WorldWideScience

Sample records for symbiont vibrio fischeri

  1. Detection of the Light Organ Symbiont, Vibrio fischeri, in Hawaiian Seawater by Using lux Gene Probes.

    Science.gov (United States)

    Lee, K H; Ruby, E G

    1992-03-01

    Symbiotic bacteria that inhabit the light-emitting organ of the Hawaiian squid Euprymna scolopes are distinctive from typical Vibrio fischeri organisms in that they are not visibly luminous when grown in laboratory culture. Therefore, the abundance of these bacteria in seawater samples cannot be estimated simply by identifying them among luminous colonies that arise on nutrient agar plates. Instead, we have used luxR and polymerase chain reaction generated luxA gene probes to identify both luminous and non-visibly luminous V. fischeri colonies by DNA-DNA hybridization. The probes were specific, hybridizing at least 50 to 100 times more strongly to immobilized DNAs from V. fischeri strains than to those of pure cultures of other related species. Thus, even non-visibly luminous V. fischeri colonies could be identified among colonies obtained from natural seawater samples by their probe-positive reaction. Bacteria in seawater samples, obtained either within or distant from squid habitats, were collected on membrane filters and incubated until colonies appeared. The filters were then observed for visibly luminous V. fischeri colonies and hybridized with the lux gene probes to determine the number of total V. fischeri colonies (both luminous and non-visibly luminous). We detected no significant differences in the abundance of luminous V. fischeri CFU in any of the water samples observed (fischeri (up to 900 CFU/100 ml) were found only in seawater collected from within the natural habitats of the squids. A number of criteria were used to confirm that these probe-positive strains were indistinguishable from symbiotic V. fischeri. Therefore, the luxA and luxR gene probes were species specific and gave a reliable estimate of the number of culturable V. fischeri colonies in natural water samples.

  2. Characterizing the host and symbiont proteomes in the association between the Bobtail squid, Euprymna scolopes, and the bacterium, Vibrio fischeri.

    Directory of Open Access Journals (Sweden)

    Tyler R Schleicher

    Full Text Available The beneficial symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium, Vibrio fischeri, provides a unique opportunity to study host/microbe interactions within a natural microenvironment. Colonization of the squid light organ by V. fischeri begins a lifelong association with a regulated daily rhythm. Each morning the host expels an exudate from the light organ consisting of 95% of the symbiont population in addition to host hemocytes and shed epithelial cells. We analyzed the host and symbiont proteomes of adult squid exudate and surrounding light organ epithelial tissue using 1D- and 2D-polyacrylamide gel electrophoresis and multidimensional protein identification technology (MudPIT in an effort to understand the contribution of both partners to the maintenance of this association. These proteomic analyses putatively identified 1581 unique proteins, 870 proteins originating from the symbiont and 711 from the host. Identified host proteins indicate a role of the innate immune system and reactive oxygen species (ROS in regulating the symbiosis. Symbiont proteins detected enhance our understanding of the role of quorum sensing, two-component signaling, motility, and detoxification of ROS and reactive nitrogen species (RNS inside the light organ. This study offers the first proteomic analysis of the symbiotic microenvironment of the adult light organ and provides the identification of proteins important to the regulation of this beneficial association.

  3. Detection of the Light Organ Symbiont, Vibrio fischeri, in Hawaiian Seawater by Using lux Gene Probes †

    Science.gov (United States)

    Lee, Kyu-Ho; Ruby, Edward G.

    1992-01-01

    Symbiotic bacteria that inhabit the light-emitting organ of the Hawaiian squid Euprymna scolopes are distinctive from typical Vibrio fischeri organisms in that they are not visibly luminous when grown in laboratory culture. Therefore, the abundance of these bacteria in seawater samples cannot be estimated simply by identifying them among luminous colonies that arise on nutrient agar plates. Instead, we have used luxR and polymerase chain reaction generated luxA gene probes to identify both luminous and non-visibly luminous V. fischeri colonies by DNA-DNA hybridization. The probes were specific, hybridizing at least 50 to 100 times more strongly to immobilized DNAs from V. fischeri strains than to those of pure cultures of other related species. Thus, even non-visibly luminous V. fischeri colonies could be identified among colonies obtained from natural seawater samples by their probe-positive reaction. Bacteria in seawater samples, obtained either within or distant from squid habitats, were collected on membrane filters and incubated until colonies appeared. The filters were then observed for visibly luminous V. fischeri colonies and hybridized with the lux gene probes to determine the number of total V. fischeri colonies (both luminous and non-visibly luminous). We detected no significant differences in the abundance of luminous V. fischeri CFU in any of the water samples observed (≤1 to 3 CFU/100 ml). However, probe-positive colonies of V. fischeri (up to 900 CFU/100 ml) were found only in seawater collected from within the natural habitats of the squids. A number of criteria were used to confirm that these probe-positive strains were indistinguishable from symbiotic V. fischeri. Therefore, the luxA and luxR gene probes were species specific and gave a reliable estimate of the number of culturable V. fischeri colonies in natural water samples. Images PMID:16348678

  4. Detection of the Light Organ Symbiont, Vibrio fischeri, in Hawaiian Seawater by Using lux Gene Probes †

    OpenAIRE

    Lee, Kyu-Ho; Ruby, Edward G.

    1992-01-01

    Symbiotic bacteria that inhabit the light-emitting organ of the Hawaiian squid Euprymna scolopes are distinctive from typical Vibrio fischeri organisms in that they are not visibly luminous when grown in laboratory culture. Therefore, the abundance of these bacteria in seawater samples cannot be estimated simply by identifying them among luminous colonies that arise on nutrient agar plates. Instead, we have used luxR and polymerase chain reaction generated luxA gene probes to identify both lu...

  5. Sampling the light-organ microenvironment of Euprymna scolopes: description of a population of host cells in association with the bacterial symbiont Vibrio fischeri.

    Science.gov (United States)

    Nyholm, S V; McFall-Ngai, M J

    1998-10-01

    The symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri has a pronounced diel rhythm, one component of which is the venting of the contents of the light organ into the surrounding seawater each day at dawn. In this study, we explored the use of this behavior to sample the microenvironment of the light-organ crypts. Intact crypt contents, which emerge from the lateral pores of the organ as a thick paste-like exudate, were collected from anesthetized host animals that had been exposed to a light cue. Microscopy revealed that the expelled material is composed of a conspicuous population of host cells in association with the bacterial symbionts, all of which are embedded in a dense acellular matrix that strongly resembles the bacteria-based biofilms described in other systems. Assays of the viability of expelled crypt cells revealed no dead bacterial symbionts and a mixture of live and dead host cells. Analyses of the ultrastructure, biochemistry, and phagocytic activity of a subset of the host cell population suggested that some of these cells are macrophage-like molluscan hemocytes.

  6. Population dynamics of Vibrio fischeri during infection of Euprymna scolopes.

    Science.gov (United States)

    McCann, Jessica; Stabb, Eric V; Millikan, Deborah S; Ruby, Edward G

    2003-10-01

    The luminous bacterium Vibrio fischeri colonizes a specialized light-emitting organ within its squid host, Euprymna scolopes. Newly hatched juvenile squid must acquire their symbiont from ambient seawater, where the bacteria are present at low concentrations. To understand the population dynamics of V. fischeri during colonization more fully, we used mini-Tn7 transposons to mark bacteria with antibiotic resistance so that the growth of their progeny could be monitored. When grown in culture, there was no detectable metabolic burden on V. fischeri cells carrying the transposon, which inserts in single copy in a specific intergenic region of the V. fischeri genome. Strains marked with mini-Tn7 also appeared to be equivalent to the wild type in their ability to infect and multiply within the host during coinoculation experiments. Studies of the early stages of colonization suggested that only a few bacteria became associated with symbiotic tissue when animals were exposed for a discrete period (3 h) to an inoculum of V. fischeri cells equivalent to natural population levels; nevertheless, all these hosts became infected. When three differentially marked strains of V. fischeri were coincubated with juvenile squid, the number of strains recovered from an individual symbiotic organ was directly dependent on the size of the inoculum. Further, these results indicated that, when exposed to low numbers of V. fischeri, the host may become colonized by only one or a few bacterial cells, suggesting that symbiotic infection is highly efficient.

  7. Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes.

    OpenAIRE

    Boettcher, K J; Ruby, E G

    1990-01-01

    Bioluminescent marine bacteria of the species Vibrio fischeri are the specific light organ symbionts of the sepiolid squid Euprymna scolopes. Although they share morphological and physiological characteristics with other strains of V. fischeri, when cultured away from the light organ association the E. scolopes symbionts depress their maximal luminescence over 1,000-fold. The primary cause of this reduced luminescence is the underproduction by these bacteria of luciferase autoinducer, a molec...

  8. Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations▿ †

    OpenAIRE

    Wollenberg, M. S.; Ruby, E. G.

    2008-01-01

    We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri...

  9. Detection and quantification of Vibrio fischeri autoinducer from symbiotic squid light organs.

    Science.gov (United States)

    Boettcher, K J; Ruby, E G

    1995-02-01

    Vibrio fischeri is the specific light organ symbiont of the sepiolid squid species Euprymna scolopes and Euprymna morsei. Both species of squid are luminescent by virtue of their bacterial symbionts, but the natural symbionts of E. scolopes do not produce visible luminescence in laboratory culture. The primary cause of this depressed luminescence by E. scolopes symbionts in culture was found to be the production of relatively low levels of V. fischeri autoinducer, a positive transcriptional coregulator of the lux regulon, identified as N-(3-oxohexanoyl) homoserine lactone. Concentrations of autoinducer activity produced by these symbionts in culture were quantified and found to be at least 10-fold lower than those produced by E. morsei isolates (which are visibly luminous outside the association) and perhaps 10,000-fold lower than those of the brightest V. fischeri strains. Despite the differences in their symbiont strains, the intact light organs of the two species of squid contained comparable amounts of extractable autoinducer activity (between 100 and 200 pg per adult animal). The chromatographic behavior of this autoinducer activity on reverse-phase high-performance liquid chromatography was consistent with its presumptive identification as V. fischeri autoinducer. Within the 5-microliter volume of the epithelial core of the light organ in which the symbiotic V. fischeri strains are housed, these amounts would result in an effective autoinducer concentration of at least 100 nM. Because these levels are over 40-fold higher than the concentration needed for the induction of luminescence of bacteria in culture, we conclude that the inherent degree of autoinducer production by strains of V. fischeri may not influence their effectiveness as light organ symbionts. Furthermore, this study provides the first direct evidence that the phenomenon of cell density-dependent autoinduction, discovered and described first for laboratory cultures of V. fischeri but believed to

  10. Recognition between symbiotic Vibrio fischeri and the hemocytes of Euprymna scolopes

    Science.gov (United States)

    Nyholm, Spencer V.; Stewart, Jennifer J.; Ruby, Edward G.; McFall-Ngai, Margaret J.

    2008-01-01

    Summary The light-organ crypts of the squid Euprymna scolopes permit colonization exclusively by the luminous bacterium Vibrio fischeri. Because the crypt interior remains in contact with seawater, the squid must not only foster the specific symbiosis but also continue to exclude other bacteria. Investigation of the role of the innate immune system in these processes revealed that macrophage-like hemocytes isolated from E. scolopes recognized and phagocytosed V. fischeri less than other closely related bacterial species common to the host’s environment. Interestingly, phagocytes isolated from hosts that had been cured of their symbionts bound five-times more V. fischeri cells than those from uncured hosts. No such change in the ability to bind other species of bacteria was observed, suggesting that the host adapts specifically to V. fischeri. Deletion of the gene encoding OmpU, the major outer membrane protein of V. fischeri, increased binding by hemocytes from uncured animals to the level observed for hemocytes from cured animals. Co-incubation with wild-type V. fischeri reduced this binding, suggesting they produce a factor that complements the mutant’s defect. Analyses of the phagocytosis of bound cells by fluorescence-activated cell sorting (FACS) indicated that, once binding to hemocytes had occurred, V. fischeri cells are phagocytosed as effectively as other bacteria. Thus, discrimination by this component of the squid immune system occurs at the level of hemocyte binding, and this response: (i) is modified by previous exposure to the symbiont and, (ii) relies on outer membrane and/or secreted components of the symbionts. These data suggest that regulation of host hemocyte binding by the symbiont may be one of many factors that contribute to specificity in this association. PMID:19196278

  11. Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes.

    Science.gov (United States)

    Nyholm, Spencer V; Stewart, Jennifer J; Ruby, Edward G; McFall-Ngai, Margaret J

    2009-02-01

    The light organ crypts of the squid Euprymna scolopes permit colonization exclusively by the luminous bacterium Vibrio fischeri. Because the crypt interior remains in contact with seawater, the squid must not only foster the specific symbiosis, but also continue to exclude other bacteria. Investigation of the role of the innate immune system in these processes revealed that macrophage-like haemocytes isolated from E. scolopes recognized and phagocytosed V. fischeri less than other closely related bacterial species common to the host's environment. Interestingly, phagocytes isolated from hosts that had been cured of their symbionts bound five times more V. fischeri cells than those from uncured hosts. No such change in the ability to bind other species of bacteria was observed, suggesting that the host adapts specifically to V. fischeri. Deletion of the gene encoding OmpU, the major outer membrane protein of V. fischeri, increased binding by haemocytes from uncured animals to the level observed for haemocytes from cured animals. Co-incubation with wild-type V. fischeri reduced this binding, suggesting that they produce a factor that complements the mutant's defect. Analyses of the phagocytosis of bound cells by fluorescence-activated cell sorting indicated that once binding to haemocytes had occurred, V. fischeri cells are phagocytosed as effectively as other bacteria. Thus, discrimination by this component of the squid immune system occurs at the level of haemocyte binding, and this response: (i) is modified by previous exposure to the symbiont and (ii) relies on outer membrane and/or secreted components of the symbionts. These data suggest that regulation of host haemocyte binding by the symbiont may be one of many factors that contribute to specificity in this association.

  12. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri.

    Science.gov (United States)

    Mandel, Mark J; Schaefer, Amy L; Brennan, Caitlin A; Heath-Heckman, Elizabeth A C; Deloney-Marino, Cindy R; McFall-Ngai, Margaret J; Ruby, Edward G

    2012-07-01

    Chitin, a polymer of N-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the family Vibrionaceae ("vibrios"), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacterium Vibrio fischeri is the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbiont's nutritional requirements. V. fischeri cells are harvested from seawater during each host generation, and V. fischeri is the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria. V. fischeri uses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone.

