolic interactionism is generally known as a theory typically linked with a qualitative methodology. Recent developments in quantitative social network analysis, however, can analyze processes theorized within this theoretical tradition. Thick description can be complemented with statistical analyses of network structure and dynamics, expanding the scope and detail of results. This paper argues that social network analysis can bridge the divide between qualitative and quantitative analysis...
Nonautonomous dynamical systems
Kloeden, Peter E
2011-01-01
The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.
System dynamics with interaction discontinuity
Luo, Albert C J
2015-01-01
This book describes system dynamics with discontinuity caused by system interactions and presents the theory of flow singularity and switchability at the boundary in discontinuous dynamical systems. Based on such a theory, the authors address dynamics and motion mechanism of engineering discontinuous systems due to interaction. Stability and bifurcations of fixed points in nonlinear discrete dynamical systems are presented, and mapping dynamics are developed for analytical predictions of periodic motions in engineering discontinuous dynamical systems. Ultimately, the book provides an alternative way to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.
Marghetis, Tyler; Núñez, Rafael
2013-04-01
The canonical history of mathematics suggests that the late 19th-century "arithmetization" of calculus marked a shift away from spatial-dynamic intuitions, grounding concepts in static, rigorous definitions. Instead, we argue that mathematicians, both historically and currently, rely on dynamic conceptualizations of mathematical concepts like continuity, limits, and functions. In this article, we present two studies of the role of dynamic conceptual systems in expert proof. The first is an analysis of co-speech gesture produced by mathematics graduate students while proving a theorem, which reveals a reliance on dynamic conceptual resources. The second is a cognitive-historical case study of an incident in 19th-century mathematics that suggests a functional role for such dynamism in the reasoning of the renowned mathematician Augustin Cauchy. Taken together, these two studies indicate that essential concepts in calculus that have been defined entirely in abstract, static terms are nevertheless conceptualized dynamically, in both contemporary and historical practice. Copyright © 2013 Cognitive Science Society, Inc.
Emergence in Dynamical Systems
Directory of Open Access Journals (Sweden)
John Collier
2013-12-01
Full Text Available Emergence is a term used in many contexts in current science; it has become fashionable. It has a traditional usage in philosophy that started in 1875 and was expanded by J. S. Mill (earlier, under a different term and C. D. Broad. It is this form of emergence that I am concerned with here. I distinguish it from uses like ‘computational emergence,’ which can be reduced to combinations of program steps, or its application to merely surprising new features that appear in complex combinations of parts. I will be concerned specifically with ontological emergence that has the logical properties required by Mill and Broad (though there might be some quibbling about the details of their views. I restrict myself to dynamical systems that are embodied in processes. Everything that we can interact with through sensation or action is either dynamical or can be understood in dynamical terms, so this covers all comprehensible forms of emergence in the strong (nonreducible sense I use. I will give general dynamical conditions that underlie the logical conditions traditionally assigned to emergence in nature.The advantage of this is that, though we cannot test logical conditions directly, we can test dynamical conditions. This gives us an empirical and realistic form of emergence, contrary those who say it is a matter of perspective.
What are System Dynamics Insights?
Stave, K.; Zimmermann, N. S.; Kim, H.
2016-01-01
This paper explores the concept of system dynamics insights. In our field, the term “insight” is generally understood to mean dynamic insight, that is, a deep understanding about the relationship between structure and behavior. We argue this is only one aspect of the range of insights possible from system dynamics activities, and describe a broader range of potential system dynamics insights. We also propose an initial framework for discussion that relates different types of system dynamics a...
Interactive Dynamic-System Simulation
Korn, Granino A
2010-01-01
Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. Written by a pioneer in simulation, the book introduces dynamic-system models and explains how software for solving differential equations works. After demonstrating real simulation programs with simple examples, the author
Wisdom, Jack
2002-01-01
In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.
Statistical dynamics of ultradiffusion in hierarchical systems
International Nuclear Information System (INIS)
Gardner, S.
1987-01-01
In many types of disordered systems which exhibit frustration and competition, an ultrametric topology is found to exist in the space of allowable states. This ultrametric topology of states is associated with a hierarchical relaxation process called ultradiffusion. Ultradiffusion occurs in hierarchical non-linear (HNL) dynamical systems when constraints cause large scale, slow modes of motion to be subordinated to small scale, fast modes. Examples of ultradiffusion are found throughout condensed matter physics and critical phenomena (e.g. the states of spin glasses), in biophysics (e.g. the states of Hopfield networks) and in many other fields including layered computing based upon nonlinear dynamics. The statistical dynamics of ultradiffusion can be treated as a random walk on an ultrametric space. For reversible bifurcating ultrametric spaces the evolution equation governing the probability of a particle being found at site i at time t has a highly degenerate transition matrix. This transition matrix has a fractal geometry similar to the replica form proposed for spin glasses. The authors invert this fractal matrix using a recursive quad-tree (QT) method. Possible applications of hierarchical systems to communications and symbolic computing are discussed briefly
Elisabeth Kubler-Ross and the Tradition of the Private Sphere: An Analysis of Symbols.
Klass, Dennis
1981-01-01
Shows how Kubler-Ross' schema functions as a symbol system. Analyzes the symbol "acceptance." Shows how that symbol is part of a strong American tradition of symbols of the private sphere. (Author/JAC)
Directory of Open Access Journals (Sweden)
Mohamad reza Yousefi
2013-11-01
complex world.In general, in Persian poetry there are three types ofambiguity such as: uncertainty ambiguity, intentional and unintentional ambiguity.an effective literary texts, owes its origin to create multiple meanings and its levels of meaning. One serious differences literary work with other linguistic works is the plurality of meaning. Richness and depth range of literary texts and the creation of range meaning, in fact is ambiguity and uncertain.In this respect, by engaging the reader in creating meaning will be typicalinteraction between the audience and the text. Ambiguityprovidesopportunities for deep thinking and reacting of reader, so takes reader tobeyond Freedom of the text within its borders and freedom of thought has to be brought for its reader. Having interaction betweentext and reader in the history has caused to different reactions and multiple conversations with generationswhich interpreted as dynamicliterary ofthe work. The ambiguity of the poem is creating by the symbols and symbolism.So the symbol isrhetorical element in addition to the apparentrealmeaning, suggests wide range of meaningto the reader.in classical Persian works ambiguity in text created differently such az:Allegory and metaphor and password which today symbolize are burdeningthis task . In past Allegory in terms of clarity divided to the four categories:Implicitly, hint, password and widening.And allegories are codes allusions are hidden in them, so password knows asa symbol or a word that needed to understand. Metaphors are also due to the ambiguous, uncertain sense, to support new meaning to the traditional means in the appearance of metaphors (ie not considered true and apparentmeaning, but bymultiplevirtual semantics takesreadersto border suspicion of symbols.And generally are divided into two categories: metaphors that are close to the symbol and symbols that have been decoded.Since the natureof symbol is fundamentally ambiguous and multiple causes dynamics literary work
Information decomposition method to analyze symbolical sequences
International Nuclear Information System (INIS)
Korotkov, E.V.; Korotkova, M.A.; Kudryashov, N.A.
2003-01-01
The information decomposition (ID) method to analyze symbolical sequences is presented. This method allows us to reveal a latent periodicity of any symbolical sequence. The ID method is shown to have advantages in comparison with application of the Fourier transformation, the wavelet transform and the dynamic programming method to look for latent periodicity. Examples of the latent periods for poetic texts, DNA sequences and amino acids are presented. Possible origin of a latent periodicity for different symbolical sequences is discussed
Cosmological dynamical systems
Leon, Genly
2011-01-01
In this book are studied, from the perspective of the dynamical systems, several Universe models. In chapter 1 we give a bird's eye view on cosmology and cosmological problems. Chapter 2 is devoted to a brief review on some results and useful tools from the qualitative theory of dynamical systems. They provide the theoretical basis for the qualitative study of concrete cosmological models. Chapters 1 and 2 are a review of well-known results. Chapters 3, 4, 5 and 6 are devoted to our main results. In these chapters are extended and settled in a substantially different, more strict mathematical language, several results obtained by one of us in arXiv:0812.1013 [gr-qc]; arXiv:1009.0689 [gr-qc]; arXiv:0904.1577[gr-qc]; and arXiv:0909.3571 [hep-th]. In chapter 6, we provide a different approach to the subject discussed in astro-ph/0503478. Additionally, we perform a Poincar\\'e compactification process allowing to construct a global phase space containing all the cosmological information in both finite and infinite...
Dynamics of stochastic systems
Klyatskin, Valery I
2005-01-01
Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in fluid and subjected to random molecular bombardment laid the foundation for modern stochastic calculus and statistical physics. Other important examples include turbulent transport and diffusion of particle-tracers (pollutants), or continuous densities (''''oil slicks''''), wave propagation and scattering in randomly inhomogeneous media, for instance light or sound propagating in the turbulent atmosphere.Such models naturally render to statistical description, where the input parameters and solutions are expressed by random processes and fields.The fundamental problem of stochastic dynamics is to identify the essential characteristics of system (its state and evolution), and relate those to the input parameters of ...
International Nuclear Information System (INIS)
Vorob'ev, D.M.; Golovanov, M.N.; Levin, G.L.; Parfenova, T.K.; Filatov, V.P.
1978-01-01
A symbolic-language code translator is described; it has been developed for automation of making up programs for in-core control systems. The translator is written in the ASSEMBLER language which is included in the software of the M-6000 computer. Two scannings of the source program are required for making up the operating program in the internal language of the BUTs-2O processor. The flowsheet and listing of the interrogation program of an analog-to-digital converter are presented. It is emphasized that the translator proposed allows a time reduction for constructing programs for the in-core control systems by a factor of 10-15 and an improvement of their quality
Synchronization dynamics of two different dynamical systems
International Nuclear Information System (INIS)
Luo, Albert C.J.; Min Fuhong
2011-01-01
Highlights: → Synchronization dynamics of two distinct dynamical systems. → Synchronization, de-synchronization and instantaneous synchronization. → A controlled pendulum synchronizing with the Duffing oscillator. → Synchronization invariant set. → Synchronization parameter map. - Abstract: In this paper, synchronization dynamics of two different dynamical systems is investigated through the theory of discontinuous dynamical systems. The necessary and sufficient conditions for the synchronization, de-synchronization and instantaneous synchronization (penetration or grazing) are presented. Using such a synchronization theory, the synchronization of a controlled pendulum with the Duffing oscillator is systematically discussed as a sampled problem, and the corresponding analytical conditions for the synchronization are presented. The synchronization parameter study is carried out for a better understanding of synchronization characteristics of the controlled pendulum and the Duffing oscillator. Finally, the partial and full synchronizations of the controlled pendulum with periodic and chaotic motions are presented to illustrate the analytical conditions. The synchronization of the Duffing oscillator and pendulum are investigated in order to show the usefulness and efficiency of the methodology in this paper. The synchronization invariant domain is obtained. The technique presented in this paper should have a wide spectrum of applications in engineering. For example, this technique can be applied to the maneuvering target tracking, and the others.
Trief, Ellen; Cascella, Paul W.; Bruce, Susan M.
2013-01-01
Introduction: The study reported in this article tracked the learning rate of 43 children with multiple disabilities and visual impairments who had limited to no verbal language across seven months of classroom-based intervention using a standardized set of tangible symbols. Methods: The participants were introduced to tangible symbols on a daily…
Abstract Expression Grammar Symbolic Regression
Korns, Michael F.
This chapter examines the use of Abstract Expression Grammars to perform the entire Symbolic Regression process without the use of Genetic Programming per se. The techniques explored produce a symbolic regression engine which has absolutely no bloat, which allows total user control of the search space and output formulas, which is faster, and more accurate than the engines produced in our previous papers using Genetic Programming. The genome is an all vector structure with four chromosomes plus additional epigenetic and constraint vectors, allowing total user control of the search space and the final output formulas. A combination of specialized compiler techniques, genetic algorithms, particle swarm, aged layered populations, plus discrete and continuous differential evolution are used to produce an improved symbolic regression sytem. Nine base test cases, from the literature, are used to test the improvement in speed and accuracy. The improved results indicate that these techniques move us a big step closer toward future industrial strength symbolic regression systems.
Applications of symbolic algebraic computation
International Nuclear Information System (INIS)
Brown, W.S.; Hearn, A.C.
1979-01-01
This paper is a survey of applications of systems for symbomic algebraic computation. In most successful applications, calculations that can be taken to a given order by hand are then extended one or two more orders by computer. Furthermore, with a few notable exceptins, these applications also involve numerical computation in some way. Therefore the authors emphasize the interface between symbolic and numerical computation, including: 1. Computations with both symbolic and numerical phases. 2. Data involving both the unpredictible size and shape that typify symbolic computation and the (usually inexact) numerical values that characterize numerical computation. 3. Applications of one field to the other. It is concluded that the fields of symbolic and numerical computation can advance most fruitfully in harmony rather than in competition. (Auth.)
Simulations of Stagewise Development with a Symbolic Architecture
Gobet, Fernand
This chapter compares Piaget's theory of development with Feigenbaum & Simon's (1962; 1984) EPAM theory. An attempt is made to map the concepts of assimilation and accommodation in Piaget's theory onto the concepts of familiarisation and accommodation in EPAM. An EPAM-like model of the balance scale task is then presented, with a discussion of preliminary results showing how it accounts for children's discontinuous, stage-like development. The analysis focuses on the transition between rules, using catastrophe flags (Gilmore, 1981) as criteria. It is argued that some symbolic models may be described as dynamical systems, in the same way as some non-symbolic models.
Image segmentation for enhancing symbol recognition in prosthetic vision.
Horne, Lachlan; Barnes, Nick; McCarthy, Chris; He, Xuming
2012-01-01
Current and near-term implantable prosthetic vision systems offer the potential to restore some visual function, but suffer from poor resolution and dynamic range of induced phosphenes. This can make it difficult for users of prosthetic vision systems to identify symbolic information (such as signs) except in controlled conditions. Using image segmentation techniques from computer vision, we show it is possible to improve the clarity of such symbolic information for users of prosthetic vision implants in uncontrolled conditions. We use image segmentation to automatically divide a natural image into regions, and using a fixation point controlled by the user, select a region to phosphenize. This technique improves the apparent contrast and clarity of symbolic information over traditional phosphenization approaches.
Chaos for Discrete Dynamical System
Directory of Open Access Journals (Sweden)
Lidong Wang
2013-01-01
Full Text Available We prove that a dynamical system is chaotic in the sense of Martelli and Wiggins, when it is a transitive distributively chaotic in a sequence. Then, we give a sufficient condition for the dynamical system to be chaotic in the strong sense of Li-Yorke. We also prove that a dynamical system is distributively chaotic in a sequence, when it is chaotic in the strong sense of Li-Yorke.
Dynamical Systems for Creative Technology
van Amerongen, J.
2010-01-01
Dynamical Systems for Creative Technology gives a concise description of the physical properties of electrical, mechanical and hydraulic systems. Emphasis is placed on modelling the dynamical properties of these systems. By using a system’s approach it is shown that a limited number of mathematical
Miller, Judith; Graham, Lorraine; Pennington, Jim
2013-01-01
Health-related knowledge has been assumed to inform lifestyle choices for school-aged students. A "health-promoting school" provides the conceptual framework for this intervention. A large boarding school developed, implemented and refined a Nutritional Symbol System for their dining hall. The effectiveness of this social marketing…
Lund, Shelley K.; Troha, Jeanette M.
2008-01-01
This study used a single-subject multiple baseline across participants design to evaluate the effectiveness of a modified picture exchange communication system (PECS) teaching protocol with tactile symbols. Three students (two male, one female) aged 12-17 years who had autism and were blind participated in the study. The instructional program…
Ali, Emad; MacFarland, Stephanie Z.; Umbreit, John
2011-01-01
The Picture Exchange Communication System (PECS) is an augmentative and alternative communication (AAC) program used to teach functional requesting and commenting skills to people with disabilities (Bondy & Frost, 1993; Frost & Bondy, 2002). In this study, tangible symbols were added to PECS in teaching requesting to four students (ages 7-14) with…
Nuclear reactors; graphical symbols
International Nuclear Information System (INIS)
1987-11-01
This standard contains graphical symbols that reveal the type of nuclear reactor and is used to design graphical and technical presentations. Distinguishing features for nuclear reactors are laid down in graphical symbols. (orig.) [de
Management of complex dynamical systems
MacKay, R. S.
2018-02-01
Complex dynamical systems are systems with many interdependent components which evolve in time. One might wish to control their trajectories, but a more practical alternative is to control just their statistical behaviour. In many contexts this would be both sufficient and a more realistic goal, e.g. climate and socio-economic systems. I refer to it as ‘management’ of complex dynamical systems. In this paper, some mathematics for management of complex dynamical systems is developed in the weakly dependent regime, and questions are posed for the strongly dependent regime.
Controlling Uncertain Dynamical Systems
Indian Academy of Sciences (India)
Author Affiliations. N Ananthkrishnan1 Rashi Bansal2. Head, CAE Analysis & Design Zeus Numerix Pvt Ltd. M-03, SINE, IIT Bombay Powai Mumbai 400076, India. MTech (Aerospace Engineering) with specialization in Dynamics & Control from IIT Bombay.
SD-CAS: Spin Dynamics by Computer Algebra System.
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.
Dynamic Reconfiguration in Mobile Systems
Smit, Gerardus Johannes Maria; Glesner, Manfred; Zipf, Peter; Smit, L.T.; Havinga, Paul J.M.; Heysters, P.M.; Renovell, Michel; Rosien, M.A.J.
Dynamically reconfigurable systems have the potential of realising efficient systems as well as providing adaptability to changing system requirements. Such systems are suitable for future mobile multimedia systems that have limited battery resources, must handle diverse data types, and must operate
The mathematica guidebook for symbolics
Trott, Michael
2006-01-01
Mathematica is today's most advanced technical computing system. It features a rich programming environment, two-and three-dimensional graphics capabilities and hundreds of sophisticated, powerful programming and mathematical functions using state-of-the-art algorithms. Combined with a user-friendly interface, and a complete mathematical typesetting system, Mathematica offers an intuitive easy-to-handle environment of great power and utility. "The Mathematica GuideBook for Symbolics" (code and text fully tailored for Mathematica 5.1) deals with Mathematica's symbolic mathematical capabilities. Structural and mathematical operations on single and systems of polynomials are fundamental to many symbolic calculations and they are covered in considerable detail. The solution of equations and differential equations, as well as the classical calculus operations (differentiation, integration, summation, series expansion, limits) are exhaustively treated. Generalized functions and their uses are discussed. In addition...
Ergodic theory and dynamical systems
Coudène, Yves
2016-01-01
This textbook is a self-contained and easy-to-read introduction to ergodic theory and the theory of dynamical systems, with a particular emphasis on chaotic dynamics. This book contains a broad selection of topics and explores the fundamental ideas of the subject. Starting with basic notions such as ergodicity, mixing, and isomorphisms of dynamical systems, the book then focuses on several chaotic transformations with hyperbolic dynamics, before moving on to topics such as entropy, information theory, ergodic decomposition and measurable partitions. Detailed explanations are accompanied by numerous examples, including interval maps, Bernoulli shifts, toral endomorphisms, geodesic flow on negatively curved manifolds, Morse-Smale systems, rational maps on the Riemann sphere and strange attractors. Ergodic Theory and Dynamical Systems will appeal to graduate students as well as researchers looking for an introduction to the subject. While gentle on the beginning student, the book also contains a number of commen...
Directory of Open Access Journals (Sweden)
Daniela Sacco
2015-11-01
Full Text Available An excerpt from Sergei M. Eisenstein's memoirs describing a night visit to the museum of Chichén Itzá in Mexico is set forth as a real life example reflecting, both from a visual and theoretical perspective, the architecture of Aby Warburg's Bilderatlas Mnemosyne and his concept of Denkraum. Drawing upon Warburg's own writings and F. T. Vischer's theory of symbol, the paper looks at Eisenstein's experience at the museum as highlighting the dynamic relation between man's religious/magical and scientific/rational psychic poles, and the in-between space of thought inherent to the concept of Denkraum and visually represented by the empty dark intervals separating the images in the Bilderatlas. Adding significance to its argumentation, the paper also hints at an affinity between Eisenstein's film montaging and Warburg's image assembling criteria.
Secure physical layer using dynamic permutations in cognitive OFDMA systems
DEFF Research Database (Denmark)
Meucci, F.; Wardana, Satya Ardhy; Prasad, Neeli R.
2009-01-01
This paper proposes a novel lightweight mechanism for a secure Physical (PHY) layer in Cognitive Radio Network (CRN) using Orthogonal Frequency Division Multiplexing (OFDM). User's data symbols are mapped over the physical subcarriers with a permutation formula. The PHY layer is secured...... with a random and dynamic subcarrier permutation which is based on a single pre-shared information and depends on Dynamic Spectrum Access (DSA). The dynamic subcarrier permutation is varying over time, geographical location and environment status, resulting in a very robust protection that ensures...... confidentiality. The method is shown to be effective also for existing non-cognitive systems. The proposed mechanism is effective against eavesdropping even if the eavesdropper adopts a long-time patterns analysis, thus protecting cryptography techniques of higher layers. The correlation properties...
Stochastic runaway of dynamical systems
International Nuclear Information System (INIS)
Pfirsch, D.; Graeff, P.
1984-10-01
One-dimensional, stochastic, dynamical systems are well studied with respect to their stability properties. Less is known for the higher dimensional case. This paper derives sufficient and necessary criteria for the asymptotic divergence of the entropy (runaway) and sufficient ones for the moments of n-dimensional, stochastic, dynamical systems. The crucial implication is the incompressibility of their flow defined by the equations of motion in configuration space. Two possible extensions to compressible flow systems are outlined. (orig.)
Dynamical systems in classical mechanics
Kozlov, V V
1995-01-01
This book shows that the phenomenon of integrability is related not only to Hamiltonian systems, but also to a wider variety of systems having invariant measures that often arise in nonholonomic mechanics. Each paper presents unique ideas and original approaches to various mathematical problems related to integrability, stability, and chaos in classical dynamics. Topics include… the inverse Lyapunov theorem on stability of equilibria geometrical aspects of Hamiltonian mechanics from a hydrodynamic perspective current unsolved problems in the dynamical systems approach to classical mechanics
DEFF Research Database (Denmark)
Thomsen, Per Grove
1996-01-01
A one-dimensional model with axial discretization of engine components has been formulated using tha balance equations for mass energy and momentum and the ideal gas equation of state. ODE's that govern the dynamic behaviour of the regenerator matrix temperatures are included in the model. Known...
Madjid, F. Hadi; Myers, John M.
2016-10-01
The world runs on networks over which signals communicate sequences of symbols, e.g. numerals. Examining both engineered and natural communications networks reveals an unsuspected order that depends on contact with an unpredictable entity. This order has three roots. The first is a proof within quantum theory that no evidence can ever determine its explanation, so that an agent choosing an explanation must do so unpredictably. The second root is the showing that clocks that step computers do not "tell time" but serve as self-adjusting symbol-handling agents that regulate "logically synchronized" motion in response to unpredictable disturbances. Such a clock-agent has a certain independence as well as the capacity to communicate via unpredictable symbols with other clock-agents and to adjust its own tick rate in response to that communication. The third root is the noticing of unpredictable symbol exchange in natural systems, including the transmission of symbols found in molecular biology. We introduce a symbol-handling agent as a role played in some cases by a person, for example a physicist who chooses an explanation of given experimental outcomes, and in other cases by some other biological entity, and in still other cases by an inanimate device, such as a computer-based detector used in physical measurements. While we forbear to try to explain the propensity of agents at all levels from cells to civilizations to form and operate networks of logically synchronized symbol-handling agents, we point to this propensity as an overlooked cosmic order, an order structured by the unpredictability ensuing from the proof. Appreciating the cosmic order leads to a conception of agency that replaces volition by unpredictability and reconceives the notion of objectivity in a way that makes a place for agency in the world as described by physics. Some specific implications for physics are outlined.
Christoffel symbols and inertia in flat space-time theory. [Curvilinear coordinate systems
Energy Technology Data Exchange (ETDEWEB)
Krause, J [Universidad Central de Venezuela, Caracas
1976-11-01
A necessary and sufficient criterion of inertia is presented, for the flat space-time theory of general frames of reference, in terms of the vanishing of some typical components of the affine connection pertaining to curvilinear coordinate systems. The physical identification of inertial forces thus arises in the context of the special theory of relativity.
Spectral Weighting Functions for Single-symbol Phase-noise Specifications in OFDM Systems
Hoeksema, F.W.; Schiphorst, Roelof; Slump, Cornelis H.
2003-01-01
For the specification of phase-noise requirements for the front-end of a HiperLAN/2 system we investigated available literature on the subject. Literature differed in several aspects. One aspect is in the type of phase-noise used (Wiener phase-noise or small-angle phase noise). A Wiener phase-noise
Zamunér, Antonio Roberto; Andrade, Carolina P; Forti, Meire; Marchi, Andrea; Milan, Juliana; Avila, Mariana Arias; Catai, Aparecida Maria; Porta, Alberto; Silva, Ester
2015-01-01
To evaluate the effects of a hydrotherapy programme on aerobic capacity and linear and non-linear dynamics of heart rate variability (HRV) in women with fibromyalgia syndrome (FMS). 20 women with FMS and 20 healthy controls (HC) took part in the study. The FMS group was evaluated at baseline and after a 16-week hydrotherapy programme. All participants underwent cardiopulmonary exercise testing on a cycle ergometer and RR intervals recording in supine and standing positions. The HRV was analysed by linear and non-linear methods. The current level of pain, the tender points, the pressure pain threshold and the impact of FMS on quality of life were assessed. The FMS patients presented higher cardiac sympathetic modulation, lower vagal modulation and lower complexity of HRV in supine position than the HC. Only the HC decreased the complexity indices of HRV during orthostatic stimulus. After a 16-week hydrotherapy programme, the FMS patients increased aerobic capacity, decreased cardiac sympathetic modulation and increased vagal modulation and complexity dynamics of HRV in supine. The FMS patients also improved their cardiac autonomic adjustments to the orthostatic stimulus. Associations between improvements in non-linear dynamics of HRV and improvements in pain and in the impact of FMS on quality of life were found. A 16-week hydrotherapy programme proved to be effective in ameliorating symptoms, aerobic functional capacity and cardiac autonomic control in FMS patients. Improvements in the non-linear dynamics of HRV were related to improvements in pain and in the impact of FMS on quality of life.
