WorldWideScience

Sample records for symbiotic bacterium buchnera

  1. Removal of zinc from aqueous solution by metal resistant symbiotic bacterium Mesorhizobium amorphae

    DEFF Research Database (Denmark)

    Hao, Xiuli; Mohamad, Osama Abdalla; Xie, Pin

    2014-01-01

    Biosorption of zinc by living biomasses of metal resistant symbiotic bacterium Mesorhizobium amorphae CCNWGS0123 was investigated under optimal conditions at pH 5.0, initial metal concentrations of 100 mg L-1, and a dose of 1.0 g L-1. M. amorphae exhibited an efficient removal of Zn2+ from aqueous...

  2. Rare Freshwater Ciliate Paramecium chlorelligerum Kahl, 1935 and Its Macronuclear Symbiotic Bacterium "Candidatus Holospora parva".

    Science.gov (United States)

    Lanzoni, Olivia; Fokin, Sergei I; Lebedeva, Natalia; Migunova, Alexandra; Petroni, Giulio; Potekhin, Alexey

    2016-01-01

    Ciliated protists often form symbioses with many diverse microorganisms. In particular, symbiotic associations between ciliates and green algae, as well as between ciliates and intracellular bacteria, are rather wide-spread in nature. In this study, we describe the complex symbiotic system between a very rare ciliate, Paramecium chlorelligerum, unicellular algae inhabiting its cytoplasm, and novel bacteria colonizing the host macronucleus. Paramecium chlorelligerum, previously found only twice in Germany, was retrieved from a novel location in vicinity of St. Petersburg in Russia. Species identification was based on both classical morphological methods and analysis of the small subunit rDNA. Numerous algae occupying the cytoplasm of this ciliate were identified with ultrastructural and molecular methods as representatives of the Meyerella genus, which before was not considered among symbiotic algae. In the same locality at least fifteen other species of "green" ciliates were found, thus it is indeed a biodiversity hot-spot for such protists. A novel species of bacterial symbionts living in the macronucleus of Paramecium chlorelligerum cells was morphologically and ultrastructurally investigated in detail with the description of its life cycle and infection capabilities. The new endosymbiont was molecularly characterized following the full-cycle rRNA approach. Furthermore, phylogenetic analysis confirmed that the novel bacterium is a member of Holospora genus branching basally but sharing all characteristics of the genus except inducing connecting piece formation during the infected host nucleus division. We propose the name "Candidatus Holospora parva" for this newly described species. The described complex system raises new questions on how these microorganisms evolve and interact in symbiosis.

  3. Rare Freshwater Ciliate Paramecium chlorelligerum Kahl, 1935 and Its Macronuclear Symbiotic Bacterium "Candidatus Holospora parva".

    Directory of Open Access Journals (Sweden)

    Olivia Lanzoni

    Full Text Available Ciliated protists often form symbioses with many diverse microorganisms. In particular, symbiotic associations between ciliates and green algae, as well as between ciliates and intracellular bacteria, are rather wide-spread in nature. In this study, we describe the complex symbiotic system between a very rare ciliate, Paramecium chlorelligerum, unicellular algae inhabiting its cytoplasm, and novel bacteria colonizing the host macronucleus. Paramecium chlorelligerum, previously found only twice in Germany, was retrieved from a novel location in vicinity of St. Petersburg in Russia. Species identification was based on both classical morphological methods and analysis of the small subunit rDNA. Numerous algae occupying the cytoplasm of this ciliate were identified with ultrastructural and molecular methods as representatives of the Meyerella genus, which before was not considered among symbiotic algae. In the same locality at least fifteen other species of "green" ciliates were found, thus it is indeed a biodiversity hot-spot for such protists. A novel species of bacterial symbionts living in the macronucleus of Paramecium chlorelligerum cells was morphologically and ultrastructurally investigated in detail with the description of its life cycle and infection capabilities. The new endosymbiont was molecularly characterized following the full-cycle rRNA approach. Furthermore, phylogenetic analysis confirmed that the novel bacterium is a member of Holospora genus branching basally but sharing all characteristics of the genus except inducing connecting piece formation during the infected host nucleus division. We propose the name "Candidatus Holospora parva" for this newly described species. The described complex system raises new questions on how these microorganisms evolve and interact in symbiosis.

  4. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge

    KAUST Repository

    Tian, Renmao

    2014-08-29

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge

    KAUST Repository

    Tian, Renmao; Wang, Yong; Bougouffa, Salim; Gao, Zhaoming; Cai, Lin; Bajic, Vladimir B.; Qian, Peiyuan

    2014-01-01

    coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome

  6. Rare Freshwater Ciliate Paramecium chlorelligerum Kahl, 1935 and Its Macronuclear Symbiotic Bacterium “Candidatus Holospora parva”

    Science.gov (United States)

    Lebedeva, Natalia; Migunova, Alexandra; Petroni, Giulio

    2016-01-01

    Ciliated protists often form symbioses with many diverse microorganisms. In particular, symbiotic associations between ciliates and green algae, as well as between ciliates and intracellular bacteria, are rather wide-spread in nature. In this study, we describe the complex symbiotic system between a very rare ciliate, Paramecium chlorelligerum, unicellular algae inhabiting its cytoplasm, and novel bacteria colonizing the host macronucleus. Paramecium chlorelligerum, previously found only twice in Germany, was retrieved from a novel location in vicinity of St. Petersburg in Russia. Species identification was based on both classical morphological methods and analysis of the small subunit rDNA. Numerous algae occupying the cytoplasm of this ciliate were identified with ultrastructural and molecular methods as representatives of the Meyerella genus, which before was not considered among symbiotic algae. In the same locality at least fifteen other species of “green” ciliates were found, thus it is indeed a biodiversity hot-spot for such protists. A novel species of bacterial symbionts living in the macronucleus of Paramecium chlorelligerum cells was morphologically and ultrastructurally investigated in detail with the description of its life cycle and infection capabilities. The new endosymbiont was molecularly characterized following the full-cycle rRNA approach. Furthermore, phylogenetic analysis confirmed that the novel bacterium is a member of Holospora genus branching basally but sharing all characteristics of the genus except inducing connecting piece formation during the infected host nucleus division. We propose the name “Candidatus Holospora parva” for this newly described species. The described complex system raises new questions on how these microorganisms evolve and interact in symbiosis. PMID:27992463

  7. Influence of Temperature on Symbiotic Bacterium Composition in Successive Generations of Egg Parasitoid, Anagrus nilaparvatae

    Directory of Open Access Journals (Sweden)

    Wang Xin

    2016-07-01

    Full Text Available Anagrus nilaparvatae is the dominant egg parasitoid of rice planthoppers and plays an important role in biological control. Symbiotic bacteria can significantly influence the development, survival, reproduction and population differentiation of their hosts. To study the influence of temperature on symbiotic bacterial composition in the successive generations of A. nilaparvatae, A. nilaparvatae were raised under different constant temperatures of 22 °C, 25 °C, 28 °C, 31 °C and 34 °C. Polymerase chain reaction-denaturing gradient gel electrophoresis was used to investigate the diversity of symbiotic bacteria. Our results revealed that the endophytic bacteria of A. nilaparvatae were Pantoea sp., Pseudomonas sp. and some uncultured bacteria. The bacterial community composition in A. nilaparvatae significantly varied among different temperatures and generations, which might be partially caused by temperature, feeding behavior and the physical changes of hosts. However, the analysis of wsp gene showed that the Wolbachia in A. nilaparvatae belonged to group A, sub-group Mors and sub-group Dro. Sub-group Mors was absolutely dominant, and this Wolbachia composition remained stable in different temperatures and generations, except for the 3rd generation under 34 °C during which sub-group Dro became the dominant Wolbachia. The above results suggest that the continuous high temperature of 34 °C can influence the Wolbachia community composition in A. nilaparvatae.

  8. Molecular evolution of aphids and their primary ( Buchnera sp.) and secondary endosymbionts: implications for the role of symbiosis in insect evolution.

    NARCIS (Netherlands)

    Sabater-Munoz, B.; Ham, van R.C.H.J.; Martinez-Torres, D.; Silva, F.J.; Latorre, A.; Moya, A.

    2001-01-01

    Aphids maintain an obligate, endosymbiotic association with Buchnera sp., a bacterium closely related to Escherichia coli. Bacteria are housed in specialized cells of organ-like structures called bacteriomes in the hemocoel of the aphid and are maternally transmitted. Phylogenetic studies have shown

  9. Bacterial symbionts, Buchnera, and starvation on wing dimorphism in English grain aphid, Sitobion avenae (F. (Homoptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Fangmei eZhang

    2015-05-01

    Full Text Available Wing dimorphism in aphids can be affected by multiple cues, including both biotic (nutrition, crowding, interspecific interactions, the presence of natural enemies, maternal and transgenerational effects, and alarm pheromone and abiotic factors (temperature, humidity, and photoperiod. The majority of the phloem-feeding aphids carry Buchnera, an obligate symbiotic proteobacteria. Buchnera has a highly reduced genome size, but encode key enzymes in the tryptophan biosynthetic pathway and is crucial for nutritional balance, development and reproduction in aphids. In this study, we investigated the impact of two nutritional-based biotic factors, symbionts and starvation, on the wing dimorphism in the English grain aphid, Sitobion avenae, a devastating insect pest of cereal crops (e.g., wheat worldwide. Elimination of Buchnera using the antibiotic rifampicin significantly reduced the formation of winged morphs, body mass and fecundity in S. avenae. Furthermore, the absence of this primary endosymbiont may disrupt the nutrient acquisition in aphids and alter transgenerational phenotypic expression. Similarly, both survival rate and the formation of winged morphs were substantially reduced after neonatal (< 24h old offspring were starved for a period of time. The combined results shed light on the impact of two nutritional-based biotic factors on the phenotypic plasticity in aphids. A better understanding of the wing dimorphism in aphids will provide the theoretical basis for the prediction and integrated management of these phloem-feeding insect pests.

  10. Photobacterium kishitanii sp. nov., a luminous marine bacterium symbiotic with deep-sea fishes.

    Science.gov (United States)

    Ast, Jennifer C; Cleenwerck, Ilse; Engelbeen, Katrien; Urbanczyk, Henryk; Thompson, Fabiano L; De Vos, Paul; Dunlap, Paul V

    2007-09-01

    Six representatives of a luminous bacterium commonly found in association with deep, cold-dwelling marine fishes were isolated from the light organs and skin of different fish species. These bacteria were Gram-negative, catalase-positive, and weakly oxidase-positive or oxidase-negative. Morphologically, cells of these strains were coccoid or coccoid-rods, occurring singly or in pairs, and motile by means of polar flagellation. After growth on seawater-based agar medium at 22 degrees C for 18 h, colonies were small, round and white, with an intense cerulean blue luminescence. Analysis of 16S rRNA gene sequence similarity placed these bacteria in the genus Photobacterium. Phylogenetic analysis based on seven housekeeping gene sequences (16S rRNA gene, gapA, gyrB, pyrH, recA, rpoA and rpoD), seven gene sequences of the lux operon (luxC, luxD, luxA, luxB, luxF, luxE and luxG) and four gene sequences of the rib operon (ribE, ribB, ribH and ribA), resolved the six strains as members of the genus Photobacterium and as a clade distinct from other species of Photobacterium. These strains were most closely related to Photobacterium phosphoreum and Photobacterium iliopiscarium. DNA-DNA hybridization values between the designated type strain, Photobacterium kishitanii pjapo.1.1(T), and P. phosphoreum LMG 4233(T), P. iliopiscarium LMG 19543(T) and Photobacterium indicum LMG 22857(T) were 51, 43 and 19 %, respectively. In AFLP analysis, the six strains clustered together, forming a group distinct from other analysed species. The fatty acid C(17 : 0) cyclo was present in these bacteria, but not in P. phosphoreum, P. iliopiscarium or P. indicum. A combination of biochemical tests (arginine dihydrolase and lysine decarboxylase) differentiates these strains from P. phosphoreum and P. indicum. The DNA G+C content of P. kishitanii pjapo.1.1(T) is 40.2 %, and the genome size is approximately 4.2 Mbp, in the form of two circular chromosomes. These strains represent a novel species, for

  11. Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil.

    Science.gov (United States)

    Radl, Viviane; Simões-Araújo, Jean Luiz; Leite, Jakson; Passos, Samuel Ribeiro; Martins, Lindete Míria Vieira; Xavier, Gustavo Ribeiro; Rumjanek, Norma Gouvêa; Baldani, José Ivo; Zilli, Jerri Edson

    2014-03-01

    16S rRNA gene sequence analysis of eight strains (BR 3299(T), BR 3296, BR 10192, BR 10193, BR 10194, BR 10195, BR 10196 and BR 10197) isolated from nodules of cowpea collected from a semi-arid region of Brazil showed 97 % similarity to sequences of recently described rhizobial species of the genus Microvirga. Phylogenetic analyses of four housekeeping genes (gyrB, recA, dnaK and rpoB), DNA-DNA relatedness and AFLP further indicated that these strains belong to a novel species within the genus Microvirga. Our data support the hypothesis that genes related to nitrogen fixation were obtained via horizontal gene transfer, as sequences of nifH genes were very similar to those found in members of the genera Rhizobium and Mesorhizobium, which are not immediate relatives of the genus Microvirga, as shown by 16S rRNA gene sequence analysis. Phenotypic traits, such as host range and carbon utilization, differentiate the novel strains from the most closely related species, Microvirga lotononidis, Microvirga zambiensis and Microvirga lupini. Therefore, these symbiotic nitrogen-fixing bacteria are proposed to be representatives of a novel species, for which the name Microvirga vignae sp. nov. is suggested. The type strain is BR3299(T) ( = HAMBI 3457(T)).

  12. Rhizobium metallidurans sp. nov., a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator.

    Science.gov (United States)

    Grison, Claire M; Jackson, Stephen; Merlot, Sylvain; Dobson, Alan; Grison, Claude

    2015-05-01

    A Gram-stain-negative, aerobic, rod-shaped, non-spore-forming bacterium (ChimEc512(T)) was isolated from 56 host seedlings of the hyperaccumulating Anthyllis vulneraria legume, which was on an old zinc mining site at Les Avinières, Saint-Laurent-Le-Minier, Gard, South of France. On the basis of 16S rRNA gene sequence similarities, strain ChimEc512(T) was shown to belong to the genus Rhizobium and to be most closely related to Rhizobium endophyticum CCGE 2052(T) (98.4%), Rhizobium tibeticum CCBAU 85039(T) (98.1%), Rhizobium grahamii CCGE 502(T) (98.0%) and Rhizobium mesoamericanum CCGE 501(T) (98.0%). The phylogenetic relationships of ChimEc512(T) were confirmed by sequencing and analyses of recA and atpD genes. DNA-DNA relatedness values of strain ChimEc512(T) with R. endophyticum CCGE 2052(T), R. tibeticum CCBAU 85039(T), R. mesoamericanum CCGE 52(T), Rhizobium grahamii CCGE 502(T), Rhizobium etli CCBAU 85039(T) and Rhizobium radiobacter KL09-16-8-2(T) were 27, 22, 16, 18, 19 and 11%, respectively. The DNA G+C content of strain ChimEc512(T) was 58.9 mol%. The major cellular fatty acid was C18 : 1ω7c, characteristic of the genus Rhizobium . The polar lipid profile included phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol and phosphatidylcholine and moderate amounts of aminolipids, phospholipid and sulfoquinovosyl diacylglycerol. Although ChimEc512(T) was able to nodulate A. vulneraria, the nodC and nifH genes were not detected by PCR. The rhizobial strain was tolerant to high concentrations of heavy metals: up to 35 mM Zn and up to 0.5 mM Cd and its growth kinetics was not impacted by Zn. The results of DNA-DNA hybridizations and physiological tests allowed genotypic and phenotypic differentiation of strain ChimEc512(T) from species of the genus Rhizobium with validly published names. Strain ChimEc512(T), therefore, represents a novel species, for which the name Rhizobium metallidurans sp. nov. is proposed, with the type strain

  13. Reconstructing the phylogeny of aphids (Hemiptera: Aphididae) using DNA of the obligate symbiont Buchnera aphidicola

    Czech Academy of Sciences Publication Activity Database

    Nováková, Eva; Hypša, Václav; Klein, J.; Foottit, R. G.; von Dohlen, C.D.; Moran, N. A.

    2013-01-01

    Roč. 68, č. 1 (2013), s. 42-54 ISSN 1055-7903 R&D Projects: GA ČR GD206/09/H026 Institutional support: RVO:60077344 Keywords : Aphid * Evolution * Buchnera * Phylogeny * Informative markers Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.018, year: 2013

  14. Symbiotic Novae

    OpenAIRE

    Mikolajewska, Joanna

    2010-01-01

    The symbiotic novae are thermonuclear novae in symbiotic binary systems -- interacting binaries with evolved red giant donors, and the longest orbital periods. This paper aims at presenting physical characteristics of these objects and discussing their place among the whole family of symbiotic stars.

  15. Symbiotic stars

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1975-01-01

    There are some arguments that the symbiotic stars are binary, where one component is a red giant and the other component is a small hot star which is exciting a nebula. The symbiotic stars belong to the old disc population. Probably, symbiotic stars are just such an evolutionary stage for double stars as planetary nebulae for single stars. (Auth.)

  16. Aposymbiotic culture of the sepiolid squid Euprymna scolopes: role of the symbiotic bacterium Vibrio fischeri in host animal growth, development, and light organ morphogenesis.

    Science.gov (United States)

    Claes, M F; Dunlap, P V

    2000-02-15

    The sepiolid squid Euprymna scolopes forms a bioluminescent mutualism with the luminous bacterium Vibrio fischeri, harboring V. fischeri cells in a complex ventral light organ and using the bacterial light in predator avoidance. To characterize the contribution of V. fischeri to the growth and development of E. scolopes and to define the long-term effects of bacterial colonization on light organ morphogenesis, we developed a mariculture system for the culture of E. scolopes from hatching to adulthood, employing artificial seawater, lighting that mimicked that of the natural environment, and provision of prey sized to match the developmental stage of E. scolopes. Animals colonized by V. fischeri and animals cultured in the absence of V. fischeri (aposymbiotic) grew and survived equally well, developed similarly, and reached sexual maturity at a similar age. Development of the light organ accessory tissues (lens, reflectors, and ink sac) was similar in colonized and aposymbiotic animals with no obvious morphometric or histological differences. Colonization by V. fischeri influenced regression of the ciliated epithelial appendages (CEAs), the long-term growth of the light organ epithelial tubules, and the appearance of the cells composing the ciliated ducts, which exhibit characteristics of secretory tissue. In certain cases, aposymbiotic animals retained the CEAs in a partially regressed state and remained competent to initiate symbiosis with V. fischeri into adulthood. In other cases, the CEAs regressed fully in aposymbiotic animals, and these animals were not colonizable. The results demonstrate that V. fischeri is not required for normal growth and development of the animal or for development of the accessory light organ tissues and that morphogenesis of only those tissues coming in contact with the bacteria (CEAs, ciliated ducts, and light organ epithelium) is altered by bacterial colonization of the light organ. Therefore, V. fischeri apparently makes no major

  17. Symbiotic binaries

    International Nuclear Information System (INIS)

    Mikolajewska, J.; Iijima, T.

    1988-01-01

    The symbiotic star BF Cyg shows periodic variations in its spectrum. [O3] line intensity changes in antiphase with the blue continuum, H-Balmer and He1 emission line intensity. These variations are interpreted in terms of a hot star moving on an eccentric orbit and ionizing a part of an M-type giant wind. 20 refs., 2 figs., 1 tab. (author)

  18. Symbiotic stars

    Science.gov (United States)

    Kafatos, M.; Michalitsianos, A. G.

    1984-01-01

    The physical characteristics of symbiotic star systems are discussed, based on a review of recent observational data. A model of a symbiotic star system is presented which illustrates how a cool red-giant star is embedded in a nebula whose atoms are ionized by the energetic radiation from its hot compact companion. UV outbursts from symbiotic systems are explained by two principal models: an accretion-disk-outburst model which describes how material expelled from the tenuous envelope of the red giant forms an inwardly-spiralling disk around the hot companion, and a thermonuclear-outburst model in which the companion is specifically a white dwarf which superheats the material expelled from the red giant to the point where thermonuclear reactions occur and radiation is emitted. It is suspected that the evolutionary course of binary systems is predetermined by the initial mass and angular momentum of the gas cloud within which binary stars are born. Since red giants and Mira variables are thought to be stars with a mass of one or two solar mass, it is believed that the original cloud from which a symbiotic system is formed can consist of no more than a few solar masses of gas.

  19. Symbiotic stars

    International Nuclear Information System (INIS)

    Kafatos, M.; Michalitsianos, A.G.

    1984-01-01

    Among the several hundred million binary systems estimated to lie within 3000 light years of the solar system, a tiny fraction, no more than a few hundred, belong to a curious subclass whose radiation has a wavelength distribution so peculiar that it long defied explanation. Such systems radiate strongly in the visible region of the spectrum, but some of them do so even more strongly at both shorter and longer wavelengths: in the ultraviolet region and in the infrared and radio regions. This odd distribution of radiation is best explained by the pairing of a cool red giant star and an intensely hot small star that is virtually in contact with its larger companion. Such objects have become known as symbiotic stars. On photographic plate only the giant star can be discerned, but evidence for the existence of the hot companion has been supplied by satellite-born instruments capable of detecting ultraviolet radiation. The spectra of symbiotic stars indicate that the cool red giant is surrounded by a very hot ionized gas. Symbiotic stars also flared up in outbursts indicating the ejection of material in the form of a shell or a ring. Symbiotic stars may therefore represent a transitory phase in the evolution of certain types of binary systems in which there is substantial transfer of matter from the larger partner to the smaller

  20. Symbiotic Miras

    International Nuclear Information System (INIS)

    Whitelock, P.A.

    1987-01-01

    This paper concerns interacting binary systems involving Mira variables. Twenty-six objects which potentially fall into this category are identified and observations of them covering the spectral regions from X-ray to radio are reviewed. Particular emphasis is given to near-infrared observations which are pertinent to establishing the presence of a Mira variable and also to new far-infrared data from IRAS. The majority of the objects under consideration have been classified as symbiotic stars. They are closely related to the well-known binary, o Cet, which might be described as mildly symbiotic. It is shown how the knowledge of normal Miras can contribute to the understanding of the evolutionary condition and luminosities of these binary Miras. Distances are derived for those objects with measured pulsation periods. The significance of the relatively long pulsation periods shown by these objects is also discussed. 165 references

  1. Notas sobre escrofulariáceas de Colombia: I. - Nueva especie de Buchnera afin A B. Rubriflora Philcox

    Directory of Open Access Journals (Sweden)

    Fernández Soto José Luis

    1986-12-01

    Full Text Available Se describe una nueva especie de Buchnera que presenta pilosidad glandular, la única entre las especies americanas del género y próxima a  B. rubriflora Philcox. Se aportan nuevos datos sobre la distribución y variabilidad de esta última, comentando finalmente la relación entre ambos táxones.  Al revisar las escrofulariáceas del Herbario Nacional Colombiano (COL, se tuvo la oportunidad de estudiar una serie de colecciones del género Buchnera, que son el objeto de esta primera nota sobre escrofulariáceas colombianas. Aparte de la localización de nuevos registros de B. rubriflora, que amplían la distribución conocida de la especie y otras puntualizaciones relativas a su parentesco y ecología; sin duda el dato más interesante lo aportó el estudio de unas plantas procedentes del sur de la Sierra de La Macarena (Depto. del Meta, que presentan indumento glandular, mezclado con pilosidad más corta no glandular. Este carácter único conocido hasta ahora en las buchneras americanas, permite describir esta planta como nueva. Este nuevo taxon está morfológicamente relacionado con B. rubriflora, con la que comparte además y con carácter exclusivo en las especies americanas la coloración roja de sus corolas. Se hacen por último algunos comentarios sobre este pequeño grupo de buchneras, del que probablemente falte aún mucho por conocer en cuanto a distribución y diversidad, por la falta de muestreo en amplios territorios colombianos ecológica y geológicamente similares a los enclaves hasta ahora conocidos para estos táxones.

  2. Insect symbiotic bacteria harbour viral pathogens for transovarial transmission.

    Science.gov (United States)

    Jia, Dongsheng; Mao, Qianzhuo; Chen, Yong; Liu, Yuyan; Chen, Qian; Wu, Wei; Zhang, Xiaofeng; Chen, Hongyan; Li, Yi; Wei, Taiyun

    2017-03-06

    Many insects, including mosquitoes, planthoppers, aphids and leafhoppers, are the hosts of bacterial symbionts and the vectors for transmitting viral pathogens 1-3 . In general, symbiotic bacteria can indirectly affect viral transmission by enhancing immunity and resistance to viruses in insects 3-5 . Whether symbiotic bacteria can directly interact with the virus and mediate its transmission has been unknown. Here, we show that an insect symbiotic bacterium directly harbours a viral pathogen and mediates its transovarial transmission to offspring. We observe rice dwarf virus (a plant reovirus) binding to the envelopes of the bacterium Sulcia, a common obligate symbiont of leafhoppers 6-8 , allowing the virus to exploit the ancient oocyte entry path of Sulcia in rice leafhopper vectors. Such virus-bacterium binding is mediated by the specific interaction of the viral capsid protein and the Sulcia outer membrane protein. Treatment with antibiotics or antibodies against Sulcia outer membrane protein interferes with this interaction and strongly prevents viral transmission to insect offspring. This newly discovered virus-bacterium interaction represents the first evidence that a viral pathogen can directly exploit a symbiotic bacterium for its transmission. We believe that such a model of virus-bacterium communication is a common phenomenon in nature.

  3. Symbiotic Cognitive Computing

    OpenAIRE

    Farrell, Robert G.; Lenchner, Jonathan; Kephjart, Jeffrey O.; Webb, Alan M.; Muller, MIchael J.; Erikson, Thomas D.; Melville, David O.; Bellamy, Rachel K.E.; Gruen, Daniel M.; Connell, Jonathan H.; Soroker, Danny; Aaron, Andy; Trewin, Shari M.; Ashoori, Maryam; Ellis, Jason B.

    2016-01-01

    IBM Research is engaged in a research program in symbiotic cognitive computing to investigate how to embed cognitive computing in physical spaces. This article proposes 5 key principles of symbiotic cognitive computing.  We describe how these principles are applied in a particular symbiotic cognitive computing environment and in an illustrative application.  

  4. Symbiotic Optimization of Behavior

    Science.gov (United States)

    2015-05-01

    SYMBIOTIC OPTIMIZATION OF BEHAVIOR UNIVERSITY OF WASHINGTON MAY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED...2014 4. TITLE AND SUBTITLE SYMBIOTIC OPTIMIZATION OF BEHAVIOR 5a. CONTRACT NUMBER FA8750-12-1-0304 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT

  5. Models of symbiotic stars

    Science.gov (United States)

    Friedjung, Michael

    1993-01-01

    One of the most important features of symbiotic stars is the coexistence of a cool spectral component that is apparently very similar to the spectrum of a cool giant, with at least one hot continuum, and emission lines from very different stages of ionization. The cool component dominates the infrared spectrum of S-type symbiotics; it tends to be veiled in this wavelength range by what appears to be excess emission in D-type symbiotics, this excess usually being attributed to circumstellar dust. The hot continuum (or continua) dominates the ultraviolet. X-rays have sometimes also been observed. Another important feature of symbiotic stars that needs to be explained is the variability. Different forms occur, some variability being periodic. This type of variability can, in a few cases, strongly suggest the presence of eclipses of a binary system. One of the most characteristic forms of variability is that characterizing the active phases. This basic form of variation is traditionally associated in the optical with the veiling of the cool spectrum and the disappearance of high-ionization emission lines, the latter progressively appearing (in classical cases, reappearing) later. Such spectral changes recall those of novae, but spectroscopic signatures of the high-ejection velocities observed for novae are not usually detected in symbiotic stars. However, the light curves of the 'symbiotic nova' subclass recall those of novae. We may also mention in this connection that radio observations (or, in a few cases, optical observations) of nebulae indicate ejection from symbiotic stars, with deviations from spherical symmetry. We shall give a historical overview of the proposed models for symbiotic stars and make a critical analysis in the light of the observations of symbiotic stars. We describe the empirical approach to models and use the observational data to diagnose the physical conditions in the symbiotics stars. Finally, we compare the results of this empirical

  6. Comparative toxicity assessment of CeO{sub 2} and ZnO nanoparticles towards Sinorhizobium meliloti, a symbiotic alfalfa associated bacterium: Use of advanced microscopic and spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Susmita [Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso (United States); Peralta-Videa, Jose R. [Department of Chemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968 (United States); Plascencia-Villa, German; Jose-Yacaman, Miguel [Department of Physics and Astronomy, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States); Gardea-Torresdey, Jorge L., E-mail: jgardea@utep.edu [Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968 (United States); Department of Chemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968 (United States); University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso (United States)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer First cytotoxicity study of CeO{sub 2} and ZnO nanoparticles to Sinorhizobium meliloti. Black-Right-Pointing-Pointer First report upon the mechanisms of CeO{sub 2} and ZnO NPs toxicity to S. meliloti. Black-Right-Pointing-Pointer ZnO NPs were found to be bactericidal in lower concentration. Black-Right-Pointing-Pointer CeO{sub 2} NPs had bacteriostatic effect on S. meliloti. - Abstract: Cerium oxide (CeO{sub 2}) and zinc oxide (ZnO) nanoparticles (NPs) are extensively used in a variety of instruments and consumer goods. These NPs are of great concern because of potential toxicity towards human health and the environment. The present work aimed to assess the toxic effects of 10 nm CeO{sub 2} and ZnO NPs towards the nitrogen fixing bacterium Sinorhizobium meliloti. Toxicological parameters evaluated included UV/Vis measurement of minimum inhibitory concentration, disk diffusion tests, and dynamic growth. Ultra high-resolution scanning transmission electron microscopy (STEM) and infrared spectroscopy (FTIR) were utilized to determine the spatial distribution of NPs and macromolecule changes in bacterial cells, respectively. Results indicate that ZnO NPs were more toxic than CeO{sub 2} NPs in terms of inhibition of dynamic growth and viable cells counts. STEM images revealed that CeO{sub 2} and ZnO NPs were found on bacterial cell surfaces and ZnO NPs were internalized into the periplasmic space of the cells. FTIR spectra showed changes in protein and polysaccharide structures of extra cellular polymeric substances present in bacterial cell walls treated with both NPs. The growth data showed that CeO{sub 2} NPs have a bacteriostatic effect, whereas ZnO NPs is bactericidal to S. meliloti. Overall, ZnO NPs were found to be more toxic than CeO{sub 2} NPs.

  7. Revisiting Symbiotic Job Scheduling

    OpenAIRE

    Eyerman , Stijn; Michaud , Pierre; Rogiest , Wouter

    2015-01-01

    International audience; —Symbiotic job scheduling exploits the fact that in a system with shared resources, the performance of jobs is impacted by the behavior of other co-running jobs. By coscheduling combinations of jobs that have low interference, the performance of a system can be increased. In this paper, we investigate the impact of using symbiotic job scheduling for increasing throughput. We find that even for a theoretically optimal scheduler, this impact is very low, despite the subs...

  8. Outbursts in Symbiotic Binaries

    Science.gov (United States)

    Sonneborn, George (Technical Monitor); Kenyon, Scott J.

    2004-01-01

    Two models have been proposed for the outbursts of symbiotic stars. In the thermonuclear model, outbursts begin when the hydrogen burning shell of a hot white dwarf reaches a critical mass. After a rapid increase in the luminosity and effective temperature, the white dwarf evolves at constant luminosity to lower effective temperatures, remains at optical maximum for several years, and then returns to quiescence along a white dwarf cooling curve. In disk instability models, the brightness rises when the accretion rate from the disk onto the central white dwarf abruptly increases by factors of 5-20. After a few month to several year period at maximum, both the luminosity and the effective temperature of the disk decline as the system returns to quiescence. If most symbiotic stars undergo thermonuclear eruptions, then symbiotics are probably poor candidates for type I supernovae. However, they can then provide approx. 10% of the material which stars recycle back into the interstellar medium. If disk instabilities are the dominant eruption mechanism, symbiotics are promising type Ia candidates but recycle less material into the interstellar medium.

  9. Coevolution of Symbiotic Species

    OpenAIRE

    Leok, Boon Tiong Melvin

    1996-01-01

    This paper will consider the coevolution of species which are symbiotic in their interaction. In particular, we shall analyse the interaction of squirrels and oak trees, and develop a mathematical framework for determining the coevolutionary equilibrium for consumption and production patterns.

  10. Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont.

    Science.gov (United States)

    Futahashi, Ryo; Tanaka, Kohjiro; Tanahashi, Masahiko; Nikoh, Naruo; Kikuchi, Yoshitomo; Lee, Bok Luel; Fukatsu, Takema

    2013-01-01

    The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations.

  11. Outbursts of symbiotic novae

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Truran, J.W.

    1983-01-01

    We discuss possible conditions under which thermonuclear burning episodes in the hydrogen-rich envelopes of accreting white dwarfs give rise to outbursts similar in nature to those observed in the symbiotic stars AG Peg, RT Ser, RR Tel, AS 239, V1016 Cyg, V1329 Cyg, and HM Sge. In principle, thermonuclear runaways involving low-luminosity white dwarfs accreting matter at low rates produce configurations that evolve into A--F supergiants at maximum visual light and which resemble the outbursts of RR Tel, RT Ser, and AG peg. Very weak, nondegenerage hydrogen shell flashes on white dwarfs accreting matter at high rates (M> or approx. =10 -8 M/sub sun/ yr -1 ) do not produce cool supergiants at maximum, and may explain the outbursts in V1016 Cyg, V1329 Cyg, and HM Sge. The low accretion rates demanded for systems developing strong hydrogen shell flashes on low-luminsoity white dwarfs are not compatible with observations of ''normal'' quiescent symbiotic stars. The extremely slow outbursts of symbiotic novae appear to be typical of accreting white dwarfs in wide binaries, which suggests that the outbursts of classical novae may be accelerated by the interaction of the expanding white dwarf envelope with its close binary companion

  12. Symbiotic Origin of Aging.

    Science.gov (United States)

    Greenberg, Edward F; Vatolin, Sergei

    2018-06-01

    Normally aging cells are characterized by an unbalanced mitochondrial dynamic skewed toward punctate mitochondria. Genetic and pharmacological manipulation of mitochondrial fission/fusion cycles can contribute to both accelerated and decelerated cellular or organismal aging. In this work, we connect these experimental data with the symbiotic theory of mitochondrial origin to generate new insight into the evolutionary origin of aging. Mitochondria originated from autotrophic α-proteobacteria during an ancient endosymbiotic event early in eukaryote evolution. To expand beyond individual host cells, dividing α-proteobacteria initiated host cell lysis; apoptosis is a product of this original symbiont cell lytic exit program. Over the course of evolution, the host eukaryotic cell attenuated the harmful effect of symbiotic proto-mitochondria, and modern mitochondria are now functionally interdependent with eukaryotic cells; they retain their own circular genomes and independent replication timing. In nondividing differentiated or multipotent eukaryotic cells, intracellular mitochondria undergo repeated fission/fusion cycles, favoring fission as organisms age. The discordance between cellular quiescence and mitochondrial proliferation generates intracellular stress, eventually leading to a gradual decline in host cell performance and age-related pathology. Hence, aging evolved from a conflict between maintenance of a quiescent, nonproliferative state and the evolutionarily conserved propagation program driving the life cycle of former symbiotic organisms: mitochondria.

  13. The symbiotics as binary stars

    International Nuclear Information System (INIS)

    Plavec, M.J.

    1982-01-01

    The author envisages at least three models that can give a symbiotic object: He has called them, respectively, the PN symbiotic, the Algol symbiotic, and the novalike symbiotic. Their properties are briefly discussed. The most promising model is one of a binary system in the second stage of mass transfer, actually at the beginning of it: The cool component is a red giant ascending the asymptotic branch, expanding but not yet filling its critical lobe. The hot star is a subdwarf located in the same region of the Hertzsprung-Russell diagram as the central stars of planetary nebulae. It may be closely related to them, or it may be a helium star, actually a remnant of an Algol primary which underwent the first stage of mass transfer. In these cases, accretion on this star may not play a significant role (PN symbiotic). Perhaps more often, the subdwarf is a ''rejuvenated'' degenerate dwarf whose nuclear burning shells were ignited and are maintained by accretion of material coming from the red giant in the form of a stellar wind. Eruptions are often inevitable: this is the novalike symbiotic. A third alternative is a system in the first stage of mass transfer, where the photons needed for ionization of the nebula come from an accretion disk surrounding a main sequence star: an Algol symbiotic. In spite of considerable observational effort, the symbiotics are known so poorly that it is hard to decide between the models, or even decide if all three can actually exist. (Auth.)

  14. Polarimetry of symbiotic stars

    International Nuclear Information System (INIS)

    Piirola, V.

    1983-01-01

    Five symbiotic stars have been observed for linear polarization (UBVRI) in September 1981. Three systems, CH Cyg, CI Cyg and AG Peg show intrinsic polarization while in the case of Z And and AX Per the observed polarization seems to be mostly of interstellar origin. The position angle of polarization of CI Cyg and AG Peg rotates strongly vs. wavelength, as observed also for CH Cyg in 1977-80. The polarization of CH Cyg has decreased since May 1980, especially in the I, R and U bands, so that the maximum polarization is now in the blue (Psub(B) approx. 0.3%). Probably one is monitoring the formation, growth and disappearance of dust particles in the atmosphere of this star. Two related systems, PU Vul (Nova Vul 1979) and R Aql (Mira) have polarization behaviour rather similar to that of symbiotic stars which suggests that the M type giant present in these systems is responsible for most of the intrinsic polarization. (Auth.)

  15. Green symbiotic cloud communications

    CERN Document Server

    Mustafa, H D; Desai, Uday B; Baveja, Brij Mohan

    2017-01-01

    This book intends to change the perception of modern day telecommunications. Communication systems, usually perceived as “dumb pipes”, carrying information / data from one point to another, are evolved into intelligently communicating smart systems. The book introduces a new field of cloud communications. The concept, theory, and architecture of this new field of cloud communications are discussed. The book lays down nine design postulates that form the basis of the development of a first of its kind cloud communication paradigm entitled Green Symbiotic Cloud Communications or GSCC. The proposed design postulates are formulated in a generic way to form the backbone for development of systems and technologies of the future. The book can be used to develop courses that serve as an essential part of graduate curriculum in computer science and electrical engineering. Such courses can be independent or part of high-level research courses. The book will also be of interest to a wide range of readers including b...

  16. Influence of carbofuran on certain metabolic and symbiotic activities of a cowpea Rhizobium

    International Nuclear Information System (INIS)

    Palaniappan, S.; Balasubramanian, A.

    1983-01-01

    Using carbon 14 radioisotope an in-vitro study of the effect of insecticides, carbofuran, on the metabolic and symbiotic activities of Rhizobium sp. cowpea group, was carried out. The study indicated that at 10 ppm carbofuran inhibited the in-vitro growth of the bacterium, suppressed the oxidation of all the Trichloroacetic acid (TCA) cycle intermediates, significantly reduced glucose oxidation and translocation and affected the growth and symbiotic activities of the cowpea as reflected by a reduction in the dry matter production and total nitrogen content. The insecticide was itself degraded by the Rhizobium sp. within 30 days of incubation

  17. Agrobacterium tumefaciens is a diazotrophic bacterium

    International Nuclear Information System (INIS)

    Kanvinde, L.; Sastry, G.R.K.

    1990-01-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate 15 N supplied as 15 N 2 . As with most other well-characterized diazotrophic bacteria, the presence of NH 4 + in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship

  18. Agrobacterium tumefaciens is a diazotrophic bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Kanvinde, L.; Sastry, G.R.K. (Univ. of Leeds (England))

    1990-07-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate {sup 15}N supplied as {sup 15}N{sub 2}. As with most other well-characterized diazotrophic bacteria, the presence of NH{sub 4}{sup +} in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship.

  19. Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs

    Directory of Open Access Journals (Sweden)

    Kamagata Yoichi

    2009-01-01

    Full Text Available Abstract Background Host-symbiont co-speciation and reductive genome evolution have been commonly observed among obligate endocellular insect symbionts, while such examples have rarely been identified among extracellular ones, the only case reported being from gut symbiotic bacteria of stinkbugs of the family Plataspidae. Considering that gut symbiotic communities are vulnerable to invasion of foreign microbes, gut symbiotic associations have been thought to be evolutionarily not stable. Stinkbugs of the family Acanthosomatidae harbor a bacterial symbiont in the midgut crypts, the lumen of which is completely sealed off from the midgut main tract, thereby retaining the symbiont in the isolated cryptic cavities. We investigated histological, ecological, phylogenetic, and genomic aspects of the unique gut symbiosis of the acanthosomatid stinkbugs. Results Phylogenetic analyses showed that the acanthosomatid symbionts constitute a distinct clade in the γ-Proteobacteria, whose sister groups are the obligate endocellular symbionts of aphids Buchnera and the obligate gut symbionts of plataspid stinkbugs Ishikawaella. In addition to the midgut crypts, the symbionts were located in a pair of peculiar lubricating organs associated with the female ovipositor, by which the symbionts are vertically transmitted via egg surface contamination. The symbionts were detected not from ovaries but from deposited eggs, and surface sterilization of eggs resulted in symbiont-free hatchlings. The symbiont-free insects suffered retarded growth, high mortality, and abnormal morphology, suggesting important biological roles of the symbiont for the host insects. The symbiont phylogeny was generally concordant with the host phylogeny, indicating host-symbiont co-speciation over evolutionary time despite the extracellular association. Meanwhile, some local host-symbiont phylogenetic discrepancies were found, suggesting occasional horizontal symbiont transfers across the host

  20. Symbiotic star AG Dra

    International Nuclear Information System (INIS)

    Ipatov, A.P.; Yudin, B.F.; Moskovskij Gosudarstvennyj Univ.

    1986-01-01

    The results obtained from photometric (in the UBVRJHKLM system) and spectrophotometric (in the range 0.33-0.75 μm) observations of symbiotic star AG Dra are presented. The cool component of this star is a red giant with approximately constant brightness (ΔJ ≤ 0 m .3) classified as K4-K5. This red giant fills it's Roche loble and probably is on the assymptotic giant branch of the HR diagramm. The presence of IR excess in 5 μm associated with radiation of the gaseous envelope with the mass of M≅ 10 -6 M sun have been detected. Observations of AG Dra indicate that growing of the bolometric flux of a hot component is accompanied with decreasing effective temperature. The hot component of the system is probably an accerting red dwarf with the mass M≅ 0.4 M sun and disk accretion of matter of cool star with the rate M >or ∼ 10 -4 M sun year in equatorial region. Increase of accretion rate during the outburst of AG Dra leads to the increase of stellar wind from the red dwarf surface and the decrease of it's effective temperature. The hot component of AG Dra may also be considered as a white Dwarf with luminosity L 3 L sun and R eff >or approx. 0.2 R sun . In this case gravitational energy of accreting matter M > or ∼ 10 -6 M sun / year would be the source of the hot component outbursts. The luminosity between outbursts is determined by energy generation from the burning hydrogen layer source

  1. Interacting Winds in Eclipsing Symbiotic Systems

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Interacting Winds in Eclipsing Symbiotic Systems – The Case Study of EG Andromedae ... to obtain the physical parameters of a quiescent eclipsing symbiotic system. ... Articles are also visible in Web of Science immediately.

  2. Spectrophotometry of Symbiotic Stars (Abstract)

    Science.gov (United States)

    Boyd, D.

    2017-12-01

    (Abstract only) Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionizes the nebula, producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  3. Spectrophotometric observations of symbiotic stars

    International Nuclear Information System (INIS)

    Ipatov, A.P.; Yudin, B.F.

    1985-01-01

    The data of spectrophotometric observations of symbiotic stars Z And, AX Per, CI Cyg, BF Cyg, YY Her, V 443 Her, AG Dra, AG Peg, AS 296, EG And, V 1016 Cyg, and HM Sge are presented. The spectral range of observations is 3300-7500 A, resolution is 50 A. The data obtained allowed to reveal specific characteristics inherent to the radiation of symbiotic stars and to estimate the parameters of their individual components. Analysis of the spectra of symbiotic stars in the range of 1300-7500 A wavelengths suggests a hypothesis, according to which a hot source in the Rayleigh - Jeans spectral range has a less steep inclination in the energy distribution, than a black-body one. A disk, formed during cold star substance accretion through an internal Lagrangian point onto a denser component of the system, can play the role of the source. In this case one manages to obtain the energy distribution in the symbiotic star spectrum consistent with the observed distribution

  4. Alterations in the proteome of the Euprymna scolopes light organ in response to symbiotic Vibrio fischeri.

    Science.gov (United States)

    Doino Lemus, J; McFall-Ngai, M J

    2000-09-01

    During the onset of the cooperative association between the Hawaiian sepiolid squid Euprymna scolopes and the marine luminous bacterium Vibrio fischeri, the anatomy and morphology of the host's symbiotic organ undergo dramatic changes that require interaction with the bacteria. This morphogenetic process involves an array of tissues, including those in direct contact with, as well as those remote from, the symbiotic bacteria. The bacteria induce the developmental program soon after colonization of the organ, although complete morphogenesis requires 96 h. In this study, to determine critical time points, we examined the biochemistry underlying bacterium-induced host development using two-dimensional polyacrylamide gel electrophoresis. Specifically, V. fischeri-induced changes in the soluble proteome of the symbiotic organ during the first 96 h of symbiosis were identified by comparing the protein profiles of symbiont-colonized and uncolonized organs. Both symbiosis-related changes and age-related changes were analyzed to determine what proportion of the differences in the proteomes was the result of specific responses to interaction with bacteria. Although no differences were detected over the first 24 h, numerous symbiosis-related changes became apparent at 48 and 96 h and were more abundant than age-related changes. In addition, many age-related protein changes occurred 48 h sooner in symbiotic animals, suggesting that the interaction of squid tissue with V. fischeri cells accelerates certain developmental processes of the symbiotic organ. These data suggest that V. fischeri-induced modifications in host tissues that occur in the first 24 h of the symbiosis are independent of marked alterations in the patterns of abundant proteins but that the full 4-day morphogenetic program requires significant alteration of the host soluble proteome.

  5. Radio observations of symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A E [Commonwealth Scientific and Industrial Research Organization, Epping (Australia). Div. of Radiophysics; Allen, D A

    1978-09-01

    A search for 2-cm continuum emission from 91 symbiotic stars has been undertaken using the Parkes radio telescope. Nine sources have been detected, four of which are reported for the first time. The radio spectral indices are mostly about + 0.6; these are interpreted in terms of mass loss. In two stars a portion of the radio spectrum has an index of zero, and for one of these stars (RX Puppis) this is plausibly a manifestation of the cessation of symbiotic activity that occurred about two decades ago. There is an extraordinarily good correlation between the detectability at 2cm and the presence of circumstellar dust, but not between the radio and optical domains. The importance of continued radio monitoring of HM Sagittae over the next few years is stressed.

  6. A polarimetric survey of symbiotic stars

    International Nuclear Information System (INIS)

    Schulte-Ladbeck, R.E.; Magalhaes, A.M.; Magalhaes, A.M.

    1990-01-01

    We present optical and near-infrared linear polarization observations of 24 symbiotic stars, 14 observed with polarimetry for the first time. In combination with published data, we find that ∼ 50% of the symbiotics observed polarimetrically show evidence for intrinsic polarization. We discuss the results in the light of previous observations and comment on the temporal variability and wavelength dependence of the polarization. Dust scattering is identified as the dominant mechanism producing polarization in symbiotic stars. While we cannot exclude that some symbiotic systems are completely engulfed in their dust shells our data indicate that the Hα emission line may originate from outside of the dust-scattering envelopes in some systems

  7. Bacterium oxidizing carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kistner, A

    1953-01-01

    Present-day knowledge of the microbiological oxidation of carbon monoxide is based on doubtful observations and imperfect experimental procedures. By making use of shake cultures in contact with gas mixtures containing high concentrations of CO and by employing liquid enrichment media with a low content of organic matter and solid media of the same composition with not more than 1.2% agar, it proved possible to isolate a co-oxidizing bacterium of the genus hydrogenomonas from sewage sludge. For the first time irrefutable proof has been given of the oxidation of carbon monoxide by a pure culture of a bacterium, both in growing cultures and in resting cell suspensions. 12 references.

  8. Differential Change Patterns of Main Antimicrobial Peptide Genes During Infection of Entomopathogenic Nematodes and Their Symbiotic Bacteria.

    Science.gov (United States)

    Darsouei, Reyhaneh; Karimi, Javad; Ghadamyari, Mohammad; Hosseini, Mojtaba

    2017-08-01

    The expression of antimicrobial peptides (AMPs) as the main humoral defense reactions of insects during infection by entomopathogenic nematodes (EPNs) and their symbiont is addressed herein. Three AMPs, attacin, cecropin, and spodoptericin, were evaluated in the fifth instar larvae of Spodoptera exigua Hübner (beet armyworm) when challenged with Steinernema carpocapsae or Heterorhabditis bacteriophora. The results indicated that attacin was expressed to a greater extent than either cecropin or spodoptericin. While spodoptericin was expressed to a much lesser extent, this AMP was induced against Gram-positive bacteria, and thus not expressed after penetration of Xenorhabdus nematophila and Photorhabdus luminescens. Attacin and cecropin in the larvae treated with S. carpocapsae at 8 hr post-injection (PI) attained the maximum expression levels and were 138.42-fold and 65.84-fold greater than those of larvae infected with H. bacteriophora, respectively. Generally, the ability of H. bacteriophora to suppress attacin, cecropin, and spodoptericin was greater than that of S. carpocapsae. According to the results, the expression of AMPs by Sp. exigua larvae against S. carpocapsae was determined in the 4 statuses of monoxenic nematode, axenic nematode, live symbiotic bacterium, and dead symbiotic bacterium. The expression of attacin in larvae treated with a monoxenic nematode and live bacterium at 8 and 2 hr PI, respectively, were increased to the maximum amount. Live X. nematophila was the strongest agent for the suppression of attacin. The expression of cecropin against monoxenic nematodes and live symbiotic bacteria at 8 and 4 hr PI, respectively, reached the maximum amount while the expression levels of attacin and cecropin for axenic nematodes were lesser and stable. The results highlighted that the ability of P. luminescens in AMPs suppression was much more than X. nematophila. The results also showed that the effect of symbiotic bacterium in suppressing attacin and

  9. Near IR spectra of symbiotic stars

    International Nuclear Information System (INIS)

    Andrillat, Y.

    1982-01-01

    The author reports on recent observations from the near IR spectra of symbiotic stars. The helium and oxygen lines useful for the construction of theoretical models are identified. Observations for cool stars and novae (nebular phase) are outlined and the spectra of specific symbiotic stars between lambdalambda 8000-11000 are presented and discussed. (Auth./C.F.)

  10. Symbiotic stars observed from the IRAS satellite

    International Nuclear Information System (INIS)

    Luud, L.; Tuvikene, T.

    1987-01-01

    Symbiotic stars according to Alfven's catalogue have been checked for coincidence with the IRAS-observed for-infrared sources. 72 symbiotic and possible symbiotic stars have been identified with the IRAS-observed sources. A catalogue of identified stars and energy distributions of representative stars are given. It turns out that the dust in symbiotic stars is a more widespread phenomenon than that it was believed before. Almost 40% of systems are the dusty ones. Among objects with dust temperature some tens of K have been found. It is shown that the only useful two-color diagram is (K-m 12 )-(m 12 -m 25 ). Attention is paid to a type of symbiotic stars with G spectral class cold component which needs special investigation

  11. Properties of cold components of symbiotic stars

    International Nuclear Information System (INIS)

    Luud, L.; Leehdyarv, L.

    1986-01-01

    Using the Blackwell-Shallis method the luminosities, temperatures and radii for cold components of symbiotic stars and for a sample of field red giants have been determined by means of infrared photometric observations. It turned out that the cold components of symbiotic stars do not differ from the normal red giants of the asymptotic branch. The masses of cold components of symbiotic stars have been found to be close to 3 M* (M* is the solar mass).The cold components of symbiotic stars do not fill their Roche lobes. About 10 times more carbon stars than the normal value in the vicinity of the Sun have been found among the cold components of symbiotic stars

  12. Symbiotic stars according to IRAS observations

    International Nuclear Information System (INIS)

    Luud, L.; Tuvikene, T.

    1987-01-01

    Symbiotic stars contained in Allen's catalog are examined with a view to establishing their coincidence with sources of far infrared radiation in the catalog of point sources observed with the IRAS satellite. Altogether, 72 symbiotic or suspected symbiotic objects have been identified. A list of the identified stars has been compiled, and the energy distributions in the infrared spectra of selected stars are given. It has been found that the presence of dust in symbiotic systems is a more widespread phenomenon than hitherto believed. Almost 40% of them are dust systems. Among them, objects with dust temperature of several tens of degrees kelvin have been found. It is shown that the only useful two-color diagram is the (K - m 12 )-(m 12 - m 25 ) diagram. Finally, attention is drawn to a type of symbiotic stars having cold components of the spectral class G; these require a special investigation

  13. Energy distributions of symbiotic novae

    International Nuclear Information System (INIS)

    Bryan, G.L.; Kwok, S.

    1991-01-01

    The IRAS low-resolution spectra of three recent symbiotic novae are fitted with a dust continuum radiative transfer model. It is found that the dust shells are detached from the photosphere and that the sizes of the inner radii are correlated with times since outburst. An analysis of the IUE spectra of HM Sge at different epochs suggests that the strength of the 2200 A feature is decreasing with times and the grains responsible for the feature are probably formed in the white dwarf ejecta. A complete accounting of the entire energy budget from radio to X-ray shows that most of the energy is emitted by the cool component in the infrared, and a significant fraction of the flux of the hot component is escaping in the far-ultraviolet. The density-bounded nature of the circumstellar gas nebulae could be the result of a bipolar geometry of the nebulae. Unlike classical novae, the optical outburst of symbiotic novae is due to the ionization of the preexisting envelope of the cool component and is not the result of a sudden ejection by the hot component. 55 refs

  14. Infrared studies of symbiotic stars

    International Nuclear Information System (INIS)

    Allen, D.A.

    1982-01-01

    Infrared photometry and spectroscopy of symbiotic stars is reviewed. It is shown that at wavelengths beyond 1 μm these systems are generally dominated by the cool star's photosphere and, indeed, are indistinguishable from ordinary late-type giants. About 25% of symbiotic stars exhibit additional emission due to circumstellar dust. Most of the dusty systems probably involve Mira variables, the dust forming in the atmospheres of the Miras. In a few cases the dust is much cooler and the cool component hotter; the dust must then form in distant gas shielded from the hot component, perhaps by an accretion disk. Spectroscopy at 2 μm can be used to spectral type the cool components, even in the presence of some dust emission. Distances may thereby be estimated, though with some uncertainty. Spectroscopy at longer wavelengths reveals information about the dust itself. In most cases this dust appears to include silicate grains, which form in the oxygen-rich envelope of an M star. In the case of HD 33036, however, different emission features are found which suggest a carbon-rich environment. (Auth.)

  15. Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process.

    Directory of Open Access Journals (Sweden)

    François Renoz

    Full Text Available In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid.

  16. Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process.

    Science.gov (United States)

    Renoz, François; Noël, Christine; Errachid, Abdelmounaim; Foray, Vincent; Hance, Thierry

    2015-01-01

    In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid.

  17. On the model of symbiotic stars

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Yungelson, L.R.

    1982-01-01

    The authors discuss conditions necessary for appearance and discovery of the symbiotic star phenomenon within the model of a binary consisting of a red (super)giant 3 solar masses not filling the Roche lobe and of an accreting hot degenerate CO-dwarf 0.8 solar masses. Within this model ''classical'' symbiotic stars may exist only within a narrow region of mass accretion rates and separations of components: 10 -7 approximately -7 solar masses/y and 3x10 13 approximately 14 cm. The evolutionary status of symbiotic stars and related objects and the mechanisms of their variability are discussed. (Auth.)

  18. The evolutionary status of symbiotic stars

    International Nuclear Information System (INIS)

    Rudak, B.

    1982-01-01

    The evolutionary relations between symbiotic stars and cataclysmic variables are presented. The symbiotic stars are assumed to be long period detached binaries containing a carbon-oxygen degenerate primary and a red giant losing its mass through a spherically symmetric wind. Such systems can be obtained in Case C evolution, provided a common envelope during a rapid mass transfer phase was not formed. The same way recurrent novae containing a red giant as a secondary component may be produced. The factors influencing the differences between symbiotic stars and nova-type stars are discussed. (Auth.)

  19. UV line emission of symbiotic stars

    International Nuclear Information System (INIS)

    Nussbaumer, H.

    1982-01-01

    General characteristics of emission line spectra from symbiotic stars are outlined. Data from some special line ratios in the 1000 A - 3000 A range, and others connecting the visual and the far UV lines are presented, and their application to symbiotic stars is discussed. Integrated fractional abundances for ions easily observed in the far UV are given to facilitate abundance determinations for nebular conditions. It is found that the physical conditions of the regions emitting the emission line spectra differ considerably among different symbiotic stars. (Auth.)

  20. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte.

    Directory of Open Access Journals (Sweden)

    Michele T Hoffman

    Full Text Available Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA, often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales, but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales. Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions.

  1. Symbiotic star H1-36

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A

    1983-01-01

    It is suggested that H1-36 should be classified as a symbiotic star rather than a planetary nebula. Evidence of a cool giant now exists and the high-excitation emission-line spectrum resembles the spectra of many symbiotic stars. The optical spectrum, radio spectrum, high spectral index of +0.9 and computed mass-loss rate are among the features discussed.

  2. The symbiotic star H1-36

    International Nuclear Information System (INIS)

    Allen, D.A.

    1983-01-01

    It is suggested that H1-36 should be classified as a symbiotic star rather than a planetary nebula. Evidence of a cool giant now exists and the high-excitation emission-line spectrum resembles the spectra of many symbiotic stars. The optical spectrum, radio spectrum, high spectral index of +0.9 and computed mass-loss rate are among the features discussed

  3. Recent photometry of selected symbiotic stars

    Science.gov (United States)

    Vrašťák, M.

    2018-04-01

    A new multicolour (BVRcIc) photometric observations of symbiotic stars UV Aur, YY Her, V443 Her, V1016 Cyg, PU Vul, V407 Cyg, V471 Per and suspected symbiotic stars ZZ CMi, NQ Gem, V934 Her, V335 Vul, V627 Cas is presented. The data were obtained from 2016 October to 2018 January by the metod of classical CCD photometry. The monitoring program is still running, so on this paper partial light curves are presented.

  4. The symbiotic star H1-36

    International Nuclear Information System (INIS)

    Allen, D.A.

    1983-01-01

    Optical and infrared spectrophotometry is presented of the high-excitation emission-line star H1-36. The presence of a variable M giant is established: H1-36 may therefore be classified as a symbiotic star. The observations are interpreted in terms of the usual binary model for symbiotic stars, namely that an unseen star is heated by accretion of gas from its companion M giant. (author)

  5. Construction and symbiotic competence of a luxA-deletion mutant of Vibrio fischeri.

    Science.gov (United States)

    Visick, K G; Ruby, E G

    1996-10-10

    Bioluminescence by the squid Euprymna scolopes requires colonization of its light organ by the symbiotic luminous bacterium Vibrio fischeri. Investigation of the genetic determinants underlying bacterial symbiotic competence in this system has necessitated the continuing establishment and application of molecular genetic techniques in V. fischeri. We developed a procedure for the introduction of plasmid DNA into V. fischeri by electroporation, and isolated a mutant strain that overcame the apparent restriction barrier between V. fischeri and Escherichia coli. Using the technique of electroporation in combination with that of gene replacement, we constructed a non-luminous strain of V. fischeri (delta luxA::erm). In addition, we used the transducing phage rp-1 for the first time to transfer a chromosomal antibiotic resistance marker to another strain of V. fischeri. The luxA mutant was able to colonize E. scolopes as quickly and to the same extent as wild type. This result suggested that, at least during the initial stages of colonization, luminescence per se is not an essential factor for the symbiotic infection.

  6. Symbiotic Stars in X-rays

    Science.gov (United States)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  7. The collective radio properties of symbiotic stars

    International Nuclear Information System (INIS)

    Seaquist, E.R.; Taylor, A.R.

    1990-01-01

    Radio measurements of symbiotic stars are reported which extend the search for radio emission and provide multifrequency and multiepoch measurements of previously detected stars. The results show no evidence that there are time variations in excess of about 30 percent over a period of several years in the detected stars. The radio flux densities are correlated with brightness in the IR, especially at the longer IR wavelengths where dust emission dominates. It is confirmed that symbiotics with the latest red giant spectral types are the most luminous radio emitters. The D-types are the most radio-luminous. Virtually all detected stars with measurements at more than one frequency exhibit a positive spectral index, consistent with optically thick thermal bremsstrahlung. The binary separation for a number of radio-emitting symbiotics is estimated, and it is found that the distribution of inferred binary separations is dramatically different for IR D-types than for S-types. 37 refs

  8. [Progress of heterotrophic studies on symbiotic corals].

    Science.gov (United States)

    Yang, Yang-Chu-Qiao; Hong, Wen Ting; Wang, Shu Hong

    2017-12-01

    Heterotrophy of zooxanthellae symbiotic corals refers to the nutrition directly coming from food absorption, not the nutrition obtained from photosynthesis. Most ex situ propagation of symbiotic corals focused on the effects of irradiation, flow rate and water quality on corals, few of them involved in the demand and supply of coral heterotrophic nutrition. This paper reviewed the significance of heterotrophic nutrient supply to symbiotic corals from the sources of coral heterotrophic nutrition, the factors affecting the supply of coral heterotrophic nutrient, and the methods of how to study the coral heterotrophy. In general, the research of coral heterotrophy is just at the beginning stage, and future studies should focus on the inherent mechanism of coral feeding selection and developing more effective research methods.

  9. Determination of the term symbiotic star

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.

    1982-01-01

    The author proposes the following criteria for the use of the term symbiotic star: The symbiotic stars must have a spectrum which simultaneously present the cool star features (TiO bands or G-band, etc.), and the emission lines of HeII and/or [OIII], and/or [NeIII], and lines which require even higher ionization level. He also proposes a classification of symbiotic stars according to different types of observations: according to 1) UBV photometry, 2) infrared observations, 3) radio observations, 4) absorption spectrum, 5) emission spectrum. The limted amount of ultraviolet and X-ray observations prevents any classification. The author thinks that the groups are not independent, one type showing variations belonging to another group. (Auth./C.F.)

  10. SPARCHS: Symbiotic, Polymorphic, Automatic, Resilient, Clean-Slate, Host Security

    Science.gov (United States)

    2016-03-01

    SPARCHS: SYMBIOTIC , POLYMORPHIC, AUTOMATIC, RESILIENT, CLEAN-SLATE, HOST SECURITY COLUMBIA UNIVERSITY MARCH 2016 FINAL... SYMBIOTIC , POLYMORPHIC, AUTOTOMIC, RESILIENT, CLEAN-SLATE, HOST SECURITY 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER FA8750-10-2-0253 5c. PROGRAM...17 4.2.3 SYMBIOTIC EMBEDDED MACHINES

  11. X-ray observations of symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia)

    1981-11-01

    Observations of 19 symbiotic stars made with the image proportional counter of the Einstein Observatory are reported. Three were detected as soft X-ray sources. All three have shown slow-nova eruptions in the past 40 years. The data are interpreted as support for a model for slow novae involving thermonuclear events on white dwarfs which accrete from M giant companions. Symbiotic stars in their steady state, not being detected X-ray sources, are presumed to be powered by the accretion process alone.

  12. X-ray observations of symbiotic stars

    International Nuclear Information System (INIS)

    Allen, D.A.

    1981-01-01

    Observations of 19 symbiotic stars made with the image proportional counter of the Einstein Observatory are reported. Three were detected as soft X-ray sources. All three have shown slow-nova eruptions in the past 40 years. The data are interpreted as support for a model for slow novae involving thermonuclear events on white dwarfs which accrete from M giant companions. Symbiotic stars in their steady state, not being detected X-ray sources, are presumed to be powered by the accretion process alone. (author)

  13. Symbiotic stars as an old disk population

    Energy Technology Data Exchange (ETDEWEB)

    Wallerstein, G [Joint Inst. for Lab. Astrophysics, Boulder, CO (USA)

    1981-10-01

    A table of all symbiotic stars in the General Catalogue of Variable Stars and its supplements has been assembled and their radial velocities have been discussed. A velocity dispersion of 63 +- 14 km/s is found for all the stars and a value of 58 +- 14 km/s is established if the probable halo star, AG Dra, is omitted. The space distribution is similar to that of an old disk population. Some implications of low masses for the symbiotic stars are discussed, and some suggestions are made regarding possibly useful observations.