  13. Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes.

    Science.gov (United States)

    Boettcher, K J; Ruby, E G

    1990-07-01

    Bioluminescent marine bacteria of the species Vibrio fischeri are the specific light organ symbionts of the sepiolid squid Euprymna scolopes. Although they share morphological and physiological characteristics with other strains of V. fischeri, when cultured away from the light organ association the E. scolopes symbionts depress their maximal luminescence over 1,000-fold. The primary cause of this reduced luminescence is the underproduction by these bacteria of luciferase autoinducer, a molecule involved in the positive transcriptional regulation of the V. fischeri lux operon. Such an absence of visible light production outside of the symbiotic association has not been previously reported among light organ symbionts of this or any other species of luminous bacteria. Levels of luminescence approaching those of the E. scolopes bacteria in the intact association can be restored by the addition of exogenous autoinducer to bacteria in laboratory culture and are affected by the presence of cyclic AMP. We conclude that some condition(s) specific to the internal environment of the light organ is necessary for maximal autoinduction of luminescence in the symbionts of this squid-bacterial association.

  14. Attenuation of Vibrio fischeri quorum sensing using rationally designed polymers.

    Science.gov (United States)

    Piletska, Elena V; Stavroulakis, Georgios; Karim, Kal; Whitcombe, Michael J; Chianella, Iva; Sharma, Anant; Eboigbodin, Kevin E; Robinson, Gary K; Piletsky, Sergey A

    2010-04-12

    A first attempt to attenuate the quorum sensing (QS) of a marine heterotroph microorganism, Vibrio fischeri , using signal molecule-sequestering polymers (SSPs) is presented. A set of rationally designed polymers with affinity toward a signal molecule of V. fischeri , N-(beta-ketocaproyl)-l-homoserine lactone (3-oxo-C6-AHL) was produced. It is reported that computationally designed polymers could sequester a signal molecule of V. fischeri and prevent QS-controlled phenotypes (in this case, bioluminescence) from being up-regulated. It was proven that the attenuation of bioluminescence of V. fischeri was due to sequestration of the signal molecule by specific polymers and not due to the toxicity of polymer or nonspecific depletion of nutrients. The ability to disrupt the bacterial communication using easy to synthesize and chemically inert polymers could provide a new concept for the development of pharmaceuticals and susceptible device coatings such as catheters.

  15. Aptamer-Based Paper Strip Sensor for Detecting Vibrio fischeri.

    Science.gov (United States)

    Shin, Woo-Ri; Sekhon, Simranjeet Singh; Rhee, Sung-Keun; Ko, Jung Ho; Ahn, Ji-Young; Min, Jiho; Kim, Yang-Hoon

    2018-05-14

    Aptamer-based paper strip sensor for detecting Vibrio fischeri was developed. Our method was based on the aptamer sandwich assay between whole live cells, V. fischeri and DNA aptamer probes. Following 9 rounds of Cell-SELEX and one of the negative-SELEX, V. fischeri Cell Aptamer (VFCA)-02 and -03 were isolated, with the former showing approximately 10-fold greater avidity (in the subnanomolar range) for the target cells when arrayed on a surface. The colorimetric response of a paper sensor based on VFCA-02 was linear in the range of 4 × 10 1 to 4 × 10 5 CFU/mL of target cell by using scanning reader. The linear regression correlation coefficient ( R 2 ) was 0.9809. This system shows promise for use in aptamer-conjugated gold nanoparticle probes in paper strip format for in-field detection of marine bioindicating bacteria.

  16. Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from Two Oahu (Hawaii) populations.

    Science.gov (United States)

    Wollenberg, M S; Ruby, E G

    2009-01-01

    We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory.

  17. Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations▿ †

    Science.gov (United States)

    Wollenberg, M. S.; Ruby, E. G.

    2009-01-01

    We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory. PMID:18997024

  18. A New Niche for Vibrio logei, the Predominant Light Organ Symbiont of Squids in the Genus Sepiola

    OpenAIRE

    Fidopiastis, Pat M.; von Boletzky, Sigurd; Ruby, Edward G.

    1998-01-01

    Two genera of sepiolid squids—Euprymna, found primarily in shallow, coastal waters of Hawaii and the Western Pacific, and Sepiola, the deeper-, colder-water-dwelling Mediterranean and Atlantic squids—are known to recruit luminous bacteria into light organ symbioses. The light organ symbiont of Euprymna spp. is Vibrio fischeri, but until now, the light organ symbionts of Sepiola spp. have remained inadequately identified. We used a combination of molecular and physiological characteristics to ...

  19. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis.

    Science.gov (United States)

    Ruby, E G; Asato, L M

    1993-01-01

    A pure culture of the luminous bacterium Vibrio fischeri is maintained in the light-emitting organ of the sepiolid squid Euprymna scolopes. When the juvenile squid emerges from its egg it is symbiont-free and, because bioluminescence is part of an anti-predatory behavior, therefore must obtain a bacterial inoculum from the surrounding environment. We document here the kinetics of the process by which newly hatched juvenile squids become infected by symbiosis-competent V. fischeri. When placed in seawater containing as few as 240 colony-forming-units (CFU) per ml, the juvenile became detectably bioluminescent within a few hours. Colonization of the nascent light organ was initiated with as few as 1 to 10 bacteria, which rapidly began to grow at an exponential rate until they reached a population size of approximately 10(5) cells by 12 h after the initial infection. Subsequently, the number of bacteria in the established symbiosis was maintained essentially constant by a combination of both a > 20-fold reduction in bacterial growth rate, and an expulsion of excess bacteria into the surrounding seawater. While V. fischeri cells are normally flagellated and motile, these bacteria did not elaborate these appendages once the symbiosis was established; however, they quickly began to synthesize flagella when they were removed from the light organ environment. Thus, two important biological characteristics, growth rate and flagellation, were modulated during establishment of the association, perhaps as part of a coordinated series of symbiotic responses.

  20. Alterations in the proteome of the Euprymna scolopes light organ in response to symbiotic Vibrio fischeri.

    Science.gov (United States)

    Doino Lemus, J; McFall-Ngai, M J

    2000-09-01

    During the onset of the cooperative association between the Hawaiian sepiolid squid Euprymna scolopes and the marine luminous bacterium Vibrio fischeri, the anatomy and morphology of the host's symbiotic organ undergo dramatic changes that require interaction with the bacteria. This morphogenetic process involves an array of tissues, including those in direct contact with, as well as those remote from, the symbiotic bacteria. The bacteria induce the developmental program soon after colonization of the organ, although complete morphogenesis requires 96 h. In this study, to determine critical time points, we examined the biochemistry underlying bacterium-induced host development using two-dimensional polyacrylamide gel electrophoresis. Specifically, V. fischeri-induced changes in the soluble proteome of the symbiotic organ during the first 96 h of symbiosis were identified by comparing the protein profiles of symbiont-colonized and uncolonized organs. Both symbiosis-related changes and age-related changes were analyzed to determine what proportion of the differences in the proteomes was the result of specific responses to interaction with bacteria. Although no differences were detected over the first 24 h, numerous symbiosis-related changes became apparent at 48 and 96 h and were more abundant than age-related changes. In addition, many age-related protein changes occurred 48 h sooner in symbiotic animals, suggesting that the interaction of squid tissue with V. fischeri cells accelerates certain developmental processes of the symbiotic organ. These data suggest that V. fischeri-induced modifications in host tissues that occur in the first 24 h of the symbiosis are independent of marked alterations in the patterns of abundant proteins but that the full 4-day morphogenetic program requires significant alteration of the host soluble proteome.

  1. Physical and functional maps of the luminescence gene cluster in an autoinducer-deficient Vibrio fischeri strain isolated from a squid light organ.

    Science.gov (United States)

    Gray, K M; Greenberg, E P

    1992-07-01

    Vibrio fischeri ES114 is an isolate representing the specific bacterial light organ symbiont of the squid Euprymna scolopes. An interesting feature of this strain of V. fischeri is that it is visibly luminous within the light organ of the squid host but is nonluminous when grown under standard laboratory conditions. Luminescence can be restored in laboratory culture, however, by the addition of autoinducer, a species-specific inducer of the V. fischeri luminescence (lux) genes. Most other isolates of V. fischeri produce autoinducer in sufficient quantities to induce luminescence in laboratory culture. We have cloned an 8.8-kb DNA fragment from V. fischeri ES114 that encodes all of the functions necessary for luminescence in Escherichia coli in the absence of exogenous autoinducer. This DNA contains both of the recognized V. fischeri lux regulatory genes, one of which (luxI) directs E. coli to synthesize autoinducer. The organization of the individual lux genes within this DNA fragment appears to be the same as that in the other strains of V. fischeri studied; the restriction map of the V. fischeri ES114 lux DNA has diverged substantially, however, from the largely conserved maps of V. fischeri MJ1 and ATCC 7744. Although E. coli containing the V. fischeri ES114 lux DNA synthesizes considerable amounts of autoinducer, V. fischeri ES114 synthesizes autoinducer only in small amounts, even when transcription of the lux genes, including luxI, is activated by the addition of exogenous autoinducer. Nonetheless, transconjugants of V. fischeri ES114 that contain multicopy plasmids bearing the ES114 lux genes synthesize sufficient autoinducer to induce luminescence. These results suggest that V. fischeri ES11r does not lack a functional luxl, nor is it deficient in the ability to synthesize metabolic precursors for autoinducer synthesis.

  2. Entry of Vibrio harveyi and Vibrio fischeri into the viable but nonculturable state.

    Science.gov (United States)

    Ramaiah, N; Ravel, J; Straube, W L; Hill, R T; Colwell, R R

    2002-01-01

    Physiological responses of marine luminous bacteria, Vibrio harveyi (ATCC 14216) and V. fischeri (UM1373) to nutrient-limited normal strength (35 ppt iso-osmolarity) and low (10 ppt hypo-osmolarity) salinity conditions were determined. Plate counts, direct viable counts, actively respiring cell counts, nucleoid-containing cell counts, and total counts were determined. Vibrio harveyi incubated at 22 degrees C in nutrient-limited artificial seawater (ASW) became nonculturable after approximately 62 and 45 d in microcosms of 35 ppt and 10 ppt ASW, respectively. In contrast, V. fischeri became nonculturable at approximately 55 and 31 d in similar microcosms. Recovery of both culturability and luminescence of cells in the viable but nonculturable state was achieved by addition of nutrient broth or nutrient broth supplemented with a carbon source, including luminescence-stimulating compounds. Temperature upshift from 22 degrees C to 30 degrees C or 37 degrees C did not result in recovery from nonculturability. The study confirms entry of V. harveyi and V. fischeri into the viable but nonculturable state under low-nutrient conditions and demonstrates nutrient-dependent resuscitation from this state. This study confirms loss of luminescence of V. harveyi and V. fischeri on entry into the viable but nonculturable state and suggests that enumeration of luminescent cells in water samples may be a rapid method to deduce the nutrient status of a water sample.

  3. Competition between Vibrio fischeri strains during initiation and maintenance of a light organ symbiosis.

    OpenAIRE

    Lee, K H; Ruby, E G

    1994-01-01

    Colonization of the light-emitting organ of the Hawaiian squid Euprymna scolopes is initiated when the nascent organ of a newly hatched squid becomes inoculated with Vibrio fischeri cells present in the ambient seawater. Although they are induced for luminescence in the light organ, these symbiotic strains are characteristically non-visibly luminous (NVL) when grown in laboratory culture. The more typical visibly luminous (VL) type of V. fischeri co-occurs in Hawaiian seawater with these NVL ...

  4. Aposymbiotic culture of the sepiolid squid Euprymna scolopes: role of the symbiotic bacterium Vibrio fischeri in host animal growth, development, and light organ morphogenesis.

    Science.gov (United States)

    Claes, M F; Dunlap, P V

    2000-02-15

    The sepiolid squid Euprymna scolopes forms a bioluminescent mutualism with the luminous bacterium Vibrio fischeri, harboring V. fischeri cells in a complex ventral light organ and using the bacterial light in predator avoidance. To characterize the contribution of V. fischeri to the growth and development of E. scolopes and to define the long-term effects of bacterial colonization on light organ morphogenesis, we developed a mariculture system for the culture of E. scolopes from hatching to adulthood, employing artificial seawater, lighting that mimicked that of the natural environment, and provision of prey sized to match the developmental stage of E. scolopes. Animals colonized by V. fischeri and animals cultured in the absence of V. fischeri (aposymbiotic) grew and survived equally well, developed similarly, and reached sexual maturity at a similar age. Development of the light organ accessory tissues (lens, reflectors, and ink sac) was similar in colonized and aposymbiotic animals with no obvious morphometric or histological differences. Colonization by V. fischeri influenced regression of the ciliated epithelial appendages (CEAs), the long-term growth of the light organ epithelial tubules, and the appearance of the cells composing the ciliated ducts, which exhibit characteristics of secretory tissue. In certain cases, aposymbiotic animals retained the CEAs in a partially regressed state and remained competent to initiate symbiosis with V. fischeri into adulthood. In other cases, the CEAs regressed fully in aposymbiotic animals, and these animals were not colonizable. The results demonstrate that V. fischeri is not required for normal growth and development of the animal or for development of the accessory light organ tissues and that morphogenesis of only those tissues coming in contact with the bacteria (CEAs, ciliated ducts, and light organ epithelium) is altered by bacterial colonization of the light organ. Therefore, V. fischeri apparently makes no major

  5. A new niche for Vibrio logei, the predominant light organ symbiont of squids in the genus Sepiola.

    Science.gov (United States)

    Fidopiastis, P M; von Boletzky, S; Ruby, E G

    1998-01-01

    Two genera of sepiolid squids--Euprymna, found primarily in shallow, coastal waters of Hawaii and the Western Pacific, and Sepiola, the deeper-, colder-water-dwelling Mediterranean and Atlantic squids--are known to recruit luminous bacteria into light organ symbioses. The light organ symbiont of Euprymna spp. is Vibrio fischeri, but until now, the light organ symbionts of Sepiola spp. have remained inadequately identified. We used a combination of molecular and physiological characteristics to reveal that the light organs of Sepiola affinis and Sepiola robusta contain a mixed population of Vibrio logei and V. fischeri, with V. logei comprising between 63 and 100% of the bacteria in the light organs that we analyzed. V. logei had not previously been known to exist in such symbioses. In addition, this is the first report of two different species of luminous bacteria co-occurring within a single light organ. The luminescence of these symbiotic V. logei strains, as well as that of other isolates of V. logei tested, is reduced when they are grown at temperatures above 20 degrees C, partly due to a limitation in the synthesis of aliphatic aldehyde, a substrate of the luminescence reaction. In contrast, the luminescence of the V. fischeri symbionts is optimal above 24 degrees C and is not enhanced by aldehyde addition. Also, V. fischeri strains were markedly more successful than V. logei at colonizing the light organs of juvenile Euprymna scolopes, especially at 26 degrees C. These findings have important implications for our understanding of the ecological dynamics and evolution of cooperative, and perhaps pathogenic, associations of Vibrio spp. with their animal hosts.