Lectures on chaotic dynamical systems
Afraimovich, Valentin
2002-01-01
This book is devoted to chaotic nonlinear dynamics. It presents a consistent, up-to-date introduction to the field of strange attractors, hyperbolic repellers, and nonlocal bifurcations. The authors keep the highest possible level of "physical" intuition while staying mathematically rigorous. In addition, they explain a variety of important nonstandard algorithms and problems involving the computation of chaotic dynamics. The book will help readers who are not familiar with nonlinear dynamics to understand and appreciate sophisticated modern dynamical systems and chaos. Intended for courses in either mathematics, physics, or engineering, prerequisites are calculus, differential equations, and functional analysis.
Dynamics robustness of cascading systems.
Directory of Open Access Journals (Sweden)
Jonathan T Young
2017-03-01
Full Text Available A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1 Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2 Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it
Dynamic Ocean Track System Plus -
Department of Transportation — Dynamic Ocean Track System Plus (DOTS Plus) is a planning tool implemented at the ZOA, ZAN, and ZNY ARTCCs. It is utilized by Traffic Management Unit (TMU) personnel...
Dynamical systems and linear algebra
Colonius, Fritz (Prof.)
2007-01-01
Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)
Directory of Open Access Journals (Sweden)
Bert Reynvoet
2016-10-01
Full Text Available Recently, a lot of studies in the domain of numerical cognition have been published demonstrating a robust association between numerical symbol processing and individual differences in mathematics achievement. Because numerical symbols are so important for mathematics achievement, many researchers want to provide an answer on the ‘symbol grounding problem’, i.e., how does a symbol acquires its numerical meaning? The most popular account, the ANS mapping account, assumes that a symbol acquires its numerical meaning by being mapped on a non-verbal and Approximate Number System (ANS. Here, we critically evaluate four arguments that are supposed to support this account, i.e., (1 there is an evolutionary system for approximate number processing, (2 non-symbolic and symbolic number processing show the same behavioral effects, (3 non-symbolic and symbolic numbers activate the same brain regions which are also involved in more advanced calculation and (4 non-symbolic comparison is related to the performance on symbolic mathematics achievement tasks. Based on this evaluation, we conclude that all of these arguments and consequently also the mapping account are questionable. Next we explored less popular alternative, where small numerical symbols are initially mapped on a precise representation and then, in combination with increasing knowledge of the counting list result in an independent and exact symbolic system based on order relations between symbols. We evaluate this account by reviewing evidence on order judgement tasks following the same four arguments. Although further research is necessary, the available evidence so far suggests that this symbol-symbol association account should be considered as a worthy alternative of how symbols acquire their meaning.
Reynvoet, Bert; Sasanguie, Delphine
2016-01-01
Recently, a lot of studies in the domain of numerical cognition have been published demonstrating a robust association between numerical symbol processing and individual differences in mathematics achievement. Because numerical symbols are so important for mathematics achievement, many researchers want to provide an answer on the 'symbol grounding problem,' i.e., how does a symbol acquires its numerical meaning? The most popular account, the approximate number system ( ANS ) mapping account , assumes that a symbol acquires its numerical meaning by being mapped on a non-verbal and ANS. Here, we critically evaluate four arguments that are supposed to support this account, i.e., (1) there is an evolutionary system for approximate number processing, (2) non-symbolic and symbolic number processing show the same behavioral effects, (3) non-symbolic and symbolic numbers activate the same brain regions which are also involved in more advanced calculation and (4) non-symbolic comparison is related to the performance on symbolic mathematics achievement tasks. Based on this evaluation, we conclude that all of these arguments and consequently also the mapping account are questionable. Next we explored less popular alternative, where small numerical symbols are initially mapped on a precise representation and then, in combination with increasing knowledge of the counting list result in an independent and exact symbolic system based on order relations between symbols. We evaluate this account by reviewing evidence on order judgment tasks following the same four arguments. Although further research is necessary, the available evidence so far suggests that this symbol-symbol association account should be considered as a worthy alternative of how symbols acquire their meaning.
Directory of Open Access Journals (Sweden)
Z. Ertinger
1995-09-01
Full Text Available Our aim is to present some aspects of the mathematical theory of strange behaviour of nonlinear systems, especially of systems with symmetry. Proofs are emitted, the interested reader is advised to references. Our presentation is inevitably selective. We focus on parts of the theory with possible applications to electronic circuits and systems which may display chaotic behaviour.
Dynamical systems in population biology
Zhao, Xiao-Qiang
2017-01-01
This research monograph provides an introduction to the theory of nonautonomous semiflows with applications to population dynamics. It develops dynamical system approaches to various evolutionary equations such as difference, ordinary, functional, and partial differential equations, and pays more attention to periodic and almost periodic phenomena. The presentation includes persistence theory, monotone dynamics, periodic and almost periodic semiflows, basic reproduction ratios, traveling waves, and global analysis of prototypical population models in ecology and epidemiology. Research mathematicians working with nonlinear dynamics, particularly those interested in applications to biology, will find this book useful. It may also be used as a textbook or as supplementary reading for a graduate special topics course on the theory and applications of dynamical systems. Dr. Xiao-Qiang Zhao is a University Research Professor at Memorial University of Newfoundland, Canada. His main research interests involve applied...
International Nuclear Information System (INIS)
Mandal, Shyamapada; Santhi, B.; Sridhar, S.; Vinolia, K.; Swaminathan, P.
2017-01-01
Highlights: • A novel approach to classify the fault pattern using data-driven methods. • Application of robust reconstruction method (SVD) to identify the faulty sensor. • Analysing fault pattern for plenty of sensors using SDF with less time complexity. • An efficient data-driven model is designed to the false and missed alarms. - Abstract: A mathematical model with two layers is developed using data-driven methods for thermocouple sensor fault detection and classification in Nuclear Power Plants (NPP). The Singular Value Decomposition (SVD) based method is applied to detect the faulty sensor from a data set of all sensors, at the first layer. In the second layer, the Symbolic Dynamic Filter (SDF) is employed to classify the fault pattern. If SVD detects any false fault, it is also re-evaluated by the SDF, i.e., the model has two layers of checking to balance the false alarms. The proposed fault detection and classification method is compared with the Principal Component Analysis. Two case studies are taken from Fast Breeder Test Reactor (FBTR) to prove the efficiency of the proposed method.
Byk, Christian
2010-12-01
Included in human rights law just after the Second World War, dignity is the quality common to all people in that it symbolises their human condition. Inherent to each person, it is therefore independent of any other personal and random condition (physical state, origin, colour, religion...) just as it is independent of social conditions (a person's dignity cannot be questioned by society). However, the very context of this recognition--in the aftermath of the defeat of Nazism--emphasises the fact that it was not something evident in human history. So there is in this manifestation of the international community a strong political sign which makes dignity as much a construction of man as a quality consubstantial with his nature. A symbol of the human condition, dignity is therefore also a dynamic value, a combat value. As such, it forces us to wonder about what belongs to the human sphere and also about the particular responsibility which springs for every man and for mankind, from the dignity with which he is invested.
Dynamics of Financial System: A System Dynamics Approach
Girish K. Nair; Lewlyn Lester Raj Rodrigues
2013-01-01
There are several ratios which define the financial health of an organization but the importance of Net cash flow, Gross income, Net income, Pending bills, Receivable bills, Debt, and Book value can never be undermined as they give the exact picture of the financial condition. While there are several approaches to study the dynamics of these variables, system dynamics based modelling and simulation is one of the modern techniques. The paper explores this method to simulate the before mentione...
K.C. , Santosh; Wendling , Laurent
2015-01-01
International audience; The chapter focuses on one of the key issues in document image processing i.e., graphical symbol recognition. Graphical symbol recognition is a sub-field of a larger research domain: pattern recognition. The chapter covers several approaches (i.e., statistical, structural and syntactic) and specially designed symbol recognition techniques inspired by real-world industrial problems. It, in general, contains research problems, state-of-the-art methods that convey basic s...
Self-supervised dynamical systems
International Nuclear Information System (INIS)
Zak, Michail
2004-01-01
A new type of dynamical systems which capture the interactions via information flows typical for active multi-agent systems is introduced. The mathematical formalism is based upon coupling the classical dynamical system (with random components caused by uncertainties in initial conditions as well as by Langevin forces) with the corresponding Liouville or the Fokker-Planck equations describing evolution of these uncertainties in terms of probability density. The coupling is implemented by information-based supervising forces which fundamentally change the patterns of probability evolution. It is demonstrated that the probability density can approach prescribed attractors while exhibiting such patterns as shock waves, solitons and chaos in probability space. Applications of these phenomena to information-based neural nets, expectation-based cooperation, self-programmed systems, control chaos using terminal attractors as well as to games with incomplete information, are addressed. A formal similarity between the mathematical structure of the introduced dynamical systems and quantum mechanics is discussed
International Nuclear Information System (INIS)
Geng Tao; Shan Wenrui; Lue Xing; Cai Kejie; Zhang Cheng; Tian Bo
2009-01-01
Fusion and fission phenomena for solitary waves have been discovered theoretically and experimentally. In this paper, the (2 + 1)-dimensional variable-coefficient Broer-Kaup system is symbolically investigated. By employing the bilinear method, new solitary solutions with arbitrary functions are obtained. At the same time, the non-elastic interactions of solitary solutions are graphically studied. Furthermore, soliton fusion and fission phenomena are revealed by choosing appropriate functions.
Nonlinear dynamics in biological systems
Carballido-Landeira, Jorge
2016-01-01
This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...
Gustavvson, M.; Kolstrup, E.; Seijmonsbergen, A.C.
2006-01-01
Abstract This paper presents a comprehensive and flexible new geomorphological combination legend that expands the possibilities of current geomorphological mapping concepts. The new legend is presented here at scale of 1:10,000 and it combines symbols for hydrography, morphometry/morphography,
Amsberry, Gianna; McLaughlin, T. F.; Derby, K. Mark; Waco, Teresa
2012-01-01
The purpose of this study was to determine the effectiveness of using the Davis Symbol Mastery Procedure for Words (Davis, 1994) for improving spelling skills. The participant was a fourth-grade male diagnosed with a significant learning disability. The intervention consisted of having the participant write each word, its definition, the word in a…
Dynamic Stability of Maglev Systems,
1992-04-01
AD-A259 178 ANL-92/21 Materials and Components Dynamic Stability of Technology Division Materials and Components Maglev Systems Technology Division...of Maglev Systems Y. Cai, S. S. Chen, and T. M. Mulcahy Materials and Components Technology Division D. M. Rote Center for Transportation Research...of Maglev System with L-Shaped Guideway ......................................... 6 3 Stability of M aglev System s
Self-Supervised Dynamical Systems
Zak, Michail
2003-01-01
Some progress has been made in a continuing effort to develop mathematical models of the behaviors of multi-agent systems known in biology, economics, and sociology (e.g., systems ranging from single or a few biomolecules to many interacting higher organisms). Living systems can be characterized by nonlinear evolution of probability distributions over different possible choices of the next steps in their motions. One of the main challenges in mathematical modeling of living systems is to distinguish between random walks of purely physical origin (for instance, Brownian motions) and those of biological origin. Following a line of reasoning from prior research, it has been assumed, in the present development, that a biological random walk can be represented by a nonlinear mathematical model that represents coupled mental and motor dynamics incorporating the psychological concept of reflection or self-image. The nonlinear dynamics impart the lifelike ability to behave in ways and to exhibit patterns that depart from thermodynamic equilibrium. Reflection or self-image has traditionally been recognized as a basic element of intelligence. The nonlinear mathematical models of the present development are denoted self-supervised dynamical systems. They include (1) equations of classical dynamics, including random components caused by uncertainties in initial conditions and by Langevin forces, coupled with (2) the corresponding Liouville or Fokker-Planck equations that describe the evolutions of probability densities that represent the uncertainties. The coupling is effected by fictitious information-based forces, denoted supervising forces, composed of probability densities and functionals thereof. The equations of classical mechanics represent motor dynamics that is, dynamics in the traditional sense, signifying Newton s equations of motion. The evolution of the probability densities represents mental dynamics or self-image. Then the interaction between the physical and
Dynamically reconfigurable photovoltaic system
Okandan, Murat; Nielson, Gregory N.
2016-05-31
A PV system composed of sub-arrays, each having a group of PV cells that are electrically connected to each other. A power management circuit for each sub-array has a communications interface and serves to connect or disconnect the sub-array to a programmable power grid. The power grid has bus rows and bus columns. A bus management circuit is positioned at a respective junction of a bus column and a bus row and is programmable through its communication interface to connect or disconnect a power path in the grid. As a result, selected sub-arrays are connected by selected power paths to be in parallel so as to produce a low system voltage, and, alternately in series so as to produce a high system voltage that is greater than the low voltage by at least a factor of ten.
Dynamically reconfigurable photovoltaic system
Energy Technology Data Exchange (ETDEWEB)
Okandan, Murat; Nielson, Gregory N.
2016-12-27
A PV system composed of sub-arrays, each having a group of PV cells that are electrically connected to each other. A power management circuit for each sub-array has a communications interface and serves to connect or disconnect the sub-array to a programmable power grid. The power grid has bus rows and bus columns. A bus management circuit is positioned at a respective junction of a bus column and a bus row and is programmable through its communication interface to connect or disconnect a power path in the grid. As a result, selected sub-arrays are connected by selected power paths to be in parallel so as to produce a low system voltage, and, alternately in series so as to produce a high system voltage that is greater than the low voltage by at least a factor of ten.
Howard, Ronald A
2007-01-01
This book is an integrated work published in two volumes. The first volume treats the basic Markov process and its variants; the second, semi-Markov and decision processes. Its intent is to equip readers to formulate, analyze, and evaluate simple and advanced Markov models of systems, ranging from genetics and space engineering to marketing. More than a collection of techniques, it constitutes a guide to the consistent application of the fundamental principles of probability and linear system theory.Author Ronald A. Howard, Professor of Management Science and Engineering at Stanford University
Dynamical system approach to phyllotaxis
DEFF Research Database (Denmark)
D'ovidio, Francesco; Mosekilde, Erik
2000-01-01
and not a dynamical system, mainly because new active elements are added at each step, and thus the dimension of the "natural" phase space is not conserved. Here a construction is presented by which a well defined dynamical system can be obtained, and a bifurcation analysis can be carried out. Stable and unstable...... of the Jacobian, and thus the eigenvalues, is given. It is likely that problems of the above type often arise in biology, and especially in morphogenesis, where growing systems are modeled....
Constraint elimination in dynamical systems
Singh, R. P.; Likins, P. W.
1989-01-01
Large space structures (LSSs) and other dynamical systems of current interest are often extremely complex assemblies of rigid and flexible bodies subjected to kinematical constraints. A formulation is presented for the governing equations of constrained multibody systems via the application of singular value decomposition (SVD). The resulting equations of motion are shown to be of minimum dimension.
Experimental Modeling of Dynamic Systems
DEFF Research Database (Denmark)
Knudsen, Morten Haack
2006-01-01
An engineering course, Simulation and Experimental Modeling, has been developed that is based on a method for direct estimation of physical parameters in dynamic systems. Compared with classical system identification, the method appears to be easier to understand, apply, and combine with physical...
Computable Types for Dynamic Systems
P.J. Collins (Pieter); K. Ambos-Spies; B. Loewe; W. Merkle
2009-01-01
textabstractIn this paper, we develop a theory of computable types suitable for the study of dynamic systems in discrete and continuous time. The theory uses type-two effectivity as the underlying computational model, but we quickly develop a type system which can be manipulated abstractly, but for
Culture as a Moving Symbolic Border.
Simão, Lívia Mathias
2016-03-01
The aim of this paper is to propose the notion of culture as a symbolic moving border. Departing from both, Boesch's (1991) concept of culture as a symbolic field of action, and Herbst's (1995) co-genetic logic, I will discuss the dynamics of self-other relationships in terms of their potentiality as sources of movement in culture. A brief analysis of an empirical material is given in illustrative character of the ideas here exposed.
Managing Complex Dynamical Systems
Cox, John C.; Webster, Robert L.; Curry, Jeanie A.; Hammond, Kevin L.
2011-01-01
Management commonly engages in a variety of research designed to provide insight into the motivation and relationships of individuals, departments, organizations, etc. This paper demonstrates how the application of concepts associated with the analysis of complex systems applied to such data sets can yield enhanced insights for managerial action.
Parametric Resonance in Dynamical Systems
Nijmeijer, Henk
2012-01-01
Parametric Resonance in Dynamical Systems discusses the phenomenon of parametric resonance and its occurrence in mechanical systems,vehicles, motorcycles, aircraft and marine craft, and micro-electro-mechanical systems. The contributors provide an introduction to the root causes of this phenomenon and its mathematical equivalent, the Mathieu-Hill equation. Also included is a discussion of how parametric resonance occurs on ships and offshore systems and its frequency in mechanical and electrical systems. This book also: Presents the theory and principles behind parametric resonance Provides a unique collection of the different fields where parametric resonance appears including ships and offshore structures, automotive vehicles and mechanical systems Discusses ways to combat, cope with and prevent parametric resonance including passive design measures and active control methods Parametric Resonance in Dynamical Systems is ideal for researchers and mechanical engineers working in application fields such as MEM...
Hamilton, Alison B; Yano, Elizabeth M
2017-09-01
In this commentary, we respond to the commentary provided by Goodman and Sanders Thompson regarding our paper on multilevel stakeholder engagement in a VA implementation trial of evidence-based quality improvement (EBQI) in women's health primary care. We clarify our overall approach to engagement (comprised of both symbolic and engaged participation, according to the authors' classification rubric), highlighting that symbolic participation is of more import and value than the authors suggest, especially in the context of a hierarchical healthcare system. We contend that the issue of power-and how power matters in stakeholder engagement-needs to be considered in this context rather than in global "community" terms. In response to the authors' call for greater detail, we clarify our planning processes as well as our approach to veteran engagement. We concur with Goodman and Sanders Thompson that the science of stakeholder engagement necessitates a broader understanding of best practices as well as the impact of engagement on implementation outcomes.
Graphic Symbol Recognition using Graph Based Signature and Bayesian Network Classifier
Luqman, Muhammad Muzzamil; Brouard, Thierry; Ramel, Jean-Yves
2010-01-01
We present a new approach for recognition of complex graphic symbols in technical documents. Graphic symbol recognition is a well known challenge in the field of document image analysis and is at heart of most graphic recognition systems. Our method uses structural approach for symbol representation and statistical classifier for symbol recognition. In our system we represent symbols by their graph based signatures: a graphic symbol is vectorized and is converted to an attributed relational g...
Multi-core symbolic bisimulation minimisation
Dijk, Tom van; Pol, Jaco van de
2017-01-01
We introduce parallel symbolic algorithms for bisimulation minimisation, to combat the combinatorial state space explosion along three different paths. Bisimulation minimisation reduces a transition system to the smallest system with equivalent behaviour. We consider strong and branching
Children’s Non-symbolic, Symbolic Addition and Their Mapping Capacity at 4–7 Years Old
Directory of Open Access Journals (Sweden)
Yanjun Li
2017-07-01
Full Text Available The study aimed to examine the developmental trajectories of non-symbolic and symbolic addition capacities in children and the mapping ability between these two. We assessed 106 4- to 7-year-old children and found that 4-year-olds were able to do non-symbolic addition but not symbolic addition. Five-year-olds and older were able to do symbolic addition and their performance in symbolic addition exceeded non-symbolic addition in grade 1 (approximate age 7. These results suggested non-symbolic addition ability emerges earlier and is less affected by formal mathematical education than symbolic addition. Meanwhile, we tested children’s bi-directional mapping ability using a novel task and found that children were able to map between symbolic and non-symbolic representations of number at age 5. Their ability in mapping non-symbolic to symbolic number became more proficient in grade 1 (approximate age 7. This suggests children at age 7 have developed a relatively mature symbolic representation system.
'demoted'?: Symbols as religious phenomena
African Journals Online (AJOL)
2013-03-06
Mar 6, 2013 ... process by which symbols grow and develop, the particular context of a symbol is important. In this article a particular theory as to what symbols are, is presented. ... of communication and reference between these two worlds are symbols. .... from a psychological perspective, understands symbols as a.
The Dynamical Invariant of Open Quantum System
Wu, S. L.; Zhang, X. Y.; Yi, X. X.
2015-01-01
The dynamical invariant, whose expectation value is constant, is generalized to open quantum system. The evolution equation of dynamical invariant (the dynamical invariant condition) is presented for Markovian dynamics. Different with the dynamical invariant for the closed quantum system, the evolution of the dynamical invariant for the open quantum system is no longer unitary, and the eigenvalues of it are time-dependent. Since any hermitian operator fulfilling dynamical invariant condition ...
Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking
Directory of Open Access Journals (Sweden)
Christian Appold
2010-06-01
Full Text Available One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking.
Dynamic simulation of LMFBR systems
International Nuclear Information System (INIS)
Agrawal, A.K.; Khatib-Rahbar, M.
1980-01-01
This review article focuses on the dynamic analysis of liquid-metal-cooled fast breeder reactor systems in the context of protected transients. Following a brief discussion on various design and simulation approaches, a critical review of various models for in-reactor components, intermediate heat exchangers, heat transport systems and the steam generating system is presented. A brief discussion on choice of fuels as well as core and blanket system designs is also included. Numerical considerations for obtaining system-wide steady-state and transient solutions are discussed, and examples of various system transients are presented. Another area of major interest is verification of phenomenological models. Various steps involved in the code and model verification are briefly outlined. The review concludes by posing some further areas of interest in fast reactor dynamics and safety. (author)
Directory of Open Access Journals (Sweden)
O. G. Shostak
2003-06-01
Full Text Available This paper is dedicated to the question of similarities in the approach to the multilevel symbolism in Slav and Native American cultures. Ambivalent symbol of the snake is analyzed in the frame of mythological thinking. At the end the author comes to the conclusion that elements of mythological thinking are still present in everyday life and influence human behavior levels
Directory of Open Access Journals (Sweden)
Furman Tamar
2012-11-01
Full Text Available Abstract Background The question whether Developmental Dyscalculia (DD; a deficit in the ability to process numerical information is the result of deficiencies in the non symbolic numerical representation system (e.g., a group of dots or in the symbolic numerical representation system (e.g., Arabic numerals has been debated in scientific literature. It is accepted that the non symbolic system is divided into two different ranges, the subitizing range (i.e., quantities from 1-4 which is processed automatically and quickly, and the counting range (i.e., quantities larger than 4 which is an attention demanding procedure and is therefore processed serially and slowly. However, so far no study has tested the automaticity of symbolic and non symbolic representation in DD participants separately for the subitizing and the counting ranges. Methods DD and control participants undergo a novel version of the Stroop task, i.e., the Enumeration Stroop. They were presented with a random series of between one and nine written digits, and were asked to name either the relevant written digit (in the symbolic task or the relevant quantity of digits (in the non symbolic task while ignoring the irrelevant aspect. Result DD participants, unlike the control group, didn't show any congruency effect in the subitizing range of the non symbolic task. Conclusion These findings suggest that DD may be impaired in the ability to process symbolic numerical information or in the ability to automatically associate the two systems (i.e., the symbolic vs. the non symbolic. Additionally DD have deficiencies in the non symbolic counting range.
Furman, Tamar; Rubinsten, Orly
2012-11-28
The question whether Developmental Dyscalculia (DD; a deficit in the ability to process numerical information) is the result of deficiencies in the non symbolic numerical representation system (e.g., a group of dots) or in the symbolic numerical representation system (e.g., Arabic numerals) has been debated in scientific literature. It is accepted that the non symbolic system is divided into two different ranges, the subitizing range (i.e., quantities from 1-4) which is processed automatically and quickly, and the counting range (i.e., quantities larger than 4) which is an attention demanding procedure and is therefore processed serially and slowly. However, so far no study has tested the automaticity of symbolic and non symbolic representation in DD participants separately for the subitizing and the counting ranges. DD and control participants undergo a novel version of the Stroop task, i.e., the Enumeration Stroop. They were presented with a random series of between one and nine written digits, and were asked to name either the relevant written digit (in the symbolic task) or the relevant quantity of digits (in the non symbolic task) while ignoring the irrelevant aspect. DD participants, unlike the control group, didn't show any congruency effect in the subitizing range of the non symbolic task. These findings suggest that DD may be impaired in the ability to process symbolic numerical information or in the ability to automatically associate the two systems (i.e., the symbolic vs. the non symbolic). Additionally DD have deficiencies in the non symbolic counting range.
Combinations of complex dynamical systems
Pilgrim, Kevin M
2003-01-01
This work is a research-level monograph whose goal is to develop a general combination, decomposition, and structure theory for branched coverings of the two-sphere to itself, regarded as the combinatorial and topological objects which arise in the classification of certain holomorphic dynamical systems on the Riemann sphere. It is intended for researchers interested in the classification of those complex one-dimensional dynamical systems which are in some loose sense tame. The program is motivated by the dictionary between the theories of iterated rational maps and Kleinian groups.
Coherent structures and dynamical systems
Jimenez, Javier
1987-01-01
Any flow of a viscous fluid has a finite number of degrees of freedom, and can therefore be seen as a dynamical system. A coherent structure can be thought of as a lower dimensional manifold in whose neighborhood the dynamical system spends a substantial fraction of its time. If such a manifold exists, and if its dimensionality is substantially lower that that of the full flow, it is conceivable that the flow could be described in terms of the reduced set of degrees of freedom, and that such a description would be simpler than one in which the existence of structure was not recognized. Several examples are briefly summarized.
Democratisation of AAC Symbol Choices Using Technology.
Draffan, E A; Wald, Mike; Zeinoun, Nadine; Banes, David
2017-01-01
The use of an online voting system has been developed to enable democratic choices of newly designed symbols to support speech, language and literacy skills in a localisation situation. The system works for those using and supporting Augmentative and Alternative Communication (AAC) symbols on electronic systems by the provision of simplified scales of acceptance and adapted grids. The methodology and results highlighted the importance of user participation at the outset and concrete examples of symbol adaptations that were found necessary to ensure higher levels of user satisfaction. Design changes included appropriate local dress codes, linguistic nuances, social settings, the built environment and religious sensitivities.