  14. Properties of the cold components of symbiotic stars

    International Nuclear Information System (INIS)

    Luud, L.; Leedyarv, L.

    1986-01-01

    The basic physical parameters of the cold components of symbiotic stars and comparison red giants have been determined from the data of infrared photometry by means of the Blackwell-Shallis method. It is found that the cold components of the symbiotic stars do not differ from normal red giants of the asymptotic branch. The masses of the cold components of the symbiotic stars are close to 3M. The red components of the symbiotic stars do not fill their Roche lobes. Among the cold components of the symbiotic stars, there are approximately ten times as many carbon stars as among the red giants in the neighborhood of the Sun

  15. Symbiots: Conceptual Interventions Into Urban Energy Systems

    DEFF Research Database (Denmark)

    Bergström, Jenny; Mazé, Ramia; Redströmand, Johan

    2009-01-01

    Symbiots set out to examine values such as ease-of-use, comfort, and rationality assumed within conventions of ‘good design’, in order to expose issues related to energy consumption and current human- (versus eco-) centered design paradigms. Exploring re-interpretations of graphical patterns, arc...

  16. Effect of diseases on symbiotic systems.

    Science.gov (United States)

    Tiwari, Pankaj Kumar; Sasmal, Sourav Kumar; Sha, Amar; Venturino, Ezio; Chattopadhyay, Joydev

    2017-09-01

    There are many species living in symbiotic communities. In this study, we analyzed models in which populations are in the mutualism symbiotic relations subject to a disease spreading among one of the species. The main goal is the characterization of symbiotic relations of coexisting species through their mutual influences on their respective carrying capacities, taking into account that this influence can be quite strong. The functional dependence of the carrying capacities reflects the fact that the correlations between populations cannot be realized merely through direct interactions, as in the usual predator-prey Lotka-Volterra model, but also through the influence of each species on the carrying capacities of the other one. Equilibria are analyzed for feasibility and stability, substantiated via numerical simulations, and global sensitivity analysis identifies the important parameters having a significant impact on the model dynamics. The infective growth rate and the disease-related mortality rate may alter the stability behavior of the system. Our results show that introducing a symbiotic species is a plausible way to control the disease in the population. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Investigating Tactile Stimulation in Symbiotic Systems

    DEFF Research Database (Denmark)

    Orso, Valeria; Mazza, Renato; Gamberini, Luciano

    2017-01-01

    The core characteristics of tactile stimuli, i.e., recognition reliability and tolerance to ambient interference, make them an ideal candidate to be integrated into a symbiotic system. The selection of the appropriate stimulation is indeed important in order not to hinder the interaction from...

  18. Functional relationships between plasmids and their significance for metabolism and symbiotic performance of Rhizobium leguminosarum bv. trifolii.

    Science.gov (United States)

    Stasiak, Grażyna; Mazur, Andrzej; Wielbo, Jerzy; Marczak, Małgorzata; Zebracki, Kamil; Koper, Piotr; Skorupska, Anna

    2014-11-01

    Rhizobium leguminosarum bv. trifolii TA1 (RtTA1) is a soil bacterium establishing a highly specific symbiotic relationship with clover, which is based on the exchange of molecular signals between the host plant and the microsymbiont. The RtTA1 genome is large and multipartite, composed of a chromosome and four plasmids, which comprise approximately 65 % and 35 % of the total genome, respectively. Extrachromosomal replicons were previously shown to confer significant metabolic versatility to bacteria, which is important for their adaptation in the soil and nodulation competitiveness. To investigate the contribution of individual RtTA1 plasmids to the overall cell phenotype, metabolic properties and symbiotic performance, a transposon-based elimination strategy was employed. RtTA1 derivatives cured of pRleTA1b or pRleTA1d and deleted in pRleTA1a were obtained. In contrast to the in silico predictions of pRleTA1b and pRleTA1d, which were described as chromid-like replicons, both appeared to be completely curable. On the other hand, for pRleTA1a (symbiotic plasmid) and pRleTA1c, which were proposed to be unessential for RtTA1 viability, it was not possible to eliminate them at all (pRleTA1c) or entirely (pRleTA1a). Analyses of the phenotypic traits of the RtTA1 derivatives obtained revealed the functional significance of individual plasmids and their indispensability for growth, certain metabolic pathways, production of surface polysaccharides, autoaggregation, biofilm formation, motility and symbiotic performance. Moreover, the results allow us to suggest broad functional cooperation among the plasmids in shaping the phenotypic properties and symbiotic capabilities of rhizobia.

  19. AGB stellar evolution and symbiotic stars

    International Nuclear Information System (INIS)

    Schild, H.

    1989-01-01

    Published data on the mass loss rates and periods of Miras and OH/IR stars have been compiled. There is a good correlation between mass loss rate and period and a smooth transition from Miras to OH/IR sources. At periods below 600 d. the mass loss increases exponentially but at longer periods it remains constant. As a Mira evolves from short to longer periods, its mass loss rate increases dramatically. Phenomenologically, the object evolves from a classical Mira into a variable OH/IR source. Symbiotic stars cluster in the transition zone where Miras transform into OH/IR stars and mass loss increase is at its steepest. The red star in these symbiotic systems is in the same evolutionary status as short periodic OH/IR stars. (author)

  20. Lactococcus lactis - a diploid bacterium

    DEFF Research Database (Denmark)

    Michelsen, Ole; Hansen, Flemming G.; Jensen, Peter Ruhdal

    the next division. Thus, the regions of the chromosome that are the last to be replicated are haploid even in fast-growing bacteria. In contrast to this general rule for bacteria, we found that Lactococcus lactis, a bacterium which has been exploited for thousands of years for the production of fermented...... milk products, is born with two complete non-replicating chromosomes. L. lactis therefore remain diploid throughout its entire life cycle....

  1. Symbiotic architecture: Redefinition of recycling design principles

    OpenAIRE

    Milan Šijaković; Ana Perić

    2018-01-01

    The study seeks to examine the possibility of implementing the biological concept of symbiosis into the field of architecture for redefining the design principles of architectural recycling. Through an in-depth analysis of the biological concept of symbiosis (i.e., a close and often long-term interaction between two or more different biological species and the criteria that govern the differentiation between symbiotic associations), three redefined design principles of recycling—commensalism,...

  2. PC 11: Symbiotic star or planetary nebulae?

    International Nuclear Information System (INIS)

    Gutierrez-Moreno, A.; Moreno, H.; Cortes, G.

    1987-01-01

    PC 11 is an object listed in Perek and Kohoutek (1967) Catalogue of Galactic Planetary Nebulae as PK 331 -5 0 1. Some authors suggest that it is not a planetary nebula, but that it has some characteristics (though not all) of symbiotic stars. We have made photographic, spectrophotometric and spectroscopic observations of PC 11. The analysis of the results suggests that it is a young planetary nebula. (Author)

  3. Ultraviolet properties of the symbiotic stars

    International Nuclear Information System (INIS)

    Slovak, M.H.; Lambert, D.L.

    1982-01-01

    This article is an interim report on a survey of the symbiotic stars with the IUE satellite, both at low resolution and, for AG Pegasi and CH Cygni, at high resolution. The UV spectra, including both the emission lines and the continua, are presented and discussed. Since it is somewhat premature to draw general conclusions, the emphasis is biased towards a discussion of individual stars. AG Pegasi is used as an illustrative, albeit atypical, example. (Auth./C.F.)

  4. Origin and evolutionary stage of symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Tutukov, A V; Yungel' son, L R [AN SSSR, Moscow. Astronomicheskij Sovet

    1976-08-01

    Symbiotic stars are considered which best of all are described by the binary star model. An analysis of properties of symbiotic stars shows that their hot components should be either carbon-oxygen dwarfs with thin hydrogen-helium envelopes or helium stars with thin mantles. Cold components are red giants losing matter at the rate of 10/sup -5/-10/sup -6/ M/yr over the period of 10/sup 5/-10/sup 6/ years (M is the Sun mass). Such systems can be formed of wide pairs as a result of loss of envelope of an initially more massive star of the system by way of continuous outflow of matter or expulsion due to dynamic instability at the red giant stage,, and also of closer pairs as a result of exchange of matter between the components. It has been shown that hot components of symbiotic stars can accrete 10/sup -6/-10/sup -9/ M/yr, and some consequencies of accretion on a C-O dwarf have been considered.

  5. Symbiotic star UV emission and theoretical models

    International Nuclear Information System (INIS)

    Kafatos, M.

    1982-01-01

    Observations of symbiotic stars in the far UV have provided important information on the nature of these objects. The canonical spectrum of a symbiotic star, e.g. RW Hya, Z And, AG Peg, is dominated by strong allowed and semiforbidden lines of a variety of at least twice ionized elements. Weaker emission from neutral and singly ionized species is also present. A continuum may or may not be present in the 1200 - 2000 A range but is generally present in the range 2000 - 3200 A range. The suspected hot subdwarf continuum is seen in some cases in the range 1200 - 2000 A (RW Hya, AG Peg, SY Mus). The presence of an accretion disk is difficult to demonstrate and to this date the best candidate for accretion to a main sequence star remains CI Cyg. A number of equations have been derived by the author that can yield the accretion parameters from the observable quantities. Boundary layer temperatures approximately 10 5 K and accretion rates approximately > 10 -5 solar masses/yr are required for accreting main sequence companions. To this date, though, most of the symbiotics may only require the presence of a approximately 10 5 K hot subdwarf. (Auth.)

  6. Infrared variability and nature of symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Feast, M W; Robertson, B S.C.; Catchpole, R M [Royal Observatory, Cape Town (South Africa)

    1977-05-01

    Most symbiotic stars may be placed in one of two classes according to their infrared colours. In one group the systems contain an M type giant. In the other there is evidence for a star plus infrared emission from dust. JHKL photometry is given for three members of each class. Photometry of the VV Cephei system FR Sct is also given. No evidence for variability was found for systems without dust. The three systems with dust (RX Pup, RR Tel and PK 280-2/sup 0/.1) each show large variations of the stellar component (..delta..J, 1sup(m).6 to 2sup(m).7). It is concluded that these dusty systems contain Mira variables. For the systems without dust the mass transfer in the system is presumably through the inner Lagrangian point. For systems containing Miras it is possible that the companion accretes matter from a general stellar wind. Symbiotic systems containing Mira variables have more dust than average Mira variables. Either an unusually dense stellar wind is needed to produce a symbiotic system or such a system produces dust, perhaps in a high-density region resulting from the interaction of the stellar wind with the companion.

  7. Economics of symbiotic nuclear fleets at equilibrium

    International Nuclear Information System (INIS)

    Bidaud, Adrien; Guillemin, P.; Lecarpentier, David

    2008-01-01

    Many decades of industrial experience have proven that thermal reactors are able to provide a safe, reliable and competitive source of electricity. The higher construction costs of fast reactors compared to thermal reactors could be compensated by their better use of fissile material during the probable fast development of nuclear energy in the first half of the century. Thus, despite the over-cost of their cores, on the longer term, fast reactors are expected to take the lead in the nuclear reactor race. In the mean term, multi-strata symbiotic parks, using high conversion-rate thermal reactors, may delay fast reactor start up. We compare projected fuel cycle costs and cost of electricity of various symbiotic nuclear fleets, on the basis of a simple economic model and elementary costs estimated on publicly available data. These parameters and their evolution over reactor-life time scale can hardly be estimated. That is why we look at the sensitivities of our results to large modifications of the input parameters. The aim of our simple economic model is to understand which reactor characteristics should be optimized to enhance their economic performance when working as a single symbiotic fleet. (authors)

  8. Effects of symbiotic bacteria on chemical sensitivity of Daphnia magna.

    Science.gov (United States)

    Manakul, Patcharaporn; Peerakietkhajorn, Saranya; Matsuura, Tomoaki; Kato, Yasuhiko; Watanabe, Hajime

    2017-07-01

    The crustacean zooplankton Daphnia magna has been widely used for chemical toxicity tests. Although abiotic factors have been well documented in ecotoxicological test protocols, biotic factors that may affect the sensitivity to chemical compounds remain limited. Recently, we identified symbiotic bacteria that are critical for the growth and reproduction of D. magna. The presence of symbiotic bacteria on Daphnia raised the question as to whether these bacteria have a positive or negative effect on toxicity tests. In order to evaluate the effects of symbiotic bacteria on toxicity tests, bacteria-free Daphnia were prepared, and their chemical sensitivities were compared with that of Daphnia with symbiotic bacteria based on an acute immobilization test. The Daphnia with symbiotic bacteria showed higher chemical resistance to nonylphenol, fenoxycarb, and pentachlorophenol than bacteria-free Daphnia. These results suggested potential roles of symbiotic bacteria in the chemical resistance of its host Daphnia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Interplay of Pathogen-Induced Defense Responses and Symbiotic Establishment in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2017-05-01

    Full Text Available Suppression of host innate immunity appears to be required for the establishment of symbiosis between rhizobia and host plants. In this study, we established a system that included a host plant, a bacterial pathogen and a symbiotic rhizobium to study the role of innate immunity during symbiotic interactions. A pathogenic bacterium, Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000, was shown to cause chlorosis in Medicago truncatula A17. Sinorhizobium meliloti strain Sm2011 (Sm2011 and Pst DC3000 strain alone induced similar defense responses in M. truncatula. However, when co-inoculated, Sm2011 specifically suppressed the defense responses induced by Pst DC3000, such as MAPK activation and ROS production. Inoculation with Sm2011 suppressed the transcription of defense-related genes triggered by Pst DC3000 infection, including the receptor of bacterial flagellin (FLS2, pathogenesis-related protein 10 (PR10, and the transcription factor WRKY33. Interestingly, inoculation with Pst DC3000 specifically inhibited the expression of the symbiosis marker genes nodule inception and nodulation pectate lyase and reduced the numbers of infection threads and nodules on M. truncatula A17 roots, indicating that Pst DC3000 inhibits the establishment of symbiosis in M. truncatula. In addition, defense-related genes, such as MAPK3/6, RbohC, and WRKY33, exhibited a transient increase in their expression in the early stage of symbiosis with Sm2011, but the expression dropped down to normal levels at later symbiotic stages. Our results suggest that plant innate immunity plays an antagonistic role in symbiosis by directly reducing the numbers of infection threads and nodules.

  10. Plant Genes Involved in Symbiotic Sinal Perception/Signal Transduction

    DEFF Research Database (Denmark)

    Binder, A; Soyano, T; Hayashi, H

    2014-01-01

    to nodule primordia formation, and the infection thread initiation in the root hairs guiding bacteria towards dividing cortical cells. This chapter focuses on the plant genes involved in the recognition of the symbiotic signal produced by rhizobia, and the downstream genes, which are part of a complex...... symbiotic signalling pathway that leads to the generation of calcium spiking in the nuclear regions and activation of transcription factors controlling symbiotic genes induction...

  11. Physical Structure of Four Symbiotic Binaries

    Science.gov (United States)

    Kenyon, Scott J. (Principal Investigator)

    1997-01-01

    Disk accretion powers many astronomical objects, including pre-main sequence stars, interacting binary systems, and active galactic nuclei. Unfortunately, models developed to explain the behavior of disks and their surroundings - boundary layers, jets, and winds - lack much predictive power, because the physical mechanism driving disk evolution - the viscosity - is not understood. Observations of many types of accreting systems are needed to constrain the basic physics of disks and provide input for improved models. Symbiotic stars are an attractive laboratory for studying physical phenomena associated with disk accretion. These long period binaries (P(sub orb) approx. 2-3 yr) contain an evolved red giant star, a hot companion, and an ionized nebula. The secondary star usually is a white dwarf accreting material from the wind of its red giant companion. A good example of this type of symbiotic is BF Cygni: our analysis shows that disk accretion powers the nuclear burning shell of the hot white dwarf and also manages to eject material perpendicular to the orbital plane (Mikolajewska, Kenyon, and Mikolajewski 1989). The hot components in other symbiotic binaries appear powered by tidal overflow from a very evolved red giant companion. We recently completed a study of CI Cygni and demonstrated that the accreting secondary is a solar-type main sequence star, rather than a white dwarf (Kenyon et aL 1991). This project continued our study of symbiotic binary systems. Our general plan was to combine archival ultraviolet and optical spectrophotometry with high quality optical radial velocity observations to determine the variation of line and continuum sources as functions of orbital phase. We were very successful in generating orbital solutions and phasing UV+optical spectra for five systems: AG Dra, V443 Her, RW Hya, AG Peg, and AX Per. Summaries of our main results for these systems appear below. A second goal of our project was to consider general models for the

  12. Symbiotic and VV Cephei stars in the Small Magellanic Cloud

    International Nuclear Information System (INIS)

    Walker, A.R.

    1983-01-01

    Three symbiotic stars, including a carbon symbiotic star, are identified in the Small Magellanic Cloud, thus two out of five known symbiotic stars in the Magellanic Clouds have C rather than M components, compared to our own Galaxy where the proportion is much lower. This supports the assertion that the symbiotic phenomenon follows the higher C:M star ratio in the Magellanic Clouds and is not a property of M binaries alone. Two other emission-line stars are discussed; one is the only known VV Cephei star in the SMC while the second is a composite Be + K supergiant system. (author)

  13. Effect of neem cake/fertilizers on symbiotic and non-symbiotic N2 fixing bacteria

    International Nuclear Information System (INIS)

    Akhtar, S.; Solangi, A.H.; Gilani, G.; Pirzada, M.H.

    2002-01-01

    Neem cake amendment in soil at 1.3% no adverse effect on the population of four symbiotic Rhizobium species viz., japonicum, R. leguminosarum, R. Phaseoli and R. Fredii and three non-symbiotic free living nitrogen fixers bacteria viz., Pseudomonas diazotrophicus, Klebsiella planticola and Enterobacter cloacae. Neem cake extracted with n-hexane stimulated the growth of Rhizobium species in vitro, whereas Neem cake expeller extracted neither inhibited nor stimulated the growth of Rhizobium species except for R. Fredii, whose was slightly retarded. The fertilizers (urea, NPK and DAP) had no adverse effect on these bacteria even at the dosage ten times higher the recommended dose. (author)

  14. SS 383: A NEW S-TYPE YELLOW SYMBIOTIC STAR?

    Energy Technology Data Exchange (ETDEWEB)

    Baella, N. O.; Pereira, C. B. [Observatório Nacional, Rua José Cristino 77, CEP 20921-400, São Cristóvão, Rio de Janeiro (Brazil); Miranda, L. F. [Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Vigo, E-36310 Vigo (Spain)

    2013-11-01

    Symbiotic stars are key objects in understanding the formation and evolution of interacting binary systems, and are probably the progenitors of Type Ia supernovae. However, the number of known symbiotic stars is much lower than predicted. We aim to search for new symbiotic stars, with particular emphasis on the S-type yellow symbiotic stars, in order to determine their total population, evolutionary timescales, and physical properties. The Two Micron All Sky Survey (2MASS) (J – H) versus (H – K {sub s}) color-color diagram has been previously used to identify new symbiotic star candidates and show that yellow symbiotics are located in a particular region of that diagram. Candidate symbiotic stars are selected on the basis of their locus in the 2MASS (J – H) versus (H – K {sub s}) diagram and the presence of Hα line emission in the Stephenson and Sanduleak Hα survey. This diagram separates S-type yellow symbiotic stars from the rest of the S-type symbiotic stars, allowing us to select candidate yellow symbiotics. To establish the true nature of the candidates, intermediate-resolution spectroscopy is obtained. We have identified the Hα emission line source SS 383 as an S-type yellow symbiotic candidate by its position in the 2MASS color-color diagram. The optical spectrum of SS 383 shows Balmer, He I, He II, and [O III] emission lines, in combination with TiO absorption bands that confirm its symbiotic nature. The derived electron density (≅10{sup 8-9} cm{sup –3}), He I emission line intensity ratios, and position in the [O III] λ5007/Hβ versus [O III] λ4363/Hγ diagram indicate that SS 383 is an S-type symbiotic star, with a probable spectral type of K7-M0 deduced for its cool component based on TiO indices. The spectral type and the position of SS 383 (corrected for reddening) in the 2MASS color-color diagram strongly suggest that SS 383 is an S-type yellow symbiotic. Our result points out that the 2MASS color-color diagram is a powerful tool in

  15. SS 383: A NEW S-TYPE YELLOW SYMBIOTIC STAR?

    International Nuclear Information System (INIS)

    Baella, N. O.; Pereira, C. B.; Miranda, L. F.

    2013-01-01

    Symbiotic stars are key objects in understanding the formation and evolution of interacting binary systems, and are probably the progenitors of Type Ia supernovae. However, the number of known symbiotic stars is much lower than predicted. We aim to search for new symbiotic stars, with particular emphasis on the S-type yellow symbiotic stars, in order to determine their total population, evolutionary timescales, and physical properties. The Two Micron All Sky Survey (2MASS) (J – H) versus (H – K s ) color-color diagram has been previously used to identify new symbiotic star candidates and show that yellow symbiotics are located in a particular region of that diagram. Candidate symbiotic stars are selected on the basis of their locus in the 2MASS (J – H) versus (H – K s ) diagram and the presence of Hα line emission in the Stephenson and Sanduleak Hα survey. This diagram separates S-type yellow symbiotic stars from the rest of the S-type symbiotic stars, allowing us to select candidate yellow symbiotics. To establish the true nature of the candidates, intermediate-resolution spectroscopy is obtained. We have identified the Hα emission line source SS 383 as an S-type yellow symbiotic candidate by its position in the 2MASS color-color diagram. The optical spectrum of SS 383 shows Balmer, He I, He II, and [O III] emission lines, in combination with TiO absorption bands that confirm its symbiotic nature. The derived electron density (≅10 8-9 cm –3 ), He I emission line intensity ratios, and position in the [O III] λ5007/Hβ versus [O III] λ4363/Hγ diagram indicate that SS 383 is an S-type symbiotic star, with a probable spectral type of K7-M0 deduced for its cool component based on TiO indices. The spectral type and the position of SS 383 (corrected for reddening) in the 2MASS color-color diagram strongly suggest that SS 383 is an S-type yellow symbiotic. Our result points out that the 2MASS color-color diagram is a powerful tool in identifying new S

  16. Epidemic Spread of Symbiotic and Non-Symbiotic Bradyrhizobium Genotypes Across California.

    Science.gov (United States)

    Hollowell, A C; Regus, J U; Gano, K A; Bantay, R; Centeno, D; Pham, J; Lyu, J Y; Moore, D; Bernardo, A; Lopez, G; Patil, A; Patel, S; Lii, Y; Sachs, J L

    2016-04-01

    The patterns and drivers of bacterial strain dominance remain poorly understood in natural populations. Here, we cultured 1292 Bradyrhizobium isolates from symbiotic root nodules and the soil root interface of the host plant Acmispon strigosus across a >840-km transect in California. To investigate epidemiology and the potential role of accessory loci as epidemic drivers, isolates were genotyped at two chromosomal loci and were assayed for presence or absence of accessory "symbiosis island" loci that encode capacity to form nodules on hosts. We found that Bradyrhizobium populations were very diverse but dominated by few haplotypes-with a single "epidemic" haplotype constituting nearly 30 % of collected isolates and spreading nearly statewide. In many Bradyrhizobium lineages, we inferred presence and absence of the symbiosis island suggesting recurrent evolutionary gain and or loss of symbiotic capacity. We did not find statistical phylogenetic evidence that the symbiosis island acquisition promotes strain dominance and both symbiotic and non-symbiotic strains exhibited population dominance and spatial spread. Our dataset reveals that a strikingly few Bradyrhizobium genotypes can rapidly spread to dominate a landscape and suggests that these epidemics are not driven by the acquisition of accessory loci as occurs in key human pathogens.

  17. Photographic infrared spectra of symbiotic stars

    International Nuclear Information System (INIS)

    Andrillat, Y.; Houziaux, L.

    1982-01-01

    The authors have observed six symbiotic stars during the period 1962-1977 with a grating spectrograph attached to the newtonian focus of the 120-cm telescope at Observatoire de Haute Provence. The reciprocal dispersion is 230 A.mm -1 and the region 5800 to 8800 A has been covered using hypersensitized IN plates. The minimum equivalent width for an emission line to be seen is about 0.5 A. The spectra are displayed and the main spectral characteristics are reviewed briefly. (Auth.)

  18. Possibly massive symbiotic system V 1329 Cygni

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, T; Mammano, A; Margoni, R [Padua Univ. (Italy). Osservatorio Astrofisico

    1981-04-01

    A new radial velocity curve of V 1329 Cyg has been obtained from emission lines originating around an evolved star. The latter might be faced by an M-type mate, whose mass is larger than 23 +- 6 solar masses. The system seems at vertical stroke Z vertical stroke > 250 pc from the galactic plane. The lambda6830 unidentified band, found in V 1329 Cyg and among BQ ( ) stars, symbiotic stars and a few planetary nebulae, could be used as a diagnostic tool to identify very evolved stars. The close similarity of the optical spectrum of V 1329 Cyg to that of the optical counterpart of GX 1 + 4 is remarkable.

  19. Observations of the symbiotic star AS 296

    International Nuclear Information System (INIS)

    Gutierrez-Moreno, A.; Moreno, H.

    1990-01-01

    Observations of the symbiotic star AS 296 are presented. The spectra, obtained during the quiescent phase, are typical of this kind of object. They show strong molecular bands and some forbidden emission lines, including faint forbidden Fe VII and Ca V lines. Measured intensities of the emission lines are given. Some of the physical parameters of the object are derived. Recently this object has been observed in outburst by Heathcote (1988); a copy of one such spectrum is presented with a brief qualitative description of its main features. 28 refs

  20. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Russell J. Rodriguez; D. Carl Freeman; E. Durant McArthur; Yong Ok Kim; Regina S. Redman

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at...

  1. Properties of symbiotic stars from studies in the optical region

    International Nuclear Information System (INIS)

    Ciatti, F.

    1982-01-01

    The author uses observations of symbiotic stars in the optical region to discuss the following aspects: definition, photometric and spectroscopic evolution, the three-component model, evidence for the binary nature, spectroscopic properties and anomalies, single-star interpretations, the ''very slow novae'' and BQ// stars and a comparison of symbiotic stars with other classes. (C.F.)

  2. A DISCUSSION ON THE CLASSIFICATION AND EVOLUTION OF SYMBIOTIC STARS

    NARCIS (Netherlands)

    SEAL, P

    1990-01-01

    A H-R diagram is drawn from the bolometric luminosities and effective temperatures of 24 symbiotic stars and compared with theoretical evolutionary tracks of Population I metal-rich stars. It is shown that the S-type and D-type symbiotic stars are classified very clearly in course of their evolution

  3. The infrared variability and nature of symbiotic stars

    International Nuclear Information System (INIS)

    Feast, M.W.; Catchpole, R.M.; Whitelock, P.A.; Carter, B.S.; Roberts, G.

    1983-01-01

    Infrared variability and spectra show that the symbiotic systems (He 2-106, He 2-38, He 2-34) contain Mira variable components. The first two also show a longer term infrared variability. It is suggested that this is due to variable dust obscuration (as in R Aqr). The phenomenon is then too frequent for the dust clouds to be confined to the orbital planes of the binary systems. Seven Miras in symbiotics have known periods which range from 370 to 580 days, suggesting a greater frequency of long-period Miras in symbiotics than in the general field. Symbiotic Miras have dust excesses with colour temperatures near 1000 K. Observations of four other symbiotic systems (Pe 2-3, He 2-87, H 2-5, AG Peg) are consistent with their containing non-variable or low amplitude M-type components. (author)

  4. The first symbiotic stars from the LAMOST survey

    International Nuclear Information System (INIS)

    Li, Jiao; Chen, Xue-Fei; Han, Zhan-Wen; Mikołajewska, Joanna; Luo, A-Li; Wu, Yue; Yang, Ming; Rebassa-Mansergas, Alberto; Hou, Yong-Hui; Wang, Yue-Fei; Zhang, Yong

    2015-01-01

    Symbiotic stars are interacting binary systems with the longest orbital periods. They are typically formed by a white dwarf and a red giant that are embedded in a nebula. These objects are natural astrophysical laboratories for studying the evolution of binaries. Current estimates of the population of symbiotic stars in the Milky Way vary from 3000 up to 400 000. However, a current census has found less than 300. The Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) survey can obtain hundreds of thousands of stellar spectra per year, providing a good opportunity to search for new symbiotic stars. We detect four such binaries among 4 147 802 spectra released by LAMOST, of which two are new identifications. The first is LAMOST J12280490–014825.7, considered to be an S-type halo symbiotic star. The second is LAMOST J202629.80+423652.0, a D-type symbiotic star. (paper)

  5. CIRCUMSTELLAR SHELL FORMATION IN SYMBIOTIC RECURRENT NOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Kevin; Bildsten, Lars [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States)

    2012-12-20

    We present models of spherically symmetric recurrent nova shells interacting with circumstellar material (CSM) in a symbiotic system composed of a red giant (RG) expelling a wind and a white dwarf accreting from this material. Recurrent nova eruptions periodically eject material at high velocities ({approx}> 10{sup 3} km s{sup -1}) into the RG wind profile, creating a decelerating shock wave as CSM is swept up. High CSM densities cause the shocked wind and ejecta to have very short cooling times of days to weeks. Thus, the late-time evolution of the shell is determined by momentum conservation instead of energy conservation. We compute and show evolutionary tracks of shell deceleration, as well as post-shock structure. After sweeping up all the RG wind, the shell coasts at a velocity {approx}100 km s{sup -1}, depending on system parameters. These velocities are similar to those measured in blueshifted CSM from the symbiotic nova RS Oph, as well as a few Type Ia supernovae that show evidence of CSM, such as 2006X, 2007le, and PTF 11kx. Supernovae occurring in such systems may not show CSM interaction until the inner nova shell gets hit by the supernova ejecta, days to months after the explosion.

  6. Economics of fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    The economic analysis of symbiotic energy systems in which U233 (to fuel advanced converters burning U233 fuel) is generated in blankets surrounding fusioning D-T plasma's depends on factors such as the plasma performance parameters, ore costs, and the relative costs of Fusion Breeders (CTR) to Advanced Fission Converters. The analysis also depends on detailed information such as initial, final makeup fuel requirements, fuel isotopics, reprocessing and fabrication costs, reprocessing losses (1%) and delays (2 years), the cost of money, and the effect of the underutilization of the factory thermal installation at the beginning of cycle. In this paper we present the results of calculations of overall fuel cycle and power costs, ore requirements, proliferation resistance and possibilities for grid expansion, based on detailed mass and energy flow diagrams and standard US INFCE cost data and introduction constraints, for realistic symbiotic scenarios involving CTR's (used as drivers) and denatured CANDU's (used as U233 burners). We compare the results with those obtained for other strategies involving heterogeneous LMFBR's which burn Pu to produce U233 for U233-burners such as the advanced CANDU converters

  7. Developing symbiotic consortia for lignocellulosic biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Zuroff, Trevor R.; Curtis, Wayne R. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Chemical Engineering

    2012-02-15

    The search for petroleum alternatives has motivated intense research into biological breakdown of lignocellulose to produce liquid fuels such as ethanol. Degradation of lignocellulose for biofuel production is a difficult process which is limited by, among other factors, the recalcitrance of lignocellulose and biological toxicity of the products. Consolidated bioprocessing has been suggested as an efficient and economical method of producing low value products from lignocellulose; however, it is not clear whether this would be accomplished more efficiently with a single organism or community of organisms. This review highlights examples of mixtures of microbes in the context of conceptual models for developing symbiotic consortia for biofuel production from lignocellulose. Engineering a symbiosis within consortia is a putative means of improving both process efficiency and stability relative to monoculture. Because microbes often interact and exist attached to surfaces, quorum sensing and biofilm formation are also discussed in terms of consortia development and stability. An engineered, symbiotic culture of multiple organisms may be a means of assembling a novel combination of metabolic capabilities that can efficiently produce biofuel from lignocellulose. (orig.)

  8. Molecular identification of phosphate solubilizing bacterium ...

    African Journals Online (AJOL)

    A phosphate solubilizing bacterium was isolated from the rhizosphere soil of upland rice and identified by 16S rRNA gene sequencing. The gene sequence showed 99% homology with Alcaligenes faecalis. Based on the gene sequence homology, it was identified as A. faecalis. Interaction effect of this bacterium on growth ...

  9. Phylogeny of Symbiotic Genes and the Symbiotic Properties of Rhizobia Specific to Astragalus glycyphyllos L.

    Science.gov (United States)

    Gnat, Sebastian; Małek, Wanda; Oleńska, Ewa; Wdowiak-Wróbel, Sylwia; Kalita, Michał; Łotocka, Barbara; Wójcik, Magdalena

    2015-01-01

    The phylogeny of symbiotic genes of Astragalus glycyphyllos L. (liquorice milkvetch) nodule isolates was studied by comparative sequence analysis of nodA, nodC, nodH and nifH loci. In all these genes phylograms, liquorice milkvetch rhizobia (closely related to bacteria of three species, i.e. Mesorhizobium amorphae, Mesorhizobium septentrionale and Mesorhizobium ciceri) formed one clearly separate cluster suggesting the horizontal transfer of symbiotic genes from a single ancestor to the bacteria being studied. The high sequence similarity of the symbiotic genes of A. glycyphyllos rhizobia (99-100% in the case of nodAC and nifH genes, and 98-99% in the case of nodH one) points to the relatively recent (in evolutionary scale) lateral transfer of these genes. In the nodACH and nifH phylograms, A. glycyphyllos nodule isolates were grouped together with the genus Mesorhizobium species in one monophyletic clade, close to M. ciceri, Mesorhizobium opportunistum and Mesorhizobium australicum symbiovar biserrulae bacteria, which correlates with the close relationship of these rhizobia host plants. Plant tests revealed the narrow host range of A. glycyphyllos rhizobia. They formed effective symbiotic interactions with their native host (A. glycyphyllos) and Amorpha fruticosa but not with 11 other fabacean species. The nodules induced on A. glycyphyllos roots were indeterminate with apical, persistent meristem, an age gradient of nodule tissues and cortical vascular bundles. To reflect the symbiosis-adaptive phenotype of rhizobia, specific for A. glycyphyllos, we propose for these bacteria the new symbiovar "glycyphyllae", based on nodA and nodC genes sequences.

  10. Ad-hoc Symbiotic Interactive Displays through DLNA

    DEFF Research Database (Denmark)

    Bitsch, Jannick Elimar; Bouvin, Niels Olof

    2012-01-01

    The concept of symbiotic displays covers the opportunistic pairing of mobile devices with screen devices that can be discovered and controlled across a network. Mobile applications that use symbiotic displays can offer the user an improved experience, but the lack of a widely deployed infras......- tructure means that the concept has seen little use. We design and implement a solution for using DLNA playback devices as symbiotic screens. DLNA devices are not designed to support interactive content, but to share and play media content in the home. Our work includes constructing a mechanism for real...

  11. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts.

    Directory of Open Access Journals (Sweden)

    Helen E Dunbar

    2007-05-01

    Full Text Available Symbiosis is a ubiquitous phenomenon generating biological complexity, affecting adaptation, and expanding ecological capabilities. However, symbionts, which can be subject to genetic limitations such as clonality and genomic degradation, also impose constraints on hosts. A model of obligate symbiosis is that between aphids and the bacterium Buchnera aphidicola, which supplies essential nutrients. We report a mutation in Buchnera of the aphid Acyrthosiphon pisum that recurs in laboratory lines and occurs in field populations. This single nucleotide deletion affects a homopolymeric run within the heat-shock transcriptional promoter for ibpA, encoding a small heat-shock protein. This Buchnera mutation virtually eliminates the transcriptional response of ibpA to heat stress and lowers its expression even at cool or moderate temperatures. Furthermore, this symbiont mutation dramatically affects host fitness in a manner dependent on thermal environment. Following a short heat exposure as juveniles, aphids bearing short-allele symbionts produced few or no progeny and contained almost no Buchnera, in contrast to aphids bearing symbionts without the deletion. Conversely, under constant cool conditions, aphids containing symbionts with the short allele reproduced earlier and maintained higher reproductive rates. The short allele has appreciable frequencies in field populations (up to 20%, further supporting the view that lowering of ibpA expression improves host fitness under some conditions. This recurring Buchnera mutation governs thermal tolerance of aphid hosts. Other cases in which symbiont microevolution has a major effect on host ecological tolerance are likely to be widespread because of the high mutation rates of symbiotic bacteria and their crucial roles in host metabolism and development.

  12. Kinematics of the symbiotic system R Aqr

    Science.gov (United States)

    Navarro, S.; Corral, L. J.; Steffen, W.

    2014-04-01

    We present the results of the kinematical analysis of the symbiotic system R Aqr. We obtained high dispersion spectra with the MES spectrograph at the 2.1 m telescope of San Pedro Mártir (MEZCAL). The used filter were Ha + [NII], (λc = 6575Å, Δλ = 90Å). We analyse the [NII] λλ6583 line. When the observations are compared with previous ones by Solf (1992) we detected an important change in the projected velocities of the observed knots, supporting the idea of a precessing jet. We are working also in a 3-D kinematic model for the object using the measured velocities and the state of the model is presented.

  13. High resolution infrared spectroscopy of symbiotic stars

    International Nuclear Information System (INIS)

    Bensammar, S.

    1989-01-01

    We report here very early results of high resolution (5x10 3 - 4x10 4 ) infrared spectroscopy (1 - 2.5 μm) of different symbiotic stars (T CrB, RW Hya, CI Cyg, PU Vul) observed with the Fourier Transform Spectrometer of the 3.60m Canada France Hawaii Telescope. These stars are usually considered as interacting binaries and only little details are known about the nature of their cool component. CO absorption lines are detected for the four stars. Very different profiles of hydrogen Brackett γ and helium 10830 A lines are shown for CI Cyg observed at different phases, while Pu Vul shows very intense emission lines

  14. Symbiotic empirical ethics: a practical methodology.

    Science.gov (United States)

    Frith, Lucy

    2012-05-01

    Like any discipline, bioethics is a developing field of academic inquiry; and recent trends in scholarship have been towards more engagement with empirical research. This 'empirical turn' has provoked extensive debate over how such 'descriptive' research carried out in the social sciences contributes to the distinctively normative aspect of bioethics. This paper will address this issue by developing a practical research methodology for the inclusion of data from social science studies into ethical deliberation. This methodology will be based on a naturalistic conception of ethical theory that sees practice as informing theory just as theory informs practice - the two are symbiotically related. From this engagement with practice, the ways that such theories need to be extended and developed can be determined. This is a practical methodology for integrating theory and practice that can be used in empirical studies, one that uses ethical theory both to explore the data and to draw normative conclusions. © 2010 Blackwell Publishing Ltd.

  15. Distinguishing between symbiotic stars and planetary nebulae

    Science.gov (United States)

    Iłkiewicz, K.; Mikołajewska, J.

    2017-10-01

    Context. The number of known symbiotic stars (SySt) is still significantly lower than their predicted population. One of the main problems in finding the total population of SySt is the fact that their spectrum can be confused with other objects, such as planetary nebulae (PNe) or dense H II regions. This problem is reinforced by the fact that in a significant fraction of established SySt the emission lines used to distinguish them from other objects are not present. Aims: We aim at finding new diagnostic diagrams that could help separate SySt from PNe. Additionally, we examine a known sample of extragalactic PNe for candidate SySt. Methods: We employed emission line fluxes of known SySt and PNe from the literature. Results: We found that among the forbidden lines in the optical region of spectrum, only the [O III] and [N II] lines can be used as a tool for distinguishing between SySt and PNe, which is consistent with the fact that they have the highest critical densities. The most useful diagnostic that we propose is based on He I lines, which are more common and stronger in SySt than forbidden lines. All these useful diagnostic diagrams are electron density indicators that better distinguish PNe and ionized symbiotic nebulae. Moreover, we found six new candidate SySt in the Large Magellanic Cloud and one in M 81. If confirmed, the candidate in M 81 would be the farthest known SySt thus far.

  16. [Ultrastructural basis of interactions between prokaryotes and eukaryotes in different symbiotic models].

    Science.gov (United States)

    Sacchi, L

    2004-06-01

    This paper reviews the Author's contribution to the knowledge of the ultrastructural basis of the prokaryote-eukaryote interactions in different models assessed by an ultrastructural approach. In agreement with the hypothesis of the origin of eukaryotic cells, which are chimeras of several prokaryotes with different morpho-functional specializations, symbiosis had major consequence for evolution of life. In Arthropods, one of the most successful lifestyles, the presence of endosymbiotic prokaryotes, plays an important role in their metabolism. In some cases, genome integration has occurred in the endosymbiotic relationships with the host, proving that intracellular symbiosis is not merely a nutritional supplement. Intracellular symbiotic bacteria are also described in nematodes. In particular, the presence of intracellular Wolbachia in filariae, even if its function is not yet completely known, influences positively the reproductive biology and the survival of the host, as proved by antibiotic treatment against this bacterium. The ultrastructural images reported in this review were obtained using different species of cockroaches, termites, ticks and filarial nematodes. The traditional methods of transmission (TEM), scansion (SEM) and immuno electron microscopy were used. In addition, also freeze-fracture and deep-etching techniques were employed. The cockroaches and the primitive termite Mastotermes darwiniensis host symbiotic bacteria in the ovary and in specialized cells (bacteriocytes) of the fat body. These bacteria have the typical cell boundary profile of gram-negative bacteria and are enveloped in a vacuolar membrane produced by the host cell. Molecular sequence data of 16S rDNA of endosymbionts of five species of cockroaches and M. darwiniensis indicate that they are members of the Flavobacteria-bacteroides group and that the infection occurred in an ancestor common to cockroaches and termites probably after the end of the Paleozoic (250 Ma BP). The

  17. Cytokinins in Symbiotic Nodulation: When, Where, What For?

    Science.gov (United States)

    Gamas, Pascal; Brault, Mathias; Jardinaud, Marie-Françoise; Frugier, Florian

    2017-09-01

    Substantial progress has been made in the understanding of early stages of the symbiotic interaction between legume plants and rhizobium bacteria. Those include the specific recognition of symbiotic partners, the initiation of bacterial infection in root hair cells, and the inception of a specific organ in the root cortex, the nodule. Increasingly complex regulatory networks have been uncovered in which cytokinin (CK) phytohormones play essential roles in different aspects of early symbiotic stages. Intriguingly, these roles can be either positive or negative, cell autonomous or non-cell autonomous, and vary, depending on time, root tissues, and possibly legume species. Recent developments on CK symbiotic functions and interconnections with other signaling pathways during nodule initiation are the focus of this review. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Symbiotic and nonsymbiotic hemoglobin genes of Casuarina glauca

    DEFF Research Database (Denmark)

    Jacobsen-Lyon, K; Jensen, Erik Østergaard; Jørgensen, Jan-Elo

    1995-01-01

    Frankia. Both the nonsymbiotic and symbiotic genes retained their specific patterns of expression when introduced into the legume Lotus corniculatus. We interpret this finding to mean that the controls of expression of the symbiotic gene in Casuarina must be similar to the controls of expression...... of the leghemoglobin genes that operate in nodules formed during the interaction between rhizobia and legumes. Deletion analyses of the promoters of the Casuarina symbiotic genes delineated a region that contains nodulin motifs identified in legumes; this region is critical for the controlled expression...... of the Casuarina gene. The finding that the nonsymbiotic Casuarina gene is also correctly expressed in L. corniculatus suggests to us that a comparable non-symbiotic hemoglobin gene will be found in legume species. Udgivelsesdato: 1995-Feb...

  19. By their own devices: invasive Argentine ants have shifted diet without clear aid from symbiotic microbes.

    Science.gov (United States)

    Hu, Yi; Holway, David A; Łukasik, Piotr; Chau, Linh; Kay, Adam D; LeBrun, Edward G; Miller, Katie A; Sanders, Jon G; Suarez, Andrew V; Russell, Jacob A

    2017-03-01

    The functions and compositions of symbiotic bacterial communities often correlate with host ecology. Yet cause-effect relationships and the order of symbiont vs. host change remain unclear in the face of ancient symbioses and conserved host ecology. Several groups of ants exemplify this challenge, as their low-nitrogen diets and specialized symbioses appear conserved and ancient. To address whether nitrogen-provisioning symbionts might be important in the early stages of ant trophic shifts, we studied bacteria from the Argentine ant, Linepithema humile - an invasive species that has transitioned towards greater consumption of sugar-rich, nitrogen-poor foods in parts of its introduced range. Bacteria were present at low densities in most L. humile workers, and among those yielding quality 16S rRNA amplicon sequencing data, we found just three symbionts to be common and dominant. Two, a Lactobacillus and an Acetobacteraceae species, were shared between native and introduced populations. The other, a Rickettsia, was found only in two introduced supercolonies. Across an eight-year period of trophic reduction in one introduced population, we found no change in symbionts, arguing against a relationship between natural dietary change and microbiome composition. Overall, our findings thus argue against major changes in symbiotic bacteria in association with the invasion and trophic shift of L. humile. In addition, genome content from close relatives of the identified symbionts suggests that just one can synthesize most essential amino acids; this bacterium was only modestly abundant in introduced populations, providing little support for a major role of nitrogen-provisioning symbioses in Argentine ant's dietary shift. © 2016 John Wiley & Sons Ltd.

  20. Microbiome change by symbiotic invasion in lichens

    Science.gov (United States)

    Maier, Stefanie; Wedin, Mats; Fernandez-Brime, Samantha; Cronholm, Bodil; Westberg, Martin; Weber, Bettina; Grube, Martin

    2016-04-01

    Biological soil crusts (BSC) seal the soil surface from erosive forces in many habitats where plants cannot compete. Lichens symbioses of fungi and algae often form significant fraction of these microbial assemblages. In addition to the fungal symbiont, many species of other fungi can inhabit the lichenic structures and interact with their hosts in different ways, ranging from commensalism to parasitism. More than 1800 species of lichenicolous (lichen-inhabiting) fungi are known to science. One example is Diploschistes muscorum, a common species in lichen-dominated BSC that infects lichens of the genus Cladonia. D. muscorum starts as a lichenicolous fungus, invading the lichen Cladonia symphycarpa and gradually develops an independent Diploschistes lichen thallus. Furthermore, bacterial groups, such as Alphaproteobacteria and Acidobacteria, have been consistently recovered from lichen thalli and evidence is rapidly accumulating that these microbes may generally play integral roles in the lichen symbiosis. Here we describe lichen microbiome dynamics as the parasitic lichen D. muscorum takes over C. symphycarpa. We used high-throughput 16S rRNA gene and photobiont-specific ITS rDNA sequencing to track bacterial and algal transitions during the infection process, and employed fluorescence in situ hybridization to localize bacteria in the Cladonia and Diploschistes lichen thalli. We sampled four transitional stages, at sites in Sweden and Germany: A) Cladonia with no visible infection, B) early infection stage defined by the first visible Diploschistes thallus, C) late-stage infection with parts of the Cladonia thallus still identifiable, and D) final stage with a fully developed Diploschistes thallus, A gradual microbiome shift occurred during the transition, but fractions of Cladonia-associated bacteria were retained during the process of symbiotic reorganization. Consistent changes observed across sites included a notable decrease in the relative abundance of

  1. Details of the Classification of Symbiotic Stars: The Case of the Symbiotic Nova AG Peg

    Directory of Open Access Journals (Sweden)

    Tatarnikova A. A.

    2016-09-01

    Full Text Available We analyze archival and modern spectroscopic and photometric observations of the oldest known symbiotic nova AG Peg. Its new outburst (which began in 2015 June differs greatly from the first one (which occurred in the mid-1850s. Fast photometric evolution of the new outburst is similar to that of Z And-type outbursts. However, the SED of AG Peg during the 2015 outburst, as well as during the quiescence, can be fitted by a standard three-component model (cool component + hot component + nebula, which is not common for an Z And-type outburst.

  2. Nematode-bacterium symbioses--cooperation and conflict revealed in the "omics" age.

    Science.gov (United States)

    Murfin, Kristen E; Dillman, Adler R; Foster, Jeremy M; Bulgheresi, Silvia; Slatko, Barton E; Sternberg, Paul W; Goodrich-Blair, Heidi

    2012-08-01

    Nematodes are ubiquitous organisms that have a significant global impact on ecosystems, economies, agriculture, and human health. The applied importance of nematodes and the experimental tractability of many species have promoted their use as models in various research areas, including developmental biology, evolutionary biology, ecology, and animal-bacterium interactions. Nematodes are particularly well suited for the investigation of host associations with bacteria because all nematodes have interacted with bacteria during their evolutionary history and engage in a variety of association types. Interactions between nematodes and bacteria can be positive (mutualistic) or negative (pathogenic/parasitic) and may be transient or stably maintained (symbiotic). Furthermore, since many mechanistic aspects of nematode-bacterium interactions are conserved, their study can provide broader insights into other types of associations, including those relevant to human diseases. Recently, genome-scale studies have been applied to diverse nematode-bacterial interactions and have helped reveal mechanisms of communication and exchange between the associated partners. In addition to providing specific information about the system under investigation, these studies also have helped inform our understanding of genome evolution, mutualism, and innate immunity. In this review we discuss the importance and diversity of nematodes, "omics"' studies in nematode-bacterial systems, and the wider implications of the findings.

  3. Comprehensive EST analysis of the symbiotic sea anemone, Anemonia viridis

    Directory of Open Access Journals (Sweden)

    Deleury Emeline

    2009-07-01

    Full Text Available Abstract Background Coral reef ecosystems are renowned for their diversity and beauty. Their immense ecological success is due to a symbiotic association between cnidarian hosts and unicellular dinoflagellate algae, known as zooxanthellae. These algae are photosynthetic and the cnidarian-zooxanthellae association is based on nutritional exchanges. Maintenance of such an intimate cellular partnership involves many crosstalks between the partners. To better characterize symbiotic relationships between a cnidarian host and its dinoflagellate symbionts, we conducted a large-scale EST study on a symbiotic sea anemone, Anemonia viridis, in which the two tissue layers (epiderm and gastroderm can be easily separated. Results A single cDNA library was constructed from symbiotic tissue of sea anemones A. viridis in various environmental conditions (both normal and stressed. We generated 39,939 high quality ESTs, which were assembled into 14,504 unique sequences (UniSeqs. Sequences were analysed and sorted according to their putative origin (animal, algal or bacterial. We identified many new repeated elements in the 3'UTR of most animal genes, suggesting that these elements potentially have a biological role, especially with respect to gene expression regulation. We identified genes of animal origin that have no homolog in the non-symbiotic starlet sea anemone Nematostella vectensis genome, but in other symbiotic cnidarians, and may therefore be involved in the symbiosis relationship in A. viridis. Comparison of protein domain occurrence in A. viridis with that in N. vectensis demonstrated an increase in abundance of some molecular functions, such as protein binding or antioxidant activity, suggesting that these functions are essential for the symbiotic state and may be specific adaptations. Conclusion This large dataset of sequences provides a valuable resource for future studies on symbiotic interactions in Cnidaria. The comparison with the closest

  4. Comprehensive EST analysis of the symbiotic sea anemone, Anemonia viridis.

    Science.gov (United States)

    Sabourault, Cécile; Ganot, Philippe; Deleury, Emeline; Allemand, Denis; Furla, Paola

    2009-07-23

    Coral reef ecosystems are renowned for their diversity and beauty. Their immense ecological success is due to a symbiotic association between cnidarian hosts and unicellular dinoflagellate algae, known as zooxanthellae. These algae are photosynthetic and the cnidarian-zooxanthellae association is based on nutritional exchanges. Maintenance of such an intimate cellular partnership involves many crosstalks between the partners. To better characterize symbiotic relationships between a cnidarian host and its dinoflagellate symbionts, we conducted a large-scale EST study on a symbiotic sea anemone, Anemonia viridis, in which the two tissue layers (epiderm and gastroderm) can be easily separated. A single cDNA library was constructed from symbiotic tissue of sea anemones A. viridis in various environmental conditions (both normal and stressed). We generated 39,939 high quality ESTs, which were assembled into 14,504 unique sequences (UniSeqs). Sequences were analysed and sorted according to their putative origin (animal, algal or bacterial). We identified many new repeated elements in the 3'UTR of most animal genes, suggesting that these elements potentially have a biological role, especially with respect to gene expression regulation. We identified genes of animal origin that have no homolog in the non-symbiotic starlet sea anemone Nematostella vectensis genome, but in other symbiotic cnidarians, and may therefore be involved in the symbiosis relationship in A. viridis. Comparison of protein domain occurrence in A. viridis with that in N. vectensis demonstrated an increase in abundance of some molecular functions, such as protein binding or antioxidant activity, suggesting that these functions are essential for the symbiotic state and may be specific adaptations. This large dataset of sequences provides a valuable resource for future studies on symbiotic interactions in Cnidaria. The comparison with the closest available genome, the sea anemone N. vectensis, as well as

  5. Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids.

    Science.gov (United States)

    Zhu, Feng; Cusumano, Antonino; Bloem, Janneke; Weldegergis, Berhane T; Villela, Alexandre; Fatouros, Nina E; van Loon, Joop J A; Dicke, Marcel; Harvey, Jeffrey A; Vogel, Heiko; Poelman, Erik H

    2018-05-15

    Symbiotic relationships may provide organisms with key innovations that aid in the establishment of new niches. For example, during oviposition, some species of parasitoid wasps, whose larvae develop inside the bodies of other insects, inject polydnaviruses into their hosts. These symbiotic viruses disrupt host immune responses, allowing the parasitoid's progeny to survive. Here we show that symbiotic polydnaviruses also have a downside to the parasitoid's progeny by initiating a multitrophic chain of interactions that reveals the parasitoid larvae to their enemies. These enemies are hyperparasitoids that use the parasitoid progeny as host for their own offspring. We found that the virus and venom injected by the parasitoid during oviposition, but not the parasitoid progeny itself, affected hyperparasitoid attraction toward plant volatiles induced by feeding of parasitized caterpillars. We identified activity of virus-related genes in the caterpillar salivary gland. Moreover, the virus affected the activity of elicitors of salivary origin that induce plant responses to caterpillar feeding. The changes in caterpillar saliva were critical in inducing plant volatiles that are used by hyperparasitoids to locate parasitized caterpillars. Our results show that symbiotic organisms may be key drivers of multitrophic ecological interactions. We anticipate that this phenomenon is widespread in nature, because of the abundance of symbiotic microorganisms across trophic levels in ecological communities. Their role should be more prominently integrated in community ecology to understand organization of natural and managed ecosystems, as well as adaptations of individual organisms that are part of these communities.

  6. Evolutionary Instability of Symbiotic Function in Bradyrhizobium japonicum

    Science.gov (United States)

    Sachs, Joel L.; Russell, James E.; Hollowell, Amanda C.

    2011-01-01

    Bacterial mutualists are often acquired from the environment by eukaryotic hosts. However, both theory and empirical work suggest that this bacterial lifestyle is evolutionarily unstable. Bacterial evolution outside of the host is predicted to favor traits that promote an independent lifestyle in the environment at a cost to symbiotic function. Consistent with these predictions, environmentally-acquired bacterial mutualists often lose symbiotic function over evolutionary time. Here, we investigate the evolutionary erosion of symbiotic traits in Bradyrhizobium japonicum, a nodulating root symbiont of legumes. Building on a previous published phylogeny we infer loss events of nodulation capability in a natural population of Bradyrhizobium, potentially driven by mutation or deletion of symbiosis loci. Subsequently, we experimentally evolved representative strains from the symbiont population under host-free in vitro conditions to examine potential drivers of these loss events. Among Bradyrhizobium genotypes that evolved significant increases in fitness in vitro, two exhibited reduced symbiotic quality, but no experimentally evolved strain lost nodulation capability or evolved any fixed changes at six sequenced loci. Our results are consistent with trade-offs between symbiotic quality and fitness in a host free environment. However, the drivers of loss-of-nodulation events in natural Bradyrhizobium populations remain unknown. PMID:22073160

  7. A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps.

    Science.gov (United States)

    Zchori-Fein, E; Gottlieb, Y; Kelly, S E; Brown, J K; Wilson, J M; Karr, T L; Hunter, M S

    2001-10-23

    The symbiotic bacterium Wolbachia pipientis has been considered unique in its ability to cause multiple reproductive anomalies in its arthropod hosts. Here we report that an undescribed bacterium is vertically transmitted and associated with thelytokous parthenogenetic reproduction in Encarsia, a genus of parasitoid wasps. Although Wolbachia was found in only one of seven parthenogenetic Encarsia populations examined, the "Encarsia bacterium" (EB) was found in the other six. Among seven sexually reproducing populations screened, EB was present in one, and none harbored Wolbachia. Antibiotic treatment did not induce male production in Encarsia pergandiella but changed the oviposition behavior of females. Cured females accepted one host type at the same rate as control females but parasitized significantly fewer of the other host type. Phylogenetic analysis based on the 16S rDNA gene sequence places the EB in a unique clade within the Cytophaga-Flexibacter-Bacteroid group and shows EB is unrelated to the Proteobacteria, where Wolbachia and most other insect symbionts are found. These results imply evolution of the induction of parthenogenesis in a lineage other than Wolbachia. Importantly, these results also suggest that EB may modify the behavior of its wasp carrier in a way that enhances its transmission.

  8. Outbursts In Symbiotic Binaries (FUSE 2000)

    Science.gov (United States)

    Kenyon, Scott J.; Sonneborn, George (Technical Monitor)

    2002-01-01

    During the past year, we made good progress on analysis of FUSE observations of the symbiotic binary Z And. For background, Z And is a binary system composed of a red giant and a hot component of unknown status. The orbital period is roughly 750 days. The hot component undergoes large-scale eruptions every 10-20 yr. An outburst began several years ago, triggering this FUSE opportunity. First, we obtained an excellent set of ground-based optical data in support, of the FUSE observations. We used FAST, a high throughput low resolution spectrograph on the 1.5-m telescope at Mt. Hopkins, Arizona. A 300 g/ mm grating blazed at 4750 A, a 3 in. slit, and a thinned Loral 512 x 2688 CCD gave us spectra covering 3800-7500 A at a resolution of 6 A. The wavelength solution for each spectrum has a probable error of +/- 0.5 A or better. Most of the resulting spectra have moderate signal-to-noise, S/.N approx. greater than 30 per pixel. The time coverage for these spectra is excellent. Typically, we acquired spectra every 1-2 nights during dark runs at Mt. Hopkins. These data cover most of the rise and all of the decline of the recent outburst. The spectra show a wealth of emission lines, including H I, He I, He II, [Fe V11], and the Raman scattering bands at 6830 A and 7088 A. The Raman bands and other high ionization features vary considerably throughout the outburst. These features will enable us to correlate variations in the FUSE spectra with variations in the optical spectra. Second, we began an analysis of FUSE spectra of Z And. We have carefully examined the spectra, identifying real features and defects. We have identified and measured fluxes for all strong emission lines, including the O VI doublet at 1032 A and 1038 A. These and several other strong emission lines display pronounced P Cygni absorption components indicative of outgrowing gas. We will attempt to correlate these velocities with similar profiles observed on optical spectra. The line velocities - together

  9. Proteomic insights into intra- and intercellular plant-bacteria symbiotic association during root nodule formation

    Directory of Open Access Journals (Sweden)

    Afshin eSalavati

    2013-02-01

    Full Text Available Over the last several decades, there have been a large number of studies done on the all aspects of legumes and bacteria which participate in nitrogen-fixing symbiosis. The analysis of legume-bacteria interaction is not just a matter of numerical complexity in terms of variants of gene products that can arise from a single gene. Bacteria regulate their quorum-sensing genes to enhance their ability to induce conjugation of plasmids and symbiotic islands, and various protein secretion mechanisms; that can stimulate a collection of chain reactions including species-specific combinations of plant-secretion isoflavonoids, complicated calcium signaling pathways and autoregulation of nodulation mechanisms. Quorum-sensing systems are introduced by the intra- and intercellular organization of gene products lead to protein–protein interactions or targeting of proteins to specific cellular structures. In this study, an attempt has been made to review significant contributions related to nodule formation and development and their impacts on cell proteome for better understanding of plant-bacterium interaction mechanism at protein level. This review would not only provide new insights into the plant-bacteria symbiosis response mechanisms but would also highlights the importance of studying changes in protein abundance inside and outside of cells in response to symbiosis. Furthermore, the application to agriculture programe of plant-bacteria interaction will be discussed.

  10. A new antibiotic produced by the cyanobacterium-symbiotic fungus Simplicillium lanosoniveum.

    Science.gov (United States)

    Dong, Qinglin; Dong, Rongzhen; Xing, Xiangying; Li, Yukuan

    2018-06-01

    The culture broth of the cyanobacterium-symbiotic fungus Simplicillium lanosoniveum var. Tianjinienss Q. L. Dong exhibited unanticipated antibacterial activities against the Gram-positive bacteria, particularly the pathogenic bacterium Staphylococcus aureus, indicating the secretion of antibiotic-like metabolite, for which the modified Sabouraud medium was the suitable medium. The antibiotic-like metabolite was separated with macroporous resins CT-12 (absorption) and 95% ethanol (desorption), purified by ion-exchange resins D301T and displayed a characteristic absorption peak at 228 nm, suggesting the presence of nitrogen. The negative biuret and ninhydrin tests confirmed the absence of -NH 2 and -COOH groups. Further, HPLC and mass spectrometry analyses showed that the retention time and molecular weight of the antibiotic-like metabolite were 4.1031 min and 163.0182 (Δ ± 2.3 ppm), respectively. Taking together, we speculated that the antibiotic-like metabolite was a new antibiotic structurally similar to alkaloid, which was the first one isolated from the species of Simplicillium genus.

  11. Thermo-stability, dose effects and shelf-life of antifungal compounds produced by the symbiotic bacterium Xenorhabdus szentirmaii

    Science.gov (United States)

    Xenorhabdus spp bacteria are associated with Steinernematid nematodes and produce antifungal metabolites that protect nematode-infected cadavers from fungal colonization. Previous work demonstrated concentrated or cell-free metabolites of X. szentirmaii were toxic to fungal phytopathogens. We prepar...

  12. The Search for Symbiotic Stars in the IPHAS Survey

    Directory of Open Access Journals (Sweden)

    Corradi R. L. M.

    2012-06-01

    Full Text Available We have started a project to search for symbiotic stars using the data from IPHAS, the Hα survey of the Northern Galactic plane. Candidates are selected from the IPHAS photometric catalogue based on their colors, combined with the information in the near-infrared from 2MASS. So far, follow-up spectroscopy allowed us to discover 14 new symbiotic stars, compared to the 10 systems previously known in the IPHAS survey area. Their general characteristics and the most notable cases are briefly presented. the spectroscopic campaign also allowed us to refine the selection criteria for symbiotic stars in IPHAS. Perspectives, which include the extension of the survey in the Southern Galactic plane and a portion of the bulge (VPHAS+, are discussed.

  13. Formation of broad Balmer wings in symbiotic stars

    International Nuclear Information System (INIS)

    Chang, Seok-Jun; Heo, Jeong-Eun; Hong, Chae-Lin; Lee, Hee-Won

    2016-01-01

    Symbiotic stars are binary systems composed of a hot white dwarf and a mass losing giant. In addition to many prominent emission lines symbiotic stars exhibit Raman scattered O VI features at 6825 and 7088 Å. Another notable feature present in the spectra of many symbiotics is the broad wings around Balmer lines. Astrophysical mechanisms that can produce broad wings include Thomson scattering by free electrons and Raman scattering of Ly,β and higher series by neutral hydrogen. In this poster presentation we produce broad wings around Hα and H,β adopting a Monte Carlo techinique in order to make a quantitative comparison of these two mechanisms. Thomson wings are characterized by the exponential cutoff given by the termal width whereas the Raman wings are dependent on the column density and continuum shape in the far UV region. A brief discussion is provided. (paper)

  14. Role of antimicrobial peptides in controlling symbiotic bacterial populations.

    Science.gov (United States)

    Mergaert, P

    2018-04-25

    Covering: up to 2018 Antimicrobial peptides (AMPs) have been known for well over three decades as crucial mediators of the innate immune response in animals and plants, where they are involved in the killing of infecting microbes. However, AMPs have now also been found to be produced by eukaryotic hosts during symbiotic interactions with bacteria. These symbiotic AMPs target the symbionts and therefore have a more subtle biological role: not eliminating the microbial symbiont population but rather keeping it in check. The arsenal of AMPs and the symbionts' adaptations to resist them are in a careful balance, which contributes to the establishment of the host-microbe homeostasis. Although in many cases the biological roles of symbiotic AMPs remain elusive, for a number of symbiotic interactions, precise functions have been assigned or proposed to the AMPs, which are discussed here. The microbiota living on epithelia in animals, from the most primitive ones to the mammals, are challenged by a cocktail of AMPs that determine the specific composition of the bacterial community as well as its spatial organization. In the symbiosis of legume plants with nitrogen-fixing rhizobium bacteria, the host deploys an extremely large panel of AMPs - called nodule-specific cysteine-rich (NCR) peptides - that drive the bacteria into a terminally differentiated state and manipulate the symbiont physiology to maximize the benefit for the host. The NCR peptides are used as tools to enslave the bacterial symbionts, limiting their reproduction but keeping them metabolically active for nitrogen fixation. In the nutritional symbiotic interactions of insects and protists that have vertically transmitted bacterial symbionts with reduced genomes, symbiotic AMPs could facilitate the integration of the endosymbiont and host metabolism by favouring the flow of metabolites across the symbiont membrane through membrane permeabilization.