  6. Symbiotic Role of the Viable but Nonculturable State of Vibrio fischeri in Hawaiian Coastal Seawater.

    Science.gov (United States)

    Lee, K; Ruby, E G

    1995-01-01

    To achieve functional bioluminescence, the developing light organ of newly hatched juveniles of the Hawaiian squid Euprymna scolopes must become colonized by luminous, symbiosis-competent Vibrio fischeri present in the ambient seawater. This benign infection occurs rapidly in animals placed in seawater from the host's natural habitat. Therefore, it was surprising that colony hybridization studies with a V. fischeri-specific luxA gene probe indicated the presence of only about 2 CFU of V. fischeri per ml of this infective seawater. To examine this paradox, we estimated the total concentration of V. fischeri cells present in seawater from the host's habitat in two additional ways. In the first approach, the total bacterial assemblage in samples of seawater was collected on polycarbonate membrane filters and used as a source of both a crude cell lysate and purified DNA. These preparations were then assayed by quantitative DNA-DNA hybridization with the luxA gene probe. The results suggested the presence of between 200 and 400 cells of V. fischeri per ml of natural seawater, a concentration more than 100 times that revealed by colony hybridization. In the second approach, we amplified V. fischeri-specific luxA sequences from microliter volumes of natural seawater by PCR. Most-probable-number analyses of the frequency of positive PCR results from cell lysates in these small volumes gave an estimate of the concentration of V. fischeri luxA gene targets of between 130 and 1,680 copies per ml. From these measurements, we conclude that in their natural seawater environment, the majority of V. fischeri cells become nonculturable while remaining viable and symbiotically infective. Experimental studies indicated that V. fischeri cells suspended in natural Hawaiian seawater enter such a state within a few days.

  7. Construction and symbiotic competence of a luxA-deletion mutant of Vibrio fischeri.

    Science.gov (United States)

    Visick, K G; Ruby, E G

    1996-10-10

    Bioluminescence by the squid Euprymna scolopes requires colonization of its light organ by the symbiotic luminous bacterium Vibrio fischeri. Investigation of the genetic determinants underlying bacterial symbiotic competence in this system has necessitated the continuing establishment and application of molecular genetic techniques in V. fischeri. We developed a procedure for the introduction of plasmid DNA into V. fischeri by electroporation, and isolated a mutant strain that overcame the apparent restriction barrier between V. fischeri and Escherichia coli. Using the technique of electroporation in combination with that of gene replacement, we constructed a non-luminous strain of V. fischeri (delta luxA::erm). In addition, we used the transducing phage rp-1 for the first time to transfer a chromosomal antibiotic resistance marker to another strain of V. fischeri. The luxA mutant was able to colonize E. scolopes as quickly and to the same extent as wild type. This result suggested that, at least during the initial stages of colonization, luminescence per se is not an essential factor for the symbiotic infection.

  8. Identifying the cellular mechanisms of symbiont-induced epithelial morphogenesis in the squid-Vibrio association.

    Science.gov (United States)

    Koropatnick, Tanya; Goodson, Michael S; Heath-Heckman, Elizabeth A C; McFall-Ngai, Margaret

    2014-02-01

    The symbiotic association between the Hawaiian bobtail squid Euprymna scolopes and the luminous marine bacterium Vibrio fischeri provides a unique opportunity to study epithelial morphogenesis. Shortly after hatching, the squid host harvests bacteria from the seawater using currents created by two elaborate fields of ciliated epithelia on the surface of the juvenile light organ. After light organ colonization, the symbiont population signals the gradual loss of the ciliated epithelia through apoptosis of the cells, which culminates in the complete regression of these tissues. Whereas aspects of this process have been studied at the morphological, biochemical, and molecular levels, no in-depth analysis of the cellular events has been reported. Here we describe the cellular structure of the epithelial field and present evidence that the symbiosis-induced regression occurs in two steps. Using confocal microscopic analyses, we observed an initial epithelial remodeling, which serves to disable the function of the harvesting apparatus, followed by a protracted regression involving actin rearrangements and epithelial cell extrusion. We identified a metal-dependent gelatinolytic activity in the symbiont-induced morphogenic epithelial fields, suggesting the involvement of Zn-dependent matrix metalloproteinase(s) (MMP) in light organ morphogenesis. These data show that the bacterial symbionts not only induce apoptosis of the field, but also change the form, function, and biochemistry of the cells as part of the morphogenic program.

  9. Polyphyly of non-bioluminescent Vibrio fischeri sharing a lux-locus deletion.

    Science.gov (United States)

    Wollenberg, M S; Preheim, S P; Polz, M F; Ruby, E G

    2012-03-01

    This study reports the first description and molecular characterization of naturally occurring, non-bioluminescent strains of Vibrio fischeri. These 'dark' V. fischeri strains remained non-bioluminescent even after treatment with both autoinducer and aldehyde, substrate additions that typically maximize light production in dim strains of luminous bacteria. Surprisingly, the entire lux locus (eight genes) was absent in over 97% of these dark V. fischeri strains. Although these strains were all collected from a Massachusetts (USA) estuary in 2007, phylogenetic reconstructions allowed us to reject the hypothesis that these newly described non-bioluminescent strains exhibit monophyly within the V. fischeri clade. These dark strains exhibited a competitive disadvantage against native bioluminescent strains when colonizing the light organ of the model V. fischeri host, the Hawaiian bobtail squid Euprymna scolopes. Significantly, we believe that the data collected in this study may suggest the first observation of a functional, parallel locus-deletion event among independent lineages of a non-pathogenic bacterial species. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  10. Anaerobic respiratory growth of Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi with trimethylamine N-oxide, nitrate and fumarate: ecological implications.

    Science.gov (United States)

    Proctor, L M; Gunsalus, R P

    2000-08-01

    Two symbiotic species, Photobacterium leiognathi and Vibrio fischeri, and one non-symbiotic species, Vibrio harveyi, of the Vibrionaceae were tested for their ability to grow by anaerobic respiration on various electron acceptors, including trimethylamine N-oxide (TMAO) and dimethylsulphoxide (DMSO), compounds common in the marine environment. Each species was able to grow anaerobically with TMAO, nitrate or fumarate, but not with DMSO, as an electron acceptor. Cell growth under microaerophilic growth conditions resulted in elevated levels of TMAO reductase, nitrate reductase and fumarate reductase activity in each strain, whereas growth in the presence of the respective substrate for each enzyme further elevated enzyme activity. TMAO reductase specific activity was the highest of all the reductases. Interestingly, the bacteria-colonized light organs from the two squids, Euprymna scolopes and Euprymna morsei, and the light organ of the ponyfish, Leiognathus equus, also had high levels of TMAO reductase enzyme activity, in contrast to non-symbiotic tissues. The ability of these bacterial symbionts to support cell growth by respiration with TMAO may conceivably eliminate the competition for oxygen needed for both bioluminescence and metabolism.

  11. Toxicity assessment of ionic liquids with Vibrio fischeri: an alternative fully automated methodology.

    Science.gov (United States)

    Costa, Susana P F; Pinto, Paula C A G; Lapa, Rui A S; Saraiva, M Lúcia M F S

    2015-03-02

    A fully automated Vibrio fischeri methodology based on sequential injection analysis (SIA) has been developed. The methodology was based on the aspiration of 75 μL of bacteria and 50 μL of inhibitor followed by measurement of the luminescence of bacteria. The assays were conducted for contact times of 5, 15, and 30 min, by means of three mixing chambers that ensured adequate mixing conditions. The optimized methodology provided a precise control of the reaction conditions which is an asset for the analysis of a large number of samples. The developed methodology was applied to the evaluation of the impact of a set of ionic liquids (ILs) on V. fischeri and the results were compared with those provided by a conventional assay kit (Biotox(®)). The collected data evidenced the influence of different cation head groups and anion moieties on the toxicity of ILs. Generally, aromatic cations and fluorine-containing anions displayed higher impact on V. fischeri, evidenced by lower EC50. The proposed methodology was validated through statistical analysis which demonstrated a strong positive correlation (P>0.98) between assays. It is expected that the automated methodology can be tested for more classes of compounds and used as alternative to microplate based V. fischeri assay kits. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Interactions between bicarbonate, potassium, and magnesium, and sulfur-dependent induction of luminescence in Vibrio fischeri.

    Science.gov (United States)

    Tabei, Yosuke; Era, Mariko; Ogawa, Akane; Morita, Hiroshi

    2012-06-01

    In spite of its central importance in research efforts, the relationship between seawater compounds and bacterial luminescence has not previously been investigated in detail. Thus, in this study, we investigated the effect of cations (Na(+) , K(+) , NH(4) (+) , Mg(2+) , and Ca(2+) ) and anions (Cl(-) , HCO(3) (-) , CO(3) (2-) , and NO(3) (-) ) on the induction of both inorganic (sulfate, sulfite, and thiosulfate) and organic (L-cysteine and L-cystine) sulfur-dependent luminescence in Vibrio fischeri. We found that HCO(3) (-) (bicarbonate) and CO(3) (2-) (carbonate), in the form of various compounds, had a stimulatory effect on sulfur-dependent luminescence. The luminescence induced by bicarbonate was further promoted by the addition of magnesium. Potassium also increased sulfur-dependent luminescence when sulfate or thiosulfate was supplied as the sole sulfur source, but not when sulfite, L-cysteine, or L-cystine was supplied. The positive effect of potassium was accelerated by the addition of magnesium and/or calcium. Furthermore, the additional supply of magnesium improved the induction of sulfite- or L-cysteine-dependent luminescence, but not the l-cystine-dependent type. These results suggest that sulfur-dependent luminescence of V. fischeri under nutrient-starved conditions is mainly controlled by bicarbonate, carbonate, and potassium. In addition, our results indicate that an additional supply of magnesium is effective for increasing V. fischeri luminescence. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Iron control of the Vibrio fischeri luminescence system in Escherichia coli.

    Science.gov (United States)

    Dunlap, P V

    1992-01-01

    Iron influences luminescence in Vibrio fischeri; cultures iron-restricted for growth rate induce luminescence at a lower optical density (OD) than faster growing, iron-replete cultures. An iron restriction effect analogous to that in V. fischeri (slower growth, induction of luminescence at a lower OD) was established using Escherichia coli tonB and tonB+ strains transformed with recombinant plasmids containing the V. fischeri lux genes (luxR luxICDABEG) and grown in the presence and absence of the iron chelator ethylenediamine-di(o-hydroxylphenyl acetic acid) (EDDHA). This permitted the mechanism of iron control of luminescence to be examined. A fur mutant and its parent strain containing the intact lux genes exhibited no difference in the OD at induction of luminescence. Therefore, an iron-binding repressor protein apparently is not involved in iron control of luminescence. Furthermore, in the tonB and in tonB+ strains containing lux plasmids with Mu dI(lacZ) fusions in luxR, levels of beta-galactosidase activity (expression from the luxR promoter) and luciferase activity (expression from the luxICDABEG promoter) both increased by a similar amount (8-9 fold each for tonB, 2-3 fold each for tonB+) in the presence of EDDHA. Similar results were obtained with the luxR gene present on a complementing plasmid. The previously identified regulatory factors that control the lux system (autoinducer-LuxR protein, cyclic AMP-cAMP receptor protein) differentially control expression from the luxR and luxICDABEG promoters, increasing expression from one while decreasing expression from the other. Consequently, these results suggest that the effect of iron on the V. fischeri luminescence system is indirect.

  14. Competition between Vibrio fischeri strains during initiation and maintenance of a light organ symbiosis.

    Science.gov (United States)

    Lee, K H; Ruby, E G

    1994-04-01

    Colonization of the light-emitting organ of the Hawaiian squid Euprymna scolopes is initiated when the nascent organ of a newly hatched squid becomes inoculated with Vibrio fischeri cells present in the ambient seawater. Although they are induced for luminescence in the light organ, these symbiotic strains are characteristically non-visibly luminous (NVL) when grown in laboratory culture. The more typical visibly luminous (VL) type of V. fischeri co-occurs in Hawaiian seawater with these NVL strains; thus, two phenotypically distinct groups of this species potentially have access to the symbiotic niche, yet only the NVL ones are found there. In laboratory inoculation experiments, VL strains, when presented in pure culture, showed the same capability for colonizing the light organ as NVL strains. However, in experiments with mixed cultures composed of both VL and NVL strains, the VL ones were unable to compete with the NVL ones and did not persist within the light organ as the symbiosis became established. In addition, NVL strains entered light organs that had already been colonized by VL strains and displaced them. The mechanism underlying the symbiotic competitiveness exhibited by NVL strains remains unknown; however, it does not appear to be due to a higher potential for siderophore activity. While a difference in luminescence phenotype between VL and NVL strains in culture is not likely to be significant in the symbiosis, it has helped identify two distinct groups of V. fischeri that express different colonization capabilities in the squid light organ. This competitive difference provides a useful indication of important traits in light organ colonization.

  15. Induction of a gradual, reversible morphogenesis of its host's epithelial brush border by Vibrio fischeri.

    Science.gov (United States)

    Lamarcq, L H; McFall-Ngai, M J

    1998-02-01

    Bacteria exert a variety of influences on the morphology and physiology of animal cells whether they are pathogens or cooperative partners. The association between the luminous bacterium Vibrio fischeri and the sepiolid squid Euprymna scolopes provides an experimental model for the study of the influence of extracellular bacteria on the development of host epithelia. In this study, we analyzed bacterium-induced changes in the brush borders of the light organ crypt epithelia during the initial hours following colonization of this tissue. Transmission electron microscopy of the brush border morphology in colonized and uncolonized hosts revealed that the bacteria effect a fourfold increase in microvillar density over the first 4 days of the association. Estimates of the proportions of bacterial cells in contact with host microvilli showed that the intimacy of the bacterial cells with animal cell surfaces increases significantly during this time. Antibiotic curing of the organ following colonization showed that sustained interaction with bacteria is essential for the retention of the induced morphological changes. Bacteria that are defective in either light production or colonization efficiency produced changes similar to those by the parent strain. Conventional fluorescence and confocal scanning laser microscopy revealed that the brush border is supported by abundant filamentous actin. However, in situ hybridization with beta-actin probes did not show marked bacterium-induced increases in beta-actin gene expression. These experiments demonstrate that the E. scolopes-V. fischeri system is a viable model for the experimental study of bacterium-induced changes in host brush border morphology.