Truly random dynamics generated by autonomous dynamical systems
González, J. A.; Reyes, L. I.
2001-09-01
We investigate explicit functions that can produce truly random numbers. We use the analytical properties of the explicit functions to show that a certain class of autonomous dynamical systems can generate random dynamics. This dynamics presents fundamental differences with the known chaotic systems. We present real physical systems that can produce this kind of random time-series. Some applications are discussed.
Dynamic decoupling of secondary systems
International Nuclear Information System (INIS)
Gupta, A.K.; Tembulkar, J.M.
1984-01-01
The dynamic analysis of primary systems must often be performed decoupled from the secondary system. In doing so, one should assure that the decoupling does not significantly affect the frequencies and the response of the primary systems. The practice consists of heuristic algorithms intended to limit changes in the frequencies. The change in response is not considered. In this paper, changes in both the frequencies and the response are considered. Rational, but simple algorithms are derived to make accurate predictions. Material up to MDOF primary-SDOF secondary system is presented in this paper. MDOF-MDOF systems are treated in a companion paper. (orig.)
Self-organisation of symbolic information
Feistel, R.
2017-01-01
Information is encountered in two different appearances, in native form by arbitrary physical structures, or in symbolic form by coded sequences of letters or the like. The self-organised emergence of symbolic information from structural information is referred to as a ritualisation transition. Occurring at some stage in evolutionary history, ritualisation transitions have in common that after the crossover, arbitrary symbols are issued and recognised by information-processing devices, by transmitters and receivers in the sense of Shannon's communication theory. Symbolic information-processing systems exhibit the fundamental code symmetry whose key features, such as largely lossless copying or persistence under hostile conditions, may elucidate the reasons for the repeated successful occurrence of ritualisation phenomena in evolution history. Ritualisation examples are briefly reviewed such as the origin of life, the appearance of human languages, the establishment of emergent social categories such as money, or the development of digital computers. In addition to their role as carriers of symbolic information, symbols are physical structures which also represent structural information. For a thermodynamic description of symbols and their arrangements, it appears reasonable to distinguish between Boltzmann entropy, Clausius entropy and Pauling entropy. Thermodynamic properties of symbols imply that their lifetimes are limited by the 2nd law.
Dynamics of Variable Mass Systems
Eke, Fidelis O.
1998-01-01
This report presents the results of an investigation of the effects of mass loss on the attitude behavior of spinning bodies in flight. The principal goal is to determine whether there are circumstances under which the motion of variable mass systems can become unstable in the sense that their transverse angular velocities become unbounded. Obviously, results from a study of this kind would find immediate application in the aerospace field. The first part of this study features a complete and mathematically rigorous derivation of a set of equations that govern both the translational and rotational motions of general variable mass systems. The remainder of the study is then devoted to the application of the equations obtained to a systematic investigation of the effect of various mass loss scenarios on the dynamics of increasingly complex models of variable mass systems. It is found that mass loss can have a major impact on the dynamics of mechanical systems, including a possible change in the systems stability picture. Factors such as nozzle geometry, combustion chamber geometry, propellant's initial shape, size and relative mass, and propellant location can all have important influences on the system's dynamic behavior. The relative importance of these parameters on-system motion are quantified in a way that is useful for design purposes.
Symbol in Point View of Ambiguity
Directory of Open Access Journals (Sweden)
Dr. M. R. Yousefi
.In general, in Persian poetry there are three types ofambiguity such as: uncertainty ambiguity, intentional and unintentional ambiguity.an effective literary texts, owes its origin to create multiple meanings and its levels of meaning. One serious differences literary work with other linguistic works is the plurality of meaning. Richness and depth range of literary texts and the creation of range meaning, in fact is ambiguity and uncertain.In this respect, by engaging the reader in creating meaning will be typicalinteraction between the audience and the text. Ambiguityprovidesopportunities for deep thinking and reacting of reader, so takes reader tobeyond Freedom of the text within its borders and freedom of thought has to be brought for its reader. Having interaction betweentext and reader in the history has caused to different reactions and multiple conversations with generationswhich interpreted as dynamicliterary ofthe work. The ambiguity of the poem is creating by the symbols and symbolism.So the symbol isrhetorical element in addition to the apparentrealmeaning, suggests wide range of meaningto the reader.in classical Persian works ambiguity in text created differently such az:Allegory and metaphor and password ;which today symbolize are burdeningthis task .In past Allegory in terms of clarity divided to the four categories:Implicitly, hint, password and widening.And allegories are codes allusions are hidden in them, so password knows asa symbol or a word that needed to understand. Metaphors are also due to the ambiguous, uncertain sense, to support new meaning to the traditional means in the appearance of metaphors (ie not considered true and apparentmeaning, but bymultiplevirtual semantics takesreadersto border suspicion of symbols.And generally are divided into two categories: metaphors that are close to the symbol and symbols that have been decoded.Since the natureof symbol is fundamentally ambiguous and multiple causes dynamics literary work, poetry - especially
2000-01-01
The book provides a self-contained introduction to the mathematical theory of non-smooth dynamical problems, as they frequently arise from mechanical systems with friction and/or impacts. It is aimed at applied mathematicians, engineers, and applied scientists in general who wish to learn the subject.
Controlling dynamics in diatomic systems
Indian Academy of Sciences (India)
WINTEC
Abstract. Controlling molecular energetics using laser pulses is exemplified for nuclear motion in two different diatomic systems. The problem of finding the optimized field for maximizing a desired quantum dynamical target is formulated using an iterative method. The method is applied for two diatomic sys- tems, HF and OH.
Multi-core symbolic bisimulation minimisation
Dijk, Tom van; Pol, Jaco van de
2017-01-01
We introduce parallel symbolic algorithms for bisimulation minimisation, to combat the combinatorial state space explosion along three different paths. Bisimulation minimisation reduces a transition system to the smallest system with equivalent behaviour. We consider strong and branching bisimilarity for interactive Markov chains, which combine labelled transition systems and continuous-time Markov chains. Large state spaces can be represented concisely by symbolic techniques, based on binary...
Noncoherent Symbol Synchronization Techniques
Simon, Marvin
2005-01-01
Traditional methods for establishing symbol synchronization (sync) in digital communication receivers assume that carrier sync has already been established, i.e., the problem is addressed at the baseband level assuming that a 'perfect' estimate of carrier phase is available. We refer to this approach as coherent symbol sync. Since, for NRZ signaling, a suppressed carrier sync loop such as an I-Q Costas loop includes integrate-and-dump (I and D) filters in its in-phase (1) and quadrature (Q) arms, the traditional approach is to first track the carrier in the absence of symbol sync information, then feed back the symbol sync estimate to these filters, and then iterate between the two to a desirable operating level In this paper, we revisit the symbol sync problem by examining methods for obtaining such sync in the absence of carrier phase information, i.e., so-called noncoherent symbol sync loops. We compare the performance of these loops with that of a well-known coherent symbol sync loop and examine the conditions under which one is preferable over the other.
Adaptive, dynamic, and resilient systems
Suri, Niranjan
2015-01-01
As the complexity of today's networked computer systems grows, they become increasingly difficult to understand, predict, and control. Addressing these challenges requires new approaches to building these systems. Adaptive, Dynamic, and Resilient Systems supplies readers with various perspectives of the critical infrastructure that systems of networked computers rely on. It introduces the key issues, describes their interrelationships, and presents new research in support of these areas.The book presents the insights of a different group of international experts in each chapter. Reporting on r
Directory of Open Access Journals (Sweden)
Nadine BOUDOU
2015-07-01
Full Text Available The objective of this article is to show why the zombie can be presented as a justifiable object of search for the symbolic communication. The zombie exists as symbol because the word the leading to a qualification became of current usage, what allows a widened communication. The diversity of the interpretations that he makes possible testifies of its ambivalence. That he is defined as a symbol or as a metaphor we shall see that, far from being that a lasted fad, the zombie is rich in different senses.
Dynamical systems probabilistic risk assessment
Energy Technology Data Exchange (ETDEWEB)
Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ames, Arlo Leroy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-03-01
Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power regulatory and licensing activities. Risk-informed regulations are intended to reduce inherent conservatism in regulatory metrics (e.g., allowable operating conditions and technical specifications) which are built into the regulatory framework by quantifying both the total risk profile as well as the change in the risk profile caused by an event or action (e.g., in-service inspection procedures or power uprates). Dynamical Systems (DS) analysis has been used to understand unintended time-dependent feedbacks in both industrial and organizational settings. In dynamical systems analysis, feedback loops can be characterized and studied as a function of time to describe the changes to the reliability of plant Structures, Systems and Components (SSCs). While DS has been used in many subject areas, some even within the PRA community, it has not been applied toward creating long-time horizon, dynamic PRAs (with time scales ranging between days and decades depending upon the analysis). Understanding slowly developing dynamic effects, such as wear-out, on SSC reliabilities may be instrumental in ensuring a safely and reliably operating nuclear fleet. Improving the estimation of a plant's continuously changing risk profile will allow for more meaningful risk insights, greater stakeholder confidence in risk insights, and increased operational flexibility.
Dynamics of immune system vulnerabilities
Stromberg, Sean P.
The adaptive immune system can be viewed as a complex system, which adapts, over time, to reflect the history of infections experienced by the organism. Understanding its operation requires viewing it in terms of tradeoffs under constraints and evolutionary history. It typically displays "robust, yet fragile" behavior, meaning common tasks are robust to small changes but novel threats or changes in environment can have dire consequences. In this dissertation we use mechanistic models to study several biological processes: the immune response, the homeostasis of cells in the lymphatic system, and the process that normally prevents autoreactive cells from entering the lymphatic system. Using these models we then study the effects of these processes interacting. We show that the mechanisms that regulate the numbers of cells in the immune system, in conjunction with the immune response, can act to suppress autoreactive cells from proliferating, thus showing quantitatively how pathogenic infections can suppress autoimmune disease. We also show that over long periods of time this same effect can thin the repertoire of cells that defend against novel threats, leading to an age correlated vulnerability. This vulnerability is shown to be a consequence of system dynamics, not due to degradation of immune system components with age. Finally, modeling a specific tolerance mechanism that normally prevents autoimmune disease, in conjunction with models of the immune response and homeostasis we look at the consequences of the immune system mistakenly incorporating pathogenic molecules into its tolerizing mechanisms. The signature of this dynamic matches closely that of the dengue virus system.
Ordering, symbols and finite-dimensional approximations of path integrals
International Nuclear Information System (INIS)
Kashiwa, Taro; Sakoda, Seiji; Zenkin, S.V.
1994-01-01
We derive general form of finite-dimensional approximations of path integrals for both bosonic and fermionic canonical systems in terms of symbols of operators determined by operator ordering. We argue that for a system with a given quantum Hamiltonian such approximations are independent of the type of symbols up to terms of O(ε), where ε of is infinitesimal time interval determining the accuracy of the approximations. A new class of such approximations is found for both c-number and Grassmannian dynamical variables. The actions determined by the approximations are non-local and have no classical continuum limit except the cases of pq- and qp-ordering. As an explicit example the fermionic oscillator is considered in detail. (author)
Vehicle systems: coupled and interactive dynamics analysis
Vantsevich, Vladimir V.
2014-11-01
This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.
Chaotic synchronization of symbolic information in the discrete nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Pando L, C.L.
2003-08-01
We have studied the discrete nonlinear Schrodinger equation (DNLSE) with on-site defects and periodic boundary conditions. When the array dynamics becomes chaotic, the otherwise quasiperiodic amplitude correlations between the oscillators are destroyed. However, we show that synchronization of symbolic information of suitable amplitude signals is possible in this hamiltonian system. (author)
Formalising Symbolic Interactionism
de Nooy, W.
2009-01-01
Symbolic interactionism is generally known as a theory typically linked with a qualitative methodology. Recent developments in quantitative social network analysis, however, can analyze processes theorized within this theoretical tradition. Thick description can be complemented with statistical
Symbolic Violence and Victimisation
DEFF Research Database (Denmark)
Pedersen, Bodil Maria
2009-01-01
has been criticised for over-generalisations, as well as for disregarding culture and the embeddedness of psychological problems in situated societal processes. The proposed paper is a contribution to this critique. It will draw on Bourdieu's concept of symbolic violence (1992). The concept connects......Nay (1999). It also undertakes a critical discussion of symbolic violence in the meanings given to victimisation and its aftermaths, as when conceptualised with the help of PTSD (e.g. may the use of concepts of this kind and the practices developed in relation to it constitute symbolic violence...... and contribute to victimisation?) Furthermore the analysis aims at unfolding an understanding of victimisation inclusive of connections between cultural/ societal practices, aspects of symbolic violence and lives of concrete subjects. The discussion takes its point of departure in theoretical deliberations...
Feedback coupling in dynamical systems
Trimper, Steffen; Zabrocki, Knud
2003-05-01
Different evolution models are considered with feedback-couplings. In particular, we study the Lotka-Volterra system under the influence of a cumulative term, the Ginzburg-Landau model with a convolution memory term and chemical rate equations with time delay. The memory leads to a modified dynamical behavior. In case of a positive coupling the generalized Lotka-Volterra system exhibits a maximum gain achieved after a finite time, but the population will die out in the long time limit. In the opposite case, the time evolution is terminated in a crash. Due to the nonlinear feedback coupling the two branches of a bistable model are controlled by the the strength and the sign of the memory. For a negative coupling the system is able to switch over between both branches of the stationary solution. The dynamics of the system is further controlled by the initial condition. The diffusion-limited reaction is likewise studied in case the reacting entities are not available simultaneously. Whereas for an external feedback the dynamics is altered, but the stationary solution remain unchanged, a self-organized internal feedback leads to a time persistent solution.
Wang, Liming; Qiao, Yaojun; Yu, Qian; Zhang, Wenbo
2016-04-01
We introduce a watermark non-binary low-density parity check code (NB-LDPC) scheme, which can estimate the time-varying noise variance by using prior information of watermark symbols, to improve the performance of NB-LDPC codes. And compared with the prior-art counterpart, the watermark scheme can bring about 0.25 dB improvement in net coding gain (NCG) at bit error rate (BER) of 1e-6 and 36.8-81% reduction of the iteration numbers. Obviously, the proposed scheme shows great potential in terms of error correction performance and decoding efficiency.
Hidden attractors in dynamical systems
Dudkowski, Dawid; Jafari, Sajad; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Prasad, Awadhesh
2016-06-01
Complex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors which have been called hidden attractors. The basins of attraction of the hidden attractors do not touch unstable fixed points (if exists) and are located far away from such points. Numerical localization of the hidden attractors is not straightforward since there are no transient processes leading to them from the neighborhoods of unstable fixed points and one has to use the special analytical-numerical procedures. From the viewpoint of applications, the identification of hidden attractors is the major issue. The knowledge about the emergence and properties of hidden attractors can increase the likelihood that the system will remain on the most desirable attractor and reduce the risk of the sudden jump to undesired behavior. We review the most representative examples of hidden attractors, discuss their theoretical properties and experimental observations. We also describe numerical methods which allow identification of the hidden attractors.
Matter and symbols of the artificial
Energy Technology Data Exchange (ETDEWEB)
Rocha, L.M.
1998-08-01
The study of complex systems should be based on a systems-theoretic framework which requires both self-organizing and symbolic dimensions. An inclusive framework based on the notion of semiotics is advanced to build models capable of representing, as well as evolving in their environments, with implications for Artificial Life. Such undertaking is pursued by discussing the ways in which symbol and matter are irreducibly intertwined in evolutionary systems. The problem is thus phrased in terms of the semiotic categories of syntax, semantics, and pragmatics. With this semiotic view of matter and symbols the requirements of semiotic closure are expressed in models with both self-organizing and symbolic characteristics. Situated action and recent developments in the evolution of cellular automata rules to solve non-trivial tasks are discussed in this context. Finally, indirect encoding schemes for genetic algorithms are developed which follow the semiotic framework here proposed.
Dynamical Systems and Motion Vision.
1988-04-01
TASK Artificial Inteligence Laboratory AREA I WORK UNIT NUMBERS 545 Technology Square . Cambridge, MA 02139 C\\ II. CONTROLLING OFFICE NAME ANO0 ADDRESS...INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A.I.Memo No. 1037 April, 1988 Dynamical Systems and Motion Vision Joachim Heel Abstract: In this... Artificial Intelligence L3 Laboratory of the Massachusetts Institute of Technology. Support for the Laboratory’s [1 Artificial Intelligence Research is
DYNAMICS OF FINANCIAL SYSTEM: A SYSTEM DYNAMICS APPROACH
Directory of Open Access Journals (Sweden)
Girish K Nair
2013-01-01
Full Text Available There are several ratios which define the financial health of an organization but the importance of Net cash flow, Gross income, Net income, Pending bills, Receivable bills, Debt, and Book value can never be undermined as they give the exact picture of the financial condition. While there are several approaches to study the dynamics of these variables, system dynamics based modelling and simulation is one of the modern techniques. The paper explores this method to simulate the before mentioned parameters during production capacity expansion in an electronic industry. Debt and Book value have shown a non-linear pattern of variation which is discussed. The model can be used by the financial experts as a decision support tool in arriving at conclusions in connection to the expansion plans of the organization.
On Rank Driven Dynamical Systems
Veerman, J. J. P.; Prieto, F. J.
2014-08-01
We investigate a class of models related to the Bak-Sneppen (BS) model, initially proposed to study evolution. The BS model is extremely simple and yet captures some forms of "complex behavior" such as self-organized criticality that is often observed in physical and biological systems. In this model, random fitnesses in are associated to agents located at the vertices of a graph . Their fitnesses are ranked from worst (0) to best (1). At every time-step the agent with the worst fitness and some others with a priori given rank probabilities are replaced by new agents with random fitnesses. We consider two cases: The exogenous case where the new fitnesses are taken from an a priori fixed distribution, and the endogenous case where the new fitnesses are taken from the current distribution as it evolves. We approximate the dynamics by making a simplifying independence assumption. We use Order Statistics and Dynamical Systems to define a rank-driven dynamical system that approximates the evolution of the distribution of the fitnesses in these rank-driven models, as well as in the BS model. For this simplified model we can find the limiting marginal distribution as a function of the initial conditions. Agreement with experimental results of the BS model is excellent.
DEFF Research Database (Denmark)
Gitz-Johansen, Thomas
2018-01-01
The article explores how Bruce Springsteen and his music function as a symbol. The article first presents the Jungian theory of symbols and of music as symbol. The central argument of the article is that, by functioning symbolically, Springsteen has the potential to influence the psyche of his au...
Hellmuth, Marc; Stadler, Peter F; Wieseke, Nicolas
2017-07-01
The concepts of orthology, paralogy, and xenology play a key role in molecular evolution. Orthology and paralogy distinguish whether a pair of genes originated by speciation or duplication. The corresponding binary relations on a set of genes form complementary cographs. Allowing more than two types of ancestral event types leads to symmetric symbolic ultrametrics. Horizontal gene transfer, which leads to xenologous gene pairs, however, is inherent asymmetric since one offspring copy "jumps" into another genome, while the other continues to be inherited vertically. We therefore explore here the mathematical structure of the non-symmetric generalization of symbolic ultrametrics. Our main results tie non-symmetric ultrametrics together with di-cographs (the directed generalization of cographs), so-called uniformly non-prime ([Formula: see text]) 2-structures, and hierarchical structures on the set of strong modules. This yields a characterization of relation structures that can be explained in terms of trees and types of ancestral events. This framework accommodates a horizontal-transfer relation in terms of an ancestral event and thus, is slightly different from the the most commonly used definition of xenology. As a first step towards a practical use, we present a simple polynomial-time recognition algorithm of [Formula: see text] 2-structures and investigate the computational complexity of several types of editing problems for [Formula: see text] 2-structures. We show, finally that these NP-complete problems can be solved exactly as Integer Linear Programs.
Symbol generators with program control
International Nuclear Information System (INIS)
Gryaznov, V.M.; Tomik, J.
1974-01-01
Methods of constructing symbol generators are described which ensure a program variation of symbol shape and setup. The symbols are formed on the basis of a point microraster. A symbol description code contains information on a symbol shape, with one digit corresponding to each microraster element. For a microraster discrete by-pass the description code is transformed into succession of illuminating pulses by means of a shift register
Substitution dynamical systems spectral analysis
Queffélec, Martine
2010-01-01
This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...
System dynamics in hydropower plants
Energy Technology Data Exchange (ETDEWEB)
Stuksrud, Dag Birger
1998-12-31
The main purpose of this thesis on system dynamics in hydropower plants was to establish new models of a hydropower system where the turbine/conduits and the electricity supply and generation are connected together as one unit such that possible interactions between the two power regimes can be studied. In order to describe the system dynamics as well as possible, a previously developed analytic model of high-head Francis turbines is improved. The model includes the acceleration resistance in the turbine runner and the draft tube. Expressions for the loss coefficients in the model are derived in order to obtain a purely analytic model. The necessity of taking the hydraulic inertia into account is shown by means of simulations. Unstable behaviour and a higher transient turbine speed than expected may occur for turbines with steep characteristics or large draft tubes. The turbine model was verified previously with respect to a high-head Francis turbine; the thesis performs an experimental verification on a low-head Francis turbine and compares the measurements with simulations from the improved turbine model. It is found that the dynamic turbine model is, after adjustment, capable of describing low-head machines as well with satisfying results. The thesis applies a method called the ``Limited zero-pole method`` to obtain new rational approximations of the elastic behaviour in the conduits with frictional damping included. These approximations are used to provide an accurate state space formulation of a hydropower plant. Simulations performed with the new computer programs show that hydraulic transients such as water-hammer and mass oscillations are reflected in the electric grid. Unstable governing performance in the electric and hydraulic parts also interact. This emphasizes the need for analysing the whole power system as a unit. 63 refs., 149 figs., 4 tabs.
Xu, Cheng; Gao, Guanjun; Chen, Sai; Zhang, Jie; Luo, Ming; Hu, Rong; Yang, Qi
2016-11-14
We compare the performance of sub-symbol-rate sampling for polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) signals in super-Nyquist wavelength division multiplexing (WDM) system by using quadrature duo-binary (QDB) and quadrature four-level poly-binary (4PB) shaping together with maximum likelihood sequence estimation (MLSE). PDM-16QAM is adopted in the simulation to be compared with PDM-QPSK. The numerical simulations show that, for a software defined communication system, the level number of quadrature poly-binary modulation should be adjusted to achieve the optimal performance according to channel spacing, required OSNR and sampling rate restrictions of optics. In the experiment, we demonstrate 3-channel 12-Gbaud PDM-QPSK transmission with 10-GHz channel spacing and only 8.4-GSa/s ADC sampling rate at lowest. By using QDB or 4PB shaping with 3tap-MLSE, the sampling rate can be reduced to the signal baud rate (1 samples per symbol) without penalty.
Multiple symbol differential detection
Divsalar, Dariush (Inventor); Simon, Marvin K. (Inventor)
1991-01-01
A differential detection technique for multiple phase shift keying (MPSK) signals is provided which uses a multiple symbol observation interval on the basis of which a joint decision is made regarding the phase of the received symbols. In accordance with the invention, a first difference phase is created between first and second received symbols. Next, the first difference phase is correlated with the possible values thereof to provide a first plurality of intermediate output signals. A second difference phase is next created between second and third received symbols. The second difference phase is correlated with plural possible values thereof to provide a second plurality of intermediate output signals. Next, a third difference phase is created between the first and third symbols. The third difference phase is correlated with plural possible values thereof to provide a third plurality of intermediate output signals. Each of the first plurality of intermediate outputs are combined with each of the second plurality of intermediate outputs and each of the third plurality of intermediate outputs to provide a plurality of possible output values. Finally, a joint decision is made by choosing from the plurality of possible output values the value which represents the best combined correlation of the first, second and third difference values with the possible values thereof.
Power system dynamics and control
Kwatny, Harry G
2016-01-01
This monograph explores a consistent modeling and analytic framework that provides the tools for an improved understanding of the behavior and the building of efficient models of power systems. It covers the essential concepts for the study of static and dynamic network stability, reviews the structure and design of basic voltage and load-frequency regulators, and offers an introduction to power system optimal control with reliability constraints. A set of Mathematica tutorial notebooks providing detailed solutions of the examples worked-out in the text, as well as a package that will enable readers to work out their own examples and problems, supplements the text. A key premise of the book is that the design of successful control systems requires a deep understanding of the processes to be controlled; as such, the technical discussion begins with a concise review of the physical foundations of electricity and magnetism. This is followed by an overview of nonlinear circuits that include resistors, inductors, ...
Nonlinear transport of dynamic system phase space
International Nuclear Information System (INIS)
Xie Xi; Xia Jiawen
1993-01-01
The inverse transform of any order solution of the differential equation of general nonlinear dynamic systems is derived, realizing theoretically the nonlinear transport for the phase space of nonlinear dynamic systems. The result is applicable to general nonlinear dynamic systems, with the transport of accelerator beam phase space as a typical example
Musashi dynamic image processing system
International Nuclear Information System (INIS)
Murata, Yutaka; Mochiki, Koh-ichi; Taguchi, Akira
1992-01-01
In order to produce transmitted neutron dynamic images using neutron radiography, a real time system called Musashi dynamic image processing system (MDIPS) was developed to collect, process, display and record image data. The block diagram of the MDIPS is shown. The system consists of a highly sensitive, high resolution TV camera driven by a custom-made scanner, a TV camera deflection controller for optimal scanning, which adjusts to the luminous intensity and the moving speed of an object, a real-time corrector to perform the real time correction of dark current, shading distortion and field intensity fluctuation, a real time filter for increasing the image signal to noise ratio, a video recording unit and a pseudocolor monitor to realize recording in commercially available products and monitoring by means of the CRTs in standard TV scanning, respectively. The TV camera and the TV camera deflection controller utilized for producing still images can be applied to this case. The block diagram of the real-time corrector is shown. Its performance is explained. Linear filters and ranked order filters were developed. (K.I.)