  15. Nodulation outer proteins: double-edged swords of symbiotic rhizobia.

    Science.gov (United States)

    Staehelin, Christian; Krishnan, Hari B

    2015-09-15

    Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial Nops (nodulation outer proteins) play a crucial symbiotic role in many strain-host combinations. Nops are defined as proteins secreted via a rhizobial T3SS (type III secretion system). Functional T3SSs have been characterized in many rhizobial strains. Nops have been identified using various genetic, biochemical, proteomic, genomic and experimental approaches. Certain Nops represent extracellular components of the T3SS, which are visible in electron micrographs as bacterial surface appendages called T3 (type III) pili. Other Nops are T3 effector proteins that can be translocated into plant cells. Rhizobial T3 effectors manipulate cellular processes in host cells to suppress plant defence responses against rhizobia and to promote symbiosis-related processes. Accordingly, mutant strains deficient in synthesis or secretion of T3 effectors show reduced symbiotic properties on certain host plants. On the other hand, direct or indirect recognition of T3 effectors by plant cells expressing specific R (resistance) proteins can result in effector triggered defence responses that negatively affect rhizobial infection. Hence Nops are double-edged swords that may promote establishment of symbiosis with one legume (symbiotic factors) and impair symbiotic processes when bacteria are inoculated on another legume species (asymbiotic factors). In the present review, we provide an overview of our current understanding of Nops. We summarize their symbiotic effects, their biochemical properties and their possible modes of action. Finally, we discuss future perspectives in the field of T3 effector research. © 2015 Authors; published by Portland Press Limited.

  16. Effect of Subliminal Stimulation of Symbiotic Fantasies on Behavior Modification Treatment of Obesity.

    Science.gov (United States)

    And Others; Silverman, Lloyd H.

    1978-01-01

    Obese women were treated in behavior modification programs for overeating. Behavior programs were accompanied by subliminal stimulation and by symbiotic and control messages. The symbiotic condition gave evidence of enhancing weight loss. This finding supports the proposition that subliminal stimulation of symbiotic fantasies can enhance the…

  17. Radio emission from symbiotic stars: a binary model

    International Nuclear Information System (INIS)

    Taylor, A.R.; Seaquist, E.R.

    1985-01-01

    The authors examine a binary model for symbiotic stars to account for their radio properties. The system is comprised of a cool, mass-losing star and a hot companion. Radio emission arises in the portion of the stellar wind photo-ionized by the hot star. Computer simulations for the case of uniform mass loss at constant velocity show that when less than half the wind is ionized, optically thick spectral indices greater than +0.6 are produced. Model fits to radio spectra allow the binary separation, wind density and ionizing photon luminosity to be calculated. They apply the model to the symbiotic star H1-36. (orig.)

  18. He 2-104 - A symbiotic proto-planetary nebula?

    International Nuclear Information System (INIS)

    Schwarz, H.E.; Aspin, C.; Lutz, J.H.

    1989-01-01

    CCD observations are presented for He 2-104, an object previously classified as both PN and symbiotic star, which show that this is in fact a protoplanetary nebula (PPN) with a dynamical age of about 800 yr. The presence of highly collimated jets, extending over 75 arcsec on the sky, combined with an energy distribution showing a hot as well as a cool component, indicates that He 2-104 is a binary PPN. Since the primary is probably a Mira with a 400-d period (as reported by Whitelock, 1988), it is proposed that the system is a symbiotic PPN. 16 refs

  19. Zymomonas mobilis: a bacterium for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Baratti, J.C.; Bu' Lock, J.D.

    1986-01-01

    Zymomonas mobilis is a facultative anaerobic gram negative bacterium first isolated in tropical countries from alcoholic beverages like the African palm wine, the Mexican pulque and also as a contaminant of cider (cider sickness) or beer in the European countries. It is one of the few facultative anaerobic bacteria degrading glucose by the Entner-Doudoroff pathway usually found in strictly aerobic microorganisms. Some work was devoted to this bacterium in the 50s and 60s and was reviewed by Swings and De Ley in their classical paper published in 1977. During the 70s there was very little work on the bacterium until 1979 and the first report by the Australian group of P.L. Rogers on the great potentialities of Z. mobilis for ethanol production. At that time the petroleum crisis had led the developed countries to search for alternative fuel from renewable resources. The Australian group clearly demonstrated the advantages of the bacterium compared to the yeasts traditionally used for the alcoholic fermentation. As a result, there was a considerable burst in the Zymomonas literature which started from nearly zero in the late 70s to attain 70 papers published in the field in 1984. In this article, papers published from 1982 to 1986 are reviewed.

  20. Symbiotic fungal associations in 'lower' land plants.

    Science.gov (United States)

    Read, D J; Ducket, J G; Francis, R; Ligron, R; Russell, A

    2000-06-29

    An analysis of the current state of knowledge of symbiotic fungal associations in 'lower' plants is provided. Three fungal phyla, the Zygomycota, Ascomycota and Basidiomycota, are involved in forming these associations, each producing a distinctive suite of structural features in well-defined groups of 'lower' plants. Among the 'lower' plants only mosses and Equisetum appear to lack one or other of these types of association. The salient features of the symbioses produced by each fungal group are described and the relationships between these associations and those formed by the same or related fungi in 'higher' plants are discussed. Particular consideration is given to the question of the extent to which root fungus associations in 'lower' plants are analogous to 'mycorrhizas' of 'higher' plants and the need for analysis of the functional attributes of these symbioses is stressed. Zygomycetous fungi colonize a wide range of extant lower land plants (hornworts, many hepatics, lycopods, Ophioglossales, Psilotales and Gleicheniaceae), where they often produce structures analogous to those seen in the vesicular-arbuscular (VA) mycorrhizas of higher plants, which are formed by members of the order Glomales. A preponderance of associations of this kind is in accordance with palaeohbotanical and molecular evidence indicating that glomalean fungi produced the archetypal symbioses with the first plants to emerge on to land. It is shown, probably for the first time, that glomalean fungi forming typical VA mycorrhiza with a higher plant (Plantago lanceolata) can colonize a thalloid liverwort (Pellia epiphylla), producing arbuscules and vesicles in the hepatic. The extent to which these associations, which are structurally analogous to mycorrhizas, have similar functions remains to be evaluated. Ascomycetous associations are found in a relatively small number of families of leafy liverworts. The structural features of the fungal colonization of rhizoids and underground axes of

  1. Microflora of urogenital tract in pregnancy with asymptomatic bacterium

    International Nuclear Information System (INIS)

    Abdullaeva, R.A.

    2006-01-01

    The article contains results of research interrelationship from colonization of vagina and urinary tract diseases. E.coli one of the main factors in development asymptomatic bacterium. Presented high effects of penicillin medicaments and nitrofurans in treatment of asymptomatic bacterium

  2. Engineering a wild fast-growing Mycoplasma bacterium to generate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-01-12

    Jan 12, 2018 ... The CCPP bacterium causes sick animals to experience severe symptoms ... because antibiotic treatment does not eliminate the responsible bacterium. ... To develop a fast growing CCPP vaccine for cheaper production and ...

  3. Survivability of probiotics in symbiotic low fat buffalo milk yogurt ...

    African Journals Online (AJOL)

    In present study, symbiotic low fat buffalo milk yogurt prototypes (plain and blueberry) were developed using a commercial starter containing probiotics. Samples were analyzed for physicochemical and microbiological properties, and the survivability of probiotics during 10 weeks of storage. Gross composition results were: ...

  4. Role of symbiotic nitrogen fixation in the improvement of legume ...

    African Journals Online (AJOL)

    Role of symbiotic nitrogen fixation in the improvement of legume productivity under stressed environments. R Serraj, J Adu-Gyamfi. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/wajae.v6i1.45613.

  5. "SYMBIOTIC" HEMOFILTRATION FOR CHRONIC RENAL F AILURE COMPENSATION

    Directory of Open Access Journals (Sweden)

    E. A. Yumatov

    2015-01-01

    Full Text Available AbstractWidely used nowadays hemodialysis and hemofiltration cannot replace completely the excretory function of human kidneys in the natural conditions of physiological regulation. The aim of our study is to develop and create a new method and apparatus for CRF patients «symbiotic» compensation, based on hemofiltration and healthy humans kidneys natural physiological functions, excluding mixing of partners blood.Method of «symbiotic» hemofiltration is based on mutual exchange of equivalent blood ultrafiltrate volumes between healthy person and CRF patient, needed to be cleansed from metabolites. During exchange procedure patient’s and a healthy person’s circulations are separated by hemofilters excluding blood mixing.During CRF patient’s blood cleansing from metabolic products separate hemofiltration of healthy donor and CRF patient in equal volumes is processed. Patient’s blood ultrafiltrate enters the bloodstream of a healthy person, as a healthy person ultrafiltrate in the same extent enters the bloodstream of CRF patient. At the same time remaining after filtration blood components of donor and patient are returned in their bloodstream respectively.Fundamentally important advantage of «symbiotic» hemofiltration is that CRF patient’s blood is cleansed from uremic metabolites due to healthy human kidneys natural physiological functions. «Symbiotic» hemofiltration is a highly effective physiological method of CRP patient’s blood purification from the uremic substances.

  6. Symbiotic effectiveness of acid-tolerant Bradyrhizobium strains with ...

    African Journals Online (AJOL)

    Symbiotic effectiveness of acid-tolerant Bradyrhizobium strains with soybean in low pH soil. C Appunu, B Dhar. Abstract. Eight acid tolerant strains of Bradyrhizobium isolated from soybean plants grown on acid soils in Madhya Pradesh, India, were examined for their ability to survive in soil and YEMB at low pH levels. All the ...

  7. Request for regular monitoring of the symbiotic variable RT Cru

    Science.gov (United States)

    Waagen, Elizabeth O.

    2014-08-01

    Dr. Margarita Karovska (Harvard-Smithsonian Center for Astrophysics) and colleagues have requested AAVSO observer assistance in their campaign on the symbiotic variable RT Cru (member of a new class of hard X-ray emitting symbiotic binaries). Weekly or more frequent monitoring (B, V, and visual) beginning now is requested in support of upcoming Chandra observations still to be scheduled. "We plan Chandra observations of RT Cru in the near future that will help us understand the characteristics of the accretion onto the white dwarf in this sub-class of symbiotics. This is an important step for determining the precursor conditions for formation of a fraction of asymmetric Planetary Nebulae, and the potential of symbiotic systems as progenitors of at least a fraction of Type Ia supernovae." Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations.

  8. Optical flickering of the symbiotic star CH Cyg

    Science.gov (United States)

    Stoyanov, K. A.; Martí, J.; Zamanov, R.; Dimitrov, V. V.; Kurtenkov, A.; Sánchez-Ayaso, E.; Bujalance-Fernández, I.; Latev, G. Y.; Nikolov, G.

    2018-02-01

    Here we present quasi-simultaneous observations of the flickering of the symbiotic binary star CH Cyg in U, B and V bands. We calculate the flickering source parameters and discuss the possible reason for the flickering cessation in the period 2010-2013.

  9. Radio molecular maser line study of symbiotic stars

    International Nuclear Information System (INIS)

    Cohen, N.L.; Ghigo, F.D.

    1980-01-01

    A sample of symbiotic stars has been searched for maser emission from the 1665- and 1667-MHz OH mainlines, the 22-GHz H 2 O line, and the 43-GHz SiO line. R Aqr remains the sole symbiotic for which maser emission has been detected. Its SiO spectrum reveals a pedestal of emission with a narrow superposed peak at V/sub LSR/ -26.4 +- 0.7 km/s. The line's existence and the pedestal feature are both characteristic of SiO lines found in late-type variables by Snyder et al. [Astrophys. J. 224, 512 (1978)]. For the other symbiotic stars, it is possible that conditions favorable for maser emission have been suppressed by the presence of a hot companion. Alternatively our findings may argue against the presence of late-type variables in symbiotic stars. In either case, R Aqr seems to be in a class by itself. We cannot confirm the suggestion that R Aqr is a binary, since the spectral feature has not shifted noticeably in the two years since the observations by Lepine, LeSqueren, and Scalise [Astrophys. J. 225, 869 (1978)]. However, we point out that monitoring the pedestal emission over a number of years is the least ambiguous way to discern any velocity shift that might result from orbital motion

  10. Late-type components of slow novae and symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia); Royal Observatory, Edinburgh (UK))

    1980-08-01

    It is argued that the various types of symbiotic stars and the slow novae are the same phenomena exhibiting a range of associated time-scales, the slow novae being of intermediate speed. Evidence is summarized showing that both types of object contain normal M giants or mira variables. This fact is at odds with currently fashionable single-star models for slow novae, according to which the M star is totally disrupted before the outburst. Spectral types of the late-type components are presented for nearly 80 symbiotic stars and slow novae, derived from 2 ..mu..m spectroscopy. It is found that both the intensity of the emission spectrum and the electron density of the gas are functions of the spectral type of the late-type star. Explanations for these correlations are given. On the assumption that the late-type components are normal giants, spectroscopic parallaxes are determined; credible distances are derived which indicate that the known symbiotic stars have been sampled as far afield as the Galactic Centre. Hydrogen shell flashes on a white dwarf accreting gas from the late-type components offer an attractive explanation of the phenomena of slow novae and symbiotic stars, and such models are discussed in the concluding section.

  11. Biodiversity and studies of marine symbiotic siphonostomatoids off ...

    African Journals Online (AJOL)

    Current knowledge of the biodiversity of the symbiotic marine siphonostomatoids from South African waters (136 species) is sparse compared to that globally (1 388 species). The difference is especially apparent when taking into account the diversity of fish (more than 2 000 species) and invertebrates (approximately 12 ...

  12. The symbiotic intestinal ciliates and the evolution of their hosts

    NARCIS (Netherlands)

    Moon-van der Staay, S.Y.; Staay, G.W. van der; Michalowski, T.; Jouany, J.P.; Pristas, P.; Javorsky, P.; Kisidayova, S.; Varadyova, Z.; McEwan, N.R.; Newbold, C.J.; Alen, T. van; Graaf, R. de; Schmid, M.; Huynen, M.A.; Hackstein, J.H.

    2014-01-01

    The evolution of sophisticated differentiations of the gastro-intestinal tract enabled herbivorous mammals to digest dietary cellulose and hemicellulose with the aid of a complex anaerobic microbiota. Distinctive symbiotic ciliates, which are unique to this habitat, are the largest representatives

  13. Molecular and biochemical analysis of symbiotic plant receptor kinase complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Douglas R; Riely, Brendan K

    2010-09-01

    DE-FG02-01ER15200 was a 36-month project, initiated on Sept 1, 2005 and extended with a one-year no cost extension to August 31, 2009. During the project period we published seven manuscripts (2 in review). Including the prior project period (2002-2005) we published 12 manuscripts in journals that include Science, PNAS, The Plant Cell, Plant Journal, Plant Physiology, and MPMI. The primary focus of this work was to further elucidate the function of the Nod factor signaling pathway that is involved in initiation of the legume-rhizobium symbiosis and in particular to explore the relationship between receptor kinase-like proteins and downstream effectors of symbiotic development. During the project period we have map-base cloned two additional players in symbiotic development, including an ERF transcription factor and an ethylene pathway gene (EIN2) that negatively regulates symbiotic signaling; we have also further characterized the subcellular distribution and function of a nuclear-localized symbiosis-specific ion channel, DMI1. The major outcome of the work has been the development of systems for exploring and validating protein-protein interactions that connect symbiotic receptor-like proteins to downstream responses. In this regard, we have developed both homologous (i.e., in planta) and heterologous (i.e., in yeast) systems to test protein interactions. Using yeast 2-hybrid screens we isolated the only known interactor of the nuclear-localized calcium-responsive kinase DMI3. We have also used yeast 2-hybrid methodology to identify interactions between symbiotic signaling proteins and certain RopGTPase/RopGEF proteins that regulate root hair polar growth. More important to the long-term goals of our work, we have established a TAP tagging system that identifies in planta interactions based on co-immuno precipitation and mass spectrometry. The validity of this approach has been shown using known interactors that either co-iummnoprecipate (i.e., remorin) or co

  14. Microscopic observation of symbiotic and aposymbiotic juvenile corals in nutrient-enriched seawater.

    Science.gov (United States)

    Tanaka, Yasuaki; Iguchi, Akira; Inoue, Mayuri; Mori, Chiharu; Sakai, Kazuhiko; Suzuki, Atsushi; Kawahata, Hodaka; Nakamura, Takashi

    2013-03-15

    Symbiotic and aposymbiotic juvenile corals, which were grown in the laboratory from the gametes of the scleractinian coral Acropora digitifera and had settled down onto plastic culture plates, were observed with a microscope under different nutrient conditions. The symbiotic corals successfully removed the surrounding benthic microalgae (BMA), whereas the aposymbiotic corals were in close physical contact with BMA. The areal growth rate of the symbiotic corals was significantly higher than that of the aposymbiotic corals. The addition of nutrients to the culture seawater increased the chlorophyll a content in the symbiotic coral polyps and enhanced the growth of some of the symbiotic corals, however the average growth rate was not significantly affected, most likely because of the competition with BMA. The comparison between the symbiotic and aposymbiotic juvenile corals showed that the establishment of a symbiotic association could be imperative for post-settlement juvenile corals to survive in high-nutrient seawater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. SYMBIOTIC STAR BLOWS BUBBLES INTO SPACE

    Science.gov (United States)

    2002-01-01

    A tempestuous relationship between an unlikely pair of stars may have created an oddly shaped, gaseous nebula that resembles an hourglass nestled within an hourglass. Images taken with Earth-based telescopes have shown the larger, hourglass-shaped nebula. But this picture, taken with NASA's Hubble Space Telescope, reveals a small, bright nebula embedded in the center of the larger one (close-up of nebula in inset). Astronomers have dubbed the entire nebula the 'Southern Crab Nebula' (He2-104), because, from ground-based telescopes, it looks like the body and legs of a crab. The nebula is several light-years long. The possible creators of these shapes cannot be seen at all in this Wide Field and Planetary Camera 2 image. It's a pair of aging stars buried in the glow of the tiny, central nebula. One of them is a red giant, a bloated star that is exhausting its nuclear fuel and is shedding its outer layers in a powerful stellar wind. Its companion is a hot, white dwarf, a stellar zombie of a burned-out star. This odd duo of a red giant and a white dwarf is called a symbiotic system. The red giant is also a Mira Variable, a pulsating red giant, that is far away from its partner. It could take as much as 100 years for the two to orbit around each other. Astronomers speculate that the interaction between these two stars may have sparked episodic outbursts of material, creating the gaseous bubbles that form the nebula. They interact by playing a celestial game of 'catch': as the red giant throws off its bulk in a powerful stellar wind, the white dwarf catches some of it. As a result, an accretion disk of material forms around the white dwarf and spirals onto its hot surface. Gas continues to build up on the surface until it sparks an eruption, blowing material into space. This explosive event may have happened twice in the 'Southern Crab.' Astronomers speculate that the hourglass-shaped nebulae represent two separate outbursts that occurred several thousand years apart

  16. Training Feedforward Neural Networks Using Symbiotic Organisms Search Algorithm

    Directory of Open Access Journals (Sweden)

    Haizhou Wu

    2016-01-01

    Full Text Available Symbiotic organisms search (SOS is a new robust and powerful metaheuristic algorithm, which stimulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. In the supervised learning area, it is a challenging task to present a satisfactory and efficient training algorithm for feedforward neural networks (FNNs. In this paper, SOS is employed as a new method for training FNNs. To investigate the performance of the aforementioned method, eight different datasets selected from the UCI machine learning repository are employed for experiment and the results are compared among seven metaheuristic algorithms. The results show that SOS performs better than other algorithms for training FNNs in terms of converging speed. It is also proven that an FNN trained by the method of SOS has better accuracy than most algorithms compared.

  17. Flickering of the symbiotic variable CH Cygni during outburst

    Energy Technology Data Exchange (ETDEWEB)

    Slovak, M H [Texas Univ., Austin (USA). Dept. of Astronomy; Africano, J

    1978-11-01

    High-speed and conventional BVRI photometry are reported for the bright symbiotic variable CH Cygni (M6 IIIe), obtained during the course of a recent outburst. Unlike the quiescent symbiotic stars, the presence of flickering similar in nature to that seen in the cataclysmic variables has been confirmed during this active phase. The BVRI photometry for a sample of stars in the field is used to derive the reddening and the distance to CH Cyg. A composite energy distribution is derived from 0.35 to 11.0 ..mu..m which clearly establishes the existence of a variable, blue continuum. The lack of variability in the near infrared suggests that the blue continuum arises from a hot companion. A binary model including a subluminous hot companion accreting material from the stellar wind of an SRa variable is discussed to account for the observed photometric properties.

  18. Symbiotic N fixation of several soybean varieties and mutants

    International Nuclear Information System (INIS)

    Soertini, G.; Hendratno

    1988-01-01

    Symbiotic N fixation of several soybean varieties and mutants. Research activities comprising of three experiments were carried out to screen several soybean varieties and mutants for symbiotic N fixation potential. The first two experiments involved screening of seven rhizobium strains/isolate for effective N fixation. Depending on the medium used, plant response to strains was different. In sterile medium, rhizobium strain USDA 136, 142 and TAL 102 showed a high nitrogen fixation potential. In soil only rhizobium strain USDA 110 had better performance and proved to be competitive to the native strains. Nitrogen-15 dilution method was used to screen nitrogen fixing ability of several soybean varieties and mutants. Guntur variety showed a better response to high dose of N fertilizer without disturbance in its fixing ability. This variety then was considered good to be introduced in the cropping system. (author). 8 refs

  19. Discovery of optical flickering from the symbiotic star EF Aquilae

    Science.gov (United States)

    Zamanov, R. K.; Boeva, S.; Nikolov, Y. M.; Petrov, B.; Bachev, R.; Latev, G. Y.; Popov, V. A.; Stoyanov, K. A.; Bode, M. F.; Martí, J.; Tomov, T.; Antonova, A.

    2017-07-01

    We report optical CCD photometry of the recently identified symbiotic star EF Aql. Our observations in Johnson V and B bands clearly show the presence of stochastic light variations with an amplitude of about 0.2 mag on a time scale of minutes. The observations point toward a white dwarf (WD) as the hot component in the system. It is the 11-th object among more than 200 symbiotic stars known with detected optical flickering. Estimates of the mass accretion rate onto the WD and the mass loss rate in the wind of the Mira secondary star lead to the conclusion that less than 1 per cent of the wind is captured by the WD. Eight further candidates for the detection of flickering in similar systems are suggested.

  20. Information Systems and the Humanities: A Symbiotic Relationship?

    OpenAIRE

    Kroeze, JH

    2009-01-01

    The lecture explores the nature of the relationship between the study fields of Information Systems and the humanities. Although literature on Humanities Computing states in principle that there is a bi-directional, beneficial symbiotic relationship, most studies and reflections investigate only the application of information technology in the humanities. This suggests that the relation is commensalistic rather that mutualistic. However, studies do exist that implement theor...

  1. A search for OH emission from symbiotic stars

    International Nuclear Information System (INIS)

    Norris, R.P.; Haynes, R.F.; Wright, A.E.

    1984-01-01

    A search was made for OH maser emission from a sample of 16 symbiotic stars. This sample was selected on the basis of infrared optical depth and variability, so that the stars within it have circumstellar shells similar to those seen in OH/IR and OH/Mira stars. There were no significant detections, except for one unassociated background source, and it is concluded that the presence of a hot binary companion inhibits any possible OH maser action

  2. Symbiotic nature of the object M1-77

    International Nuclear Information System (INIS)

    Kondrt'eva, L.N.

    2004-01-01

    Many year spectral observations show, that the object M1-77 is the symbiotic system, which consists of a M-giant and a B-star. An emission spectra arises from an envelope, which was formed from a giant's extended atmosphere, and now is ionized by the hotter component. Some spectral changes were registered in M1-77: the forbidden lines intensities increase relatively to that of Hα. It is connected with the decrease of hydrogen emission. (author)

  3. Managing the fusion burn to improve symbiotic system performance

    International Nuclear Information System (INIS)

    Renier, J.P.; Martin, J.G.

    1979-01-01

    Symbiotic power systems, in which fissile fuel is produced in fusion-powered factories and burned in thermal reactors characterized by high conversion ratios, constitute an interesting near-term fusion application. It is shown that the economic feasibility of such systems depend on adroit management of the fusion burn. The economics of symbiotes is complex: reprocessing and fabrication of the fusion reactor blankets are important components of the production cost of fissile fuel, but burning fissile material in the breeder blanket raises overall costs and lowers the support ratio. Analyses of factories which assume that the fusion power is constant during an irradiation cycle underestimate their potential. To illustrate the effect of adroit engineering of the fusion burn, this paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U-233 breeders. To make the D-T symbiote self-sufficient, tritium is bred in separate lithium blankets designed so as to minimize overall costs. All blankets are assumed to have spherical geometry, with 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries

  4. Formulation of a peach ice cream as potential symbiotic food

    Directory of Open Access Journals (Sweden)

    Fernando Josué VILLALVA

    Full Text Available Abstract Today’s population increasingly demands and consumes healthy products. For this reason, the food industry has been developing and marketing food with added bioactive components. The aim of this work was to formulate a peach ice cream reduced in calories with an added probiotic (Bifidobacterium lactis Bb-12 and prebiotics (inulin, and to evaluate its sensory quality and acceptability as potential symbiotic food. The moisture content was 76.47%; 7.14% protein; 0.15% fat; 6.37%; carbohydrates; 9.87% inulin; 1.22% ash; 0.201% calcium, 0.155% phosphorus and 0.168% sodium. On the first and 21th day of storage counts of B. lactis Bb – 12 was 4 x 108 CFU/mL and 1.5 x 107 CFU/mL, respectively. It was possible to formulate a peach ice cream reduced in calories, fat, and sugar and with potential symbiotic effect, by addition of B. lactis Bb – 12. A product with suitable organoleptic characteristics, creamy texture, peachy colour, taste and flavour, and no ice crystals was obtained. This ice cream would be a suitable food matrix to incorporate prebiotic and probiotic ingredients as a potential symbiotic food.

  5. The Symbiotic System SS73 17 seen with Suzaku

    Science.gov (United States)

    Smith, Randall K.; Mushotzky, Richard; Kallman, Tim; Tueller, Jack; Mukai, Koji; Markwardt, Craig

    2007-01-01

    We observed with Suzaku the symbiotic star SS73 17, motivated by the discovery by the INTEGRAL satellite and the Swift BAT survey that it emits hard X-rays. Our observations showed a highly-absorbed X-ray spectrum with NH > loz3 emp2, equivalent to Av > 26, although the source has B magnitude 11.3 and is also bright in UV. The source also shows strong, narrow iron lines including fluorescent Fe K as well as Fe xxv and Fe XXVI. The X-ray spectrum can be fit with a thermal model including an absorption component that partially covers the source. Most of the equivalent width of the iron fluorescent line in this model can be explained as a combination of reprocessing in a dense absorber plus reflection off a white dwarf surface, but it is likely that the continuum is partially seen in reflection as well. Unlike other symbiotic systems that show hard X-ray emission (CH Cyg, RT Cru, T CrB, GX1+4), SS73 17 is not known to have shown nova-like optical variability, X-ray flashes, or pulsations, and has always shown faint soft X-ray emission. As a result, although it is likely a white dwarf, the nature of the compact object in SS73 17 is still uncertain. SS73 17 is probably an extreme example of the recently discovered and relatively small class of hard X-ray emitting symbiotic systems.

  6. X-ray Jets in the CH Cyg Symbiotic System

    Science.gov (United States)

    Karovska, Margarita; Gaetz, T.; Lee, N.; Raymond, J.; Hack, W.; Carilli, C.

    2009-09-01

    Symbiotic binaries are interacting systems in which a compact stellar source accretes matter from the wind of the cool evolved companion. There are a few hundred symbiotic systems known today, but jet activity has been detected in only a few of them, including in CH Cyg. CH Cyg is a symbiotic system that has shown significant activity since the mid 1960s. Jets have been detected in optical and radio since 1984, and more recently in 2001 in X-rays using Chandra observations.In 2008 we carried out coordinated multi-wavelength observations of the CH Cyg system with Chandra, HST, and the VLA, in order to study the propagation and interaction with the circumbinary medium of the jet detected in 2001. We report here on the detection of the 2001 SE jet which has expanded in seven years from ˜350AU to ˜1400 AU. The apex of the loop delineating the region of interaction with the circumbinary matter is moving with a speed of ˜700 km/s. Assuming a linear expansion, the jet was launched during the 1999-2000 active phase. We also report on a detection of a powerful new jet in the SW direction, observed in X-ray, optical and radio wavelengths. The new jet has a multi-component structure including an inner jet and counter jet, and a SW component ending in several clumps extending up to a distance of about 750AU.

  7. On origin and evolutionary stage of symbiotic stars

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Yungel'son, L.R.

    1976-01-01

    Symbiotic stars are considered which best of all are described by the binary star model. An analysis of properties of symbiotic stars shows that their hot components should be either carbon-oxygen dwarfs with thin hydrogen-helium envelopes or helium stars with thin mantles. Cold components are red giants losing matter with the rate of 10 -5 -10 -6 M/yr over the period of 10 5 -10 6 years (M is the Sun mass). Such systems can be formed of wide pairs as a result of loss of envelope of an initially more massive star of the system by way of continuous outflow of matter or expulsion due to dynamic instability at the stage of red giant, and also of more close pairs as a result of exchange of matter between the components. It has been shown that hot components of symbiotic stars can accrete 10 -6 -10 -9 M/yr and some consequencies of accretion on a C-O dwarf have been considered

  8. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Rodriguez, R.J.; Freeman, D. Carl; McArthur, E.D.; Kim, Y.-O.; Redman, R.S.

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at five times the rate observed in nonsymbiotic plants. Endophytes also influenced sexual reproduction of mature big sagebrush (Artemisia tridentata) plants. Two spatially distinct big sagebrush subspecies and their hybrids were symbiotic with unique fungal endophytes, despite being separated by only 380 m distance and 60 m elevation. A double reciprocal transplant experiment of parental and hybrid plants, and soils across the hybrid zone showed that fungal endophytes interact with the soils and different plant genotypes to confer enhanced plant reproduction in soil native to the endophyte and reduced reproduction in soil alien to the endophyte. Moreover, the most prevalent endophyte of the hybrid zone reduced the fitness of both parental subspecies. Because these endophytes are passed to the next generation of plants on seed coats, this interaction provides a selective advantage, habitat specificity, and the means of restricting gene flow, thereby making the hybrid zone stable, narrow and potentially leading to speciation. ?? 2009 Landes Bioscience.

  9. Nutrient acquisition by symbiotic fungi governs Palaeozoic climate transition.

    Science.gov (United States)

    Mills, Benjamin J W; Batterman, Sarah A; Field, Katie J

    2018-02-05

    Fossil evidence from the Rhynie chert indicates that early land plants, which evolved in a high-CO 2 atmosphere during the Palaeozoic Era, hosted diverse fungal symbionts. It is hypothesized that the rise of early non-vascular land plants, and the later evolution of roots and vasculature, drove the long-term shift towards a high-oxygen, low CO 2 climate that eventually permitted the evolution of mammals and, ultimately, humans. However, very little is known about the productivity of the early terrestrial biosphere, which depended on the acquisition of the limiting nutrient phosphorus via fungal symbiosis. Recent laboratory experiments have shown that plant-fungal symbiotic function is specific to fungal identity, with carbon-for-phosphorus exchange being either enhanced or suppressed under superambient CO 2 By incorporating these experimental findings into a biogeochemical model, we show that the differences in these symbiotic nutrient acquisition strategies could greatly alter the plant-driven changes to climate, allowing drawdown of CO 2 to glacial levels, and altering the nature of the rise of oxygen. We conclude that an accurate depiction of plant-fungal symbiotic systems, informed by high-CO 2 experiments, is key to resolving the question of how the first terrestrial ecosystems altered our planet.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Authors.

  10. Symbiotic Activity of Pea (Pisum sativum) after Application of Nod Factors under Field Conditions

    OpenAIRE

    Siczek, Anna; Lipiec, Jerzy; Wielbo, Jerzy; Kidaj, Dominika; Szarlip, Paweł

    2014-01-01

    Growth and symbiotic activity of legumes are mediated by Nod factors (LCO, lipo-chitooligosaccharides). To assess the effects of application of Nod factors on symbiotic activity and yield of pea, a two-year field experiment was conducted on a Haplic Luvisol developed from loess. Nod factors were isolated from Rhizobium leguminosarum bv. viciae strain GR09. Pea seeds were treated with the Nod factors (10−11 M) or water (control) before planting. Symbiotic activity was evaluated by measurement...

  11. Robustness encoded across essential and accessory replicons of the ecologically versatile bacterium Sinorhizobium meliloti

    Science.gov (United States)

    Walker, Graham C.; Finan, Turlough M.; Mengoni, Alessio; Griffitts, Joel S.

    2018-01-01

    Bacterial genome evolution is characterized by gains, losses, and rearrangements of functional genetic segments. The extent to which large-scale genomic alterations influence genotype-phenotype relationships has not been investigated in a high-throughput manner. In the symbiotic soil bacterium Sinorhizobium meliloti, the genome is composed of a chromosome and two large extrachromosomal replicons (pSymA and pSymB, which together constitute 45% of the genome). Massively parallel transposon insertion sequencing (Tn-seq) was employed to evaluate the contributions of chromosomal genes to growth fitness in both the presence and absence of these extrachromosomal replicons. Ten percent of chromosomal genes from diverse functional categories are shown to genetically interact with pSymA and pSymB. These results demonstrate the pervasive robustness provided by the extrachromosomal replicons, which is further supported by constraint-based metabolic modeling. A comprehensive picture of core S. meliloti metabolism was generated through a Tn-seq-guided in silico metabolic network reconstruction, producing a core network encompassing 726 genes. This integrated approach facilitated functional assignments for previously uncharacterized genes, while also revealing that Tn-seq alone missed over a quarter of wild-type metabolism. This work highlights the many functional dependencies and epistatic relationships that may arise between bacterial replicons and across a genome, while also demonstrating how Tn-seq and metabolic modeling can be used together to yield insights not obtainable by either method alone. PMID:29672509

  12. Identification of an entomopathogenic bacterium, Serratia sp. ANU101, and its hemolytic activity.

    Science.gov (United States)

    Kim, Yonggyun; Kim, Keunseob; Seo, Jiae; Shrestha, Sony; Kim, Hosanna H; Nalini, Madanagopal; Yi, Youngkeun

    2009-03-01

    Four different bacterial colonies were isolated from an old stock of an entomopathogenic nematode, Steinernema monticolum. They all showed entomopathogenicity to final instar larvae of beet armyworm, Spodoptera exigua, by hemocoelic injection. However, they varied in colony form, susceptibility to antibiotics, and postmortem change of the infected host insects. Biolog microbial identification and 16S rDNA sequence analyses indicate that these are four different species classified into different bacterial genera. owing to high entomopathogenicity and a cadaver color of infected insect host, Serratia sp. was selected as a main symbiotic bacterial species and analyzed for its pathogenicity. Although no virulence of Serratia sp. was detected at oral administration, the bacteria gave significant synergistic pathogenicity to fifth instar S. exigua when it was treated along with a spore-forming entomopathogenic bacterium, Bacillus thuringiensis. The synergistic effect was explained by an immunosuppressive effect of Serratia sp. by its high cytotoxic effect on hemocytes of S. exigua, because Serratia sp. caused septicemia of S. exigua when the bacterial cells were injected into S. exigua hemocoel. The cytotoxic factor(s) was present in the culture medium because the sterilized culture broth possessed high potency in the cytotoxicity, which was specific to granular cells and plasmatocytes, two main immune-associated hemocytes in insects.

  13. Plant-bacterium interactions analyzed by proteomics

    Directory of Open Access Journals (Sweden)

    Amber eAfroz

    2013-02-01

    Full Text Available The evolution of the plant immune response has resulted in a highly effective defense system that is able to resist potential attack by microbial pathogens. The primary immune response is referred to as pathogen associated molecular pattern triggered immunity and has evolved to recognize common features of microbial pathogens. In response to the delivery of pathogen effector proteins, plants acquired R proteins to fight against pathogen attack. R-dependent defense response is important in understanding the biochemical and cellular mechanisms and underlying these interactions will enable molecular and transgenic approaches for crops with increased biotic resistance. Proteomic analyses are particularly useful for understanding the mechanisms of host plant against the pathogen attack. Recent advances in the field of proteome analyses have initiated a new research area, i.e the analysis of more complex microbial communities and their interaction with plant. Such areas hold great potential to elucidate, not only the interactions between bacteria and their host plants, but also of bacteria-bacteria interactions between different bacterial taxa, symbiotic, pathogenic bacteria and commensal bacteria. During biotic stress, plant hormonal signaling pathways prioritizes defense over other cellular functions. Some plant pathogens take advantage of hormone dependent regulatory system by mimicking hormones that interfere with host immune responses to promote virulence. In this review, it is discussed the cross talk that plays important role in response to pathogens attack with different infection strategies using proteomic approaches.

  14. Symbiotic nitrogen fixation and nitrate uptake by the pea crop

    International Nuclear Information System (INIS)

    Jensen, E.S.

    1986-08-01

    Symbiotic nitrogen fixation and nitrate uptake by pea plants (Pisum sativum L.) were studied in field and pot experiments using the 15 N isotope dilution technique and spring barley as a non-fixing reference crop. Barley, although not ideal, seemed to be a suitable reference for pea in the 15 N-technique. Maximum N 2 fixation activity of 10 kg N fixed per ha per day was reached around the flat pod growth stage, and the activity decreased rapidly during pod-filling. The pea crop fixed between 100 and 250 kg N ha -1 , corresponding to from 45 to 80 per cent of total crop N. The amount of symbiotically fixed N 2 depended on the climatic conditions in the experimental year, the level of soil mineral N and the pea cultivar. Field-grown pea took up 60 to 70 per cent of the N-fertilizer supplied. The supply of 50 kg NO 3 -N ha -1 inhibited the N 2 fixation approximately 15 per cent. Small amounts of fertilizer N, supplied at sowing (starter-N), slightly stimulated the vegetative growth of pea, but the yields of seed dry matter and protein were not significantly influenced. In the present field experiments the environmental conditions, especially the distribution of rainfall during the growth season, seemed to be more important in determining the protein and dry matter yield of the dry pea crop, than the ability of pea to fix nitrogen symbiotically. However, fertilizer N supplied to pot-grown pea plants at the flat pod growth stage or as split applications significantly increased the yield of seed dry matter and protein. (author)

  15. Transcriptome analyses to investigate symbiotic relationships between marine protists

    Science.gov (United States)

    Balzano, Sergio; Corre, Erwan; Decelle, Johan; Sierra, Roberto; Wincker, Patrick; Da Silva, Corinne; Poulain, Julie; Pawlowski, Jan; Not, Fabrice

    2015-01-01

    Rhizaria are an important component of oceanic plankton communities worldwide. A number of species harbor eukaryotic microalgal symbionts, which are horizontally acquired in the environment at each generation. Although these photosymbioses are determinant for Rhizaria ability to thrive in oceanic ecosystems, the mechanisms for symbiotic interactions are unclear. Using high-throughput sequencing technology (i.e., 454), we generated large Expressed Sequence Tag (EST) datasets from four uncultured Rhizaria, an acantharian (Amphilonche elongata), two polycystines (Collozoum sp. and Spongosphaera streptacantha), and one phaeodarian (Aulacantha scolymantha). We assessed the main genetic features of the host/symbionts consortium (i.e., the holobiont) transcriptomes and found rRNA sequences affiliated to a wide range of bacteria and protists in all samples, suggesting that diverse microbial communities are associated with the holobionts. A particular focus was then carried out to search for genes potentially involved in symbiotic processes such as the presence of c-type lectins-coding genes, which are proteins that play a role in cell recognition among eukaryotes. Unigenes coding putative c-type lectin domains (CTLD) were found in the species bearing photosynthetic symbionts (A. elongata, Collozoum sp., and S. streptacantha) but not in the non-symbiotic one (A. scolymantha). More particularly, phylogenetic analyses group CTLDs from A. elongata and Collozoum sp. on a distinct branch from S. streptacantha CTLDs, which contained carbohydrate-binding motifs typically observed in other marine photosymbiosis. Our data suggest that similarly to other well-known marine photosymbiosis involving metazoans, the interactions of glycans with c-type lectins is likely involved in modulation of the host/symbiont specific recognition in Radiolaria. PMID:25852650

  16. The chemical formula of a magnetotactic bacterium.

    Science.gov (United States)

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life. Copyright © 2011 Wiley Periodicals, Inc.

  17. Formulation of a peach ice cream as potential symbiotic food

    OpenAIRE

    VILLALVA, Fernando Josué; CRAVERO BRUNERI, Andrea Paula; VINDEROLA, Gabriel; GONÇALVEZ DE OLIVEIRA, Enzo; PAZ, Noelia Fernanda; RAMÓN, Adriana Noemí

    2017-01-01

    Abstract Today’s population increasingly demands and consumes healthy products. For this reason, the food industry has been developing and marketing food with added bioactive components. The aim of this work was to formulate a peach ice cream reduced in calories with an added probiotic (Bifidobacterium lactis Bb-12) and prebiotics (inulin), and to evaluate its sensory quality and acceptability as potential symbiotic food. The moisture content was 76.47%; 7.14% protein; 0.15% fat; 6.37%; carbo...

  18. Microsatellite Primers in the Lichen Symbiotic Alga Trebouxia decolorans (Trebouxiophyceae

    Directory of Open Access Journals (Sweden)

    Francesco Dal Grande

    2013-03-01

    Full Text Available Premise of the study: Polymorphic microsatellite markers were developed for the symbiotic green alga Trebouxia decolorans to study fine-scale population structure and clonal diversity. Methods and Results: Using Illumina pyrosequencing, 20 microsatellite primer sets were developed for T. decolorans. The primer sets were tested on 43 individuals sampled from four subpopulations in Germany. The primers amplified di-, tri-, and tetranucleotide repeats with three to 15 alleles per locus, and the unbiased haploid diversity per locus ranged from 0.636 to 0.821. Conclusions: The identified microsatellite markers will be useful to study the genetic diversity, dispersal, and reproductive mode of this common lichen photobiont.

  19. On the nature of the symbiotic binary CI Cygni

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Oliversen, N.A.; Mikolajewska, J.; Mikolajewski, M.; Stencel, R.E.

    1991-01-01

    An analysis of ultraviolet and optical spectroscopy is presented for the symbiotic binary CI Cyg. This system contains an M5 II asymptotic branch giant Mg of about 1.5 solar mass, transfering material at a few times 0.00001 solar mass/yr into a large accretion disk surrounding a main-sequence star with Mh of about 0.5 solar mass. A boundary layer at the inner edge of the disk photoionizes a small nebula approximately confined to the Roche volume of the accreting star. An extended, more highly ionized region forms when material ejected from the disk interacts with the red giant wind. 115 refs

  20. Models for symbiotic stars in the light of the data

    International Nuclear Information System (INIS)

    Friedjung, M.

    1982-01-01

    Different single and binary models of symbiotic stars are examined. Single star models encounter a number of problems, and binary models are probable. There are however difficulties in the interpretation of radial velocities. Accretion disks play a role in some cases, but winds especially from the cool component must be taken into account in realistic models. There is some evidence of excess heating of the outer layers of the cool component. Outbursts may be related to sudden changes in the characteristics of the cool star wind. (Auth.)

  1. Symbiotic binaries. Part 1. Spectrophotometry of AX Persei

    International Nuclear Information System (INIS)

    Mikolajewska, J.; Iijima, T.

    1987-01-01

    Secular and eclipse variations of optical emission lines during almost three orbital cycles of the symbiotic star AX Per are presented. The permitted lines show pronounced but nontotal eclipse effects while forbidden lines (i.e. [O3], [Ne3], [Fe7]) do not show such effects. The data are discussed in terms of physical conditions and geometry of the line formation region. The possible presence of the reflection of a hot star light from a red-giant companion is considered. 37 refs., 2 figs., 1 tab. (author)

  2. Reconstructing Historical Light Curves of Symbiotic Stars and Novae

    Directory of Open Access Journals (Sweden)

    Jurdana-Šepić R.

    2012-06-01

    Full Text Available We reconstructed photometric histories of symbiotic stars and novae from direct inspection and measurement of photographic plates preserved at historical archives. We have completed the digging of the rich Asiago archive, and have started working on the Harvard plate stack, while other plate collections should be added soon. For homogeneity, we use the same UBV RCIC photometric comparison sequences used in current CCD observations. This data harvest has permitted the discovery of past undetected outbursts and secular trends, or to derive previously unknown orbital periods and recurrence times, which are essential to constrain the nature of these capricious and variegated active binaries.

  3. A multi-frequency study of symbiotic stars: Pt. 1

    International Nuclear Information System (INIS)

    Ivison, R.J.; Bode, M.F.; Roberts, J.A.

    1991-01-01

    The relationship between optical line flux and 5 GHz radio flux is investigated for a sample of 17 northern sky symbiotic stars. Data were obtained near-simultaneously with the Manchester Echelle Spectrograph mounted on the Isaac Newton Telescope, La Palma and the Broad Band Interferometer at Jodrell Bank. Colour excesses, calculated from Balmer hydrogen line fluxes assuming Case B recombination ratios, are compared with other reddening estimates and also combined with extinction maps to provide improved distance estimates. Optical line fluxes are used in combination with radio fluxes to estimate physical parameters of these objects, including mass-loss rates. (author)

  4. Symbiotic and nonsymbiotic hemoglobin genes of Casuarina glauca

    DEFF Research Database (Denmark)

    Jacobsen-Lyon, K; Jensen, Erik Østergaard; Jørgensen, Jan-Elo

    1995-01-01

    Casuarina glauca has a gene encoding hemoglobin (cashb-nonsym). This gene is expressed in a number of plant tissues. Casuarina also has a second family of hemoglobin genes (cashb-sym) expressed at a high level in the nodules that Casuarina forms in a nitrogen-fixing symbiosis with the actinomycete...... of the Casuarina gene. The finding that the nonsymbiotic Casuarina gene is also correctly expressed in L. corniculatus suggests to us that a comparable non-symbiotic hemoglobin gene will be found in legume species. Udgivelsesdato: 1995-Feb...

  5. The Trust Project - Symbiotic Human Machine Teams: Social Cueing for Trust and Reliance

    Science.gov (United States)

    2016-06-30

    AFRL-RH-WP-TR-2016-0096 THE TRUST PROJECT - SYMBIOTIC HUMAN-MACHINE TEAMS: SOCIAL CUEING FOR TRUST & RELIANCE Susan Rivers, Monika Lohani, Marissa...30 JUN 2012 – 30 JUN 2016 4. TITLE AND SUBTITLE THE TRUST PROJECT - SYMBIOTIC HUMAN-MACHINE TEAMS: SOCIAL CUEING FOR TRUST & RELIANCE 5a. CONTRACT

  6. Non-symbiotic haemoglobins-What's happening beyond nitric oxide scavenging?

    Science.gov (United States)

    Hill, Robert D

    2012-01-01

    Non-symbiotic haemoglobins have been an active research topic for over 30 years, during which time a considerable portfolio of knowledge has accumulated relative to their chemical and molecular properties, and their presence and mode of induction in plants. While progress has been made towards understanding their physiological role, there remain a number of unanswered questions with respect to their biological function. This review attempts to update recent progress in this area and to introduce a hypothesis as to how non-symbiotic haemoglobins might participate in regulating hormone signal transduction. Advances have been made towards understanding the structural nuances that explain some of the differences in ligand association characteristics of class 1 and class 2 non-symbiotic haemoglobins. Non-symbiotic haemoglobins have been found to function in seed development and germination, flowering, root development and differentiation, abiotic stress responses, pathogen invasion and symbiotic bacterial associations. Microarray analyses under various stress conditions yield uneven results relative to non-symbiotic haemoglobin expression. Increasing evidence of the role of nitric oxide (NO) in hormone responses and the known involvement of non-symbiotic haemoglobins in scavenging NO provide opportunities for fruitful research, particularly at the cellular level. Circumstantial evidence suggests that non-symbiotic haemoglobins may have a critical function in the signal transduction pathways of auxin, ethylene, jasmonic acid, salicylic acid, cytokinin and abscisic acid. There is a strong need for research on haemoglobin gene expression at the cellular level relative to hormone signal transduction.

  7. Comparative energetics of three fusion-fission symbiotic nuclear reactor systems

    International Nuclear Information System (INIS)

    Gordon, C.W.; Harms, A.A.

    1975-01-01

    The energetics of three symbiotic fusion-fission nuclear reactor concepts are investigated. The fuel and power balances are considered for various values of systems parameters. The results from this analysis suggest that symbiotic fusion-fission systems are advantageous from the standpoint of economy and resource utilization. (Auth.)

  8. Non-symbiotic haemoglobins—What's happening beyond nitric oxide scavenging?

    Science.gov (United States)

    Hill, Robert D.

    2012-01-01

    Background and aims Non-symbiotic haemoglobins have been an active research topic for over 30 years, during which time a considerable portfolio of knowledge has accumulated relative to their chemical and molecular properties, and their presence and mode of induction in plants. While progress has been made towards understanding their physiological role, there remain a number of unanswered questions with respect to their biological function. This review attempts to update recent progress in this area and to introduce a hypothesis as to how non-symbiotic haemoglobins might participate in regulating hormone signal transduction. Principal results Advances have been made towards understanding the structural nuances that explain some of the differences in ligand association characteristics of class 1 and class 2 non-symbiotic haemoglobins. Non-symbiotic haemoglobins have been found to function in seed development and germination, flowering, root development and differentiation, abiotic stress responses, pathogen invasion and symbiotic bacterial associations. Microarray analyses under various stress conditions yield uneven results relative to non-symbiotic haemoglobin expression. Increasing evidence of the role of nitric oxide (NO) in hormone responses and the known involvement of non-symbiotic haemoglobins in scavenging NO provide opportunities for fruitful research, particularly at the cellular level. Conclusions Circumstantial evidence suggests that non-symbiotic haemoglobins may have a critical function in the signal transduction pathways of auxin, ethylene, jasmonic acid, salicylic acid, cytokinin and abscisic acid. There is a strong need for research on haemoglobin gene expression at the cellular level relative to hormone signal transduction. PMID:22479675

  9. Symbiotic N2-fixation by the cover crop Pueraria phaseoloides as influenced by litter mineralization

    DEFF Research Database (Denmark)

    Vesterager, J.M.; Østerby, S.; Jensen, E.S.

    1995-01-01

    The perennial legume Pueraria phaseoloides is widely used as a cover crop in rubber and oil palm plantations. However, very little knowledge exists on the effect of litter mineralization from P. phaseoloides on its symbiotic N-2- fixation. The contribution from symbiotic N-2-fixation (Ndfa...

  10. Relationship between luminous fish and symbiosis. I. Comparative studies of lipopolysaccharides isolated from symbiotic luminous bacteria of the luminous marine fish, Physiculus japonicus.

    Science.gov (United States)

    Kuwae, T; Andoh, M; Fukasawa, S; Kurata, M

    1983-01-01

    In order to investigate the relationship between host and symbiosis in the luminous marine fish, Physiculus japonicus, the bacterial lipopolysaccharides (LPS) of symbiotic luminous bacteria were compared serologically and electrophoretically. Five symbiotic luminous bacteria (PJ strains) were separately isolated from five individuals of this fish species caught at three points, off the coasts of Chiba, Nakaminato, and Oharai. LPS preparations were made from these bacteria by Westphal's phenol-water method and highly purified by repeated ultracentrifugation. These LPSs contained little or no 2-keto-3-deoxyoctonate and had powerful mitogenic activity. In sodium dodecylsulfate polyacrylamide gel electrophoresis, these PJ-1 to -5 LPSs were separated by their electrophoretic patterns into three groups; the first group included PJ-1 and PJ-4, the second group PJ-2 and PJ-3, and the third group PJ-5 alone. The results agreed with those of the double immunodiffusion test; precipitin lines completely coalesced within each group but not with other groups. In immunoelectrophoresis, one precipitin line was observed between anti PJ-2 LPS serum and PJ-5 LPS but the electrophoretic mobility of PJ-5 LPS was clearly different from that of the PJ-2 LPS group. Furthermore, in a 50% inhibition test with PJ-2 LPS by the passive hemolysis system, the doses of PJ-2 LPS, PJ-3 LPS, and PJ-5 LPS required for 50% inhibition (ID50) in this system were 0.25, 0.25, and 21.6 micrograms/ml for each alkali-treated LPS, respectively, and the ID50's of both PJ-1 LPS and PJ-4 LPS were above 1,000 micrograms/ml. These results indicate that PJ-5 LPS has an antigenic determinant partially in common with LPS from the PJ-2 group but not with LPS from the PJ-1 group and that the symbiotic luminous bacterium PJ-5 is more closely related to the PJ-2 group than to the PJ-1 group. These results show that the species Physiculus japonicus is symbiotically associated with at least three immunologically different

  11. Radio emission from symbiotic variables: CI Cygni, Z Andromedae, and EG Andromedae - Temporal variability as clues to the nature of symbiotics

    International Nuclear Information System (INIS)

    Torbett, M.V.; Campbell, B.

    1989-01-01

    A continuing survey of interacting binary systems has yielded first detections of the symbiotic variables CI Cyg and EG And and reproduced previous flux measurements for Z And. The CI Cyg observation implies considerable radio variability for some symbiotics, while the radio flux from Z And indicates this object has been reasonably stable in the radio for years. Rapid radio variability may indicate the presence of mass transfer through an accretion disk. 27 refs

  12. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms

    Science.gov (United States)

    Werner, Gijsbert D. A.; Cornwell, William K.; Sprent, Janet I.; Kattge, Jens; Kiers, E. Toby

    2014-01-01

    Symbiotic associations occur in every habitat on earth, but we know very little about their evolutionary histories. Current models of trait evolution cannot adequately reconstruct the deep history of symbiotic innovation, because they assume homogenous evolutionary processes across millions of years. Here we use a recently developed, heterogeneous and quantitative phylogenetic framework to study the origin of the symbiosis between angiosperms and nitrogen-fixing (N2) bacterial symbionts housed in nodules. We compile the largest database of global nodulating plant species and reconstruct the symbiosis’ evolution. We identify a single, cryptic evolutionary innovation driving symbiotic N2-fixation evolution, followed by multiple gains and losses of the symbiosis, and the subsequent emergence of ‘stable fixers’ (clades extremely unlikely to lose the symbiosis). Originating over 100 MYA, this innovation suggests deep homology in symbiotic N2-fixation. Identifying cryptic innovations on the tree of life is key to understanding the evolution of complex traits, including symbiotic partnerships. PMID:24912610

  13. Comparative symbiotic plasmid analysis indicates that symbiosis gene ancestor type affects plasmid genetic evolution.

    Science.gov (United States)

    Wang, X; Zhao, L; Zhang, L; Wu, Y; Chou, M; Wei, G

    2018-07-01

    Rhizobial symbiotic plasmids play vital roles in mutualistic symbiosis with legume plants by executing the functions of nodulation and nitrogen fixation. To explore the gene composition and genetic constitution of rhizobial symbiotic plasmids, comparison analyses of 24 rhizobial symbiotic plasmids derived from four rhizobial genera was carried out. Results illustrated that rhizobial symbiotic plasmids had higher proportion of functional genes participating in amino acid transport and metabolism, replication; recombination and repair; carbohydrate transport and metabolism; energy production and conversion and transcription. Mesorhizobium amorphae CCNWGS0123 symbiotic plasmid - pM0123d had similar gene composition with pR899b and pSNGR234a. All symbiotic plasmids shared 13 orthologous genes, including five nod and eight nif/fix genes which participate in the rhizobia-legume symbiosis process. These plasmids contained nod genes from four ancestors and fix genes from six ancestors. The ancestral type of pM0123d nod genes was similar with that of Rhizobium etli plasmids, while the ancestral type of pM0123d fix genes was same as that of pM7653Rb. The phylogenetic trees constructed based on nodCIJ and fixABC displayed different topological structures mainly due to nodCIJ and fixABC ancestral type discordance. The study presents valuable insights into mosaic structures and the evolution of rhizobial symbiotic plasmids. This study compared 24 rhizobial symbiotic plasmids that included four genera and 11 species, illuminating the functional gene composition and symbiosis gene ancestor types of symbiotic plasmids from higher taxonomy. It provides valuable insights into mosaic structures and the evolution of symbiotic plasmids. © 2018 The Society for Applied Microbiology.

  14. Ecology of planktonic foraminifera and their symbiotic algae

    International Nuclear Information System (INIS)

    Gastrich, M.D.

    1986-01-01

    Two types of symbiotic algae occurred abundantly and persistently in the cytoplasm of several species of planktonic Foraminifera over a ten year period in different tropical and subtropical areas of the North Atlantic Ocean. These planktonic Foraminifera host species consistently harbored either dinoflagellates or a newly described minute coccoid algal type. There appeared to be a specific host-symbiont relationship in these species regardless of year, season or geographic locality. The larger ovoid dinoflagellates (Pyrrhophycophyta) occur in the spinose species Globigerinoides ruber, Globigerinoides sacculifer, G. conglobatus and Orbulina universa. The smaller alga, from 1.5 to 3.5 um in diameter, occurs in one spinose species Globigerinella aequilateralis and also in the non-spinose species Globigerinita glutinata, Globoquadrina dutertrei, Globorotalia menardii, Globorotalia cristata, Globorotalia inflata, Candeina nitida, in various juvenile specimens and at all seasons except the winter months in Pulleniatina obliquiloculata and Globorotalial hirsuta. Controlled laboratory studies indicated a significant C incorporation into the host cytoplasm and inorganic calcium carbonate test of Globigerinoides ruber. During incubation for up to two hours, the 14 C uptake into the cytoplasm and test in the light was significantly greater than uptake in the dark by living specimens or by dead foraminifers. There appears to be light-enhanced uptake of 14 C into the test with dinoflagellate photosynthesis contributing to host calcification. In culture, symbiotic algae were observed to survive for the duration of the lifespan of their hosts

  15. Adaptive symbiotic organisms search (SOS algorithm for structural design optimization

    Directory of Open Access Journals (Sweden)

    Ghanshyam G. Tejani

    2016-07-01

    Full Text Available The symbiotic organisms search (SOS algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.

  16. Breeding description for fast reactors and symbiotic reactor systems

    International Nuclear Information System (INIS)

    Hanan, N.A.

    1979-01-01

    A mathematical model was developed to provide a breeding description for fast reactors and symbiotic reactor systems by means of figures of merit type quantities. The model was used to investigate the effect of several parameters and different fuel usage strategies on the figures of merit which provide the breeding description. The integrated fuel cycle model for a single-reactor is reviewed. The excess discharge is automatically used to fuel identical reactors. The resulting model describes the accumulation of fuel in a system of identical reactors. Finite burnup and out-of-pile delays and losses are treated in the model. The model is then extended from fast breeder park to symbiotic reactor systems. The asymptotic behavior of the fuel accumulation is analyzed. The asymptotic growth rate appears as the largest eigenvalue in the solution of the characteristic equations of the time dependent differential balance equations for the system. The eigenvector corresponding to the growth rate is the core equilibrium composition. The analogy of the long-term fuel cycle equations, in the framework of this model, and the neutron balance equations is explored. An eigenvalue problem adjoint to the one generated by the characteristic equations of the system is defined. The eigenvector corresponding to the largest eigenvalue, i.e. to the growth rate, represents the ''isotopic breeding worths.'' Analogously to the neutron adjoint flux it is shown that the isotopic breeding worths represent the importance of an isotope for breeding, i.e. for the growth rate of a system

  17. Colored-noise-induced discontinuous transitions in symbiotic ecosystems

    Science.gov (United States)

    Mankin, Romi; Sauga, Ako; Ainsaar, Ain; Haljas, Astrid; Paunel, Kristiina

    2004-06-01

    A symbiotic ecosystem is studied by means of the Lotka-Volterra stochastic model, using the generalized Verhulst self-regulation. The effect of fluctuating environment on the carrying capacity of a population is taken into account as dichotomous noise. The study is a follow-up of our investigation of symbiotic ecosystems subjected to three-level (trichotomous) noise [R. Mankin, A. Ainsaar, A. Haljas, and E. Reiter, Phys. Rev. E 65, 051108 (2002)]. Relying on the mean-field theory, an exact self-consistency equation for stationary states is derived. In some cases the mean field exhibits hysteresis as a function of noise parameters. It is established that random interactions with the environment can cause discontinuous transitions. The dependence of the critical coupling strengths on the noise parameters is found and illustrated by phase diagrams. Predictions from the mean-field theory are compared with the results of numerical simulations. Our results provide a possible scenario for catastrophic shifts of population sizes observed in nature.

  18. Extensive Differences in Gene Expression Between Symbiotic and Aposymbiotic Cnidarians

    Science.gov (United States)

    Lehnert, Erik M.; Mouchka, Morgan E.; Burriesci, Matthew S.; Gallo, Natalya D.; Schwarz, Jodi A.; Pringle, John R.

    2013-01-01

    Coral reefs provide habitats for a disproportionate number of marine species relative to the small area of the oceans that they occupy. The mutualism between the cnidarian animal hosts and their intracellular dinoflagellate symbionts provides the nutritional foundation for coral growth and formation of reef structures, because algal photosynthesis can provide >90% of the total energy of the host. Disruption of this symbiosis (“coral bleaching”) is occurring on a large scale due primarily to anthropogenic factors and poses a major threat to the future of coral reefs. Despite the importance of this symbiosis, the cellular mechanisms involved in its establishment, maintenance, and breakdown remain largely unknown. We report our continued development of genomic tools to study these mechanisms in Aiptasia, a small sea anemone with great promise as a model system for studies of cnidarian–dinoflagellate symbiosis. Specifically, we have generated de novo assemblies of the transcriptomes of both a clonal line of symbiotic anemones and their endogenous dinoflagellate symbionts. We then compared transcript abundances in animals with and without dinoflagellates. This analysis identified >900 differentially expressed genes and allowed us to generate testable hypotheses about the cellular functions affected by symbiosis establishment. The differentially regulated transcripts include >60 encoding proteins that may play roles in transporting various nutrients between the symbiotic partners; many more encoding proteins functioning in several metabolic pathways, providing clues regarding how the transported nutrients may be used by the partners; and several encoding proteins that may be involved in host recognition and tolerance of the dinoflagellate. PMID:24368779

  19. Symbiotic stars - a binary model with super-critical accretion

    Energy Technology Data Exchange (ETDEWEB)

    Bath, G T [National Radio Astronomy Observatory, Charlottesville, Va. (USA)

    1977-01-01

    The structure of symbiotic variables is discussed in terms of a binary model. Disc accretion by a main sequence star or white dwarf at rates close to the Eddington limit produces an ultraviolet continuum source near the accreting star surface. This generates a variable, radiatively-driven, out-flowing wind. The wind is optically thick and the disc luminosity is absorbed and scattered and thus degraded into the optical region. Variations in the rate of mass loss in the wind lead to optical eruptions through shifts in the position of, and conditions in, the last scattering surface. The behaviour of Z And determined by Boyarchuk is shown to be in agreement with such a model. The conditions in the out-flowing wind are discussed. Limits on the mass loss rate are derived from conditions at the surface of the accreting star. It is suggested that variable out-flow in the wind is generated by fluctuations in disc luminosity produced by changes in the giant companions rate of mass transfer. The relation between symbiotic variables and classical and dwarf novae is discussed.