  16. Noise and crosstalk in two quorum-sensing inputs of Vibrio fischeri

    Directory of Open Access Journals (Sweden)

    Weiss Joel T

    2011-09-01

    Full Text Available Abstract Background One of the puzzles in bacterial quorum sensing is understanding how an organism integrates the information gained from multiple input signals. The marine bacterium Vibrio fischeri regulates its bioluminescence through a quorum sensing mechanism that receives input from three pheromone signals, including two acyl homoserine lactone (HSL signals. While the role of the 3-oxo-C6 homoserine lactone (3OC6HSL signal in activating the lux genes has been extensively studied and modeled, the role of the C8 homoserine lactone (C8HSL is less obvious, as it can either activate luminescence or block its activation. It remains unclear how crosstalk between C8HSL and 3OC6HSL affects the information that the bacterium obtains through quorum sensing. Results We have used microfluidic methods to measure the response of individual V.fischeri cells to combinations of C8HSL and 3OC6HSL. By measuring the fluorescence of individual V.fischeri cells containing a chromosomal gfp-reporter for the lux genes, we study how combinations of exogenous HSLs affect both the population average and the cell-to-cell variability of lux activation levels. At the level of a population average, the crosstalk between the C8HSL and 3OC6HSL inputs is well-described by a competitive inhibition model. At the level of individual cells, the heterogeneity in the lux response depends only on the average degree of activation, so that the noise in the output is not reduced by the presence of the second HSL signal. Overall we find that the mutual information between the signal inputs and the lux output is less than one bit. A nonlinear correlation between fluorescence and bioluminescence outputs from lux leads to different noise properties for these reporters. Conclusions The lux genes in V.fischeri do not appear to distinguish between the two HSL inputs, and even with two signal inputs the regulation of lux is extremely noisy. Hence the role of crosstalk from the C8HSL input

  17. Reduction of acute toxicity of the pharmaceutical fluoxetine (Prozac) submitted to ionizing radiation to Vibrio fischeri

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Dymes R.A.; Garcia, Vanessa S.G.; Vilarrubia, Anna C.S.; Borrely, Sueli I., E-mail: vanessagarcia@usp.br, E-mail: sborrely@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The constant use of pharmaceutical drugs by great part of the population and its continuous input into the environment creates a growing need of investigating its presence, behavior and the effects on aquatic biota, as well as new ways to treat wastewater containing such substances. The fluoxetine hydrochloride (FH) present in the drug Prozac is an active ingredient used in the treatment of depressive and anxiety disorders. Generally, these compounds enter the aquatic environment by sewage collectors systems after undergoing prior treatment in sewage treatment plants (STPs) or without any treatment. This study focused on evaluating the reduction of acute toxicity of the pharmaceutical FH, under its manipulated formula, for the marine bacterium Vibrio fischeri. It was also evaluated the acute toxicity of the aqueous solution containing the FH after its exposition to ionizing radiation from industrial electron accelerator. It was performed acute toxicity tests lasting 15 minutes, where the average EC (50) of the non-irradiated CF water solution was approximately 0.68 mg L-1. While the CF water solution irradiated with 1 kGy, 2.5 kGy, 7.5 kGy and 10 kGy, presented an average EC(50) 1.63 mg.L{sup -1}, 2.34 mg.L{sup -1}, 2.35 mg.L{sup -1} and 1.80 mg.L{sup -1}, respectively, showing a notable reduction of the acute toxicity for this organism. (author)

  18. Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva estuary.

    Science.gov (United States)

    Rosado, Daniel; Usero, José; Morillo, José

    2016-06-01

    Relationship between toxicity and bioavailable metals in sediments from the Huelva estuary and its littoral of influence was analyzed. Toxicity was assessed with Microtox® bioassay using a marine luminescent bacterium: Vibrio fischeri. Bioavailable metals were considered as both, acid extractable fraction of BCR procedure and the sum of exchangeable and bound to carbonates fractions of Tessier sequential extraction. A bioavailable metals index was calculated to integrate results in a single figure. Toxicity and bioavailable metals showed a similar pattern. Higher levels were found in the estuary than in the littoral (140 TU/g). In Huelva estuary, highest levels were found in the Tinto estuary (5725 TU/g), followed by the Odiel estuary (5100 TU/g) and the Padre Santo Canal (2500 TU/g). Results in this area were well over than those in nearby estuaries. Furthermore, they are similar to or even higher than those in other polluted sediments around the world. Bioavailable metal index showed a stronger correlation with acid extractable fraction of BCR (R(2) = 0.704) than that for the sum of exchangeable and bound to carbonates fractions of Tessier (R(2) = 0.661). These results suggest that bioavailable metals are an important source of sediment toxicity in the Huelva estuary and its littoral of influence, an area with one of the highest mortality risks of Spain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Reduction of acute toxicity of the pharmaceutical fluoxetine (Prozac) submitted to ionizing radiation to Vibrio fischeri

    International Nuclear Information System (INIS)

    Santos, Dymes R.A.; Garcia, Vanessa S.G.; Vilarrubia, Anna C.S.; Borrely, Sueli I.

    2011-01-01

    The constant use of pharmaceutical drugs by great part of the population and its continuous input into the environment creates a growing need of investigating its presence, behavior and the effects on aquatic biota, as well as new ways to treat wastewater containing such substances. The fluoxetine hydrochloride (FH) present in the drug Prozac is an active ingredient used in the treatment of depressive and anxiety disorders. Generally, these compounds enter the aquatic environment by sewage collectors systems after undergoing prior treatment in sewage treatment plants (STPs) or without any treatment. This study focused on evaluating the reduction of acute toxicity of the pharmaceutical FH, under its manipulated formula, for the marine bacterium Vibrio fischeri. It was also evaluated the acute toxicity of the aqueous solution containing the FH after its exposition to ionizing radiation from industrial electron accelerator. It was performed acute toxicity tests lasting 15 minutes, where the average EC (50) of the non-irradiated CF water solution was approximately 0.68 mg L-1. While the CF water solution irradiated with 1 kGy, 2.5 kGy, 7.5 kGy and 10 kGy, presented an average EC(50) 1.63 mg.L -1 , 2.34 mg.L -1 , 2.35 mg.L -1 and 1.80 mg.L -1 , respectively, showing a notable reduction of the acute toxicity for this organism. (author)

  20. Influence of Select Antibiotics on Vibrio fischeri and Desmodesmus subspicatus at μg L-1 Concentrations.

    Science.gov (United States)

    de Vasconcelos, E C; Dalke, C R; de Oliveira, C M R

    2017-07-01

    The presence of pharmaceuticals in the aquatic environment is a contemporary reality and it is necessary to understand more about the effects of this presence on organisms. The purpose of this work was to assess the ecotoxicity of antibiotics metronidazole, nitrofurantoin, trimethoprim, and sulphamethoxazole (single and mixture) in Vibrio fischeri and Desmodesmus subspicatus at μg L -1 concentrations. The evaluation of the toxic effect of the antibiotics on V. fischeri and D. subspicatus was based on fluorescence and bioluminescence tests, respectively, using nominal concentrations. When tested individually, the four antibiotics gave rise to a toxic effect on the evaluated organisms. Sulphamethoxazole caused a higher toxic effect on V. fischeri and D. subspicatus from 7.81 to 500 μg L -1 . Trimethoprim and sulphamethoxazole showed hormesis for the concentrations, which ranged from 7.81 to 62.5 μg L -1 . The mixture of antibiotics induced a toxic effect on the V. fischeri and D. subspicatus organisms (from 0.03 to 1 μg L -1 concentrations) than when the antibiotics were evaluated individually. These results were significant since water quality problems are widespread all over the word, and emerging pollutants such as antibiotics have been detected in the aquatic environment in very low concentrations.

  1. Lessons from a cooperative, bacterial-animal association: the Vibrio fischeri-Euprymna scolopes light organ symbiosis.

    Science.gov (United States)

    Ruby, E G

    1996-01-01

    Although the study of microbe-host interactions has been traditionally dominated by an interest in pathogenic associations, there is an increasing awareness of the importance of cooperative symbiotic interactions in the biology of many bacteria and their animal and plant hosts. This review examines a model system for the study of such symbioses, the light organ association between the bobtail squid Euprymna scolopes and the marine luminous bacterium Vibrio fischeri. Specifically, the initiation, establishment, and persistence of the benign bacterial infection of the juvenile host light organ are described, as are efforts to understand the mechanisms underlying this specific colonization program. Using molecular genetic techniques, mutant strains of V. fischeri have been constructed that are defective at specific stages of the development of the association. Some of the lessons that these mutants have begun to teach us about the complex and long-term nature of this cooperative venture are summarized.

  2. Acute and Chronic Toxicity of Soluble Fractions of Industrial Solid Wastes on Daphnia magna and Vibrio fischeri

    Directory of Open Access Journals (Sweden)

    Letícia Flohr

    2012-01-01

    Full Text Available Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3 induced the highest toxicity level to Daphnia magna(CE50,48 h=2.21%. A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE50,30 min=12.08%. All samples of pulp and paper wastes, and a textile waste (sample TX2 induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method.

  3. Purification and crystallization of Vibrio fischeri CcdB and its complexes with fragments of gyrase and CcdA

    Energy Technology Data Exchange (ETDEWEB)

    De Jonge, Natalie, E-mail: ndejonge@vub.ac.be; Buts, Lieven; Vangelooven, Joris [Department of Molecular and Cellular Interactions, VIB, Pleinlaan 2, 1050 Brussels (Belgium); Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium); Mine, Natacha; Van Melderen, Laurence [Laboratoire de Génétique des Procaryotes, Institut de Biologie et de Médecine, Université Libre de Bruxelles, Gosselies (Belgium); Wyns, Lode; Loris, Remy [Department of Molecular and Cellular Interactions, VIB, Pleinlaan 2, 1050 Brussels (Belgium); Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels (Belgium)

    2007-04-01

    A CcdB homologue from V. fischeri was overexpressed in E. coli and purified. The free protein was crystallized, as were its complexes with fragments of E. coli and V. fischeri gyrase and with the F-plasmid CcdA C-terminal domain. The ccd toxin–antitoxin module from the Escherichia coli F plasmid has a homologue on the Vibrio fischeri integron. The homologue of the toxin (CcdB{sub Vfi}) was crystallized in two different crystal forms. The first form belongs to space group I23 or I2{sub 1}3, with unit-cell parameter a = 84.5 Å, and diffracts to 1.5 Å resolution. The second crystal form belongs to space group C2, with unit-cell parameters a = 58.5, b = 43.6, c = 37.5 Å, β = 110.0°, and diffracts to 1.7 Å resolution. The complex of CcdB{sub Vfi} with the GyrA14{sub Vfi} fragment of V. fischeri gyrase crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.5, b = 94.6, c = 58.1 Å, and diffracts to 2.2 Å resolution. The corresponding mixed complex with E. coli GyrA14{sub Ec} crystallizes in space group C2, with unit-cell parameters a = 130.1, b = 90.8, c = 58.1 Å, β = 102.6°, and diffracts to 1.95 Å. Finally, a complex between CcdB{sub Vfi} and part of the F-plasmid antitoxin CcdA{sub F} crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 46.9, b = 62.6, c = 82.0 Å, and diffracts to 1.9 Å resolution.

  4. Purification and crystallization of Vibrio fischeri CcdB and its complexes with fragments of gyrase and CcdA

    International Nuclear Information System (INIS)

    De Jonge, Natalie; Buts, Lieven; Vangelooven, Joris; Mine, Natacha; Van Melderen, Laurence; Wyns, Lode; Loris, Remy

    2007-01-01

    A CcdB homologue from V. fischeri was overexpressed in E. coli and purified. The free protein was crystallized, as were its complexes with fragments of E. coli and V. fischeri gyrase and with the F-plasmid CcdA C-terminal domain. The ccd toxin–antitoxin module from the Escherichia coli F plasmid has a homologue on the Vibrio fischeri integron. The homologue of the toxin (CcdB Vfi ) was crystallized in two different crystal forms. The first form belongs to space group I23 or I2 1 3, with unit-cell parameter a = 84.5 Å, and diffracts to 1.5 Å resolution. The second crystal form belongs to space group C2, with unit-cell parameters a = 58.5, b = 43.6, c = 37.5 Å, β = 110.0°, and diffracts to 1.7 Å resolution. The complex of CcdB Vfi with the GyrA14 Vfi fragment of V. fischeri gyrase crystallizes in space group P2 1 2 1 2 1 , with unit-cell parameters a = 53.5, b = 94.6, c = 58.1 Å, and diffracts to 2.2 Å resolution. The corresponding mixed complex with E. coli GyrA14 Ec crystallizes in space group C2, with unit-cell parameters a = 130.1, b = 90.8, c = 58.1 Å, β = 102.6°, and diffracts to 1.95 Å. Finally, a complex between CcdB Vfi and part of the F-plasmid antitoxin CcdA F crystallizes in space group P2 1 2 1 2 1 , with unit-cell parameters a = 46.9, b = 62.6, c = 82.0 Å, and diffracts to 1.9 Å resolution

  5. Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system.

    Science.gov (United States)

    Septer, Alecia N; Bose, Jeffrey L; Lipzen, Anna; Martin, Joel; Whistler, Cheryl; Stabb, Eric V

    2015-01-01

    The Gac/Csr regulatory system is conserved throughout the γ-proteobacteria and controls key pathways in central carbon metabolism, quorum sensing, biofilm formation and virulence in important plant and animal pathogens. Here we show that elevated intracellular citrate levels in a Vibrio fischeri aconitase mutant correlate with activation of the Gac/Csr cascade and induction of bright luminescence. Spontaneous or directed mutations in the gene that encodes citrate synthase reversed the bright luminescence of aconitase mutants, eliminated their citrate accumulation and reversed their elevated expression of CsrB. Our data elucidate a correlative link between central metabolic and regulatory pathways, and they suggest that the Gac system senses a blockage at the aconitase step of the tricarboxylic acid cycle, either through elevated citrate levels or a secondary metabolic effect of citrate accumulation, and responds by modulating carbon flow and various functions associated with host colonization, including bioluminescence. © 2014 John Wiley & Sons Ltd.