Quantum Dynamics in Biological Systems
Shim, Sangwoo
In the first part of this dissertation, recent efforts to understand quantum mechanical effects in biological systems are discussed. Especially, long-lived quantum coherences observed during the electronic energy transfer process in the Fenna-Matthews-Olson complex at physiological condition are studied extensively using theories of open quantum systems. In addition to the usual master equation based approaches, the effect of the protein structure is investigated in atomistic detail through the combined application of quantum chemistry and molecular dynamics simulations. To evaluate the thermalized reduced density matrix, a path-integral Monte Carlo method with a novel importance sampling approach is developed for excitons coupled to an arbitrary phonon bath at a finite temperature. In the second part of the thesis, simulations of molecular systems and applications to vibrational spectra are discussed. First, the quantum dynamics of a molecule is simulated by combining semiclassical initial value representation and density funcitonal theory with analytic derivatives. A computationally-tractable approximation to the sum-of-states formalism of Raman spectra is subsequently discussed.
On some dynamical chameleon systems
Burkin, I. M.; Kuznetsova, O. I.
2018-03-01
It is now well known that dynamical systems can be categorized into systems with self-excited attractors and systems with hidden attractors. A self-excited attractor has a basin of attraction that is associated with an unstable equilibrium, while a hidden attractor has a basin of attraction that does not intersect with small neighborhoods of any equilibrium points. Hidden attractors play the important role in engineering applications because they allow unexpected and potentially disastrous responses to perturbations in a structure like a bridge or an airplane wing. In addition, complex behaviors of chaotic systems have been applied in various areas from image watermarking, audio encryption scheme, asymmetric color pathological image encryption, chaotic masking communication to random number generator. Recently, researchers have discovered the so-called “chameleon systems”. These systems were so named because they demonstrate self-excited or hidden oscillations depending on the value of parameters. The present paper offers a simple algorithm of synthesizing one-parameter chameleon systems. The authors trace the evolution of Lyapunov exponents and the Kaplan-Yorke dimension of such systems which occur when parameters change.
DEFF Research Database (Denmark)
Pedersen, Bodil Maria
2011-01-01
- to praxis, and drawing on the concept of symbolic violence, this article contributes to their critique. In order to develop the analysis of difficulties victims may experience, they will be reconceptualised using critical psychological concepts such as 1st person perspectives and participation. The analysis...... seeks to undertake a discussion of personal meanings attributed to 'traumatisation'. It raises questions as to whether concepts of this kind and related practices may constitute symbolic violence and contribute to victimisation through looping-processes. Furthermore it aims at unfolding an understanding...... inclusive of connections between societal practices, aspects of symbolic violence, and the conduct of lives. The analysis is based on an empirical study of victimisation through rape and other forms of sexualised coercion....
System Dynamics and Serious Games
Van Daalen, C.; Schaffernicht, M.; Mayer, I.
2014-01-01
This paper deals with the relationship between serious games and system dynamics. Games have been used in SD since the beginning. However, the field of serious gaming also has its own development. The purpose of this contribution is to provide a broad overview of the combination of serious gaming and SD and discuss the state of the art and promise. We first define serious game, simulation and case study and then point out how SD overlaps with them. Then we move on to define the basic componen...
Two Pieces of Wood: Symbols of Control.
Lee, Sharon Shockley; McKerrow, K. Kelly
For 2 years, at least 2 days a week were spent by a researcher in observing, through the actions of the principal, the dynamics of cultural and ideologic conflict and the process of social control in an elementary school. This personal account analyzes the principal's use of corporal punishment, symbolized by the paddle, and positive…
Cross-spectrum symbol synchronization
Mccallister, R. D.; Simon, M. K.
1981-01-01
A popular method of symbol synchronization exploits one aspect of generalized harmonic analysis, normally referred to as the cross-spectrum. Utilizing nonlinear techniques, the input symbol energy is effectively concentrated onto multiples of the symbol clock frequency, facilitating application of conventional phase lock synchronization techniques. A general treatment of the cross-spectrum technique is developed and shown to be applicable across a broad class of symbol modulation formats. An important specific symbol synchronization application is then treated, focusing the general development to provide both insight and quantitative measure of the performance impact associated with variation in these key synchronization parameters: symbol modulation format, symbol transition probability, symbol energy to noise density ratio, and symbol rate to filter bandwidth ratio.
Directory of Open Access Journals (Sweden)
Bysko Maxim V.
2013-12-01
Full Text Available The article considers the role of jingles in the industrial era, from the occurrence of the regular radio broadcasting, sound films and television up of modern video games, audio and video podcasts, online broadcasts, and mobile communications. Jingles are researched from the point of view of the theory of symbols: the forward motion is detected in the process of development of jingles from the social symbols (radio callsigns to the individual signs-images (ringtones. The role of technical progress in the formation of jingles as important cultural audio elements of modern digital civilization.
Symbolism in European Integration
DEFF Research Database (Denmark)
Manners, Ian
2011-01-01
Ernst Haas observed over fifty years ago that ‘United Europe' is a resilient, adaptable, unifying, and yet unspecified symbol'. It is precisely this adaptability and ambiguity that has ensures the continuing importance of European studies as a means of understanding ‘the remarkable social...... of social transformation involved' (Calhoun 2003: 18). This article will consider the role of symbolism in European integration as part of answering Craig Calhoun's call for a means of transcending specific regimes of analysis in order to advance European studies....
Dynamical habitability of planetary systems.
Dvorak, Rudolf; Pilat-Lohinger, Elke; Bois, Eric; Schwarz, Richard; Funk, Barbara; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Lammer, Helmut; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Selsis, Frank; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J
2010-01-01
The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component (e.g., gamma Cephei) and around both stars (e.g., eclipsing binaries).
Topological dimension and dynamical systems
Coornaert, Michel
2015-01-01
Translated from the popular French edition, the goal of the book is to provide a self-contained introduction to mean topological dimension, an invariant of dynamical systems introduced in 1999 by Misha Gromov. The book examines how this invariant was successfully used by Elon Lindenstrauss and Benjamin Weiss to answer a long-standing open question about embeddings of minimal dynamical systems into shifts. A large number of revisions and additions have been made to the original text. Chapter 5 contains an entirely new section devoted to the Sorgenfrey line. Two chapters have also been added: Chapter 9 on amenable groups and Chapter 10 on mean topological dimension for continuous actions of countable amenable groups. These new chapters contain material that have never before appeared in textbook form. The chapter on amenable groups is based on Følner’s characterization of amenability and may be read independently from the rest of the book. Although the contents of this book lead directly to several active ar...
System dynamics for mechanical engineers
Davies, Matthew
2015-01-01
This textbook is ideal for mechanical engineering students preparing to enter the workforce during a time of rapidly accelerating technology, where they will be challenged to join interdisciplinary teams. It explains system dynamics using analogies familiar to the mechanical engineer while introducing new content in an intuitive fashion. The fundamentals provided in this book prepare the mechanical engineer to adapt to continuous technological advances with topics outside traditional mechanical engineering curricula by preparing them to apply basic principles and established approaches to new problems. This book also: · Reinforces the connection between the subject matter and engineering reality · Includes an instructor pack with the online publication that describes in-class experiments with minimal preparation requirements · Provides content dedicated to the modeling of modern interdisciplinary technological subjects, including opto-mechanical systems, high...
Dynamics of complex quantum systems
Akulin, Vladimir M
2014-01-01
This book gathers together a range of similar problems that can be encountered in different fields of modern quantum physics and that have common features with regard to multilevel quantum systems. The main motivation was to examine from a uniform standpoint various models and approaches that have been developed in atomic, molecular, condensed matter, chemical, laser and nuclear physics in various contexts. The book should help senior-level undergraduate, graduate students and researchers putting particular problems in these fields into a broader scientific context and thereby taking advantage of well-established techniques used in adjacent fields. This second edition has been expanded to include substantial new material (e.g. new sections on Dynamic Localization and on Euclidean Random Matrices and new chapters on Entanglement, Open Quantum Systems, and Coherence Protection). It is based on the author’s lectures at the Moscow Institute of Physics and Technology, at the CNRS Aimé Cotton Laboratory, and on ...
Nonlinear dynamics non-integrable systems and chaotic dynamics
Borisov, Alexander
2017-01-01
This monograph reviews advanced topics in the area of nonlinear dynamics. Starting with theory of integrable systems – including methods to find and verify integrability – the remainder of the book is devoted to non-integrable systems with an emphasis on dynamical chaos. Topics include structural stability, mechanisms of emergence of irreversible behaviour in deterministic systems as well as chaotisation occurring in dissipative systems.
Stability in dynamical systems I
International Nuclear Information System (INIS)
Courant, E.D.; Ruth, R.D.; Weng, W.T.
1984-08-01
We have reviewed some of the basic techniques which can be used to analyze stability in nonlinear dynamical systems, particularly in circular particle accelerators. We have concentrated on one-dimensional systems in the examples in order to simply illustrate the general techniques. We began with a review of Hamiltonian dynamics and canonical transformations. We then reviewed linear equations with periodic coefficients using the basic techniques from accelerator theory. To handle nonlinear terms we developed a canonical perturbation theory. From this we calculated invariants and the amplitude dependence of the frequency. This led us to resonances. We studied the cubic resonance in detail by using a rotating coordinate system in phase space. We then considered a general isolated nonlinear resonance. In this case we calculated the width of the resonance and estimated the spacing of resonances in order to use the Chirikov criterion to restrict the validity of the analysis. Finally the resonance equation was reduced to the pendulum equation, and we examined the motion on a separatrix. This brought us to the beginnings of stochastic behavior in the neighborhood of the separatrix. It is this complex behavior in the neighborhood of the separatrix which causes the perturbation theory used here to diverge in many cases. In spite of this the methods developed here have been and are used quite successfully to study nonlinear effects in nearly integrable systems. When used with caution and in conjunction with numerical work they give tremendous insight into the nature of the phase space structure and the stability of nonlinear differential equations. 14 references
Basic ionizing radiation symbol
International Nuclear Information System (INIS)
1987-01-01
A description is given of the standard symbol for ionizing radiation and of the conditions under which it should not be used. The Arabic equivalent of some English technical terms in this subject is given in one page. 1 ref., 1 fig
Communication in Symbolic Play.
Umek, Ljubica Marjanovic; Musek, Petra Lesnik; Kranjc, Simona
2001-01-01
Analyzed records of Slovene children's speech from a linguistic point of view and established differences in communication patterns with regard to the children's ages and the type of symbolic play. Found a shift in play from make-believe with regard to objects to roleplay related to social context. The older the child, the more language functions…
Symbolic Multidimensional Scaling
P.J.F. Groenen (Patrick); Y. Terada
2015-01-01
markdownabstract__Abstract__ Multidimensional scaling (MDS) is a technique that visualizes dissimilarities between pairs of objects as distances between points in a low dimensional space. In symbolic MDS, a dissimilarity is not just a value but can represent an interval or even a histogram. Here,
Symbol interval optimization for molecular communication with drift.
Kim, Na-Rae; Eckford, Andrew W; Chae, Chan-Byoung
2014-09-01
In this paper, we propose a symbol interval optimization algorithm in molecular communication with drift. Proper symbol intervals are important in practical communication systems since information needs to be sent as fast as possible with low error rates. There is a trade-off, however, between symbol intervals and inter-symbol interference (ISI) from Brownian motion. Thus, we find proper symbol interval values considering the ISI inside two kinds of blood vessels, and also suggest no ISI system for strong drift models. Finally, an isomer-based molecule shift keying (IMoSK) is applied to calculate achievable data transmission rates (achievable rates, hereafter). Normalized achievable rates are also obtained and compared in one-symbol ISI and no ISI systems.
Dynamical systems of algebraic origin
Schmidt, Klaus
1995-01-01
Although much of classical ergodic theory is concerned with single transformations and one-parameter flows, the subject inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multidimensional symmetry groups. However, the wealth of concrete and natural examples which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. The purpose of this book is to help remedy this scarcity of explicit examples by introducing a class of continuous Zd-actions diverse enough to exhibit many of the new phenomena encountered in the transition from Z to Zd, but which nevertheless lends itself to systematic study: the Zd-actions by automorphisms of compact, abelian groups. One aspect of these actions, not surprising in itself but quite striking in its extent and depth nonetheless, is the connection with commutative algebra and arithmetical algebraic geometry. The algebraic framework resulting...
Dynamical Signatures of Living Systems
Zak, M.
1999-01-01
One of the main challenges in modeling living systems is to distinguish a random walk of physical origin (for instance, Brownian motions) from those of biological origin and that will constitute the starting point of the proposed approach. As conjectured, the biological random walk must be nonlinear. Indeed, any stochastic Markov process can be described by linear Fokker-Planck equation (or its discretized version), only that type of process has been observed in the inanimate world. However, all such processes always converge to a stable (ergodic or periodic) state, i.e., to the states of a lower complexity and high entropy. At the same time, the evolution of living systems directed toward a higher level of complexity if complexity is associated with a number of structural variations. The simplest way to mimic such a tendency is to incorporate a nonlinearity into the random walk; then the probability evolution will attain the features of diffusion equation: the formation and dissipation of shock waves initiated by small shallow wave disturbances. As a result, the evolution never "dies:" it produces new different configurations which are accompanied by an increase or decrease of entropy (the decrease takes place during formation of shock waves, the increase-during their dissipation). In other words, the evolution can be directed "against the second law of thermodynamics" by forming patterns outside of equilibrium in the probability space. Due to that, a specie is not locked up in a certain pattern of behavior: it still can perform a variety of motions, and only the statistics of these motions is constrained by this pattern. It should be emphasized that such a "twist" is based upon the concept of reflection, i.e., the existence of the self-image (adopted from psychology). The model consists of a generator of stochastic processes which represents the motor dynamics in the form of nonlinear random walks, and a simulator of the nonlinear version of the diffusion
Numerical and symbolic scientific computing
Langer, Ulrich
2011-01-01
The book presents the state of the art and results and also includes articles pointing to future developments. Most of the articles center around the theme of linear partial differential equations. Major aspects are fast solvers in elastoplasticity, symbolic analysis for boundary problems, symbolic treatment of operators, computer algebra, and finite element methods, a symbolic approach to finite difference schemes, cylindrical algebraic decomposition and local Fourier analysis, and white noise analysis for stochastic partial differential equations. Further numerical-symbolic topics range from
A Symbolic Approach to Permission Accounting for Concurrent Reasoning
Huisman, Marieke; Mostowski, Wojciech
2015-01-01
Permission accounting is fundamental to modular, thread-local reasoning about concurrent programs. This paper presents a new, symbolic system for permission accounting. In existing systems, permissions are numeric value-based and refer to the current thread only. Our system is based on symbolic
Symbolic Analysis of Cryptographic Protocols
DEFF Research Database (Denmark)
Dahl, Morten
We present our work on using abstract models for formally analysing cryptographic protocols: First, we present an ecient method for verifying trace-based authenticity properties of protocols using nonces, symmetric encryption, and asymmetric encryption. The method is based on a type system...... of Gordon et al., which we modify to support fully-automated type inference. Tests conducted via an implementation of our algorithm found it to be very ecient. Second, we show how privacy may be captured in a symbolic model using an equivalencebased property and give a formal denition. We formalise...
International Nuclear Information System (INIS)
Sun, Xiaoran; Small, Michael; Zhao, Yi; Xue, Xiaoping
2014-01-01
In this work, we propose a novel method to transform a time series into a weighted and directed network. For a given time series, we first generate a set of segments via a sliding window, and then use a doubly symbolic scheme to characterize every windowed segment by combining absolute amplitude information with an ordinal pattern characterization. Based on this construction, a network can be directly constructed from the given time series: segments corresponding to different symbol-pairs are mapped to network nodes and the temporal succession between nodes is represented by directed links. With this conversion, dynamics underlying the time series has been encoded into the network structure. We illustrate the potential of our networks with a well-studied dynamical model as a benchmark example. Results show that network measures for characterizing global properties can detect the dynamical transitions in the underlying system. Moreover, we employ a random walk algorithm to sample loops in our networks, and find that time series with different dynamics exhibits distinct cycle structure. That is, the relative prevalence of loops with different lengths can be used to identify the underlying dynamics
Energy Technology Data Exchange (ETDEWEB)
Sun, Xiaoran, E-mail: sxr0806@gmail.com [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); School of Mathematics and Statistics, The University of Western Australia, Crawley WA 6009 (Australia); Small, Michael, E-mail: michael.small@uwa.edu.au [School of Mathematics and Statistics, The University of Western Australia, Crawley WA 6009 (Australia); Zhao, Yi [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Xue, Xiaoping [Department of Mathematics, Harbin Institute of Technology, Harbin 150025 (China)
2014-06-15
In this work, we propose a novel method to transform a time series into a weighted and directed network. For a given time series, we first generate a set of segments via a sliding window, and then use a doubly symbolic scheme to characterize every windowed segment by combining absolute amplitude information with an ordinal pattern characterization. Based on this construction, a network can be directly constructed from the given time series: segments corresponding to different symbol-pairs are mapped to network nodes and the temporal succession between nodes is represented by directed links. With this conversion, dynamics underlying the time series has been encoded into the network structure. We illustrate the potential of our networks with a well-studied dynamical model as a benchmark example. Results show that network measures for characterizing global properties can detect the dynamical transitions in the underlying system. Moreover, we employ a random walk algorithm to sample loops in our networks, and find that time series with different dynamics exhibits distinct cycle structure. That is, the relative prevalence of loops with different lengths can be used to identify the underlying dynamics.
The hippocampus facilitates integration within a symbolic field.
Cornelius, John Thor
2017-10-01
This paper attempts to elaborate a fundamental brain mechanism involved in the creation and maintenance of symbolic fields of thought. It will integrate theories of psychic spaces as explored by Donald Winnicott and Wilfred Bion with the neuroscientific examinations of those with bilateral hippocampal injury to show how evidence from both disciplines sheds important light on this aspect of mind. Possibly originating as a way of maintaining an oriented, first person psychic map, this capacity allows individuals a dynamic narrative access to a realm of layered elements and their connections. If the proposed hypothesis is correct, the hippocampus facilitates the integration of this symbolic field of mind, where narrative forms of thinking, creativity, memory, and dreaming are intertwined. Without the hippocampus, there is an inability to engage many typical forms of thought itself. Also, noting the ways these individuals are not impaired supports theories about other faculties of mind, providing insight into their possible roles within human thought. The evidence of different systems working in conjunction with the symbolic field provides tantalizing clues about these fundamental mechanisms of brain and mind that are normally seamlessly integrated, and hints at future areas of clinical and laboratory research, both within neuroscience and psychoanalysis. © 2017 The Authors. The International Journal of Psychoanalysis published by John Wiley & Sons Ltd on behalf of Institute of Psychoanalysis.
Dynamical System Approaches to Combinatorial Optimization
DEFF Research Database (Denmark)
Starke, Jens
2013-01-01
of large times as an asymptotically stable point of the dynamics. The obtained solutions are often not globally optimal but good approximations of it. Dynamical system and neural network approaches are appropriate methods for distributed and parallel processing. Because of the parallelization......Several dynamical system approaches to combinatorial optimization problems are described and compared. These include dynamical systems derived from penalty methods; the approach of Hopfield and Tank; self-organizing maps, that is, Kohonen networks; coupled selection equations; and hybrid methods...... thereof can be used as models for many industrial problems like manufacturing planning and optimization of flexible manufacturing systems. This is illustrated for an example in distributed robotic systems....
Dynamical versus diffraction spectrum for structures with finite local complexity
Baake, Michael; Lenz, Daniel; van Enter, Aernout
2015-01-01
It is well known that the dynamical spectrum of an ergodic measure dynamical system is related to the diffraction measure of a typical element of the system. This situation includes ergodic subshifts from symbolic dynamics as well as ergodic Delone dynamical systems, both via suitable embeddings.
Lisbon Symbol Database (LSD): Subjective norms for 600 symbols.
Prada, Marília; Rodrigues, David; Silva, Rita R; Garrido, Margarida V
2016-12-01
This article presents subjective rating norms for a new set of 600 symbols, depicting various contents (e.g., transportation, technology, and leisure activities) that can be used by researchers in different fields. Symbols were evaluated for aesthetic appeal, familiarity, visual complexity, concreteness, valence, arousal, and meaningfulness. The normative data were obtained from 388 participants, and no gender differences were found. Descriptive results (means, standard deviations, and confidence intervals) for each symbol in each dimension are presented. Overall, the dimensions were highly correlated. Additionally, participants were asked to briefly describe the meaning of each symbol. The results indicate that the present symbol set is varied, allowing for the selection of exemplars with different levels on the seven examined dimensions. This set of symbols constitutes a tool with potential for research in different areas. The database with all of the symbols is available as supplemental materials.
HMD symbol stabilization concepts
Newman, Richard L.; Greeley, Kevin W.
1995-05-01
Helmet-mounted displays (HMDs) present flight, navigation, and weapon information in the pilot's line of sight. The HMD was developed to allow the pilot to retain aircraft and weapon information while looking off boresight. Symbol stabilization is a key issue for HMDs. In current equipment, the lack of compensation for pilot head motion creates excessive workload during hovering and nap-of-the-earth flight. This high workload translates into excessive training requirements. At the same time, misleading symbology makes interpretation of the height of obstructions impossible. A set of standardized coordinate transformations are necessary for the development of HMD symbology and the control laws. Part of the problem is there is no agreed upon set of definitions or descriptions for how HMD symbols are driven to compensate for pilot head motion. A candidate set of coordinate definitions is proposed to address this issue.
Towards Symbolic Encryption Schemes
DEFF Research Database (Denmark)
Ahmed, Naveed; Jensen, Christian D.; Zenner, Erik
2012-01-01
, namely an authenticated encryption scheme that is secure under chosen ciphertext attack. Therefore, many reasonable encryption schemes, such as AES in the CBC or CFB mode, are not among the implementation options. In this paper, we report new attacks on CBC and CFB based implementations of the well......Symbolic encryption, in the style of Dolev-Yao models, is ubiquitous in formal security models. In its common use, encryption on a whole message is specified as a single monolithic block. From a cryptographic perspective, however, this may require a resource-intensive cryptographic algorithm......-known Needham-Schroeder and Denning-Sacco protocols. To avoid such problems, we advocate the use of refined notions of symbolic encryption that have natural correspondence to standard cryptographic encryption schemes....
Dynamic Stability Experiment of Maglev Systems,
1995-04-01
This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also... maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments...on maglev systems and compares their numerical simulation with predictions calculated by a nonlinear dynamic computer code. Instabilities of an
Attractors for discrete periodic dynamical systems
John E. Franke; James F. Selgrade
2003-01-01
A mathematical framework is introduced to study attractors of discrete, nonautonomous dynamical systems which depend periodically on time. A structure theorem for such attractors is established which says that the attractor of a time-periodic dynamical system is the unin of attractors of appropriate autonomous maps. If the nonautonomous system is a perturbation of an...
An Axiomatic Representation of System Dynamics
Baianu, I
2004-01-01
An axiomatic representation of system dynamics is introduced in terms of categories, functors, organismal supercategories, limits and colimits of diagrams. Specific examples are considered in Complex Systems Biology, such as ribosome biogenesis and Hormonal Control in human subjects. "Fuzzy" Relational Structures are also proposed for flexible representations of biological system dynamics and organization.
Controlling chaos in discontinuous dynamical systems
International Nuclear Information System (INIS)
Danca, Marius-F.
2004-01-01
In this paper we consider the possibility to implement the technique of changes in the system variables to control the chaos introduced by Gueemez and Matias for continuous dynamical systems to a class of discontinuous dynamical systems. The approach is realized via differential inclusions following the Filippov theory. Three practical examples are considered
Dynamism in Electronic Performance Support Systems.
Laffey, James
1995-01-01
Describes a model for dynamic electronic performance support systems based on NNAble, a system developed by the training group at Apple Computer. Principles for designing dynamic performance support are discussed, including a systems approach, performer-centered design, awareness of situated cognition, organizational memory, and technology use.…
Toyozumi, Kenichi; Yamada, Naoya; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Mase, Kenji; Takahashi, Tomoichi
2004-01-01
Symbol segmentation is very important in handwritten mathematical formula recognition, since it is the very first portion of the recognition, since it is the very first portion of the recognition process. This paper proposes a new symbol segmentation method using mathematical structure information. The base technique of symbol segmentation employed in theexisting methods is dynamic programming which optimizes the overall results of individual symbol recognition. The new method we propose here...
Political symbols and political transitions
Directory of Open Access Journals (Sweden)
Herrero de Miñón, Miguel
2006-11-01
Full Text Available Politics, Law and Psychology are fields that come together in the symbolic. This text takes evidence from those three areas to develop an analysis of political symbols and political transitions. The development of the analysis goes through three stages. The first succinctly describes the concept of transition and its meaning. The second closely examines the notion of the symbol, in terms of its definition, to explain aspects that allow us to understand it, characterise it and make its functions clear. Finally, from the author's experience as a witness and as an actor, I suggest three ways of understanding symbols in the processes of political transition: as symbols of change, as symbols of acknowledgment, and as symbols of support.
Symbols and definitions of quantities and units in isotope stoichiometry
International Nuclear Information System (INIS)
Junghans, P.; Krumbiegel, P.; Faust, H.
1982-01-01
On the basis of the International System of Units and recent recommendations of the IUPAC on 'Symbols and Terminology for Physicochemical Quantities and Units' a system is proposed of uniform and unambiguous symbols and definitions of quantities and units used in the isotope dilution technique. The close relationship between isotope stoichiometry and common stoichiometry is demonstrated. (author)
Attachment is a dynamic system
Directory of Open Access Journals (Sweden)
Zlatka Cugmas
2003-04-01
Full Text Available On the basis of the study of recent scientific literature about the development of attachment, the author answers the following questions: which are the postulates the theory of attachment has about the stability of the patterns of attachment, which level of stability in the patterns of attachment from infancy to adulthood these studies illuminate and which factors significantly influence the (instability of the patterns of attachment in time. The theory of attachment assumes that normal circumstances elicit stability. Changes, however, can be the result of important events influencing the sensitivity of the object of attachment. Agreement has not yet been reached regarding the percentage of stability in the patterns of attachment. There is more agreement regarding attachment in adulthood than that in childhood. The results depend on the size and characteristics of the subjects of the research, the measuring instruments, type of data analysis etc. The author concludes that attachment is a dynamic system influenced by significant changes in life (the cognitive development of the child, external care, parents' divorce, different stressful situations. As the influence of stressful events on the individual person' s quality of attachment is examined, it is necessary to consider also his/her temperamental characteristics, role of other people in their lives, etc.