  20. Symbiotic propagation of seedlings of Cyrtopodium glutiniferum Raddi (Orchidaceae

    Directory of Open Access Journals (Sweden)

    Fernanda Aparecida Rodrigues Guimarães

    2013-09-01

    Full Text Available In nature, orchid seeds obtain the nutrients necessary for germination by degrading intracellular fungal structures formed after colonization of the embryo by mycorrhizal fungi. Protocols for asymbiotic germination of orchid seeds typically use media with high concentrations of soluble carbohydrate and minerals. However, when reintroduced into the field, seedlings obtained via asymbiotic germination have lower survival rates than do seedlings obtained via symbiotic germination. Tree fern fiber, the ideal substrate for orchid seedling acclimatization, is increasingly scarce. Here, we evaluated seed germination and protocorm development of Cyrtopodium glutiniferum Raddi cultivated in asymbiotic media (Knudson C and Murashige & Skoog and in oatmeal agar (OA medium inoculated with the mycorrhizal fungus Epulorhiza sp., using non-inoculated OA medium as a control. We also evaluated the performance of tree fern fiber, pine bark, eucalyptus bark, corncob and sawdust as substrates for the acclimatization of symbiotically propagated plants. We determined germination percentages, protocorm development and growth indices at 35 and 70 days of cultivation. Relative growth rates and the effects of substrates on mycorrhizal formation were calculated after 165 days of cultivation. Germination efficiency and growth indices were best when inoculated OA medium was used. Corncob and pine bark showed the highest percentages of colonized system roots. The OA medium inoculated with Epulorhiza sp. shows potential for C. glutiniferum seedling production. Corncob and pine bark are promising substitutes for tree fern fiber as substrates for the acclimatization of orchid seedlings.

  1. Accretion onto hot white dwarfs in relation to symbiotic novae

    International Nuclear Information System (INIS)

    Livio, M.; Prialnik, D.; Regev, O.

    1989-01-01

    Numerical calculations are used to study the hydrodynamic evolution of a hot white dwarf with 1 solar mass accreting hydrogen-rich matter at rates between 10 to the -8th and 10 to the -6th solar masses/yr. It is found that for accretion at a rate of about 10 to the -8th solar masses/yr, nova-type outbursts of long duration occur at intervals of about 1500 yr. About half of the accreted envelope is ejected during these outbursts. At a rate of about 10 to the -7th solar masses/yr, the star alternates between comparable periods at a high plateau luminosity and giant dimensions and periods at a low luminosity and white dwarf dimension. At 10 to the -6th solar masses/yr, equilibrium is achieved with a typical red giant luminosity supported by steady hydrogen burning. It is concluded that symbiotic novae are more likely to occur in detached systems involving wind accretors. Thus, the contribution of symbiotic stars to the frequency of type I supernovae is severely constrained. 39 refs

  2. Concept evaluation of nuclear fusion driven symbiotic energy systems

    International Nuclear Information System (INIS)

    Renier, J.P.; Hoffman, T.J.

    1979-01-01

    This paper analyzes systems based on D-T and semi-catalyzed D-D fusion-powered U233 breeders. Two different blanket types were used: metallic thorium pebble-bed blankets with a batch reprocessing mode and a molten salt blanket with on-line continuous or batch reprocessing. All fusion-driven blankets are assumed to have spherical geometries, with a 85% closure. Neutronics depletion calculations were performed with a revised version of the discrete ordinates code XSDRN-PM, using multigroup (100 neutron, 21 gamma-ray groups) coupled cross-section libraries. These neutronics calculations are coupled with a scenario optimization and cost analysis code. Also, the fusion burn was shaped so as to keep the blanket maximum power density below a preset value, and to improve the performance of the fusion-driven systems. The fusion-driven symbiotes are compared with LMFBR-driven energy systems. The nuclear fission breeders that were used as drivers have parameters characteristic of heterogeneous, oxide LMFBRs. They are net plutonium users - the plutonium is obtained from the discharges of LWRs - and U233 is bred in the fission breeder thorium blankets. The analyses of the symbiotic energy systems were performed at equilibrium, at maximum rate of grid expansion, and for a given nuclear power demand

  3. Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp.

    Science.gov (United States)

    Gehringer, Michelle M; Adler, Lewis; Roberts, Alexandra A; Moffitt, Michelle C; Mihali, Troco K; Mills, Toby J T; Fieker, Claus; Neilan, Brett A

    2012-01-01

    The nitrogen-fixing bacterium, Nostoc, is a commonly occurring cyanobacterium often found in symbiotic associations. We investigated the potential of cycad cyanobacterial endosymbionts to synthesize microcystin/nodularin. Endosymbiont DNA was screened for the aminotransferase domain of the toxin biosynthesis gene clusters. Five endosymbionts carrying the gene were screened for bioactivity. Extracts of two isolates inhibited protein phosphatase 2A and were further analyzed using electrospray ionization mass spectrometry (ESI-MS)/MS. Nostoc sp. ‘Macrozamia riedlei 65.1' and Nostoc sp. ‘Macrozamia serpentina 73.1' both contained nodularin. High performance liquid chromatography (HPLC) HESI-MS/MS analysis confirmed the presence of nodularin at 9.55±2.4 ng μg−1 chlorophyll a in Nostoc sp. ‘Macrozamia riedlei 65.1' and 12.5±8.4 ng μg−1 Chl a in Nostoc sp. ‘Macrozamia serpentina 73.1' extracts. Further scans indicated the presence of the rare isoform [L-Har2] nodularin, which contains ℒ-homoarginine instead of ℒ-arginine. Nodularin was also present at 1.34±0.74 ng ml−1 (approximately 3 pmol per g plant ww) in the methanol root extracts of M. riedlei MZ65, while the presence of [L-Har2] nodularin in the roots of M. serpentina MZ73 was suggested by HPLC HESI-MS/MS analysis. The ndaA-B and ndaF genomic regions were sequenced to confirm the presence of the hybrid polyketide/non-ribosomal gene cluster. A seven amino-acid insertion into the NdaA-C1 domain of N. spumigena NSOR10 protein was observed in all endosymbiont-derived sequences, suggesting the transfer of the nda cluster from N. spumigena to terrestrial Nostoc species. This study demonstrates the synthesis of nodularin and [L-Har2] nodularin in a non-Nodularia species and the production of cyanobacterial hepatotoxin by a symbiont in planta. PMID:22456448

  4. Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp.

    Science.gov (United States)

    Gehringer, Michelle M; Adler, Lewis; Roberts, Alexandra A; Moffitt, Michelle C; Mihali, Troco K; Mills, Toby J T; Fieker, Claus; Neilan, Brett A

    2012-10-01

    The nitrogen-fixing bacterium, Nostoc, is a commonly occurring cyanobacterium often found in symbiotic associations. We investigated the potential of cycad cyanobacterial endosymbionts to synthesize microcystin/nodularin. Endosymbiont DNA was screened for the aminotransferase domain of the toxin biosynthesis gene clusters. Five endosymbionts carrying the gene were screened for bioactivity. Extracts of two isolates inhibited protein phosphatase 2A and were further analyzed using electrospray ionization mass spectrometry (ESI-MS)/MS. Nostoc sp. 'Macrozamia riedlei 65.1' and Nostoc sp. 'Macrozamia serpentina 73.1' both contained nodularin. High performance liquid chromatography (HPLC) HESI-MS/MS analysis confirmed the presence of nodularin at 9.55±2.4 ng μg-1 chlorophyll a in Nostoc sp. 'Macrozamia riedlei 65.1' and 12.5±8.4 ng μg-1 Chl a in Nostoc sp. 'Macrozamia serpentina 73.1' extracts. Further scans indicated the presence of the rare isoform [L-Har(2)] nodularin, which contains L-homoarginine instead of L-arginine. Nodularin was also present at 1.34±0.74 ng ml(-1) (approximately 3 pmol per g plant ww) in the methanol root extracts of M. riedlei MZ65, while the presence of [L-Har(2)] nodularin in the roots of M. serpentina MZ73 was suggested by HPLC HESI-MS/MS analysis. The ndaA-B and ndaF genomic regions were sequenced to confirm the presence of the hybrid polyketide/non-ribosomal gene cluster. A seven amino-acid insertion into the NdaA-C1 domain of N. spumigena NSOR10 protein was observed in all endosymbiont-derived sequences, suggesting the transfer of the nda cluster from N. spumigena to terrestrial Nostoc species. This study demonstrates the synthesis of nodularin and [L-Har(2)] nodularin in a non-Nodularia species and the production of cyanobacterial hepatotoxin by a symbiont in planta.

  5. SEARCHING FOR NEW YELLOW SYMBIOTIC STARS: POSITIVE IDENTIFICATION OF StHα63

    Energy Technology Data Exchange (ETDEWEB)

    Baella, N. O. [Unidad de Astronomía, Instituto Geofísico del Perú, Lima, Per (Peru); Pereira, C. B.; Alvarez-Candal, A. [Observatório Nacional/MCTI, Rua Gen. José Cristino, 77, 20921-400, Rio de Janeiro (Brazil); Miranda, L. F., E-mail: nobar.baella@gmail.com, E-mail: claudio@on.br, E-mail: alvarez@on.br, E-mail: lfm@iaa.es [Instituto de Astrofísica de Andalucía- CSIC, C/Glorieta de la Astronomía s/n, E-18008 Granada (Spain)

    2016-04-15

    Yellow symbiotic stars are useful targets for probing whether mass transfer has happened in their binary systems. However, the number of known yellow symbiotic stars is very scarce. We report spectroscopic observations of five candidate yellow symbiotic stars that were selected by their positions in the 2MASS (J − H) versus (H − K{sub s}) diagram and which were included in some emission-line catalogs. Among the five candidates, only StHα63 is identified as a new yellow symbiotic star because of its spectrum and its position in the [TiO]{sub 1}–[TiO]{sub 2} diagram, which indicates a K4–K6 spectral type. In addition, the derived electron density (∼10{sup 8.4} cm{sup −3}) and several emission-line intensity ratios provide further support for that classification. The other four candidates are rejected as symbiotic stars because three of them actually do not show emission lines and the fourth one only Balmer emission lines. We also found that the WISE W3–W4 index clearly separates normal K-giants from yellow symbiotic stars and therefore can be used as an additional tool for selecting candidate yellow symbiotic stars.

  6. [Response of arbuscular mycorrhizal fungal lipid metabolism to symbiotic signals in mycorrhiza].

    Science.gov (United States)

    Tian, Lei; Li, Yuanjing; Tian, Chunjie

    2016-01-04

    Arbuscular mycorrhizal (AM) fungi play an important role in energy flow and nutrient cycling, besides their wide distribution in the cosystem. With a long co-evolution, AM fungi and host plant have formed a symbiotic relationship, and fungal lipid metabolism may be the key point to find the symbiotic mechanism in arbusculart mycorrhiza. Here, we reviewed the most recent progress on the interaction between AM fungal lipid metabolism and symbiotic signaling networks, especially the response of AM fungal lipid metabolism to symbiotic signals. Furthermore, we discussed the response of AM fungal lipid storage and release to symbiotic or non-symbiotic status, and the correlation between fungal lipid metabolism and nutrient transfer in mycorrhiza. In addition, we explored the feedback of the lipolysis process to molecular signals during the establishment of symbiosis, and the corresponding material conversion and energy metabolism besides the crosstalk of fungal lipid metabolism and signaling networks. This review will help understand symbiotic mechanism of arbuscular mycorrhiza fungi and further application in ecosystem.

  7. Body size and symbiotic status influence gonad development in Aiptasia pallida anemones.

    Science.gov (United States)

    Carlisle, Judith F; Murphy, Grant K; Roark, Alison M

    2017-01-01

    Pale anemones ( Aiptasia pallida ) coexist with dinoflagellates (primarily Symbiodinium minutum ) in a mutualistic relationship. The purpose of this study was to investigate the role of these symbionts in gonad development of anemone hosts. Symbiotic and aposymbiotic anemones were subjected to light cycles that induced gametogenesis. These anemones were then sampled weekly for nine weeks, and gonad development was analyzed histologically. Anemone size was measured as mean body column diameter, and oocytes or sperm follicles were counted for each anemone. Generalized linear models were used to evaluate the influence of body size and symbiotic status on whether gonads were present and on the number of oocytes or sperm follicles produced. Body size predicted whether gonads were present, with larger anemones being more likely than smaller anemones to develop gonads. Both body size and symbiotic status predicted gonad size, such that larger and symbiotic anemones produced more oocytes and sperm follicles than smaller and aposymbiotic anemones. Overall, only 22 % of aposymbiotic females produced oocytes, whereas 63 % of symbiotic females produced oocytes. Similarly, 6 % of aposymbiotic males produced sperm follicles, whereas 60 % of symbiotic males produced sperm follicles. Thus, while gonads were present in 62 % of symbiotic anemones, they were present in only 11 % of aposymbiotic anemones. These results indicate that dinoflagellate symbionts influence gonad development and thus sexual maturation in both female and male Aiptasia pallida anemones. This finding substantiates and expands our current understanding of the importance of symbionts in the development and physiology of cnidarian hosts.

  8. Evolutionary signals of symbiotic persistence in the legume-rhizobia mutualism.

    Science.gov (United States)

    Werner, Gijsbert D A; Cornwell, William K; Cornelissen, Johannes H C; Kiers, E Toby

    2015-08-18

    Understanding the origins and evolutionary trajectories of symbiotic partnerships remains a major challenge. Why are some symbioses lost over evolutionary time whereas others become crucial for survival? Here, we use a quantitative trait reconstruction method to characterize different evolutionary stages in the ancient symbiosis between legumes (Fabaceae) and nitrogen-fixing bacteria, asking how labile is symbiosis across different host clades. We find that more than half of the 1,195 extant nodulating legumes analyzed have a high likelihood (>95%) of being in a state of high symbiotic persistence, meaning that they show a continued capacity to form the symbiosis over evolutionary time, even though the partnership has remained facultative and is not obligate. To explore patterns associated with the likelihood of loss and retention of the N2-fixing symbiosis, we tested for correlations between symbiotic persistence and legume distribution, climate, soil and trait data. We found a strong latitudinal effect and demonstrated that low mean annual temperatures are associated with high symbiotic persistence in legumes. Although no significant correlations between soil variables and symbiotic persistence were found, nitrogen and phosphorus leaf contents were positively correlated with legumes in a state of high symbiotic persistence. This pattern suggests that highly demanding nutrient lifestyles are associated with more stable partnerships, potentially because they "lock" the hosts into symbiotic dependency. Quantitative reconstruction methods are emerging as a powerful comparative tool to study broad patterns of symbiont loss and retention across diverse partnerships.

  9. Evolutionary signals of symbiotic persistence in the legume–rhizobia mutualism

    Science.gov (United States)

    Werner, Gijsbert D. A.; Cornwell, William K.; Cornelissen, Johannes H. C.; Kiers, E. Toby

    2015-01-01

    Understanding the origins and evolutionary trajectories of symbiotic partnerships remains a major challenge. Why are some symbioses lost over evolutionary time whereas others become crucial for survival? Here, we use a quantitative trait reconstruction method to characterize different evolutionary stages in the ancient symbiosis between legumes (Fabaceae) and nitrogen-fixing bacteria, asking how labile is symbiosis across different host clades. We find that more than half of the 1,195 extant nodulating legumes analyzed have a high likelihood (>95%) of being in a state of high symbiotic persistence, meaning that they show a continued capacity to form the symbiosis over evolutionary time, even though the partnership has remained facultative and is not obligate. To explore patterns associated with the likelihood of loss and retention of the N2-fixing symbiosis, we tested for correlations between symbiotic persistence and legume distribution, climate, soil and trait data. We found a strong latitudinal effect and demonstrated that low mean annual temperatures are associated with high symbiotic persistence in legumes. Although no significant correlations between soil variables and symbiotic persistence were found, nitrogen and phosphorus leaf contents were positively correlated with legumes in a state of high symbiotic persistence. This pattern suggests that highly demanding nutrient lifestyles are associated with more stable partnerships, potentially because they “lock” the hosts into symbiotic dependency. Quantitative reconstruction methods are emerging as a powerful comparative tool to study broad patterns of symbiont loss and retention across diverse partnerships. PMID:26041807

  10. Journal entries facilitating preprofessional scientific literacy and mutualistic symbiotic relationships

    Science.gov (United States)

    Vander Vliet, Valerie J.

    This study explored journal writing as an alternative assessment to promote the development of pre-professional scientific literacy and mutualistic symbiotic relationships between teaching and learning, instruction and assessment, and students and teachers. The larger context of this study is an action reaction project of the attempted transformation of a traditional first year undergraduate pre-professional biology class to sociocultural constructivist principles. The participants were commuter and residential, full and part-time students ranging in age from 18 to 27 and 18/21 were female. The backgrounds of the students varied considerably, ranging from low to upper middle income, including students of Black and Asian heritage. The setting was a medium-sized Midwestern university. The instructor has twenty years of experience teaching Biology at the college level. The data were analyzed using the constant comparative method and the development of grounded theory. The journal entries were analyzed as to their function and form in relationship to the development of multiple aspects of pre-professional scientific literacy. The perceptions of the students as to the significance of the use of journal entries were also determined through the analysis of their use of journal entries in their portfolios and statements in surveys and portfolios. The analysis revealed that journal entries promoted multiple aspects of pre-professional scientific literacy in both students and the instructor and facilitated the development of mutualistic symbiotic relationships between teaching and learning, instruction and assessment, and students and teachers. The function analysis revealed that the journal entries fulfilled the functions intended for the development of multiple aspects of pre-professional scientific literacy. The complexity of journal writing emerged from the form analysis, which revealed the multiple form elements inherent in journal entries. Students perceived journal

  11. Morula-like cells in photo-symbiotic clams harboring zooxanthellae.

    Science.gov (United States)

    Nakayama, K; Nishijima, M; Maruyama, T

    1998-06-01

    Symbiosis is observed between zooxanthellae, symbiotic dinoflagellates, and giant clams and related clams which belong to the families Tridacnidae and Cardiidae. We have previously shown that a photo-symbiotic clam Tridacna crocea has three types of hemocytes, the eosinophilic granular hemocyte with phagocytic activity, the agranular cell with electron lucent granules, and the morula-like cell with large (ca. 2 mum in diameter) colorless granules. The function of the morula-like cell is not clear, but it has not been reported in any other bivalves except photo-symbiotic clams T. crocea and Tridacna maxima. In order to clarify whether it is specific to photo-symbiotic clams or not, we studied hemocytes in the photo-symbiotic clams Tridacna derasa (Tridacnidae), Hippopus hippopus (Tridacnidae) and Corculum cardissa (Cardiidae), and a closely related non-symbiotic clam Fulvia mutica (Cardiidae). The eosinophilic granular hemocytes and the agranular cells were found in all of the clams examined. However, the morula-like cells which were packed with many large electron dense granules (ca. 2 mum in diameter), were observed only in the photo-symbiotic clams. In F. mutica, a closely related non-symbiotic clam, this type of hemocyte was not found. Instead a hemocyte with vacuoles and a few large granules containing peroxidase activity was observed. The large granules of F. mutica varied in size from ca. 1-9 mum in diameter. Present data suggests that the presence of morula-like cells is restricted to photo-symbiotic clams and that the hemocytes associated with the morula-like cells may have some functional relationship to symbiosis with zooxanthellae.

  12. Ethanologenic potential of the bacterium Bacillus cereus NB-19 in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-01

    Dec 1, 2009 ... Ethanologenic bacterium was cultivated in a suspension of sugarcane ... bagasse is very useful for obtaining yields of the different products including cell mass and ethanol as ... the resources for the green fuel generation.

  13. Exploring the potential of symbiotic fungal endophytes in cereal disease suppression

    DEFF Research Database (Denmark)

    O'Hanlon, Karen; Knorr, Kamilla; Jørgensen, Lise Nistrup

    2012-01-01

    , and environmental and health concerns surrounding the use of chemical treatments. There is currently a demand for new disease control strategies, and one such strategy involves the use of symbiotic fungal endophytes as biological control agents against fungal pathogens in cereals. Despite the fact that biological...... control by symbiotic fungal endophytes has been documented, particularly with respect to clavicipitaceous endophytes in C3 cool-season grasses, this area remains relatively underexplored in cereals. We highlight for the first time the potential in using symbiotic fungal endophytes to control foliar cereal...

  14. Bacteriophages encode factors required for protection in a symbiotic mutualism.

    Science.gov (United States)

    Oliver, Kerry M; Degnan, Patrick H; Hunter, Martha S; Moran, Nancy A

    2009-08-21

    Bacteriophages are known to carry key virulence factors for pathogenic bacteria, but their roles in symbiotic bacteria are less well understood. The heritable symbiont Hamiltonella defensa protects the aphid Acyrthosiphon pisum from attack by the parasitoid Aphidius ervi by killing developing wasp larvae. In a controlled genetic background, we show that a toxin-encoding bacteriophage is required to produce the protective phenotype. Phage loss occurs repeatedly in laboratory-held H. defensa-infected aphid clonal lines, resulting in increased susceptibility to parasitism in each instance. Our results show that these mobile genetic elements can endow a bacterial symbiont with benefits that extend to the animal host. Thus, phages vector ecologically important traits, such as defense against parasitoids, within and among symbiont and animal host lineages.

  15. MODIFICATION OF SEA ANEMONE BEHAVIOR BY SYMBIOTIC ZOOXANTHELLAE: PHOTOTAXIS.

    Science.gov (United States)

    Pearse, Vicki Buchsbaum

    1974-12-01

    The sea anemone Anthopleura elegantissima, with and without endosymbiotic zooxanthellae, was tested for evidence of phototactic behavior. Anemones with zooxanthellae always displayed phototaxis, either positive or negative depending on the experimental light intensity and the light intensity of the habitat from which the animals were taken. Anemones without zooxanthellae-even those that had previously harbored zooxanthellae and that were genetically identical clone-mates of phototactic individuals-never displayed phototaxis, appearing completely indifferent to light and shade. The results indicate that phototaxis in this sea anemone depends directly on the presence of its symbiotic algae. It is suggested that the flexible phototactic behavior of the anemone may play an important role in favorably regulating the amount of light to which the zooxanthellae are exposed.

  16. An update on probiotics, prebiotics and symbiotics in clinical nutrition.

    Science.gov (United States)

    Olveira, Gabriel; González-Molero, Inmaculada

    2016-11-01

    The concept of prebiotics, probiotics, and symbiotics and their use in different situations of daily clinical practice related to clinical nutrition is reviewed, as well as their role in the treatment/prevention of diarrhea (acute, induced by antibiotics, secondary to radiotherapy), inflammatory bowel disease (ulcerative colitis and pouchitis), in colonic health (constipation, irritable bowel), in liver disease (steatosis and minimum encephalopathy), and in intensive care, surgical, and liver transplantation. While their effectiveness for preventing antibiotic-induced diarrhea and pouchitis in ulcerative colitis appears to be shown, additional studies are needed to establish recommendations in most clinical settings. The risk of infection associated to use of probiotics is relatively low; however, there are selected groups of patients in whom they should be used with caution (as jejunum infusion). Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. The 1984 eclipse of the symbiotic binary SY Muscae

    Science.gov (United States)

    Kenyon, S. J.; Michalitisianos, A. G.; Lutz, J. H.; Kafatos, M.

    1985-01-01

    Data from IUE spectra obtained with the 10 x 20-arcsec aperture on May 13, 1984, and optical spectrophotometry obtained with an SIT vidicon on the 1.5-m telescope at CTIO on April 29-May 1, 1984, are reported for the symbiotic binary SY Mus. The data are found to be consistent with a model of a red-giant secondary of 60 solar radii which completely eclipses the hot primary every 627 d but only partially eclipses the 75-solar-radius He(+) region surrounding the primary. The distance to SY Mus is estimated as 1.3 kpc. It is suggested that the large Balmer decrement in eclipse, with (H-alpha)/(H-beta) = 8.3 and (H-beta)/(H-gamma) = 1.5, is associated with an electron density of about 10 to the 10th/cu cm.

  18. On the nature of the symbiotic star BF Cygni

    International Nuclear Information System (INIS)

    Mikolajewska, J.; Mikolajewski, M.; Kenyon, S.J.

    1989-01-01

    Optical and ultraviolet spectroscopy of the symbiotic binary BF Cyg obtained during 1979-1988 is discussed. This system consists of a low-mass M5 giant filling about 50 percent of its tidal volume and a hot, luminous compact object similar to the central star of a planetary nebula. The binary is embedded in an asymmetric nebula which includes a small, high-density region and an extended region of lower density. The larger nebula is formed by a slow wind ejected by the cool component and ionized by the hot star, while the more compact nebula is material expelled by the hot component in the form of a bipolar wind. The analysis indicates that disk accretion is essential to maintain the nuclear burning shell of the hot star. 84 refs

  19. Spectroscopic observations of the symbiotic star AG Draconis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S E; Bopp, B W [Toledo Univ., OH (USA)

    1981-06-01

    Spectroscopic observations, covering the lambdalambda 3500-7000 region, of the symbiotic star AG Draconis are reported. The Balmer and He I line profiles were found to show pronounced blueward asymmetries. Changes in the line profiles of the Balmer lines were observed, and found to be well correlated with the 554-day photometric period of Meinunger, with a second, blueward component being visible in the Balmer emissions at photometric minimum. The weak, blueshifted component in the Balmer emission lines is explained in terms of a stellar wind from the hot secondary at of the order of 60 kms s/sup -1/. The behaviour of the broad emission feature at lambda6380 has been investigated. This feature was found to originate from an ion with an ionization potential in the range 77-101 eV. Various models for AG Dra are discussed.

  20. Metabolic engineering of a diazotrophic bacterium improves ammonium release and biofertilization of plants and microalgae.

    Science.gov (United States)

    Ambrosio, Rafael; Ortiz-Marquez, Juan Cesar Federico; Curatti, Leonardo

    2017-03-01

    The biological nitrogen fixation carried out by some Bacteria and Archaea is one of the most attractive alternatives to synthetic nitrogen fertilizers. However, with the exception of the symbiotic rhizobia-legumes system, progress towards a more extensive realization of this goal has been slow. In this study we manipulated the endogenous regulation of both nitrogen fixation and assimilation in the aerobic bacterium Azotobacter vinelandii. Substituting an exogenously inducible promoter for the native promoter of glutamine synthetase produced conditional lethal mutant strains unable to grow diazotrophically in the absence of the inducer. This mutant phenotype could be reverted in a double mutant strain bearing a deletion in the nifL gene that resulted in constitutive expression of nif genes and increased production of ammonium. Under GS non-inducing conditions both the single and the double mutant strains consistently released very high levels of ammonium (>20mM) into the growth medium. The double mutant strain grew and excreted high levels of ammonium under a wider range of concentrations of the inducer than the single mutant strain. Induced mutant cells could be loaded with glutamine synthetase at different levels, which resulted in different patterns of extracellular ammonium accumulation afterwards. Inoculation of the engineered bacteria into a microalgal culture in the absence of sources of C and N other than N 2 and CO 2 from the air, resulted in a strong proliferation of microalgae that was suppressed upon addition of the inducer. Both single and double mutant strains also promoted growth of cucumber plants in the absence of added N-fertilizer, while this property was only marginal in the parental strain. This study provides a simple synthetic genetic circuit that might inspire engineering of optimized inoculants that efficiently channel N 2 from the air into crops. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All

  1. Unidentified bands lambda lambda 6830, 7088 in symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D A [Anglo-Australian Observatory, Epping (Australia)

    1980-01-01

    About 60 stars are known which show broad emission bands centred at wavelengths of 6830 and 7088 A. The stars are all classified as symbiotic, since they combine high-excitation emission and M-type absorption spectra. From the behaviour of the bands in the evolution of slow novae as they approach the symbiotic phase, and from the occurrence of the bands in stars of different excitation, it is concluded that the ions responsible have ionization potentials near 100 eV. The similarity of behaviour and profile of the two suggests that both arise in the same species. No suitable identification appears possible at this time, because of the lack of data on highly ionized species. Arguments are presented which narrow the range of possibilities, the most notable argument being the absence of O VI emission. It is suggested that Fe VII or Fe VI may be responsible. In particular, it is recommended that transitions from the z/sup 3/P/sup 0/ and z/sup 1/F/sup 0/ levels of Fe VII be examined in detail. The differing, and time-varying profiles of the 6830 and 7088 bands in the stars observed are best explained in terms of velocity broadening. Velocities in excess of 1000 km s/sup -1/ are present. Rotation is a more credible form of the mass motion than expansion, because of the tendency to double profiles in these bands. If rotation is responsible, these velocities imply that the objects central to the emission nebulae are more compact than main sequence stars.

  2. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  3. Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions.

    Science.gov (United States)

    Wang, Qi; Liu, Jinge; Zhu, Hongyan

    2018-01-01

    Legumes are able to form a symbiotic relationship with nitrogen-fixing soil bacteria called rhizobia. The result of this symbiosis is to form nodules on the plant root, within which the bacteria can convert atmospheric nitrogen into ammonia that can be used by the plant. Establishment of a successful symbiosis requires the two symbiotic partners to be compatible with each other throughout the process of symbiotic development. However, incompatibility frequently occurs, such that a bacterial strain is unable to nodulate a particular host plant or forms nodules that are incapable of fixing nitrogen. Genetic and molecular mechanisms that regulate symbiotic specificity are diverse, involving a wide range of host and bacterial genes/signals with various modes of action. In this review, we will provide an update on our current knowledge of how the recognition specificity has evolved in the context of symbiosis signaling and plant immunity.

  4. Corals hosting symbiotic hydrozoans are less susceptible to predation and disease

    KAUST Repository

    Montano, Simone; Fattorini, Simone; Parravicini, Valeriano; Berumen, Michael L.; Galli, Paolo; Maggioni, Davide; Arrigoni, Roberto; Seveso, Davide; Strona, Giovanni

    2017-01-01

    for our understanding of the ecology of coral reefs, and for their conservation in the current scenario of global change, because it suggests that symbiotic hydrozoans may play an active role in protecting their scleractinian hosts from stresses induced

  5. TIDALLY ENHANCED STELLAR WIND: A WAY TO MAKE THE SYMBIOTIC CHANNEL TO TYPE Ia SUPERNOVA VIABLE

    International Nuclear Information System (INIS)

    Chen, X.; Han, Z.; Tout, C. A.

    2011-01-01

    In the symbiotic (or WD+RG) channel of the single-degenerate scenario for type Ia supernovae (SNe Ia), the explosions occur a relatively long time after star formation. The birthrate from this channel would be too low to account for all observed SNe Ia were it not for some mechanism to enhance the rate of accretion on to the white dwarf. A tidally enhanced stellar wind, of the type which has been postulated to explain many phenomena related to giant star evolution in binary systems, can do this. Compared to mass stripping, this model extends the space of SNe Ia progenitors to longer orbital periods and hence increases the birthrate to about 0.0069 yr -1 for the symbiotic channel. Two symbiotic stars, T CrB and RS Oph, considered to be the most likely progenitors of SNe Ia through the symbiotic channel, are well inside the period-companion mass space predicted by our models.

  6. Distinct Bacterial Communities Associated with the Coral Model Aiptasia in Aposymbiotic and Symbiotic States with Symbiodinium

    KAUST Repository

    Rö thig, Till; Costa, Rú ben M.; Simona, Fabia; Baumgarten, Sebastian; Torres, Ana F.; Radhakrishnan, Anand; Aranda, Manuel; Voolstra, Christian R.

    2016-01-01

    Coral reefs are in decline. The basic functional unit of coral reefs is the coral metaorganism or holobiont consisting of the cnidarian host animal, symbiotic algae of the genus Symbiodinium, and a specific consortium of bacteria (among others

  7. Polishing of Anaerobic Secondary Effluent and Symbiotic Bioremediation of Raw Municipal Wastewater by Chlorella Vulgaris

    KAUST Repository

    Cheng, Tuoyuan

    2016-01-01

    To assess polishing of anaerobic secondary effluent and symbiotic bioremediation of primary effluent by microalgae, bench scale bubbling column reactors were operated in batch modes to test nutrients removal capacity and associated factors. Chemical

  8. Optical Manipulation of Symbiotic Chlorella in Paramecium Bursaria Using a Fiber Axicon Microlens

    Science.gov (United States)

    Taguchi, K.; Hirota, S.; Nakayama, H.; Kunugihara, D.; Mihara, Y.

    2012-03-01

    In this paper, chemically etched axicon fiber was proposed for laser trapping of symbiotic chlorella from paramecium bursaria. We fabricated axicon micro lenses on a single-mode bare optical fiber by selective chemical etching technique. The laser beam from fiber axicon microlens was strongly focused and optical forces were sufficient to move a symbiotic chlorella. From experimental results, it was found that our proposed fiber axicon microlens was a promising tool for cell trapping without physical contact.

  9. Optical Manipulation of Symbiotic Chlorella in Paramecium Bursaria Using a Fiber Axicon Microlens

    International Nuclear Information System (INIS)

    Taguchi, K; Hirota, S; Nakayama, H; Kunugihara, D; Mihara, Y

    2012-01-01

    In this paper, chemically etched axicon fiber was proposed for laser trapping of symbiotic chlorella from paramecium bursaria. We fabricated axicon micro lenses on a single-mode bare optical fiber by selective chemical etching technique. The laser beam from fiber axicon microlens was strongly focused and optical forces were sufficient to move a symbiotic chlorella. From experimental results, it was found that our proposed fiber axicon microlens was a promising tool for cell trapping without physical contact.

  10. Original article The Symbiotic Bond Questionnaire – theoretical background and psychometric qualities

    OpenAIRE

    Aleksandra Lewandowska-Walter; Magdalena Błażek; Maria Kaźmierczak

    2015-01-01

    Background The article describes the Symbiotic Bond Questionnaire (SBQ) – the theoretical background as well as its psychometric characteristics and psychological correlates. The items were created on the basis of the definition of symbiotic personality (Johnson, 1994a). Participants and procedure For these initial survey development and cross-validation studies, the factor structure and psychometric properties of the SBQ were examined. To assess the SBQ’s reliability, the...

  11. First Resolved Images of the Mira AB Symbiotic Binary at Centimeter Wavelengths

    OpenAIRE

    Matthews, Lynn D.; Karovska, Margarita

    2005-01-01

    We report the first spatially resolved radio continuum measurements of the Mira AB symbiotic binary system, based on observations obtained with the Very Large Array (VLA). This is the first time that a symbiotic binary has been resolved unambiguously at centimeter wavelengths. We describe the results of VLA monitoring of both stars over a ten month period, together with constraints on their individual spectral energy distributions, variability, and radio emission mechanisms. The emission from...

  12. ESTs analysis reveals putative genes involved in symbiotic seed germination in Dendrobium officinale.

    Science.gov (United States)

    Zhao, Ming-Ming; Zhang, Gang; Zhang, Da-Wei; Hsiao, Yu-Yun; Guo, Shun-Xing

    2013-01-01

    Dendrobiumofficinale (Orchidaceae) is one of the world's most endangered plants with great medicinal value. In nature, D. officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH) cDNA library of symbiotically germinated D. officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs) were clustered to 1074 Unigenes (including 902 singletons and 172 contigs), which were searched against the NCBI non-redundant (NR) protein database (E-value cutoff, e(-5)). Based on sequence similarity with known proteins, 579 differentially expressed genes in D. officinale were identified and classified into different functional categories by Gene Ontology (GO), Clusters of orthologous Groups of proteins (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS). The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs), which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS), were cloned from D. officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D. officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids.

  13. ESTs Analysis Reveals Putative Genes Involved in Symbiotic Seed Germination in Dendrobium officinale

    Science.gov (United States)

    Zhao, Ming-Ming; Zhang, Gang; Zhang, Da-Wei; Hsiao, Yu-Yun; Guo, Shun-Xing

    2013-01-01

    Dendrobium officinale (Orchidaceae) is one of the world’s most endangered plants with great medicinal value. In nature, D . officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH) cDNA library of symbiotically germinated D . officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs) were clustered to 1074 Unigenes (including 902 singletons and 172 contigs), which were searched against the NCBI non-redundant (NR) protein database (E-value cutoff, e-5). Based on sequence similarity with known proteins, 579 differentially expressed genes in D . officinale were identified and classified into different functional categories by Gene Ontology (GO), Clusters of orthologous Groups of proteins (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS). The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs), which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS), were cloned from D . officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D . officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids. PMID:23967335

  14. ESTs analysis reveals putative genes involved in symbiotic seed germination in Dendrobium officinale.

    Directory of Open Access Journals (Sweden)

    Ming-Ming Zhao

    Full Text Available Dendrobiumofficinale (Orchidaceae is one of the world's most endangered plants with great medicinal value. In nature, D. officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH cDNA library of symbiotically germinated D. officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs were clustered to 1074 Unigenes (including 902 singletons and 172 contigs, which were searched against the NCBI non-redundant (NR protein database (E-value cutoff, e(-5. Based on sequence similarity with known proteins, 579 differentially expressed genes in D. officinale were identified and classified into different functional categories by Gene Ontology (GO, Clusters of orthologous Groups of proteins (COGs and Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS. The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs, which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS, were cloned from D. officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D. officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids.

  15. Diversity, Roles, and Biotechnological Applications of Symbiotic Microorganisms in the Gut of Termite.

    Science.gov (United States)

    Zhou, Jing; Duan, Jiwei; Gao, Mingkun; Wang, Ying; Wang, Xiaohua; Zhao, Kai

    2018-05-12

    Termites are global pests and can cause serious damage to buildings, crops, and plantation forests. The symbiotic intestinal flora plays an important role in the digestion of cellulose and nitrogen in the life of termites. Termites and their symbiotic microbes in the gut form a synergistic system. These organism work together to digest lignocellulose to make the termites grow on nitrogen deficient food. In this paper, the diversity of symbiotic microorganisms in the gut of termites, including protozoan, spirochetes, actinomycetes, fungus and bacteria, and their role in the digestion of lignocellulose and also the biotechnological applications of these symbiotic microorganisms are discussed. The high efficiency lignocellulose degradation systems of symbiotic microbes in termite gut not only provided a new way of biological energy development, but also has immense prospect in the application of cellulase enzymes. In addition, the study on the symbiotic microorganisms in the gut of termites will also provide a new method for the biological control of termites by the endophytic bacteria in the gut of termites.

  16. Symbiotic bacteria contribute to increasing the population size of a freshwater crustacean, Daphnia magna.

    Science.gov (United States)

    Peerakietkhajorn, Saranya; Tsukada, Koji; Kato, Yasuhiko; Matsuura, Tomoaki; Watanabe, Hajime

    2015-04-01

    The filter-feeding crustacean Daphnia is a key organism in freshwater ecosystems. Here, we report the effect of symbiotic bacteria on ecologically important life history traits, such as population dynamics and longevity, in Daphnia magna. By disinfection of the daphniid embryos with glutaraldehyde, aposymbiotic daphniids were prepared and cultured under bacteria-free conditions. Removal of bacteria from the daphniids was monitored by quantitative polymerase chain reaction for bacterial 16S rRNA gene. The population of aposymbiotic daphniids was reduced 10-folds compared with that of the control daphniids. Importantly, re-infection with symbiotic bacteria caused daphniids to regain bacteria and increase their fecundity to the level of the control daphniids, suggesting that symbiotic bacteria regulate Daphnia fecundity. To identify the species of symbiotic bacteria, 16S rRNA genes of bacteria in daphniids were sequenced. This revealed that 50% of sequences belonged to the Limnohabitans sp. of the Betaproteobacteria class and that the diversity of bacterial taxa was relatively low. These results suggested that symbiotic bacteria have a beneficial effect on D. magna, and that aposymbiotic Daphnia are useful tools in understanding the role of symbiotic bacteria in the environmental responses and evolution of their hosts. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Characterizing the host and symbiont proteomes in the association between the Bobtail squid, Euprymna scolopes, and the bacterium, Vibrio fischeri.

    Directory of Open Access Journals (Sweden)

    Tyler R Schleicher

    Full Text Available The beneficial symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium, Vibrio fischeri, provides a unique opportunity to study host/microbe interactions within a natural microenvironment. Colonization of the squid light organ by V. fischeri begins a lifelong association with a regulated daily rhythm. Each morning the host expels an exudate from the light organ consisting of 95% of the symbiont population in addition to host hemocytes and shed epithelial cells. We analyzed the host and symbiont proteomes of adult squid exudate and surrounding light organ epithelial tissue using 1D- and 2D-polyacrylamide gel electrophoresis and multidimensional protein identification technology (MudPIT in an effort to understand the contribution of both partners to the maintenance of this association. These proteomic analyses putatively identified 1581 unique proteins, 870 proteins originating from the symbiont and 711 from the host. Identified host proteins indicate a role of the innate immune system and reactive oxygen species (ROS in regulating the symbiosis. Symbiont proteins detected enhance our understanding of the role of quorum sensing, two-component signaling, motility, and detoxification of ROS and reactive nitrogen species (RNS inside the light organ. This study offers the first proteomic analysis of the symbiotic microenvironment of the adult light organ and provides the identification of proteins important to the regulation of this beneficial association.

  18. Numerical Simulations of Wind Accretion in Symbiotic Binaries

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-08-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10-4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent on

  19. NUMERICAL SIMULATIONS OF WIND ACCRETION IN SYMBIOTIC BINARIES

    International Nuclear Information System (INIS)

    De Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-01-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10 -4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent

  20. Extreme Ionizing-Radiation-Resistant Bacterium

    Science.gov (United States)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  1. Serratia symbiotica from the aphid Cinara cedri: a missing link from facultative to obligate insect endosymbiont.

    Directory of Open Access Journals (Sweden)

    Araceli Lamelas

    2011-11-01

    Full Text Available The genome sequencing of Buchnera aphidicola BCc from the aphid Cinara cedri, which is the smallest known Buchnera genome, revealed that this bacterium had lost its symbiotic role, as it was not able to synthesize tryptophan and riboflavin. Moreover, the biosynthesis of tryptophan is shared with the endosymbiont Serratia symbiotica SCc, which coexists with B. aphidicola in this aphid. The whole-genome sequencing of S. symbiotica SCc reveals an endosymbiont in a stage of genome reduction that is closer to an obligate endosymbiont, such as B. aphidicola from Acyrthosiphon pisum, than to another S. symbiotica, which is a facultative endosymbiont in this aphid, and presents much less gene decay. The comparison between both S. symbiotica enables us to propose an evolutionary scenario of the transition from facultative to obligate endosymbiont. Metabolic inferences of B. aphidicola BCc and S. symbiotica SCc reveal that most of the functions carried out by B. aphidicola in A. pisum are now either conserved in B. aphidicola BCc or taken over by S. symbiotica. In addition, there are several cases of metabolic complementation giving functional stability to the whole consortium and evolutionary preservation of the actors involved.

  2. Journalists and public health professionals: challenges of a symbiotic relationship.

    Science.gov (United States)

    Lubens, Pauline

    2015-02-01

    Journalists and health professionals share a symbiotic relationship during a disease outbreak as both professions play an important role in informing the public's perceptions and the decisions of policy makers. Although critics in the United States have focused on US reporters and media outlets whose coverage has been sensationalist and alarmist, the discussion in this article is based on the ideal--gold standard--for US journalists. Journalists perform three primary functions during times of health crises: disseminating accurate information to the public, medical professionals, and policy makers; acting as the go-between for the public and decision makers and health and science experts; and monitoring the performance of institutions responsible for the public health response. A journalist's goal is to responsibly inform the public in order to optimize the public health goals of prevention while minimizing panic. The struggle to strike a balance between humanizing a story and protecting the dignity of patients while also capturing the severity of an epidemic is harder in the era of the 24-7 news cycle. Journalists grapple with dueling pressures: confirming that their information is correct while meeting the demand for rapid updates. Just as health care professionals triage patients, journalists triage information. The challenge going forward will be how to get ahead of the story from the onset, racing against the pace of digital dissemination of misinformation by continuing to refine the media-science relationship.

  3. SYMBIOTIC STARS IN X-RAYS. III. SUZAKU OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Nuñez, N. E. [Instituto de Ciencias Astronómicas de la Tierra y del Espacio (ICATE-UNSJ, CONICET), Av. España (S) 1512, J5402DSP, San Juan (Argentina); Nelson, T. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN, 55455 (United States); Mukai, K. [CRESST and X-ray Astrophysics Laboratory, (NASA/GSFC), Greenbelt, MD 20 771, USA. (United States); Sokoloski, J. L. [Columbia Astrophysics Lab, 550 W120th St., 1027 Pupin Hall, MC 5247 Columbia University, 10027, New York (United States); Luna, G. J. M., E-mail: nnunez@icate-conicet.gov.ar [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA), Av. Inte. Güiraldes 2620, C1428ZAA, Buenos Aires (Argentina)

    2016-06-10

    We describe the X-ray emission as observed by Suzaku from five symbiotic stars that we selected for deep Suzaku observations after their initial detection with ROSAT, ASCA , and Swift . We find that the X-ray spectra of all five sources can be adequately fit with absorbed optically thin thermal plasma models, with either single- or multi-temperature plasmas. These models are compatible with the X-ray emission originating in the boundary layer between an accretion disk and a white dwarf. The high plasma temperatures of kT > 3 keV for all five targets were greater than expected for colliding winds. Based on these high temperatures as well as previous measurements of UV variability and UV luminosity and the large amplitude of X-ray flickering in 4 Dra, we conclude that all five sources are accretion-powered through predominantly optically thick boundary layers. Our X-ray data allow us to observe a small optically thin portion of the emission from these boundary layers. Given the time between previous observations and these observations, we find that the intrinsic X-ray flux and the intervening absorbing column can vary by factors of three or more on a timescale of years. However, the location of the absorber and the relationship between changes in accretion rate and absorption are still elusive.

  4. Plant densities and modulation of symbiotic nitrogen fixation in soybean

    Directory of Open Access Journals (Sweden)

    Marcos Javier de Luca

    2014-06-01

    Full Text Available Soybean nitrogen (N demands can be supplied to a large extent via biological nitrogen fixation, but the mechanisms of source/sink regulating photosynthesis/nitrogen fixation in high yielding cultivars and current crop management arrangements need to be investigated. We investigated the modulation of symbiotic nitrogen fixation in soybean [Glycine max (L. Merrill] at different plant densities. A field trial was performed in southern Brazil with six treatments, including non-inoculated controls without and with N-fertilizer, both at a density of 320,000 plants ha−1, and plants inoculated with Bradyrhizobium elkanii at four densities, ranging from 40,000 to 320,000 plants ha−1. Differences in nodulation, biomass production, N accumulation and partition were observed at stage R5, but not at stage V4, indicating that quantitative and qualitative factors (such as sunlight infrared/red ratio assume increasing importance during the later stages of plant growth. Decreases in density in the inoculated treatments stimulated photosynthesis and nitrogen fixation per plant. Similar yields were obtained at the different plant densities, with decreases only at the very low density level of 40,000 plants ha−1, which was also the only treatment to show differences in seed protein and oil contents. Results confirm a fine tuning of the mechanisms of source/sink, photosynthesis/nitrogen fixation under lower plant densities. Higher photosynthesis and nitrogen fixation rates are capable of sustaining increased plant growth.

  5. A Proteomic View on the Role of Legume Symbiotic Interactions

    Science.gov (United States)

    Larrainzar, Estíbaliz; Wienkoop, Stefanie

    2017-01-01

    Legume plants are key elements in sustainable agriculture and represent a significant source of plant-based protein for humans and animal feed worldwide. One specific feature of the family is the ability to establish nitrogen-fixing symbiosis with Rhizobium bacteria. Additionally, like most vascular flowering plants, legumes are able to form a mutualistic endosymbiosis with arbuscular mycorrhizal (AM) fungi. These beneficial associations can enhance the plant resistance to biotic and abiotic stresses. Understanding how symbiotic interactions influence and increase plant stress tolerance are relevant questions toward maintaining crop yield and food safety in the scope of climate change. Proteomics offers numerous tools for the identification of proteins involved in such responses, allowing the study of sub-cellular localization and turnover regulation, as well as the discovery of post-translational modifications (PTMs). The current work reviews the progress made during the last decades in the field of proteomics applied to the study of the legume-Rhizobium and -AM symbioses, and highlights their influence on the plant responses to pathogens and abiotic stresses. We further discuss future perspectives and new experimental approaches that are likely to have a significant impact on the field including peptidomics, mass spectrometric imaging, and quantitative proteomics. PMID:28769967

  6. The symbiotic intestinal ciliates and the evolution of their hosts.

    Science.gov (United States)

    Moon-van der Staay, Seung Yeo; van der Staay, Georg W M; Michalowski, Tadeusz; Jouany, Jean-Pierre; Pristas, Peter; Javorský, Peter; Kišidayová, Svetlana; Varadyova, Zora; McEwan, Neil R; Newbold, C Jamie; van Alen, Theo; de Graaf, Rob; Schmid, Markus; Huynen, Martijn A; Hackstein, Johannes H P

    2014-04-01

    The evolution of sophisticated differentiations of the gastro-intestinal tract enabled herbivorous mammals to digest dietary cellulose and hemicellulose with the aid of a complex anaerobic microbiota. Distinctive symbiotic ciliates, which are unique to this habitat, are the largest representatives of this microbial community. Analyses of a total of 484 different 18S rRNA genes show that extremely complex, but related ciliate communities can occur in the rumen of cattle, sheep, goats and red deer (301 sequences). The communities in the hindgut of equids (Equus caballus, Equus quagga), and elephants (Elephas maximus, Loxodonta africanus; 162 sequences), which are clearly distinct from the ruminant ciliate biota, exhibit a much higher diversity than anticipated on the basis of their morphology. All these ciliates from the gastro-intestinal tract constitute a monophyletic group, which consists of two major taxa, i.e. Vestibuliferida and Entodiniomorphida. The ciliates from the evolutionarily older hindgut fermenters exhibit a clustering that is specific for higher taxa of their hosts, as extant species of horse and zebra on the one hand, and Africa and Indian elephant on the other hand, share related ciliates. The evolutionary younger ruminants altogether share the various entodiniomorphs and the vestibuliferids from ruminants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. SYMBIOTIC STARS IN X-RAYS. III. SUZAKU OBSERVATIONS

    International Nuclear Information System (INIS)

    Nuñez, N. E.; Nelson, T.; Mukai, K.; Sokoloski, J. L.; Luna, G. J. M.

    2016-01-01

    We describe the X-ray emission as observed by Suzaku from five symbiotic stars that we selected for deep Suzaku observations after their initial detection with ROSAT, ASCA , and Swift . We find that the X-ray spectra of all five sources can be adequately fit with absorbed optically thin thermal plasma models, with either single- or multi-temperature plasmas. These models are compatible with the X-ray emission originating in the boundary layer between an accretion disk and a white dwarf. The high plasma temperatures of kT > 3 keV for all five targets were greater than expected for colliding winds. Based on these high temperatures as well as previous measurements of UV variability and UV luminosity and the large amplitude of X-ray flickering in 4 Dra, we conclude that all five sources are accretion-powered through predominantly optically thick boundary layers. Our X-ray data allow us to observe a small optically thin portion of the emission from these boundary layers. Given the time between previous observations and these observations, we find that the intrinsic X-ray flux and the intervening absorbing column can vary by factors of three or more on a timescale of years. However, the location of the absorber and the relationship between changes in accretion rate and absorption are still elusive.

  8. LES ARM Symbiotic Simulation and Observation (LASSO) Implementation Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson Jr., WI [Pacific Northwest National Laboratory; Vogelmann, AM [Brookhaven National Laboratory

    2015-09-01

    This document illustrates the design of the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) workflow to provide a routine, high-resolution modeling capability to augment the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s high-density observations. LASSO will create a powerful new capability for furthering ARM’s mission to advance understanding of cloud, radiation, aerosol, and land-surface processes. The combined observational and modeling elements will enable a new level of scientific inquiry by connecting processes and context to observations and providing needed statistics for details that cannot be measured. The result will be improved process understanding that facilitates concomitant improvements in climate model parameterizations. The initial LASSO implementation will be for ARM’s Southern Great Plains site in Oklahoma and will focus on shallow convection, which is poorly simulated by climate models due in part to clouds’ typically small spatial scale compared to model grid spacing, and because the convection involves complicated interactions of microphysical and boundary layer processes.

  9. Investigating mass transfer in symbiotic systems with hydrodynamic simulations

    Science.gov (United States)

    de Val-Borro, Miguel; Karovska, Margarita; Sasselov, Dimitar D.

    2014-06-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence on the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2-10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic CH Cyg variable system.

  10. Evolution of the symbiotic binary system AG Dranconis

    Science.gov (United States)

    Mikolajewska, Joanna; Kenyon, Scott J; Mikolajewski, Maciej; Garcia, Michael R.; Polidan, Ronald S.

    1995-01-01

    We present an analysis of new and archival photometric and spectroscopic observations of the symbiotic star AG Draconis. This binary has undergone several 1 - 3 mag optical and ultraviolet eruptions during the past 15 years. Our combination of optical and ultraviolet spectroscopic data allow a more complete analysis of this system than in previous papers. AG Dra is composed of a K-type bright giant M(sub g) approximately 1.5 solar mass) and a hot, compact star M(sub h approximatelly 0.4 - 0.6 solar mass) embedded in a dense, low metallicity nebula. The hot component undergoes occasional thermonuclear runaways that produce 2 - 3 mag optical/ultraviolet eruptions. During these eruptions, the hot component develops a low velocity wind that quenches x-ray emission from the underlying hot white dwarf. The photoionized nebula changes its volume by a factor of 5 throughout an eruptin cycle. The K bright giant occults low ionization emission lines during superior conjunctions at all outburst phases but does not occult high ionization lines in outburst (and perhaps quiescence). This geometry and the component masses suggest a system inclination of i approximately 30 deg - 45 deg.

  11. Evolution of viscous discs. 3. Giant discs in symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Bath, G T [Oxford Univ. (UK). Dept. of Astrophysics; Pringle, J E [Cambridge Univ. (UK). Inst. of Astronomy

    1982-10-01

    The structure of time-dependent accretion discs in giant binaries with separation of the order of 10/sup 13/ cm is examined. Radiative ..cap alpha..-viscosity discs with ..cap alpha.. of order unity accreting on to main-sequence stars at accretion rates which generate luminosities greater than a giant companion decay on time-scales of the same order as the binary period, unlike those in dwarf nova binaries which decay on time-scales 100 times longer than the binary period. This results from the lower gravitational potential and consequent larger disc thickness (relative to the radius) of luminous 'giant' discs accreting at high accretion rates. The eruptions of the symbiotic binary C I Cygni are modelled by an ..cap alpha.. = 1 disc with outer radius 8.5 x 10/sup 12/ cm and a sequence of five mass-transfer bursts at rates between 1.5 x 10/sup 21/ and 4 x 10/sup 22/g s/sup -1/.

  12. DAILY BUDGETS OF PHOTOSYNTHETICALLY FIXED CARBON IN SYMBIOTIC ZOANTHIDS.

    Science.gov (United States)

    Steen, R Grant; Muscatine, L

    1984-10-01

    We tested the hypothesis that some zoanthids are able to meet a portion of their daily respiratory carbon requirement with photosynthetic carbon from symbiotic algal cells (= zooxanthellae). A daily budget was constructed for carbon (C) photosynthetically fixed by zooxanthellae of the Bermuda zoanthids Zoanthus sociatus and Palythoa variabilis. Zooxanthellae have an average net photosynthetic C fixation of 7.48 and 15.56 µgC·polyp -1 ·day -1 for Z. sociatus and P. variabilis respectively. The C-specific growth rate (µ c ) was 0.215·day -1 for Z. sociatus and 0.152·day -1 for P. variabilis. The specific growth rate (µ) of zooxanthellae in the zoanthids was measured to be 0.011 and 0.017·day -1 for Z. sociatus and P. variabilis zooxanthellae respectively. Z. sociatus zooxanthellae translocated 95.1% of the C assimilated in photosynthesis, while P. variabilis zooxanthellae translocated 88.8% of their fixed C. As the animal tissue of a polyp of Z. sociatus required 14.75 µgC·day -1 for respiration, and one of P. variabiis required 105.54 µgC·day -1 , the contribution of zooxanthellae to animal respiration (CZAR) was 48.2% for Z. sociatus and 13.1% for P. variabilis.

  13. Symbiotic factors in Burkholderia essential for establishing an association with the bean bug, Riptortus pedestris.

    Science.gov (United States)

    Kim, Jiyeun Kate; Lee, Bok Luel

    2015-01-01

    Symbiotic bacteria are common in insects and intimately affect the various aspects of insect host biology. In a number of insect symbiosis models, it has been possible to elucidate the effects of the symbiont on host biology, whereas there is a limited understanding of the impact of the association on the bacterial symbiont, mainly due to the difficulty of cultivating insect symbionts in vitro. Furthermore, the molecular features that determine the establishment and persistence of the symbionts in their host (i.e., symbiotic factors) have remained elusive. However, the recently established model, the bean bug Riptortus pedestris, provides a good opportunity to study bacterial symbiotic factors at a molecular level through their cultivable symbionts. Bean bugs acquire genus Burkholderia cells from the environment and harbor them as gut symbionts in the specialized posterior midgut. The genome of the Burkholderia symbiont was sequenced, and the genomic information was used to generate genetically manipulated Burkholderia symbiont strains. Using mutant symbionts, we identified several novel symbiotic factors necessary for establishing a successful association with the host gut. In this review, these symbiotic factors are classified into three categories based on the colonization dynamics of the mutant symbiont strains: initiation, accommodation, and persistence factors. In addition, the molecular characteristics of the symbiotic factors are described. These newly identified symbiotic factors and on-going studies of the Riptortus-Burkholderia symbiosis are expected to contribute to the understanding of the molecular cross-talk between insects and bacterial symbionts that are of ecological and evolutionary importance. © 2014 Wiley Periodicals, Inc.

  14. Identification of entomopathogenic nematodes and symbiotic bacteria from Nam Nao National Park in Thailand and larvicidal activity of symbiotic bacteria against Aedes aegypti and Aedes albopictus.

    Science.gov (United States)

    Yooyangket, Temsiri; Muangpat, Paramaporn; Polseela, Raxsina; Tandhavanant, Sarunporn; Thanwisai, Aunchalee; Vitta, Apichat

    2018-01-01

    Entomopathogenic nematodes (EPNs) that are symbiotically associated with Xenorhabdus and Photorhabdus bacteria can kill target insects via direct infection and toxin action. There are limited reports identifying such organisms in the National Park of Thailand. Therefore, the objectives of this study were to identify EPNs and symbiotic bacteria from Nam Nao National Park, Phetchabun Province, Thailand and to evaluate the larvicidal activity of bacteria against Aedes aegypti and Ae. albopictus. A total of 12 EPN isolates belonging to Steinernema and Heterorhabditis were obtained form 940 soil samples between February 2014 and July 2016. EPNs were molecularly identified as S. websteri (10 isolates) and H. baujardi (2 isolates). Symbiotic bacteria were isolated from EPNs and molecularly identified as P. luminescens subsp. akhurstii (13 isolates), X. stockiae (11 isolates), X. vietnamensis (2 isolates) and X. japonica (1 isolate). For the bioassay, bacterial suspensions were evaluated for toxicity against third to early fourth instar larvae of Aedes spp. The larvae of both Aedes species were orally susceptible to symbiotic bacteria. The highest larval mortality of Ae. aegypti was 99% after exposure to X. stockiae (bNN112.3_TH) at 96 h, and the highest mortality of Ae. albopictus was 98% after exposure to P. luminescens subsp. akhurstii (bNN121.4_TH) at 96 h. In contrast to the control groups (Escherichia coli and distilled water), the mortality rate of both mosquito larvae ranged between 0 and 7% at 72 h. Here, we report the first observation of X. vietnamensis in Thailand. Additionally, we report the first observation of P. luminescens subsp. akhurstii associated with H. baujardi in Thailand. X. stockiae has potential to be a biocontrol agent for mosquitoes. This investigation provides a survey of the basic diversity of EPNs and symbiotic bacteria in the National Park of Thailand, and it is a bacterial resource for further studies of bioactive compounds.

  15. Cloning, expression and characterization of a cold-adapted endo-1, 4-β-glucanase from Citrobacter farmeri A1, a symbiotic bacterium of Reticulitermes labralis

    Directory of Open Access Journals (Sweden)

    Xi Bai

    2016-11-01

    Full Text Available Background Many biotechnological and industrial applications can benefit from cold-adapted EglCs through increased efficiency of catalytic processes at low temperature. In our previous study, Citrobacter farmeri A1 which was isolated from a wood-inhabiting termite Reticulitermes labralis could secrete a cold-adapted EglC. However, its EglC was difficult to purify for enzymatic properties detection because of its low activity (0.8 U/ml. The objective of the present study was to clone and express the C. farmeri EglC gene in Escherichia coli to improve production level and determine the enzymatic properties of the recombinant enzyme. Methods The EglC gene was cloned from C. farmeri A1 by thermal asymmetric interlaced PCR. EglC was transformed into vector pET22b and functionally expressed in E. coli. The recombination protein EglC22b was purified for properties detection. Results SDS-PAGE revealed that the molecular mass of the recombinant endoglucanase was approximately 42 kDa. The activity of the E. coli pET22b-EglC crude extract was 9.5 U/ml. Additionally, it was active at pH 6.5–8.0 with an optimum pH of 7.0. The recombinant enzyme had an optimal temperature of 30–40 °C and exhibited >50% relative activity even at 5 °C, whereas it lost approximately 90% of its activity after incubation at 60 °C for 30 min. Its activity was enhanced by Co2+ and Fe3+, but inhibited by Cd2+, Zn2+, Li+, Triton X-100, DMSO, acetonitrile, Tween 80, SDS, and EDTA. Conclusion These biochemical properties indicate that the recombinant enzyme is a cold-adapted endoglucanase that can be used for various industrial applications.

  16. Novel, non-symbiotic isolates of Neorhizobium from a dryland agricultural soil

    Directory of Open Access Journals (Sweden)

    Amalia Soenens

    2018-05-01

    Full Text Available Semi-selective enrichment, followed by PCR screening, resulted in the successful direct isolation of fast-growing Rhizobia from a dryland agricultural soil. Over 50% of these isolates belong to the genus Neorhizobium, as concluded from partial rpoB and near-complete 16S rDNA sequence analysis. Further genotypic and genomic analysis of five representative isolates confirmed that they form a coherent group within Neorhizobium, closer to N. galegae than to the remaining Neorhizobium species, but clearly differentiated from the former, and constituting at least one new genomospecies within Neorhizobium. All the isolates lacked nod and nif symbiotic genes but contained a repABC replication/maintenance region, characteristic of rhizobial plasmids, within large contigs from their draft genome sequences. These repABC sequences were related, but not identical, to repABC sequences found in symbiotic plasmids from N. galegae, suggesting that the non-symbiotic isolates have the potential to harbor symbiotic plasmids. This is the first report of non-symbiotic members of Neorhizobium from soil.

  17. Rotation of the Mass Donors in High-mass X-ray Binaries and Symbiotic Stars

    Directory of Open Access Journals (Sweden)

    K. Stoyanov

    2015-02-01

    Full Text Available Our aim is to investigate the tidal interaction in High-mass X-ray Binaries and Symbiotic stars in order to determine in which objects the rotation of the mass donors is synchronized or pseudosynchronized with the orbital motion of the compact companion. We find that the Be/X-ray binaries are not synchronized and the orbital periods of the systems are greater than the rotational periods of the mass donors. The giant and supergiant High-mass X-ray binaries and symbiotic stars are close to synchronization. We compare the rotation of mass donors in symbiotics with the projected rotational velocities of field giants and find that the M giants in S-type symbiotics rotate on average 1.5 times faster than the field M giants. We find that the projected rotational velocity of the red giant in symbiotic star MWC 560 is v sin i= 8.2±1.5 km.s−1, and estimate its rotational period to be Prot<>/sub = 144 - 306 days. Using the theoretical predictions of tidal interaction and pseudosynchronization, we estimate the orbital eccentricity e = 0.68 − 0.82.

  18. Does a Common Pathway Transduce Symbiotic Signals in Plant-Microbe Interactions?

    Science.gov (United States)

    Genre, Andrea; Russo, Giulia

    2016-01-01

    Recent years have witnessed major advances in our knowledge of plant mutualistic symbioses such as the rhizobium-legume symbiosis (RLS) and arbuscular mycorrhizas (AM). Some of these findings caused the revision of longstanding hypotheses, but one of the most solid theories is that a conserved set of plant proteins rules the transduction of symbiotic signals from beneficial glomeromycetes and rhizobia in a so-called common symbiotic pathway (CSP). Nevertheless, the picture still misses several elements, and a few crucial points remain unclear. How does one common pathway discriminate between - at least - two symbionts? Can we exclude that microbes other than AM fungi and rhizobia also use this pathway to communicate with their host plants? We here discuss the possibility that our current view is biased by a long-lasting focus on legumes, whose ability to develop both AM and RLS is an exception among plants and a recent innovation in their evolution; investigations in non-legumes are starting to place legume symbiotic signaling in a broader perspective. Furthermore, recent studies suggest that CSP proteins act in a wider scenario of symbiotic and non-symbiotic signaling. Overall, evidence is accumulating in favor of distinct activities for CSP proteins in AM and RLS, depending on the molecular and cellular context where they act.