  6. Bioluminescent Vibrio fischeri assays in the assessment of seasonal and spatial patterns in toxicity of contaminated river sediments

    Directory of Open Access Journals (Sweden)

    Sergio Jarque

    2016-11-01

    Full Text Available Several bacteria-based assays, notably Vibrio fischeri luminescence assays, are often used as environmental monitoring tool for toxicity in sediments that may serve as both sinks and secondary source of contamination in aquatic ecosystems. In this study, we used 30-s kinetic bioassays based on V. fischeri to evaluate the toxicity associated to sediments from five localities with different contamination inputs (Morava River and its tributary Drevnice River in the south-eastern part of the Czech Republic. Toxicity assessed as half maximal inhibitory concentration (IC50 over the course of a year-long sampling was compared in bottom sediments and freshly trapped particulate material. Standard approach based on testing of aqueous elutriates was compared with toxicity of whole sediments (contact suspension toxicity. Bottom sediments showed lower toxicity compared to freshly trapped suspended materials in all cases. On the other hand, standardized elutriates induced generally weaker effects than suspended sediments likely due to losses during the extraction process. Toxicity generally increased during winter reaching maximum peaks in early spring months in all five sites. Total organic carbon (TOC was found to be highly correlated with toxic effects. Toxicity from sites with direct industrial and agricultural water inputs also correlated with concentrations of metals, polycyclic aromatic hydrocarbons (PAHs and polychlorinated biphenyls (PCBs. Single time point sampling followed by the extraction and testing of elutriates, do not truly reflect the spatial and temporal variability in natural sediments and may lead to underestimation of ecotoxic risks.

  7. Mechanism for iron control of the Vibrio fischeri luminescence system: involvement of cyclic AMP and cyclic AMP receptor protein and modulation of DNA level.

    Science.gov (United States)

    Dunlap, P V

    1992-07-01

    Iron controls luminescence in Vibrio fischeri by an indirect but undefined mechanism. To gain insight into that mechanism, the involvement of cyclic AMP (cAMP) and cAMP receptor protein (CRP) and of modulation of DNA levels in iron control of luminescence were examined in V. fischeri and in Escherichia coli containing the cloned V. fischeri lux genes on plasmids. For V. fischeri and E. coli adenylate cyclase (cya) and CRP (crp) mutants containing intact lux genes (luxR luxICDABEG), presence of the iron chelator ethylenediamine-di(o-hydroxyphenyl acetic acid) (EDDHA) increased expression of the luminescence system like in the parent strains only in the cya mutants in the presence of added cAMP. In the E. coli strains containing a plasmid with a Mu dl(lacZ) fusion in luxR, levels of beta-galactosidase activity (expression from the luxR promoter) and luciferase activity (expression from the lux operon promoter) were both 2-3-fold higher in the presence of EDDHA in the parent strain, and for the mutants this response to EDDHA was observed only in the cya mutant in the presence of added cAMP. Therefore, cAMP and CRP are required for the iron restriction effect on luminescence, and their involvement in iron control apparently is distinct from the known differential control of transcription from the luxR and luxICDABEG promoters by cAMP-CRP. Furthermore, plasmid and chromosomal DNA levels were higher in E. coli and V. fischeri in the presence of EDDHA. The higher DNA levels correlated with an increase in expression of chromosomally encoded beta-galactosidase in E. coli and with a higher level of autoinducer in cultures of V. fischeri. These results implicate cAMP-CRP and modulation of DNA levels in the mechanism of iron control of the V. fischeri luminescence system.

  8. A Spectral-SAR Model for the Anionic-Cationic Interaction in Ionic Liquids: Application to Vibrio fischeri Ecotoxicity

    Directory of Open Access Journals (Sweden)

    Vasile Ostafe

    2007-08-01

    Full Text Available Within the recently launched the spectral-structure activity relationship (S-SARanalysis, the vectorial anionic-cationic model of a generic ionic liquid is proposed, alongwith the associated algebraic correlation factor in terms of the measured and predictedactivity norms. The reliability of the present scheme is tested by assessing the Hanschfactors, i.e. lipophylicity, polarizability and total energy, to predict the ecotoxicityendpoints of wide types of ionic liquids with ammonium, pyridinium, phosphonium,choline and imidazolium cations on the aquatic bacteria Vibrio fischeri. The results, whileconfirming the cationic dominant influence when only lipophylicity is considered,demonstrate that the anionic effect dominates all other more specific interactions. It wasalso proved that the S-SAR vectorial model predicts considerably higher activity for theionic liquids than for its anionic and cationic subsystems separately, in all consideredcases. Moreover, through applying the least norm-correlation path principle, the completetoxicological hierarchies are presented, unfolding the ecological rules of combined cationicand anionic influences in ionic liquid toxicity.

  9. Automated evaluation of pharmaceutically active ionic liquids’ (eco)toxicity through the inhibition of human carboxylesterase and Vibrio fischeri

    International Nuclear Information System (INIS)

    Costa, Susana P.F.; Justina, Vanessa D.; Bica, Katharina; Vasiloiu, Maria; Pinto, Paula C.A.G.; Saraiva, M. Lúcia M.F.S.

    2014-01-01

    Highlights: • IL-APIs toxicity on humans and aquatic environment was evaluated by inhibition assays. • The inhibition assays were implemented through automated screening bioassays. • Automation of bioassays enabled a rigorous control of the reaction conditions. • EC 50 obtained provide vital information on IL-APIs safety and potential use as drugs. -- Abstract: The toxicity of 16 pharmaceutical active ionic liquids (IL-APIs) was evaluated by automated approaches based on sequential injection analysis (SIA). The implemented bioassays were centered on the inhibition of human carboxylesterase 2 and Vibrio fischeri, in the presence of the tested compounds. The inhibitory effects were quantified by calculating the inhibitor concentration required to cause 50% of inhibition (EC 50 ). The EC 50 values demonstrated that the cetylpyridinium group was one of the most toxic cations and that the imidazolium group was the less toxic. The obtained results provide important information about the safety of the studied IL-APIs and their possible use as pharmaceutical drugs. The developed automated SIA methodologies are robust screening bioassays, and can be used as a generic tools to identify the (eco)toxicity of the structural elements of ILs, contributing to a sustainable development of drugs

  10. Phylogeographical patterns among Mediterranean sepiolid squids and their Vibrio symbionts: environment drives specificity among sympatric species.

    Science.gov (United States)

    Zamborsky, D J; Nishiguchi, M K

    2011-01-01

    Bobtail squid from the genera Sepiola and Rondeletiola (Cephalopoda: Sepiolidae) form mutualistic associations with luminous Gram-negative bacteria (Gammaproteobacteria: Vibrionaceae) from the genera Vibrio and Photobacterium. Symbiotic bacteria proliferate inside a bilobed light organ until they are actively expelled by the host into the surrounding environment on a diel basis. This event results in a dynamic symbiont population with the potential to establish the symbiosis with newly hatched sterile (axenic) juvenile sepiolids. In this study, we examined the genetic diversity found in populations of sympatric sepiolid squid species and their symbionts by the use of nested clade analysis with multiple gene analyses. Variation found in the distribution of different species of symbiotic bacteria suggests a strong influence of abiotic factors in the local environment, affecting bacterial distribution among sympatric populations of hosts. These abiotic factors include temperature differences incurred by a shallow thermocline, as well as a lack of strong coastal water movement accompanied by seasonal temperature changes in overlapping niches. Host populations are stable and do not appear to have a significant role in the formation of symbiont populations relative to their distribution across the Mediterranean Sea. Additionally, all squid species examined (Sepiola affinis, S. robusta, S. ligulata, S. intermedia, and Rondeletiola minor) are genetically distinct from one another regardless of location and demonstrate very little intraspecific variation within species. These findings suggest that physical boundaries and distance in relation to population size, and not host specificity, are important factors in limiting or defining gene flow within sympatric marine squids and their associated bacterial symbionts in the Mediterranean Sea.

  11. Relationship of the luminous bacterial symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi (family Anomalopidae) to other luminous bacteria based on bacterial luciferase (luxA) genes.

    Science.gov (United States)

    Haygood, M G

    1990-01-01

    Flashlight fishes (family Anomalopidae) have light organs that contain luminous bacterial symbionts. Although the symbionts have not yet been successfully cultured, the luciferase genes have been cloned directly from the light organ of the Caribbean species, Kryptophanaron alfredi. The goal of this project was to evaluate the relationship of the symbiont to free-living luminous bacteria by comparison of genes coding for bacterial luciferase (lux genes). Hybridization of a lux AB probe from the Kryptophanaron alfredi symbiont to DNAs from 9 strains (8 species) of luminous bacteria showed that none of the strains tested had lux genes highly similar to the symbiont. The most similar were a group consisting of Vibrio harveyi, Vibrio splendidus and Vibrio orientalis. The nucleotide sequence of the luciferase alpha subunit gene luxA) of the Kryptophanaron alfredi symbiont was determined in order to do a more detailed comparison with published luxA sequences from Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi. The hybridization results, sequence comparisons and the mol% G + C of the Kryptophanaron alfredi symbiont luxA gene suggest that the symbiont may be considered as a new species of luminous Vibrio related to Vibrio harveyi.

  12. Comparison of Toxicities to Vibrio fischeri and Fish Based on Discrimination of Excess Toxicity from Baseline Level

    Science.gov (United States)

    Wang, Xiao H.; Yu, Yang; Huang, Tao; Qin, Wei C.; Su, Li M.; Zhao, Yuan H.

    2016-01-01

    Investigations on the relationship of toxicities between species play an important role in the understanding of toxic mechanisms to environmental organisms. In this paper, the toxicity data of 949 chemicals to fish and 1470 chemicals to V. fischeri were used to investigate the modes of action (MOAs) between species. The results show that although there is a positive interspecies correlation, the relationship is poor. Analysis on the excess toxicity calculated from toxic ratios (TR) shows that many chemicals have close toxicities and share the same MOAs between the two species. Linear relationships between the toxicities and octanol/water partition coefficient (log KOW) for baseline and less inert compounds indicate that the internal critical concentrations (CBRs) approach a constant both to fish and V. fischeri for neutral hydrophobic compounds. These compounds share the same toxic mechanisms and bio-uptake processes between species. On the other hand, some hydrophilic compounds exhibit different toxic effects with greatly different log TR values between V. fischeri and fish species. These hydrophilic compounds were identified as reactive MOAs to V. fischeri, but not to fish. The interspecies correlation is improved by adding a hydrophobic descriptor into the correlation equation. This indicates that the differences in the toxic ratios between fish and V. fischeri for these hydrophilic compounds can be partly attributed to the differences of bioconcentration between the two species, rather than the differences of reactivity with the target macromolecules. These hydrophilic compounds may more easily pass through the cell membrane of V. fischeri than the gill and skin of fish, react with the target macromolecules and exhibit excess toxicity. The compounds with log KOW > 7 exhibiting very low toxicity (log TR toxicity and MOAs. PMID:26901437

  13. Temperature affects species distribution in symbiotic populations of Vibrio spp.

    Science.gov (United States)

    Nishiguchi, M K

    2000-08-01

    The genus Sepiola (Cephalopoda: Sepiolidae) contains 10 known species that occur in the Mediterranean Sea today. All Sepiola species have a light organ that contains at least one of two species of luminous bacteria, Vibrio fischeri and Vibrio logei. The two Vibrio species coexist in at least four Sepiola species (S. affinis, S. intermedia, S. ligulata, and S. robusta), and their concentrations in the light organ depend on changes in certain abiotic factors, including temperature. Strains of V. fischeri grew faster in vitro and in Sepiola juveniles when they were incubated at 26 degrees C. In contrast, strains of V. logei grew faster at 18 degrees C in culture and in Sepiola juveniles. When aposymbiotic S. affinis or S. ligulata juveniles were inoculated with one Vibrio species, all strains of V. fischeri and V. logei were capable of infecting both squid species at the optimum growth temperatures, regardless of the squid host from which the bacteria were initially isolated. However, when two different strains of V. fischeri and V. logei were placed in direct competition with each other at either 18 or 26 degrees C, strains of V. fischeri were present in sepiolid light organs in greater concentrations at 26 degrees C, whereas strains of V. logei were present in greater concentrations at 18 degrees C. In addition to the competition experiments, the ratios of the two bacterial species in adult Sepiola specimens caught throughout the season at various depths differed, and these differences were correlated with the temperature in the surrounding environment. My findings contribute additional data concerning the ecological and environmental factors that affect host-symbiont recognition and may provide insight into the evolution of animal-bacterium specificity.

  14. The squid-Vibrio symbioses: from demes to genes.

    Science.gov (United States)

    Kimbell, Jennifer R; McFall-Ngai, Margaret J

    2003-04-01

    The monospecific light organ association between the Hawaiian sepiolid squid Euprymna scolopes and the marine luminous bacterium Vibrio fischeri has been used as a model for the study of the most common type of coevolved animal-bacterial interaction; i.e., the association of Gram-negative bacteria with the extracellular apical surfaces of polarized epithelia. Analysis of the squid-vibrio symbiosis has ranged from characterizations of the harvesting mechanisms by which the host ensures colonization by the appropriate symbiont to identification of bacteria-induced changes in host gene expression that accompany the establishment and maintenance of the relationship. Studies of this model have been enhanced by extensive collaboration with microbiologists, who are able to manipulate the genetics of the bacterial symbiont. The results of our studies have indicated that initiation and persistence of the association requires a complex, reciprocal molecular dialogue between these two phylogenetically distant partners.

  15. Vibrio Fischeri Symbiosis Gene Regulation.

    Science.gov (United States)

    1989-07-01

    is actually involved in the observed transcriptional negative autoregulation of lmxR expression, although the data suggest this. Cells in the above...Bioluminescence in the Marine Symbiotic Bacterium Vibriofischeri. Instituto de Investigaciones Bioquimicas , Fundacion Campomar, Buenos Aires, Argentina

  16. Identification of a novel UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from Vibrio fischeri that confers high fosfomycin resistance in Escherichia coli

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, S.; Parvathi, A.; Hernandez, R.L.; Cadle, K.M.; Varela, M.F.