Symbolics in control design: prospects and research issues
DEFF Research Database (Denmark)
Christensen, Anders
1994-01-01
The symbolic processor is targeted as a novel basic service in computer aided control system design. Basic symbolic tools are exemplified. A design process model is formulated for control design, with subsets manipulator, tools, target and goals. It is argued, that symbolic processing will give...... substantial contributions to future design environments, as it provides flexibility of representation not possible with traditional numerics. Based on the design process, views on research issues in the incorporation of symbolic processing into traditional numerical design environments are given...
Symbol addition by monkeys provides evidence for normalized quantity coding
Livingstone, Margaret S.; Pettine, Warren W.; Srihasam, Krishna; Moore, Brandon; Morocz, Istvan A.; Lee, Daeyeol
2014-01-01
Weber’s law can be explained either by a compressive scaling of sensory response with stimulus magnitude or by a proportional scaling of response variability. These two mechanisms can be distinguished by asking how quantities are added or subtracted. We trained Rhesus monkeys to associate 26 distinct symbols with 0–25 drops of reward, and then tested how they combine, or add, symbolically represented reward magnitude. We found that they could combine symbolically represented magnitudes, and they transferred this ability to a novel symbol set, indicating that they were performing a calculation, not just memorizing the value of each combination. The way they combined pairs of symbols indicated neither a linear nor a compressed scale, but rather a dynamically shifting, relative scaling. PMID:24753600
Multibody system dynamics, robotics and control
Gerstmayr, Johannes
2013-01-01
The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.
Integrated health management and control of complex dynamical systems
Tolani, Devendra K.
2005-11-01
A comprehensive control and health management strategy for human-engineered complex dynamical systems is formulated for achieving high performance and reliability over a wide range of operation. Results from diverse research areas such as Probabilistic Robust Control (PRC), Damage Mitigating/Life Extending Control (DMC), Discrete Event Supervisory (DES) Control, Symbolic Time Series Analysis (STSA) and Health and Usage Monitoring System (HUMS) have been employed to achieve this goal. Continuous-domain control modules at the lower level are synthesized by PRC and DMC theories, whereas the upper-level supervision is based on DES control theory. In the PRC approach, by allowing different levels of risk under different flight conditions, the control system can achieve the desired trade off between stability robustness and nominal performance. In the DMC approach, component damage is incorporated in the control law to reduce the damage rate for enhanced structural durability. The DES controller monitors the system performance and, based on the mission requirements (e.g., performance metrics and level of damage mitigation), switches among various lower-level controllers. The core idea is to design a framework where the DES controller at the upper-level, mimics human intelligence and makes appropriate decisions to satisfy mission requirements, enhance system performance and structural durability. Recently developed tools in STSA have been used for anomaly detection and failure prognosis. The DMC deals with the usage monitoring or operational control part of health management, where as the issue of health monitoring is addressed by the anomaly detection tools. The proposed decision and control architecture has been validated on two test-beds, simulating the operations of rotorcraft dynamics and aircraft propulsion.
Handwriting generates variable visual output to facilitate symbol learning.
Li, Julia X; James, Karin H
2016-03-01
Recent research has demonstrated that handwriting practice facilitates letter categorization in young children. The present experiments investigated why handwriting practice facilitates visual categorization by comparing 2 hypotheses: that handwriting exerts its facilitative effect because of the visual-motor production of forms, resulting in a direct link between motor and perceptual systems, or because handwriting produces variable visual instances of a named category in the environment that then changes neural systems. We addressed these issues by measuring performance of 5-year-old children on a categorization task involving novel, Greek symbols across 6 different types of learning conditions: 3 involving visual-motor practice (copying typed symbols independently, tracing typed symbols, tracing handwritten symbols) and 3 involving visual-auditory practice (seeing and saying typed symbols of a single typed font, of variable typed fonts, and of handwritten examples). We could therefore compare visual-motor production with visual perception both of variable and similar forms. Comparisons across the 6 conditions (N = 72) demonstrated that all conditions that involved studying highly variable instances of a symbol facilitated symbol categorization relative to conditions where similar instances of a symbol were learned, regardless of visual-motor production. Therefore, learning perceptually variable instances of a category enhanced performance, suggesting that handwriting facilitates symbol understanding by virtue of its environmental output: supporting the notion of developmental change though brain-body-environment interactions. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Handwriting generates variable visual input to facilitate symbol learning
Li, Julia X.; James, Karin H.
2015-01-01
Recent research has demonstrated that handwriting practice facilitates letter categorization in young children. The present experiments investigated why handwriting practice facilitates visual categorization by comparing two hypotheses: That handwriting exerts its facilitative effect because of the visual-motor production of forms, resulting in a direct link between motor and perceptual systems, or because handwriting produces variable visual instances of a named category in the environment that then changes neural systems. We addressed these issues by measuring performance of 5 year-old children on a categorization task involving novel, Greek symbols across 6 different types of learning conditions: three involving visual-motor practice (copying typed symbols independently, tracing typed symbols, tracing handwritten symbols) and three involving visual-auditory practice (seeing and saying typed symbols of a single typed font, of variable typed fonts, and of handwritten examples). We could therefore compare visual-motor production with visual perception both of variable and similar forms. Comparisons across the six conditions (N=72) demonstrated that all conditions that involved studying highly variable instances of a symbol facilitated symbol categorization relative to conditions where similar instances of a symbol were learned, regardless of visual-motor production. Therefore, learning perceptually variable instances of a category enhanced performance, suggesting that handwriting facilitates symbol understanding by virtue of its environmental output: supporting the notion of developmental change though brain-body-environment interactions. PMID:26726913
Adaptive Integration of Nonsmooth Dynamical Systems
2017-10-11
2017 W911NF-12-R-0012-03: Adaptive Integration of Nonsmooth Dynamical Systems The views, opinions and/or findings contained in this report are those of...Integration of Nonsmooth Dynamical Systems Report Term: 0-Other Email: drum@gwu.edu Distribution Statement: 1-Approved for public release; distribution is...classdrake_1_1systems_1_1_integrator_base.html ; 3) a solver for dynamical systems with arbitrary unilateral and bilateral constraints (the key component of the time stepping systems )- see
Nonautonomous dynamical systems in the life sciences
Pötzsche, Christian
2013-01-01
Nonautonomous dynamics describes the qualitative behavior of evolutionary differential and difference equations, whose right-hand side is explicitly time dependent. Over recent years, the theory of such systems has developed into a highly active field related to, yet recognizably distinct from that of classical autonomous dynamical systems. This development was motivated by problems of applied mathematics, in particular in the life sciences where genuinely nonautonomous systems abound. The purpose of this monograph is to indicate through selected, representative examples how often nonautonomous systems occur in the life sciences and to outline the new concepts and tools from the theory of nonautonomous dynamical systems that are now available for their investigation.
Dynamic systems of regional economy management optimization
Trofimov, S.; Kudzh, S.
-called "topographical" approach, which is used by intellectual information technology "Dynamics of systems". According to it the realistic plan of regional economic system is created in the virtual space -directly on a computer desktop. And economic objects are displayed on evident schemes according to their real "geographical" structure. Each enterprise, bank, business-unit or the detached division of the company receives its own "Module" (area in working space of a spreadsheet). In result the general plan of regional economic system appears at planners. A whole real picture of all economic system functioning is recreated by such way. The idea of a method is obvious: the operator sees actual functioning of regional economy. This is promoted by "the friendly interface", allowing to display real objects as a clear symbols. The regional economy can be considered as a set of the separate enterprises connected by various economic communications. Constant monitoring of an infrastructure development, tracking of a cargoes transportation condition, supervision over following the ecological specifications by the regional enterprises, growth of housing and industrial building level, condition of communications, etc. is necessary for carrying out with the help of modern technologies of space shooting and satellite navigating systems. It will allow to obtain the data in an operative mode and will also help to the quickly modeling of a situation development variants, and to accept anticipatory administrative decisions. Other sources of the information are statistical directories and reports on a social condition in region: about a migration level and the population incomes, consumer's basket structure, demographic parameters - age of the capable population, a sexual and national attributes, etc. It is possible to attribute financial parameters to the third group: the regional budget condition data, a gain of investments into the regional economy, a growth of incomes in the regional budget from the
Logical entropy of quantum dynamical systems
Directory of Open Access Journals (Sweden)
Ebrahimzadeh Abolfazl
2016-01-01
Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.
Incorporating Dynamical Systems into the Traditional Curriculum.
Natov, Jonathan
2001-01-01
Presents a brief overview of dynamical systems. Gives examples from dynamical systems and where they fit into the current curriculum. Points out that these examples are accessible to undergraduate freshmen and sophomore students, add continuity to the standard curriculum, and are worth including in classes. (MM)
Reconceptualizing Learning as a Dynamical System.
Ennis, Catherine D.
1992-01-01
Dynamical systems theory can increase our understanding of the constantly evolving learning process. Current research using experimental and interpretive paradigms focuses on describing the attractors and constraints stabilizing the educational process. Dynamical systems theory focuses attention on critical junctures in the learning process as…
Dynamics and control of hybrid mechanical systems
Leonov, G.A.; Nijmeijer, H.; Pogromski, A.Y.; Fradkov, A.L.
2010-01-01
The papers in this edited volume aim to provide a better understanding of the dynamics and control of a large class of hybrid dynamical systems that are described by different models in different state space domains. They not only cover important aspects and tools for hybrid systems analysis and
Dynamical entropy for infinite quantum systems
International Nuclear Information System (INIS)
Hudetz, T.
1990-01-01
We review the recent physical application of the so-called Connes-Narnhofer-Thirring entropy, which is the successful quantum mechanical generalization of the classical Kolmogorov-Sinai entropy and, by its very conception, is a dynamical entropy for infinite quantum systems. We thus comparingly review also the physical applications of the classical dynamical entropy for infinite classical systems. 41 refs. (Author)
System dynamics modelling of situation awareness
CSIR Research Space (South Africa)
Oosthuizen, R
2015-11-01
Full Text Available . The feedback loops and delays in the Command and Control system also contribute to the complex dynamic behavior. This paper will build on existing situation awareness models to develop a System Dynamics model to support a qualitative investigation through...
Systems-Dynamic Analysis for Neighborhood Study
Systems-dynamic analysis (or system dynamics (SD)) helps planners identify interrelated impacts of transportation and land-use policies on neighborhood-scale economic outcomes for households and businesses, among other applications. This form of analysis can show benefits and tr...
Narcissistic group dynamics of multiparty systems
Schruijer, S.G.L.
2015-01-01
Purpose – This paper aims to introduce and illustrate the notion of narcissistic group dynamics. It is claimed that narcissism does not simply reside within individuals but can be characteristic of groups and social systems. In this case, the focus is on narcissistic dynamics in multiparty systems.
Bifurcation Control of Chaotic Dynamical Systems
National Research Council Canada - National Science Library
Wang, Hua O; Abed, Eyad H
1992-01-01
A nonlinear system which exhibits bifurcations, transient chaos, and fully developed chaos is considered, with the goal of illustrating the role of two ideas in the control of chaotic dynamical systems...
Chaotic systems are dynamically random
International Nuclear Information System (INIS)
Svozil, K.
1988-01-01
The idea is put forward that the significant route to chaos is driven by recursive iterations of suitable evolution functions. The corresponding formal notion of randomness is not based on dynamic complexity rather than on static complexity. 24 refs. (Author)
International Nuclear Information System (INIS)
Wood, S.A.; Abbott, S.
1995-01-01
Nuclear physics data analysis programs often use packages, such as Q, that allow parameter values, test definitions and histogram booking parameters to be controlled at run time through external files or shared memory. Data within a physics analyzer are usually referenced by indices, leading to a high use of equivalence statements and to extra bookkeeping. In the CEBAF Test Package (CTP), parameters, tests and histogram definitions defined in external files all refer to data elements by the same variable names as used in the C or Fortran source code for the analyzer. This is accomplished by requirieng the analyzer developer to open-quotes registerclose quotes each variable and array that is to be accessible by the package. Any registered variable as well as the test and histogram definitions may be dynamically read and modified by tasks that communicate via standard networking calls. As this package is implemented in C and requires only HBOOK and SUN RPC networking, it is highly portable. CTP works with the CEBAF Online Data Acquisition system (CODA), but may be used with other data acquisition systems or stand alone
Dynamical systems on 2- and 3-manifolds
Grines, Viacheslav Z; Pochinka, Olga V
2016-01-01
This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed. < The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are present...
Partial dynamical systems, fell bundles and applications
Exel, Ruy
2017-01-01
Partial dynamical systems, originally developed as a tool to study algebras of operators in Hilbert spaces, has recently become an important branch of algebra. Its most powerful results allow for understanding structural properties of algebras, both in the purely algebraic and in the C*-contexts, in terms of the dynamical properties of certain systems which are often hiding behind algebraic structures. The first indication that the study of an algebra using partial dynamical systems may be helpful is the presence of a grading. While the usual theory of graded algebras often requires gradings to be saturated, the theory of partial dynamical systems is especially well suited to treat nonsaturated graded algebras which are in fact the source of the notion of "partiality". One of the main results of the book states that every graded algebra satisfying suitable conditions may be reconstructed from a partial dynamical system via a process called the partial crossed product. Running in parallel with partial dynamica...
Anthropologists as symbols: Geertz
Directory of Open Access Journals (Sweden)
Aleksandar Bošković
2016-02-01
Full Text Available Clifford Geertz (1926-2006 was certainly one of the most influential anthropologists in the last decades of the 20th century, even though some of his former students (like Rabinow in Slyomovics 2010 claim that he was not very accessible as a person, and that sometimes he did not even care for his students. Somewhat paradoxically, Geertz´s influence on anthropology and related disciplines remained notable even after his death. This paper analyzes interest in aspects of his work over the last decade, as an indicator of transforming a personality into a global cultural symbol.
Dynamics of vehicle-road coupled system
Yang, Shaopu; Li, Shaohua
2015-01-01
Vehicle dynamics and road dynamics are usually considered to be two largely independent subjects. In vehicle dynamics, road surface roughness is generally regarded as random excitation of the vehicle, while in road dynamics, the vehicle is generally regarded as a moving load acting on the pavement. This book suggests a new research concept to integrate the vehicle and the road system with the help of a tire model, and establishes a cross-subject research framework dubbed vehicle-pavement coupled system dynamics. In this context, the dynamics of the vehicle, road and the vehicle-road coupled system are investigated by means of theoretical analysis, numerical simulations and field tests. This book will be a valuable resource for university professors, graduate students and engineers majoring in automotive design, mechanical engineering, highway engineering and other related areas. Shaopu Yang is a professor and deputy president of Shijiazhuang Tiedao University, China; Liqun Chen is a professor at Shanghai Univ...
Concealed identification symbols and nondestructive determination of the identification symbols
Nance, Thomas A.; Gibbs, Kenneth M.
2014-09-16
The concealing of one or more identification symbols into a target object and the subsequent determination or reading of such symbols through non-destructive testing is described. The symbols can be concealed in a manner so that they are not visible to the human eye and/or cannot be readily revealed to the human eye without damage or destruction of the target object. The identification symbols can be determined after concealment by e.g., the compilation of multiple X-ray images. As such, the present invention can also provide e.g., a deterrent to theft and the recovery of lost or stolen objects.
Anomalous diffusion in a symbolic model
International Nuclear Information System (INIS)
Ribeiro, H V; Lenzi, E K; Mendes, R S; Santoro, P A
2011-01-01
In this work, we investigate some statistical properties of symbolic sequences generated by a numerical procedure in which the symbols are repeated following the power-law probability density. In this analysis, we consider that the sum of n symbols represents the position of a particle in erratic movement. This approach reveals a rich diffusive scenario characterized by non-Gaussian distribution and, depending on the power-law exponent or the procedure used to build the walker, we may have superdiffusion, subdiffusion or usual diffusion. Additionally, we use the continuous-time random walk framework to compare the analytic results with the numerical data, thereby finding good agreement. Because of its simplicity and flexibility, this model can be a candidate for describing real systems governed by power-law probability densities.
Nonlinear dynamics of fractional order Duffing system
International Nuclear Information System (INIS)
Li, Zengshan; Chen, Diyi; Zhu, Jianwei; Liu, Yongjian
2015-01-01
In this paper, we analyze the nonlinear dynamics of fractional order Duffing system. First, we present the fractional order Duffing system and the numerical algorithm. Second, nonlinear dynamic behaviors of Duffing system with a fixed fractional order is studied by using bifurcation diagrams, phase portraits, Poincare maps and time domain waveforms. The fractional order Duffing system shows some interesting dynamical behaviors. Third, a series of Duffing systems with different fractional orders are analyzed by using bifurcation diagrams. The impacts of fractional orders on the tendency of dynamical motion, the periodic windows in chaos, the bifurcation points and the distance between the first and the last bifurcation points are respectively studied, in which some basic laws are discovered and summarized. This paper reflects that the integer order system and the fractional order one have close relationship and an integer order system is a special case of fractional order ones.
Dynamics of Open Systems with Affine Maps
International Nuclear Information System (INIS)
Zhang Da-Jian; Liu Chong-Long; Tong Dian-Min
2015-01-01
Many quantum systems of interest are initially correlated with their environments and the reduced dynamics of open systems are an interesting while challenging topic. Affine maps, as an extension of completely positive maps, are a useful tool to describe the reduced dynamics of open systems with initial correlations. However, it is unclear what kind of initial state shares an affine map. In this study, we give a sufficient condition of initial states, in which the reduced dynamics can always be described by an affine map. Our result shows that if the initial states of the combined system constitute a convex set, and if the correspondence between the initial states of the open system and those of the combined system, defined by taking the partial trace, is a bijection, then the reduced dynamics of the open system can be described by an affine map. (paper)
Transcribing the balanced scorecard into system dynamics
DEFF Research Database (Denmark)
Nielsen, Steen; Nielsen, Erland Hejn
2013-01-01
The purpose of this paper is to show how a System Dynamics Modelling approach can be integrated into the Balanced Scorecard (BSC) for a case company with special focus on the handling of causality in a dynamic perspective. The BSC model includes five perspectives and a number of financial and non...... the cause-and-effect relationships of an integrated BSC model. Including dynamic aspects of BSCs into the discussion is only in its infancy, so the aim of our work is also to contribute to both scholars’ and practitioners’ general understanding of how such delayed dynamic effects propagate through system...
Dynamical systems, attractors, and neural circuits.
Miller, Paul
2016-01-01
Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic-they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.
Symbolic behavior in regular classrooms. A specification of symbolic and non-symbolic behavior
Directory of Open Access Journals (Sweden)
Stefan eBillinger
2011-06-01
Full Text Available Students’ capabilities to use symbolic information in classroom setting could be expected to influence their possibilities to be active and participating. The development of strategies for teachers to compensate for reduced capability need specific operational definition of symbolic behavior. Fifty-three students, aged 11 to 13 years old, 29 boys and 24 girls, from three classes in the same Swedish compulsory regular school participated in the current study. After a short training sequence 25 students (47% were defined as showing symbolic behavior (symbolic, and 28 students (53% were not (non-symbolic, based on their follow-up test performances. Symbolic and non-symbolic differed significantly on post test performances (p. < .05. Surprisingly, non-symbolic behavior deteriorated their performance, while symbolic enhanced their performance (p. < .05. The results indicate that the operational definition used in the present study may be useful in further studies relating the capability to show symbolic behavior and students’ activity and participation in classroom settings.
Optimal reduction of flexible dynamic system
International Nuclear Information System (INIS)
Jankovic, J.
1994-01-01
Dynamic system reduction is basic procedure in various problems of active control synthesis of flexible structures. In this paper is presented direct method for system reduction by explicit extraction of modes included in reduced model form. Criterion for optimal system discrete approximation in synthesis reduced dynamic model is also presented. Subjected method of system decomposition is discussed in relation to the Schur method of solving matrix algebraic Riccati equation as condition for system reduction. By using exposed method procedure of flexible system reduction in addition with corresponding example is presented. Shown procedure is powerful in problems of active control synthesis of flexible system vibrations
He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin
2015-09-01
In this paper, a Golay complementary training sequence (TS)-based symbol synchronization scheme is proposed and experimentally demonstrated in multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system with a variable rate low-density parity-check (LDPC) code. Meanwhile, the coding gain and spectral efficiency in the variable rate LDPC-coded MB-OFDM UWBoF system are investigated. By utilizing the non-periodic auto-correlation property of the Golay complementary pair, the start point of LDPC-coded MB-OFDM UWB signal can be estimated accurately. After 100 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1×10-3, the experimental results show that the short block length 64QAM-LDPC coding provides a coding gain of 4.5 dB, 3.8 dB and 2.9 dB for a code rate of 62.5%, 75% and 87.5%, respectively.
Formal verification of dynamic hybrid systems: a NuSMV-based model checking approach
Directory of Open Access Journals (Sweden)
Xu Zhi
2018-01-01
Full Text Available Software security is an important and challenging research topic in developing dynamic hybrid embedded software systems. Ensuring the correct behavior of these systems is particularly difficult due to the interactions between the continuous subsystem and the discrete subsystem. Currently available security analysis methods for system risks have been limited, as they rely on manual inspections of the individual subsystems under simplifying assumptions. To improve this situation, a new approach is proposed that is based on the symbolic model checking tool NuSMV. A dual PID system is used as an example system, for which the logical part and the computational part of the system are modeled in a unified manner. Constraints are constructed on the controlled object, and a counter-example path is ultimately generated, indicating that the hybrid system can be analyzed by the model checking tool.
Mathematical symbol hypothesis recognition with rejection option
Julca-Aguilar , Frank; Hirata , Nina ,; Viard-Gaudin , Christian; Mouchère , Harold; Medjkoune , Sofiane
2014-01-01
International audience; In the context of handwritten mathematical expressions recognition, a first step consist on grouping strokes (segmentation) to form symbol hypotheses: groups of strokes that might represent a symbol. Then, the symbol recognition step needs to cope with the identification of wrong segmented symbols (false hypotheses). However, previous works on symbol recognition consider only correctly segmented symbols. In this work, we focus on the problem of mathematical symbol reco...
Sigref - A Symbolic Bisimulation Tool Box
Wimmer, Ralf; Herbstritt, Marc; Hermanns, Holger; Strampp, Kelley; Becker, Bernd; Graf, Susanne; Zhang, Wenhui
2006-01-01
We present a uniform signature-based approach to compute the most popular bisimulations. Our approach is implemented symbolically using BDDs, which enables the handling of very large transition systems. Signatures for the bisimulations are built up from a few generic building blocks, which naturally
The asymptotic expansion method via symbolic computation
Navarro, Juan F.
2012-01-01
This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.
The Asymptotic Expansion Method via Symbolic Computation
Directory of Open Access Journals (Sweden)
Juan F. Navarro
2012-01-01
Full Text Available This paper describes an algorithm for implementing a perturbation method based on an asymptotic expansion of the solution to a second-order differential equation. We also introduce a new symbolic computation system which works with the so-called modified quasipolynomials, as well as an implementation of the algorithm on it.
Symbolic approximate time-optimal control
Mazo, Manuel; Tabuada, Paulo
There is an increasing demand for controller design techniques capable of addressing the complex requirements of today's embedded applications. This demand has sparked the interest in symbolic control where lower complexity models of control systems are used to cater for complex specifications given
Generating and Solving Symbolic Parity Games
Kant, Gijs; van de Pol, Jan Cornelis
We present a new tool for verification of modal mu-calculus formulae for process specifications, based on symbolic parity games. It enhances an existing method, that first encodes the problem to a Parameterised Boolean Equation System (PBES) and then instantiates the PBES to a parity game. We
Sound Symbolism in Basic Vocabulary
Directory of Open Access Journals (Sweden)
Søren Wichmann
2010-04-01
Full Text Available The relationship between meanings of words and their sound shapes is to a large extent arbitrary, but it is well known that languages exhibit sound symbolism effects violating arbitrariness. Evidence for sound symbolism is typically anecdotal, however. Here we present a systematic approach. Using a selection of basic vocabulary in nearly one half of the world’s languages we find commonalities among sound shapes for words referring to same concepts. These are interpreted as due to sound symbolism. Studying the effects of sound symbolism cross-linguistically is of key importance for the understanding of language evolution.
Stochastic Thermodynamics: A Dynamical Systems Approach
Directory of Open Access Journals (Sweden)
Tanmay Rajpurohit
2017-12-01
Full Text Available In this paper, we develop an energy-based, large-scale dynamical system model driven by Markov diffusion processes to present a unified framework for statistical thermodynamics predicated on a stochastic dynamical systems formalism. Specifically, using a stochastic state space formulation, we develop a nonlinear stochastic compartmental dynamical system model characterized by energy conservation laws that is consistent with statistical thermodynamic principles. In particular, we show that the difference between the average supplied system energy and the average stored system energy for our stochastic thermodynamic model is a martingale with respect to the system filtration. In addition, we show that the average stored system energy is equal to the mean energy that can be extracted from the system and the mean energy that can be delivered to the system in order to transfer it from a zero energy level to an arbitrary nonempty subset in the state space over a finite stopping time.
Information Processing Capacity of Dynamical Systems
Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge
2012-07-01
Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory.
Information Processing Capacity of Dynamical Systems
Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge
2012-01-01
Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory. PMID:22816038
System Dynamics Modelling for a Balanced Scorecard
DEFF Research Database (Denmark)
Nielsen, Steen; Nielsen, Erland Hejn
2008-01-01
/methodology/approach - We use a case study model to develop time or dynamic dimensions by using a System Dynamics modelling (SDM) approach. The model includes five perspectives and a number of financial and non-financial measures. All indicators are defined and related to a coherent number of different cause...... have a major influence on other indicators and profit and may be impossible to predict without using a dynamic model. Practical implications - The model may be used as the first step in quantifying the cause-and-effect relationships of an integrated BSC model. Using the System Dynamics model provides......Purpose - To construct a dynamic model/framework inspired by a case study based on an international company. As described by the theory, one of the main difficulties of BSC is to foresee the time lag dimension of different types of indicators and their combined dynamic effects. Design...