  19. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility.

    Science.gov (United States)

    Price, Paul A; Tanner, Houston R; Dillon, Brett A; Shabab, Mohammed; Walker, Graham C; Griffitts, Joel S

    2015-12-08

    Legume-rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties. hrrP encodes an M16A family metallopeptidase whose catalytic activity is required for these symbiotic effects. The ability of hrrP to suppress nitrogen fixation is conditioned upon the genotypes of both the host plant and the hrrP-expressing rhizobial strain, suggesting its involvement in symbiotic communication. Purified HrrP protein is capable of degrading a range of nodule-specific cysteine-rich (NCR) peptides encoded by M. truncatula. NCR peptides are crucial signals used by M. truncatula for inducing and maintaining rhizobial differentiation within nodules, as demonstrated in the accompanying article [Horváth B, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1500777112]. The expression pattern of hrrP and its effects on rhizobial morphology are consistent with the NCR peptide cleavage model. This work points to a symbiotic dialogue involving a complex ensemble of host-derived signaling peptides and bacterial modifier enzymes capable of adjusting signal strength, sometimes with exploitative outcomes.

  20. Novel, non-symbiotic isolates of Neorhizobium from a dryland agricultural soil.

    Science.gov (United States)

    Soenens, Amalia; Imperial, Juan

    2018-01-01

    Semi-selective enrichment, followed by PCR screening, resulted in the successful direct isolation of fast-growing Rhizobia from a dryland agricultural soil. Over 50% of these isolates belong to the genus Neorhizobium , as concluded from partial rpoB and near-complete 16S rDNA sequence analysis. Further genotypic and genomic analysis of five representative isolates confirmed that they form a coherent group within Neorhizobium , closer to N. galegae than to the remaining Neorhizobium species, but clearly differentiated from the former, and constituting at least one new genomospecies within Neorhizobium. All the isolates lacked nod and nif symbiotic genes but contained a repABC replication/maintenance region, characteristic of rhizobial plasmids, within large contigs from their draft genome sequences. These repABC sequences were related, but not identical, to repABC sequences found in symbiotic plasmids from N. galegae , suggesting that the non-symbiotic isolates have the potential to harbor symbiotic plasmids. This is the first report of non-symbiotic members of Neorhizobium from soil.

  1. Plant-Associated Symbiotic Burkholderia Species Lack Hallmark Strategies Required in Mammalian Pathogenesis

    Science.gov (United States)

    Fong, Stephanie; Yerrapragada, Shailaja; Estrada-de los Santos, Paulina; Yang, Paul; Song, Nannie; Kano, Stephanie; de Faria, Sergio M.; Dakora, Felix D.; Weinstock, George; Hirsch, Ann M.

    2014-01-01

    Burkholderia is a diverse and dynamic genus, containing pathogenic species as well as species that form complex interactions with plants. Pathogenic strains, such as B. pseudomallei and B. mallei, can cause serious disease in mammals, while other Burkholderia strains are opportunistic pathogens, infecting humans or animals with a compromised immune system. Although some of the opportunistic Burkholderia pathogens are known to promote plant growth and even fix nitrogen, the risk of infection to infants, the elderly, and people who are immunocompromised has not only resulted in a restriction on their use, but has also limited the application of non-pathogenic, symbiotic species, several of which nodulate legume roots or have positive effects on plant growth. However, recent phylogenetic analyses have demonstrated that Burkholderia species separate into distinct lineages, suggesting the possibility for safe use of certain symbiotic species in agricultural contexts. A number of environmental strains that promote plant growth or degrade xenobiotics are also included in the symbiotic lineage. Many of these species have the potential to enhance agriculture in areas where fertilizers are not readily available and may serve in the future as inocula for crops growing in soils impacted by climate change. Here we address the pathogenic potential of several of the symbiotic Burkholderia strains using bioinformatics and functional tests. A series of infection experiments using Caenorhabditis elegans and HeLa cells, as well as genomic characterization of pathogenic loci, show that the risk of opportunistic infection by symbiotic strains such as B. tuberum is extremely low. PMID:24416172

  2. Antagonistic bioactivity of an endophytic bacterium isolated from ...

    African Journals Online (AJOL)

    Antagonistic bioactivity of an endophytic bacterium isolated from Epimedium brevicornu Maxim. R He, G Wang, X Liu, C Zhang, F Lin. Abstract. Endophytic bacteria are one of the most potential biological control agents in plant disease protection. The aim of this work was to evaluate the antimicrobial activities of a strain of ...

  3. The physiology of the filamentous bacterium Microthrix parvicella

    NARCIS (Netherlands)

    Slijkhuis, H.

    1983-01-01

    A study has been made of the physiology of Microthrix parvicella. This filamentous bacterium often causes poor settleability of activated sludge in oxidation ditches supplied with domestic sewage. The organism was found to utilize only long chain fatty acids (preferably in

  4. The Bacterium That Got Infected by a Cow! - Horizontal Gene

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 1. The Bacterium That Got Infected by a Cow! - Horizontal Gene Transfer and Evolution. Saurabh Dhawan Tomás John Ryan. General Article Volume 12 Issue 1 January 2007 pp 49-59 ...

  5. Monitoring of a novel bacterium, Lactobacillus thermotolerans , in ...

    African Journals Online (AJOL)

    Abstract. We successfully established fluorescence in situ hybridization (FISH) method for specific detection and enumeration of a novel bacterium, Lactobacillus thermotolerans, in chicken feces. The specific FISH probes were designed based on the L. thermotolerans 16S rRNA gene sequences, and these sequences were ...

  6. methoxyethanol by a new bacterium isolate Pseudomonas sp. Strain

    African Journals Online (AJOL)

    Michael Horsfall

    A 2-methoxyethanol degrading bacterium was isolated from anaerobic sludge of a municipal sewage from ... Stoichiometrically, the strain utilized one mole of oxygen per one mole of 2-methoxyethanol instead of ... physiological and biochemical characterization of the .... observed with acetate and the intact resting cells.

  7. Non-obligate predatory bacterium burkholderia casidaeand uses thereof

    OpenAIRE

    1998-01-01

    A novel predator bacterium Burkholderia casidae is disclosed. The invention is directed to the isolation and use of Burkholderia casidae to control microbial diseases of plants. The genetic, biochemical and physiological characteristics of Burkholderia casidae are described. Biocontrol compositions comprising Burkholderia casidae, and antimicrobial compounds and antimicrobial preparations prepared from Burkholderia casidae are also disclosed, as are methods for accomplishing all of the forego...

  8. Non-obligate predatory bacterium Burkholderia casidae and uses thereof

    OpenAIRE

    2001-01-01

    A novel predator bacterium Burkholderia casidae is disclosed. The invention is directed to the isolation and use of Burkholderia casidae to control microbial diseases of plants. The genetic, biochemical and physiological characteristics of Burkholderia casidae are described. Biocontrol compositions comprising Burkholderia casidae, and antimicrobial compounds and antimicrobial preparations prepared from Burkholderia casidae are also disclosed, as are methods for accomplishing all of the forego...

  9. The Symbiotic Relationship between Scientific Workflow and Provenance (Invited)

    Science.gov (United States)

    Stephan, E.

    2010-12-01

    The purpose of this presentation is to describe the symbiotic nature of scientific workflows and provenance. We will also discuss the current trends and real world challenges facing these two distinct research areas. Although motivated differently, the needs of the international science communities are the glue that binds this relationship together. Understanding and articulating the science drivers to these communities is paramount as these technologies evolve and mature. Originally conceived for managing business processes, workflows are now becoming invaluable assets in both computational and experimental sciences. These reconfigurable, automated systems provide essential technology to perform complex analyses by coupling together geographically distributed disparate data sources and applications. As a result, workflows are capable of higher throughput in a shorter amount of time than performing the steps manually. Today many different workflow products exist; these could include Kepler and Taverna or similar products like MeDICI, developed at PNNL, that are standardized on the Business Process Execution Language (BPEL). Provenance, originating from the French term Provenir “to come from”, is used to describe the curation process of artwork as art is passed from owner to owner. The concept of provenance was adopted by digital libraries as a means to track the lineage of documents while standards such as the DublinCore began to emerge. In recent years the systems science community has increasingly expressed the need to expand the concept of provenance to formally articulate the history of scientific data. Communities such as the International Provenance and Annotation Workshop (IPAW) have formalized a provenance data model. The Open Provenance Model, and the W3C is hosting a provenance incubator group featuring the Proof Markup Language. Although both workflows and provenance have risen from different communities and operate independently, their mutual

  10. Corals Form Characteristic Associations with Symbiotic Nitrogen-Fixing Bacteria

    Science.gov (United States)

    Lema, Kimberley A.; Willis, Bette L.

    2012-01-01

    The complex symbiotic relationship between corals and their dinoflagellate partner Symbiodinium is believed to be sustained through close associations with mutualistic bacterial communities, though little is known about coral associations with bacterial groups able to fix nitrogen (diazotrophs). In this study, we investigated the diversity of diazotrophic bacterial communities associated with three common coral species (Acropora millepora, Acropora muricata, and Pocillopora damicormis) from three midshelf locations of the Great Barrier Reef (GBR) by profiling the conserved subunit of the nifH gene, which encodes the dinitrogenase iron protein. Comparisons of diazotrophic community diversity among coral tissue and mucus microenvironments and the surrounding seawater revealed that corals harbor diverse nifH phylotypes that differ between tissue and mucus microhabitats. Coral mucus nifH sequences displayed high heterogeneity, and many bacterial groups overlapped with those found in seawater. Moreover, coral mucus diazotrophs were specific neither to coral species nor to reef location, reflecting the ephemeral nature of coral mucus. In contrast, the dominant diazotrophic bacteria in tissue samples differed among coral species, with differences remaining consistent at all three reefs, indicating that coral-diazotroph associations are species specific. Notably, dominant diazotrophs for all coral species were closely related to the bacterial group rhizobia, which represented 71% of the total sequences retrieved from tissue samples. The species specificity of coral-diazotroph associations further supports the coral holobiont model that bacterial groups associated with corals are conserved. Our results suggest that, as in terrestrial plants, rhizobia have developed a mutualistic relationship with corals and may contribute fixed nitrogen to Symbiodinium. PMID:22344646

  11. A Precessing Jet in the CH Cyg Symbiotic System

    Science.gov (United States)

    Karovska, Margarita; Gaetz, Terrance J.; Carilli, Christopher L.; Hack, Warren; Raymond, John C.; Lee, Nicholas P.

    2010-02-01

    Jets have been detected in only a few symbiotic binaries to date, and CH Cyg is one of them. In 2001, a non-relativistic jet was detected in CH Cyg for the first time in X-rays. We carried out coordinated Chandra, Hubble Space Telescope (HST), and VLA observations in 2008 to study the propagation of this jet and its interaction with the circumbinary medium. We detected the jet with Chandra and HST and determined that the apex has expanded to the south from ~300 AU to ~1400 AU, with the shock front propagating with velocity <100 km s-1. The shock front has significantly slowed down since 2001. Unexpectedly, we also discovered a powerful jet in the NE-SW direction, in the X-ray, optical and radio. This jet has a multi-component structure, including an inner jet and a counterjet at ~170 AU, and a SW component ending in several clumps extending out to ~750 AU. The structure of the jet and the curvature of the outer portion of the SW jet suggest an episodically powered precessing jet or a continuous precessing jet with occasional mass ejections or pulses. We carried out detailed spatial mapping of the X-ray emission and correlation with the optical and radio emission. X-ray spectra were extracted from the central source, inner NE counterjet, and the brightest clump at a distance of ~500 AU from the central source. We discuss the initial results of our analyses, including the multi-component spectral fitting of the jet components and of the central source.

  12. A PRECESSING JET IN THE CH Cyg SYMBIOTIC SYSTEM

    International Nuclear Information System (INIS)

    Karovska, Margarita; Gaetz, Terrance J.; Raymond, John C.; Lee, Nicholas P.; Carilli, Christopher L.; Hack, Warren

    2010-01-01

    Jets have been detected in only a few symbiotic binaries to date, and CH Cyg is one of them. In 2001, a non-relativistic jet was detected in CH Cyg for the first time in X-rays. We carried out coordinated Chandra, Hubble Space Telescope (HST), and VLA observations in 2008 to study the propagation of this jet and its interaction with the circumbinary medium. We detected the jet with Chandra and HST and determined that the apex has expanded to the south from ∼300 AU to ∼1400 AU, with the shock front propagating with velocity -1 . The shock front has significantly slowed down since 2001. Unexpectedly, we also discovered a powerful jet in the NE-SW direction, in the X-ray, optical and radio. This jet has a multi-component structure, including an inner jet and a counterjet at ∼170 AU, and a SW component ending in several clumps extending out to ∼750 AU. The structure of the jet and the curvature of the outer portion of the SW jet suggest an episodically powered precessing jet or a continuous precessing jet with occasional mass ejections or pulses. We carried out detailed spatial mapping of the X-ray emission and correlation with the optical and radio emission. X-ray spectra were extracted from the central source, inner NE counterjet, and the brightest clump at a distance of ∼500 AU from the central source. We discuss the initial results of our analyses, including the multi-component spectral fitting of the jet components and of the central source.

  13. Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates.

    Directory of Open Access Journals (Sweden)

    Jumpei F Yamagishi

    2016-10-01

    Full Text Available As cells grow and divide under a given environment, they become crowded and resources are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often show strong interactions through exchanging chemicals, as evident in quorum sensing, to achieve mutualism and division of labor. Here, to achieve stable division of labor, three characteristics are required. First, isogenous cells differentiate into several types. Second, this aggregate of distinct cell types shows better growth than that of isolated cells without interaction and differentiation, by achieving division of labor. Third, this cell aggregate is robust with respect to the number distribution of differentiated cell types. Indeed, theoretical studies have thus far considered how such cooperation is achieved when the ability of cell differentiation is presumed. Here, we address how cells acquire the ability of cell differentiation and division of labor simultaneously, which is also connected with the robustness of a cell society. For this purpose, we developed a dynamical-systems model of cells consisting of chemical components with intracellular catalytic reaction dynamics. The reactions convert external nutrients into internal components for cellular growth, and the divided cells interact through chemical diffusion. We found that cells sharing an identical catalytic network spontaneously differentiate via induction from cell-cell interactions, and then achieve division of labor, enabling a higher growth rate than that in the unicellular case. This symbiotic differentiation emerged for a class of reaction networks under the condition of nutrient limitation and strong cell-cell interactions. Then, robustness in the cell type distribution was achieved, while instability of collective growth could emerge even among the cooperative cells when the internal reserves of products were dominant. The present mechanism is simple and general as a natural consequence of

  14. Infrared spectroscopy of symbiotic stars and the nature of their cool components

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Gallagher, J.S.

    1983-01-01

    We present low-resolution 2--4 μm spectroscopy of a small sample of symbiotic stars, in an effort to determine if the giant components of these systems fill their Roche Lobes. A [2.35]-[2.2] color index measures the strength of the CO absorption band and provides a useful discriminant of luminosity class among single M-type giants which separates normal giants from supergiants at the same spectral type. Although interpretation of symbiotic spectra is complicated somewhat by their binary nature, our results suggest the late-type components in these systems range from normal red giants to bright asymptotic giants. The possible presence of non-Roche Lobe filling, low-luminosity giants in some symbiotic stars cannot be understood within the framework of existing theories for these interesting objects, and thus may provide important information for understanding mass transfer in binary systems

  15. Diagnostic of the Symbiotic Stars Environment by Thomson, Raman and Rayleigh Scattering Processes

    Directory of Open Access Journals (Sweden)

    M. Sekeráš

    2015-02-01

    Full Text Available Symbiotic stars are long-period interacting binaries consisting of a cool giant as the donor star and a white dwarf as the acretor. Due to acretion of the material from the giant’s stellar wind, the white dwarf becomes very hot and luminous. The circumstellar material partially ionized by the hot star, represents an ideal medium for processes of scattering. To investigate the symbiotic nebula we modeled the wide wings of the resonance lines OVI λ1032 Å, λ1038 Å and HeII λ1640 Å emission line in the spectrum of AG Dra, broadened by Thomson scattering. On the other hand, Raman and Rayleigh scattering arise in the neutral part of the circumstellar matter around the giant and provide a powerful tool to probe e.g. the ionization structure of the symbiotic systems and distribution of the neutral hydrogen atoms in the giant’s wind.

  16. Detection of new southern SiO maser sources associated with Mira and symbiotic stars

    International Nuclear Information System (INIS)

    Allen, D.A.; Hall, P.J.; Norris, R.P.; Troup, E.R.; Wark, R.M.; Wright, A.E.

    1989-01-01

    In 1987 July the Parkes radio telescope was used to search for 43.12 GHz SiO maser emission from southern late-type stars. We report the discovery of such emission from 12 Mira-like systems, including the symbiotic star H1-36, and discuss the implications of our data for the symbiotic stars. We identify several M-type Mira variables with unusually low SiO/infrared flux ratios, but with present data are not able to discredit the correlation between the two parameters. In addition, we present line profiles for the only other known symbiotic maser, R Aqr, at unprecedented signal-to-noise ratio; these profiles show linearly polarized emission from several components of the source. (author)

  17. The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera: Culicidae) to organophosphate insecticides.

    Science.gov (United States)

    Soltani, Aboozar; Vatandoost, Hassan; Oshaghi, Mohammad Ali; Enayati, Ahmad Ali; Chavshin, Ali Reza

    2017-09-01

    In the current study, the effects of the presence of symbiotic bacteria on the activity of the enzymes involved in An. stephensi resistance to temephos are evaluated for the first time. Four different strains (I. susceptible strain, II. resistant strain, III. resistant strain + antibiotic, and IV. resistant strain + bacteria) were considered in order to determine the possible effects of the symbiotic bacteria on their hosts' resistance to temephos. The median values of all enzymes of susceptible strain were compared with those of other resistant strains. The results of this study indicated a direct relationship between the presence of bacteria in the symbiotic organs of An. stephensi and resistance to temephos. The profile of enzymatic activities in the resistant strain changed to a susceptible status after adding antibiotic. The resistance of An. stephensi to temephos could be completely broken artificially by removing their bacterial symbionts in a resistant population.

  18. Discovery of a Possible Symbiotic Binary in the Large Magellanic Cloud

    Science.gov (United States)

    Mathew, Blesson; Reid, Warren A.; Mennickent, R. E.; Banerjee, D. P. K.

    2017-12-01

    We report the discovery of a possible symbiotic star, in the Large Magellanic Cloud (LMC). The object under consideration here, designated as RP 870, was detected during the course of a comprehensive H$\\alpha$ survey of the LMC by Reid & Parker (2012). The spectrum of RP 870 showed high ionization emission lines of He I, He II and [O III] and molecular absorption bands of TiO $\\lambda$$\\lambda$6180, 7100. The collective signatures of a hot component (high excitation/ionization lines) and of a cool component (TiO molecular bands) are seen in RP 870, from which we propose it as a symbiotic star. Since known symbiotic systems are rare in the LMC, possibly less than a dozen are known, we thought the present detection to be interesting enough to be reported.

  19. An Overview on Marine Sponge-Symbiotic Bacteria as Unexhausted Sources for Natural Product Discovery

    Directory of Open Access Journals (Sweden)

    Candice M. Brinkmann

    2017-09-01

    Full Text Available Microbial symbiotic communities of marine macro-organisms carry functional metabolic profiles different to the ones found terrestrially and within surrounding marine environments. These symbiotic bacteria have increasingly been a focus of microbiologists working in marine environments due to a wide array of reported bioactive compounds of therapeutic importance resulting in various patent registrations. Revelations of symbiont-directed host specific functions and the true nature of host-symbiont interactions, combined with metagenomic advances detecting functional gene clusters, will inevitably open new avenues for identification and discovery of novel bioactive compounds of biotechnological value from marine resources. This review article provides an overview on bioactive marine symbiotic organisms with specific emphasis placed on the sponge-associated ones and invites the international scientific community to contribute towards establishment of in-depth information of the environmental parameters defining selection and acquisition of true symbionts by the host organisms.

  20. St 2-22 - Another Symbiotic Star with High-Velocity Bipolar Jets

    Science.gov (United States)

    Tomov, T.; Zamanov, R.; Gałan, C.; Pietrukowicz, P.

    2017-09-01

    We report the detection of high-velocity components in the wings of Hα emission line in spectra of symbiotic binary star St 2-22 obtained in 2005. This finding encouraged us to start the present investigation in order to show that this poorly-studied object is a jet-producing system. We have used high-resolution optical and low-resolution near-infrared spectra, as well as available optical and infrared photometry, to evaluate some physical parameters of the St 2-22 components and characteristics of the jets. We confirm that St 2-22 is a S-type symbiotic star. Our results demonstrate that an unnoticed outburst, similar to those in classical symbiotic systems, occurred in the first half of 2005. During the outburst, collimated bipolar jets were ejected by the hot component of St 2-22 with an average velocity of about 1700 km/s.

  1. Interacting Winds in Eclipsing Symbiotic Systems - The Case Study of EG Andromedae

    Science.gov (United States)

    Calabrò, Emanuele

    2014-03-01

    We report the mathematical representation of the so called eccentric eclipse model, whose numerical solutions can be used to obtain the physical parameters of a quiescent eclipsing symbiotic system. Indeed the nebular region produced by the collision of the stellar winds should be shifted to the orbital axis because of the orbital motion of the system. This mechanism is not negligible, and it led us to modify the classical concept of an eclipse. The orbital elements obtained from spectroscopy and photometry of the symbiotic EG Andromedae were used to test the eccentric eclipse model. Consistent values for the unknown orbital elements of this symbiotic were obtained. The physical parameters are in agreement with those obtained by means of other simulations for this system.

  2. Symbiotic Activity of Pea (Pisum sativum after Application of Nod Factors under Field Conditions

    Directory of Open Access Journals (Sweden)

    Anna Siczek

    2014-04-01

    Full Text Available Growth and symbiotic activity of legumes are mediated by Nod factors (LCO, lipo-chitooligosaccharides. To assess the effects of application of Nod factors on symbiotic activity and yield of pea, a two-year field experiment was conducted on a Haplic Luvisol developed from loess. Nod factors were isolated from Rhizobium leguminosarum bv. viciae strain GR09. Pea seeds were treated with the Nod factors (10−11 M or water (control before planting. Symbiotic activity was evaluated by measurements of nitrogenase activity (acetylene reduction assay, nodule number and mass, and top growth by shoot mass, leaf area, and seed and protein yield. Nod factors generally improved pea yield and nitrogenase activity in the relatively dry growing season 2012, but not in the wet growing season in 2013 due to different weather conditions.

  3. Influence of cultivation regime of an arbuscular mycorrhizal fungal isolate on its symbiotic efficacy in phyto restoration of disturbed ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, R. S.; Vosatka, M.; Castro, P. M. L.; Dodd, J. C.

    2009-07-01

    Arbuscular mycorrhizal fungi (AMF), from the Phylum Glomeromycota, are a group of soil organisms that forms symbiotic associations with plant roots and can contribute to increase plant biomass and promote phyto restoration of disturbed ecosystems. The influence of cultivation regime of a Glomus geosporum isolate, obtained from a highly alkaline anthropogenic sediment, on its symbiotic efficacy was investigated. (Author)

  4. Influence of cultivation regime of an arbuscular mycorrhizal fungal isolate on its symbiotic efficacy in phyto restoration of disturbed ecosystems

    International Nuclear Information System (INIS)

    Oliveira, R. S.; Vosatka, M.; Castro, P. M. L.; Dodd, J. C.

    2009-01-01

    Arbuscular mycorrhizal fungi (AMF), from the Phylum Glomeromycota, are a group of soil organisms that forms symbiotic associations with plant roots and can contribute to increase plant biomass and promote phyto restoration of disturbed ecosystems. The influence of cultivation regime of a Glomus geosporum isolate, obtained from a highly alkaline anthropogenic sediment, on its symbiotic efficacy was investigated. (Author)

  5. Intracellular pH and its response to CO2-driven seawater acidification in symbiotic versus non-symbiotic coral cells.

    Science.gov (United States)

    Gibbin, Emma M; Putnam, Hollie M; Davy, Simon K; Gates, Ruth D

    2014-06-01

    Regulating intracellular pH (pHi) is critical for optimising the metabolic activity of corals, yet the mechanisms involved in pH regulation and the buffering capacity within coral cells are not well understood. Our study investigated how the presence of symbiotic dinoflagellates affects the response of pHi to PCO2-driven seawater acidification in cells isolated from Pocillopora damicornis. Using the fluorescent dye BCECF-AM, in conjunction with confocal microscopy, we simultaneously characterised the pHi response in host coral cells and their dinoflagellate symbionts, in symbiotic and non-symbiotic states under saturating light, with and without the photosynthetic inhibitor DCMU. Each treatment was run under control (pH 7.8) and CO2-acidified seawater conditions (decreasing pH from 7.8 to 6.8). After 105 min of CO2 addition, by which time the external pH (pHe) had declined to 6.8, the dinoflagellate symbionts had increased their pHi by 0.5 pH units above control levels when in the absence of DCMU. In contrast, in both symbiotic and non-symbiotic host coral cells, 15 min of CO2 addition (0.2 pH unit drop in pHe) led to cytoplasmic acidosis equivalent to 0.3-0.4 pH units irrespective of whether DCMU was present. Despite further seawater acidification over the duration of the experiment, the pHi of non-symbiotic coral cells did not change, though in host cells containing a symbiont cell the pHi recovered to control levels when photsynthesis was not inhibited. This recovery was negated when cells were incubated with DCMU. Our results reveal that photosynthetic activity of the endosymbiont is tightly coupled with the ability of the host cell to recover from cellular acidosis after exposure to high CO2/low pH. © 2014. Published by The Company of Biologists Ltd.

  6. Characterization of glutathione peroxidase diversity in the symbiotic sea anemone Anemonia viridis.

    Science.gov (United States)

    Pey, Alexis; Zamoum, Thamilla; Christen, Richard; Merle, Pierre-Laurent; Furla, Paola

    2017-01-01

    Cnidarians living in symbiosis with photosynthetic dinoflagellates (commonly named zooxanthellae) are exposed to high concentrations of reactive oxygen species (ROS) upon illumination. To quench ROS production, both the cnidarian host and zooxanthellae express a full suite of antioxidant enzymes. Studying antioxidative balance is therefore crucial to understanding how symbiotic cnidarians cope with ROS production. We characterized glutathione peroxidases (GPx) in the symbiotic cnidarian Anemonia viridis by analysis of their isoform diversity, their activity distribution in the three cellular compartments (ectoderm, endoderm and zooxanthellae) and their involvement in the response to thermal stress. We identified a GPx repertoire through a phylogenetic analysis showing 7 GPx transcripts belonging to the A. viridis host and 4 GPx transcripts strongly related to Symbiodinium sp. The biochemical approach, used for the first time with a cnidarian species, allowed the identification of GPx activity in the three cellular compartments and in the animal mitochondrial fraction, and revealed a high GPx electrophoretic diversity. The symbiotic lifestyle of zooxanthellae requires more GPx activity and diversity than that of free-living species. Heat stress induced no modification of GPx activities. We highlight a high GPx diversity in A. viridis tissues by genomic and biochemical approaches. GPx activities represent an overall constitutive enzymatic pattern inherent to symbiotic lifestyle adaptation. This work allows the characterization of the GPx family in a symbiotic cnidarian and establishes a foundation for future studies of GPx in symbiotic cnidarians. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  7. Dust around the Cool Component of D-Type Symbiotic Binaries

    Science.gov (United States)

    Jurkic, Tomislav; Kotnik-Karuza, Dubravka

    2018-04-01

    D type symbiotic binaries are an excellent astrophysical laboratory for investigation of the dust properties and dust formation under the influence of theMira stellar wind and nova activity and of the mass loss and mass transfer between components in such a widely separated system. We present a study of the properties of circumstellar dust in symbiotic Miras by use of long-term near-IR photometry and colour indices. The published JHKL magnitudes of o Ceti, RX Pup, KM Vel, V366 Car, V835 Cen, RR Tel, HM Sge and R Aqr have been collected, analyzed and corrected for short-term variations caused by Mira pulsations. Assuming spherical temperature distribution of the dust in the close neighbourhood of the Mira, the DUSTY code was used to solve the radiative transfer in order to determine the dust temperature and its properties in each particular case. Common dust properties of the symbiotic Miras have been found, suggesting similar conditions in the condensation region of the studied symbiotic Miras. Silicate dust with the inner dust shell radius determined by the dust condensation and with the dust temperature of 900-1200 K can fully explain the observed colour indices. R Aqr is an exception and showed lower dust temperature of 650 K. Obscuration events visible in light curves can be explained by variable dust optical depth with minimal variations of other dust properties. More active symbioticMiras that underwent recent nova outbursts showed higher dust optical depths and larger maximum grain sizes of the order of μm, which means that the post-nova activity could stimulate the dust formation and the grain growth. Optically thicker dust shells and higher dust condensation temperatures have been found in symbiotic Miras compared to their single counterparts, suggesting different conditions for dust production.

  8. Postoperative symbiotic in patients with head and neck cancer: a double-blind randomised trial.

    Science.gov (United States)

    Lages, Priscilla C; Generoso, Simone V; Correia, Maria Isabel T D

    2018-01-01

    Studies on the 'gut origin of sepsis' have suggested that stressful insults, such as surgery, can affect intestinal permeability, leading to bacterial translocation. Symbiotics have been reported to be able to improve gut permeability and modulate the immunologic system, thereby decreasing postoperative complications. Therefore we aimed to evaluate the postoperative use of symbiotics in head and neck cancer surgical patients for intestinal function and permeability, as well as the postoperative outcomes. Patients were double-blind randomised into the symbiotic (n 18) or the control group (n 18). Samples were administered twice a day by nasoenteric tube, starting on the 1st postoperative day until the 5th to 7th day, and comprised 109 colony-forming units/ml each of Lactobacillus paracasei, L. rhamnosus, L. acidophilus, and Bifidobacterium lactis plus 6 g of fructo-oligosaccharides, or a placebo (6 g of maltodextrin). Intestinal function (day of first evacuation, total stool episodes, stool consistency, gastrointestinal tract symptoms and gut permeability by diamine oxidase (DAO) enzyme) and postoperative complications (infectious and non-infectious) were assessed. Results of comparison of the pre- and postoperative periods showed that the groups were similar for all outcome variables. In all, twelve patients had complications in the symbiotic group v. nine in the control group (P>0·05), and the preoperative-postoperative DAO activity ranged from 28·5 (sd 15·4) to 32·7 (sd 11·0) ng/ml in the symbiotic group and 35·2 (sd 17·7) to 34·1 (sd 12·0) ng/ml in the control group (P>0·05). In conclusion, postoperative symbiotics did not impact on intestinal function and postoperative outcomes of head and neck surgical patients.

  9. Conserved Responses in a War of Small Molecules between a Plant-Pathogenic Bacterium and Fungi.

    Science.gov (United States)

    Spraker, Joseph E; Wiemann, Philipp; Baccile, Joshua A; Venkatesh, Nandhitha; Schumacher, Julia; Schroeder, Frank C; Sanchez, Laura M; Keller, Nancy P

    2018-05-22

    Small-molecule signaling is one major mode of communication within the polymicrobial consortium of soil and rhizosphere. While microbial secondary metabolite (SM) production and responses of individual species have been studied extensively, little is known about potentially conserved roles of SM signals in multilayered symbiotic or antagonistic relationships. Here, we characterize the SM-mediated interaction between the plant-pathogenic bacterium Ralstonia solanacearum and the two plant-pathogenic fungi Fusarium fujikuroi and Botrytis cinerea We show that cellular differentiation and SM biosynthesis in F. fujikuroi are induced by the bacterially produced lipopeptide ralsolamycin (synonym ralstonin A). In particular, fungal bikaverin production is induced and preferentially accumulates in fungal survival spores (chlamydospores) only when exposed to supernatants of ralsolamycin-producing strains of R. solanacearum Although inactivation of bikaverin biosynthesis moderately increases chlamydospore invasion by R. solanacearum , we show that other metabolites such as beauvericin are also induced by ralsolamycin and contribute to suppression of R. solanacearum growth in vitro Based on our findings that bikaverin antagonizes R. solanacearum and that ralsolamycin induces bikaverin biosynthesis in F. fujikuroi , we asked whether other bikaverin-producing fungi show similar responses to ralsolamycin. Examining a strain of B. cinerea that horizontally acquired the bikaverin gene cluster from Fusarium , we found that ralsolamycin induced bikaverin biosynthesis in this fungus. Our results suggest that conservation of microbial SM responses across distantly related fungi may arise from horizontal transfer of protective gene clusters that are activated by conserved regulatory cues, e.g., a bacterial lipopeptide, providing consistent fitness advantages in dynamic polymicrobial networks. IMPORTANCE Bacteria and fungi are ubiquitous neighbors in many environments, including

  10. Spectroscopic observations of V443 Herculis - A symbiotic binary with a low mass white dwarf

    Science.gov (United States)

    Dobrzycka, Danuta; Kenyon, Scott J.; Mikolajewska, Joanna

    1993-01-01

    We present an analysis of new and existing photometric and spectroscopic observations of the symbiotic binary V443 Herculis. This binary system consists of a normal M5 giant and a hot compact star. These two objects have comparable luminosities: about 1500 solar for the M5 giant and about 1000 solar for the compact star. We identify three nebular regions in this binary: a small, highly ionized volume surrounding the hot component, a modestly ionized shell close to the red giant photosphere, and a less dense region of intermediate ionization encompassing both binary components. The system parameters for V443 Her suggest the hot component currently declines from a symbiotic nova eruption.

  11. Resource utilization of symbiotic high-temperature gas-cooled reactor systems

    International Nuclear Information System (INIS)

    Borgonovi, G.M.; Brogli, R.H.

    1978-01-01

    The cumulative uranium requirements of different symbiotic combinations of high-temperature gas-cooled reactor (HTGR) prebreeders have been calculated assuming an open-end nuclear economy. The results obtained indicate that the combination of prebreeders and near-breeders does not save resources over a self-generated recycle case of comparable conversion ratio, and that it may take between 40 and 50 yr before the symbiotic system containing breeders starts saving resources over an HTGR with self-generated recycle and a conversion ratio of 0.83

  12. Symbiotic Stars in X-rays. II. Faint Sources Detected with XMM-Newton and Chandra

    Science.gov (United States)

    Nunez, N. E.; Luna, G. J. M.; Pillitteri, I.; Mukai, K.

    2014-01-01

    We report the detection from four symbiotic stars that were not known to be X-ray sources. These four object show a ß-type X-ray spectrum, that is, their spectra can be modeled with an absorbed optically thin thermal emission with temperatures of a few million degrees. Photometric series obtained with the Optical Monitor on board XMM-Newton from V2416 Sgr and NSV 25735 support the proposed scenario where the X-ray emission is produced in a shock-heated region inside the symbiotic nebulae.

  13. Immunolocalization and Changes of Hydroxyproline-Rich Glycoproteins During Symbiotic Germination of Dendrobium officinale.

    Science.gov (United States)

    Li, Yuan-Yuan; Chen, Xiao-Mei; Zhang, Ying; Cho, Yu-Hsiu; Wang, Ai-Rong; Yeung, Edward C; Zeng, Xu; Guo, Shun-Xing; Lee, Yung-I

    2018-01-01

    Hydroxyproline-rich glycoproteins (HRGPs) are abundant cell wall components involved in mycorrhizal symbiosis, but little is known about their function in orchid mycorrhizal association. To gain further insight into the role of HRGPs in orchid symbiosis, the location and function of HRGPs were investigated during symbiotic germination of Dendrobium officinale . The presence of JIM11 epitope in developing protocorms was determined using immunodot blots and immunohistochemical staining procedures. Real-time PCR was also employed to verify the expression patterns of genes coding for extensin-like genes selected from the transcriptomic database. The importance of HRGPs in symbiotic germination was further investigated using 3,4-dehydro-L-proline (3,4-DHP), an inhibitor of HRGP biosynthesis. In symbiotic cultures, immunodot blots of JIM11 signals were moderate in mature seeds, and the signals became stronger in swollen embryos. After germination, signal intensities decreased in developing protocorms. In contrast, in asymbiotic cultures, JIM11 signals were much lower as compared with those stages in symbiotic cultures. Immunofluorescence staining enabled the visualization of JIM11 epitope in mature embryo and protocorm cells. Positive signals were initially localized in the larger cells near the basal (suspensor) end of uninfected embryos, marking the future colonization site of fungal hyphae. After 1 week of inoculation, the basal end of embryos had been colonized, and a strong signal was detected mostly at the mid- and basal regions of the enlarging protocorm. As protocorm development progressed, the signal was concentrated in the colonized cells at the basal end. In colonized cells, signals were present in the walls and intracellularly associated with hyphae and the pelotons. The precise localization of JIM11 epitope is further examined by immunogold labeling. In the colonized cells, gold particles were found mainly in the cell wall and the interfacial matrix near the

  14. A new carbon-symbiotic star in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Cowley, A.P.; Hartwick, F.D.A.

    1989-01-01

    A new carbon-symbiotic star, designated as CH-95, was discovered during a study of the kinematics of CH stars in the LMC. The spectrum of CH-95 is presented. Some of the strong emission lines found include H, He I, He II, forbidden O III, and the broad C III/N III blend at 4640 A, often seen in compact systems such as X-ray binaries. A comparison was made with other C-star symbiotics in the LMC, SMC, and Draco. 12 refs

  15. Evaluation of the symbiotic nitrogen fixation in soybean by labelling of soil organic matter

    International Nuclear Information System (INIS)

    Ruschel, A.P.; Freitas, J.R. de; Vose, P.B.

    1982-01-01

    An experiment was carried out using the isotopic dilution method to evaluate symbiotic nitrogen fixation in soybean grown in soil labelled with 15 N enriched organic matter. Symbiotic N 2 -fixed was 71-76% of total N in the plant. Non nodulated soybean utilized 56-59% N from organic matter and 40% from soil. Roots of nodulated plants had lower NdN 2 than aereal plant parts. The advantage of using labelled organic matter as compared with 15 N-fertilizer addition in evaluating N 2 -fixation is discussed. (Author) [pt

  16. Symbiotic formulation in experimentally induced liver fibrosis in rats: intestinal microbiota as a key point to treat liver damage?

    Science.gov (United States)

    D'Argenio, Giuseppe; Cariello, Rita; Tuccillo, Concetta; Mazzone, Giovanna; Federico, Alessandro; Funaro, Annalisa; De Magistris, Laura; Grossi, Enzo; Callegari, Maria L; Chirico, Marilena; Caporaso, Nicola; Romano, Marco; Morelli, Lorenzo; Loguercio, Carmela

    2013-05-01

    Evidence indicates that intestinal microbiota may participate in both the induction and the progression of liver damage. The aim of our research was the detection and evaluation of the effects of chronic treatment with a symbiotic formulation on CCl4 -induced rat liver fibrosis. CCl4 significantly increased gastric permeability in respect to basal values, and the treatment with symbiotic significantly decreased it. CCl4 per se induced a decrease in intestinal permeability. This effect was also seen in fibrotic rats treated with symbiotic and was still evident when normal rats were treated with symbiotic alone (P symbiotic treatment normalized the plasma levels of TNF-α and significantly enhanced anti-inflammatory cytokine IL 10. TNF-α, TGF-β, TLR4, TLR2, iNOS and α-SMA mRNA expression in the liver were up-regulated in rats with CCl4 -induced liver fibrosis and down-regulated by symbiotic treatment. Moreover, IL-10 and eNOS mRNA levels were increased in the CCL4 (+) symbiotic group. Symbiotic treatment of fibrotic rats normalized serum ALT, AST and improved histology and liver collagen deposition. DGGE analysis of faecal samples revealed that CCl4 administration and symbiotic treatment either alone or in combination produced modifications in faecal profiles vs controls. Our results provide evidence that in CCl4 -induced liver fibrosis, significant changes in gastro-intestinal permeability and in faecal flora occur. Treatment with a specific symbiotic formulation significantly affects these changes, leading to improvement in both liver inflammation and fibrosis. © 2013 John Wiley & Sons A/S.

  17. Cryopreservation studies of an artificial co-culture between the cobalamin-requiring green alga Lobomonas rostrata and the bacterium Mesorhizobium loti.

    Science.gov (United States)

    Ridley, Christian J A; Day, John G; Smith, Alison G

    2018-01-01

    Algal-bacterial co-cultures, rather than cultures of algae alone, are regarded as having the potential to enhance productivity and stability in industrial algal cultivation. As with other inocula in biotechnology, to avoid loss of production strains, it is important to develop preservation methods for the long-term storage of these cultures, and one of the most commonly used approaches is cryopreservation. However, whilst there are many reports of cryopreserved xenic algal cultures, little work has been reported on the intentional preservation of both algae and beneficial bacteria in xenic cultures. Instead, studies have focused on the development of methods to conserve the algal strain(s) present, or to avoid overgrowth of bacteria in xenic isolates during the post-thaw recovery phase. Here, we have established a co-cryopreservation method for the long-term storage of both partners in a unialgal-bacterial co-culture. This is an artificial model mutualism between the alga Lobomonas rostrata and the bacterium Mesorhizobium loti , which provides vitamin B 12 (cobalamin) to the alga in return for photosynthate. Using a Planer Kryo 360 controlled-rate cooler, post-thaw viability (PTV) values of 72% were obtained for the co-culture, compared to 91% for the axenic alga. The cultures were successfully revived after 6 months storage in liquid nitrogen, and continued to exhibit mutualism. Furthermore, the alga could be cryopreserved with non-symbiotic bacteria, without bacterial overgrowth occurring. It was also possible to use less controllable passive freezer chambers to cryopreserve the co-cultures, although the PTV was lower. Finally, we demonstrated that an optimised cryopreservation method may be used to prevent the overgrowth potential of non-symbiotic, adventitious bacteria in both axenic and co-cultures of L. rostrata after thawing.

  18. The genome of the intracellular bacterium of the coastal bivalve, Solemya velum: a blueprint for thriving in and out of symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Dmytrenko, Oleg; Russell, Shelbi L.; Loo, Wesley T.; Fontanez, Kristina M.; Liao, Li; Roeselers, Guus; Sharma, Raghav; Stewart, Frank J.; Newton, Irene LG; Woyke, Tanja; Wu, Dongying; Lang, Jenna; Eisen, Jonathan A.; Cavanaugh, Colleen M.

    2014-01-01

    Background: Symbioses between chemoautotrophic bacteria and marine invertebrates are rare examples of living systems that are virtually independent of photosynthetic primary production. These associations have evolved multiple times in marine habitats, such as deep-sea hydrothermal vents and reducing sediments, characterized by steep gradients of oxygen and reduced chemicals. Due to difficulties associated with maintaining these symbioses in the laboratory and culturing the symbiotic bacteria, studies of chemosynthetic symbioses rely heavily on culture independent methods. The symbiosis between the coastal bivalve, Solemya velum, and its intracellular symbiont is a model for chemosynthetic symbioses given its accessibility in intertidal environments and the ability to maintain it under laboratory conditions. To better understand this symbiosis, the genome of the S. velum endosymbiont was sequenced. Results: Relative to the genomes of obligate symbiotic bacteria, which commonly undergo erosion and reduction, the S. velum symbiont genome was large (2.86 Mb), GC-rich (50.4percent), and contained a large number (78) of mobile genetic elements. Comparative genomics identified sets of genes specific to the chemosynthetic lifestyle and necessary to sustain the symbiosis. In addition, a number of inferred metabolic pathways and cellular processes, including heterotrophy, branched electron transport, and motility, suggested that besides the ability to function as an endosymbiont, the bacterium may have the capacity to live outside the host. Conclusions: The physiological dexterity indicated by the genome substantially improves our understanding of the genetic and metabolic capabilities of the S. velum symbiont and the breadth of niches the partners may inhabit during their lifecycle

  19. Biosorption of heavy metals by a marine bacterium

    International Nuclear Information System (INIS)

    Iyer, Anita; Mody, Kalpana; Jha, Bhavanath

    2005-01-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here

  20. Biosorption of heavy metals by a marine bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Anita [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India); Mody, Kalpana [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)]. E-mail: khmody@csmcri.org; Jha, Bhavanath [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)

    2005-03-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here.

  1. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    OpenAIRE

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and c...

  2. Antibacterial marine bacterium deter luminous vibriosis in shrimp larvae

    OpenAIRE

    Abraham, T.J.

    2004-01-01

    Inhibitory activity of a marine pigmented bacterium - Alteromonas sp. - isolated from Penaeus monodon Fabricius larva against pathogenic and environmental isolates of Vibrio harveyi was studied. All the isolates were inhibited to varying degrees by Alteromonas sp. in vitro. The antibacterial substance produced by the Alteromonas sp. was soluble in organic solvent and closely bound to the external surface of bacterial cells. The antibacterial Alteromonas sp., when allowed to colonize on shrimp...

  3. Initiation of chromosomal replication in predatory bacterium Bdellovibrio bacteriovorus

    Directory of Open Access Journals (Sweden)

    Lukasz Makowski

    2016-11-01

    Full Text Available Bdellovibrio bacteriovorus is a small Gram-negative predatory bacterium that attacks other Gram-negative bacteria, including many animal, human, and plant pathogens. This bacterium exhibits a peculiar biphasic life cycle during which two different types of cells are produced: non-replicating highly motile cells (the free-living phase and replicating cells (the intracellular-growth phase. The process of chromosomal replication in B. bacteriovorus must therefore be temporally and spatially regulated to ensure that it is coordinated with cell differentiation and cell cycle progression. Recently, B. bacteriovorus has received considerable research interest due to its intriguing life cycle and great potential as a prospective antimicrobial agent. Although we know that chromosomal replication in bacteria is mainly regulated at the initiation step, no data exists about this process in B. bacteriovorus. We report the first characterization of key elements of initiation of chromosomal replication – DnaA protein and oriC region from the predatory bacterium, B. bacteriovorus. In vitro studies using different approaches demonstrate that the B. bacteriovorus oriC (BdoriC is specifically bound and unwound by the DnaA protein. Sequence comparison of the DnaA-binding sites enabled us to propose a consensus sequence for the B. bacteriovorus DnaA box (5’-NN(A/TTCCACA-3’. Surprisingly, in vitro analysis revealed that BdoriC is also bound and unwound by the host DnaA proteins (relatively distantly related from B. bacteriovorus. We compared the architecture of the DnaA–oriC complexes (orisomes in homologous (oriC and DnaA from B. bacteriovorus and heterologous (BdoriC and DnaA from prey, E. coli or P. aeruginosa systems. This work provides important new entry points toward improving our understanding of the initiation of chromosomal replication in this predatory bacterium.

  4. Temperature affects species distribution in symbiotic populations of Vibrio spp.

    Science.gov (United States)

    Nishiguchi, M K

    2000-08-01

    The genus Sepiola (Cephalopoda: Sepiolidae) contains 10 known species that occur in the Mediterranean Sea today. All Sepiola species have a light organ that contains at least one of two species of luminous bacteria, Vibrio fischeri and Vibrio logei. The two Vibrio species coexist in at least four Sepiola species (S. affinis, S. intermedia, S. ligulata, and S. robusta), and their concentrations in the light organ depend on changes in certain abiotic factors, including temperature. Strains of V. fischeri grew faster in vitro and in Sepiola juveniles when they were incubated at 26 degrees C. In contrast, strains of V. logei grew faster at 18 degrees C in culture and in Sepiola juveniles. When aposymbiotic S. affinis or S. ligulata juveniles were inoculated with one Vibrio species, all strains of V. fischeri and V. logei were capable of infecting both squid species at the optimum growth temperatures, regardless of the squid host from which the bacteria were initially isolated. However, when two different strains of V. fischeri and V. logei were placed in direct competition with each other at either 18 or 26 degrees C, strains of V. fischeri were present in sepiolid light organs in greater concentrations at 26 degrees C, whereas strains of V. logei were present in greater concentrations at 18 degrees C. In addition to the competition experiments, the ratios of the two bacterial species in adult Sepiola specimens caught throughout the season at various depths differed, and these differences were correlated with the temperature in the surrounding environment. My findings contribute additional data concerning the ecological and environmental factors that affect host-symbiont recognition and may provide insight into the evolution of animal-bacterium specificity.

  5. Biomimicry of symbiotic multi-species coevolution for discrete and continuous optimization in RFID networks

    Directory of Open Access Journals (Sweden)

    Na Lin

    2017-03-01

    Full Text Available In recent years, symbiosis as a rich source of potential engineering applications and computational model has attracted more and more attentions in the adaptive complex systems and evolution computing domains. Inspired by different symbiotic coevolution forms in nature, this paper proposed a series of multi-swarm particle swarm optimizers called PS2Os, which extend the single population particle swarm optimization (PSO algorithm to interacting multi-swarms model by constructing hierarchical interaction topologies and enhanced dynamical update equations. According to different symbiotic interrelationships, four versions of PS2O are initiated to mimic mutualism, commensalism, predation, and competition mechanism, respectively. In the experiments, with five benchmark problems, the proposed algorithms are proved to have considerable potential for solving complex optimization problems. The coevolutionary dynamics of symbiotic species in each PS2O version are also studied respectively to demonstrate the heterogeneity of different symbiotic interrelationships that effect on the algorithm’s performance. Then PS2O is used for solving the radio frequency identification (RFID network planning (RNP problem with a mixture of discrete and continuous variables. Simulation results show that the proposed algorithm outperforms the reference algorithms for planning RFID networks, in terms of optimization accuracy and computation robustness.

  6. Pea mutant risnod27 as reference line for field assessment of impact of symbiotic nitrogen fixation

    Czech Academy of Sciences Publication Activity Database

    Biedermannová, E.; Novák, Karel; Vondrys, J.

    2002-01-01

    Roč. 25, č. 9 (2002), s. 2051-2066 ISSN 0190-4167 R&D Projects: GA ČR GA521/00/0937 Institutional research plan: CEZ:AV0Z5020903 Keywords : pea mutant * symbiotic nodules Subject RIV: EE - Microbiology, Virology Impact factor: 0.593, year: 2002

  7. Identification of symbiotic nitrogen-fixing bacteria from three African leguminous trees in Gorongosa National Park.

    Science.gov (United States)

    Teixeira, Helena; Rodríguez-Echeverría, Susana

    2016-07-01

    The symbiosis between leguminous plants and symbiotic nitrogen-fixing bacteria is a key component of terrestrial ecosystems. Woody legumes are well represented in tropical African forests but despite their ecological and socio-economic importance, they have been little studied for this symbiosis. In this study, we examined the identity and diversity of symbiotic-nitrogen fixing bacteria associated with Acacia xanthophloea, Faidherbia albida and Albizia versicolor in the Gorongosa National Park (GNP) in Mozambique. To the best of our knowledge, this is the first report on the identity of symbiotic-nitrogen fixing bacteria in this region. 166 isolates were obtained and subjected to molecular identification. BOX-A1R PCR was used to discriminate different bacterial isolates and PCR-sequencing of 16S rDNA, and two housekeeping genes, glnII and recA, was used to identify the obtained bacteria. The gene nifH was also analyzed to assess the symbiotic capacity of the obtained bacteria. All isolates from F. albida and Al. versicolor belonged to the Bradyrhizobium genus whereas isolates from Ac. xanthophloea clustered with Mesorhizobium, Rhizobium or Ensifer strains. Soil chemical analysis revealed significant differences between the soils occupied by the three studied species. Thus, we found a clear delimitation in the rhizobial communities and soils associated with Ac. xanthophloea, F. albida and Al. versicolor, and higher rhizobial diversity for Ac. xanthophloea than previously reported. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Radio emission from the nova-like variable AC Cancri and the symbiotic variable AG Draconis

    International Nuclear Information System (INIS)

    Torbett, M.V.; Campbell, B.; Mount Wilson and Las Campanas Observatories, Pasadena, CA)

    1987-01-01

    Radio emission at 6 cm has been detected from the nova-like cataclysmic variable AC Cnc and the symbiotic variable AG Dra. The AC Cnc observation constitutes the first radio detection in this class of objects. The AG Dra source is probably resolved and appears to show asymmetric, extended structure. The radio emission can best be explained by thermal bremsstrahlung. 26 references

  9. IUE observations of the symbiotic star CH Cygni during an active phase

    International Nuclear Information System (INIS)

    Hack, M.

    1979-01-01

    The observations of CH Cygni reported here were made to determine whether a symbiotic star is a binary system composed of an M6 giant and a hot subdwarf, or whether it is a cooled star surrounded by a thick corona. (author)

  10. Catalase characterization and implication in bleaching of a symbiotic sea anemone.

    Science.gov (United States)

    Merle, Pierre-Laurent; Sabourault, Cécile; Richier, Sophie; Allemand, Denis; Furla, Paola

    2007-01-15

    Symbiotic cnidarians are marine invertebrates harboring photosynthesizing microalgae (named zooxanthellae), which produce great amounts of oxygen and free radicals upon illumination. Studying antioxidative balance is then crucial to understanding how symbiotic cnidarians cope with ROS production. In particular, it is suspected that oxidative stress triggers cnidarian bleaching, i.e., the expulsion of zooxanthellae from the animal host, responsible for symbiotic cnidarian mass mortality worldwide. This study therefore investigates catalase antioxidant enzymes and their role in bleaching of the temperate symbiotic sea anemone Anemonia viridis. Using specific separation of animal tissues (ectoderm and endoderm) from the symbionts (zooxanthellae), spectrophotometric assays and native PAGE revealed both tissue-specific and activity pattern distribution of two catalase electrophoretypes, E1 and E2. E1, expressed in all three tissues, presents high sensitivity to the catalase inhibitor aminotriazole (ATZ) and elevated temperatures. The ectodermal E1 form is responsible for 67% of total catalase activity. The E2 form, expressed only within zooxanthellae and their host endodermal cells, displays low sensitivity to ATZ and relative thermostability. We further cloned an ectodermal catalase, which shares 68% identity with mammalian monofunctional catalases. Last, 6 days of exposure of whole sea anemones to ATZ (0.5 mM) led to effective catalase inhibition and initiated symbiont expulsion. This demonstrates the crucial role of this enzyme in cnidarian bleaching, a phenomenon responsible for worldwide climate-change-induced mass mortalities, with catastrophic consequences for marine biodiversity.

  11. Flora Robotica – Mixed Societies of Symbiotic Robot-Plant Bio-Hybrids

    DEFF Research Database (Denmark)

    Hamann, Heiko; Wahby, Mostafa; Schmickl, Thomas

    2015-01-01

    robotica. Our objective is to develop and to investigate closely linked symbiotic relationships between robots and natural plants and to explore the potentials of a plant-robot society able to produce architectural artifacts and living spaces. These robot-plant bio-hybrids create synergies that allow...

  12. Original article The Symbiotic Bond Questionnaire – theoretical background and psychometric qualities

    Directory of Open Access Journals (Sweden)

    Aleksandra Lewandowska-Walter

    2015-07-01

    Full Text Available Background The article describes the Symbiotic Bond Questionnaire (SBQ – the theoretical background as well as its psychometric characteristics and psychological correlates. The items were created on the basis of the definition of symbiotic personality (Johnson, 1994a. Participants and procedure For these initial survey development and cross-validation studies, the factor structure and psychometric properties of the SBQ were examined. To assess the SBQ’s reliability, the researchers conducted an exploratory factor analysis using a sample of 568 people. The analysis indicated that the Symbiotic Bond Questionnaire consists of 28 items that form four factors: Suppressing, Merging, Cognitive oversensitiveness, and Emotional sensitiveness. Results The symbiotic bond is associated with attachment styles (Suppressing and Cognitive oversensitiveness positively with insecure attachment, and Merging and Emotional sensitiveness positively with secure attachment, empathy (Suppressing and Cognitive oversensitiveness positively with personal distress, and Emotional sensitiveness positively with taking care of others and taking their point of view, differentiation of self (correlations indicate poor functioning of a person in terms of emotional and cognitive autonomy, interdependent-relational self (more relational people are more inclined to merging and emotional sensitiveness and goal-oriented activity (suppressing is negatively associated with strategic and with life enrichment orientation, and positively with avoidant orientation, while Cognitive oversensitiveness is associated with avoidant orientation and emotional sensitiveness with life enrichment orientation. Conclusions The measure is sufficiently reliable and valid. Implications and directions for future research on the measurement are considered.

  13. Characterization of glutathione peroxidase diversity in the symbiotic sea anemone Anemonia viridis

    OpenAIRE

    Pey , Alexis; Zamoum , Thamilla; Christen , Richard; Merle , Pierre-Laurent; Furla , Paola

    2016-01-01

    International audience; Cnidarians living in symbiosis with photosynthetic dinoflagellates (commonly named zooxanthellae) are exposed to high concentrations of reactive oxygen species (ROS) upon illumination. To quench ROS production, both the cnidarian host and zooxanthellae express a full suite of antioxidant enzymes. Studying antioxidative balance is therefore crucial to understanding how symbiotic cnidarians cope with ROS production. We characterized glutathione peroxidases (GPx) in the s...

  14. Fabrication of living soft matter by symbiotic growth of unicellular microorganisms

    NARCIS (Netherlands)

    Das, Anupam A.K.; Bovill, James; Ayesh, Maram; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2016-01-01

    We report the fabrication of living soft matter made as a result of the symbiotic relationship of two unicellular microorganisms. The material is composed of bacterial cellulose produced in situ by acetobacter (Acetobacter aceti NCIMB 8132) in the presence of photosynthetic microalgae

  15. Limited Multiplication of Symbiotic Cyanobacteria of Azolla spp. on Artificial Media

    Science.gov (United States)

    Tang, L. F.; Watanabe, I.; Liu, C. C.

    1990-01-01

    We examined various media and conditions to isolate symbiotic cyanobacteria from the leaf cavities of Azolla spp. Cyanobacteria survived and multiplied to a limited extent on a medium with fructose, Casamino Acids, yeast extract, and NaNO3 under 1% O2. These cyanobacteria were antigenically identical to the endosymbionts. Images PMID:16348366

  16. Effects of heartwood extractives on symbiotic protozoan communities and mortality in two termite species

    Science.gov (United States)

    Babar Hassan; Mark E. Mankowski; Grant Kirker; Sohail Ahmed

    2017-01-01

    Lower termites (Isoptera: Rhinotermitidae) are considered severe pests of wood in service, crops and plantation forests. Termites mechanically remove and digest lignocellulosic material as a food source. The ability to digest lignocellulose not only depends on their digestive physiology, but also on the symbiotic relationship between termites and their intestinal...

  17. Nitrogen cycling in summer active perennial grass systems in South Australia: Non-symbiotic nitrogen fixation

    NARCIS (Netherlands)

    Gupta, V.V.S.R.; Kroker, S.J.; Hicks, M.; Davoren, W.; Descheemaeker, K.K.E.; Llewellyn, R.

    2014-01-01

    Non-symbiotic nitrogen (N2) fixation by diazotrophic bacteria is a potential source for biological N inputs in non-leguminous crops and pastures. Perennial grasses generally add larger quantities of above- and belowground plant residues to soil, and so can support higher levels of soil biological

  18. Genomic resources for identification of the minimal N2 -fixing symbiotic genome.

    Science.gov (United States)

    diCenzo, George C; Zamani, Maryam; Milunovic, Branislava; Finan, Turlough M

    2016-09-01

    The lack of an appropriate genomic platform has precluded the use of gain-of-function approaches to study the rhizobium-legume symbiosis, preventing the establishment of the genes necessary and sufficient for symbiotic nitrogen fixation (SNF) and potentially hindering synthetic biology approaches aimed at engineering this process. Here, we describe the development of an appropriate system by reverse engineering Sinorhizobium meliloti. Using a novel in vivo cloning procedure, the engA-tRNA-rmlC (ETR) region, essential for cell viability and symbiosis, was transferred from Sinorhizobium fredii to the ancestral location on the S. meliloti chromosome, rendering the ETR region on pSymB redundant. A derivative of this strain lacking both the large symbiotic replicons (pSymA and pSymB) was constructed. Transfer of pSymA and pSymB back into this strain restored symbiotic capabilities with alfalfa. To delineate the location of the single-copy genes essential for SNF on these replicons, we screened a S. meliloti deletion library, representing > 95% of the 2900 genes of the symbiotic replicons, for their phenotypes with alfalfa. Only four loci, accounting for < 12% of pSymA and pSymB, were essential for SNF. These regions will serve as our preliminary target of the minimal set of horizontally acquired genes necessary and sufficient for SNF. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. QTL analysis of symbiotic nitrogen fixation in a black bean RIL population

    Science.gov (United States)

    Dry bean (Phaseolus vulgaris L) acquires nitrogen (N) from the atmosphere through symbiotic nitrogen fixation (SNF) but it has a low efficiency to fix nitrogen. The objective of this study is to map the genes controlling nitrogen fixation in common bean. A mapping population consisting of 122 recomb...

  20. Genome-wide association analysis of symbiotic nitrogen fixation in common bean

    Science.gov (United States)

    A genome-wide association study (GWAS) was conducted to explore the genetic basis of variation for symbiotic nitrogen fixation (SNF) and related traits in the Andean diversity panel (ADP) comprised of 259 common bean (Phaseolus vulgaris) genotypes. The ADP was evaluated for SNF and related traits in...

  1. Drought enhances symbiotic dinitrogen fixation and competitive ability of a temperate forest tree

    Science.gov (United States)

    Nina Wurzburger; Chelcy Ford Miniat

    2013-01-01

    General circulation models project more intense and frequent droughts over the next century, but many questions remain about how terrestrial ecosystems will respond. Of particular importance, is to understand how drought will alter the species composition of regenerating temperate forests wherein symbiotic dinitrogen (N2)- fixing plants play a...

  2. Biomimicry of symbiotic multi-species coevolution for discrete and continuous optimization in RFID networks.

    Science.gov (United States)

    Lin, Na; Chen, Hanning; Jing, Shikai; Liu, Fang; Liang, Xiaodan

    2017-03-01

    In recent years, symbiosis as a rich source of potential engineering applications and computational model has attracted more and more attentions in the adaptive complex systems and evolution computing domains. Inspired by different symbiotic coevolution forms in nature, this paper proposed a series of multi-swarm particle swarm optimizers called PS 2 Os, which extend the single population particle swarm optimization (PSO) algorithm to interacting multi-swarms model by constructing hierarchical interaction topologies and enhanced dynamical update equations. According to different symbiotic interrelationships, four versions of PS 2 O are initiated to mimic mutualism, commensalism, predation, and competition mechanism, respectively. In the experiments, with five benchmark problems, the proposed algorithms are proved to have considerable potential for solving complex optimization problems. The coevolutionary dynamics of symbiotic species in each PS 2 O version are also studied respectively to demonstrate the heterogeneity of different symbiotic interrelationships that effect on the algorithm's performance. Then PS 2 O is used for solving the radio frequency identification (RFID) network planning (RNP) problem with a mixture of discrete and continuous variables. Simulation results show that the proposed algorithm outperforms the reference algorithms for planning RFID networks, in terms of optimization accuracy and computation robustness.

  3. Transcriptome analysis of two recombinant inbred lines of common bean contrasting for symbiotic nitrogen fixation

    Science.gov (United States)

    Common bean (Phaseolus vulgaris L.) is able to fix atmospheric nitrogen (N2) through symbiotic nitrogen fixation (SNF). Effective utilization of existing variability for SNF in common bean for genetic improvement requires an understanding of underlying genes and molecular mechanisms. The utility of ...

  4. Comparison of /sup 15/N-aided methods for determining symbiotic dinitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Rennie, R J [International Atomic Energy Agency, Vienna (Austria). Joint FAO/IAEA Div. of Atomic Energy in Food and Agriculture

    1979-01-01

    Three methods of calculating the amount of symbiotic dinitrogen fixation in navy beans (Phaseolus vulgaris cv. Sanilac) were compared in a greenhouse experiment. /sup 15/N-isotope dilution procedures yielded the most logical estimation of dinitrogen fixation. The classical difference method was not in agreement. Potential errors of the 'A'-value procedure to calculate dinitrogen fixation are discussed.