    -positive and Gram-negative bacteria. The antibiotic is used to treat uncomplicated urinary tract infections (UTIs) caused by E. coli and Enterococcus faecalis world wide (Falagas et al. 2008). Some pathogenic bacteria such as Mycobacterium tuberculosis...A proteins are naturally resistant to fosfomycin, such as in the case of Mycobacterium tuberculosis and Chlamydia trachomatis (DeSmet et al. 1999; McCoy et al. 2003). We compared the deduced amino acid sequence of V. fischeri MurA with the homologous...

  17. Bacterial bioluminescence regulates expression of a host cryptochrome gene in the squid-Vibrio symbiosis.

    Science.gov (United States)

    Heath-Heckman, Elizabeth A C; Peyer, Suzanne M; Whistler, Cheryl A; Apicella, Michael A; Goldman, William E; McFall-Ngai, Margaret J

    2013-04-02

    The symbiosis between the squid Euprymna scolopes and its luminous symbiont, Vibrio fischeri, is characterized by daily transcriptional rhythms in both partners and daily fluctuations in symbiont luminescence. In this study, we sought to determine whether symbionts affect host transcriptional rhythms. We identified two transcripts in host tissues (E. scolopes cry1 [escry1] and escry2) that encode cryptochromes, proteins that influence circadian rhythms in other systems. Both genes cycled daily in the head of the squid, with a pattern similar to that of other animals, in which expression of certain cry genes is entrained by environmental light. In contrast, escry1 expression cycled in the symbiont-colonized light organ with 8-fold upregulation coincident with the rhythms of bacterial luminescence, which are offset from the day/night light regime. Colonization of the juvenile light organ by symbionts was required for induction of escry1 cycling. Further, analysis with a mutant strain defective in light production showed that symbiont luminescence is essential for cycling of escry1; this defect could be complemented by presentation of exogenous blue light. However, blue-light exposure alone did not induce cycling in nonsymbiotic animals, but addition of molecules of the symbiont cell envelope to light-exposed animals did recover significant cycling activity, showing that light acts in synergy with other symbiont features to induce cycling. While symbiont luminescence may be a character specific to rhythms of the squid-vibrio association, resident microbial partners could similarly influence well-documented daily rhythms in other systems, such as the mammalian gut.

  18. Non-native acylated homoserine lactones reveal that LuxIR quorum sensing promotes symbiont stability

    Science.gov (United States)

    Ho, Jessica S.; Geske, Grant D.; Blackwell, Helen E.; Ruby, Edward G.

    2014-01-01

    SUMMARY Quorum sensing, a group behavior coordinated by a diffusible pheromone signal and a cognate receptor, is typical of bacteria that form symbioses with plants and animals. LuxIR-type acyl homoserine-lactone (AHL) quorum sensing is common in Gram-negative proteobacteria, and many members of this group have additional quorum-sensing networks. The bioluminescent symbiont Vibrio fischeri encodes two AHL signal synthases: AinS and LuxI. AinS-dependent quorum sensing converges with LuxI-dependent quorum sensing at the LuxR regulatory element. Both AinS- and LuxI-mediated signaling are required for efficient and persistent colonization of the squid host, Euprymna scolopes. The basis of the mutualism is symbiont bioluminescence, which is regulated by both LuxI- and AinS-dependent quorum sensing, and is essential for maintaining a colonization of the host. Here, we used chemical and genetic approaches to probe the dynamics of LuxI- and AinS-mediated regulation of bioluminescence during symbiosis. We demonstrate that both native AHLs and non-native AHL analogs can be used to non-invasively and specifically modulate induction of symbiotic bioluminescence via LuxI-dependent quorum sensing. Our data suggest that the first day of colonization, during which symbiont bioluminescence is induced by LuxIR, is a critical period that determines the stability of the V. fischeri population once symbiosis is established. PMID:24191970

  19. Eye-specification genes in the bacterial light organ of the bobtail squid Euprymna scolopes, and their expression in response to symbiont cues

    OpenAIRE

    Peyer, Suzanne M.; Pankey, M. Sabrina; Oakley, Todd H.; McFall-Ngai, Margaret J.

    2013-01-01

    The squid Euprymna scolopes has evolved independent sets of tissues capable of light detection, including a complex eye and a photophore or ‘light organ’, which houses the luminous bacterial symbiont Vibrio fischeri. As the eye and light organ originate from different embryonic tissues, we examined whether the eye-specification genes, pax6, eya, six, and dac, are shared by these two organs, and if so, whether they are regulated in the light organ by symbiosis. We obtained sequences of the fou...

  20. Characterization and role of p53 family members in the symbiont-induced morphogenesis of the Euprymna scolopes light organ.

    Science.gov (United States)

    Goodson, Michael S; Crookes-Goodson, Wendy J; Kimbell, Jennifer R; McFall-Ngai, Margaret J

    2006-08-01

    Within hours of hatching, the squid Euprymna scolopes forms a specific light organ symbiosis with the marine luminous bacterium Vibrio fischeri. Interactions with the symbiont result in the loss of a complex ciliated epithelium dedicated to promoting colonization of host tissue, and some or all of this loss is due to widespread, symbiont-induced apoptosis. Members of the p53 family, including p53, p63, and p73, are conserved across broad phyletic lines and p63 is thought to be the ancestral gene. These proteins have been shown to induce apoptosis and developmental morphogenesis. In this study, we characterized p63-like transcripts from mRNA isolated from the symbiotic tissues of E. scolopes and described their role in symbiont-induced morphogenesis. Using degenerate RT-PCR and RACE PCR, we identified two p63-like transcripts encoding proteins of 431 and 567 amino acids. These transcripts shared identical nucleotides where they overlapped, suggesting that they are splice variants of the same gene. Immunocytochemistry and Western blots using an antibody specific for E. scolopes suggested that the p53 family members are activated in cells of the symbiont-harvesting structures of the symbiotic light organ. We propose that once the symbiosis is initiated, a symbiont-induced signal activates p53 family members, inducing apoptosis and developmental morphogenesis of the light organ.

  1. Characterization of the cell polarity gene crumbs during the early development and maintenance of the squid-vibrio light organ symbiosis.

    Science.gov (United States)

    Peyer, Suzanne M; Heath-Heckman, Elizabeth A C; McFall-Ngai, Margaret J

    2017-11-01

    The protein Crumbs is a determinant of apical-basal cell polarity and plays a role in apoptosis of epithelial cells and their protection against photodamage. Using the squid-vibrio system, a model for development of symbiotic partnerships, we examined the modulation of the crumbs gene in host epithelial tissues during initiation and maintenance of the association. The extracellular luminous symbiont Vibrio fischeri colonizes the apical surfaces of polarized epithelia in deep crypts of the Euprymna scolopes light organ. During initial colonization each generation, symbiont harvesting is potentiated by the biochemical and biophysical activity of superficial ciliated epithelia, which are several cell layers from the crypt epithelia where the symbionts reside. Within hours of crypt colonization, the symbionts induce the cell death mediated regression of the remote superficial ciliated fields. However, the crypt cells directly interacting with the symbiont are protected from death. In the squid host, we characterized the gene and encoded protein during light organ morphogenesis and in response to symbiosis. Features of the protein sequence and structure, phylogenetic relationships, and localization patterns in the eye supported assignment of the squid protein to the Crumbs family. In situ hybridization revealed that the crumbs transcript shows opposite expression at the onset of symbiosis in the two different regions of the light organ: elevated levels in the superficial epithelia were attenuated whereas low levels in the crypt epithelia were turned up. Although a rhythmic association in which the host controls the symbiont population over the day-night cycle begins in the juvenile upon colonization, cycling of crumbs was evident only in the adult organ with peak expression coincident with maximum symbiont population and luminescence. Our results provide evidence that crumbs responds to symbiont cues that induce developmental apoptosis and to symbiont population

  2. Understanding the Role of Host Hemocytes in a Squid/Vibrio Symbiosis Using Transcriptomics and Proteomics

    Directory of Open Access Journals (Sweden)

    Andrew J. Collins

    2012-05-01

    Full Text Available The symbiosis between the squid, Euprymna scolopes, and the bacterium, Vibrio fischeri, serves as a model for understanding interactions between beneficial bacteria and animal hosts. The establishment and maintenance of the association is highly specific and depends on the selection of V. fischeri and exclusion of non-symbiotic bacteria from the environment. Current evidence suggests that the host’s cellular innate immune system, in the form of macrophage-like hemocytes, helps to mediate host tolerance of V. fischeri. To begin to understand the role of hemocytes in this association, we analyzed these cells by high-throughput 454 transcriptomic and liquid chromatography/ tandem mass spectrometry (LC-MS/MS proteomic analyses. 454 high-throughput sequencing produced 650,686 reads totaling 279.9 Mb while LC-MS/MS analyses of circulating hemocytes putatively identified 702 unique proteins. Several receptors involved with the recognition of microbial associated molecular patterns (MAMPs were identified. Among these was a complete open reading frame (ORF to a putative peptidoglycan recognition protein (EsPGRP5 that has conserved residues for amidase activity. Assembly of the hemocyte transcriptome showed EsPGRP5 had high coverage, suggesting it is among the 5% most abundant transcripts in circulating hemocytes. Other transcripts and proteins identified included members of the conserved NFκB signaling pathway, putative members of the complement pathway, the carbohydrate binding protein galectin, and cephalotoxin. Quantitative PCR of complement-related genes, cephalotoxin, EsPGRP5, and a nitric oxide synthase showed differential expression in circulating hemocytes isolated from adult squid with colonized light organs compared to those for which the symbionts were removed. These data suggest that the presence of the symbiont influences gene expression of the cellular innate immune system of the host.

  3. Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association.

    Science.gov (United States)

    Chun, Carlene K; Troll, Joshua V; Koroleva, Irina; Brown, Bartley; Manzella, Liliana; Snir, Einat; Almabrazi, Hakeem; Scheetz, Todd E; Bonaldo, Maria de Fatima; Casavant, Thomas L; Soares, M Bento; Ruby, Edward G; McFall-Ngai, Margaret J

    2008-08-12

    The light-organ symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri offers the opportunity to decipher the hour-by-hour events that occur during the natural colonization of an animal's epithelial surface by its microbial partners. To determine the genetic basis of these events, a glass-slide microarray was used to characterize the light-organ transcriptome of juvenile squid in response to the initiation of symbiosis. Patterns of gene expression were compared between animals not exposed to the symbiont, exposed to the wild-type symbiont, or exposed to a mutant symbiont defective in either of two key characters of this association: bacterial luminescence or autoinducer (AI) production. Hundreds of genes were differentially regulated as a result of symbiosis initiation, and a hierarchy existed in the magnitude of the host's response to three symbiont features: bacterial presence > luminescence > AI production. Putative host receptors for bacterial surface molecules known to induce squid development are up-regulated by symbiont light production, suggesting that bioluminescence plays a key role in preparing the host for bacteria-induced development. Further, because the transcriptional response of tissues exposed to AI in the natural context (i.e., with the symbionts) differed from that to AI alone, the presence of the bacteria potentiates the role of quorum signals in symbiosis. Comparison of these microarray data with those from other symbioses, such as germ-free/conventionalized mice and zebrafish, revealed a set of shared genes that may represent a core set of ancient host responses conserved throughout animal evolution.

  4. Identification of a locus controlling expression of luminescence genes in Vibrio harveyi.

    Science.gov (United States)

    Martin, M; Showalter, R; Silverman, M

    1989-05-01

    Mutagenesis with transposon mini-Mulac was used to identify loci containing genes for bioluminescence (lux) in the marine bacterium Vibrio harveyi. Transposon insertions which resulted in a Lux- phenotype were mapped to two unlinked regions of the genome. Region I contained the luxCDABE operon which was previously shown to encode the enzymes luciferase and fatty acid reductase, which are required for light production. The other locus, region II, which was identified for the first time in this study, appeared to have a regulatory function. In Northern blot analysis of mRNA from mutants with defects in this region, no transcription from the luxCDABE operon could be detected. Strains with transposon-generated lux::lacZ gene fusions were used to analyze control of the transcription of these regions. Expression of luminescence in the wild type was strongly influenced by the density of the culture, and in strains with the lacZ indicator gene coupled to the luxCDABE operon, beta-galactosidase synthesis was density dependent. So, transcription of this operon is responsive to a density-sensing mechanism. However, beta-galactosidase synthesis in strains with lacZ fused to the region II transcriptional unit did not respond to cell density. The organization and regulation of the lux genes of V. harveyi are discussed, particularly with regard to the contrasts observed with the lux system of the fish light-organ symbiont Vibrio fischeri.

  5. Eye-specification genes in the bacterial light organ of the bobtail squid Euprymna scolopes, and their expression in response to symbiont cues.

    Science.gov (United States)

    Peyer, Suzanne M; Pankey, M Sabrina; Oakley, Todd H; McFall-Ngai, Margaret J

    2014-02-01

    The squid Euprymna scolopes has evolved independent sets of tissues capable of light detection, including a complex eye and a photophore or 'light organ', which houses the luminous bacterial symbiont Vibrio fischeri. As the eye and light organ originate from different embryonic tissues, we examined whether the eye-specification genes, pax6, eya, six, and dac, are shared by these two organs, and if so, whether they are regulated in the light organ by symbiosis. We obtained sequences of the four genes with PCR, confirmed orthology with phylogenetic analysis, and determined that each was expressed in the eye and light organ. With in situ hybridization (ISH), we localized the gene transcripts in developing embryos, comparing the patterns of expression in the two organs. The four transcripts localized to similar tissues, including those associated with the visual system ∼1/4 into embryogenesis (Naef stage 18) and the light organ ∼3/4 into embryogenesis (Naef stage 26). We used ISH and quantitative real-time PCR to examine transcript expression and differential regulation in postembryonic light organs in response to the following colonization conditions: wild-type, luminescent V. fischeri; a mutant strain defective in light production; and as a control, no symbiont. In ISH experiments light organs showed down regulation of the pax6, eya, and six transcripts in response to wild-type V. fischeri. Mutant strains also induced down regulation of the pax6 and eya transcripts, but not of the six transcript. Thus, luminescence was required for down regulation of the six transcript. We discuss these results in the context of symbiont-induced light-organ development. Our study indicates that the eye-specification genes are expressed in light-interacting tissues independent of their embryonic origin and are capable of responding to bacterial cues. These results offer evidence for evolutionary tinkering or the recruitment of eye development genes for use in a light

  6. Exopolysaccharide production by Vibrio fischeri, a fouling marine bacterium

    Digital Repository Service at National Institute of Oceanography (India)

    Rodrigues, C.L; Bhosle, N.B.

    stream_size 8 stream_content_type text/plain stream_name Biofouling_4_301.pdf.txt stream_source_info Biofouling_4_301.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  7. A peroxidase related to the mammalian antimicrobial protein myeloperoxidase in the Euprymna-Vibrio mutualism.