Modeling the Dynamic Digestive System Microbiome†
Estes, Anne M.
2015-01-01
“Modeling the Dynamic Digestive System Microbiome” is a hands-on activity designed to demonstrate the dynamics of microbiome ecology using dried pasta and beans to model disturbance events in the human digestive system microbiome. This exercise demonstrates how microbiome diversity is influenced by: 1) niche availability and habitat space and 2) a major disturbance event, such as antibiotic use. Students use a pictorial key to examine prepared models of digestive system microbiomes to determi...
Session 6: Dynamic Modeling and Systems Analysis
Csank, Jeffrey; Chapman, Jeffryes; May, Ryan
2013-01-01
These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators
Planar dynamical systems selected classical problems
Liu, Yirong; Huang, Wentao
2014-01-01
This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. This book is intended for graduate students, post-doctors and researchers in the area of theories and applications of dynamical systems. For all engineers who are interested the theory of dynamical systems, it is also a reasona
Collective Dynamics of Nonlinear and Disordered Systems
Radons, G; Just, W
2005-01-01
Phase transitions in disordered systems and related dynamical phenomena are a topic of intrinsically high interest in theoretical and experimental physics. This book presents a unified view, adopting concepts from each of the disjoint fields of disordered systems and nonlinear dynamics. Special attention is paid to the glass transition, from both experimental and theoretical viewpoints, to modern concepts of pattern formation, and to the application of the concepts of dynamical systems for understanding equilibrium and nonequilibrium properties of fluids and solids. The content is accessible to graduate students, but will also be of benefit to specialists, since the presentation extends as far as the topics of ongoing research work.
SIAM conference on applications of dynamical systems
Energy Technology Data Exchange (ETDEWEB)
1992-01-01
A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.
Fault diagnosis for dynamic power system
International Nuclear Information System (INIS)
Thabet, A.; Abdelkrim, M.N.; Boutayeb, M.; Didier, G.; Chniba, S.
2011-01-01
The fault diagnosis problem for dynamic power systems is treated, the nonlinear dynamic model based on a differential algebraic equations is transformed with reduced index to a simple dynamic model. Two nonlinear observers are used for generating the fault signals for comparison purposes, one of them being an extended Kalman estimator and the other a new extended kalman filter with moving horizon with a study of convergence based on the choice of matrix of covariance of the noises of system and measurements. The paper illustrates a simulation study applied on IEEE 3 buses test system.
The fractional dynamics of quantum systems
Lu, Longzhao; Yu, Xiangyang
2018-05-01
The fractional dynamic process of a quantum system is a novel and complicated problem. The establishment of a fractional dynamic model is a significant attempt that is expected to reveal the mechanism of fractional quantum system. In this paper, a generalized time fractional Schrödinger equation is proposed. To study the fractional dynamics of quantum systems, we take the two-level system as an example and derive the time fractional equations of motion. The basic properties of the system are investigated by solving this set of equations in the absence of light field analytically. Then, when the system is subject to the light field, the equations are solved numerically. It shows that the two-level system described by the time fractional Schrödinger equation we proposed is a confirmable system.
Dynamics of mechanical systems with variable mass
Belyaev, Alexander
2014-01-01
The book presents up-to-date and unifying formulations for treating dynamics of different types of mechanical systems with variable mass. The starting point is overview of the continuum mechanics relations of balance and jump for open systems from which extended Lagrange and Hamiltonian formulations are derived. Corresponding approaches are stated at the level of analytical mechanics with emphasis on systems with a position-dependent mass and at the level of structural mechanics. Special emphasis is laid upon axially moving structures like belts and chains, and on pipes with an axial flow of fluid. Constitutive relations in the dynamics of systems with variable mass are studied with particular reference to modeling of multi-component mixtures. The dynamics of machines with a variable mass are treated in detail and conservation laws and the stability of motion will be analyzed. Novel finite element formulations for open systems in coupled fluid and structural dynamics are presented.
Symbolic Computing in Probabilistic and Stochastic Analysis
Directory of Open Access Journals (Sweden)
Kamiński Marcin
2015-12-01
Full Text Available The main aim is to present recent developments in applications of symbolic computing in probabilistic and stochastic analysis, and this is done using the example of the well-known MAPLE system. The key theoretical methods discussed are (i analytical derivations, (ii the classical Monte-Carlo simulation approach, (iii the stochastic perturbation technique, as well as (iv some semi-analytical approaches. It is demonstrated in particular how to engage the basic symbolic tools implemented in any system to derive the basic equations for the stochastic perturbation technique and how to make an efficient implementation of the semi-analytical methods using an automatic differentiation and integration provided by the computer algebra program itself. The second important illustration is probabilistic extension of the finite element and finite difference methods coded in MAPLE, showing how to solve boundary value problems with random parameters in the environment of symbolic computing. The response function method belongs to the third group, where interference of classical deterministic software with the non-linear fitting numerical techniques available in various symbolic environments is displayed. We recover in this context the probabilistic structural response in engineering systems and show how to solve partial differential equations including Gaussian randomness in their coefficients.
Coherent regimes of globally coupled dynamical systems
DEFF Research Database (Denmark)
de Monte, Silvia; D'ovidio, Francesco; Mosekilde, Erik
2003-01-01
This Letter presents a method by which the mean field dynamics of a population of dynamical systems with parameter diversity and global coupling can be described in terms of a few macroscopic degrees of freedom. The method applies to populations of any size and functional form in the region...
An Integrative Dynamical Systems Perspective on Emotions
Treur, J.
2013-01-01
Within cognitive, affective and social neuroscience more and more mechanisms are found that suggest how emotions relate in a bidirectional manner to many other mental processes and behaviour. Based on this, in this paper a neurologically inspired dynamical systems approach on the dynamics and
Symbolic Interaction and Applied Social Research
Kotarba, Joseph A.
2014-01-01
In symbolic interaction, a traditional yet unfortunate and unnecessary distinction has been made between basic and applied research. The argument has been made that basic research is intended to generate new knowledge, whereas applied research is intended to apply knowledge to the solution of practical (social and organizational) problems. I will argue that the distinction between basic and applied research in symbolic interaction is outdated and dysfunctional. The masters of symbolic interactionist thought have left us a proud legacy of shaping their scholarly thinking and inquiry in response to and in light of practical issues of the day (e.g., Znaniecki, and Blumer). Current interactionist work continues this tradition in topical areas such as social justice studies. Applied research, especially in term of evaluation and needs assessment studies, can be designed to serve both basic and applied goals. Symbolic interaction provides three great resources to do this. The first is its orientation to dynamic sensitizing concepts that direct research and ask questions instead of supplying a priori and often impractical answers. The second is its orientation to qualitative methods, and appreciation for the logic of grounded theory. The third is interactionism’s overall holistic approach to interfacing with the everyday life world. The primary illustrative case here is the qualitative component of the evaluation of an NIH-funded, translational medical research program. The qualitative component has provided interactionist-inspired insights into translational research, such as examining cultural change in medical research in terms of changes in the form and content of formal and informal discourse among scientists; delineating the impact of significant symbols such as "my lab" on the social organization of science; and appreciating the essence of the self-concept "scientist" on the increasingly bureaucratic and administrative identities of medical researchers. This
Lassègue, Jean
2008-03-01
In his article 'A New View of Language, Emotion and the Brain,' Dan Shanahan claims that the post-war Cognitive Turn focused mainly on information processing and that little attention was paid to the dramatic role played by emotion in human cognition. One key argument in his defence of a more comprehensive view of human cognition rests upon the idea that the process of symbolization--a unique capacity only developed by humans--combines, right from the start, information processing and feelings. The author argues that any theory ignoring this fact would miss the whole point, just as mainstream cognitive science has done since Noam Chomsky published Syntactic Structures, exactly 50 years ago.
DEFF Research Database (Denmark)
Wagoner, Brady
2013-01-01
them vis-à-vis other research at Clark and in American psychology more generally. The second two articles analyse Werner and Kaplan’s notions of ‘distancing’ and ‘physiognomic metaphor’, showing their roots in naturphilosophie and comparing them with contemporary theories. The last four articles apply......Werner and Kaplan’s Symbol formation was published 50 years ago but its insights have yet to be adequately explored by psychology and other social sciences. This special issue aims to revisit this seminal work in search of concepts to work on key issues facing us today. This introductory article...... begins with a brief outline and contextualization of the book as well as of the articles that this special issue comprises. The first two articles were written by contributors who were part of the Werner era at Clark University. They explore the key concepts of the organismic and development, and situate...
Constraint Embedding for Multibody System Dynamics
Jain, Abhinandan
2009-01-01
This paper describes a constraint embedding approach for the handling of local closure constraints in multibody system dynamics. The approach uses spatial operator techniques to eliminate local-loop constraints from the system and effectively convert the system into tree-topology systems. This approach allows the direct derivation of recursive O(N) techniques for solving the system dynamics and avoiding the expensive steps that would otherwise be required for handling the closedchain dynamics. The approach is very effective for systems where the constraints are confined to small-subgraphs within the system topology. The paper provides background on the spatial operator O(N) algorithms, the extensions for handling embedded constraints, and concludes with some examples of such constraints.
Understanding and Modeling Teams As Dynamical Systems
Gorman, Jamie C.; Dunbar, Terri A.; Grimm, David; Gipson, Christina L.
2017-01-01
By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a) considering the question of why study teams as dynamical systems, (b) considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals) in the context of teams, (c) describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d) consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area. PMID:28744231
Luo, Lannan; Zeng, Qiang; Cao, Chen; Chen, Kai; Liu, Jian; Liu, Limin; Gao, Neng; Yang, Min; Xing, Xinyu; Liu, Peng
2016-01-01
Android Framework is a layer of software that exists in every Android system managing resources of all Android apps. A vulnerability in Android Framework can lead to severe hacks, such as destroying user data and leaking private information. With tens of millions of Android devices unpatched due to Android fragmentation, vulnerabilities in Android Framework certainly attract attackers to exploit them. So far, enormous manual effort is needed to craft such exploits. To our knowledge, no resear...
A General Symbolic PDE Solver Generator: Explicit Schemes
Directory of Open Access Journals (Sweden)
K. Sheshadri
2003-01-01
Full Text Available A symbolic solver generator to deal with a system of partial differential equations (PDEs in functions of an arbitrary number of variables is presented; it can also handle arbitrary domains (geometries of the independent variables. Given a system of PDEs, the solver generates a set of explicit finite-difference methods to any specified order, and a Fourier stability criterion for each method. For a method that is stable, an iteration function is generated symbolically using the PDE and its initial and boundary conditions. This iteration function is dynamically generated for every PDE problem, and its evaluation provides a solution to the PDE problem. A C++/Fortran 90 code for the iteration function is generated using the MathCode system, which results in a performance gain of the order of a thousand over Mathematica, the language that has been used to code the solver generator. Examples of stability criteria are presented that agree with known criteria; examples that demonstrate the generality of the solver and the speed enhancement of the generated C++ and Fortran 90 codes are also presented.
Solved problems in dynamical systems and control
Tenreiro-Machado, J; Valério, Duarte; Galhano, Alexandra M
2016-01-01
This book presents a collection of exercises on dynamical systems, modelling and control. Each topic covered includes a summary of the theoretical background, problems with solutions, and further exercises.
Symbolic Time Separation of Events
DEFF Research Database (Denmark)
Amon, Tod; Hulgaard, Henrik
1999-01-01
We extend the TSE~\\cite{Hulgaard95} timing analysis algorithm into the symbolic domain, that is, we allow symbolic variables to be used to specify unknown parameters of the model (essentially, unknown delays) and verification algorithms which are capable of identifying not just failure or success...
Generating and Solving Symbolic Parity Games
Directory of Open Access Journals (Sweden)
Gijs Kant
2014-07-01
Full Text Available We present a new tool for verification of modal mu-calculus formulae for process specifications, based on symbolic parity games. It enhances an existing method, that first encodes the problem to a Parameterised Boolean Equation System (PBES and then instantiates the PBES to a parity game. We improved the translation from specification to PBES to preserve the structure of the specification in the PBES, we extended LTSmin to instantiate PBESs to symbolic parity games, and implemented the recursive parity game solving algorithm by Zielonka for symbolic parity games. We use Multi-valued Decision Diagrams (MDDs to represent sets and relations, thus enabling the tools to deal with very large systems. The transition relation is partitioned based on the structure of the specification, which allows for efficient manipulation of the MDDs. We performed two case studies on modular specifications, that demonstrate that the new method has better time and memory performance than existing PBES based tools and can be faster (but slightly less memory efficient than the symbolic model checker NuSMV.
Dynamical Systems Approach to Endothelial Heterogeneity
Regan, Erzsébet Ravasz; Aird, William C.
2012-01-01
Rationale Objective Here we reexamine our current understanding of the molecular basis of endothelial heterogeneity. We introduce multistability as a new explanatory framework in vascular biology. Methods We draw on the field of non-linear dynamics to propose a dynamical systems framework for modeling multistability and its derivative properties, including robustness, memory, and plasticity. Conclusions Our perspective allows for both a conceptual and quantitative description of system-level features of endothelial regulation. PMID:22723222
Nonlinear and Complex Dynamics in Real Systems
William Barnett; Apostolos Serletis; Demitre Serletis
2005-01-01
This paper was produced for the El-Naschie Symposium on Nonlinear Dynamics in Shanghai in December 2005. In this paper we provide a review of the literature with respect to fluctuations in real systems and chaos. In doing so, we contrast the order and organization hypothesis of real systems with nonlinear chaotic dynamics and discuss some techniques used in distinguishing between stochastic and deterministic behavior. Moreover, we look at the issue of where and when the ideas of chaos could p...
Dynamic Double Curvature Mould System
DEFF Research Database (Denmark)
Jepsen, Christian Raun; Kristensen, Mathias Kræmmergaard; Kirkegaard, Poul Henning
2011-01-01
The present paper describes a concept for a reconfigurable mould surface which is designed to fit the needs of contemporary architecture. The core of the concept presented is a dynamic surface manipulated into a given shape using a digital signal created directly from the CAD drawing of the design....... This happens fast, automatic and without production of waste, and the manipulated surface is fair and robust, eliminating the need for additional, manual treatment. Limitations to the possibilities of the flexible form are limited curvature and limited level of detail, making it especially suited for larger...
Attractors and basins of dynamical systems
Directory of Open Access Journals (Sweden)
Attila Dénes
2011-03-01
Full Text Available There are several programs for studying dynamical systems, but none of them is very useful for investigating basins and attractors of higher dimensional systems. Our goal in this paper is to show a new algorithm for finding even chaotic attractors and their basins for these systems. We present an implementation and examples for the use of this program.
The brain as a dynamic physical system.
McKenna, T M; McMullen, T A; Shlesinger, M F
1994-06-01
The brain is a dynamic system that is non-linear at multiple levels of analysis. Characterization of its non-linear dynamics is fundamental to our understanding of brain function. Identifying families of attractors in phase space analysis, an approach which has proven valuable in describing non-linear mechanical and electrical systems, can prove valuable in describing a range of behaviors and associated neural activity including sensory and motor repertoires. Additionally, transitions between attractors may serve as useful descriptors for analysing state changes in neurons and neural ensembles. Recent observations of synchronous neural activity, and the emerging capability to record the spatiotemporal dynamics of neural activity by voltage-sensitive dyes and electrode arrays, provide opportunities for observing the population dynamics of neural ensembles within a dynamic systems context. New developments in the experimental physics of complex systems, such as the control of chaotic systems, selection of attractors, attractor switching and transient states, can be a source of powerful new analytical tools and insights into the dynamics of neural systems.
Dynamics and control of technical systems
Balthazar, José M; Kaczmarczyk, Stefan
2014-01-01
The main topics of this Special Issue are linear and, mainly, nonlinear dynamics, chaos and control of systems and structures and their applications in different field of science and engineering. According to the goal of the Special Issue, the selected contributions are divided into three major parts: ""Vibration Problems in Vertical Transportation Systems"", ""Nonlinear Dynamics, Chaos and Control of Elastic Structures"" and ""New Strategies and Challenges for Aerospace and Ocean Structures Dynamics and Control"". The discussion of real problems in aerospace and how these problems can be unde
Dynamical systems examples of complex behaviour
Jost, Jürgen
2005-01-01
Our aim is to introduce, explain, and discuss the fundamental problems, ideas, concepts, results, and methods of the theory of dynamical systems and to show how they can be used in speci?c examples. We do not intend to give a comprehensive overview of the present state of research in the theory of dynamical systems, nor a detailed historical account of its development. We try to explain the important results, often neglecting technical re?nements 1 and, usually, we do not provide proofs. One of the basic questions in studying dynamical systems, i.e. systems that evolve in time, is the construction of invariants that allow us to classify qualitative types of dynamical evolution, to distinguish between qualitatively di?erent dynamics, and to studytransitions between di?erent types. Itis also important to ?nd out when a certain dynamic behavior is stable under small perturbations, as well as to understand the various scenarios of instability. Finally, an essential aspect of a dynamic evolution is the transformat...
Structural Identifiability of Dynamic Systems Biology Models.
Villaverde, Alejandro F; Barreiro, Antonio; Papachristodoulou, Antonis
2016-10-01
A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas.
SYSTEMATIC PRINCIPLES AND METHODS OF SYMBOLIC APPROACHES IN URBAN DESIGN
Directory of Open Access Journals (Sweden)
BULAKH I. V
2015-12-01
Full Text Available Formulation of the problem. The low level of expression and personalization of mass architecture of the second half of the twentieth century connected with the spread of industrial technology and even to a greater extent with mechanistic traditionally functional relation to the average person as, abstract consumer architecture. The condition out of the critical situation is focusing on matters aesthetic, artistic understanding and harmonious image creation environment. The problem of increasing architectural and artistic level of architectural and urban planning solutions to overcome the monotony of planning and development, creating aesthetically expressive urban environment does not lose relevance over the past decades. Understanding and acceptance of enigma and dynamic development of cities encourage architects to find new design techniques that are able to provide in the future a reasonable possibility of forming artistic and aesthetic image of the modern city. Purpose. Define and systematize the principles of symbolization architectural and planning images; propose methods symbolism in the architectural planning of image of the urban environment. Conclusion based on analysis of the enhanced concept symbolizing the image of Architecture and Planning, the place, role and symbolization trends at all levels of the urban environment - planning, three-dimensional and improvement of urban areas; first identified the main stages and levels of symbolization (analohyzatsyya, schematization and alehoryzatsiya, their features and characteristics, formulated the basic principles of symbolization architectural and planning of image, namely the principles of communication between figurative analogies, transformation of subsequent circuits, switching allegorical groupings and metamorfizm ultimate goal – symbol birth .
Altani, Angeliki; Georgiou, George K; Deng, Ciping; Cho, Jeung-Ryeul; Katopodi, Katerina; Wei, Wei; Protopapas, Athanassios
2017-12-01
We examined cross-linguistic effects in the relationship between serial and discrete versions of digit naming and word reading. In total, 113 Mandarin-speaking Chinese children, 100 Korean children, 112 English-speaking Canadian children, and 108 Greek children in Grade 3 were administered tasks of serial and discrete naming of words and digits. Interrelations among tasks indicated that the link between rapid naming and reading is largely determined by the format of the tasks across orthographies. Multigroup path analyses with discrete and serial word reading as dependent variables revealed commonalities as well as significant differences between writing systems. The path coefficient from discrete digits to discrete words was greater for the more transparent orthographies, consistent with more efficient sight-word processing. The effect of discrete word reading on serial word reading was stronger in alphabetic languages, where there was also a suppressive effect of discrete digit naming. However, the effect of serial digit naming on serial word reading did not differ among the four language groups. This pattern of relationships challenges a universal account of reading fluency acquisition while upholding a universal role of rapid serial naming, further distinguishing between multi-element interword and intraword processing. Copyright © 2017 Elsevier Inc. All rights reserved.
System dynamics an introduction for mechanical engineers
Seeler, Karl A
2014-01-01
This essential textbook takes the student from the initial steps in modeling a dynamic system through development of the mathematical models needed for feedback control. The generously-illustrated, student-friendly text focuses on fundamental theoretical development rather than the application of commercial software. Practical details of machine design are included to motivate the non-mathematically inclined student. This book also: Emphasizes the linear graph method for modeling dynamic systems Offers a systematic approach for creating an engineering model, extracting information, and formulating mathematical analyses Adopts a unifying theme of power flow as the dynamic agent that eases analysis of hybrid systems, such as machinery Presents differential equations as dynamic operators and stresses input/output relationships Introduces Mathcad and programming in MATLAB Allows for use of Open Source Computational Software (R or C) Features over 1000 illustrations
Dynamic memory management for embedded systems
Atienza Alonso, David; Poucet, Christophe; Peón-Quirós, Miguel; Bartzas, Alexandros; Catthoor, Francky; Soudris, Dimitrios
2015-01-01
This book provides a systematic and unified methodology, including basic principles and reusable processes, for dynamic memory management (DMM) in embedded systems. The authors describe in detail how to design and optimize the use of dynamic memory in modern, multimedia and network applications, targeting the latest generation of portable embedded systems, such as smartphones. Coverage includes a variety of design and optimization topics in electronic design automation of DMM, from high-level software optimization to microarchitecture-level hardware support. The authors describe the design of multi-layer dynamic data structures for the final memory hierarchy layers of the target portable embedded systems and how to create a low-fragmentation, cost-efficient, dynamic memory management subsystem out of configurable components for the particular memory allocation and de-allocation patterns for each type of application. The design methodology described in this book is based on propagating constraints among de...
The influence of math anxiety on symbolic and non-symbolic magnitude processing.
Dietrich, Julia F; Huber, Stefan; Moeller, Korbinian; Klein, Elise
2015-01-01
Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS), which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed.
The influence of math anxiety on symbolic and non-symbolic magnitude processing
Directory of Open Access Journals (Sweden)
Julia Felicitas Dietrich
2015-10-01
Full Text Available Deficits in basic numerical abilities have been investigated repeatedly as potential risk factors of math anxiety. Previous research suggested that also a deficient approximate number system (ANS, which is discussed as being the foundation for later math abilities, underlies math anxiety. However, these studies examined this hypothesis by investigating ANS acuity using a symbolic number comparison task. Recent evidence questions the view that ANS acuity can be assessed using a symbolic number comparison task. To investigate whether there is an association between math anxiety and ANS acuity, we employed both a symbolic number comparison task and a non-symbolic dot comparison task, which is currently the standard task to assess ANS acuity. We replicated previous findings regarding the association between math anxiety and the symbolic distance effect for response times. High math anxious individuals showed a larger distance effect than less math anxious individuals. However, our results revealed no association between math anxiety and ANS acuity assessed using a non-symbolic dot comparison task. Thus, our results did not provide evidence for the hypothesis that a deficient ANS underlies math anxiety. Therefore, we propose that a deficient ANS does not constitute a risk factor for the development of math anxiety. Moreover, our results suggest that previous interpretations regarding the interaction of math anxiety and the symbolic distance effect have to be updated. We suggest that impaired number comparison processes in high math anxious individuals might account for the results rather than deficient ANS representations. Finally, impaired number comparison processes might constitute a risk factor for the development of math anxiety. Implications for current models regarding the origins of math anxiety are discussed.
System crash as dynamics of complex networks.
Yu, Yi; Xiao, Gaoxi; Zhou, Jie; Wang, Yubo; Wang, Zhen; Kurths, Jürgen; Schellnhuber, Hans Joachim
2016-10-18
Complex systems, from animal herds to human nations, sometimes crash drastically. Although the growth and evolution of systems have been extensively studied, our understanding of how systems crash is still limited. It remains rather puzzling why some systems, appearing to be doomed to fail, manage to survive for a long time whereas some other systems, which seem to be too big or too strong to fail, crash rapidly. In this contribution, we propose a network-based system dynamics model, where individual actions based on the local information accessible in their respective system structures may lead to the "peculiar" dynamics of system crash mentioned above. Extensive simulations are carried out on synthetic and real-life networks, which further reveal the interesting system evolution leading to the final crash. Applications and possible extensions of the proposed model are discussed.
Symbolic PathFinder: Symbolic Execution of Java Bytecode
Pasareanu, Corina S.; Rungta, Neha
2010-01-01
Symbolic Pathfinder (SPF) combines symbolic execution with model checking and constraint solving for automated test case generation and error detection in Java programs with unspecified inputs. In this tool, programs are executed on symbolic inputs representing multiple concrete inputs. Values of variables are represented as constraints generated from the analysis of Java bytecode. The constraints are solved using off-the shelf solvers to generate test inputs guaranteed to achieve complex coverage criteria. SPF has been used successfully at NASA, in academia, and in industry.
Modular interdependency in complex dynamical systems.
Watson, Richard A; Pollack, Jordan B
2005-01-01
Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability.
International Nuclear Information System (INIS)
Sidlichovsky, M.
1987-01-01
The conference proceedings contains a total of 31 papers of which 7 have not been incorporated in INIS. The papers mainly discuss the mathematical methods of calculating the movement of planets, their satellites and asteroids in the solar system and the mathematical modelling of the past development of the solar system. Great attention is also devoted to resonance in the solar system and to the study of many celestial bodies. Four papers are devoted to planetary rings and three to modern astrometry. (M.D.). 63 figs., 10 tabs., 520 refs
Dynamics of Multibody Systems Near Lagrangian Points
Wong, Brian
This thesis examines the dynamics of a physically connected multi-spacecraft system in the vicinity of the Lagrangian points of a Circular Restricted Three-Body System. The spacecraft system is arranged in a wheel-spoke configuration with smaller and less massive satellites connected to a central hub using truss/beams or tether connectors. The kinematics of the system is first defined, and the kinetic, gravitational potential energy and elastic potential energy of the system are derived. The Assumed Modes Method is used to discretize the continuous variables of the system, and a general set of ordinary differential equations describing the dynamics of the connectors and the central hub are obtained using the Lagrangian method. The flexible body dynamics of the tethered and truss connected systems are examined using numerical simulations. The results show that these systems experienced only small elastic deflections when they are naturally librating or rotating at moderate angular velocities, and these deflections have relatively small effect on the attitude dynamics of the systems. Based on these results, it is determined that the connectors can be modeled as rigid when only the attitude dynamics of the system is of interest. The equations of motion of rigid satellites stationed at the Lagrangian points are linearized, and the stability conditions of the satellite are obtained from the linear equations. The required conditions are shown to be similar to those of geocentric satellites. Study of the linear equations also revealed the resonant conditions of rigid Lagrangian point satellites, when a librational natural frequency of the satellite matches the frequency of its station-keeping orbit leading to large attitude motions. For tethered satellites, the linear analysis shows that the tethers are in stable equilibrium when they lie along a line joining the two primary celestial bodies of the Three-Body System. Numerical simulations are used to study the long term
Hybrid dynamical systems observation and control
Defoort, Michael
2015-01-01
This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systems – systems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...