  5. Differential immune responses of Monochamus alternatus against symbiotic and entomopathogenic fungi.

    Science.gov (United States)

    Zhang, Wei; Meng, Jie; Ning, Jing; Qin, Peijun; Zhou, Jiao; Zou, Zhen; Wang, Yanhong; Jiang, Hong; Ahmad, Faheem; Zhao, Lilin; Sun, Jianghua

    2017-08-01

    Monochamus alternatus, the main vector beetles of invasive pinewood nematode, has established a symbiotic relationship with a native ectotrophic fungal symbiont, Sporothrix sp. 1, in China. The immune response of M. alternatus to S. sp. 1 in the coexistence of beetles and fungi is, however, unknown. Here, we report that immune responses of M. alternatus pupae to infection caused by ectotrophic symbiotic fungus S. sp. 1 and entomopathogenic fungus Beauveria bassiana differ significantly. The S. sp. 1 did not kill the beetles while B. bassiana killed all upon injection. The transcriptome results showed that the numbers of differentially expressed genes in M. alternatus infected with S. sp. 1 were 2-fold less than those infected with B. bassiana at 48 hours post infection. It was noticed that Toll and IMD pathways played a leading role in the beetle's immune system when infected by symbiotic fungus, but upon infection by entomopathogenic fungus, only the Toll pathway gets triggered actively. Furthermore, the beetles could tolerate the infection of symbiotic fungi by retracing their Toll and IMD pathways at 48 h. This study provided a comprehensive sequence resource of M. alternatus transcriptome for further study of the immune interactions between host and associated fungi.

  6. SIMULTANEOUS OBSERVATIONS OF SiO AND H2O MASERS TOWARD SYMBIOTIC STARS

    International Nuclear Information System (INIS)

    Cho, Se-Hyung; Kim, Jaeheon

    2010-01-01

    We present the results of simultaneous observations of SiO v = 1, 2, J = 1-0, 29 SiO v = 0, J = 1-0, and H 2 O 6 16 -5 23 maser lines performed with the KVN Yonsei 21 m radio telescope from 2009 November to 2010 January. We searched for these masers in 47 symbiotic stars and detected maser emission from 21 stars, giving the first time detection from 19 stars. Both SiO and H 2 O masers were detected from seven stars of which six were D-type symbiotic stars and one was an S-type star, WRAY 15-1470. In the SiO maser emission, the 28 SiO v = 1 maser was detected from 10 stars, while the v = 2 maser was detected from 15 stars. In particular, the 28 SiO v = 2 maser emission without the v = 1 maser detection was detected from nine stars with a detection rate of 60%, which is much higher than that of isolated Miras/red giants. The 29 SiO v = 0 maser emission was also detected from two stars, H 2-38 and BF Cyg, together with the 28 SiO v = 2 maser. We conclude that these different observational results between isolated Miras/red giants and symbiotic stars may be related with the presence of hot companions in a symbiotic binary system.

  7. On the late-type components of slow novae and symbiotic stars

    International Nuclear Information System (INIS)

    Allen, D.A.

    1980-01-01

    It is argued that the various types of symbiotic stars and the slow novae are the same phenomena exhibiting a range of associated time-scales, the slow novae being of intermediate speed. Evidence is summarized showing that both types of object contain normal M giants or mira variables. This fact is at odds with currently fashionable single-star models for slow novae, according to which the M star is totally disrupted before the outburst. Spectral types of the late-type components are presented for nearly 80 symbiotic stars and slow novae, derived from 2 μm spectroscopy. It is found that both the intensity of the emission spectrum and the electron density of the gas are functions of the spectral type of the late-type star. Explanations for these correlations are given. On the assumption that the late-type components are normal giants, spectroscopic parallaxes are determined; credible distances are derived which indicate that the known symbiotic stars have been sampled as far afield as the Galactic Centre. Hydrogen shell flashes on a white dwarf accreting gas from the late-type components offer an attractive explanation of the phenomena of slow novae and symbiotic stars, and such models are discussed in the concluding section. (author)

  8. Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus

    DEFF Research Database (Denmark)

    Colebatch, Gillian; Desbrosses, Guilhem; Ott, Thomas

    2004-01-01

    Research on legume nodule metabolism has contributed greatly to our knowledge of primary carbon and nitrogen metabolism in plants in general, and in symbiotic nitrogen fixation in particular. However, most previous studies focused on one or a few genes/enzymes involved in selected metabolic...

  9. Symbiotic Gesture and the Sociocognitive Visibility of Grammar in Second Language Acquisition

    Science.gov (United States)

    Churchill, Eton; Okada, Hanako; Nishino, Takako; Atkinson, Dwight

    2010-01-01

    This article argues for the embodied and environmentally embedded nature of second language acquisition (SLA). Through fine-grained analysis of interaction using Goodwin's (2003a) concept of "symbiotic gesture"--gesture coupled with its rich environmental context to produce complex social action--we illustrate how a tutor, learner, and grammar…

  10. INFRARED SPECTROSCOPY OF SYMBIOTIC STARS. VII. BINARY ORBIT AND LONG SECONDARY PERIOD VARIABILITY OF CH CYGNI

    International Nuclear Information System (INIS)

    Hinkle, Kenneth H.; Joyce, Richard R.; Fekel, Francis C.

    2009-01-01

    High-dispersion spectroscopic observations are used to refine orbital elements for the symbiotic binary CH Cyg. The current radial velocities, added to a previously published 13 year time series of infrared velocities for the M giant in the CH Cyg symbiotic system, more than double the length of the time series to 29 years. The two previously identified velocity periods are confirmed. The long period, revised to 15.6 ± 0.1 yr, is shown to result from a binary orbit with a 0.7 M sun white dwarf and 2 M sun M giant. Mass transfer to the white dwarf is responsible for the symbiotic classification. CH Cyg is the longest period S-type symbiotic known. Similarities with the longer period D-type systems are noted. The 2.1 year period is shown to be on Wood's sequence D, which contains stars identified as having long secondary periods (LSP). The cause of the LSP variation in CH Cyg and other stars is unknown. From our review of possible causes, we identify g-mode nonradial pulsation as the leading mechanism for LSP variation in CH Cyg. If g-mode pulsation is the cause of the LSPs, a radiative region is required near the photosphere of pulsating asymptotic giant branch stars.

  11. Cultivar and Rhizobium Strain Effects on the Symbiotic Performance of Pea (Pisum sativum)

    DEFF Research Database (Denmark)

    Skøt, Leif

    1983-01-01

    The symbiotic performance of four pea (Pisum sativum L.) cultivars in combination with each of four strains of Rhizobium leguminosarum was studied in growth chamber experiments in order to estimate the effects of cultivars, strains and cultivar × strain interaction on the variation in dry weight, N...

  12. Symbiotic bacteria of helminths: what role may they play in ecosystems under anthropogenic stress?

    Science.gov (United States)

    Morley, N J

    2016-11-01

    Symbiotic bacteria are a common feature of many animals, particularly invertebrates, from both aquatic and terrestrial habitats. These bacteria have increasingly been recognized as performing an important role in maintaining invertebrate health. Both ecto- and endoparasitic helminths have also been found to harbour a range of bacterial species which provide a similar function. The part symbiotic bacteria play in sustaining homeostasis of free-living invertebrates exposed to anthropogenic pressure (climate change, pollution), and the consequences to invertebrate populations when their symbionts succumb to poor environmental conditions, are increasingly important areas of research. Helminths are also susceptible to environmental stress and their symbiotic bacteria may be a key aspect of their responses to deteriorating conditions. This article summarizes the ecophysiological relationship helminths have with symbiotic bacteria and the role they play in maintaining a healthy parasite and the relevance of specific changes that occur in free-living invertebrate-bacteria interactions under anthropogenic pressure to helminths and their bacterial communities. It also discusses the importance of understanding the mechanistic sensitivity of helminth-bacteria relationships to environmental stress for comprehending the responses of parasites to challenging conditions.

  13.  Molecular evolution and positive selection of the symbiotic gene NORK in Medicago truncatula

    DEFF Research Database (Denmark)

    De Mita, Stephane; Santoni, Sylvain; Hochu, Isabelle

    2006-01-01

    . The membrane-anchored receptor NORK (nodulation receptor kinase) of the legume Medicago truncatula controls early steps of root infection by two symbiotic microorganisms: nitrogen-fixing bacteria (rhizobia) and endomycorrhizal fungi (Glomales). We analyzed the diversity of the gene NORK by sequencing 4...

  14. IUE observations of the symbiotic star CH Cygni during an active phase

    Energy Technology Data Exchange (ETDEWEB)

    Hack, M [Astronomical Observatory, Trieste (Italy)

    1979-05-24

    The observations of CH Cygni reported here were made to determine whether a symbiotic star is a binary system composed of an M6 giant and a hot subdwarf, or whether it is a cooled star surrounded by a thick corona.

  15. AN X-RAY AND OPTICAL LIGHT CURVE MODEL OF THE ECLIPSING SYMBIOTIC BINARY SMC3

    International Nuclear Information System (INIS)

    Kato, Mariko; Hachisu, Izumi; Mikołajewska, Joanna

    2013-01-01

    Some binary evolution scenarios for Type Ia supernovae (SNe Ia) include long-period binaries that evolve to symbiotic supersoft X-ray sources in their late stage of evolution. However, symbiotic stars with steady hydrogen burning on the white dwarf's (WD) surface are very rare, and the X-ray characteristics are not well known. SMC3 is one such rare example and a key object for understanding the evolution of symbiotic stars to SNe Ia. SMC3 is an eclipsing symbiotic binary, consisting of a massive WD and red giant (RG), with an orbital period of 4.5 years in the Small Magellanic Cloud. The long-term V light curve variations are reproduced as orbital variations in the irradiated RG, whose atmosphere fills its Roche lobe, thus supporting the idea that the RG supplies matter to the WD at rates high enough to maintain steady hydrogen burning on the WD. We also present an eclipse model in which an X-ray-emitting region around the WD is almost totally occulted by the RG swelling over the Roche lobe on the trailing side, although it is always partly obscured by a long spiral tail of neutral hydrogen surrounding the binary in the orbital plane.

  16. Phenotypic, genetic and symbiotic characterization of Erythrina velutina rhizobia from Caatinga dry forest.

    Science.gov (United States)

    Rodrigues, Dalila Ribeiro; Silva, Aleksandro Ferreira da; Cavalcanti, Maria Idaline Pessoa; Escobar, Indra Elena Costa; Fraiz, Ana Carla Resende; Ribeiro, Paula Rose de Almeida; Ferreira Neto, Reginaldo Alves; Freitas, Ana Dolores Santiago de; Fernandes-Júnior, Paulo Ivan

    2018-02-02

    Erythrina velutina ("mulungu") is a legume tree from Caatinga that associates with rhizobia but the diversity and symbiotic ability of "mulungu" rhizobia are poorly understood. The aim of this study was to characterize "mulungu" rhizobia from Caatinga. Bacteria were obteined from Serra Talhada and Caruaru in Caatinga under natural regeneration. The bacteria were evaluated to the amplification of nifH and nodC and to metabolic characteristics. Ten selected bacteria identified by 16S rRNA sequences. They were tested in vitro to NaCl and temperature tolerance, auxin production and calcium phosphate solubilization. The symbiotic ability were assessed in an greenhouse experiment. A total of 32 bacteria were obtained and 17 amplified both symbiotic genes. The bacteria showed a high variable metabolic profile. Bradyrhizobium (6), Rhizobium (3) and Paraburkholderia (1) were identified, differing from their geographic origin. The isolates grew up to 45°C to 0.51molL -1 of NaCl. Bacteria which produced more auxin in the medium with l-tryptophan and two Rhizobium and one Bradyrhizobium were phosphate solubilizers. All bacteria nodulated and ESA 90 (Rhizobium sp.) plus ESA 96 (Paraburkholderia sp.) were more efficient symbiotically. Diverse and efficient rhizobia inhabit the soils of Caatinga dry forests, with the bacterial differentiation by the sampling sites. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  17. Profile disparity of Raman-scattered O VI in symbiotic stars

    International Nuclear Information System (INIS)

    Lee, Hee-Won

    2016-01-01

    Symbiotic stars are wide binary systems consisting of a hot compact star (usually a white dwarf) and a mass losing giant. Symbiotic activities are believed to occur through gravitational capture of a fraction of the slow stellar wind from the giant. Raman scattered features of O VI resonance doublet 1032 and 1038 appearing at around 6825 Å and 7082 Å are a unique spectroscopic diagnostic tool to probe the mass transfer process in symbiotic stars. The Raman O VI features often exhibit multiple peak structures and in many cases the blue peak of 7082 features is relatively more suppressed than that of 6825 features. We propose that the disparity of the two profiles is attributed to the local variation of optical depths of O VI, implying that the accretion flow is convergent in the red emission region and divergent in the blue emission region. It is argued in this presentation that Raman scattering by atomic hydrogen is a natural mirror to provide an edge-on view of the accretion disk and a lateral view of the bipolar outflow in symbiotic stars. We discuss the spectropolarimetric implications of this interpretation. (paper)

  18. A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria

    Science.gov (United States)

    Zgadzaj, Rafal; James, Euan K.; Kelly, Simon; Kawaharada, Yasuyuki; de Jonge, Nadieh; Jensen, Dorthe B.; Madsen, Lene H.; Radutoiu, Simona

    2015-01-01

    Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule. PMID:26042417

  19. Genetic Diversity and Symbiotic Efficiency of Indigenous Common Bean Rhizobia in Croatia

    Directory of Open Access Journals (Sweden)

    Ines Pohajda

    2016-01-01

    Full Text Available Nodule bacteria (rhizobia in symbiotic associations with legumes enable considerable entries of biologically fixed nitrogen into soil. Efforts are therefore made to intensify the natural process of symbiotic nitrogen fixation by legume inoculation. Studies of field populationsof rhizobia open up the possibility to preserve and probably exploit some indigenous strains with hidden symbiotic or ecological potentials. The main aim of the present study is to determine genetic diversity of common bean rhizobia isolated from different field sites in central Croatia and to evaluate their symbiotic efficiency and compatibility with host plants. The isolation procedure revealed that most soil samples contained no indigenous common bean rhizobia. The results indicate that the cropping history had a significant impact on the presence of indigenous strains. Although all isolates were found to belong to species Rhizobium leguminosarum, significant genetic diversity at the strain level was determined. Application of both random amplifi cation of polymorphic DNA (RAPD and enterobacterial repetitive intergenic consensus–polymerase chain reaction (ERIC-PCR methods resulted in similar grouping of strains. Symbiotic efficiency of indigenous rhizobia as well as their compatibility with two commonly grown bean varieties were tested in field experiments. Application of indigenous rhizobial strains as inoculants resulted in significantly different values of nodulation, seed yield as well as plant nitrogen and seed protein contents. The most abundant nodulation and the highest plant nitrogen and protein contents were determined in plants inoculated with R. leguminosarum strains S17/2 and S21/6. Although, in general, the inoculation had a positive impact on seed yield, differences depending on the applied strain were not determined. The overall results show the high degree of symbiotic efficiency of the specific indigenous strain S21/6. These results indicate different

  20. Genetic Diversity and Symbiotic Efficiency of Indigenous Common Bean Rhizobia in Croatia.

    Science.gov (United States)

    Pohajda, Ines; Babić, Katarina Huić; Rajnović, Ivana; Kajić, Sanja; Sikora, Sanja

    2016-12-01

    Nodule bacteria (rhizobia) in symbiotic associations with legumes enable considerable entries of biologically fixed nitrogen into soil. Efforts are therefore made to intensify the natural process of symbiotic nitrogen fixation by legume inoculation. Studies of field populations of rhizobia open up the possibility to preserve and probably exploit some indigenous strains with hidden symbiotic or ecological potentials. The main aim of the present study is to determine genetic diversity of common bean rhizobia isolated from different field sites in central Croatia and to evaluate their symbiotic efficiency and compatibility with host plants. The isolation procedure revealed that most soil samples contained no indigenous common bean rhizobia. The results indicate that the cropping history had a significant impact on the presence of indigenous strains. Although all isolates were found to belong to species Rhizobium leguminosarum , significant genetic diversity at the strain level was determined. Application of both random amplification of polymorphic DNA (RAPD) and enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC- -PCR) methods resulted in similar grouping of strains. Symbiotic efficiency of indigenous rhizobia as well as their compatibility with two commonly grown bean varieties were tested in field experiments. Application of indigenous rhizobial strains as inoculants resulted in significantly different values of nodulation, seed yield as well as plant nitrogen and seed protein contents. The most abundant nodulation and the highest plant nitrogen and protein contents were determined in plants inoculated with R. leguminosarum strains S 17/2 and S 21/6 . Although, in general, the inoculation had a positive impact on seed yield, differences depending on the applied strain were not determined. The overall results show the high degree of symbiotic efficiency of the specific indigenous strain S 21/6 . These results indicate different symbiotic

  1. Extraction of Uranium from Seawater: Design and Testing of a Symbiotic System

    Energy Technology Data Exchange (ETDEWEB)

    Slocum, Alex [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2018-02-22

    The U.S. Department of Energy in October 2014 awarded the Massachusetts Institute of Technology (MIT) a Nuclear Energy University Program grant (DE-NE0008268) to investigate the design and testing of a symbiotic system to harvest uranium from seawater. As defined in the proposal, the goals for the project are: 1. Address the design of machines for seawater uranium mining. 2. Develop design rules for a uranium harvesting system that would be integrated into an offshore wind power tower. 3. Fabricate a 1/50th size scale prototype for bench and pool-testing to verify initial analysis and theory. 4. Design, build, and test a second 1/10th size scale prototype in the ocean for more comprehensive testing and validation. This report describes work done as part of DE-NE0008268 from 10/01/2014 to 11/30/2017 entitled, “Extraction of Uranium from Seawater: Design and Testing of a Symbiotic System.” This effort is part of the Seawater Uranium Recovery Program. This report details the publications and presentations to date on the project, an introduction to the project’s goals and background research into previous work done to achieve these goals thus far. From there, the report describes an algorithm developed during the project used to optimize the adsorption of uranium by changing mechanical parameters such as immersion time and adsorbent reuses is described. Next, a design tool developed as part of the project to determine the global feasibility of symbiotic uranium harvesting systems. Additionally, the report details work done on shell enclosures for uranium adsorption. Moving on, the results from the design, building, and testing of a 1/50th physical scale prototype of a highly feasible symbiotic uranium harvester is described. Then, the report describes the results from flume experiment used to determine the affect of enclosure shells on the uptake of uranium by the adsorbent they enclose. From there the report details the design of a Symbiotic Machine for Ocean u

  2. Su Lyncis, a Hard X-Ray Bright M Giant: Clues Point to a Large Hidden Population of Symbiotic Stars

    Science.gov (United States)

    Mukai, K.; Luna, G. J. M.; Cusumano, G.; Segreto, A.; Munari, U.; Sokoloski, J. L.; Lucy, A. B.; Nelson, T.; Nunez, N. E.

    2016-01-01

    Symbiotic star surveys have traditionally relied almost exclusively on low resolution optical spectroscopy. However, we can obtain a more reliable estimate of their total Galactic population by using all available signatures of the symbiotic phenomenon. Here we report the discovery of a hard X-ray source, 4PBC J0642.9+5528, in the Swift hard X-ray all-sky survey, and identify it with a poorly studied red giant, SU Lyn, using pointed Swift observations and ground-based optical spectroscopy. The X-ray spectrum, the optical to UV spectrum, and the rapid UV variability of SU Lyn are all consistent with our interpretation that it is a symbiotic star containing an accreting white dwarf. The symbiotic nature of SU Lyn went unnoticed until now, because it does not exhibit emission lines strong enough to be obvious in low resolution spectra. We argue that symbiotic stars without shell-burning have weak emission lines, and that the current lists of symbiotic stars are biased in favor of shell-burning systems. We conclude that the true population of symbiotic stars has been underestimated, potentially by a large factor.

  3. Bioaugmentation with endophytic bacterium E6S homologous to Achromobacter piechaudii enhances metal rhizoaccumulation in host Sedum plumbizincicola

    Directory of Open Access Journals (Sweden)

    Ying eMa

    2016-02-01

    Full Text Available Application of hyperaccumulator–endophyte symbiotic systems is a potential approach to improve phytoremediation efficiency, since some beneficial endophytic bacteria are able to detoxify heavy metals, alter metal solubility in soil and facilitate plant growth. The objective of this study was to isolate multi-metal resistant and plant beneficial endophytic bacteria and to evaluate their role in enhancing plant growth and metal accumulation/translocation. The metal resistant endophytic bacterial strain E6S was isolated from stems of the Zn/Cd hyperaccumulator plant Sedum plumbizincicola growing in metalliferous mine soils using Dworkin and Foster salts minimal agar medium with 1-aminocyclopropane-1-carboxylate (ACC as the sole nitrogen source, and identified as homologous to Achromobacter piechaudii based on morphological and biochemical characteristics, partial 16S rDNA sequence and phylogenetic analysis. Strain E6S showed high level of resistance to various metals (Cd, Zn and Pb. Besides utilizing ACC, strain E6S exhibited plant beneficial traits, such as solubilization of phosphate and production of indole-3-acetic acid. Inoculation with E6S significantly increased the bioavailability of Cd, Zn and Pb in soil. In addition, bacterial cells bound considerable amounts of metal ions in the following order: Zn ˃ Cd ˃ Pb. Inoculation of E6S significantly stimulated plant biomass, uptake and bioaccumulation of Cd, Zn and Pb. However, E6S greatly reduced the root to shoot translocation of Cd and Zn, indicating that bacterial inoculation assisted the host plant to uptake and store heavy metals in its root system. Inoculation with the endophytic bacterium E6S homologous to A. piechaudii can improve phytostabilization of metalliferous soils due to its effective ability to enhance in situ metal rhizoaccumulation in plants.

  4. The Effects of Probiotics and Symbiotics on Risk Factors for Hepatic Encephalopathy: A Systematic Review.

    Science.gov (United States)

    Viramontes Hörner, Daniela; Avery, Amanda; Stow, Ruth

    2017-04-01

    Alterations in the levels of intestinal microbiota, endotoxemia, and inflammation are novel areas of interest in the pathogenesis of hepatic encephalopathy (HE). Probiotics and symbiotics are a promising treatment option for HE due to possible beneficial effects in modulating gut microflora and might be better tolerated and more cost-effective than the traditional treatment with lactulose, rifaximin or L-ornithine-L-aspartate. A systematic search of the electronic databases PubMed, ISI Web of Science, EMBASE, and Cochrane Library was conducted for randomized controlled clinical trials in adult patients with cirrhosis, evaluating the effect of probiotics and symbiotics in changes on intestinal microflora, reduction of endotoxemia, inflammation, and ammonia, reversal of minimal hepatic encephalopathy (MHE), prevention of overt hepatic encephalopathy (OHE), and improvement of quality of life. Nineteen trials met the inclusion criteria. Probiotics and symbiotics increased beneficial microflora and decreased pathogenic bacteria and endotoxemia compared with placebo/no treatment, but no effect was observed on inflammation. Probiotics significantly reversed MHE [risk ratio, 1.53; 95% confidence interval (CI): 1.14, 2.05; P=0.005] and reduced OHE development (risk ratio, 0.62; 95% CI: 0.48, 0.80; P=0.0002) compared with placebo/no treatment. Symbiotics significantly decreased ammonia levels compared with placebo (15.24; 95% CI: -26.01, -4.47; P=0.006). Probiotics did not show any additional benefit on reversal of MHE and prevention of OHE development when compared with lactulose, rifaximin, and L-ornithine-L-aspartate. Only 5 trials considered tolerance with minimal side effects reported. Although further research is warranted, probiotics and symbiotics should be considered as an alternative therapy for the treatment and management of HE given the results reported in this systematic review.

  5. Symbiotic nitrogen-fixing bacterial populations trapped from soils under agroforestry systems in the Western Amazon

    Directory of Open Access Journals (Sweden)

    Paula Marcela Duque Jaramillo

    2013-12-01

    Full Text Available Cowpea (Vigna unguiculata is an important grain-producing legume that can forego nitrogen fertilization by establishing an efficient symbiosis with nitrogen-fixing bacteria. Although inoculating strains have already been selected for this species, little is known about the genotypic and symbiotic diversity of native rhizobia. Recently, Bradyrhizobium has been shown to be the genus most frequently trapped by cowpea in agricultural soils of the Amazon region. We investigated the genetic and symbiotic diversity of 148 bacterial strains with different phenotypic and cultural properties isolated from the nodules of the trap species cowpea, which was inoculated with samples from soils under agroforestry systems from the western Amazon. Sixty non-nodulating strains indicated a high frequency of endophytic strains in the nodules. The 88 authenticated strains had varying symbiotic efficiency. The SPAD (Soil Plant Analysis Development index (indirect measurement of chlorophyll content was more efficient at evaluating the contribution of symbiotic N2-fixation than shoot dry matter under axenic conditions. Cowpea-nodulating bacteria exhibited a high level of genetic diversity, with 68 genotypes identified by BOX-PCR. Sequencing of the 16S rRNA gene showed a predominance of the genus Bradyrhizobium, which accounted for 70 % of all strains sequenced. Other genera identified were Rhizobium, Ochrobactrum, Paenibacillus, Bosea, Bacillus, Enterobacter, and Stenotrophomonas. These results support the promiscuity of cowpea and demonstrate the high genetic and symbiotic diversity of rhizobia in soils under agroforestry systems, with some strains exhibiting potential for use as inoculants. The predominance of Bradyrhizobium in land uses with different plant communities and soil characteristics reflects the adaptation of this genus to the Amazon region.

  6. MODELING OF MIXED CHEMOSTAT CULTURES OF AN AEROBIC BACTERIUM, COMAMONAS-TESTOSTERONI, AND AN ANAEROBIC BACTERIUM, VEILLONELLA-ALCALESCENS - COMPARISON WITH EXPERIMENTAL-DATA

    NARCIS (Netherlands)

    GERRITSE, J; SCHUT, F; GOTTSCHAL, JC

    A mathematical model of mixed chemostat cultures of the obligately aerobic bacterium Comamonas testosteroni and the anaerobic bacterium Veillonella alcalescens grown under dual limitation Of L-lactate and oxygen was constructed. The model was based on Michaelis-Menten-type kinetics for the

  7. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a

  8. Do symbiotic and Vitamin E supplementation have favorite effects in nonalcoholic fatty liver disease? A randomized, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Ekhlasi, Golnaz; Kolahdouz Mohammadi, Roya; Agah, Shahram; Zarrati, Mitra; Hosseini, Agha Fatemeh; Arabshahi, Seyed Soroush Soltani; Shidfar, Farzad

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world. Oral administration of symbiotic and Vitamin E has been proposed as an effective treatment in NAFLD patients. This study was carried out to assess the effects of symbiotic and/or Vitamin E supplementation on liver enzymes, leptin, lipid profile, and some parameters of insulin resistance (IR) in NAFLD patients. We randomly assigned sixty NAFLD adult patients to receive (1) symbiotic twice daily + Vitamin E-like placebo capsule; (2) 400 IU/d Vitamin E + symbiotic-like placebo; (3) symbiotic twice daily + 400 IU/d Vitamin E; and (4) symbiotic-like placebo + Vitamin E-like placebo for 8 weeks. Symbiotic plus Vitamin E supplementation led to a significant decrease in concentrations of liver transaminase ( P ≤ 0.05). Mean difference of apolipoprotein A-1 was more significant in symbiotic group compared to control. However, mean difference of apolipoprotein B100/A-1 was only significant in symbiotic group compared to control. At the end of the study, significant differences in total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were seen between the symbiotic plus Vitamin E and control groups ( P symbiotic plus Vitamin E supplements led to a significant decrease in concentrations of triglycerides (TG) after the intervention. Significant differences in leptin, fasting blood sugar (FBS), and insulin levels were seen between the symbiotic plus Vitamin E and control groups at the end of the study ( P symbiotic and/or Vitamin E supplementation did not affect high-density lipoprotein cholesterol and homeostasis model assessment for IR levels. In our study, symbiotic plus Vitamin E supplementation was the most effective treatment in lowering liver enzymes, leptin, FBS, insulin, TG, TC, and LDL-C among NAFLD patients.

  9. Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa.

    Science.gov (United States)

    Killiny, Nabil; Prado, Simone S; Almeida, Rodrigo P P

    2010-09-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa.

  10. Core and symbiotic genes reveal nine Mesorhizobium genospecies and three symbiotic lineages among the rhizobia nodulating Cicer canariense in its natural habitat (La Palma, Canary Islands).

    Science.gov (United States)

    Armas-Capote, Natalia; Pérez-Yépez, Juan; Martínez-Hidalgo, Pilar; Garzón-Machado, Víctor; Del Arco-Aguilar, Marcelino; Velázquez, Encarna; León-Barrios, Milagros

    2014-03-01

    Cicer canariense is a threatened perennial wild chickpea endemic to the Canary Islands. In this study, rhizobia that nodulate this species in its natural habitats on La Palma (Canary Islands) were characterised. The genetic diversity and phylogeny were estimated by RAPD profiles, 16S-RFLP analysis and sequencing of the rrs, recA, glnII and nodC genes. 16S-RFLP grouped the isolates within the Mesorhizobium genus and distinguished nine different ribotypes. Four branches included minority ribotypes (3-5 isolates), whereas another five contained the predominant ribotypes that clustered with reference strains of M. tianshanense/M. gobiense/M. metallidurans, M. caraganae, M. opportunistum, M. ciceri and M. tamadayense. The sequences confirmed the RFLP groupings but resolved additional internal divergence within the M. caraganae group and outlined several potential novel species. The RAPD profiles showed a high diversity at the infraspecific level, except in the M. ciceri group. The nodC phylogeny resolved three symbiotic lineages. A small group of isolates had sequences identical to those of symbiovar ciceri and were only detected in M. ciceri isolates. Another group of sequences represented a novel symbiotic lineage that was associated with two particular chromosomal backgrounds. However, nodC sequences closely related to symbiovar loti predominated in most isolates, and they were detected in several chromosomal backgrounds corresponding to up to nine Mesorhizobium lineages. The results indicated that C. canariense is a promiscuous legume that can be nodulated by several rhizobial species and symbiotypes, which means it will be important to determine the combination of core and symbiotic genes that produce the most effective symbiosis. Copyright © 2013 Elsevier GmbH. All rights reserved.

  11. Butanol production under microaerobic conditions with a symbiotic system of Clostridium acetobutylicum and Bacillus cereus.

    Science.gov (United States)

    Wu, Pengfei; Wang, Genyu; Wang, Gehua; Børresen, Børre Tore; Liu, Hongjuan; Zhang, Jianan

    2016-01-14

    One major problem of ABE (acetone, butanol and ethanol) fermentation is high oxygen sensitivity of Clostridium acetobutylicum. Currently, no single strain has been isolated or genetically engineered to produce butanol effectively under aerobic conditions. In our previous work, a symbiotic system TSH06 has been developed successfully by our group, and two strains, C. acetobutylicum TSH1 and Bacillus cereus TSH2, were isolated from TSH06. Compared with single culture, TSH06 showed promotion on cell growth and solvent accumulation under microaerobic conditions. To simulate TSH06, a new symbiotic system was successfully re-constructed by adding living cells of B. cereus TSH2 into C. acetobutylicum TSH1 cultures. During the fermentation process, the function of B. cereus TSH2 was found to deplete oxygen and provide anaerobic environment for C. acetobutylicum TSH1. Furthermore, inoculation ratio of C. acetobutylicum TSH1 and B. cereus TSH2 affected butanol production. In a batch fermentation with optimized inoculation ratio of 5 % C. acetobutylicum TSH1 and 0.5 % B. cereus TSH2, 11.0 g/L butanol and 18.1 g/L ABE were produced under microaerobic static condition. In contrast to the single culture of C. acetobutylicum TSH1, the symbiotic system became more aerotolerant and was able to produce 11.2 g/L butanol in a 5 L bioreactor even with continuous 0.15 L/min air sparging. In addition, qPCR assay demonstrated that the abundance of B. cereus TSH2 increased quickly at first and then decreased sharply to lower than 1 %, whereas C. acetobutylicum TSH1 accounted for more than 99 % of the whole population in solventogenic phase. The characterization of a novel symbiotic system on butanol fermentation was studied. The new symbiotic system re-constructed by co-culture of C. acetobutylicum TSH1 and B. cereus TSH2 showed excellent performance on butanol production under microaerobic conditions. B. cereus TSH2 was a good partner for C. acetobutylicum TSH1 by providing an anaerobic

  12. Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense.

    Science.gov (United States)

    Loehr, Johannes; Pfeiffer, Daniel; Schüler, Dirk; Fischer, Thomas M

    2016-04-21

    Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment capable of swimming using two bipolarly located flagella. In their natural environment these bacteria swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic field of a garnet film. The successful guidance of the bacteria depends on the right balance between motility and the magnetic moment of the magnetosome chain.

  13. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  14. Balancing the organic load and light supply in symbiotic microalgal–bacterial biofilm reactors treating synthetic municipal wastewater

    NARCIS (Netherlands)

    Boelee, N.C.; Temmink, B.G.; Janssen, M.; Buisman, C.J.N.; Wijffels, R.H.

    2014-01-01

    Symbiotic microalgal–bacterial biofilms can be very attractive for municipal wastewater treatment. Microalgae remove nitrogen and phosphorus and simultaneously produce the oxygen that is required for the aerobic, heterotrophic degradation of organic pollutants. For the application of these biofilms

  15. Antifouling phenyl ethers and other compounds from the invertebrates and their symbiotic fungi collected from the South China Sea

    KAUST Repository

    Wang, Chao-Yi; Wang, Kai-Ling; Ghosheh, Yanal; Xu, Ying; Chen, Min; Zheng, Juan-Juan; Liu, Min; Shao, Chang-Lun; Wang, Chang-Yun

    2016-01-01

    for their antifouling activities and security. These compounds include 44 natural products isolated from marine invertebrates and their symbiotic microorganisms collected from the South China Sea and 11 structural modified products derived from the isolated compounds

  16. Ploidy-dependent changes in the epigenome of symbiotic cells correlate with specific patterns of gene expression

    KAUST Repository

    Nagymihá ly, Marianna; Veluchamy, Alaguraj; Gyö rgypá l, Zoltá n; Ariel, Federico; Jé gu, Teddy; Benhamed, Moussa; Szűcs, Attila; Kereszt, Attila; Mergaert, Peter; Kondorosi, É va

    2017-01-01

    The formation of symbiotic nodule cells in Medicago truncatula is driven by successive endoreduplication cycles and transcriptional reprogramming in different temporal waves including the activation of more than 600 cysteine-rich NCR genes expressed

  17. The symbiotic biofilm of Sinorhizobium fredii SMH12, necessary for successful colonization and symbiosis of Glycine max cv Osumi, is regulated by Quorum Sensing systems and inducing flavonoids via NodD1.

    Directory of Open Access Journals (Sweden)

    Francisco Pérez-Montaño

    Full Text Available Bacterial surface components, especially exopolysaccharides, in combination with bacterial Quorum Sensing signals are crucial for the formation of biofilms in most species studied so far. Biofilm formation allows soil bacteria to colonize their surrounding habitat and survive common environmental stresses such as desiccation and nutrient limitation. This mode of life is often essential for survival in bacteria of the genera Mesorhizobium, Sinorhizobium, Bradyrhizobium, and Rhizobium. The role of biofilm formation in symbiosis has been investigated in detail for Sinorhizobium meliloti and Bradyrhizobium japonicum. However, for S. fredii this process has not been studied. In this work we have demonstrated that biofilm formation is crucial for an optimal root colonization and symbiosis between S. fredii SMH12 and Glycine max cv Osumi. In this bacterium, nod-gene inducing flavonoids and the NodD1 protein are required for the transition of the biofilm structure from monolayer to microcolony. Quorum Sensing systems are also required for the full development of both types of biofilms. In fact, both the nodD1 mutant and the lactonase strain (the lactonase enzyme prevents AHL accumulation are defective in soybean root colonization. The impairment of the lactonase strain in its colonization ability leads to a decrease in the symbiotic parameters. Interestingly, NodD1 together with flavonoids activates certain quorum sensing systems implicit in the development of the symbiotic biofilm. Thus, S. fredii SMH12 by means of a unique key molecule, the flavonoid, efficiently forms biofilm, colonizes the legume roots and activates the synthesis of Nod factors, required for successfully symbiosis.

  18. Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica.

    OpenAIRE

    Mujer, C V; Andrews, D L; Manhart, J R; Pierce, S K; Rumpho, M E

    1996-01-01

    The marine slug Elysia chlorotica (Gould) forms an intracellular symbiosis with photosynthetically active chloroplasts from the chromophytic alga Vaucheria litorea (C. Agardh). This symbiotic association was characterized over a period of 8 months during which E. chlorotica was deprived of V. litorea but provided with light and CO2. The fine structure of the symbiotic chloroplasts remained intact in E. chlorotica even after 8 months of starvation as revealed by electron microscopy. Southern b...

  19. A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation.

    Science.gov (United States)

    Pislariu, Catalina I; Murray, Jeremy D; Wen, JiangQi; Cosson, Viviane; Muni, RajaSekhara Reddy Duvvuru; Wang, Mingyi; Benedito, Vagner A; Andriankaja, Andry; Cheng, Xiaofei; Jerez, Ivone Torres; Mondy, Samuel; Zhang, Shulan; Taylor, Mark E; Tadege, Million; Ratet, Pascal; Mysore, Kirankumar S; Chen, Rujin; Udvardi, Michael K

    2012-08-01

    A Tnt1-insertion mutant population of Medicago truncatula ecotype R108 was screened for defects in nodulation and symbiotic nitrogen fixation. Primary screening of 9,300 mutant lines yielded 317 lines with putative defects in nodule development and/or nitrogen fixation. Of these, 230 lines were rescreened, and 156 lines were confirmed with defective symbiotic nitrogen fixation. Mutants were sorted into six distinct phenotypic categories: 72 nonnodulating mutants (Nod-), 51 mutants with totally ineffective nodules (Nod+ Fix-), 17 mutants with partially ineffective nodules (Nod+ Fix+/-), 27 mutants defective in nodule emergence, elongation, and nitrogen fixation (Nod+/- Fix-), one mutant with delayed and reduced nodulation but effective in nitrogen fixation (dNod+/- Fix+), and 11 supernodulating mutants (Nod++Fix+/-). A total of 2,801 flanking sequence tags were generated from the 156 symbiotic mutant lines. Analysis of flanking sequence tags revealed 14 insertion alleles of the following known symbiotic genes: NODULE INCEPTION (NIN), DOESN'T MAKE INFECTIONS3 (DMI3/CCaMK), ERF REQUIRED FOR NODULATION, and SUPERNUMERARY NODULES (SUNN). In parallel, a polymerase chain reaction-based strategy was used to identify Tnt1 insertions in known symbiotic genes, which revealed 25 additional insertion alleles in the following genes: DMI1, DMI2, DMI3, NIN, NODULATION SIGNALING PATHWAY1 (NSP1), NSP2, SUNN, and SICKLE. Thirty-nine Nod- lines were also screened for arbuscular mycorrhizal symbiosis phenotypes, and 30 mutants exhibited defects in arbuscular mycorrhizal symbiosis. Morphological and developmental features of several new symbiotic mutants are reported. The collection of mutants described here is a source of novel alleles of known symbiotic genes and a resource for cloning novel symbiotic genes via Tnt1 tagging.

  20. A novel low-temperature-active β-glucosidase from symbiotic Serratia sp. TN49 reveals four essential positions for substrate accommodation.

    Science.gov (United States)

    Zhou, Junpei; Zhang, Rui; Shi, Pengjun; Huang, Huoqing; Meng, Kun; Yuan, Tiezheng; Yang, Peilong; Yao, Bin

    2011-10-01

    A 2,373-bp full-length gene (bglA49) encoding a 790-residue polypeptide (BglA49) with a calculated mass of 87.8 kDa was cloned from Serratia sp. TN49, a symbiotic bacterium isolated from the gut of longhorned beetle (Batocera horsfieldi) larvae. The deduced amino acid sequence of BglA49 showed the highest identities of 80.1% with a conceptually translated protein from Pantoea sp. At-9b (EEW02556), 38.3% with the identified glycoside hydrolase (GH) family 3 β-glucosidase from Clostridium stercorarium NCBI 11754 (CAB08072), and sp. G5 (ABL09836) and Paenibacillus sp. C7 (AAX35883). The recombinant enzyme (r-BglA49) was expressed in Escherichia coli and displayed the typical characteristics of low-temperature-active enzymes, such as low temperature optimum (showing apparent optimal activity at 35°C), activity at low temperatures (retaining approximately 60% of its maximum activity at 20°C and approximately 25% at 10°C). Compared with the thermophilic GH 3 β-glucosidase, r-BglA49 had fewer hydrogen bonds and salt bridges and less proline residues. These features might relate to the increased structure flexibility and higher catalytic activity at low temperatures of r-BglA49. The molecular docking study of four GH 3 β-glucosidases revealed five conserved positions contributing to substrate accommodation, among which four positions of r-BglA49 (R192, Y228, D260, and E449) were identified to be essential based on site-directed mutagenesis analysis.

  1. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    Directory of Open Access Journals (Sweden)

    Jiyeong Park

    2014-09-01

    Full Text Available We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN Meloidogyne hapla in carrot (Daucus carota subsp. sativus and tomato (Solanum lycopersicum. Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

  2. Symbiotic and antibiotic interactions between gut commensal microbiota and host immune system

    Directory of Open Access Journals (Sweden)

    Mantas Kazimieras Malys

    2015-01-01

    Full Text Available The human gut commensal microbiota forms a complex population of microorganisms that survive by maintaining a symbiotic relationship with the host. Amongst the metabolic benefits it brings, formation of adaptive immune system and maintenance of its homeostasis are functions that play an important role. This review discusses the integral elements of commensal microbiota that stimulate responses of different parts of the immune system and lead to health or disease. It aims to establish conditions and factors that contribute to gut commensal microbiota's transformation from symbiotic to antibiotic relationship with human. We suggest that the host-microbiota relationship has been evolved to benefit both parties and any changes that may lead to disease, are not due to unfriendly properties of the gut microbiota but due to host genetics or environmental changes such as diet or infection.

  3. Sensitive response of a model of symbiotic ecosystem to seasonal periodic drive

    Energy Technology Data Exchange (ETDEWEB)

    Rekker, A.; Lumi, N.; Mankin, R. [Institute of Mathematics and Natural Sciences, Tallinn University, 25 Narva Road, 10120 Tallinn (Estonia)

    2014-11-12

    A symbiotic ecosysytem (metapopulation) is studied by means of the stochastic Lotka-Volterra model with generalized Verhulst self-regulation. The effect of variable environment on the carrying capacities of populations is taken into account as an asymmetric dichotomous noise and as a deterministic periodic stimulus. In the framework of the mean-field theory an explicit self-consistency equation for the system in the long-time limit is presented. Also, expressions for the probability distribution and for the moments of the population size are found. In certain cases the mean population size exhibits large oscillations in time, even if the amplitude of the seasonal environmental drive is small. Particularly, it is shown that the occurrence of large oscillations of the mean population size can be controlled by noise parameters (such as amplitude and correlation time) and by the coupling strength of the symbiotic interaction between species.

  4. Addendum to "Colored-noise-induced discontinuous transitions in symbiotic ecosystems".

    Science.gov (United States)

    Sauga, Ako; Mankin, Romi

    2005-06-01

    A symbiotic ecosystem with Gompertz self-regulation and with adaptive competition between populations is studied by means of a N-species Lotka-Volterra stochastic model. The influence of fluctuating environment on the carrying capacity of a population is modeled as a dichotomous noise. The study is a follow up of previous investigations of symbiotic ecosystems subjected to the generalized Verhulst self-regulation [Phys. Rev. E 69, 061106 (2004); 65, 051108 (2002)]. In the framework of mean-field approximation the behavior of the solutions of the self-consistency equation for a stationary system is examined analytically in the full phase space of system parameters. Depending on the mutual interplay of symbiosis and competition of species, variation of noise parameters (amplitude, correlation time) can induce doubly unidirectional discontinuous transitions as well as single unidirectional discontinuous transitions of the mean population size.

  5. Sensitive response of a model of symbiotic ecosystem to seasonal periodic drive

    Science.gov (United States)

    Rekker, A.; Lumi, N.; Mankin, R.

    2014-11-01

    A symbiotic ecosysytem (metapopulation) is studied by means of the stochastic Lotka-Volterra model with generalized Verhulst self-regulation. The effect of variable environment on the carrying capacities of populations is taken into account as an asymmetric dichotomous noise and as a deterministic periodic stimulus. In the framework of the mean-field theory an explicit self-consistency equation for the system in the long-time limit is presented. Also, expressions for the probability distribution and for the moments of the population size are found. In certain cases the mean population size exhibits large oscillations in time, even if the amplitude of the seasonal environmental drive is small. Particularly, it is shown that the occurrence of large oscillations of the mean population size can be controlled by noise parameters (such as amplitude and correlation time) and by the coupling strength of the symbiotic interaction between species.

  6. Addendum to ``Colored-noise-induced discontinuous transitions in symbiotic ecosystems''

    Science.gov (United States)

    Sauga, Ako; Mankin, Romi

    2005-06-01

    A symbiotic ecosystem with Gompertz self-regulation and with adaptive competition between populations is studied by means of a N -species Lotka-Volterra stochastic model. The influence of fluctuating environment on the carrying capacity of a population is modeled as a dichotomous noise. The study is a follow up of previous investigations of symbiotic ecosystems subjected to the generalized Verhulst self-regulation [Phys. Rev. E 69, 061106 (2004); 65, 051108 (2002)]. In the framework of mean-field approximation the behavior of the solutions of the self-consistency equation for a stationary system is examined analytically in the full phase space of system parameters. Depending on the mutual interplay of symbiosis and competition of species, variation of noise parameters (amplitude, correlation time) can induce doubly unidirectional discontinuous transitions as well as single unidirectional discontinuous transitions of the mean population size.

  7. Flavonoids and Strigolactones in Root Exudates as Signals in Symbiotic and Pathogenic Plant-Fungus Interactions

    Directory of Open Access Journals (Sweden)

    Horst Vierheilig

    2007-07-01

    Full Text Available Secondary plant compounds are important signals in several symbiotic and pathogenic plant-microbe interactions. The present review is limited to two groups of secondary plant compounds, flavonoids and strigolactones, which have been reported in root exudates. Data on flavonoids as signaling compounds are available from several symbiotic and pathogenic plant-microbe interactions, whereas only recently initial data on the role of strigolactones as plant signals in the arbuscular mycorrhizal symbiosis have been reported. Data from other plant-microbe interactions and strigolactones are not available yet. In the present article we are focusing on flavonoids in plant-fungalinteractions such as the arbuscular mycorrhizal (AM association and the signaling between different Fusarium species and plants. Moreover the role of strigolactones in the AM association is discussed and new data on the effect of strigolactones on fungi, apart from arbuscular mycorrhizal fungi (AMF, are provided.

  8. The Elusive Soft Emission from Hard X-ray Symbiotic System RT Cru

    Science.gov (United States)

    Karovska, Margarita

    2014-09-01

    RT Cru is a fascinating member of a new class of hard X-ray emitting symbiotic binaries showing X-ray emission extending to over 50keV. While its hard X-ray emission has been studied in detail, the soft component of the spectrum, including flares, remains elusive, since previous observations have focused on the high-energy regime. We propose Chandra HRC-S/LETG observations to determine the spatial, spectral, and temporal characteristics of the source of the soft X-ray emission with a goal to establish the origin of the soft component, and determine whether and how it is tied to the hard component. Determining the origin of the soft emission is a crucial piece of the puzzle to understanding the geometry, energetics, and the environment of WD accretion in this class of symbiotic systems.

  9. Symbiotic microorganisms in Puto superbus (Leonardi, 1907) (Insecta, Hemiptera, Coccomorpha: Putoidae).

    Science.gov (United States)

    Szklarzewicz, Teresa; Kalandyk-Kołodziejczyk, Małgorzata; Michalik, Katarzyna; Jankowska, Władysława; Michalik, Anna

    2018-01-01

    The scale insect Puto superbus (Putoidae) lives in mutualistic symbiotic association with bacteria. Molecular phylogenetic analyses have revealed that symbionts of P. superbus belong to the gammaproteobacterial genus Sodalis. In the adult females, symbionts occur both in the bacteriocytes constituting compact bacteriomes and in individual bacteriocytes, which are dispersed among ovarioles. The bacteriocytes also house a few small, rod-shaped Wolbachia bacteria in addition to the numerous large, elongated Sodalis-allied bacteria. The symbiotic microorganisms are transovarially transmitted from generation to generation. In adult females which have choriogenic oocytes in the ovarioles, the bacteriocytes gather around the basal part of the tropharium. Next, the entire bacteriocytes pass through the follicular epithelium surrounding the neck region of the ovariole and enter the space between oocyte and follicular epithelium (perivitelline space). In the perivitelline space, the bacteriocytes assemble extracellularly in the deep depression of the oolemma at the anterior pole of the oocyte, forming a "symbiont ball".

  10. The spectral energy distribution and nature of the symbiotic system AS 296 in outburst

    International Nuclear Information System (INIS)

    Munari, U.; Whitelock, P.A.

    1989-01-01

    Photometry covering the spectral range 0.36 to 5 μm is reported for the symbiotic star As 296 about two months after the onset of the first recorded nova-like outburst. Analysis of published pre-outburst photometry provides evidence for the presence of an accreting white dwarf of high luminosity. This information together with the new observations is used to eliminate, for the 1988 event, various mechanisms which have been suggested for the outbursts in symbiotic objects. It is shown that hydrogen burning of accreted material can produce the white dwarf luminosity during quiescence. The outburst is then the result of a thermonuclear runaway in the unburnt material. The evidence is somewhat conflicting on the question of degeneracy conditions prior to the thermonuclear runaway. (author)

  11. Anomalously high intercombination line ratios in symbiotic stars; extreme Bowen pumping?

    International Nuclear Information System (INIS)

    Kastner, S.O.; Bhatia, A.K.; Feibelman, W.A.

    1989-01-01

    We assemble International Ultraviolet Explorer observations of the ratio of the O III intercombination lines near 1660 A, showing that the observed ratios in symbiotic stars are significantly higher than the theoretically predicted optically thin limit of 2.5. The presence of an enhancing physical process is thereby indicated. It is suggested that Bowen pumping of the lower level of the 1666.2 A line in an 'external saturation' limit, coupled with appreciable optical depth, could logically explain the high ratios. Some tentative evidence for this is presented and the relevance of far-infrared observations of the O III 51.8 and 88.3 μm lines in symbiotic sources is emphasized. (author)

  12. Symbiotic cornucopia of the monophagous planthopper Ommatidiotus dissimilis (Fallén, 1806) (Hemiptera: Fulgoromorpha: Caliscelidae).

    Science.gov (United States)

    Michalik, Anna; Szwedo, Jacek; Stroiński, Adam; Świerczewski, Dariusz; Szklarzewicz, Teresa

    2018-03-07

    In contrast to Cicadomorpha, in which numerous symbiotic bacteria have been identified and characterized, the symbionts of fulgoromorphans are poorly known. Here, we present the results of histological, ultrastructural, and molecular analyses of the symbiotic system of the planthopper Ommatidiotus dissimilis. Amplification, cloning, and sequencing of bacterial 16S RNA genes have revealed that O. dissimilis is host to five types of bacteria. Apart from bacteria Sulcia and Vidania, which are regarded as ancestral symbionts of Fulgoromorpha, three additional types of bacteria belonging to the genera Sodalis, Wolbachia, and Rickettsia have been detected. Histological and ultrastructural investigations have shown that bacteria Sulcia, Vidania, and Sodalis house separate bacteriocytes, whereas bacteria Wolbachia and Rickettsia are dispersed within various insect tissue. Additionally, bacteria belonging to the genus Vidania occupy the bacteriome localized in the lumen of the hindgut. Both molecular and microscopic analyses have revealed that all the symbionts are transovarially transmitted between generations.

  13. Sensitive response of a model of symbiotic ecosystem to seasonal periodic drive

    International Nuclear Information System (INIS)

    Rekker, A.; Lumi, N.; Mankin, R.

    2014-01-01

    A symbiotic ecosysytem (metapopulation) is studied by means of the stochastic Lotka-Volterra model with generalized Verhulst self-regulation. The effect of variable environment on the carrying capacities of populations is taken into account as an asymmetric dichotomous noise and as a deterministic periodic stimulus. In the framework of the mean-field theory an explicit self-consistency equation for the system in the long-time limit is presented. Also, expressions for the probability distribution and for the moments of the population size are found. In certain cases the mean population size exhibits large oscillations in time, even if the amplitude of the seasonal environmental drive is small. Particularly, it is shown that the occurrence of large oscillations of the mean population size can be controlled by noise parameters (such as amplitude and correlation time) and by the coupling strength of the symbiotic interaction between species

  14. Search for magnetic fields in the symbiotic and VV Cephei variables

    International Nuclear Information System (INIS)

    Slovak, M.H.

    1982-01-01

    The McDonald Observatory's 2.7 m photoelectric analyzer was used to examine five symbiotic and VV Cephei variables for the presence of coherent longitudinal fields. Repeated observations of magnetic Ap stars indicates an absolute sensitivity of +- 100--200 gauss. To this level, no new evidence is found supporting the reported kilogauss fields on the quiescent symbiotics AG Pegasi and EG Andromedae, nor for the VV Cephei stars VV Cephei and WY Geminorum, contrary to extant photographic determinations. Observations of CH Cygni following its 1977 eruption also yielded null results. The lack of significant line broadening correlated with effective z-values further rules out the presence of large transverse components

  15. On symbiotic nuclear power: a test for feasibility of comprehensive national energy policy of Japan

    International Nuclear Information System (INIS)

    Tanaka, Y.

    1994-01-01

    This paper examines ambivalent attitudes of the Japanese toward nuclear power and shows that despite great benefits nuclear power plants may bring to local governments and people, the Japanese have become more sensitive to risks of nuclear related facilities than to their benefits in a post Chernobyl period. In this light, the usefulness and limitations of economic incentives are analyzed. Third, the importance of particular institutional arrangements is discussed with respect to development 'symbiotic' schemes for nuclear power plants and people in neighboring communities. These 'symbiotic' schemes have dual purposes: to make a wider and more flexible use of the site space for developing local industries, and to raise the quality of life by improving the socio-economic infrastructure and social welfare. 6 refs., 1 fig

  16. Physiochemical Properties and Probiotic Survivability of Symbiotic Corn-Based Yogurt-Like Product.

    Science.gov (United States)

    Wang, Cuina; Zheng, Huajie; Liu, Tingting; Wang, Dawei; Guo, Mingruo

    2017-09-01

    Corn is a major grain produced in northern China. Corn-based functional food products are very limited. In this study, a symbiotic corn-based yogurt-like product was developed. Corn milk was prepared through grinding, extrusion and milling, and hydration processes. Corn extrudate was prepared under the optimized conditions of corn flour particle size fermented at 35 °C for 6 h using a probiotic starter culture containing L. plantarum. Chemical composition (%) of the symbiotic corn-based yogurt-like product was: total solids (17.13 ± 0.31), protein (1.12 ± 0.03), fat (0.30 ± 0.05), carbohydrates (15.14 ± 0.19), and ash (0.16 ± 0.02), respectively. pH value of this symbiotic product decreased from 4.50 ± 0.03 to 3.88 ± 0.13 and the population of L. plantarum declined from 7.8 ± 0.09 to 7.1 ± 0.14 log CFU/mL during storage at 4 °C. SDS-PAGE analysis showed that there were no changes in protein profile during storage. Texture and consistency were also stable during the period of this study. It can be concluded that a set-type corn-based symbiotic yogurt-like product with good texture and stability was successfully developed that would be a good alternative to the dairy yogurt. © 2017 Institute of Food Technologists®.

  17. Viability of L.casei in symbiotic carrot juice during fermentation and storage

    OpenAIRE

    Petreska Ivanovska, Tanja; Petrusevska Tozi, Lidija; Hadzieva, Jasmina; Smilkov, Katarina; Geskovski, Nikola; Mladenovska, Kristina

    2011-01-01

    Although dairy products are generally good matrices for the delivery of probiotics to humans and traditionally the most used, fruit juices are of growing interest, due to their pleasant taste profile and refreshing characteristics. However, the low survival rate of probiotics in fruit juices resulting from acid environment is of concern.In this study, carrot juice was inoculated with free probiotic cells of L. casei and symbiotic microparticles loaded with L. casei to compare the survival rat...

  18. Broad absorption line symbiotic stars: highly ionized species in the fast outflow from MWC 560

    Science.gov (United States)

    Lucy, Adrian B.; Knigge, Christian; Sokoloski, J. L.

    2018-04-01

    In symbiotic binaries, jets and disk winds may be integral to the physics of accretion onto white dwarfs from cool giants. The persistent outflow from symbiotic star MWC 560 (≡V694 Mon) is known to manifest as broad absorption lines (BALs), most prominently at the Balmer transitions. We report the detection of high-ionization BALs from C IV, Si IV, N V, and He II in International Ultraviolet Explorer spectra obtained on 1990 April 29 - 30, when an optical outburst temporarily erased the obscuring `iron curtain' of absorption troughs from Fe II and similar ions. The C IV and Si IV BALs reached maximum radial velocities at least 1000 km s-1 higher than contemporaneous Mg II and He II BALs; the same behaviors occur in the winds of quasars and cataclysmic variables. An iron curtain lifts to unveil high-ionization BALs during the P Cygni phase observed in some novae, suggesting by analogy a temporary switch in MWC 560 from persistent outflow to discrete mass ejection. At least three more symbiotic stars exhibit broad absorption with blue edges faster than 1500 km s-1; high-ionization BALs have been reported in AS 304 (≡V4018 Sgr), while transient Balmer BALs have been reported in Z And and CH Cyg. These BAL-producing fast outflows can have wider opening angles than has been previously supposed. BAL symbiotics are short-timescale laboratories for their giga-scale analogs, broad absorption line quasars (BALQSOs), which display a similarly wide range of ionization states in their winds.

  19. Phosphorus requirement for symbiotic N2 fixation: a major challenge for sustainable agro-ecosystems

    OpenAIRE

    Drevon, Jean-Jacques; Abadie, Josiane; Amenc, Laurie; Bargaz, Adnane; Domergue, Odile; Lazali, Mohamed; Pernot, Catherine

    2016-01-01

    Low phophorus availability in about 40% of the world’s arable land limits crop yield, most particularly for leguminous crops when their growth depends upon symbiotic N2-fixation (SNF). Therefore, our work aims to increase the phosphorus use efficiency (PUE) for SNF, and its contribution to a more effective coupling between the P and N bio-geochemical cycles. Myo-inositol hexakisphosphate (phytate) constitutes the main source of organic P in soils, but is unavailable to plants. Phytases are th...

  20. Imaging intracellular pH in a reef coral and symbiotic anemone.

    Science.gov (United States)

    Venn, A A; Tambutté, E; Lotto, S; Zoccola, D; Allemand, D; Tambutté, S

    2009-09-29

    The challenges corals and symbiotic cnidarians face from global environmental change brings new urgency to understanding fundamental elements of their physiology. Intracellular pH (pHi) influences almost all aspects of cellular physiology but has never been described in anthozoans or symbiotic cnidarians, despite its pivotal role in carbon concentration for photosynthesis and calcification. Using confocal microscopy and the pH sensitive probe carboxy SNARF-1, we mapped pHi in short-term light and dark-incubated cells of the reef coral Stylophora pistillata and the symbiotic anemone Anemonia viridis. In all cells isolated from both species, pHi was markedly lower than the surrounding seawater pH of 8.1. In cells that contained symbiotic algae, mean values of pHi were significantly higher in light treated cells than dark treated cells (7.41 +/- 0.22 versus 7.13 +/- 0.24 for S. pistillata; and 7.29 +/- 0.15 versus 7.01 +/- 0.27 for A. viridis). In contrast, there was no significant difference in pHi in light and dark treated cells without algal symbionts. Close inspection of the interface between host cytoplasm and algal symbionts revealed a distinct area of lower pH adjacent to the symbionts in both light and dark treated cells, possibly associated with the symbiosome membrane complex. These findings are significant developments for the elucidation of models of inorganic carbon transport for photosynthesis and calcification and also provide a cell imaging procedure for future investigations into how pHi and other fundamental intracellular parameters in corals respond to changes in the external environment such as reductions in seawater pH.

  1. Immunocytochemical localization of nitrogenase in bacteria symbiotically associated with Azolla spp.

    Science.gov (United States)

    Lindblad, P; Bergman, B; Nierzwicki-Bauer, S A

    1991-01-01

    In situ immunogold labeling and transmission electron microscopy were used to detect nitrogenase in bacteria (bactobionts) symbiotically associated with leaf cavities of Azolla caroliniana and Azolla filiculoides. In A. caroliniana, the Fe protein of the nitrogenase complex was detected in a subset of the distinct bactobiont types present in leaf cavities of all ages. Similar results were obtained for the bactobionts of A. filiculoides with antisera against both the Fe and MoFe subunits of nitrogenase. Images PMID:1785936

  2. Anastomosis behavior differs between asymbiotic and symbiotic hyphae of Rhizophagus clarus.

    Science.gov (United States)

    Purin, Sonia; Morton, Joseph B

    2013-01-01

    The life history of arbuscular mycorrhizal fungi (AMF, Glomeromycota) consists of a short asymbiotic phase when spores germinate and a longer symbiotic phase where hyphae form a network within roots and subsequently in the rhizosphere. Hyphal anastomosis contributes to colony formation, yet this process has been studied mostly in the asymbiotic phase rather than in mycorrhizal plants because of methodological limitations. We sought to compare patterns of anastomosis during each phase of fungal growth by measuring hyphal fusions in genetically identical and different single spore isolates of Rhizophagus clarus from different environments and geographic locations. These isolates were genotyped with two anonymous markers of microsatellite-flanking regions. Anastomosis of hyphae from germinating spores was examined in axenic Petri dishes. A rhizohyphatron consisting of agar-coated glass slides bridging single or paired mycorrhizal sorghum plants allowed evaluation of anastomosis of symbiotic hyphae. Anastomosis of hyphae within a colony, defined here as a mycelium from an individual germinating spore or from mycorrhizal roots of one plant, occurred with similar frequencies (8-38%). However, anastomosis between paired colonies was observed in germinating spores from either genetically identical or different isolates, but it was never detected in symbiotic hyphae. The frequency of anastomosis in asymbiotic hyphae from paired interactions was low, occurring in fewer than 6% of hyphal contacts. These data suggest that anastomosis is relatively unconstrained when interactions occur within a colony but is confined to asymbiotic hyphae when interactions occur between paired colonies. This pattern of behavior suggests that asymbiotic and symbiotic phases of mycelium development by R. clarus may differ in function. Anastomosis in the asymbiotic phase may provide brief opportunities for gene flow between populations of this and possibly other AMF species.

  3. A mini atlas of K-band spectra of southern symbiotic stars

    Czech Academy of Sciences Publication Activity Database

    Marchiano, P.E.; Cidale, L.S.; Arias, M.L.; Borges Fernandes, M.; Kraus, Michaela

    2015-01-01

    Roč. 57, č. 1 (2015), s. 87-89 E-ISSN 1669-9521 R&D Projects: GA ČR(CZ) GA14-21373S; GA MŠk(CZ) 7AMB14AR017 Institutional support: RVO:67985815 Keywords : binaries * symbiotic * stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://www. astronomia argentina.org.ar/b57/2015BAAA...57...87M.pdf

  4. Variable dust obscuration in the symbiotic Mira and very slow Nova, HM Sge

    International Nuclear Information System (INIS)

    Munari, U.; Whitelock, P.A.

    1989-01-01

    New infrared photometry is presented for the symbiotic Mira, HM Sge. Using this and published data a pulsation period of 527 day is derived. In addition to the normal pulsational modulation, the light curve for HM Sge has shown a distinct fading and reddening, starting in 1985. This is interpreted as a dust-obscuration event, and its possible association with the binary orbit is discussed. (author)

  5. Radiation of the symbiotic star CH Cygni in the period 1982 -July 1984

    International Nuclear Information System (INIS)

    Skopal, A.

    1987-01-01

    Spectroscopic behavior is described of the symbiotic star CH Cygni in the period of the activity 1982 - July 1984. Observed variations of the intensities of the emission lines and absorption shell lines are discussed. An analysis of these lines supports the idea that a few different regions of radiation exist in CH Cygni. Drop in brightness and development of jets are interpreted as the consequence of an accretion disk evolution. (author). 4 figs., 10 refs

  6. Genetic diversity and symbiotic effectiveness of Bradyrhizobium strains nodulating selected annual grain legumes growing in Ethiopia.