    Science.gov (United States)

    Weis, V M; Small, A L; McFall-Ngai, M J

    1996-11-26

    Many animal-bacteria cooperative associations occur in highly modified host organs that create a unique environment for housing and maintaining the symbionts. It has been assumed that these specialized organs develop through a program of symbiosis-specific or -enhanced gene expression in one or both partners, but a clear example of this process has been lacking. In this study, we provide evidence for the enhanced production of an enzyme in the symbiotic organ of the squid Euprymna scolopes, which harbors a culture of the luminous bacterium Vibrio fischeri. Our data show that this enzyme has a striking biochemical similarity to mammalian myeloperoxidase (MPO; EC 1.11.17), an antimicrobial dianisidine peroxidase that occurs in neutrophils. MPO and the squid peroxidase catalyze the same reaction, have similar apparent subunit molecular masses, and a polyclonal antibody to native human MPO specifically localized a peroxidase-like protein to the bacteria-containing regions of the symbiotic organ. We also provide evidence that a previously described squid cDNA encodes the protein (LO4) that is responsible for the observed dianisidine peroxidase activity. An antibody made against a fragment of LO4 immunoprecipiated dianisidine peroxidase activity from extracts of the symbiotic organ, and reacted against these extracts and human MPO in Western blot analysis. These data suggest that related biochemical mechanisms for the control of bacterial number and growth operate in associations that are as functionally diverse as pathogenesis and mutualism, and as phylogenetically distant as molluscs and mammals.

  8. Entry of Vibrio harveyi and Vibrio fischeri into the viable but nonculturable state

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, Neelam; Ravel, J.; Straube, W.L.; Hill, R.T.; Colwell, R.R.

    , direct viable counts, actively respiring cell counts, nucleoid-containing cell counts, and total counts were determined. V. harveyi incubated at 22 degrees C nutrient-limited artificial seawater (ASW) became nonculturable after approximately 62 and 45 d...

  9. A Study on the D. magna and V. fischeri Toxicity Relationship of Industrial Wastewater from Korea

    Science.gov (United States)

    Pyo, S.; Lee, S.; Chun Sang, H.; Park, T. J.; Kim, M. S.

    2015-12-01

    It is well known that high concentration of TDS (total dissolved solid) in industrial effluent gives rise to the toxicity to the Daphnia magna toxicity test. D. magna is vulnerable to relatively low TDS concentration showing the 24-hr EC50 of Salinity 0.6% (as the sea salt concentration). Recently, standard mandatory toxicity testing using Daphnia magna has been used to monitor industrial effluent toxicity according to Korea standard method (Acute Toxicity Test Method of the Daphnia magna Straus (Cladocera, Crustacea), ES 04704. 1a) under regulation. Since only one acute toxicity testing is applied in the present, we are trying to introduce microbial battery for more complete toxicity assessment. In this study, the acute toxicities between daphnids and microbes were compared. The results of D. magna and Vibrio fischeri toxicity test from 165 industrial wastewater effluents showed high positive correlation. In addition, the possibility of predicting daphnia toxicity from the bacterial toxicity data amounts to 92.6% if we consider salinity effect (>5ppt) together. From this study, we found that the V. fischeri toxicity test is a powerful battery tool to assess the industrial wastewater toxicity. Here, we suggest that luminescent bacteria toxicity test be useful not only for complete toxicity assessment which can't be obtained by daphnia toxicity testing only but also for the reduction cost, time, and labor in the Korean society. Keywords : D. magna, V. fischeri, Industrial waste water, battery test Acknowledgement This research was supported by a grant (15IFIP-B089908-02) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government

  10. Vibrio harveyi modulated gene expression in Penaeus monodon and Fenneropenaeus indicus

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, S.

    : Gammaproteobacteria Order : Vibrionales Family : Vibrionaceae Genus : Vibrio Species : harveyi Vibrio harveyi is a Gram-negative bioluminescent marine bacterium. It is both a free- living, as well as a symbiont with many... marine animals. In free-living form, it can be found throughout the water column, in the sediment as well as on the exterior surfaces of marine organisms. It causes systemic infection resulting in mortalities in larvae and post-larvae, which sometimes...

  11. Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica; a model of symbiosis based on bacterial studies.

    Science.gov (United States)

    Ruby, E G; Nealson, K H

    1976-12-01

    Isolation of bacteria from the luminous organ of the fish Monocentris japonica has revealed that the organ contains a pure culture of luminous bacteria. For the four fish examined, all contained Photobacterium fischeri as their luminous bacterial symbiont. This is the first time that P. fischeri has been identified in a symbiotic association. A representative isolate (MJl) of the light organ population was selected for in vivo studies of its luminous system. Several physiological features suggest adaptation for symbiotic existence. First, MJl has been shown to produce and respond to an inducer of luciferase that could accumulate in the light organ. Secondly, the specific activity of light production was seen to be maximal under low, growth-limiting concentrations of oxygen. Thirdly, unlike another luminous species (Beneckea harveyi), synthesis of the light production system of these bacteria is not catabolite repressed by glucose--a possible source of nutrition in the light organ. Fourthly, when grown aerobically on glucose these bacteria excrete pyruvic acid into the medium. This production of pyruvate is a major process, accounting for 30-40% of the glucose utilized and may serve as a form of regulatory and nutritional communication with the host.

  12. Genome-Wide Biases in the Rate and Molecular Spectrum of Spontaneous Mutations in Vibrio cholerae and Vibrio fischeri

    Science.gov (United States)

    2016-10-15

    Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 5Department...of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, PA *Corresponding author: E-mail: vaughn.cooper...small chromosome somehow confers an evolutionary advantage in varied environments, perhaps by being enriched for conditionally useful traits (Schoolnik

  13. Phototransformation of sulfamethoxazole under simulated sunlight: Transformation products and their antibacterial activity toward Vibrio fischeri

    International Nuclear Information System (INIS)

    Gmurek, M.; Horn, H.; Majewsky, M.

    2015-01-01

    Sulfamethoxazole (SMX) is a bacteriostatic antibiotic ubiquitously found in the aquatic environment. Since conventional biological wastewater treatment is not efficient to remove SMX, photolysis in natural waters can represent an important transformation pathway. It was recently shown that SMX transformation products can retain antibiotic activity. Therefore, it is crucial to better understand photochemical processes occurring in natural water just as the formation of active transformation products (TPs). During long-term SMX photolysis experiments (one week), nine TPs were identified by reference standards. Moreover, five further TPs of photodecomposition of SMX were found. For the first time, a TP with m/z 271 [M + H] + was observed during photolysis and tentatively confirmed as 4,x-dihydroxylated SMX. The DOC mass balance clearly showed that only around 5 to 10% were mineralized during the experiment emphasizing the need to elucidate the fate of TPs. Bacterial bioassays confirmed that the mixture retains its antibiotic toxicity toward luminescence (24 h) and that there is no change over the treatment time on EC 50 . In contrast, growth inhibition activity was found to slightly decrease over the irradiation time. However, this decrease was not proportional to the transformation of the parent compound SMX. - Highlights: • During SMX photolysis experiments, nine TPs were identified by reference standards. • Six further TPs of SMX phototransformation were found. • A TP with a m/z 271 was tentatively confirmed as 4-,x-dihydroxylated SMX. • The mixture exhibitsluminescence inhibition without changes over the irradiation time. • Growth inhibition was found to slightly decrease over the irradiation time.

  14. BEHAVIORAL AND PHYSIOLOGICAL RESPONSES OF DAPHNIA MAGNA, CHLORELLA VULGARIS, LEPOMIS MACROCHIRUS, AND VIBRIO FISCHERI TO TOLUENE

    Science.gov (United States)

    The research presented here is a continuation of work designed to further the science of available and developing online toxicity monitors(OTMs) and how they may be most effectively deployed in a watershed management plan and/or water quality early warning system. Source waters o...

  15. Oil effect in freshly spiked marine sediment on Vibrio fischeri, Corophium volutator and Echinocardium cordatum

    NARCIS (Netherlands)

    Brils, J.M.; Huwer, S.L.; Kater, B.J.; Schout, P.G.; Harmsen, J.; Delvigne, G.A.L.; Scholten, M.C.T.

    2002-01-01

    The purpose of this study was to provide data to be used in The Netherlands for development of ecotoxicologically based quality criteria for oil-contaminated sediments and dredged material. In addition, the relation of toxicity to specific oil boiling-point fraction ranges was explored. Natural

  16. Phototransformation of sulfamethoxazole under simulated sunlight: Transformation products and their antibacterial activity toward Vibrio fischeri

    Energy Technology Data Exchange (ETDEWEB)

    Gmurek, M., E-mail: marta.gmurek@p.lodz.pl [Lodz University of Technology, Faculty of Process & Environmental Engineering, Department of Bioprocess Engineering, Wolczanska 213, 90-924 Lodz (Poland); Horn, H.; Majewsky, M. [Karlsruhe Institute of Technology (KIT), Engler-Bunte-Institut, Chair of Water Chemistry and Water Technology, Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany)

    2015-12-15

    Sulfamethoxazole (SMX) is a bacteriostatic antibiotic ubiquitously found in the aquatic environment. Since conventional biological wastewater treatment is not efficient to remove SMX, photolysis in natural waters can represent an important transformation pathway. It was recently shown that SMX transformation products can retain antibiotic activity. Therefore, it is crucial to better understand photochemical processes occurring in natural water just as the formation of active transformation products (TPs). During long-term SMX photolysis experiments (one week), nine TPs were identified by reference standards. Moreover, five further TPs of photodecomposition of SMX were found. For the first time, a TP with m/z 271 [M + H]{sup +} was observed during photolysis and tentatively confirmed as 4,x-dihydroxylated SMX. The DOC mass balance clearly showed that only around 5 to 10% were mineralized during the experiment emphasizing the need to elucidate the fate of TPs. Bacterial bioassays confirmed that the mixture retains its antibiotic toxicity toward luminescence (24 h) and that there is no change over the treatment time on EC{sub 50}. In contrast, growth inhibition activity was found to slightly decrease over the irradiation time. However, this decrease was not proportional to the transformation of the parent compound SMX. - Highlights: • During SMX photolysis experiments, nine TPs were identified by reference standards. • Six further TPs of SMX phototransformation were found. • A TP with a m/z 271 was tentatively confirmed as 4-,x-dihydroxylated SMX. • The mixture exhibitsluminescence inhibition without changes over the irradiation time. • Growth inhibition was found to slightly decrease over the irradiation time.

  17. Evolution: Welcome to Symbiont Prison

    NARCIS (Netherlands)

    Kiers, E.T.; West, S.A.

    2016-01-01

    Can egalitarian partnerships exist in nature? A new study demonstrates how protist hosts use and abuse their algal symbionts depending on their needs. While this relationship allows protists to survive in low nutrient conditions, it leaves little room for algal retaliation.

  18. Insect symbionts in food webs

    Czech Academy of Sciences Publication Activity Database

    McLean, A. H. C.; Parker, B. J.; Hrček, Jan; Henry, L. M.; Godfray, H. C. J.

    2016-01-01

    Roč. 371, č. 1702 (2016), article number 20150325 ISSN 0962-8436 Institutional support: RVO:60077344 Keywords : food web * symbiont * symbiosis Subject RIV: EE - Microbiology, Virology Impact factor: 5.846, year: 2016 http://rstb.royalsocietypublishing.org/content/371/1702/20150325

  19. Genomic taxonomy of vibrios

    DEFF Research Database (Denmark)

    Thompson, Cristiane C.; Vicente, Ana Carolina P.; Souza, Rangel C.

    2009-01-01

    BACKGROUND: Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety of...

  20. Exploring symbiont management in lichens.

    Science.gov (United States)

    Grube, Martin; Spribille, Toby

    2012-07-01

    Lichens are unique among fungal symbioses in that their mycelial structures are compact and exposed to the light as thallus structures. The myriad intersections of unique fungal species with photosynthetic partner organisms (green algae in 90% of lichens) produce a wide variety of diverse shapes and colours of the fully synthesized lichen thallus when growing in nature. This characteristic complex morphology is, however, not achieved in the fungal axenic state. Even under ideal environmental conditions, the lichen life cycle faces considerable odds: first, meiotic spores are only produced on well-established thalli and often only after achieving considerable age in a stable environment, and second, even then in vivo resynthesis requires the presence of compatible algal strains where fungal spores germinate. Many lichen species have evolved a way around the resynthesis bottleneck by producing asexual propagules for joint propagation of symbionts. These different dispersal strategies ostensibly shape the population genetic structure of lichen symbioses, but the relative contributions of vertical (joint) and horizontal (independent) symbiont transmission have long eluded lichen evolutionary biologists. In this issue of Molecular Ecology, Dal Grande et al. (2012) close in on this question with the lung lichen, Lobaria pulmonaria, a flagship species in the conservation of old growth forests. By capitalizing on available microsatellite markers for both fungal and algal symbionts, they show that while vertical transmission is the predominant mode of reproduction, horizontal transmission is demonstrable and actively shapes population genetic structure. The resulting mixed propagation system is a highly successful balance of safe recruitment of symbiotic clones and endless possibilities for fungal recombination and symbiont shuffling.

  1. A novel bacteriocin-like substance (BLIS) from a pathogenic strain of Vibrio harveyi.

    Science.gov (United States)

    Prasad, Sathish; Morris, Peter C; Hansen, Rasmus; Meaden, Philip G; Austin, Brian

    2005-09-01

    Inter-strain and inter-species inhibition mediated by a bacteriocin-like inhibitory substance (BLIS) from a pathogenic Vibrio harveyi strain VIB 571 was demonstrated against four isolates of the same species, and one culture each of a Vibrio sp., Vibrio fischeri, Vibrio gazogenes and Vibrio parahaemolyticus. The crude BLIS, which was obtained by ammonium-sulphate precipitation of the cell-free supernatant of a 72 h broth culture of strain VIB 571, was inactivated by lipase, proteinase K, pepsin, trypsin, pronase E, SDS and incubation at > or =60 degrees C for 10 min. The activity was stable between pH 2-11 for at least 5 h. Anion-exchange chromatography, gel filtration, SDS-PAGE and two-dimensional gel electrophoresis revealed the presence of a single major peak, comprising a protein with a pI of approximately 5.4 and a molecular mass of approximately 32 kDa. The N-terminal amino acid sequence of the protein comprised Asp-Glu-Tyr-Ile-Ser-X-Asn-Lys-X-Ser-Ser-Ala-Asp-Ile (with X representing cysteine or modified amino acid residues). A similarity search based on the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) generated peptide masses and the N-terminal sequence did not yield any significant matches.