The dilemma of the symbols: analogies between philosophy, biology and artificial life.
Spadaro, Salvatore
2013-01-01
This article analyzes some analogies going from Artificial Life questions about the symbol-matter connection to Artificial Intelligence questions about symbol-grounding. It focuses on the notion of the interpretability of syntax and how the symbols are integrated in a unity ("binding problem"). Utilizing the DNA code as a model, this paper discusses how syntactic features could be defined as high-grade characteristics of the non syntactic relations in a material-dynamic structure, by using an emergentist approach. This topic furnishes the ground for a confutation of J. Searle's statement that syntax is observer-relative, as he wrote in his book "Mind: A Brief Introduction". Moreover the evolving discussion also modifies the classic symbol-processing doctrine in the mind which Searle attacks as a strong AL argument, that life could be implemented in a computational mode. Lastly, this paper furnishes a new way of support for the autonomous systems thesis in Artificial Life and Artificial Intelligence, using, inter alia, the "adaptive resonance theory" (ART).
Symbol-stream Combiner: Description and Demonstration Plans
Hurd, W. J.; Reder, L. J.; Russell, M. D.
1984-01-01
A system is described and demonstration plans presented for antenna arraying by symbol stream combining. This system is used to enhance the signal-to-noise ratio of a spacecraft signals by combining the detected symbol streams from two or more receiving stations. Symbol stream combining has both cost and performance advantages over other arraying methods. Demonstrations are planned on Voyager 2 both prior to and during Uranus encounter. Operational use is possible for interagency arraying of non-Deep Space Network stations at Neptune encounter.
Dynamic of small photovoltaic systems
Mehrmann, A.; Kleinkauf, W.; Pigorsch, W.; Steeb, H.
The results of 1.5 yr of field-testing of two photovoltaic (PV) power plants, one equipped with an electrolyzer and H2 storage, are reported. Both systems were interconnected with the grid and featured the PV module, a power conditioning unit, ac and dc load connections, and control units. The rated power of both units was 100 Wp. The system with electrolysis was governed by control laws which maximized the electrolyzer current. The tests underscored the preference for a power conditioning unit, rather than direct output to load connections. A 1 kWp system was developed in a follow-up program and will be tested in concert with electrolysis and interconnection with several grid customers. The program is geared to eventual development of larger units for utility-size applications.
Problems of classical dynamical systems
International Nuclear Information System (INIS)
Thirring, W.
1975-01-01
After a brief survey of Hamiltonian theory and of relevant notions of set theory and manifolds, these lecture notes present some general properties of orbits, paying special attention to integrable systems. This is followed by a discussion of the Kolmogorov-Arnol'd-Moser theorem, dealing with the stability of orbits under small perturbations, and its importance for ergodic theory. Ergodicity and mixing are then treated in detail. In particular, the ergodic theorem of von Neumann is derived, and a specific example is given of a (strongly) mixing system. (author)
Topological theory of dynamical systems recent advances
Aoki, N
1994-01-01
This monograph aims to provide an advanced account of some aspects of dynamical systems in the framework of general topology, and is intended for use by interested graduate students and working mathematicians. Although some of the topics discussed are relatively new, others are not: this book is not a collection of research papers, but a textbook to present recent developments of the theory that could be the foundations for future developments. This book contains a new theory developed by the authors to deal with problems occurring in diffentiable dynamics that are within the scope of general topology. To follow it, the book provides an adequate foundation for topological theory of dynamical systems, and contains tools which are sufficiently powerful throughout the book. Graduate students (and some undergraduates) with sufficient knowledge of basic general topology, basic topological dynamics, and basic algebraic topology will find little difficulty in reading this book.
Controllable Subspaces of Open Quantum Dynamical Systems
International Nuclear Information System (INIS)
Zhang Ming; Gong Erling; Xie Hongwei; Hu Dewen; Dai Hongyi
2008-01-01
This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perform open-loop coherent control on open quantum systems will allow decoherence-free subspaces to be controllable. This is in contrast to the observation that open quantum dynamical systems are not open-loop controllable. To a certain extent, this paper gives an alternative control theoretical interpretation on why decoherence-free subspaces can be useful for quantum computation.
Linear dynamic coupling in geared rotor systems
David, J. W.; Mitchell, L. D.
1986-01-01
The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.
Social Symbolic Work in Context
DEFF Research Database (Denmark)
Brincker, Benedikte
‘the good organisation’ may offer a supportive organisational framework for social symbolic work, thus promoting regional development in peripheral and poorly developed regions. Exploring what qualifies as a ‘good organisation’, the paper identifies three key elements: management, motivation......This paper reports on a research project that explores social symbolic work. The social symbolic work in question seeks to introduce education in entrepreneurship into the school curriculum in a remote part of Greenland – in order to contribute to regional development. The paper investigates how...
Proportional Symbol Mapping in R
Directory of Open Access Journals (Sweden)
Susumu Tanimura
2006-01-01
Full Text Available Visualization of spatial data on a map aids not only in data exploration but also in communication to impart spatial conception or ideas to others. Although recent carto-graphic functions in R are rapidly becoming richer, proportional symbol mapping, which is one of the common mapping approaches, has not been packaged thus far. Based on the theories of proportional symbol mapping developed in cartography, the authors developed some functions for proportional symbol mapping using R, including mathematical and perceptual scaling. An example of these functions demonstrated the new expressive power and options available in R, particularly for the visualization of conceptual point data.
Dynamic modeling of the INAPRO aquaponic system
Karimanzira, Divas; Keesman, Karel J.; Kloas, Werner; Baganz, Daniela; Rauschenbach, Thomas
2016-01-01
The use of modeling techniques to analyze aquaponics systems is demonstrated with an example of dynamic modeling for the production of Nile tilapia (Oreochromis niloticus) and tomatoes (Solanum lycopersicon) using the innovative double recirculating aquaponic system ASTAF-PRO. For the management
Dynamic Systems Theory and Team Sport Coaching
Gréhaigne, Jean-Francis; Godbout, Paul
2014-01-01
This article examines the theory of dynamic systems and its use in the domains of the study and coaching of team sports. The two teams involved in a match are looked at as two interacting systems in movement, where opposition is paramount. A key element for the observation of game play is the notion of configuration of play and its ever-changing…
Reaction dynamics in polyatomic molecular systems
Energy Technology Data Exchange (ETDEWEB)
Miller, W.H. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01
The goal of this program is the development of theoretical methods and models for describing the dynamics of chemical reactions, with specific interest for application to polyatomic molecular systems of special interest and relevance. There is interest in developing the most rigorous possible theoretical approaches and also in more approximate treatments that are more readily applicable to complex systems.
Dynamic MR imaging of the musculoskeletal system
International Nuclear Information System (INIS)
Shah, A.S.; Hylton, H.; Hentz, V.R.; Schattner, P.
1991-01-01
This paper reports on dynamic MR imaging which is an MR technique that allows imaging of the musculoskeletal system in motion. Current methods for observing the articulation of muscles and joints are limited to acquisition of stationary images at different spatial orientations. These images are then replayed from computer memory to simulate motion. Unlike stationary acquisition, dynamic MR imaging allows the volume of interest to be subjected to motion and dynamic stress, which is important for detecting stress-induced pathology. To demonstrate the utility of dynamic MR imaging, a system for imaging a moving wrist has been developed. The system consists of apparatus capable of providing simultaneous radialulnar deviation and flexion-extension, and hardware for system control and acquisition gating. The apparatus is mounted on the patient bed and is transferable to a variety of standard clinical MR imaging systems. Images were obtained during motion, and the ability of dynamic MR imaging to accurately image the moving wrist with very little motion artifact was demonstrated
Solar dynamic power system definition study
Wallin, Wayne E.; Friefeld, Jerry M.
1988-01-01
The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.
Near Identifiability of Dynamical Systems
Hadaegh, F. Y.; Bekey, G. A.
1987-01-01
Concepts regarding approximate mathematical models treated rigorously. Paper presents new results in analysis of structural identifiability, equivalence, and near equivalence between mathematical models and physical processes they represent. Helps establish rigorous mathematical basis for concepts related to structural identifiability and equivalence revealing fundamental requirements, tacit assumptions, and sources of error. "Structural identifiability," as used by workers in this field, loosely translates as meaning ability to specify unique mathematical model and set of model parameters that accurately predict behavior of corresponding physical system.
Symbols for the General British English Vowel Sounds
Lewis, J. Windsor
1975-01-01
Deals with the critique of Hans G. Hoffmann saying that the new phonetic symbols contained in A. S. Hornby's "Advanced Learner's Dictionary" (Oxford University Press, London, 1974) are harder to learn than the older system of transcription. (IFS/WGA)
Dynamic Systems Modeling in Educational System Design & Policy
Groff, Jennifer Sterling
2013-01-01
Over the last several hundred years, local and national educational systems have evolved from relatively simple systems to incredibly complex, interdependent, policy-laden structures, to which many question their value, effectiveness, and direction they are headed. System Dynamics is a field of analysis used to guide policy and system design in…
Dynamics Explorer science data processing system
International Nuclear Information System (INIS)
Smith, P.H.; Freeman, C.H.; Hoffman, R.A.
1981-01-01
The Dynamics Explorer project has acquired the ground data processing system from the Atmosphere Explorer project to provide a central computer facility for the data processing, data management and data analysis activities of the investigators. Access to this system is via remote terminals at the investigators' facilities, which provide ready access to the data sets derived from groups of instruments on both spacecraft. The original system has been upgraded with both new hardware and enhanced software systems. These new systems include color and grey scale graphics terminals, an augmentation computer, micrographies facility, a versatile data base with a directory and data management system, and graphics display software packages. (orig.)
Stirling Engine Dynamic System Modeling
Nakis, Christopher G.
2004-01-01
The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.
Dynamics of Nonlinear Time-Delay Systems
Lakshmanan, Muthusamy
2010-01-01
Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different bran...
National Research Council Canada - National Science Library
Kennedy, William G; Trafton, J. G
2007-01-01
What are the characteristics of long-term learning? We investigated the characteristics of long-term, symbolic learning using the Soar and ACT-R cognitive architectures running cognitive models of two simple tasks...
On non-stationarity of dynamic systems
DEFF Research Database (Denmark)
Høskuldsson, Agnar
2004-01-01
. Covariance structure of dynamic systems tends to vary over time. Here some procedures to find stable solutions to linear dynamic systems with low rank are presented. Subsets of variables and samples to be included in a model are considered. The procedures are based on the H-principle of mathematical...... that are based on exact solutions. With in few seconds the algorithms can provide with solutions of models having hundreds or thousands of variables. The procedure is described mathematically and demonstrated for a dynamic industrial case. It is shown how the algorithms can provide solutions involving NIR data...... for process control. The method is simple to apply and the motivation of the procedure is obvious for industrial applications. It can be used, e.g., when modelling on-line systems....
Supervised Learning for Dynamical System Learning.
Hefny, Ahmed; Downey, Carlton; Gordon, Geoffrey J
2015-01-01
Recently there has been substantial interest in spectral methods for learning dynamical systems. These methods are popular since they often offer a good tradeoff between computational and statistical efficiency. Unfortunately, they can be difficult to use and extend in practice: e.g., they can make it difficult to incorporate prior information such as sparsity or structure. To address this problem, we present a new view of dynamical system learning: we show how to learn dynamical systems by solving a sequence of ordinary supervised learning problems, thereby allowing users to incorporate prior knowledge via standard techniques such as L 1 regularization. Many existing spectral methods are special cases of this new framework, using linear regression as the supervised learner. We demonstrate the effectiveness of our framework by showing examples where nonlinear regression or lasso let us learn better state representations than plain linear regression does; the correctness of these instances follows directly from our general analysis.
Uncertain dynamical systems: A differential game approach
Gutman, S.
1976-01-01
A class of dynamical systems in a conflict situation is formulated and discussed, and the formulation is applied to the study of an important class of systems in the presence of uncertainty. The uncertainty is deterministic and the only assumption is that its value belongs to a known compact set. Asymptotic stability is fully discussed with application to variable structure and model reference control systems.
Signal- and Symbol-based Representations in Computer Vision
DEFF Research Database (Denmark)
Krüger, Norbert; Felsberg, Michael
We discuss problems of signal-- and symbol based representations in terms of three dilemmas which are faced in the design of each vision system. Signal- and symbol-based representations are opposite ends of a spectrum of conceivable design decisions caught at opposite sides of the dilemmas. We make...... inherent problems explicit and describe potential design decisions for artificial visual systems to deal with the dilemmas....
Nonlinear Dynamics, Chaotic and Complex Systems
Infeld, E.; Zelazny, R.; Galkowski, A.
2011-04-01
Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet
Symbol Recognition using Spatial Relations
K.C., Santosh; Lamiroy, Bart; Wendling, Laurent
2012-01-01
International audience; In this paper, we present a method for symbol recognition based on the spatio-structural description of a 'vocabulary' of extracted visual elementary parts. It is applied to symbols in electrical wiring diagrams. The method consists of first identifying vocabulary elements into different groups based on their types (e.g., circle, corner ). We then compute spatial relations between the possible pairs of labelled vocabulary types which are further used as a basis for bui...
Dynamic Subcarrier Allocation for Real-Time Traffic over Multiuser OFDM Systems
Directory of Open Access Journals (Sweden)
Li VictorOK
2009-01-01
Full Text Available A dynamic resource allocation algorithm to satisfy the packet delay requirements for real-time services, while maximizing the system capacity in multiuser orthogonal frequency division multiplexing (OFDM systems is introduced. Our proposed cross-layer algorithm, called Dynamic Subcarrier Allocation algorithm for Real-time Traffic (DSA-RT, consists of two interactive components. In the medium access control (MAC layer, the users' expected transmission rates in terms of the number of subcarriers per symbol and their corresponding transmission priorities are evaluated. With the above MAC-layer information and the detected subcarriers' channel gains, in the physical (PHY layer, a modified Kuhn-Munkres algorithm is developed to minimize the system power for a certain subcarrier allocation, then a PHY-layer resource allocation scheme is proposed to optimally allocate the subcarriers under the system signal-to-noise ratio (SNR and power constraints. In a system where the number of mobile users changes dynamically, our developed MAC-layer access control and removal schemes can guarantee the quality of service (QoS of the existing users in the system and fully utilize the bandwidth resource. The numerical results show that DSA-RT significantly improves the system performance in terms of the bandwidth efficiency and delay performance for real-time services.
International Nuclear Information System (INIS)
Tendler, M.
1986-04-01
The behaviour of the plasma in the EXTRAP device was found to differ drastically from the conventional Z-pinch discharges. The comparative discussion on the properties of these two configurations is presented. It is shown that the energy mechanism is responsible for the arising difference between them. Given the lack of experimental data on the confinement of the peripheral plasma, in the present study we suggest a scaling for the net energy loss with plasma density and temperature. Using self-similar methods, we show that strongly non-linear damped oscillations arise as a result of our scaling. Some preliminary results on the stability of this system are reported. Finally, some technical recommendations for the design of the toroidal device EXTRAP T1 are put forward. In particular the scheme, allowing the extension of the pulse duration, which is rather limited in the present version, is suggested. (Author)
System Dynamics Modeling of Multipurpose Reservoir Operation
Directory of Open Access Journals (Sweden)
Ebrahim Momeni
2006-03-01
Full Text Available System dynamics, a feedback – based object – oriented simulation approach, not only represents complex dynamic systemic systems in a realistic way but also allows the involvement of end users in model development to increase their confidence in modeling process. The increased speed of model development, the possibility of group model development, the effective communication of model results, and the trust developed in the model due to user participation are the main strengths of this approach. The ease of model modification in response to changes in the system and the ability to perform sensitivity analysis make this approach more attractive compared with systems analysis techniques for modeling water management systems. In this study, a system dynamics model was developed for the Zayandehrud basin in central Iran. This model contains river basin, dam reservoir, plains, irrigation systems, and groundwater. Current operation rule is conjunctive use of ground and surface water. Allocation factor for each irrigation system is computed based on the feedback from groundwater storage in its zone. Deficit water is extracted from groundwater.The results show that applying better rules can not only satisfy all demands such as Gawkhuni swamp environmental demand, but it can also prevent groundwater level drawdown in future.
Robust control synthesis for uncertain dynamical systems
Byun, Kuk-Whan; Wie, Bong; Sunkel, John
1989-01-01
This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.
Topological equivalence of nonlinear autonomous dynamical systems
International Nuclear Information System (INIS)
Nguyen Huynh Phan; Tran Van Nhung
1995-12-01
We show in this paper that the autonomous nonlinear dynamical system Σ(A,B,F): x' = Ax+Bu+F(x) is topologically equivalent to the linear dynamical system Σ(A,B,O): x' = Ax+Bu if the projection of A on the complement in R n of the controllable vectorial subspace is hyperbolic and if lipschitz constant of F is sufficiently small ( * ) and F(x) = 0 when parallel x parallel is sufficiently large ( ** ). In particular, if Σ(A,B,O) is controllable, it is topologically equivalent to Σ(A,B,F) when it is only that F satisfy ( ** ). (author). 18 refs
Dynamic Control Based Photovoltaic Illuminating System
Directory of Open Access Journals (Sweden)
Zhang Chengkai
2016-01-01
Full Text Available Smart LED illumination system can use the power from whether the photovoltaic cell or the power grid automatically based on the SOC (State Of Charge of the photovoltaic cell. This paper proposes a feedback control of the photovoltaic cells and a dynamic control strategy for the Energy system. The dynamic control strategy is used to determine the switching state of the photovoltaic cell based on the illumination load in the past one hour and the battery capacity. These controls are manifested by experimental prototype that the control scheme is correct and effective.
High dynamic range coding imaging system
Wu, Renfan; Huang, Yifan; Hou, Guangqi
2014-10-01
We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.
Trust dynamics in a large system implementation
DEFF Research Database (Denmark)
Schlichter, Bjarne Rerup; Rose, Jeremy
2013-01-01
outcomes, but largely ignored the dynamics of trust relations. Giddens, as part of his study of modernity, theorises trust dynamics in relation to abstract social systems, though without focusing on information systems. We use Giddens’ concepts to investigate evolving trust relationships in a longitudinal......A large information systems implementation (such as Enterprise Resource Planning systems) relies on the trust of its stakeholders to succeed. Such projects impact diverse groups of stakeholders, each with their legitimate interests and expectations. Levels of stakeholder trust can be expected...... case analysis of a large Integrated Hospital System implementation for the Faroe Islands. Trust relationships suffered a serious breakdown, but the project was able to recover and meet its goals. We develop six theoretical propositions theorising the relationship between trust and project outcomes...
Constraint Embedding Technique for Multibody System Dynamics
Woo, Simon S.; Cheng, Michael K.
2011-01-01
Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with
Do dynamical systems follow Benford's law?
International Nuclear Information System (INIS)
Tolle, Charles R.; Budzien, Joanne L.; LaViolette, Randall A.
2000-01-01
Data compiled from a variety of sources follow Benford's law, which gives a monotonically decreasing distribution of the first digit (1 through 9). We examine the frequency of the first digit of the coordinates of the trajectories generated by some common dynamical systems. One-dimensional cellular automata fulfill the expectation that the frequency of the first digit is uniform. The molecular dynamics of fluids, on the other hand, provides trajectories that follow Benford's law. Finally, three chaotic systems are considered: Lorenz, Henon, and Roessler. The Lorenz system generates trajectories that follow Benford's law. The Henon system generates trajectories that resemble neither the uniform distribution nor Benford's law. Finally, the Roessler system generates trajectories that follow the uniform distribution for some parameters choices, and Benford's law for others. (c) 2000 American Institute of Physics
Complex and adaptive dynamical systems a primer
Gros, Claudius
2007-01-01
We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...
Complex and Adaptive Dynamical Systems A Primer
Gros, Claudius
2011-01-01
We are living in an ever more complex world, an epoch where human actions can accordingly acquire far-reaching potentialities. Complex and adaptive dynamical systems are ubiquitous in the world surrounding us and require us to adapt to new realities and the way of dealing with them. This primer has been developed with the aim of conveying a wide range of "commons-sense" knowledge in the field of quantitative complex system science at an introductory level, providing an entry point to this both fascinating and vitally important subject. The approach is modular and phenomenology driven. Examples of emerging phenomena of generic importance treated in this book are: -- The small world phenomenon in social and scale-free networks. -- Phase transitions and self-organized criticality in adaptive systems. -- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living. -- The concept of living dynamical systems and emotional diffusive control within cognitive system theory. Techn...
MIMESIS OR THE FRUITION OF SYMBOLIC
Directory of Open Access Journals (Sweden)
Olivier Feron
2012-06-01
Full Text Available The problem of mimesis seems to be coextensive to history of philosophy, and its re-visitation – from the perspective of a critical anthropology – should lead to the deconstruction of certain myths that structure metaphysics since Plato; among others, the stigma of the reproduction of a legitimate origin. Considering the work of Hans Blumenberg, this paper considers the possibility of an anthropology developed from the perspective of a symbolical dynamics that, from organic to imaginary, from unconscious to analytics of intellect, allows modern reason to understand its own exercise as a play, beyond any kind of anguish.
Cardea: Dynamic Access Control in Distributed Systems
Lepro, Rebekah
2004-01-01
Modern authorization systems span domains of administration, rely on many different authentication sources, and manage complex attributes as part of the authorization process. This . paper presents Cardea, a distributed system that facilitates dynamic access control, as a valuable piece of an inter-operable authorization framework. First, the authorization model employed in Cardea and its functionality goals are examined. Next, critical features of the system architecture and its handling of the authorization process are then examined. Then the S A M L and XACML standards, as incorporated into the system, are analyzed. Finally, the future directions of this project are outlined and connection points with general components of an authorization system are highlighted.
Solar dynamic power systems for space station
Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.
1986-01-01
The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.
Operationalizing sustainability in urban coastal systems: a system dynamics analysis.
Mavrommati, Georgia; Bithas, Kostas; Panayiotidis, Panayiotis
2013-12-15
We propose a system dynamics approach for Ecologically Sustainable Development (ESD) in urban coastal systems. A systematic analysis based on theoretical considerations, policy analysis and experts' knowledge is followed in order to define the concept of ESD. The principles underlying ESD feed the development of a System Dynamics Model (SDM) that connects the pollutant loads produced by urban systems' socioeconomic activities with the ecological condition of the coastal ecosystem that it is delineated in operational terms through key biological elements defined by the EU Water Framework Directive. The receiving waters of the Athens Metropolitan area, which bears the elements of typical high population density Mediterranean coastal city but which currently has also new dynamics induced by the ongoing financial crisis, are used as an experimental system for testing a system dynamics approach to apply the concept of ESD. Systems' thinking is employed to represent the complex relationships among the components of the system. Interconnections and dependencies that determine the potentials for achieving ESD are revealed. The proposed system dynamics analysis can facilitate decision makers to define paths of development that comply with the principles of ESD. Copyright © 2013 Elsevier Ltd. All rights reserved.
22 CFR 42.11 - Classification symbols.
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Classification symbols. 42.11 Section 42.11... NATIONALITY ACT, AS AMENDED Classification and Foreign State Chargeability § 42.11 Classification symbols. A... visa symbol to show the classification of the alien. Immigrants Symbol Class Section of law Immediate...
7 CFR 29.1008 - Combination symbols.
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Combination symbols. 29.1008 Section 29.1008..., 13, 14 and Foreign Type 92) § 29.1008 Combination symbols. A color or group symbol used with another symbol to form the third factor of a grademark to denote a particular side or characteristic of the...
An exploration of dynamical systems and chaos
Argyris, John H; Haase, Maria; Friedrich, Rudolf
2015-01-01
This book is conceived as a comprehensive and detailed text-book on non-linear dynamical systems with particular emphasis on the exploration of chaotic phenomena. The self-contained introductory presentation is addressed both to those who wish to study the physics of chaotic systems and non-linear dynamics intensively as well as those who are curious to learn more about the fascinating world of chaotic phenomena. Basic concepts like Poincaré section, iterated mappings, Hamiltonian chaos and KAM theory, strange attractors, fractal dimensions, Lyapunov exponents, bifurcation theory, self-similarity and renormalisation and transitions to chaos are thoroughly explained. To facilitate comprehension, mathematical concepts and tools are introduced in short sub-sections. The text is supported by numerous computer experiments and a multitude of graphical illustrations and colour plates emphasising the geometrical and topological characteristics of the underlying dynamics. This volume is a completely revised and enlar...
Brand Equity Evolution: a System Dynamics Model
Directory of Open Access Journals (Sweden)
Edson Crescitelli
2009-04-01
Full Text Available One of the greatest challenges in brand management lies in monitoring brand equity over time. This paper aimsto present a simulation model able to represent this evolution. The model was drawn on brand equity concepts developed by Aaker and Joachimsthaler (2000, using the system dynamics methodology. The use ofcomputational dynamic models aims to create new sources of information able to sensitize academics and managers alike to the dynamic implications of their brand management. As a result, an easily implementable model was generated, capable of executing continuous scenario simulations by surveying casual relations among the variables that explain brand equity. Moreover, the existence of a number of system modeling tools will allow extensive application of the concepts used in this study in practical situations, both in professional and educational settings
Integrability of dynamical systems algebra and analysis
Zhang, Xiang
2017-01-01
This is the first book to systematically state the fundamental theory of integrability and its development of ordinary differential equations with emphasis on the Darboux theory of integrability and local integrability together with their applications. It summarizes the classical results of Darboux integrability and its modern development together with their related Darboux polynomials and their applications in the reduction of Liouville and elementary integrabilty and in the center—focus problem, the weakened Hilbert 16th problem on algebraic limit cycles and the global dynamical analysis of some realistic models in fields such as physics, mechanics and biology. Although it can be used as a textbook for graduate students in dynamical systems, it is intended as supplementary reading for graduate students from mathematics, physics, mechanics and engineering in courses related to the qualitative theory, bifurcation theory and the theory of integrability of dynamical systems.