    Science.gov (United States)

    Degefu, Tulu; Wolde-Meskel, Endalkachew; Rasche, Frank

    2018-01-01

    Vigna unguiculata, Vigna radiata and Arachis hypogaea growing in Ethiopia are nodulated by a genetically diverse group of Bradyrhizobium strains. To determine the genetic identity and symbiotic effectiveness of these bacteria, a collection of 36 test strains originating from the root nodules of the three hosts was investigated using multilocus sequence analyses (MLSA) of core genes including 16S rRNA, recA, glnII, gyrB, atpD and dnaK. Sequence analysis of nodA and nifH genes along with tests for symbiotic effectiveness using δ 15 N analysis were also carried out. The phylogenetic trees derived from the MLSA grouped most test strains into four well-supported distinct positions designated as genospecies I-IV. The maximum likelihood (ML) tree that was constructed based on the nodA gene sequences separated the entire test strains into two lineages, where the majority of the test strains were clustered on one of a well-supported large branch that comprise Bradyrhizobium species from the tropics. This clearly suggested the monophyletic origin of the nodA genes within the bradyrhizobia of tropical origin. The δ 15 N-based symbiotic effectiveness test of seven selected strains revealed that strains GN100 (δ 15 N=0.73) and GN102 (δ 15 N=0.79) were highly effective nitrogen fixers when inoculated to cowpea, thus can be considered as inoculants in cowpea production. It was concluded that Ethiopian soils are a hotspot for rhizobial diversity. This calls for further research to unravel as yet unknown bradyrhizobia nodulating legume host species growing in the country. In this respect, prospective research should also address the mechanisms of symbiotic specificity that could lead to high nitrogen fixation in target legumes.

  7. Immune response of patients with recurrent aphthous stomatitis challenged with a symbiotic.

    Science.gov (United States)

    Mimura, Maria Angela Martins; Borra, Ricardo Carneiro; Hirata, Cleonice Hitomi Watashi; de Oliveira Penido, Norma

    2017-10-01

    There are indications that Th1 polarization of immune response plays an important role in the pathogenesis of recurrent aphthous stomatitis (RAS), and that the use of probiotics can stimulate immune regulatory activity, influencing the course of the disease. The aim of this study was to characterize the initial immune profile of RAS patients and evaluate clinical and serological response following a challenge with symbiotic treatment containing fructooligosaccharide, Lactobacillus, and Bifidobacterium. The immune responses of the 45 patients with RAS, submitted to symbiotic or placebo for 120 days, in relation to 30 RAS-free controls, were evaluated over a period of 6 months. Peripheral blood was collected from all patients at 0 (T0), 120 (T4), and 180 days (T6) after the start of treatment and Th1 (IL12-p70, IFN-γ), Th2 (IL-4), Treg (IL-10), Th17 (IL-17A), inflammatory (TNF-α, IL-6)-associated cytokines, and clinical parameters were quantified. At T0, significant differences were found in the serological levels of the IFN-γ, IL-4, and IL-6 cytokines of the RAS patients in comparison with the controls. It was observed that the cytokine profile of the RAS group was comprised of 2 distinct clusters: a pure Th2 and a Mixed (Th1/Th2) subtype and that symbiotic treatment induced an improvement in pain and an increase in IFN-γ levels, producing a reduction in Th2 response. In RAS, symbiotic treatment based on a fructooligosaccharide, Lactobacillus, and Bifidobacterium composition produced an alteration in the Th2 serological immune profile in the direction of Th1 and improved pain symptomatology. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. The fourth outburst during the present active stage of symbiotic binary AG Dra

    Science.gov (United States)

    Galis, R.; Merc, J.; Vrastak, M.; Teyssier, F.; Lester, T.; Boyd, D.; Sims, W.; Leedjarv, L.

    2018-04-01

    The symbiotic system AG Dra regularly undergoes quiescent and active stages which consist of several outbursts repeating at about 360d interval (Galis et al. 2017, OEJV 180, 24). After seven years of flat quiescence following the 2006-08 major outbursts, in the late spring of 2015, AG Dra began rising again in brightness toward what appeared to be a new minor outburst (ATel #7582).

  9. Specific Midgut Region Controlling the Symbiont Population in an Insect-Microbe Gut Symbiotic Association

    Science.gov (United States)

    Kim, Jiyeun Kate; Kim, Na Hyang; Jang, Ho Am; Kikuchi, Yoshitomo; Kim, Chan-Hee

    2013-01-01

    Many insects possess symbiotic bacteria that affect the biology of the host. The level of the symbiont population in the host is a pivotal factor that modulates the biological outcome of the symbiotic association. Hence, the symbiont population should be maintained at a proper level by the host's control mechanisms. Several mechanisms for controlling intracellular symbionts of insects have been reported, while mechanisms for controlling extracellular gut symbionts of insects are poorly understood. The bean bug Riptortus pedestris harbors a betaproteobacterial extracellular symbiont of the genus Burkholderia in the midgut symbiotic organ designated the M4 region. We found that the M4B region, which is directly connected to the M4 region, also harbors Burkholderia symbiont cells, but the symbionts therein are mostly dead. A series of experiments demonstrated that the M4B region exhibits antimicrobial activity, and the antimicrobial activity is specifically potent against the Burkholderia symbiont but not the cultured Burkholderia and other bacteria. The antimicrobial activity of the M4B region was detected in symbiotic host insects, reaching its highest point at the fifth instar, but not in aposymbiotic host insects, which suggests the possibility of symbiont-mediated induction of the antimicrobial activity. This antimicrobial activity was not associated with upregulation of antimicrobial peptides of the host. Based on these results, we propose that the M4B region is a specialized gut region of R. pedestris that plays a critical role in controlling the population of the Burkholderia gut symbiont. The molecular basis of the antimicrobial activity is of great interest and deserves future study. PMID:24038695

  10. Observation of Bowen fluorescence and other phenomena in five symbiotic stars

    International Nuclear Information System (INIS)

    Wallerstein, G.; Garnavich, P.M.; Schachter, J.; Oke, J.B.

    1991-01-01

    Wavelength measurements and line identifications in the 3200-3600 A regions are presented for the symbiotic stars AG Dra, HM Sge, V1016 Cyg, V1329 Cyg, Z And, and R Aqr. The O III lines excited via Bowen's mechanism are analyzed in detail, and a shell model yielding reasonable shell thicknesses and electron densities is described. The Ne/Fe ratio is derived for five of the systems, and spectra in the blue region are briefly described. 42 refs

  11. Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress

    Science.gov (United States)

    Tremblay, Pascale; Gori, Andrea; Maguer, Jean François; Hoogenboom, Mia; Ferrier-Pagès, Christine

    2016-12-01

    Symbiotic scleractinian corals are particularly affected by climate change stress and respond by bleaching (losing their symbiotic dinoflagellate partners). Recently, the energetic status of corals is emerging as a particularly important factor that determines the corals’ vulnerability to heat stress. However, detailed studies of coral energetic that trace the flow of carbon from symbionts to host are still sparse. The present study thus investigates the impact of heat stress on the nutritional interactions between dinoflagellates and coral Stylophora pistillata maintained under auto- and heterotrophy. First, we demonstrated that the percentage of autotrophic carbon retained in the symbionts was significantly higher during heat stress than under non-stressful conditions, in both fed and unfed colonies. This higher photosynthate retention in symbionts translated into lower rates of carbon translocation, which required the coral host to use tissue energy reserves to sustain its respiratory needs. As calcification rates were positively correlated to carbon translocation, a significant decrease in skeletal growth was observed during heat stress. This study also provides evidence that heterotrophic nutrient supply enhances the re-establishment of normal nutritional exchanges between the two symbiotic partners in the coral S. pistillata, but it did not mitigate the effects of temperature stress on coral calcification.

  12. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications.

    Science.gov (United States)

    Le, Duc V; Nguyen, Thuong; Scholten, Hans; Havinga, Paul J M

    2017-11-29

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  13. Formation of Neutral Disk-Like Zone Around the Active Hot Stars in Symbiotic Binaries

    Directory of Open Access Journals (Sweden)

    Cariková Z.

    2012-06-01

    Full Text Available In this contribution we present the ionization structure in the enhanced wind from the hot star in symbiotic binaries during active phases. Rotation of the hot star leads to the compression of the outflowing material towards its equatorial plane. As a result, a neutral disk-like zone around the active hot star near the orbital plane is created. We modeled the compression of the wind and calculated the neutral disk-like zone in the enhanced wind from the hot star using the equation of the photoionization equilibrium. the presence of such neutral disk-like zones was also suggested on the basis of the modeling the spectral energy distribution of symbiotic binaries. We confront the calculated ionization structures in the enhanced wind from the hot star with the observations. the calculated column density of the neutral hydrogen atoms in the neutral disk-like zone and the emission measure of the ionized part of the wind from the hot star are in a good agreement with the quantities derived from observations during active phases. the presence of such neutral disk-like zones is transient, being connected with the active phases of symbiotic binaries. During quiescent phases, such neutral disk-like zones cannot be created because of insufficient mass-loss rate from the hot star.

  14. THREE FUNDAMENTAL PERIODS IN AN 87 YEAR LIGHT CURVE OF THE SYMBIOTIC STAR MWC 560

    Energy Technology Data Exchange (ETDEWEB)

    Leibowitz, Elia M.; Formiggini, Liliana, E-mail: elia@astro.tau.ac.il [The Wise Observatory and the School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2015-08-15

    We construct a visual light curve of the symbiotic star MWC covering the last 87 years of its history. The data were assembled from the literature and from the AAVSO data bank. Most of the periodic components of the system brightness variation can be accounted for by the operation of three basic clocks of the periods P1 = 19,000 days, P2 = 1943 days, and P3 = 722 days. These periods can plausibly, and consistently with the observations, be attributed to three physical mechanisms in the system: the working of a solar-like magnetic dynamo cycle in the outer layers of the giant star of the system, the binary orbit cycle, and the sidereal rotation cycle of the giant star. MWC 560 is the seventh symbiotic star with historical light curves that reveal similar basic characteristics of the systems. The light curves of all these stars are well interpreted on the basis of the current understanding of the physical processes that are the major sources of the optical luminosity of these symbiotic systems.

  15. NITRITE REDUCTASE ACTIVITY OF NON-SYMBIOTIC HEMOGLOBINS FROM ARABIDOPSIS THALIANA†

    Science.gov (United States)

    Tiso, Mauro; Tejero, Jesús; Kenney, Claire; Frizzell, Sheila; Gladwin, Mark T.

    2013-01-01

    Plant non-symbiotic hemoglobins possess hexa-coordinate heme geometry similar to the heme protein neuroglobin. We recently discovered that deoxygenated neuroglobin converts nitrite to nitric oxide (NO), an important signaling molecule involved in many processes in plants. We sought to determine whether Arabidopsis thaliana non-symbiotic hemoglobins class 1 and 2 (AHb1 and AHb2) might function as nitrite reductases. We found that the reaction of nitrite with deoxygenated AHb1 and AHb2 generates NO gas and iron-nitrosyl-hemoglobin species. The bimolecular rate constants for nitrite reduction to NO are 19.8 ± 3.2 and 4.9 ± 0.2 M−1s−1, at pH = 7.4 and 25°C, respectively. We determined the pH dependence of these bimolecular rate constants and found a linear correlation with the concentration of protons, indicating the requirement for one proton in the reaction. Release of free NO gas during reaction in anoxic and hypoxic (2% oxygen) conditions was confirmed by chemiluminescence detection. These results demonstrate that deoxygenated AHb1 and AHb2 reduce nitrite to form NO via a mechanism analogous to that observed for hemoglobin, myoglobin and neuroglobin. Our findings suggest that during severe hypoxia and in the anaerobic plant roots, especially in water submerged species, non-symbiotic hemoglobins provide a viable pathway for NO generation via nitrite reduction. PMID:22620259

  16. Host-secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula.

    Science.gov (United States)

    Wang, Qi; Yang, Shengming; Liu, Jinge; Terecskei, Kata; Ábrahám, Edit; Gombár, Anikó; Domonkos, Ágota; Szűcs, Attila; Körmöczi, Péter; Wang, Ting; Fodor, Lili; Mao, Linyong; Fei, Zhangjun; Kondorosi, Éva; Kaló, Péter; Kereszt, Attila; Zhu, Hongyan

    2017-06-27

    Legumes engage in root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. In nodule cells, bacteria are enclosed in membrane-bound vesicles called symbiosomes and differentiate into bacteroids that are capable of converting atmospheric nitrogen into ammonia. Bacteroid differentiation and prolonged intracellular survival are essential for development of functional nodules. However, in the Medicago truncatula - Sinorhizobium meliloti symbiosis, incompatibility between symbiotic partners frequently occurs, leading to the formation of infected nodules defective in nitrogen fixation (Fix - ). Here, we report the identification and cloning of the M. truncatula NFS2 gene that regulates this type of specificity pertaining to S. meliloti strain Rm41. We demonstrate that NFS2 encodes a nodule-specific cysteine-rich (NCR) peptide that acts to promote bacterial lysis after differentiation. The negative role of NFS2 in symbiosis is contingent on host genetic background and can be counteracted by other genes encoded by the host. This work extends the paradigm of NCR function to include the negative regulation of symbiotic persistence in host-strain interactions. Our data suggest that NCR peptides are host determinants of symbiotic specificity in M. truncatula and possibly in closely related legumes that form indeterminate nodules in which bacterial symbionts undergo terminal differentiation.

  17. Survey Explores Symbiotic Relationship between China’s Nonofficial Finance and SMEs

    Institute of Scientific and Technical Information of China (English)

    虞群娥; 李爱喜

    2008-01-01

    Domestic and foreign studies have revealed the existence of an interactive development relationship between nono cial nance and small and medium-sizedenterprises.Based on the empirical findings of a Hangzhou case study,this article substantiates the existence of a very strong symbiotic relationship between China’s nono cial nance and small and medium-sized enterprises(SMEs).This symbiotic relationship is an equilibrium outcome among three market players:formalnance,nono cial nance and SMEs.Meanwhile,it is also a rational choice and suboptimal equilibrium point reached under the existing institutional spaceconstraints.In our empirical study,we found that formal nance failure left a space for symbiosis to survive in two ways:the comparative advantages of nono cialnance created an institutional basis for symbiosis to grow,and immense SME fund shortages created a market space for symbiosis to thrive.In this article,we alsoput forward some recommendations for further development of such a symbiotic relationship.

  18. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Directory of Open Access Journals (Sweden)

    Duc V. Le

    2017-11-01

    Full Text Available Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring.

  19. Far-infrared data for symbiotic stars. II. The IRAS survey observations

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Fernandez-Castro, T.; Stencel, R.E.

    1988-01-01

    IRAS survey data for all known symbiotic binaries are reported. S type systems have 25 micron excesses much larger than those of single red giant stars, suggesting that these objects lose mass more rapidly than do normal giants. D type objects have far-IR colors similar to those of Mira variables, implying mass-loss rate of about 10 to the -6th solar masses/yr. The near-IR extinctions of the D types indicate that their Mira components are enshrouded in optically thick dust shells, while their hot companions lie outside the shells. If this interpretation of the data is correct, then the very red near-IR colors of D type symbiotic stars are caused by extreme amounts of dust absorption rather than dust emission. The small group of D prime objects possesses far-IR colors resembling those of compact planetary nebulae or extreme OH/IR stars. It is speculated that these binaries are not symbiotic stars at all, but contain a hot compact star and an exasymptotic branch giant which is in the process of ejecting a planetary nebula shell. 42 references

  20. THREE FUNDAMENTAL PERIODS IN AN 87 YEAR LIGHT CURVE OF THE SYMBIOTIC STAR MWC 560

    International Nuclear Information System (INIS)

    Leibowitz, Elia M.; Formiggini, Liliana

    2015-01-01

    We construct a visual light curve of the symbiotic star MWC covering the last 87 years of its history. The data were assembled from the literature and from the AAVSO data bank. Most of the periodic components of the system brightness variation can be accounted for by the operation of three basic clocks of the periods P1 = 19,000 days, P2 = 1943 days, and P3 = 722 days. These periods can plausibly, and consistently with the observations, be attributed to three physical mechanisms in the system: the working of a solar-like magnetic dynamo cycle in the outer layers of the giant star of the system, the binary orbit cycle, and the sidereal rotation cycle of the giant star. MWC 560 is the seventh symbiotic star with historical light curves that reveal similar basic characteristics of the systems. The light curves of all these stars are well interpreted on the basis of the current understanding of the physical processes that are the major sources of the optical luminosity of these symbiotic systems

  1. DETECTION OF X-RAYS FROM THE SYMBIOTIC STAR V1329 Cyg

    International Nuclear Information System (INIS)

    Stute, Matthias; Luna, Gerardo J. M.; Sokoloski, Jennifer L.

    2011-01-01

    We report the detection of X-ray emission from the symbiotic star V1329 Cyg with XMM-Newton. The spectrum from the EPIC pn, MOS1, and MOS2 instruments consists of a two-temperature plasma with k T 1 = 0.11 +0.02 -0.02 keV and k T 2 = 0.93 +0.12 -0.14 keV. Unlike the vast majority of symbiotic stars detected in X-rays, the soft component of the spectrum seems to be absorbed only by interstellar material. The shock velocities corresponding to the observed temperatures are about 300 km s -1 and about 900 km s -1 . We did not find either periodic or aperiodic X-ray variability, with upper limits on the amplitudes of such variations being 46% and 16% (rms), respectively. We also did not find any ultraviolet variability with an rms amplitude of more than approximately 1%. The derived velocities and the unabsorbed nature of the soft component of the X-ray spectrum suggest that some portion of the high energy emission could originate in shocks within a jet and beyond the symbiotic nebula. The lower velocity is consistent with the expansion velocity of the extended structure present in Hubble Space Telescope observations. The higher velocity could be associated with an internal shock at the base of the jet or with shocks in the accretion region.

  2. Symbiotic Sensing for Energy-Intensive Tasks in Large-Scale Mobile Sensing Applications

    Science.gov (United States)

    Scholten, Hans; Havinga, Paul J. M.

    2017-01-01

    Energy consumption is a critical performance and user experience metric when developing mobile sensing applications, especially with the significantly growing number of sensing applications in recent years. As proposed a decade ago when mobile applications were still not popular and most mobile operating systems were single-tasking, conventional sensing paradigms such as opportunistic sensing and participatory sensing do not explore the relationship among concurrent applications for energy-intensive tasks. In this paper, inspired by social relationships among living creatures in nature, we propose a symbiotic sensing paradigm that can conserve energy, while maintaining equivalent performance to existing paradigms. The key idea is that sensing applications should cooperatively perform common tasks to avoid acquiring the same resources multiple times. By doing so, this sensing paradigm executes sensing tasks with very little extra resource consumption and, consequently, extends battery life. To evaluate and compare the symbiotic sensing paradigm with the existing ones, we develop mathematical models in terms of the completion probability and estimated energy consumption. The quantitative evaluation results using various parameters obtained from real datasets indicate that symbiotic sensing performs better than opportunistic sensing and participatory sensing in large-scale sensing applications, such as road condition monitoring, air pollution monitoring, and city noise monitoring. PMID:29186037

  3. Medicago truncatula copper transporter 1 (MtCOPT1) delivers copper for symbiotic nitrogen fixation.

    Science.gov (United States)

    Senovilla, Marta; Castro-Rodríguez, Rosario; Abreu, Isidro; Escudero, Viviana; Kryvoruchko, Igor; Udvardi, Michael K; Imperial, Juan; González-Guerrero, Manuel

    2018-04-01

    Copper is an essential nutrient for symbiotic nitrogen fixation. This element is delivered by the host plant to the nodule, where membrane copper (Cu) transporter would introduce it into the cell to synthesize cupro-proteins. COPT family members in the model legume Medicago truncatula were identified and their expression determined. Yeast complementation assays, confocal microscopy and phenotypical characterization of a Tnt1 insertional mutant line were carried out in the nodule-specific M. truncatula COPT family member. Medicago truncatula genome encodes eight COPT transporters. MtCOPT1 (Medtr4g019870) is the only nodule-specific COPT gene. It is located in the plasma membrane of the differentiation, interzone and early fixation zones. Loss of MtCOPT1 function results in a Cu-mitigated reduction of biomass production when the plant obtains its nitrogen exclusively from symbiotic nitrogen fixation. Mutation of MtCOPT1 results in diminished nitrogenase activity in nodules, likely an indirect effect from the loss of a Cu-dependent function, such as cytochrome oxidase activity in copt1-1 bacteroids. These data are consistent with a model in which MtCOPT1 transports Cu from the apoplast into nodule cells to provide Cu for essential metabolic processes associated with symbiotic nitrogen fixation. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  4. Antibacterial Activity Symbiotic Fungi of Marine Sponge Axinella sp., Aspergillus Sydowii on Four Growth Medium

    Science.gov (United States)

    Widyaningsih, S.; Trianto, A.; Radjasa, OK; Wittriansyah, K.

    2018-02-01

    Many infectious diseases caused by Escherichia coli and Staphylococcus aureus which turned into a resistant pathogen. A symbiotic fungi of marine sponge Axinella sp., Aspergillus sydowii from the waters of Riung, East Nusa Tenggara, Indonesia showed antibacterial activity, cultured on the four media, MEB (ST), Noni Juice Media (MG), avocado leaves media (AL), and Soursop leaves media (SR). The symbiotic fungi was cultured for 14 days on each media. The largest weight of symbiotic fungi biomass on ST media 138,95gr and at least 99,12gr of AL media. Purification of bioactive compound is carried out using separatory funnel, and column chromatography. The highest rendemen of extracts on SR media was 3,67%, while the lowest in ST media was 1,22%. The bioactive test used diffusion agar method. Fungi extracts from four mediums have bioactivity against, E. coli and S. aureus. The biggest inhibition zone obtained from the extract of MG KN-15-3-1-3, with inhibition zone 10.71mm and 10.98mm against E. coli and S. aureus.

  5. Using In Situ Symbiotic Seed Germination to Restore Over-collected Medicinal Orchids in Southwest China.

    Science.gov (United States)

    Shao, Shi-Cheng; Burgess, Kevin S; Cruse-Sanders, Jennifer M; Liu, Qiang; Fan, Xu-Li; Huang, Hui; Gao, Jiang-Yun

    2017-01-01

    Due to increasing demand for medicinal and horticultural uses, the Orchidaceae is in urgent need of innovative and novel propagation techniques that address both market demand and conservation. Traditionally, restoration techniques have been centered on ex situ asymbiotic or symbiotic seed germination techniques that are not cost-effective, have limited genetic potential and often result in low survival rates in the field. Here, we propose a novel in situ advanced restoration-friendly program for the endangered epiphytic orchid species Dendrobium devonianum , in which a series of in situ symbiotic seed germination trials base on conspecific fungal isolates were conducted at two sites in Yunnan Province, China. We found that percentage germination varied among treatments and locations; control treatments (no inoculum) did not germinate at both sites. We found that the optimal treatment, having the highest in situ seed germination rate (0.94-1.44%) with no significant variation among sites, supported a warm, moist and fixed site that allowed for light penetration. When accounting for seed density, percentage germination was highest (2.78-2.35%) at low densities and did not vary among locations for the treatment that supported optimal conditions. Similarly for the same treatment, seed germination ranged from 0.24 to 5.87% among seasons but also did vary among sites. This study reports on the cultivation and restoration of an endangered epiphytic orchid species by in situ symbiotic seed germination and is likely to have broad application to the horticulture and conservation of the Orchidaceae.

  6. Two symbiotic bacteria of the entomopathogenic nematode Heterorhabditis spp. against Galleria mellonella.

    Science.gov (United States)

    Liao, Chunli; Gao, Along; Li, Bingbing; Wang, Mengjun; Shan, Linna

    2017-03-01

    The entomopathogenic nematode Heterorhabditis spp. is considered a promising agent in the biocontrol of injurious insects of agriculture. However, different symbiotic bacteria associated with the nematode usually have different specificity and virulence toward their own host. In this study, two symbiotic bacteria, LY2W and NK, were isolated from the intestinal canals of two entomopathogenic nematode Heterorhabditis megidis 90 (PDSj1 and PDSj2) from Galleria mellonela, separately. To determine their species classification, we carried out some investigations on morphology, culture, biochemistry, especially 16S rDNA sequence analyses. As a result, both of them belong to Enterobacter spp., showing the closest relatedness with Enterobacter gergoviae (LY2W) and Enterobacter cloacae (NK), respectively. Moreover, the toxicity to Galleria mellonella was examined using both the metabolites and washed cells (primary and secondary) of these two strains. The results indicated both metabolites and cells of the primary-type bacteria could cause high mortalities (up to 97%) to Galleria mellonella, while those of the primary-type bacteria only killed 20%. These findings would provide new symbiotic bacteria and further references for biological control of the agricultural pest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A Proteomic Network for Symbiotic Nitrogen Fixation Efficiency in Bradyrhizobium elkanii.

    Science.gov (United States)

    Cooper, Bret; Campbell, Kimberly B; Beard, Hunter S; Garrett, Wesley M; Mowery, Joseph; Bauchan, Gary R; Elia, Patrick

    2018-03-01

    Rhizobia colonize legumes and reduce N 2 to NH 3 in root nodules. The current model is that symbiotic rhizobia bacteroids avoid assimilating this NH 3 . Instead, host legume cells form glutamine from NH 3 , and the nitrogen is returned to the bacteroid as dicarboxylates, peptides, and amino acids. In soybean cells surrounding bacteroids, glutamine also is converted to ureides. One problem for soybean cultivation is inefficiency in symbiotic N 2 fixation, the biochemical basis of which is unknown. Here, the proteomes of bacteroids of Bradyrhizobium elkanii USDA76 isolated from N 2 fixation-efficient Peking and -inefficient Williams 82 soybean nodules were analyzed by mass spectrometry. Nearly half of the encoded bacterial proteins were quantified. Efficient bacteroids produced greater amounts of enzymes to form Nod factors and had increased amounts of signaling proteins, transporters, and enzymes needed to generate ATP to power nitrogenase and to acquire resources. Parallel investigation of nodule proteins revealed that Peking had no significantly greater accumulation of enzymes needed to assimilate NH 3 than Williams 82. Instead, efficient bacteroids had increased amounts of enzymes to produce amino acids, including glutamine, and to form ureide precursors. These results support a model for efficient symbiotic N 2 fixation in soybean where the bacteroid assimilates NH 3 for itself.

  8. Two negative regulatory systems of root nodule symbiosis - how are symbiotic benefits and costs balanced?

    Science.gov (United States)

    Nishida, Hanna; Suzaki, Takuya

    2018-05-30

    Root nodule symbiosis is one of the best-characterized mutualistic relationships between plants-microbes symbiosis, where mainly leguminous species can obtain nitrogen sources fixed by nitrogen-fixing rhizobia through the formation of symbiotic organs root nodules. In order to drive this symbiotic process, plants need to provide carbon sources that should be used for their growth. Therefore, a balance between the benefits of obtaining nitrogen sources and the costs of losing carbon sources needs to be maintained during root nodule symbiosis. Plants have developed at least two negative regulatory systems of root nodule symbiosis. One strategy involves the regulation of nodule number in response to rhizobial infection. For this regulation, a systemic long-range signaling between roots and shoots called autoregulation of nodulation has a pivotal role. Another strategy involves the regulation of root nodule symbiosis in response to nitrate, the most abundant form of nitrogen nutrients in the soil. Recent studies indicate that a long-distance signaling is shared between the two strategies, where NIN and NRSYM1, two paralogous RWP-RK transcription factors, can activate the production of nodulation-related CLE peptides in response to different inputs. Here, we give an overview of such progress in our understanding of molecular mechanisms relevant to the control of the symbiotic balance, including their biological significance.

  9. Distinct Bacterial Communities Associated with the Coral Model Aiptasia in Aposymbiotic and Symbiotic States with Symbiodinium

    KAUST Repository

    Röthig, Till

    2016-11-18

    Coral reefs are in decline. The basic functional unit of coral reefs is the coral metaorganism or holobiont consisting of the cnidarian host animal, symbiotic algae of the genus Symbiodinium, and a specific consortium of bacteria (among others), but research is slow due to the difficulty of working with corals. Aiptasia has proven to be a tractable model system to elucidate the intricacies of cnidarian-dinoflagellate symbioses, but characterization of the associated bacterial microbiome is required to provide a complete and integrated understanding of holobiont function. In this work, we characterize and analyze the microbiome of aposymbiotic and symbiotic Aiptasia and show that bacterial associates are distinct in both conditions. We further show that key microbial associates can be cultured without their cnidarian host. Our results suggest that bacteria play an important role in the symbiosis of Aiptasia with Symbiodinium, a finding that underlines the power of the Aiptasia model system where cnidarian hosts can be analyzed in aposymbiotic and symbiotic states. The characterization of the native microbiome and the ability to retrieve culturable isolates contributes to the resources available for the Aiptasia model system. This provides an opportunity to comparatively analyze cnidarian metaorganisms as collective functional holobionts and as separated member species. We hope that this will accelerate research into understanding the intricacies of coral biology, which is urgently needed to develop strategies to mitigate the effects of environmental change.

  10. NPR1 protein regulates pathogenic and symbiotic interactions between Rhizobium and legumes and non-legumes.

    Directory of Open Access Journals (Sweden)

    Smadar Peleg-Grossman

    Full Text Available BACKGROUND: Legumes are unique in their ability to establish symbiotic interaction with rhizobacteria from Rhizobium genus, which provide them with available nitrogen. Nodulation factors (NFs produced by Rhizobium initiate legume root hair deformation and curling that entrap the bacteria, and allow it to grow inside the plant. In contrast, legumes and non-legumes activate defense responses when inoculated with pathogenic bacteria. One major defense pathway is mediated by salicylic acid (SA. SA is sensed and transduced to downstream defense components by a redox-regulated protein called NPR1. METHODOLOGY/PRINCIPAL FINDINGS: We used Arabidopsis mutants in SA defense pathway to test the role of NPR1 in symbiotic interactions. Inoculation of Sinorhizobium meliloti or purified NF on Medicago truncatula or nim1/npr1 A. thaliana mutants induced root hair deformation and transcription of early and late nodulins. Application of S. meliloti or NF on M. truncatula or A. thaliana roots also induced a strong oxidative burst that lasted much longer than in plants inoculated with pathogenic or mutualistic bacteria. Transient overexpression of NPR1 in M. truncatula suppressed root hair curling, while inhibition of NPR1 expression by RNAi accelerated curling. CONCLUSIONS/SIGNIFICANCE: We show that, while NPR1 has a positive effect on pathogen resistance, it has a negative effect on symbiotic interactions, by inhibiting root hair deformation and nodulin expression. Our results also show that basic plant responses to Rhizobium inoculation are conserved in legumes and non-legumes.

  11. The synthesis of mycosporine-like amino acids (MAAs) by cultured, symbiotic dinoflagellates.

    Science.gov (United States)

    T Banaszak1 A; LaJeunesse; Trench

    2000-06-28

    We tested the hypothesis that there is a relation between phylotypes (phylogenetic types, as determined by restriction fragment length polymorphism (RFLP) and partial sequence analysis of the small subunit ribosomal RNA gene (SSUrDNA)) and the synthesis of mycosporine-like amino acids (MAAs) by symbiotic dinoflagellates under the influence of ultraviolet radiation (UV-B/A) and photosynthetically active radiation (PAR). We exposed 27 isolates of symbiotic dinoflagellates simultaneously to UV-B/A and PAR, and subsequently determined the MAAs present in cell extracts and in the media. The algae used included 24 isolates of Symbiodinium spp. originating from jellyfishes, sea anemones, zoanthids, scleractinians, octocorals, and bivalves, and three others in the genera Gymnodinium, Gloeodinium and Amphidinium from a jellyfish, an hydrocoral and a flatworm, respectively. In this study, all of the phylotype A Symbiodinium spp. synthesized up to three identified MAAs. None of the 11 cultured phylotypes B and C Symbiodinium spp. synthesized MAAs. The three non-Symbiodinium symbionts also synthesized up to three MAAs. The results support a conclusion that phylotype A Symbiodinium spp. have a high predilection for the synthesis of MAAs, while phylotypes B and C do not. Synthesis of MAAs by symbiotic dinoflagellates in culture does not appear to relate directly to depths or to the UV exposure regimes from which the consortia were collected.

  12. Symbiotics and Aloe vera and Symphytum officinale extracts in broiler feed

    Directory of Open Access Journals (Sweden)

    Paula Rodrigues Oliveira

    2016-09-01

    Full Text Available This study aimed to test the effects of dietary Aloe vera and Symphytum officinale extracts added separately or in combination with symbiotics on the performance, nutrient utilization, serum biochemical parameters, biometrics, and intestinal histomorfometry of broilers. The experiment had a randomized block design with five treatments and six replicates of ten broilers each. Treatments were as follows: negative control and positive control (diet without and with antibiotic, respectively; 0.2% Aloe vera (AV; 0.2% Symphytum officinale (S; 0.2% functional supplement, composed of symbiotics fermented in Aloe vera and comfrey plant extracts (S+PE. At seven days of age, FI of birds fed the Aloe vera extracts diets were lower than that observed for birds consuming the diet with Symphytum officinale extract and S+PE. Broiler performance remained unaffected by treatments at others ages evaluated. At 10 to 14 days of age the lowest ADCDM ADCCP was shown in group feed NC. The highest ADCCP was observed in PC control group and in diets supplemented with Aloe vera and S+PE. Serum levels of cholesterol, triglycerides, and phosphorus were affected by addition of extracts at seven, 21, and 35 days of age. The longest duodenal villi were observed in broilers fed S+PE diets at seven days of age. Aloe vera and Symphytum officinale extracts and symbiotics can be used in broiler diets as an alternative to growth-promoting antibiotics.

  13. U.S. and Department of Defense Building Partnership Capacity and Counter/Anti-Corruption: A Symbiotic Relationship or One at Odds

    Science.gov (United States)

    2016-02-16

    AIR WAR COLLEGE AIR UNIVERSITY U.S. AND DEPARTMENT OF DEFENSE BUILDING PARTNERSHIP CAPACITY AND COUNTER/ANTI-CORRUPTION: A SYMBIOTIC ...Extortion,” DoD BPC and counter/anti-corruption have resulted in both a symbiotic relationship and one at odds. This uncomfortable dichotomy has led to...extraversion as “Soft Extortion” have all led DoD BPC and counter/anti-corruption efforts into a relationship that is both symbiotic and one at odds

  14. Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Yasuo; Ishimi, Katsuhiro [Department of General Education, College of Science and Technology, Nihon University, Narashinodai, Chiba 274-8501 (Japan); Tokumoto, Masaru; Aihara, Yasuyuki; Oku, Masayo; Kohno, Hideki [Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Izumi-cho, Chiba 275-8575 (Japan); Wakayama, Tatsuki; Miyake, Jun [Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Nakoji, Amagasaki, Hyogo 661-0974 (Japan); Tomiyama, Masamitsu [Genetic Diversity Department, National Institute of Agrobiological Science, Tsukuba, Ibaraki 305-8602 (Japan)

    2006-09-15

    Hydrogen production with glucose by using co-immobilized cultures of a lactic acid bacterium, Lactobacillus delbrueckii NBRC13953, and a photosynthetic bacterium, Rhodobacter sphaeroides RV, in agar gels was studied. Glucose was converted to hydrogen gas in a yield of 7.1mol of hydrogen per mole of glucose at a maximum under illuminated conditions. (author)

  15. Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Mathrani, Indra M.; Ahring, Birgitte Kiær

    1995-01-01

    An anaerobic, extremely thermophilic, cellulolytic, non-spore-forming bacterium, strain 6A, was isolated from an alkaline hot spring in Hverageroi, Iceland. The bacterium was non-motile, rod-shaped (1.5-3.5 x 0.7 mu m) and occurred singly, in pairs or in chains and stained gram-negative. The growth...

  16. Dense populations of a giant sulfur bacterium in Namibian shelf sediments

    DEFF Research Database (Denmark)

    Schulz, HN; Brinkhoff, T.; Ferdelman, TG

    1999-01-01

    A previously unknown giant sulfur bacterium is abundant in sediments underlying the oxygen minimum zone of the Benguela Current upwelling system. The bacterium has a spherical cell that exceeds by up to 100-fold the biovolume of the largest known prokaryotes. On the basis of 16S ribosomal DNA...

  17. Genome analysis of the anaerobic thermohalophilic bacterium Halothermothrix orenii.

    Directory of Open Access Journals (Sweden)

    Konstantinos Mavromatis

    Full Text Available Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  18. Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui; Kunin, Victor; Lapidus, Alla; Hugenholtz, Philip; Patel, Bharat; Kyrpides, Nikos C.

    2008-11-03

    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  19. Growth of a Strictly Anaerobic Bacterium on Furfural (2-Furaldehyde)

    Science.gov (United States)

    Brune, Gerhard; Schoberth, Siegfried M.; Sahm, Hermann

    1983-01-01

    A strictly anaerobic bacterium was isolated from a continuous fermentor culture which converted the organic constituents of sulfite evaporator condensate to methane and carbon dioxide. Furfural is one of the major components of this condensate. This furfural isolate could degrade furfural as the sole source of carbon and energy in a defined mineral-vitamin-sulfate medium. Acetic acid was the major fermentation product. This organism could also use ethanol, lactate, pyruvate, or fumarate and contained cytochrome c3 and desulfoviridin. Except for furfural degradation, the characteristics of the furfural isolate were remarkably similar to those of the sulfate reducer Desulfovibrio gigas. The furfural isolate has been tentatively identified as Desulfovibrio sp. strain F-1. Images PMID:16346423

  20. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. Copyright © 2016, American Association for the Advancement of Science.

  1. The O-antigen structure of bacterium Comamonas aquatica CJG.

    Science.gov (United States)

    Wang, Xiqian; Kondakova, Anna N; Zhu, Yutong; Knirel, Yuriy A; Han, Aidong

    2017-11-01

    Genus Comamonas is a group of bacteria that are able to degrade a variety of environmental waste. Comamonas aquatica CJG (C. aquatica) in this genus is able to absorb low-density lipoprotein but not high-density lipoprotein of human serum. Using 1 H and 13 C NMR spectroscopy, we found that the O-polysaccharide (O-antigen) of this bacterium is comprised of a disaccharide repeat (O-unit) of d-glucose and 2-O-acetyl-l-rhamnose, which is shared by Serratia marcescens O6. The O-antigen gene cluster of C. aquatica, which is located between coaX and tnp4 genes, contains rhamnose synthesis genes, glycosyl and acetyl transferase genes, and ATP-binding cassette transporter genes, and therefore is consistent with the O-antigen structure determined here.

  2. Complete genome sequence of the photoautotrophic and bacteriochlorophyll e-synthesizing green sulfur bacterium Chlorobaculum limnaeum DSM 1677T

    DEFF Research Database (Denmark)

    Tank, Marcus; Liu, Zhenfeng; Frigaard, Niels-Ulrik

    2017-01-01

    Chlorobaculum limnaeum DSM 1677T is a mesophilic, brown-colored, chlorophototrophic green sulfur bacterium that produces bacteriochlorophyll e and the carotenoid isorenieratene as major pigments. This bacterium serves as a model organism in molecular research on photosynthesis, sulfur metabolism...

  3. Construction and simulation of the Bradyrhizobium diazoefficiens USDA110 metabolic network: a comparison between free-living and symbiotic states.

    Science.gov (United States)

    Yang, Yi; Hu, Xiao-Pan; Ma, Bin-Guang

    2017-02-28

    Bradyrhizobium diazoefficiens is a rhizobium able to convert atmospheric nitrogen into ammonium by establishing mutualistic symbiosis with soybean. It has been recognized as an important parent strain for microbial agents and is widely applied in agricultural and environmental fields. In order to study the metabolic properties of symbiotic nitrogen fixation and the differences between a free-living cell and a symbiotic bacteroid, a genome-scale metabolic network of B. diazoefficiens USDA110 was constructed and analyzed. The metabolic network, iYY1101, contains 1031 reactions, 661 metabolites, and 1101 genes in total. Metabolic models reflecting free-living and symbiotic states were determined by defining the corresponding objective functions and substrate input sets, and were further constrained by high-throughput transcriptomic and proteomic data. Constraint-based flux analysis was used to compare the metabolic capacities and the effects on the metabolic targets of genes and reactions between the two physiological states. The results showed that a free-living rhizobium possesses a steady state flux distribution for sustaining a complex supply of biomass precursors while a symbiotic bacteroid maintains a relatively condensed one adapted to nitrogen-fixation. Our metabolic models may serve as a promising platform for better understanding the symbiotic nitrogen fixation of this species.

  4. Plant response to biotic stress: Is there a common epigenetic response during plant-pathogenic and symbiotic interactions?

    Science.gov (United States)

    Zogli, Prince; Libault, Marc

    2017-10-01

    Plants constantly interact with pathogenic and symbiotic microorganisms. Recent studies have revealed several regulatory mechanisms controlling these interactions. Among them, the plant defense system is activated not only in response to pathogenic, but also in response to symbiotic microbes. Interestingly, shortly after symbiotic microbial recognition, the plant defense system is suppressed to promote plant infection by symbionts. Research studies have demonstrated the influence of the plant epigenome in modulating both pathogenic and symbiotic plant-microbe interactions, thereby influencing plant survival, adaptation and evolution of the plant response to microbial infections. It is however unclear if plant pathogenic and symbiotic responses share similar epigenomic profiles or if epigenomic changes differentially regulate plant-microbe symbiosis and pathogenesis. In this mini-review, we provide an update of the current knowledge of epigenomic control on plant immune responses and symbiosis, with a special attention being paid to knowledge gap and potential strategies to fill-in the missing links. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. [Cloning, mutagenesis and symbiotic phenotype of three lipid transfer protein encoding genes from Mesorhizobium huakuii 7653R].

    Science.gov (United States)

    Li, Yanan; Zeng, Xiaobo; Zhou, Xuejuan; Li, Youguo

    2016-12-04

    Lipid transfer protein superfamily is involved in lipid transport and metabolism. This study aimed to construct mutants of three lipid transfer protein encoding genes in Mesorhizobium huakuii 7653R, and to study the phenotypes and function of mutations during symbiosis with Astragalus sinicus. We used bioinformatics to predict structure characteristics and biological functions of lipid transfer proteins, and conducted semi-quantitative and fluorescent quantitative real-time PCR to analyze the expression levels of target genes in free-living and symbiotic conditions. Using pK19mob insertion mutagenesis to construct mutants, we carried out pot plant experiments to observe symbiotic phenotypes. MCHK-5577, MCHK-2172 and MCHK-2779 genes encoding proteins belonged to START/RHO alpha_C/PITP/Bet_v1/CoxG/CalC (SRPBCC) superfamily, involved in lipid transport or metabolism, and were identical to M. loti at 95% level. Gene relative transcription level of the three genes all increased compared to free-living condition. We obtained three mutants. Compared with wild-type 7653R, above-ground biomass of plants and nodulenitrogenase activity induced by the three mutants significantly decreased. Results indicated that lipid transfer protein encoding genes of Mesorhizobium huakuii 7653R may play important roles in symbiotic nitrogen fixation, and the mutations significantly affected the symbiotic phenotypes. The present work provided a basis to study further symbiotic function mechanism associated with lipid transfer proteins from rhizobia.

  6. Identification of genes involved in the mutualistic colonization of the nematode Heterorhabditis bacteriophora by the bacterium Photorhabdus luminescens.

    LENUS (Irish Health Repository)

    Easom, Catherine A

    2010-01-01

    ABSTRACT: BACKGROUND: Photorhabdus are Gram negative entomopathogenic bacteria that also have a mutualistic association with nematodes from the family Heterorhabditis. An essential part of this symbiosis is the ability of the bacterium to colonize the gut of the freeliving form of the nematode called the infective juvenile (IJ). Although the colonization process (also called transmission) has been described phenomonologically very little is known about the underlying molecular mechanisms. Therefore, in this study, we were interested in identifying genes in Photorhabdus that are important for IJ colonization. RESULTS: In this work we genetically tagged P. luminescens TT01 with gfp and constructed a library containing over 3200 mutants using the suicide vector, pUT-Km2. Using a combination of in vitro symbiosis assays and fluorescent microscopy we screened this library for mutants that were affected in their ability to colonize the IJ i.e. with decreased transmission frequencies. In total 8 mutants were identified with transmission frequencies of <\\/= 30% compared to wild-type. These mutants were mapped to 6 different genetic loci; the pbgPE operon, galE, galU, proQ, asmA and hdfR. The pbgPE, galE and galU mutants were all predicted to be involved in LPS biosynthesis and, in support of this, we have shown that these mutants are avirulent and sensitive to the cationic antimicriobial peptide, polymyxin B. On the other hand the proQ, asmA and hdfR mutants were not affected in virulence and were either as resistant (proQ) or slightly more sensitive (asmA, hdfR) to polymyxin B than the wild-type (WT). CONCLUSIONS: This is the first report describing the outcome of a comprehensive screen looking for transmission mutants in Photorhabdus. In total 6 genetic loci were identified and we present evidence that all of these loci are involved in the assembly and\\/or maintenance of LPS and other factors associated with the cell surface. Interestingly several, but not all, of the

  7. Micro-particle transporting system using galvanotactically stimulated apo-symbiotic cells of Paramecium bursaria.

    Science.gov (United States)

    Furukawa, Shunsuke; Karaki, Chiaki; Kawano, Tomonori

    2009-01-01

    It is well known that Paramecium species including green paramecia (Paramecium bursaria) migrate towards the anode when exposed to an electric field in a medium. This type of a cellular movement is known as galvanotaxis. Our previous study revealed that an electric stimulus given to P bursaria is converted to a galvanotactic cellular movement by involvement of T-type calcium channel on the plasma membrane [Aonuma et al. (2007), Z. Naturforsch. 62c, 93-102]. This phenomenon has attracted the attention of bioengineers in the fields of biorobotics or micro-robotics in order to develop electrically controllable micromachineries. Here, we demonstrate the galvanotactic controls of the cellular migration of P bursaria in capillary tubes (diameter, 1-2 mm; length, 30-240 mm). Since the Paramecium cells take up particles of various sizes, we attempted to use the electrically stimulated cells of P bursaria as the vehicle for transportation of micro-particles in the capillary system. By using apo-symbiotic cells of P bursaria obtained after forced removal of symbiotic algae, the uptake of the particles could be maximized and visualized. Then, electrically controlled transportations of particle-filled apo-symbiotic P bursaria cells were manifested. The particles transported by electrically controlled cells (varying in size from nm to /m levels) included re-introduced green algae, fluorescence-labeled polystyrene beads, magnetic microspheres, emerald green fluorescent protein (EmGFP)-labeled cells of E. coli, Indian ink, and crystals of zeolite (hydrated aluminosilicate minerals with a micro-porous structure) and some metal oxides. Since the above demonstrations were successful, we concluded that P bursaria has a potential to be employed as one of the micro-biorobotic devices used in BioMEMS (biological micro-electro-mechanical systems).

  8. Using In Situ Symbiotic Seed Germination to Restore Over-collected Medicinal Orchids in Southwest China

    Directory of Open Access Journals (Sweden)

    Shi-Cheng Shao

    2017-06-01

    Full Text Available Due to increasing demand for medicinal and horticultural uses, the Orchidaceae is in urgent need of innovative and novel propagation techniques that address both market demand and conservation. Traditionally, restoration techniques have been centered on ex situ asymbiotic or symbiotic seed germination techniques that are not cost-effective, have limited genetic potential and often result in low survival rates in the field. Here, we propose a novel in situ advanced restoration-friendly program for the endangered epiphytic orchid species Dendrobium devonianum, in which a series of in situ symbiotic seed germination trials base on conspecific fungal isolates were conducted at two sites in Yunnan Province, China. We found that percentage germination varied among treatments and locations; control treatments (no inoculum did not germinate at both sites. We found that the optimal treatment, having the highest in situ seed germination rate (0.94-1.44% with no significant variation among sites, supported a warm, moist and fixed site that allowed for light penetration. When accounting for seed density, percentage germination was highest (2.78-2.35% at low densities and did not vary among locations for the treatment that supported optimal conditions. Similarly for the same treatment, seed germination ranged from 0.24 to 5.87% among seasons but also did vary among sites. This study reports on the cultivation and restoration of an endangered epiphytic orchid species by in situ symbiotic seed germination and is likely to have broad application to the horticulture and conservation of the Orchidaceae.

  9. Symbiotic effectiveness of rhizobial mutualists varies in interactions with native Australian legume genera.

    Directory of Open Access Journals (Sweden)

    Peter H Thrall

    Full Text Available BACKGROUND AND OBJECTIVES: Interactions between plants and beneficial soil organisms (e.g. rhizobial bacteria, mycorrhizal fungi are models for investigating the ecological impacts of such associations in plant communities, and the evolution and maintenance of variation in mutualisms (e.g. host specificity and the level of benefits provided. With relatively few exceptions, variation in symbiotic effectiveness across wild host species is largely unexplored. METHODS: We evaluated these associations using representatives of several legume genera which commonly co-occur in natural ecosystems in south-eastern Australia and an extensive set of rhizobial strains isolated from these hosts. These strains had been previously assigned to specific phylotypes on the basis of molecular analyses. In the first of two inoculation experiments, the growth responses of each host species was evaluated with rhizobial strains isolated from that species. The second experiment assessed performance across genera and the extent of host specificity using a subset of these strains. RESULTS: While host growth responses to their own (sympatric isolates varied considerably, rhizobial phylotype was a significant predictor of symbiotic performance, indicating that bacterial species designations on the basis of molecular markers have ecological importance. Hosts responded in qualitatively different ways to sympatric and allopatric strains of rhizobia, ranging from species with a clear preference for their own strains, to those that were broad generalists, through to species that grew significantly better with allopatric strains. CONCLUSION: Theory has focused on trade-offs between the provision of benefits and symbiont competitive ability that might explain the persistence of less beneficial strains. However, differences in performance among co-occurring host species could also drive such patterns. Our results thus highlight the likely importance of plant community structure in

  10. [Effects of different fungi on symbiotic seed germination of two Dendrobium species].

    Science.gov (United States)

    Zi, Xiao-meng; Gao, Jiang-yun

    2014-09-01

    The epiphytic orchid, Dendrobium aphyllum and D. devonianum are used as traditional Chinese medicine, and became locally endangered in recent years because of over-collection. We test the effect of inoculations of endophytic fungi FDaI7 (Tulasnella sp.), FDd1 (Epulorhiza sp. ) and FCb4 (Epulorhiza sp.), which isolated from D. aphyllum, D. denonianum and Cymbidium mannii, respectively, on artificial substrate in these two Dendrobium species. In the symbiotic germination experiment, FDaI7 and FDd1 were effective for protocorm formation and seedling development of D. aphyllum and D. denonianum separately. After 60 days, 14.46% of the D. aphyllum seeds grown to protocorms and 12.07% developed to seedlings inoculated only with FDaI7, while contrasted with 0 when inoculated the other two isolates and non-inoculation treatment. However, in D. denonianum, seeds only grown to protocorms and developed to seedlings when inoculated with FDd1, the percentages were 44.36% and 42.91% distinguishingly. High specificity was shown in symbiotic germination on artificial substrate of Dendrobium. Protocorms could further develop to seedlings within or without light when inoculated the compatible fungi. However, light condition (12/12 h Light/Dark) produced the normal seedlings, while dark condition (0/24 h L/D) produced the abnormal seedlings. These may suggest that the development of young seedlings require light based on the effective symbiotic fungi. These findings will aid in seedling production of simulation-forestry ecology cultivation, conservation and reintroduction of Dendrobium.

  11. Symbiotic capability of calopo rhizobia from an agrisoil with different crops in Pernambuco

    Directory of Open Access Journals (Sweden)

    Altanys Silva Calheiros

    2013-08-01

    Full Text Available Biological nitrogen fixation by rhizobium-legume symbiosis represents one of the most important nitrogen sources for plants and depends strongly on the symbiotic efficiency of the rhizobium strain. This study evaluated the symbiotic capacity of rhizobial isolates from calopo (CALOPOGONIUM MUCUNOIDES taken from an agrisoil under BRACHIARIA DECUMBENS pasture, sabiá (MIMOSA CAESALPINIIFOLIA plantations and Atlantic Forest areas of the Dry Forest Zone of Pernambuco. A total of 1,575 isolates were obtained from 398 groups. A single random isolate of each group was authenticated, in randomized blocks with two replications. Each plant was inoculated with 1 mL of a bacterial broth, containing an estimated population of 10(8 rhizobial cells mL-1. Forty-five days after inoculation, the plants were harvested, separated into shoots, roots and nodules, oven-dried to constant mass, and weighed. Next, the symbiotic capability was tested with 1.5 kg of an autoclaved sand:vermiculite (1:1 mixture in polyethylene bags. The treatments consisted of 122 authenticated isolates, selected based on the shoot dry matter, five uninoculated controls (treated with 0, 50, 100, 150, or 200 kg ha-1 N and a control inoculated with SEMIA 6152 (=BR1602, a strain of BRADYRHIZOBIUM JAPONICUM The test was performed as described above. The shoot dry matter of the plants inoculated with the most effective isolates did not differ from that of plants treated with 150 kg ha-1 N. Shoot dry matter was positively correlated with all other variables. The proportion of effective isolates was highest among isolates from SABIÁ forests. There was great variation in nodule dry weight, as well as in N contents and total N.

  12. SWIFT OBSERVATIONS OF HARD X-RAY EMITTING WHITE DWARFS IN SYMBIOTIC STARS

    International Nuclear Information System (INIS)

    Kennea, J. A.; Burrows, D. N.; Mukai, K.; Markwardt, C. B.; Sokoloski, J. L.; Luna, G. J. M.; Tueller, J.

    2009-01-01

    The X-ray emission from most accreting white dwarfs (WDs) in symbiotic binary stars is quite soft. Several symbiotic WDs, however, produce strong X-ray emission at energies greater than ∼20 keV. The Swift Burst Alert Telescope (BAT) instrument has detected hard X-ray emission from four such accreting WDs in symbiotic stars: RT Cru, T CrB, CD -57 3057, and CH Cyg. In one case (RT Cru), Swift detected X-rays out to greater than 50 keV at >5σ confidence level. Combining data from the X-Ray Telescope (XRT) and BAT detectors, we find that the 0.3-150 keV spectra of RT Cru, T CrB, and CD -57 3057 are well described by emission from a single-temperature, optically thin thermal plasma, plus an unresolved 6.4-6.9 keV Fe line complex. The X-ray spectrum of CH Cyg contains an additional bright soft component. For all four systems, the spectra suffer high levels of absorption from material that both fully and partially covers the source of hard X-rays. The XRT data did not show any of the rapid, periodic variations that one would expect if the X-ray emission were due to accretion onto a rotating, highly magnetized WD. The X-rays were thus more likely from the accretion-disk boundary layer around a massive, non-magnetic WD in each binary. The X-ray emission from RT Cru varied on timescales of a few days. This variability is consistent with being due to changes in the absorber that partially covers the source, suggesting localized absorption from a clumpy medium moving into the line of sight. The X-ray emission from CD -57 3057 and T CrB also varied during the nine months of Swift observations, in a manner that was also consistent with variable absorption.

  13. Symbiotic essential amino acids provisioning in the American cockroach, Periplaneta americana (Linnaeus) under various dietary conditions.

    Science.gov (United States)

    Ayayee, Paul A; Larsen, Thomas; Sabree, Zakee

    2016-01-01

    Insect gut microbes have been shown to provide nutrients such as essential amino acids (EAAs) to their hosts. How this symbiotic nutrient provisioning tracks with the host's demand is not well understood. In this study, we investigated microbial essential amino acid (EAA) provisioning in omnivorous American cockroaches (Periplaneta americana), fed low-quality (LQD) and comparatively higher-quality dog food (DF) diets using carbon stable isotope ratios of EAAs (δ (13)CEAA). We assessed non-dietary EAA input, quantified as isotopic offsets (Δ(13)C) between cockroach (δ (13)CCockroach EAA) and dietary (δ (13)CDietary EAA) EAAs, and subsequently determined biosynthetic origins of non-dietary EAAs in cockroaches using (13)C-fingerprinting with dietary and representative bacterial and fungal δ (13)CEAA. Investigation of biosynthetic origins of de novo non-dietary EAAs indicated bacterial origins of EAA in cockroach appendage samples, and a mixture of fungal and bacterial EAA origins in gut filtrate samples for both LQD and DF-fed groups. We attribute the bacteria-derived EAAs in cockroach appendages to provisioning by the fat body residing obligate endosymbiont, Blattabacterium and gut-residing bacteria. The mixed signatures of gut filtrate samples are attributed to the presence of unassimilated dietary, as well as gut microbial (bacterial and fungal) EAAs. This study highlights the potential impacts of dietary quality on symbiotic EAA provisioning and the need for further studies investigating the interplay between host EAA demands, host dietary quality and symbiotic EAA provisioning in response to dietary sufficiency or deficiency.

  14. Legume-rhizobium symbiotic promiscuity and effectiveness do not affect plant invasiveness.

    Science.gov (United States)

    Keet, Jan-Hendrik; Ellis, Allan G; Hui, Cang; Le Roux, Johannes J

    2017-06-01

    The ability to fix atmospheric nitrogen is thought to play an important role in the invasion success of legumes. Interactions between legumes and nitrogen-fixing bacteria (rhizobia) span a continuum of specialization, and promiscuous legumes are thought to have higher chances of forming effective symbioses in novel ranges. Using Australian Acacia species in South Africa, it was hypothesized that widespread and highly invasive species will be more generalist in their rhizobial symbiotic requirements and more effective in fixing atmospheric nitrogen compared with localized and less invasive species. To test these hypotheses, eight localized and 11 widespread acacias were examined using next-generation sequencing data for the nodulation gene, nodC , to compare the identity, species richness, diversity and compositional similarity of rhizobia associated with these acacias. Stable isotope analysis was also used to determine levels of nitrogen obtained from the atmosphere via symbiotic nitrogen fixation. No differences were found in richness, diversity and community composition between localized and widespread acacias. Similarly, widespread and localized acacias did not differ in their ability to fix atmospheric nitrogen. However, for some species by site comparisons, significant differences in δ15N isotopic signatures were found, indicating differential symbiotic effectiveness between these species at specific localities. Overall, the results support recent findings that root nodule rhizobial diversity and community composition do not differ between acacias that vary in their invasiveness. Differential invasiveness of acacias in South Africa is probably linked to attributes such as differences in propagule pressure, reasons for (e.g. forestry vs. ornamental) and extent of, plantings in the country. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. High Energy Emission of Symbiotic Recurrent Novae: RS Oph and V407 Cyg

    Directory of Open Access Journals (Sweden)

    Hernanz M.

    2012-06-01

    Full Text Available Recurrent novae occurring in symbiotic binaries are candidate sources of high energy photons, reaching GeV energies. Such emission is a consequence of particle acceleration leading to pion production. the shock between matter ejected by the white dwarf, undergoing a nova explosion, and the wind from the red giant companion are responsible for such a process, which mimics a supernova remnant but with much smaller energetic output and much shorter time scales. Inverse Compton can also be responsible for high energy emission. Recent examples are V407 Cyg, detected by Fermi, and RS Oph, which unfortunately exploded in 2006, before Fermi was launched.

  16. Population variability of triple symbiotic system: Paramecium bursaria-zoochlorella-and algophages

    Directory of Open Access Journals (Sweden)

    Konstantin V Kvitko

    2004-12-01

    Full Text Available The triple symbiotic system (TSS: P. bursaria-Chlorella-Chlorovirus, was studied. In Eurasia we found only 2 forms TSS, named N, northern and S, southern ecotypes. Each ecotype manifested at 32°C ts (N-or tr (S-phenotypes. In northeren parts of P. bursaria areals, from Karelia up to Kamchatka, near Baikal and in Armenia highlands, we find only ts-viruses, in Central Asia - only tr-types. Two types of genome characters were shown by PCR of 18 S RNA-genes. According all this characters populations of zoochlorella in P. bursaria - 2 clones of obligate symbionts

  17. Kuwano's peculiar object is a novalike (symbiotic) binary with a red giant. Discussion of observational results

    International Nuclear Information System (INIS)

    Belyakina, T.S.; Gershberg, R.E.; Efimov, Yu.S.; Krasnobabtsev, V.I.; Pavlenko, E.P.; Petrov, P.P.; Chuvaev, K.K.; Shenavrin, V.I.

    1982-01-01

    Photometric, polarimetric and spectral observations carried out at the Crimea permit to conclude that the Kuwano object is a binary system that consists of an M-giant and of a low-luminosity star. During the 1979 flare, the absolute magnitude of the weak component has increased up to about -6sup(m), the M-giant had apparently small variations as well. A distance to the object is estimated to be 5-7 kpc, and it is located certainly out of the galactic plane. Similarities between the Kuwano object and slow novae and symbiotic stars are noted [ru

  18. Hybridized Symbiotic Organism Search Algorithm for the Optimal Operation of Directional Overcurrent Relays

    Directory of Open Access Journals (Sweden)

    Muhammad Sulaiman

    2018-01-01

    Full Text Available This paper presents the solution of directional overcurrent relay (DOCR problems using Simulated Annealing based Symbiotic Organism Search (SASOS. The objective function of the problem is to minimize the sum of the operating times of all primary relays. The DOCR problem is nonlinear and highly constrained with two types of decision variables, namely, the time dial settings (TDS and plug setting (PS. In this paper, three models of the problem are considered, the IEEE 3-bus, 4-bus, and 6-bus, respectively. We have applied SASOS to solve the problem and the obtained results are compared with other algorithms available in the literature.

  19. Multiwavelength Study of Powerful New Jet Activity in the Symbiotic Binary System R Aqr

    Science.gov (United States)

    Karovska, Margarita

    2016-09-01

    We propose to carry out coordinated high-spatial resolution Chandra ACIS-S and HST/WFC3 observations of R Aqr, a very active symbiotic interacting binary system. Our main goal is to study the physical characteristics of multi-scale components of the powerful jet; from near the central binary (within a few AU) to the jet-circumbinary material interaction region (2500 AU) and beyond , and especially of the recently discovered inner jet, to gain insight on early jet formation and propagation, such as jet kinematics and precession.

  20. Symbiotic star AS 296: optical and infrared photometry in 1982-1983

    International Nuclear Information System (INIS)

    Taranova, O.G.; Yudin, B.F.

    1985-01-01

    Photometric UBVRJHK observations of the symbiotic star AS 296 are presented. No light valiations exceeding 0sup(m).2 are found. The cool star is classified as M5III. The color excegss is E(B-V)=sup(m).43+-0sup(m).04. Analysis of the photometric and spectral observations has shown that AS 296 is similar to V1016 Cyg at the moment of low brightness of the hot source. The luminosity of the hot component of AS 296 amounts up to approximately 200 Lsub(Sun) if provided its distance to be 2.2 kpc

  1. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    DEFF Research Database (Denmark)

    Batterman, Sarah A.; Hedin, Lars O.; Van Breugel, Michiel

    2013-01-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO 2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N 2), but it is unclear whether this function...... tree species across the entire forest age sequence. These findings show that symbiotic N 2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO 2....

  2. Symbiotic stars: spectrophotometry at 3-4 and 8-13 μm

    International Nuclear Information System (INIS)

    Roche, P.F.; Aitken, D.K.

    1983-01-01

    Infrared spectrophotometry of 20 symbiotic stars, mostly of dust-rich variety, is presented. HDE 330036 is unique in showing an emission feature at 11.3 μm. The remainder combine a hot grey component and/or optically thin silicate emission. A model in which the grey component is due to optically thick silicate dust is not consistent with the spectra. It is proposed instead that iron-based grains, expected to form in the ejecta of cool stars, are heated by the ultraviolet radiation field of the hot companion. (author)

  3. Important Late-Stage Symbiotic Role of the Sinorhizobium meliloti Exopolysaccharide Succinoglycan.

    Science.gov (United States)

    Arnold, Markus F F; Penterman, Jon; Shabab, Mohammed; Chen, Esther J; Walker, Graham C

    2018-07-01

    Sinorhizobium meliloti enters into beneficial symbiotic interactions with Medicago species of legumes. Bacterial exopolysaccharides play critical signaling roles in infection thread initiation and growth during the early stages of root nodule formation. After endocytosis of S. meliloti by plant cells in the developing nodule, plant-derived nodule-specific cysteine-rich (NCR) peptides mediate terminal differentiation of the bacteria into nitrogen-fixing bacteroids. Previous transcriptional studies showed that the intensively studied cationic peptide NCR247 induces expression of the exo genes that encode the proteins required for succinoglycan biosynthesis. In addition, genetic studies have shown that some exo mutants exhibit increased sensitivity to the antimicrobial action of NCR247. Therefore, we investigated whether the symbiotically active S. meliloti exopolysaccharide succinoglycan can protect S. meliloti against the antimicrobial activity of NCR247. We discovered that high-molecular-weight forms of succinoglycan have the ability to protect S. meliloti from the antimicrobial action of the NCR247 peptide but low-molecular-weight forms of wild-type succinoglycan do not. The protective function of high-molecular-weight succinoglycan occurs via direct molecular interactions between anionic succinoglycan and the cationic NCR247 peptide, but this interaction is not chiral. Taken together, our observations suggest that S. meliloti exopolysaccharides not only may be critical during early stages of nodule invasion but also are upregulated at a late stage of symbiosis to protect bacteria against the bactericidal action of cationic NCR peptides. Our findings represent an important step forward in fully understanding the complete set of exopolysaccharide functions during legume symbiosis. IMPORTANCE Symbiotic interactions between rhizobia and legumes are economically important for global food production. The legume symbiosis also is a major part of the global nitrogen

  4. Symbiotic organisms search algorithm for dynamic economic dispatch with valve-point effects

    Science.gov (United States)

    Sonmez, Yusuf; Kahraman, H. Tolga; Dosoglu, M. Kenan; Guvenc, Ugur; Duman, Serhat

    2017-05-01

    In this study, symbiotic organisms search (SOS) algorithm is proposed to solve the dynamic economic dispatch with valve-point effects problem, which is one of the most important problems of the modern power system. Some practical constraints like valve-point effects, ramp rate limits and prohibited operating zones have been considered as solutions. Proposed algorithm was tested on five different test cases in 5 units, 10 units and 13 units systems. The obtained results have been compared with other well-known metaheuristic methods reported before. Results show that proposed algorithm has a good convergence and produces better results than other methods.

  5. Free amino acids exhibit anthozoan "host factor" activity: they induce the release of photosynthate from symbiotic dinoflagellates in vitro.

    Science.gov (United States)

    Gates, R D; Hoegh-Guldberg, O; McFall-Ngai, M J; Bil, K Y; Muscatine, L

    1995-08-01

    Reef-building corals and other tropical anthozoans harbor endosymbiotic dinoflagellates. It is now recognized that the dinoflagellates are fundamental to the biology of their hosts, and their carbon and nitrogen metabolisms are linked in important ways. Unlike free living species, growth of symbiotic dinoflagellates is unbalanced and a substantial fraction of the carbon fixed daily by symbiont photosynthesis is released and used by the host for respiration and growth. Release of fixed carbon as low molecular weight compounds by freshly isolated symbiotic dinoflagellates is evoked by a factor (i.e., a chemical agent) present in a homogenate of host tissue. We have identified this "host factor" in the Hawaiian coral Pocillopora damicornis as a set of free amino acids. Synthetic amino acid mixtures, based on the measured free amino acid pools of P. damicornis tissues, not only elicit the selective release of 14C-labeled photosynthetic products from isolated symbiotic dinoflagellates but also enhance total 14CO2 fixation.

  6. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development

    DEFF Research Database (Denmark)

    Ott, Thomas; van Dongen, Joost T; Günther, Catrin

    2005-01-01

    Hemoglobins are ubiquitous in nature and among the best-characterized proteins. Genetics has revealed crucial roles for human hemoglobins, but similar data are lacking for plants. Plants contain symbiotic and nonsymbiotic hemoglobins; the former are thought to be important for symbiotic nitrogen...... fixation (SNF). In legumes, SNF occurs in specialized organs, called nodules, which contain millions of nitrogen-fixing rhizobia, called bacteroids. The induction of nodule-specific plant genes, including those encoding symbiotic leghemoglobins (Lb), accompanies nodule development. Leghemoglobins...... accumulate to millimolar concentrations in the cytoplasm of infected plant cells prior to nitrogen fixation and are thought to buffer free oxygen in the nanomolar range, avoiding inactivation of oxygen-labile nitrogenase while maintaining high oxygen flux for respiration. Although widely accepted...

  7. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1996-01-01

    g N-15-labeled N m(-2). The effect of intercropping on the dry matter and N yields, competition for inorganic N among the intercrop components, symbiotic fixation in pea and N transfer from pea to barley were determined. As an average of four years the grain yields were similar in monocropped pea...... only 9% of total fertilizer-N recovery in the intercrop. The amount of symbiotic N-2 fixation in the intercrop was less than expected from its composition and the fixation in monocrop. This indicates that the competition from barley had a negative effect on the fixation, perhaps via shading...... by the intercrop components, resulting in reduced competition for inorganic N, rather than a facilitative effect, in which symbiotically fixed N-2 is made available to barley....

  8. (C III lambda 1909/Si III lambda 1892) ratio as a diagnostic for planetary nebulae and symbiotic stars

    International Nuclear Information System (INIS)

    Feibelman, W.A.; Aller, L.H.; California Univ., Los Angeles)

    1987-01-01

    Suitable IUE archival material on planetary nebulae has been examined to determine the log R /F(lambda 1909 C III)/F(lambda 1892 Si III)/ as a discriminant for distinguishing planetary nebulae from symbiotic stars and related objects. The mean value of log R for 73 galactic planetaries is 1.4, while that of extragalactic planetaries appears to be slightly lower, and that for symbiotics is 0.3. The lower value of log R for symbiotics is easily understood as a consequence of their higher densities. A plot of log R versus N-epsilon indicates that 80 percent of the planetaries fall into the range of log R between 1.2 and 1.8, but some of the peculiar and bipolar nebulae fall below log R = 1.2. The corresponding N(C++)/N(Si++) ionic ratio varies over a large range. 53 references

  9. iTRAQ and RNA-Seq Analyses Provide New Insights into Regulation Mechanism of Symbiotic Germination of Dendrobium officinale Seeds (Orchidaceae).

    Science.gov (United States)

    Chen, Juan; Liu, Si Si; Kohler, Annegret; Yan, Bo; Luo, Hong Mei; Chen, Xiao Mei; Guo, Shun Xing

    2017-06-02

    Mycorrhizal fungi colonize orchid seeds and induce germination. This so-called symbiotic germination is a critical developmental process in the lifecycle of all orchid species. However, the molecular changes that occur during orchid seed symbiotic germination remain largely unknown. To better understand the molecular mechanism of orchid seed germination, we performed a comparative transcriptomic and proteomic analysis of the Chinese traditional medicinal orchid Dendrobium officinale to explore the change in protein expression at the different developmental stages during asymbiotic and symbiotic germination and identify the key proteins that regulate the symbiotic germination of orchid seeds. Among 2256 identified plant proteins, 308 were differentially expressed across three developmental stages during asymbiotic and symbiotic germination, and 229 were differentially expressed during symbiotic germination compared to asymbiotic development. Of these, 32 proteins were coup-regulated at both the proteomic and transcriptomic levels during symbiotic germination compared to asymbiotic germination. Our results suggest that symbiotic germination of D. officinale seeds shares a common signaling pathway with asymbiotic germination during the early germination stage. However, compared to asymbiotic germination, fungal colonization of orchid seeds appears to induce higher and earlier expression of some key proteins involved in lipid and carbohydrate metabolism and thus improves the efficiency of utilization of stored substances present in the embryo. This study provides new insight into the molecular basis of orchid seed germination.

  10. Characterization of the radioresistance in the radioresistant bacterium deinococcus radiodurans

    International Nuclear Information System (INIS)

    Kong Xiangrong; Du Zeji

    1999-01-01

    The radioresistance of wild type Deinococcus radiodurans KD8301 and the factors affecting the radioresistance were investigated. KH3111 which was a DNA repair mutant of KD8301 (Zeji Du, 1998) was used to be compared with KD8301. Deinococcus radiodurans was discovered by Anderson et al (1956) in X-ray sterilized canned meat that was found to have undergone spoilage. this bacterium and other species of this genus share extreme resistance to ionizing radiation and other agents that damage DNA. Wild type KD8301 and its sensitive mutant KH3111 were irradiated with 60 Co γ-ray at the dose range 0.5 ∼ 10 kGy. Dose-survival fraction curves were made and the radio resistances were determined by LD 99 . The relative contents of DNA in cells were measured by Fluorescence Spectrophotometry (Freedman and Bruce, 1971). The results indicated that wild type KD8301 possesses more radioresistant than its mutant KH3111, LD99 were 9.5 kGy and 2.4 kGy respectively. KD8301 grown at exponential phase showed a decreased resistance to radiation, and the LD99 was 5.1 kGy. No differences of DNA/protein in cells were found between the exponential phase and the stationary phase. The results could be concluded that wild type KD8301 possesses remarkable radioresistance, but this ability was decreased or disappeared after mutation (in KH3111). None DNA relative content other than the growth stages were determinant factors of radioresistance in Deinococcus radiodurans. This results were different from other report (Dickie N et al, 1990). The cellular mechanisms might be the deference's of the bacterium cell morphology between the exponential phase and the stationary phase. Recently, the mutation site of KH3111 which was mutated chemically from wild type KD8301 was identified (Zeji Du, 1998). One base pair changed in the novel gene pprA which was isolated from KD8301 genomic DNA. This point mutation was confirmed to be responsible for the sensitivity of KH3111 to γ-ray and other DNA

  11. Molecular phylogeny of the bivalve superfamily Galeommatoidea (Heterodonta, Veneroida) reveals dynamic evolution of symbiotic lifestyle and interphylum host switching

    Science.gov (United States)

    2012-01-01

    Background Galeommatoidea is a superfamily of bivalves that exhibits remarkably diverse lifestyles. Many members of this group live attached to the body surface or inside the burrows of other marine invertebrates, including crustaceans, holothurians, echinoids, cnidarians, sipunculans and echiurans. These symbiotic species exhibit high host specificity, commensal interactions with hosts, and extreme morphological and behavioral adaptations to symbiotic life. Host specialization to various animal groups has likely played an important role in the evolution and diversification of this bivalve group. However, the evolutionary pathway that led to their ecological diversity is not well understood, in part because of their reduced and/or highly modified morphologies that have confounded traditional taxonomy. This study elucidates the taxonomy of the Galeommatoidea and their evolutionary history of symbiotic lifestyle based on a molecular phylogenic analysis of 33 galeommatoidean and five putative galeommatoidean species belonging to 27 genera and three families using two nuclear ribosomal genes (18S and 28S ribosomal DNA) and a nuclear (histone H3) and mitochondrial (cytochrome oxidase subunit I) protein-coding genes. Results Molecular phylogeny recovered six well-supported major clades within Galeommatoidea. Symbiotic species were found in all major clades, whereas free-living species were grouped into two major clades. Species symbiotic with crustaceans, holothurians, sipunculans, and echiurans were each found in multiple major clades, suggesting that host specialization to these animal groups occurred repeatedly in Galeommatoidea. Conclusions Our results suggest that the evolutionary history of host association in Galeommatoidea has been remarkably dynamic, involving frequent host switches between different animal phyla. Such an unusual pattern of dynamic host switching is considered to have resulted from their commensalistic lifestyle, in which they maintain filter

  12. Differential accumulation of heavy metals in the sea anemone Anthopleura elegantissima as a function of symbiotic state

    International Nuclear Information System (INIS)

    Mitchelmore, Carys L.; Alan Verde, E.; Ringwood, Amy H.; Weis, Virginia M.

    2003-01-01

    The accumulation of metals by the North American Pacific Coast temperate sea anemone Anthopleura elegantissima, and its dinoflagellate-algal symbiont Symbiodinium muscatinei was examined following laboratory metal exposures. Both, naturally occurring symbiotic and symbiont-free (aposymbiotic) anemones were used in this study to investigate differences in metal uptake due to the symbiotic state of the animal. The effects of metal exposures on the anemone-algal symbiosis were determined using measures of algal cell density and mitotic index (MI). Anemones were exposed to either cadmium, copper, nickel or zinc chloride (0, 10, 100 μg l -1 for Cd, Cu and Ni; 0, 100, 1000 μg l -1 for Zn) for 42 days followed by a 42-day recovery period in ambient seawater. Anemones were analyzed for metal content using inductively coupled plasma mass spectroscopy (ICP-MS) at various time points during the study. Symbiotic anemones accumulated Cd, Ni and Zn to a greater extent than aposymbiotic anemones. A dramatically different pattern of Cu accumulation was observed, with aposymbiotic anemones accumulating higher levels than symbiotic anemones. Following recovery in ambient seawater, all tissue metal levels were reduced to near pre-exposure control levels in most cases. No changes in algal cell density or MI were observed in symbiotic anemone tentacle clips at any dose or time point in the Cd and Cu exposures. However, significant reductions in algal cell densities were observed in the Ni-exposed and some Zn-exposed animals, although levels returned to control values following recovery. There were no changes in mitotic index (MI) following Ni or Zn exposures. These results demonstrate that the extent of heavy metal accumulation depends upon cnidarian symbiotic state and the heavy metal in question

  13. Molecular phylogeny of the bivalve superfamily Galeommatoidea (Heterodonta, Veneroida reveals dynamic evolution of symbiotic lifestyle and interphylum host switching

    Directory of Open Access Journals (Sweden)

    Goto Ryutaro

    2012-09-01

    Full Text Available Abstract Background Galeommatoidea is a superfamily of bivalves that exhibits remarkably diverse lifestyles. Many members of this group live attached to the body surface or inside the burrows of other marine invertebrates, including crustaceans, holothurians, echinoids, cnidarians, sipunculans and echiurans. These symbiotic species exhibit high host specificity, commensal interactions with hosts, and extreme morphological and behavioral adaptations to symbiotic life. Host specialization to various animal groups has likely played an important role in the evolution and diversification of this bivalve group. However, the evolutionary pathway that led to their ecological diversity is not well understood, in part because of their reduced and/or highly modified morphologies that have confounded traditional taxonomy. This study elucidates the taxonomy of the Galeommatoidea and their evolutionary history of symbiotic lifestyle based on a molecular phylogenic analysis of 33 galeommatoidean and five putative galeommatoidean species belonging to 27 genera and three families using two nuclear ribosomal genes (18S and 28S ribosomal DNA and a nuclear (histone H3 and mitochondrial (cytochrome oxidase subunit I protein-coding genes. Results Molecular phylogeny recovered six well-supported major clades within Galeommatoidea. Symbiotic species were found in all major clades, whereas free-living species were grouped into two major clades. Species symbiotic with crustaceans, holothurians, sipunculans, and echiurans were each found in multiple major clades, suggesting that host specialization to these animal groups occurred repeatedly in Galeommatoidea. Conclusions Our results suggest that the evolutionary history of host association in Galeommatoidea has been remarkably dynamic, involving frequent host switches between different animal phyla. Such an unusual pattern of dynamic host switching is considered to have resulted from their commensalistic lifestyle, in

  14. Electromicrobiology of Dissimilatory Sulfur Reducing Bacterium Desulfuromonas acetexigens

    KAUST Repository

    Bin Bandar, Khaled

    2014-12-01

    Bioelectrochmical systems (BES) are engineered electrochemical devices that harness hidden chemical energy of the wastewater in to the form of electricity or hydrogen. Unique microbial communities enrich in these systems for oxidation of organic matter as well as transfer of resulted electron to anode, known them as “electricigens” communities. Exploring novel electricigenesis microbial communities in the nature and understanding their electromicrobiology is one the important aspect for BES systems scale up. Herein, we report first time the electricigenesis property of an anaerobic, fresh water sediment, sulfur reducing bacterium Desulfuromona acetexigens. The electrochemical behavior of D. acetexigens biofilms grown on graphite-rod electrodes in batch-fed mode under an applied potential was investigated with traditional electroanalytical tools, and correlate the electron transfer from biofilms to electrode with a model electricigen Geobacter sulfurreducens electrochemical behavior. Research findings suggest that D. acetexigens has the ability to use electrode as electron acceptor in BES systems through establishing the direct contact with anode by expressing the membrane bound redox proteins, but not due to the secretion of soluble redox mediators. Preliminary results revealed that D. acetexigens express three distinct redox proteins in their membranes for turnover of the electrons from biofilm to electrode, and the 4 whole electricigenesis process observed to be unique in the D. acetexigens compared to that of well-studied model organism G. sulfurreducens.

  15. Yersinia ruckeri sp. nov., the redmouth (RM) bacterium

    Science.gov (United States)

    Ewing, W.H.; Ross, A.J.; Brenner, Don J.; Fanning, G. R.

    1978-01-01

    Cultures of the redmouth (RM) bacterium, one of the etiological agents of redmouth disease in rainbow trout (Salmo gairdneri) and certain other fishes, were characterized by means of their biochemical reactions, by deoxyribonucleic acid (DNA) hybridization, and by determination of guanine-plus-cytosine (G+C) ratios in DNA. The DNA relatedness studies confirmed the fact that the RM bacteria are members of the family Enterobacteriaceae and that they comprise a single species that is not closely related to any other species of Enterobacteriaceae. They are about 30% related to species of both Serratia and Yersinia. A comparison of the biochemical reactions of RM bacteria and serratiae indicated that there are many differences between these organisms and that biochemically the RM bacteria are most closely related to yersiniae. The G+C ratios of RM bacteria were approximated to be between 47.5 and 48.5% These values are similar to those of yersiniae but markedly different from those of serratiae. On the basis of their biochemical reactions and their G+C ratios, the RM bacteria are considered to be a new species of Yersinia, for which the name Yersinia ruckeri is proposed. Strain 2396-61 (= ATCC 29473) is designated the type strain of the species.

  16. Characterization of goat milk and potentially symbiotic non-fat yogurt

    Directory of Open Access Journals (Sweden)

    Noelia Fernanda Paz

    2014-09-01

    Full Text Available Combining prebiotics and probiotic microorganisms improve quality in the formulation of foods. In this paper, the characteristics of goat milk and symbiotic yogurt were studied. Raw goat milk was analyzed and the skimming process was optimized. For the formulation of a potentially non-fat symbiotic yogurt made with skimmed goat milk, inulin, gelatin, sugar, and Streptococcus salivarius subsp. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus casei subsp. rhamnoshus. Chemical characteristics, acceptability, and viability of lactic acid bacteria and probiotic culture were assessed. The protein and fat content of the raw milk was 2.90 and 3.56 g/100 mL, respectively. The optimum skimming process was obtained at 9,800 rpm and 4 °C for 15 minutes. The product formulated had a protein and fat content of 4.04 to 0.04 g/100 mL, good sensory properties, and acceptability of 95%. The lactic bacteria count was 9 × 10(7 CFU mL- 1, and probiotic culture count was higher than 1 × 10(6 CFU mL- 1, which guarantees their effect and capacity to survive in the digestive tract and spread in the intestine. The yogurt was stable during the 21 days of storage. Therefore, this study shows that goat milk yogurt is an adequate delivery vehicle of the probiotic culture L. casei and inulin.

  17. An Analysis on a Negotiation Model Based on Multiagent Systems with Symbiotic Learning and Evolution

    Science.gov (United States)

    Hossain, Md. Tofazzal

    This study explores an evolutionary analysis on a negotiation model based on Masbiole (Multiagent Systems with Symbiotic Learning and Evolution) which has been proposed as a new methodology of Multiagent Systems (MAS) based on symbiosis in the ecosystem. In Masbiole, agents evolve in consideration of not only their own benefits and losses, but also the benefits and losses of opponent agents. To aid effective application of Masbiole, we develop a competitive negotiation model where rigorous and advanced intelligent decision-making mechanisms are required for agents to achieve solutions. A Negotiation Protocol is devised aiming at developing a set of rules for agents' behavior during evolution. Simulations use a newly developed evolutionary computing technique, called Genetic Network Programming (GNP) which has the directed graph-type gene structure that can develop and design the required intelligent mechanisms for agents. In a typical scenario, competitive negotiation solutions are reached by concessions that are usually predetermined in the conventional MAS. In this model, however, not only concession is determined automatically by symbiotic evolution (making the system intelligent, automated, and efficient) but the solution also achieves Pareto optimal automatically.

  18. Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution.

    Directory of Open Access Journals (Sweden)

    Pierre-Marc Delaux

    2014-07-01

    Full Text Available Mutualistic symbioses between eukaryotes and beneficial microorganisms of their microbiome play an essential role in nutrition, protection against disease, and development of the host. However, the impact of beneficial symbionts on the evolution of host genomes remains poorly characterized. Here we used the independent loss of the most widespread plant-microbe symbiosis, arbuscular mycorrhization (AM, as a model to address this question. Using a large phenotypic approach and phylogenetic analyses, we present evidence that loss of AM symbiosis correlates with the loss of many symbiotic genes in the Arabidopsis lineage (Brassicales. Then, by analyzing the genome and/or transcriptomes of nine other phylogenetically divergent non-host plants, we show that this correlation occurred in a convergent manner in four additional plant lineages, demonstrating the existence of an evolutionary pattern specific to symbiotic genes. Finally, we use a global comparative phylogenomic approach to track this evolutionary pattern among land plants. Based on this approach, we identify a set of 174 highly conserved genes and demonstrate enrichment in symbiosis-related genes. Our findings are consistent with the hypothesis that beneficial symbionts maintain purifying selection on host gene networks during the evolution of entire lineages.

  19. Different tolerances of symbiotic and nonsymbiotic ant-plant networks to species extinctions

    Directory of Open Access Journals (Sweden)

    Wesley Dattilo

    2012-12-01

    Full Text Available The knowledge of the mechanisms that shape biodiversity-stability relationships is essential to understand ecological and evolutionary dynamics of interacting species. However, most studies focus only on species loss and ignore the loss of interactions. In this study, I evaluated the topological structure of two different ant-plant networks: symbiotic (ants and myrmecophytes and nonsymbiotic (ants and plants with extrafloral nectaries. Moreover, I also evaluated in both networks the tolerance to plant and ant species extinction using a new approach. For this, I used models based on simulations of cumulative removals of species from the network at random. Both networks were fundamentally different in the interaction and extinction patterns. The symbiotic network was more specialized and less robust to species extinction. On the other hand, the nonsymbiotic network tends to be functionally redundant and more robust to species extinction. The difference for food resource utilization and ant nesting in both ant-plant interactions can explain the observed pattern. In short, I contributed in this manner to our understanding of the biodiversity maintenance and coevolutionary processes in facultative and obligate mutualisms.

  20. Evaluation of natural 15N abundance method in estimating symbiotic dinitrogen fixation by leguminous grasses

    International Nuclear Information System (INIS)

    Yao Yunyin; Cheng Ming; Ma Changlin; Wang Zhidong; Hou Jinqin; Zhang Lihong; Luo Yongyun

    1991-01-01

    Natural 15 N abundance method was used to estimate contribution of symbiotic dinitrogen fixation by leguminous grasses. With the method the expensive 15 N fertilizer did not need to be applied to the soil and the normal ecosystem was not disturbed. Collecting samples of shoots of leguminous grasses and measuring the content of 15 N in them wee all to do for estimating potential of symbiotically fixed N 2 . Isotopic fractionation associated with N 2 fixation by legumes was studied. Values for 7 cultivars of alfalfa were ranged between 1.0000 ∼ 1.0015 (δ 15 N values were -0.05 ∼ 1.47 per mille); and the values for white clover, mung bean and whitepopinac lead tree were 0.0079, 0.9983 and 1.0018 (δ 15 N values: 2.15, 1.74 and -1.81 per mille) respectively. According to the δ 15 N values of grasses tested, the potential of N 2 fixation for 6 cultivars of alfalfa was estimated. Glory and rambler had higher potential of N 2 fixation; Baoding, Aigonquin and Minto had lower potential, and Peru was the lowest.N 2 fixing activity of alfalfa varied with different periods. The peak was found between June and July. Effects of non-N 2 -fixing references and different methods on estimates of %Ndfa of leguminous grasses were also discussed

  1. Establishment of primary cell culture from the temperate symbiotic cnidarian, Anemonia viridis.

    Science.gov (United States)

    Barnay-Verdier, Stéphanie; Dall'osso, Diane; Joli, Nathalie; Olivré, Juliette; Priouzeau, Fabrice; Zamoum, Thamilla; Merle, Pierre-Laurent; Furla, Paola

    2013-10-01

    The temperate symbiotic sea anemone Anemonia viridis, a member of the Cnidaria phylum, is a relevant experimental model to investigate the molecular and cellular events involved in the preservation or in the rupture of the symbiosis between the animal cells and their symbiotic microalgae, commonly named zooxanthellae. In order to increase research tools for this model, we developed a primary culture from A. viridis animal cells. By adapting enzymatic dissociation protocols, we isolated animal host cells from a whole tentacle in regeneration state. Each plating resulted in a heterogeneous primary culture consisted of free zooxanthellae and many regular, small rounded and adherent cells (of 3-5 μm diameter). Molecular analyses conducted on primary cultures, maintained for 2 weeks, confirmed a specific signature of A. viridis cells. Further serial dilutions and micromanipulation allowed us to obtain homogenous primary cultures of the small rounded cells, corresponding to A. viridis "epithelial-like cells". The maintenance and the propagation over a 4 weeks period of primary cells provide, for in vitro cnidarian studies, a preliminary step for further investigations on cnidarian cellular pathways notably in regard to symbiosis interactions.

  2. Use of low enriched 15N2 for symbiotic fixation tests

    International Nuclear Information System (INIS)

    Victoria, R.L.

    1975-01-01

    Gaseous atmospheres containing 15 N 2 with low enrichment were used to test symbiotic nitrogen fixation in beans (Phaseolus vulgari, L.). The tests of fixation in nodulated roots and the tests of fixation in the whole plant, in which the plants were placed inside a specially constructed growth chamber, gave positive results and suggest that the methodology used can be very helpfull in more detailed studies on symbiotic fixation. Samples of atmospheric air were purified by absorption of O 2 and CO 2 by two methods. The purified N 2 obtained was analysed and the results were compared. Samples of bean plant material were collected in natural conditions and analysed for 15 N natural variation. Several samples were prepared for 15 N isotopic analysis by two methods. The results obtained were compared. All samples were analysed in an Atlas-Varian Ch-4 model mass spectrometer, and the results were given in delta 15 N 0 / 00 variation in relation to a standard gas

  3. Toxic effects of arsenic on Sinorhizobium-Medicago sativa symbiotic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Pajuelo, Eloisa [Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville (Spain); Rodriguez-Llorente, Ignacio D. [Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville (Spain)], E-mail: irodri@us.es; Dary, Mohammed; Palomares, Antonio J. [Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville (Spain)

    2008-07-15

    Recently, the Rhizobium-legume symbiotic interaction has been proposed as an interesting tool in bioremediation. However, little is known about the effect of most common contaminants on this process. The phytotoxic effects of arsenic on nodulation of Medicago sativa have been examined in vitro using the highly arsenic resistant and symbiotically effective Sinorhizobium sp. strain MA11. The bacteria were able to grow on plates containing As concentrations as high as 10 mM. Nevertheless, as little as 25-35 {mu}M arsenite produced a 75% decrease in the total number of nodules, due to a 90% reduction in the number of rhizobial infections, as could be determined using the strain MA11 carrying a lacZ reporter gene. This effect was associated to root hair damage and a shorter infective root zone. However, once nodulation was established nodule development seemed to continue normally, although earlier senescence could be observed in nodules of arsenic-grown plants. - First steps of nodulation of alfalfa, in particular infection thread formation, are more sensitive to As than nitrogen fixation due to plant effects.

  4. Comparative Genomics of Facultative Bacterial Symbionts Isolated from European Orius Species Reveals an Ancestral Symbiotic Association

    Directory of Open Access Journals (Sweden)

    Xiaorui Chen

    2017-10-01

    Full Text Available Pest control in agriculture employs diverse strategies, among which the use of predatory insects has steadily increased. The use of several species within the genus Orius in pest control is widely spread, particularly in Mediterranean Europe. Commercial mass rearing of predatory insects is costly, and research efforts have concentrated on diet manipulation and selective breeding to reduce costs and improve efficacy. The characterisation and contribution of microbial symbionts to Orius sp. fitness, behaviour, and potential impact on human health has been neglected. This paper provides the first genome sequence level description of the predominant culturable facultative bacterial symbionts associated with five Orius species (O. laevigatus, O. niger, O. pallidicornis, O. majusculus, and O. albidipennis from several geographical locations. Two types of symbionts were broadly classified as members of the genera Serratia and Leucobacter, while a third constitutes a new genus within the Erwiniaceae. These symbionts were found to colonise all the insect specimens tested, which evidenced an ancestral symbiotic association between these bacteria and the genus Orius. Pangenome analyses of the Serratia sp. isolates offered clues linking Type VI secretion system effector–immunity proteins from the Tai4 sub-family to the symbiotic lifestyle.

  5. Comparative Genomics of Facultative Bacterial Symbionts Isolated from European Orius Species Reveals an Ancestral Symbiotic Association

    Science.gov (United States)

    Chen, Xiaorui; Hitchings, Matthew D.; Mendoza, José E.; Balanza, Virginia; Facey, Paul D.; Dyson, Paul J.; Bielza, Pablo; Del Sol, Ricardo

    2017-01-01

    Pest control in agriculture employs diverse strategies, among which the use of predatory insects has steadily increased. The use of several species within the genus Orius in pest control is widely spread, particularly in Mediterranean Europe. Commercial mass rearing of predatory insects is costly, and research efforts have concentrated on diet manipulation and selective breeding to reduce costs and improve efficacy. The characterisation and contribution of microbial symbionts to Orius sp. fitness, behaviour, and potential impact on human health has been neglected. This paper provides the first genome sequence level description of the predominant culturable facultative bacterial symbionts associated with five Orius species (O. laevigatus, O. niger, O. pallidicornis, O. majusculus, and O. albidipennis) from several geographical locations. Two types of symbionts were broadly classified as members of the genera Serratia and Leucobacter, while a third constitutes a new genus within the Erwiniaceae. These symbionts were found to colonise all the insect specimens tested, which evidenced an ancestral symbiotic association between these bacteria and the genus Orius. Pangenome analyses of the Serratia sp. isolates offered clues linking Type VI secretion system effector–immunity proteins from the Tai4 sub-family to the symbiotic lifestyle. PMID:29067021

  6. Simultaneous Chandra/Swift Observations of the RT Cru Symbiotic System

    Science.gov (United States)

    Kashyap, Vinay; Kennea, J. A.; Karovska, M.; Calibration, Chandra

    2013-04-01

    The symbiotic star RT Cru was observed simultaneously by the Chandra/HRC-I and Swift/XRT in Dec 2012. The observations were carried out as part of a program to calibrate the Chandra PSF. The Chandra light curve shows a number of brightenings by factors of 2, with strong indications of a softening of the spectrum at these times. Swift observations cover a brief part of the Chandra light curve, and the intensities over this duration are tightly correlated. The Swift spectral data confirm the anticorrelation between intensity and spectral hardness. However, there are differences in the correlations at different periods that are not understood. We report on our analysis of the data, with emphasis on the spectral modeling at different times and intensity levels, and discuss the implications of the results on the emission mechanisms on symbiotic stars. We also report our inferences on the structure and energy dependence of the Chandra PSF anomaly, and on the high-energy cross-calibration between the HRC-I and XRT. This work is supported by the NASA contract NAS8-03060 to the Chandra X-ray Center.

  7. Revealing proteins associated with symbiotic germination of Gastrodia elata by proteomic analysis.

    Science.gov (United States)

    Zeng, Xu; Li, Yuanyuan; Ling, Hong; Chen, Juan; Guo, Shunxing

    2018-03-06

    Gastrodia elata, a mycoheterotrophic orchid, is a well-known medicinal herb. In nature, the seed germination of G. elata requires proper fungal association, because of the absence of endosperm. To germinate successfully, G. elata obtains nutrition from mycorrhizal fungi such as Mycena. However, Mycena is not able to supply nutrition for the further development and enlargement of protocorms into tubers, flowering and fruit setting of G. elata. To date, current genomic studies on this topic are limited. Here we used the proteomic approach to explore changes in G. elata at different stages of symbiotic germination. Using mass spectrometry, 3787 unique proteins were identified, of which 599 were classified as differentially accumulated proteins. Most of these differentially accumulated proteins were putatively involved in energy metabolism, plant defense, molecular signaling, and secondary metabolism. Among them, the defense genes (e.g., pathogenesis-/wound-related proteins, peroxidases, and serine/threonine-protein kinase) were highly expressed in late-stage protocorms, suggesting that fungal colonization triggered the significant defense responses of G. elata. The present study indicated the metabolic change and defensive reaction could disrupt the balance between Mycena and G. elata during mycorrhizal symbiotic germination.

  8. Comparative Phylogenomics Uncovers the Impact of Symbiotic Associations on Host Genome Evolution

    Science.gov (United States)

    Delaux, Pierre-Marc; Varala, Kranthi; Edger, Patrick P.; Coruzzi, Gloria M.; Pires, J. Chris; Ané, Jean-Michel

    2014-01-01

    Mutualistic symbioses between eukaryotes and beneficial microorganisms of their microbiome play an essential role in nutrition, protection against disease, and development of the host. However, the impact of beneficial symbionts on the evolution of host genomes remains poorly characterized. Here we used the independent loss of the most widespread plant–microbe symbiosis, arbuscular mycorrhization (AM), as a model to address this question. Using a large phenotypic approach and phylogenetic analyses, we present evidence that loss of AM symbiosis correlates with the loss of many symbiotic genes in the Arabidopsis lineage (Brassicales). Then, by analyzing the genome and/or transcriptomes of nine other phylogenetically divergent non-host plants, we show that this correlation occurred in a convergent manner in four additional plant lineages, demonstrating the existence of an evolutionary pattern specific to symbiotic genes. Finally, we use a global comparative phylogenomic approach to track this evolutionary pattern among land plants. Based on this approach, we identify a set of 174 highly conserved genes and demonstrate enrichment in symbiosis-related genes. Our findings are consistent with the hypothesis that beneficial symbionts maintain purifying selection on host gene networks during the evolution of entire lineages. PMID:25032823

  9. Tricycloalternarene Analogs from a Symbiotic Fungus Aspergillus sp. D and Their Antimicrobial and Cytotoxic Effects.

    Science.gov (United States)

    Zhang, Huawei; Zhao, Ziping; Chen, Jianwei; Bai, Xuelian; Wang, Hong

    2018-04-09

    Bioassay-guided fractionation of the crude extract of fermentation broth of one symbiotic strain Aspergillus sp. D from the coastal plant Edgeworthia chrysantha Lindl. led to isolation of one new meroterpenoid, tricycloalternarene 14b ( 1 ), together with four known analogs ( 2 - 5 ), tricycloalternarenes 2b ( 2 ), 3a ( 3 ), 3b ( 4 ), and ACTG-toxin F ( 5 ). Their chemical structures were unambiguously established on the basis of NMR, mass spectrometry, and optical rotation data analysis, as well as by comparison with literature data. Biological assays indicated that compound 2 exhibited potent in vitro cytotoxicity against human lung adenocarcinoma A549 cell line with an IC 50 value of 2.91 μM, and compound 5 had a moderate inhibitory effect on Candida albicans , with an MIC value of 15.63 μM. The results indicated that this symbiotic strain D is an important producer of tricycloalternarene derivatives, with potential therapeutic application in treatment of cancer and pathogen infection.

  10. Use of low enriched /sup 15/N/sub 2/ for symbiotic fixation tests

    Energy Technology Data Exchange (ETDEWEB)

    Victoria, R L

    1975-01-01

    Gaseous atmospheres containing /sup 15/N/sub 2/ with low enrichment were used to test symbiotic nitrogen fixation in beans (Phaseolus vulgari, L.). The tests of fixation in nodulated roots and the tests of fixation in the whole plant, in which the plants were placed inside a specially constructed growth chamber, gave positive results and suggest that the methodology used can be very helpfull in more detailed studies on symbiotic fixation. Samples of atmospheric air were purified by absorption of O/sub 2/ and CO/sub 2/ by two methods. The purified N/sub 2/ obtained was analysed and the results were compared. Samples of bean plant material were collected in natural conditions and analysed for /sup 15/N natural variation. Several samples were prepared for /sup 15/N isotopic analysis by two methods. The results obtained were compared. All samples were analysed in an Atlas-Varian Ch-4 model mass spectrometer, and the results were given in delta /sup 15/N/sub 0///sup 00/ variation in relation to a standard gas.

  11. He 2-467 = LT Del - the yellow symbiotic star with a period about 500 days

    International Nuclear Information System (INIS)

    Arkhipova, V.P.; Noskova, R.I.

    1988-01-01

    By means of broad and narrow-band photometry in UBV spectral region the variability of the object He 2-467 earlier classified as peculiar cenral star of planetary nebyla has been revealed. The brightness amplitude significantly decreases with the wavelength from 1 m .9 in u-band to 0 m .3 in V. The brightness variations were found to be periodic, with P=488 days. The observations of He2-467 were interpreted using the model of binary consisting of very hot subdwarf and G511-giant. The parameters of both components have been derived. The hot star is probably the evolved low mass nucleus of planetary nebula already dissipated. The periodic variations in U-band may be the result of the reflection effect due to the presence of hot extended region on the side of cold star facing the subdwarf. The subdwarf UV-flux can heat and ionize the upper atmosphere of the giant giving birth to the emission lines and Balmer continuum. The yellow symbiotics to which He 2-467 belong may be predecessors of red symbiotics with M giants

  12. Burkholderia of Plant-Beneficial Group are Symbiotically Associated with Bordered Plant Bugs (Heteroptera: Pyrrhocoroidea: Largidae).

    Science.gov (United States)

    Takeshita, Kazutaka; Matsuura, Yu; Itoh, Hideomi; Navarro, Ronald; Hori, Tomoyuki; Sone, Teruo; Kamagata, Yoichi; Mergaert, Peter; Kikuchi, Yoshitomo

    2015-01-01

    A number of phytophagous stinkbugs (order Heteroptera: infraorder Pentatomomorpha) harbor symbiotic bacteria in a specific midgut region composed of numerous crypts. Among the five superfamilies of the infraorder Pentatomomorpha, most members of the Coreoidea and Lygaeoidea are associated with a specific group of the genus Burkholderia, called the "stinkbug-associated beneficial and environmental (SBE)" group, which is not vertically transmitted, but acquired from the environment every host generation. A recent study reported that, in addition to these two stinkbug groups, the family Largidae of the superfamily Pyrrhocoroidea also possesses a Burkholderia symbiont. Despite this recent finding, the phylogenetic position and biological nature of Burkholderia associated with Largidae remains unclear. Based on the combined results of fluorescence in situ hybridization, cloning analysis, Illumina deep sequencing, and egg inspections by diagnostic PCR, we herein demonstrate that the largid species are consistently associated with the "plant-associated beneficial and environmental (PBE)" group of Burkholderia, which are phylogenetically distinct from the SBE group, and that they maintain symbiosis through the environmental acquisition of the bacteria. Since the superfamilies Coreoidea, Lygaeoidea, and Pyrrhocoroidea are monophyletic in the infraorder Pentatomomorpha, it is plausible that the symbiotic association with Burkholderia evolved at the common ancestor of the three superfamilies. However, the results of this study strongly suggest that a dynamic transition from the PBE to SBE group, or vice versa, occurred in the course of stinkbug evolution.

  13. A common genomic framework for a diverse assembly of plasmids in the symbiotic nitrogen fixing bacteria.

    Directory of Open Access Journals (Sweden)

    Lisa C Crossman

    2008-07-01

    Full Text Available This work centres on the genomic comparisons of two closely-related nitrogen-fixing symbiotic bacteria, Rhizobium leguminosarum biovar viciae 3841 and Rhizobium etli CFN42. These strains maintain a stable genomic core that is also common to other rhizobia species plus a very variable and significant accessory component. The chromosomes are highly syntenic, whereas plasmids are related by fewer syntenic blocks and have mosaic structures. The pairs of plasmids p42f-pRL12, p42e-pRL11 and p42b-pRL9 as well large parts of p42c with pRL10 are shown to be similar, whereas the symbiotic plasmids (p42d and pRL10 are structurally unrelated and seem to follow distinct evolutionary paths. Even though purifying selection is acting on the whole genome, the accessory component is evolving more rapidly. This component is constituted largely for proteins for transport of diverse metabolites and elements of external origin. The present analysis allows us to conclude that a heterogeneous and quickly diversifying group of plasmids co-exists in a common genomic framework.

  14. Characterization of a Neochlamydia-like Bacterium Associated with Epitheliocystis in Cultured Artic Char Salvelinus alpinus

    Science.gov (United States)

    Infections of branchial epithelium by intracellular gram-negative bacteria, termed epitheliocystis, have limited culture of Arctic char (Salvelinus alpinus). To characterize a bacterium associated with epitheliocystis in cultured char, gills were sampled for histopathologic examination, conventional...

  15. Echinicola shivajiensis sp. nov., a novel bacterium of the family "Cyclobacteriaceae" isolated from brackish water pond

    Digital Repository Service at National Institute of Oceanography (India)

    Srinivas, T.N.R.; Tryambak, B.K.; AnilKumar, P.

    Strain AK12 sup(T), an orange pigmented Gramnegative, rod shaped, non-motile bacterium, was isolated fromamud sample collected froma brackishwater pond at Rampur of West Bengal, India. The strain was positive for oxidase, catalase and phosphatase...

  16. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium

    Czech Academy of Sciences Publication Activity Database

    Moon, C. D.; Pacheco, D. M.; Kelly, W. J.; Leahy, S. C.; Li, D.; Kopečný, Jan; Attwood, G. T.

    2008-01-01

    Roč. 58, - (2008), s. 2041-2045 ISSN 1466-5026 Institutional research plan: CEZ:AV0Z50450515 Keywords : Butyrivibrio * ruminal bacterium Subject RIV: EE - Microbiology, Virology Impact factor: 2.222, year: 2008

  17. Septicemia caused by the gram-negative bacterium CDC IV c-2 in an immunocompromised human.

    OpenAIRE

    Dan, M; Berger, S A; Aderka, D; Levo, Y

    1986-01-01

    A 37-year-old man with plasma cell leukemia developed nonfatal septicemia caused by the gram-negative bacterium CDC IV c-2. Recovery followed appropriate treatment with antibiotics. The biochemical features of this organism are reviewed.

  18. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences

    NARCIS (Netherlands)

    Vanfossen, A.L.; Verhaart, M.R.A.; Kengen, S.W.M.; Kelly, R.M.

    2009-01-01

    Co-utilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H2-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on

  19. Complete genome of Martelella sp. AD-3, a moderately halophilic polycyclic aromatic hydrocarbons-degrading bacterium.

    Science.gov (United States)

    Cui, Changzheng; Li, Zhijie; Qian, Jiangchao; Shi, Jie; Huang, Ling; Tang, Hongzhi; Chen, Xin; Lin, Kuangfei; Xu, Ping; Liu, Yongdi

    2016-05-10

    Martelella sp. strain AD-3, a moderate halophilic bacterium, was isolated from a petroleum-contaminated soil with high salinity in China. Here, we report the complete genome of strain AD-3, which contains one circular chromosome and two circular plasmids. An array of genes related to metabolism of polycyclic aromatic hydrocarbons and halophilic mechanism in this bacterium was identified by the whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Extraordinary proliferation of microorganisms in aposymbiotic pea aphids, Acyrthosiphon pisum.

    Science.gov (United States)

    Nakabachi, Atsushi; Ishikawa, Hajime; Kudo, Toshiaki

    2003-03-01

    Aposymbiotic pea aphids, which were deprived of their intracellular symbiotic bacterium, Buchnera, exhibit growth retardation and no fecundity. High performance liquid chromatographic (HPLC) analysis revealed that these aposymbiotic aphids, when reared on broad bean plants, accumulated a large amount of histamine. To assess the possibility of extraordinary proliferation of microorganisms other than Buchnera, we enumerated eubacteria and fungi in aphids using the real-time quantitative PCR method that targets genes encoding small-subunit rRNAs. The result showed that these microorganisms were extremely abundant in the aposymbiotic aphids reared on plants. Microbial communities in aposymbiotic aphids were further profiled by phylogenetic analysis of small-subunit rDNAs. Of 172 nonchimeric sequences of fungal 18S rDNAs, 138 (80.2%) belonged to the phylum Ascomycota. Among them, 21 clustered within a monophyletic group consisting of insect-pathogenic fungi and yeast-like symbionts of homopteran insects. Thirty-one (18.0%), two (1.2%), and one (0.6%) clones were clustered within the Basidiomycota, Zygomycota, and Oomycota, respectively. Of 167 nonchimeric sequences of eubacterial 16S rDNAs, 84 (50.3%) belonged to the gamma-subdivision of Proteobacteria to which most primary endosymbionts of insects and prolific histamine producers belong. Forty (24.0%), 25 (15.0%), 10 (6.0%), and five (3.0%) clones were clustered within alpha-Proteobacteria, Cytophaga-Flavobacterium-Bacteroides (CFB) group, Actinobacteria, and beta-Proteobacteria, respectively. Three had no phylogenetic association with known taxonomic divisions. None of the sequences studied in this study coincided exactly with those deposited in GenBank.

  1. Luciferase inactivation in the luminous marine bacterium Vibrio harveyi.

    Science.gov (United States)

    Reeve, C A; Baldwin, T O

    1981-06-01

    Luciferase was rapidly inactivated in stationary-phase cultures of the wild type of the luminous marine bacterium Vibrio harveyi, but was stable in stationary-phase cultures of mutants of V. harveyi that are nonluminous without exogenous aldehyde, termed the aldehyde-deficient mutants. The inactivation in the wild type was halted by cell lysis and was slowed or stopped by O2 deprivation or by addition of KCN and NaF or of chloramphenicol. If KCN and NaF or chloramphenicol were added to a culture before the onset of luciferase inactivation, then luciferase inactivation did not occur. However, if these inhibitors were added after the onset of luciferase inactivation, then luciferase inactivation continued for about 2 to 3 h before the inactivation process stopped. The onset of luciferase inactivation in early stationary-phase cultures of wild-type cell coincided with a slight drop in the intracellular adenosine 5'-triphosphate (ATP) level from a relatively constant log-phase value of 20 pmol of ATP per microgram of soluble cell protein. Addition of KCN and NaF to a culture shortly after this drop in ATP caused a rapid decrease in the ATP level to about 4 pmol of ATP per microgram whereas chloramphenicol added at this same time caused a transient increase in ATP level to about 25 pmol/microgram. The aldehyde-deficient mutant (M17) showed a relatively constant log-phase ATP level identical with that of the wild-type cells, but rather than decreasing in early stationary phase, the ATP level increased to a value twice that in log-phase cells. We suggest that the inactivation of luciferase is dependent on the synthesis of some factor which is produced during stationary phase and is itself unstable, and whose synthesis is blocked by chloramphenicol or cyanide plus fluoride.

  2. Adaptive evolution of the symbiotic gene NORK is not correlated with shifts of rhizobial specificity in the genus Medicago

    NARCIS (Netherlands)

    Mita, De S.; Santoni, S.; Ronfort, J.; Bataillon, T.

    2007-01-01

    The NODULATION RECEPTOR KINASE (NORK) gene encodes a Leucine-Rich Repeat (LRR)-containing receptor-like protein and controls the infection by symbiotic rhizobia and endomycorrhizal fungi in Legumes. The occurrence of numerous amino acid changes driven by directional selection has been reported in

  3. Element availability of bivalve with symbiotic zooxanthellae in coral sea area as studied by multielement profiling analysis

    Science.gov (United States)

    Itoh, A.; Kabe, N.

    2008-12-01

    In coral sea, a characteristic ecosystem is formed by many kinds of marine animals and plants, although seawater is uneutrophic. This may be explained by the fact that various chemical species with bioessentiality are effectively taken and used by lower animals and plants in coral sea area. A symbiotic relationship often found among different animals and plants in this area is considered to be working as one of such processes. However, the specific bioavailability of the elements for the marine animals and plants in coral reef area has not been studied from the viewpoints of trace and ultratrace elements. It is found by the present authors that bivalve with symbiotic zooxanthellae (Tridacna crocea) living on coral reef had relatively higher bio- accumulation factors for many bio-essential elements than other kinds of bivalves, although they live in the uneutrophic sea area. The present authors focused on Tridacna crocea as one of the symbiotic animals. Thus, in the present study, at first, multielement determination of major-to-ultratrace elements (about 20 elements) in each organ of Tridacna crocea with symbiotic zooxanthellae, were carried out by ICP-AES, ICP- MS, and CHN coder. At Second, the specific bioavailability of trace and ultratrace elements in Tridacna crocea was discussed on the multielement data for seawater, seaweeds, and other bivalves in coral sea area.

  4. Betaproteobacteria Limnohabitans strains increase fecundity in the crustacean Daphnia magna: symbiotic relationship between major bacterioplankton and zooplankton in freshwater ecosystem.

    Czech Academy of Sciences Publication Activity Database

    Peerakietkhajorn, S.; Kato, Y.; Kasalický, Vojtěch; Matsuura, T.; Watanabe, H.

    2016-01-01

    Roč. 18, č. 8 (2016), s. 2366-2374 ISSN 1462-2912 R&D Projects: GA ČR(CZ) GA13-00243S Institutional support: RVO:60077344 Keywords : Daphnia * symbiotic bacteria * Limnohabitans * fecundity Subject RIV: EE - Microbiology, Virology Impact factor: 5.395, year: 2016

  5. Genetic Factors in Rhizobium Affecting the Symbiotic Carbon Costs of N2 Fixation and Host Plant Biomass Production

    DEFF Research Database (Denmark)

    Skøt, L.; Hirsch, P. R.; Witty, J. F.

    1986-01-01

    The effect of genetic factors in Rhizobium on host plant biomass production and on the carbon costs of N2 fixation in pea root nodules was studied. Nine strains of Rhizobium leguminosarum were constructed, each containing one of three symbiotic plasmids in combination with one of three different ...

  6. Uptake and specification of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate

    NARCIS (Netherlands)

    Larsen, E.H.; Lobinski, R.; Burger-Meijer, K.; Hansen, M.; Ruzik, R.; Mazurowska, L.; Rasmussen, P.H.; Sloth, J.J.; Scholten, O.E.; Kik, C.

    2006-01-01

    The scope of the work was to investigate the influence of selenate fertilisation and the addition of symbiotic fungi (mycorrhiza) to soil on selenium and selenium species concentrations in garlic. The selenium species were extracted from garlic cultivated in experimental plots by proteolytic

  7. Formation of a symbiotic host-microbe interface: the role of SNARE-mediated regulation of exocytosis

    NARCIS (Netherlands)

    Huisman, Rik

    2018-01-01

    At the heart of endosymbiosis microbes are hosted inside living cells in specialized membrane compartments that from a host-microbe interface, where nutrients and signal are efficiently exchanged. Such symbiotic interfaces include arbuscules produced by arbuscular mycorrhiza (AM) and

  8. Prebiotic, probiotic and symbiotic as alternative to Antibiotics on the Performance and Immune Response of Broiler Chickens

    Directory of Open Access Journals (Sweden)

    VDA Murarolli

    2014-09-01

    Full Text Available This study aimed to evaluate diets supplemented with prebiotic, probiotic and symbiotic as an alternative to antibiotics on the performance and immune response against the virus of Newcastle disease in broiler chickens. 1,400 one-day old male Cobb 500 chicks were raised until 42 days old in a completely randomized design with 2x2+1 factorial scheme with seven replications. The treatments were: diet without supplementation (base diet - BD, BD + prebiotic, BD + probiotic, BD + symbiotic (prebiotic + probiotic, and BD + antibiotic. The parameters evaluated were performance and antibody serum titers against Newcastle disease. No antibiotic effect was observed on performance. The symbiotic provided better results for weight gain and feed:gain ratio until 21 days old than isolated additives. At 28 days old, the broilers fed diets with prebiotic presented better feed: gain ratio. In the same period (28 d-old, there was an antibody production increase against the Newcastle disease virus in the group supplemented with prebiotic. It can be concluded that the utilization of symbiotic in broiler chickens' diets can substitute performance enhancing antibiotics. The inclusion of prebiotic in the diet improves feed: gain ratio at 1-28 days old. The chickens' immune response increases at 28 days against the Newcastle disease virus in the group supplemented with prebiotic.

  9. PARASITIC AND SYMBIOTIC FAUNA IN OYSTERS (CRASSOSTREA VIRGINICA) AND MUD CRABS (PANOPEUS SPP.) FROM THE CALOOSAHATCHEE ESTUARY, FLORIDA, USA.

    Science.gov (United States)

    Volety, Aswani K., S. Greg Tolley and James T. Winstead. 2002. Parasitic and Symbiotic Fauna in Oysters (Crassostrea virginica) and Mud Crabs (Panopeus spp.) from the Caloosahatchee Estuary, Florida, USA (Abstract). Presented at the 4th International Conference on Molluscan Shell...

  10. Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts

    Science.gov (United States)

    A.S. Adams; C.R. Currie; Y. Cardoza; K.D. Klepzig; K.F. Raffa

    2009-01-01

    Bark beetles are associated with diverse assemblages of microorganisms, many of which affect their interactions with host plants and natural enemies. We tested how bacterial associates of three bark beetles with various types of host relationships affect growth and reproduction of their symbiotic fungi. Fungi were exposed to volatiles...

  11. LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range

    DEFF Research Database (Denmark)

    Radutoiu, Simona; Madsen, Lene H; Madsen, Esben B

    2007-01-01

    and Nfr5 Nod-factor receptor genes in Medicago truncatula and L. filicaulis, extends their host range to include bacterial strains, Mesorhizobium loti or DZL, normally infecting L. japonicus. As a result, the symbiotic program is induced, nodules develop and infection threads are formed. Using L...

  12. The extreme, possible symbiotic Mira V407 Cyg and its relevance to the OH/IR sources

    International Nuclear Information System (INIS)

    Munari, U.; Margoni, R.; Stagni, R.

    1990-01-01

    New optical and IR magnitudes are presented and we review all the available photometric data on the very interesting variable V407 Cyg. A preliminary discussion of new high- and low-resolution optical spectra is given. The nature of V407 Cyg is discussed in the light of available data and a classification as a symbiotic star is suggested. (author)

  13. An Indication of the Enhanced Circumstellar Matter Near the Orbital Plane of the Symbiotic Star EG And

    Science.gov (United States)

    Shagatova, N.; Skopal, A.

    2015-07-01

    In this contribution we derive the velocity profile of the material produced by the giant in the symbiotic binary EG And, and the corresponding mass loss rate. Our analysis revealed a significant enhancement of the wind material along the binary plane, which allows a high efficiency of the wind transfer onto the accreting white dwarf.

  14. Symbiotic Networks

    NARCIS (Netherlands)

    Pieters, C.P.

    2008-01-01

    Research of evolution theory has boomed in the last decade, and has caused a significant differentiation of the classic, 'machismo' view on Darwinism, in which nature is considered to be an arena where organisms continuously struggle for survival in fierce competition. The three 'soft' forces in

  15. Effects of dietary symbiotic supplementation on growth performance and duodenum histology of Japanese quail (Coturnix coturnix Japonica reared in different flooring systems

    Directory of Open Access Journals (Sweden)

    Isa Coskun

    Full Text Available ABSTRACT The objective of this study was to determine the effect of dietary symbiotic supplementation on the growth performance and duodenum histological parameters of quail reared in different flooring systems. A total of 160 mixed-sex healthy quail (47±0.32 g aged 14 days were used in a 2 × 2 factorial experimental design with four replicates, each including five males and five females. Two flooring systems (wire floor as control and wood shavings bedding and two dietary treatments (symbiotic supplementation and no supplementation were tested. Birds were transferred to four-tier cages for the trial. Each kilogram of the commercial diet included 224 g crude protein and 3,080 kcal metabolizable energy. The experiment lasted 21 days. Daily weight gain and gastrointestinal tract weight were statistically higher in the wood shavings and wood shavings + symbiotic-supplemented groups than in control group. Villi length was higher in the wood shavings + symbiotic and symbiotic-supplemented groups than in control and wood shavings groups. The wood shavings groups had longer villi than control group. Villi width was higher in wood shaving + symbiotic-supplemented groups compared with the other treatment groups. The litter system of wood shavings and symbiotic supplementation provide better growth performance to quail by developing their duodenum histomorphological parameters and digestive tract.

  16. Symbiotic specificity, association patterns, and function determine community responses to global changes: defining critical research areas for coral-Symbiodinium symbioses.

    Science.gov (United States)

    Fabina, Nicholas S; Putnam, Hollie M; Franklin, Erik C; Stat, Michael; Gates, Ruth D

    2013-11-01

    Climate change-driven stressors threaten the persistence of coral reefs worldwide. Symbiotic relationships between scleractinian corals and photosynthetic endosymbionts (genus Symbiodinium) are the foundation of reef ecosystems, and these associations are differentially impacted by stress. Here, we couple empirical data from the coral reefs of Moorea, French Polynesia, and a network theoretic modeling approach to evaluate how patterns in coral-Symbiodinium associations influence community stability under climate change. To introduce the effect of climate perturbations, we simulate local 'extinctions' that represent either the loss of coral species or the ability to engage in symbiotic interactions. Community stability is measured by determining the duration and number of species that persist through the simulated extinctions. Our results suggest that four factors greatly increase coral-Symbiodinium community stability in response to global changes: (i) the survival of generalist hosts and symbionts maximizes potential symbiotic unions; (ii) elevated symbiont diversity provides redundant or complementary symbiotic functions; (iii) compatible symbiotic assemblages create the potential for local recolonization; and (iv) the persistence of certain traits associate with symbiotic diversity and redundancy. Symbiodinium may facilitate coral persistence through novel environmental regimes, but this capacity is mediated by symbiotic specificity, association patterns, and the functional performance of the symbionts. Our model-based approach identifies general trends and testable hypotheses in coral-Symbiodinium community responses. Future studies should consider similar methods when community size and/or environmental complexity preclude experimental approaches. © 2013 John Wiley & Sons Ltd.

  17. Irradiation Effect on the symbiotic fixation of nitrogen in Bean (Phaseolus vulgaris L)

    International Nuclear Information System (INIS)

    Roveda Hoyos, Gabriel; Rozo Avila, Liliana; Sierra Daza, Soraya

    1997-01-01

    The efficiency of legume - Rhizobium association is determined by biological (plant and bacteria) and environmental factors (soil and climate); for that reason, the best cultivars -Rhizobium strains combinations for each specie of legume must be selected according to the specifics environmental conditions. One of the most important sun light qualities are the irradiance levels to which the plants are exposed, because these levels have a close relation with the photosynthetic process, and also affect the biological nitrogen fixation, which has a high energetic requirements for symbiosis. The propose of this work was to determine the effect of irradiance on the Biological Nitrogen Fixation in common bean seedlings, under two environments conditions 100 and 500 moles m - 2 seg - 1 (IA and IB respectively), an nutrition control. The experimental results suggest that in the case of common bean, the irradiance requirements change depending on the Rhizobium strain that has be used in the symbiotic association. Both inoculated and non-inoculated plants with Rhizobium showed different behavior according to the levels of irradiance under which the plants were exposed. Under the irradiance of 500 moles m 2 seg - 1 (IA) the highest values of weight, area of plants, number and weight of nodules, nitrogen and phosphors content in leaves were founded, however under the lowest irradiance 100 μ moles m 2 seg - 1 (IB), the plants showed the largest root and steam, as a result of increase of bud distance, this behavior is known etiolation. The irradiance levels under which the plants are exposed determine the efficiency of symbiosis. The experimental results showed that the irradiance levels, no only affect the plant growth, but also the strains behavior. These results were easily observed in the treatments where ICA P-12 and ICA P-19 strains were used, for the dry weight of leaves, root and leaves area, number and weight of nodules, and nitrogen content of leaves in the plant. The

  18. IGR J17329-2731: The birth of a symbiotic X-ray binary

    Science.gov (United States)

    Bozzo, E.; Bahramian, A.; Ferrigno, C.; Sanna, A.; Strader, J.; Lewis, F.; Russell, D. M.; di Salvo, T.; Burderi, L.; Riggio, A.; Papitto, A.; Gandhi, P.; Romano, P.

    2018-05-01

    We report on the results of the multiwavelength campaign carried out after the discovery of the INTEGRAL transient IGR J17329-2731. The optical data collected with the SOAR telescope allowed us to identify the donor star in this system as a late M giant at a distance of 2.7-1.2+3.4 kpc. The data collected quasi-simultaneously with XMM-Newton and NuSTAR showed the presence of a modulation with a period of 6680 ± 3 s in the X-ray light curves of the source. This unveils that the compact object hosted in this system is a slowly rotating neutron star. The broadband X-ray spectrum showed the presence of a strong absorption (≫1023 cm-2) and prominent emission lines at 6.4 keV, and 7.1 keV. These features are usually found in wind-fed systems, in which the emission lines result from the fluorescence of the X-rays from the accreting compact object on the surrounding stellar wind. The presence of a strong absorption line around 21 keV in the spectrum suggests a cyclotron origin, thus allowing us to estimate the neutron star magnetic field as 2.4 × 1012 G. All evidencethus suggests IGR J17329-2731 is a symbiotic X-ray binary. As no X-ray emission was ever observed from the location of IGR J17329-2731 by INTEGRAL (or other X-ray facilities) during the past 15 yr in orbit and considering that symbiotic X-ray binaries are known to be variable but persistent X-ray sources, we concluded that INTEGRAL caught the first detectable X-ray emission from IGR J17329-2731 when the source shined as a symbiotic X-ray binary. The Swift XRT monitoring performed up to 3 months after the discovery of the source, showed that it maintained a relatively stable X-ray flux and spectral properties.

  19. Transcriptomic and proteomic insights into innate immunity and adaptations to a symbiotic lifestyle in the gutless marine worm Olavius algarvensis.

    Science.gov (United States)

    Wippler, Juliane; Kleiner, Manuel; Lott, Christian; Gruhl, Alexander; Abraham, Paul E; Giannone, Richard J; Young, Jacque C; Hettich, Robert L; Dubilier, Nicole

    2016-11-21

    The gutless marine worm Olavius algarvensis has a completely reduced digestive and excretory system, and lives in an obligate nutritional symbiosis with bacterial symbionts. While considerable knowledge has been gained of the symbionts, the host has remained largely unstudied. Here, we generated transcriptomes and proteomes of O. algarvensis to better understand how this annelid worm gains nutrition from its symbionts, how it adapted physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and responds to its symbiotic microbiota. Key adaptations to the symbiosis include (i) the expression of gut-specific digestive enzymes despite the absence of a gut, most likely for the digestion of symbionts in the host's epidermal cells; (ii) a modified hemoglobin that may bind hydrogen sulfide produced by two of the worm's symbionts; and (iii) the expression of a very abundant protein for oxygen storage, hemerythrin, that could provide oxygen to the symbionts and the host under anoxic conditions. Additionally, we identified a large repertoire of proteins involved in interactions between the worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial proteins. We show how this worm, over the course of evolutionary time, has modified widely-used proteins and changed their expression patterns in adaptation to its symbiotic lifestyle and describe expressed components of the innate immune system in a marine oligochaete. Our results provide further support for the recent realization that animals have evolved within the context of their associations with microbes and that their adaptive responses to symbiotic microbiota have led to biological innovations.

  20. A Genetic System for the Thermophilic Acetogenic Bacterium Thermoanaerobacter kivui.

    Science.gov (United States)

    Basen, Mirko; Geiger, Irina; Henke, Laura; Müller, Volker

    2018-02-01

    Thermoanaerobacter kivui is one of the very few thermophilic acetogenic microorganisms. It grows optimally at 66°C on sugars but also lithotrophically with H 2 + CO 2 or with CO, producing acetate as the major product. While a genome-derived model of acetogenesis has been developed, only a few physiological or biochemical experiments regarding the function of important enzymes in carbon and energy metabolism have been carried out. To address this issue, we developed a method for targeted markerless gene deletions and for integration of genes into the genome of T. kivui The strain naturally took up plasmid DNA in the exponential growth phase, with a transformation frequency of up to 3.9 × 10 -6 A nonreplicating plasmid and selection with 5-fluoroorotate was used to delete the gene encoding the orotate phosphoribosyltransferase ( pyrE ), resulting in a Δ pyrE uracil-auxotrophic strain, TKV002. Reintroduction of pyrE on a plasmid or insertion of pyrE into different loci within the genome restored growth without uracil. We subsequently studied fructose metabolism in T. kivui The gene fruK (TKV_c23150) encoding 1-phosphofructosekinase (1-PFK) was deleted, using pyrE as a selective marker via two single homologous recombination events. The resulting Δ fruK strain, TKV003, did not grow on fructose; however, growth on glucose (or on mannose) was unaffected. The combination of pyrE as a selective marker and the natural competence of the strain for DNA uptake will be the basis for future studies on CO 2 reduction and energy conservation and their regulation in this thermophilic acetogenic bacterium. IMPORTANCE Acetogenic bacteria are currently the focus of research toward biotechnological applications due to their potential for de novo synthesis of carbon compounds such as acetate, butyrate, or ethanol from H 2 + CO 2 or from synthesis gas. Based on available genome sequences and on biochemical experiments, acetogens differ in their energy metabolism. Thus, there is an