Symbol manipulation and rule learning in spiking neuronal networks.
Fernando, Chrisantha
2011-04-21
It has been claimed that the productivity, systematicity and compositionality of human language and thought necessitate the existence of a physical symbol system (PSS) in the brain. Recent discoveries about temporal coding suggest a novel type of neuronal implementation of a physical symbol system. Furthermore, learning classifier systems provide a plausible algorithmic basis by which symbol re-write rules could be trained to undertake behaviors exhibiting systematicity and compositionality, using a kind of natural selection of re-write rules in the brain, We show how the core operation of a learning classifier system, namely, the replication with variation of symbol re-write rules, can be implemented using spike-time dependent plasticity based supervised learning. As a whole, the aim of this paper is to integrate an algorithmic and an implementation level description of a neuronal symbol system capable of sustaining systematic and compositional behaviors. Previously proposed neuronal implementations of symbolic representations are compared with this new proposal. Copyright © 2011 Elsevier Ltd. All rights reserved.
Controlling Complex Systems and Developing Dynamic Technology
Avizienis, Audrius Victor
In complex systems, control and understanding become intertwined. Following Ilya Prigogine, we define complex systems as having control parameters which mediate transitions between distinct modes of dynamical behavior. From this perspective, determining the nature of control parameters and demonstrating the associated dynamical phase transitions are practically equivalent and fundamental to engaging with complexity. In the first part of this work, a control parameter is determined for a non-equilibrium electrochemical system by studying a transition in the morphology of structures produced by an electroless deposition reaction. Specifically, changing the size of copper posts used as the substrate for growing metallic silver structures by the reduction of Ag+ from solution under diffusion-limited reaction conditions causes a dynamical phase transition in the crystal growth process. For Cu posts with edge lengths on the order of one micron, local forces promoting anisotropic growth predominate, and the reaction produces interconnected networks of Ag nanowires. As the post size is increased above 10 microns, the local interfacial growth reaction dynamics couple with the macroscopic diffusion field, leading to spatially propagating instabilities in the electrochemical potential which induce periodic branching during crystal growth, producing dendritic deposits. This result is interesting both as an example of control and understanding in a complex system, and as a useful combination of top-down lithography with bottom-up electrochemical self-assembly. The second part of this work focuses on the technological development of devices fabricated using this non-equilibrium electrochemical process, towards a goal of integrating a complex network as a dynamic functional component in a neuromorphic computing device. Self-assembled networks of silver nanowires were reacted with sulfur to produce interfacial "atomic switches": silver-silver sulfide junctions, which exhibit
State dynamics of a double sandbar system
Price, T.D.; Ruessink, B.G.
2011-01-01
A 9.3-year dataset of low-tide time-exposure images from Surfers Paradise, Northern Gold Coast, Australia was used to characterise the state dynamics of a double sandbar system. The morphology of the nearshore sandbars was described by means of the sequential bar state classification scheme of
Geometric analysis of nondeterminacy in dynamical systems
DEFF Research Database (Denmark)
Wisniewski, Rafal; Raussen, Martin Hubert
2007-01-01
This article intends to provide some new insights into concurrency using ideas from the theory of dynamical systems. Inherently discrete concurrency corresponds to a parallel continuous concept: a discrete state space corresponds to a differential manifold, an execution path corresponds to a flow...
Invariant of dynamical systems: A generalized entropy
International Nuclear Information System (INIS)
Meson, A.M.; Vericat, F.
1996-01-01
In this work the concept of entropy of a dynamical system, as given by Kolmogorov, is generalized in the sense of Tsallis. It is shown that this entropy is an isomorphism invariant, being complete for Bernoulli schemes. copyright 1996 American Institute of Physics
Dynamical Systems Approaches to Emotional Development
Camras, Linda A.; Witherington, David C.
2005-01-01
Within the last 20 years, transitions in the conceptualization of emotion and its development have given rise to calls for an explanatory framework that captures emotional development in all its organizational complexity and variability. Recent attempts have been made to couch emotional development in terms of a dynamical systems approach through…
Organizing Performance Requirements For Dynamical Systems
Malchow, Harvey L.; Croopnick, Steven R.
1990-01-01
Paper describes methodology for establishing performance requirements for complicated dynamical systems. Uses top-down approach. In series of steps, makes connections between high-level mission requirements and lower-level functional performance requirements. Provides systematic delineation of elements accommodating design compromises.
Improving homogeneity by dynamic speed limit systems.
Nes, N. van Brandenberg, S. & Twisk, D.A.M.
2010-01-01
Homogeneity of driving speeds is an important variable in determining road safety; more homogeneous driving speeds increase road safety. This study investigates the effect of introducing dynamic speed limit systems on homogeneity of driving speeds. A total of 46 subjects twice drove a route along 12
The Self as a Complex Dynamic System
Mercer, Sarah
2011-01-01
This article explores the potential offered by complexity theories for understanding language learners' sense of self and attempts to show how the self might usefully be conceived of as a complex dynamic system. Rather than presenting empirical findings, the article discusses existent research on the self and aims at outlining a conceptual…
The dynamics of antilock brake systems
Denny, Mark
2005-11-01
The nonlinear dynamics of automobile braking are investigated. Nonlinearity arises because of the manner in which the friction coefficient between vehicle tyres and road surface depends upon vehicle speed and wheel angular speed. We show how antilock brake systems approach optimum braking performance.
Book Review: Dynamic Systems for Everyone
Asish Ghosh starts the epilogue of the second edition of Dynamic Systems for Everyone with this quote: “We are now witnessing major technological advancements in areas, like artificial intelligence, robotics and self driven cars. …The pace of change is accelerating, ...
On multi-dissipative dynamic systems
DEFF Research Database (Denmark)
Thygesen, Uffe Høgsbro
1999-01-01
We consider deterministic dynamic systems with state space representations which are dissipative in the sense of Willems (1972) with respect to several supply rates. This property is of interest in robustness analysis and in multi-objective control. We give conditions under which the convex cone...
Induced topological pressure for topological dynamical systems
International Nuclear Information System (INIS)
Xing, Zhitao; Chen, Ercai
2015-01-01
In this paper, inspired by the article [J. Jaerisch et al., Stochastics Dyn. 14, 1350016, pp. 1-30 (2014)], we introduce the induced topological pressure for a topological dynamical system. In particular, we prove a variational principle for the induced topological pressure
Stochastic properties of the Friedman dynamical system
International Nuclear Information System (INIS)
Szydlowski, M.; Heller, M.; Golda, Z.
1985-01-01
Some mathematical aspects of the stochastic cosmology are discussed in the corresponding ordinary Friedman world models. In particulare, it is shown that if the strong and Lorentz energy conditions are known, or the potential function is given, or a stochastic measure is suitably defined then the structure of the phase plane of the Friedman dynamical system is determined. 11 refs., 2 figs. (author)
Abstraction of Dynamical Systems by Timed Automata
DEFF Research Database (Denmark)
Wisniewski, Rafael; Sloth, Christoffer
2011-01-01
To enable formal verification of a dynamical system, given by a set of differential equations, it is abstracted by a finite state model. This allows for application of methods for model checking. Consequently, it opens the possibility of carrying out the verification of reachability and timing re...
The dynamics of surge in compression systems
Indian Academy of Sciences (India)
is of interest to study compression-system surge to understand its dynamics in order ... Internal problems like compressor going into rotating stall, resulting in loss of ... of water column, was used for mass-flow measurement at the impeller entry.
LOCAL ENTROPY FUNCTION OF DYNAMICAL SYSTEM
Directory of Open Access Journals (Sweden)
İsmail TOK
2013-05-01
Full Text Available In this work, we first,define the entropy function of the topological dynamical system and investigate basic properties of this function without going into details. Let (X,A,T be a probability measure space and consider P = { pl5p2,...,pn} a finite measurable partition of all sub-sets of topological dynamical system (X,T.Then,the quantity H (P = ^ zpt is called the i=1 entropy function of finite measurable partition P.Where f-1 log t if 0 0.If diam(P < s,then the quantity L^ (T = h^ (T - h^ (T,P is called a local entropy function of topological dynamical system (X,T . In conclusion, Let (X,T and (Y,S be two topological dynamical system. If TxS is a transformation defined on the product space (XxY,TxS with (TxS(x , y = (Tx,Sy for all (x,y X x Y.Then L ^^ (TxS = L^d(T + L (S .and, we prove some fundamental properties of this function.
Design tools for complex dynamic security systems.
Energy Technology Data Exchange (ETDEWEB)
Byrne, Raymond Harry; Rigdon, James Brian; Rohrer, Brandon Robinson; Laguna, Glenn A.; Robinett, Rush D. III (.; ); Groom, Kenneth Neal; Wilson, David Gerald; Bickerstaff, Robert J.; Harrington, John J.
2007-01-01
The development of tools for complex dynamic security systems is not a straight forward engineering task but, rather, a scientific task where discovery of new scientific principles and math is necessary. For years, scientists have observed complex behavior but have had difficulty understanding it. Prominent examples include: insect colony organization, the stock market, molecular interactions, fractals, and emergent behavior. Engineering such systems will be an even greater challenge. This report explores four tools for engineered complex dynamic security systems: Partially Observable Markov Decision Process, Percolation Theory, Graph Theory, and Exergy/Entropy Theory. Additionally, enabling hardware technology for next generation security systems are described: a 100 node wireless sensor network, unmanned ground vehicle and unmanned aerial vehicle.
Dynamics of quasi-stable dissipative systems
Chueshov, Igor
2015-01-01
This book is devoted to background material and recently developed mathematical methods in the study of infinite-dimensional dissipative systems. The theory of such systems is motivated by the long-term goal to establish rigorous mathematical models for turbulent and chaotic phenomena. The aim here is to offer general methods and abstract results pertaining to fundamental dynamical systems properties related to dissipative long-time behavior. The book systematically presents, develops and uses the quasi-stability method while substantially extending it by including for consideration new classes of models and PDE systems arising in Continuum Mechanics. The book can be used as a textbook in dissipative dynamics at the graduate level. Igor Chueshov is a Professor of Mathematics at Karazin Kharkov National University in Kharkov, Ukraine.
L’IMPORTANCE DU SYMBOLE ET DU SYMBOLISME DANS LE DEVELOPPEMENT PSYCHIQUE
Directory of Open Access Journals (Sweden)
Gabriel BALACI
2011-04-01
Full Text Available The Symbol in Psychoanalyze is defined as an indirectrepresentation of an object, person, idea, supernatural being, etc. This indirectrepresentation is nothing but a synthesis of all the others means of expression ascomparisony, allegory, metaphor etc. For a psychic content to be symbolized,namely expressed in a symbolic form, is mandatory for it to be repressed in theunconscious. The Symbolism is a representations system based on symbols andaims the expression and the transmission of beliefs and traditions from onegeneration to another.
Alchemical hermeneutics of the Vesica Piscis: Symbol of depth psychology
O'Dell, Linda Kay
The purpose of this study was to develop an understanding of the Vesica Piscis as the symbolic frame for depth psychology and the therapeutic relationship. The method of inquiry was hermeneutics and alchemical hermeneutics, informed theoretically by depth psychology. A theoretical description of the nature of the Vesica Piscis as a dynamic template and symbol for depth psychology and the therapeutic relationship resulted. Gathering the components of the therapeutic relationship into the shape of the Vesica Piscis, gave opportunity to explore what might be happening while treatment is taking place: somatically, psychologically, and emotionally. An investigation into the study of Soul placed the work of psychology within the central, innermost sacred space between—known symbolically as the Vesica Piscis. Imbued with a connectedness and relational welcoming, this symbol images the Greek goddess Hekate (Soul), as mediatrix between mind and matter. Psyche (soul), namesake of "psychology," continues her journey of finding meaning making, restitution, and solace in the therapeutic space as imaged by the Vesica Piscis. Her journey, moving through the generations, becomes the journey of the therapeutic process—one that finds resolution in relationship. Psyche is sought out in the macrocosmic archetypal realm of pure energy, the prima material that forms and coalesces both in response and likewise, creates a response through symbols, images, and imagination. The field was explored from the depth psychological perspective as: the unconscious, consciousness, and archetypal, and in physics as: the quantum field, morphic resonance, and the holographic field. Gaining an understanding of the underlying qualities of the field placed the symbol in its embedded context, allowing for further definition as to how the symbol potentially was either an extension of the field, or served as a constellating factor. Depth psychology, as a scientific discipline, is in need of a symbol that
Quantum speed limits in open system dynamics
del Campo, A.; Egusquiza, I. L.; Plenio, M. B.; Huelga, S. F.
2012-01-01
Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive and trace preserving (CPT) evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the ...
Dynamic Properties of Impulse Measuring Systems
DEFF Research Database (Denmark)
Pedersen, A.; Lausen, P.
1971-01-01
After some basic considerations the dynamic properties of the measuring system are subjected to a general examination based on a number of responses, characteristic of the system. It is demonstrated that an impulse circuit has an internal impedance different from zero, for which reason...... the interaction between the generator and the measuring circuit is of paramount importance to the voltage across the test object. Based on the measured values the determination of the applied voltage is considered....
Coherence and chaos in extended dynamical systems
International Nuclear Information System (INIS)
Bishop, A.R.
1994-01-01
Coherence, chaos, and pattern formation are characteristic elements of the nonequilibrium statistical mechanics controlling mesoscopic order and disorder in many-degree-of-freedom nonlinear dynamical systems. Competing length scales and/or time scales are the underlying microscopic driving forces for many of these aspects of ''complexity.'' We illustrate the basic concepts with some model examples of classical and quantum, ordered and disordered, nonlinear systems
Chaos control of Chen chaotic dynamical system
International Nuclear Information System (INIS)
Yassen, M.T.
2003-01-01
This paper is devoted to study the problem of controlling chaos in Chen chaotic dynamical system. Two different methods of control, feedback and nonfeedback methods are used to suppress chaos to unstable equilibria or unstable periodic orbits (UPO). The Lyapunov direct method and Routh-Hurwitz criteria are used to study the conditions of the asymptotic stability of the steady states of the controlled system. Numerical simulations are presented to show these results
Automated design of complex dynamic systems.
Directory of Open Access Journals (Sweden)
Michiel Hermans
Full Text Available Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems.
Some problems of dynamical systems on three dimensional manifolds
International Nuclear Information System (INIS)
Dong Zhenxie.
1985-08-01
It is important to study the dynamical systems on 3-dimensional manifolds, its importance is showing up in its close relation with our life. Because of the complication of topological structure of Dynamical systems on 3-dimensional manifolds, generally speaking, the search for 3-dynamical systems is not easier than 2-dynamical systems. This paper is a summary of the partial result of dynamical systems on 3-dimensional manifolds. (author)
Parameter identifiability of linear dynamical systems
Glover, K.; Willems, J. C.
1974-01-01
It is assumed that the system matrices of a stationary linear dynamical system were parametrized by a set of unknown parameters. The question considered here is, when can such a set of unknown parameters be identified from the observed data? Conditions for the local identifiability of a parametrization are derived in three situations: (1) when input/output observations are made, (2) when there exists an unknown feedback matrix in the system and (3) when the system is assumed to be driven by white noise and only output observations are made. Also a sufficient condition for global identifiability is derived.
Nonlinear dynamic macromodeling techniques for audio systems
Ogrodzki, Jan; Bieńkowski, Piotr
2015-09-01
This paper develops a modelling method and a models identification technique for the nonlinear dynamic audio systems. Identification is performed by means of a behavioral approach based on a polynomial approximation. This approach makes use of Discrete Fourier Transform and Harmonic Balance Method. A model of an audio system is first created and identified and then it is simulated in real time using an algorithm of low computational complexity. The algorithm consists in real time emulation of the system response rather than in simulation of the system itself. The proposed software is written in Python language using object oriented programming techniques. The code is optimized for a multithreads environment.
PHILOSOPHEME OF SYMBOL AND CONCEPT OF THE MEANING: PHILOSOPHICAL AND ANTHROPOLOGICAL ASPECTS
Directory of Open Access Journals (Sweden)
P. V. Kretov
2015-12-01
Full Text Available The aim of the study is to find out the meaning of the symbolic nature of the philosophical and anthropological knowledge deployment, as well as symbolic forms of correlation between artificial and natural in the consciousness of human identity and their fixation in the language and also in the forms and structures of culture. The research is based on the methodology of historical and philosophical analysis in synchronic and diachronic aspects, principles of hermeneutic understanding and reconstruction and phenomenological descriptions. Scientific novelty is represented by the postulating such predications of symbolic structures of language and consciousness as multipanorama and transfinite, justification of the ontological status of symbol and symbolism. The symbolic functioning character of language metaphor in scientific discourse and especially the symbolic dimension of semantic field of language and culture, as well as their symbolic association was fixed. The author proves the thesis about the symbolic nature of a holistic, means forming, philosophical knowledge of man, and the relation between the underlying symbolic and metaphorical structures of language and the mechanisms of consciousness, which finds its expression, in particular, in the language of science. The symbolic design that transmits the philosophical aspects of meaning that go beyond definition and formal-logic descriptions is used. In the comparison of the concepts of spiral dynamics, memetics and autopoiesis the existence of a specific symbolic dimension of the semantic field of language, culture and consciousness is postulated. Conclusions of the article define the role of symbol and symbolic and metaphorical constructions and structures of language in forming the discourse of modern philosophical anthropology, which would include the whole thesaurus of language and culture.
Scalable Molecular Dynamics for Large Biomolecular Systems
Directory of Open Access Journals (Sweden)
Robert K. Brunner
2000-01-01
Full Text Available We present an optimized parallelization scheme for molecular dynamics simulations of large biomolecular systems, implemented in the production-quality molecular dynamics program NAMD. With an object-based hybrid force and spatial decomposition scheme, and an aggressive measurement-based predictive load balancing framework, we have attained speeds and speedups that are much higher than any reported in literature so far. The paper first summarizes the broad methodology we are pursuing, and the basic parallelization scheme we used. It then describes the optimizations that were instrumental in increasing performance, and presents performance results on benchmark simulations.
Structural dynamics of electronic and photonic systems
Suhir, Ephraim; Steinberg, David S
2011-01-01
The proposed book will offer comprehensive and versatile methodologies and recommendations on how to determine dynamic characteristics of typical micro- and opto-electronic structural elements (printed circuit boards, solder joints, heavy devices, etc.) and how to design a viable and reliable structure that would be able to withstand high-level dynamic loading. Particular attention will be given to portable devices and systems designed for operation in harsh environments (such as automotive, aerospace, military, etc.) In-depth discussion from a mechanical engineer's viewpoint will be conducte
Nonlinear dynamical system approaches towards neural prosthesis
International Nuclear Information System (INIS)
Torikai, Hiroyuki; Hashimoto, Sho
2011-01-01
An asynchronous discrete-state spiking neurons is a wired system of shift registers that can mimic nonlinear dynamics of an ODE-based neuron model. The control parameter of the neuron is the wiring pattern among the registers and thus they are suitable for on-chip learning. In this paper an asynchronous discrete-state spiking neuron is introduced and its typical nonlinear phenomena are demonstrated. Also, a learning algorithm for a set of neurons is presented and it is demonstrated that the algorithm enables the set of neurons to reconstruct nonlinear dynamics of another set of neurons with unknown parameter values. The learning function is validated by FPGA experiments.
Order in cold ionic systems: Dynamic effects
International Nuclear Information System (INIS)
Schiffer, J.P.
1988-01-01
The present state and recent developments in Molecular Dynamics calculations modeling cooled heavy-ion beams are summarized. First, a frame of reference is established, summarizing what has happened in the past; then the properties of model systems of cold ions studied in Molecular Dynamics calculations are reviewed, with static boundary conditions with which an ordered state is revealed; finally, more recent results on such modelling, adding the complications in the (time-dependent) boundary conditions that begin to approach real storage rings (ion traps) are reported. 14 refs., 19 figs., 2 tabs
Symbol Synchronization for Diffusion-Based Molecular Communications.
Jamali, Vahid; Ahmadzadeh, Arman; Schober, Robert
2017-12-01
Symbol synchronization refers to the estimation of the start of a symbol interval and is needed for reliable detection. In this paper, we develop several symbol synchronization schemes for molecular communication (MC) systems where we consider some practical challenges, which have not been addressed in the literature yet. In particular, we take into account that in MC systems, the transmitter may not be equipped with an internal clock and may not be able to emit molecules with a fixed release frequency. Such restrictions hold for practical nanotransmitters, e.g., modified cells, where the lengths of the symbol intervals may vary due to the inherent randomness in the availability of food and energy for molecule generation, the process for molecule production, and the release process. To address this issue, we develop two synchronization-detection frameworks which both employ two types of molecule. In the first framework, one type of molecule is used for symbol synchronization and the other one is used for data detection, whereas in the second framework, both types of molecule are used for joint symbol synchronization and data detection. For both frameworks, we first derive the optimal maximum likelihood (ML) symbol synchronization schemes as performance upper bounds. Since ML synchronization entails high complexity, for each framework, we also propose three low-complexity suboptimal schemes, namely a linear filter-based scheme, a peak observation-based scheme, and a threshold-trigger scheme, which are suitable for MC systems with limited computational capabilities. Furthermore, we study the relative complexity and the constraints associated with the proposed schemes and the impact of the insertion and deletion errors that arise due to imperfect synchronization. Our simulation results reveal the effectiveness of the proposed synchronization schemes and suggest that the end-to-end performance of MC systems significantly depends on the accuracy of the symbol
Dynamical systems with applications using Maple
Lynch, Stephen
2001-01-01
"The text treats a remarkable spectrum of topics and has a little for everyone. It can serve as an introduction to many of the topics of dynamical systems, and will help even the most jaded reader, such as this reviewer, enjoy some of the interactive aspects of studying dynamics using Maple." —UK Nonlinear News (Review of First Edition) "The book will be useful for all kinds of dynamical systems courses…. [It] shows the power of using a computer algebra program to study dynamical systems, and, by giving so many worked examples, provides ample opportunity for experiments. … [It] is well written and a pleasure to read, which is helped by its attention to historical background." —Mathematical Reviews (Review of First Edition) Since the first edition of this book was published in 2001, Maple™ has evolved from Maple V into Maple 13. Accordingly, this new edition has been thoroughly updated and expanded to include more applications, examples, and exercises, all with solutions; two new chapters on neural n...
Geometric phases in discrete dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)
2016-10-14
In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.
The symbolic economy of drugs.
Lentacker, Antoine
2016-02-01
This essay reviews four recent studies representing a new direction in the history of pharmaceuticals and pharmaceutical science. To this end, it introduces the notion of a symbolic economy of drugs, defined as the production, circulation, and reception of signs that convey information about drugs and establish trust in them. Each of the studies under review focuses on one key signifier in this symbolic economy, namely the brand, the patent, the clinical trial, and the drug itself. Drawing on Pierre Bourdieu's theory of the economy of symbolic goods, I conceptualize these signifiers as symbolic assets, that is, as instruments of communication and credit, delivering knowledge, carrying value, and producing authority. The notion of a symbolic economy is offered with a threefold intention. First, I introduce it in order to highlight the implications of historical and anthropological work for a broader theory of the economy of drugs, thus suggesting a language for interdisciplinary conversations in the study of pharmaceuticals. Second, I deploy it in an attempt to emphasize the contributions of the recent scholarship on drugs to a critical understanding of our own contemporary ways of organizing access to drugs and information about drugs. Finally, I suggest ways in which it might be of use to scholars of other commodities and technologies.
Dynamic behavior of district heating systems
International Nuclear Information System (INIS)
Kunz, J.
1994-01-01
The goal of this study is to develop a simulation model of a hot water system taking into account the time dependent phenomena which are important for the operational management of such a system. A state of the art literature review has shown that there is no such model considering all parts from the generation of the heat at the plant to its consumption in the connected buildings so far. First, an exhaustive list of all dynamic phenomena occurring in district heating systems has been drawn and analyzed. Considering this list, this thesis proposes that a model which satisfies the criteria listed above can be developed by superposing four sub-models which are a dynamic model of the heat generation plant, a steady state model of the hydraulic calculation of the distribution network, a dynamic model of the thermal behavior of the network and a dynamic model of the heat consumers. The development of the four sub-models starts from the fundamental conservation equations for fluid systems, i.e. the conservation of mass, momentum and energy. The transformations of those general equations into simple calculation formulas show and justify the hypotheses made in the modeling process. The heat generation plant model itself is a set of sub-models: the models for steam boilers, hot water boilers and heat accumulators which take account of the dynamic evolution of the water temperature by a simple form of the energy conservation equation, as well as the steady state models for circulation pumps and pressurizers. Since the velocities in the network pipes are small, a consideration of steady states is adopted. A network model allowing to calculate the hydraulic variables in every point is adopted from the graph theory. The pressures and flow rates in the network are calculated at discrete time steps and they are considered to be constant for the duration between the time steps. (author) figs., tabs., refs
Dynamical systems on networks a tutorial
Porter, Mason A
2016-01-01
This volume is a tutorial for the study of dynamical systems on networks. It discusses both methodology and models, including spreading models for social and biological contagions. The authors focus especially on “simple” situations that are analytically tractable, because they are insightful and provide useful springboards for the study of more complicated scenarios. This tutorial, which also includes key pointers to the literature, should be helpful for junior and senior undergraduate students, graduate students, and researchers from mathematics, physics, and engineering who seek to study dynamical systems on networks but who may not have prior experience with graph theory or networks. Mason A. Porter is Professor of Nonlinear and Complex Systems at the Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, UK. He is also a member of the CABDyN Complexity Centre and a Tutorial Fellow of Somerville College. James P. Gleeson is Professor of Industrial and Appli...