  2. Facultative symbiont infections affect aphid reproduction.

    Science.gov (United States)

    Simon, Jean-Christophe; Boutin, Sébastien; Tsuchida, Tsutomu; Koga, Ryuichi; Le Gallic, Jean-François; Frantz, Adrien; Outreman, Yannick; Fukatsu, Takema

    2011-01-01

    Some bacterial symbionts alter their hosts reproduction through various mechanisms that enhance their transmission in the host population. In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum harbors several facultative symbionts influencing several aspects of host ecology. Aphids reproduce by cyclical parthenogenesis whereby clonal and sexual reproduction alternate within the annual life cycle. Many species, including the pea aphid, also show variation in their reproductive mode at the population level, with some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. While the role of facultative symbionts has been well studied during the parthenogenetic phase of their aphid hosts, very little is known on their possible influence during the sexual phase. Here we investigated whether facultative symbionts modulate the capacity to produce sexual forms in various genetic backgrounds of the pea aphid with controlled symbiont composition and also in different aphid genotypes from natural populations with previously characterized infection status and reproductive mode. We found that most facultative symbionts exhibited detrimental effects on their hosts fitness under sex-inducing conditions in comparison with the reference lines. We also showed that the loss of sexual phase in permanently parthenogenetic lineages of A. pisum was not explained by facultative symbionts. Finally, we demonstrated that Spiroplasma infection annihilated the production of males in the host progeny by inducing a male-killing phenotype, an unexpected result for organisms such as aphids that reproduce primarily through clonal reproduction.

  3. Facultative symbiont infections affect aphid reproduction.

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Simon

    Full Text Available Some bacterial symbionts alter their hosts reproduction through various mechanisms that enhance their transmission in the host population. In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum harbors several facultative symbionts influencing several aspects of host ecology. Aphids reproduce by cyclical parthenogenesis whereby clonal and sexual reproduction alternate within the annual life cycle. Many species, including the pea aphid, also show variation in their reproductive mode at the population level, with some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. While the role of facultative symbionts has been well studied during the parthenogenetic phase of their aphid hosts, very little is known on their possible influence during the sexual phase. Here we investigated whether facultative symbionts modulate the capacity to produce sexual forms in various genetic backgrounds of the pea aphid with controlled symbiont composition and also in different aphid genotypes from natural populations with previously characterized infection status and reproductive mode. We found that most facultative symbionts exhibited detrimental effects on their hosts fitness under sex-inducing conditions in comparison with the reference lines. We also showed that the loss of sexual phase in permanently parthenogenetic lineages of A. pisum was not explained by facultative symbionts. Finally, we demonstrated that Spiroplasma infection annihilated the production of males in the host progeny by inducing a male-killing phenotype, an unexpected result for organisms such as aphids that reproduce primarily through clonal reproduction.

  4. Genomic taxonomy of vibrios

    Directory of Open Access Journals (Sweden)

    Iida Tetsuya

    2009-10-01

    Full Text Available Abstract Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA, supertrees, Average Amino Acid Identity (AAI, genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.. A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in

  5. Canine visceral leishmaniasis in the metropolitan area of São Paulo: Pintomyia fischeri as potential vector of Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Galvis-Ovallos Fredy

    2017-01-01

    Full Text Available American visceral leishmaniasis is a zoonosis caused by Leishmania infantum and transmitted mainly by Lutzomyia longipalpis. However, canine cases have been reported in the absence of this species in the Greater São Paulo region, where Pintomyia fischeri and Migonemyia migonei are the predominant species. This raises the suspicion that they could be acting as vectors. Therefore, this study sought to investigate specific vector capacity parameters of these species and to compare them with those of Lu. longipalpis s.l. Among these parameters the blood feeding rate, the survival, and the susceptibility to the development of Le. infantum were evaluated for the three species, and the attractiveness of dogs to Pi. fischeri and Mg. migonei was evaluated. The estimated interval between blood meals was shorter for Lu. longipalpis s.l, followed by Pi. fischeri and Mg. migonei. The infection rate with Le. infantum flagellates in Lu. longipalpis was 9.8%, in Pi. fischeri 4.8%, and in Mg. migonei nil. The respective infective life expectancies (days of Lu. longipalpis, Mg. migonei, and Pi. fischeri were 2.4, 1.94, and 1.68. Both Pi. fischeri and Mg. migonei were captured in the kennel with a predominance (95% of Pi. fischeri. Considering the great attractiveness of dogs to Pi. fischeri, its susceptibility to infection by Le. infantum, infective life expectancies, and predominance in Greater São Paulo, this study presents evidence of Pi. fischeri as a potential vector of this parasite in the region.

  6. Spallation symbiont and thorium breeding

    International Nuclear Information System (INIS)

    Furukawa, Kazuo

    1991-01-01

    The medium term world energy and environment countermeasures for 2020-2070 are not yet clearly established. The forecast of energy situation hereafter, its problems and the measures for solution are considered. World trend is removing borders, and the north-south problems are increasing the importance. The rational and clear idea with the support of concrete technology is required. The demand of energy will increase enormously at the annual rate of 2.3%. The world energy situation was forecast considering the increase of population, and it will be 115 TW at the end of the next century. The present status, problems and the countermeasures in nuclear fission energy technology are explained. The countermeasures should be based on three principles, namely Th-U-233 cycle, the utilization of molten fluoride fuel medium and the separation of molten salt breeders and molten salt reactors. Accelerator molten salt breeders, small molten salt reactors, the nuclear fuel cycle and the annihilation process for radioactive wastes are reported. The perspective that the nuclear energy system, in which the reactor safety, the measures to wastes and others are improved by the spallation-fission symbiont using thorium molten salt as the working medium, can be constructed is shown. (K.I.)

  7. Co-niche construction between hosts and symbionts

    Indian Academy of Sciences (India)

    Symbiosis is a process that can generate evolutionary novelties and can extend the phenotypic niche space of organisms. Symbionts can act together with their hosts to co-construct host organs, within which symbionts are housed. Once established within hosts, symbionts can also influence various aspects of host ...

  8. Luciferase genes cloned from the unculturable luminous bacteroid symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi.

    Science.gov (United States)

    Haygood, M G; Cohn, D H

    1986-01-01

    Light organs of anomalopid (flashlight) fish contain luminous bacteroids that have never been cultured and, consequently, have been difficult to study. We have characterized the luciferase (lux) region of DNA extracted from light organs of the Caribbean flashlight fish Kryptophanaron alfredi by hybridization of cloned Vibrio harveyi lux genes to restriction-endonuclease-digested, light organ DNA. Comparison of the hybridization pattern of light organ DNA with that of DNA of a putative symbiotic isolate provides a method for identifying the authentic luminous symbiont regardless of its luminescence, and was used to reject one such isolate. Light organ DNA was further used to construct a cosmid clone bank and the luciferase genes were isolated. Unlike other bacterial luciferase genes, the genes were not expressed in Escherichia coli. When placed under the control of the E. coli trp promoter, the genes were transcribed but no luciferase was detected, suggesting a posttranscriptional block to expression.

  9. Two New Alkaloids from a Marine-derived Fungus Neosartorya fischeri

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2015-04-01

    Full Text Available Investigation of EtOAc extract from the fermentation broth of the fungus Neosartorya fischeri led to the isolation of two novel alkaloids and one known compound with antitumor activity against HL-60 cell lines. Their structures were elucidated mainly by NMR and HR-TOF-MS, as well as on comparison with the reported data.

  10. Enumeration of Vibrio parahaemolyticus in the viable but nonculturable state using direct plate counts and recognition of individual gene fluorescence in situ hybridization.

    Science.gov (United States)

    Griffitt, Kimberly J; Noriea, Nicholas F; Johnson, Crystal N; Grimes, D Jay

    2011-05-01

    Vibrio parahaemolyticus is a gram-negative, halophilic bacterium indigenous to marine and estuarine environments and it is capable of causing food and water-borne illness in humans. It can also cause disease in marine animals, including cultured species. Currently, culture-based techniques are used for quantification of V. parahaemolyticus in environmental samples; however, these can be misleading as they fail to detect V. parahaemolyticus in a viable but nonculturable (VBNC) state which leads to an underestimation of the population density. In this study, we used a novel fluorescence visualization technique, called recognition of individual gene fluorescence in situ hybridization (RING-FISH), which targets chromosomal DNA for enumeration. A polynucleotide probe labeled with Cyanine 3 (Cy3) was created corresponding to the ubiquitous V. parahaemolyticus gene that codes for thermolabile hemolysin (tlh). When coupled with the Kogure method to distinguish viable from dead cells, RING-FISH probes reliably enumerated total, viable V. parahaemolyticus. The probe was tested for sensitivity and specificity against a pure culture of tlh(+), tdh(-), trh(-)V. parahaemolyticus, pure cultures of Vibrio vulnificus, Vibrio harveyi, Vibrio alginolyticus and Vibrio fischeri, and a mixed environmental sample. This research will provide additional tools for a better understanding of the risk these environmental organisms pose to human health. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Potential applications of insect symbionts in biotechnology.

    Science.gov (United States)

    Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin

    2016-02-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.

  12. Vibrios and Aeromonas.

    Science.gov (United States)

    Holmberg, S D

    1988-09-01

    There are many similarities in the Vibrionaceae that cause human illness in the United States (see Table 1). Vibrios are characteristically indigenous to marine, estuarine, and brackish environments. They are distributed mainly in Gulf of Mexico coastal water, and these organisms "bloom" when the water is warm. Outbreaks of disease in humans frequently occur in summer, coinciding with multiplication of vibrios in warm water. Sporadic cases and small outbreaks of cholera continue to occur in persons living on or near the Gulf of Mexico, but infection in most persons is unrecognized. In fact, more serious and frequent illnesses result from V. vulnificus wound infections and from gastroenteritis caused by vibrios other than V. cholerae 01. Underlying hepatic or neoplastic disease (especially leukemia) apparently increases the likelihood and severity of illnesses caused by V. vulnificus and Aeromonas. Some Vibrionaceae produce clinical illness by means of enterotoxins identical or similar to cholera toxin. For many others, hemolysins, cytotoxins, and other exotoxins are necessary to produce disease; the importance of these virulence factors often is not known or the importance of these virulence factors often is not known or is of doubtful significance. Also, purported pathogenicity as demonstrated by animal models, such as fluid accumulation in ligated ileal loops, is quite nonspecific and needs to be interpreted cautiously. For Plesiomonas, a mode of pathogenesis has not been discovered. Eating raw shellfish (frequently raw oysters) has been linked epidemiologically to enteric infections with most of these bacteria; foreign travel and exposure to seawater are other frequently observed epidemiologic associations with infection. Foreign travel, particularly to the Yucatan Peninsula of Mexico, has been strongly associated with the acquisition of non-01 V. cholerae and Plesiomonas organisms. Most Vibrionaceae in the United States are susceptible in vitro--and illnesses

  13. The uncultured luminous symbiont of Anomalops katoptron (Beryciformes: Anomalopidae) represents a new bacterial genus.

    Science.gov (United States)

    Hendry, Tory A; Dunlap, Paul V

    2011-12-01

    Flashlight fishes (Beryciformes: Anomalopidae) harbor luminous symbiotic bacteria in subocular light organs and use the bacterial light for predator avoidance, feeding, and communication. Despite many attempts anomalopid symbionts have not been brought into laboratory culture, which has restricted progress in understanding their phylogenetic relationships with other luminous bacteria, identification of the genes of their luminescence system, as well as the nature of their symbiotic interactions with their fish hosts. To begin addressing these issues, we used culture-independent analysis of the bacteria symbiotic with the anomalopid fish, Anomalops katoptron, to characterize the phylogeny of the bacteria and to identify the genes of their luminescence system including those involved in the regulation of luminescence. Analysis of the 16S rRNA, atpA, gapA, gyrB, pyrH, recA, rpoA, and topA genes resolved the A. katoptron symbionts as a clade nested within and deeply divergent from other members of Vibrionaceae. The bacterial luminescence (lux) genes were identified as a contiguous set (luxCDABEG), as found for the lux operons of other luminous bacteria. Phylogenetic analysis based on the lux genes confirmed the housekeeping gene phylogenetic placement. Furthermore, genes flanking the lux operon in the A. katoptron symbionts differed from those flanking lux operons of other genera of luminous bacteria. We therefore propose the candidate name Candidatus Photodesmus (Greek: photo = light, desmus = servant) katoptron for the species of bacteria symbiotic with A. katoptron. Results of a preliminary genomic analysis for genes regulating luminescence in other bacteria identified only a Vibrio harveyi-type luxR gene. These results suggest that expression of the luminescence system might be continuous in P. katoptron. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Diverse strategies for vertical symbiont transmission among subsocial stinkbugs.

    Directory of Open Access Journals (Sweden)

    Takahiro Hosokawa

    Full Text Available Sociality may affect symbiosis and vice versa. Many plant-sucking stinkbugs harbor mutualistic bacterial symbionts in the midgut. In the superfamily Pentatomoidea, adult females excrete symbiont-containing materials from the anus, which their offspring ingest orally and establish vertical symbiont transmission. In many stinkbug families whose members are mostly non-social, females excrete symbiont-containing materials onto/beside eggs upon oviposition. However, exceptional cases have been reported from two subsocial species representing the closely related families Cydnidae and Parastrachiidae, wherein females remain nearby eggs for maternal care after oviposition, and provide their offspring with symbiont-containing secretions at later stages, either just before or after hatching. These observations suggested that sociality of the host stinkbugs may be correlated with their symbiont transmission strategies. However, we found that cydnid stinkbugs of the genus Adomerus, which are associated with gammaproteobacterial gut symbionts and exhibit elaborate maternal care over their offspring, smear symbiont-containing secretions onto eggs upon oviposition as many non-social stinkbugs do. Surface sterilization of the eggs resulted in aposymbiotic insects of slower growth, smaller size and abnormal body coloration, indicating vertical symbiont transmission via egg surface contamination and presumable beneficial nature of the symbiosis. The Adomerus symbionts exhibited AT-biased nucleotide compositions, accelerated molecular evolutionary rates and reduced genome size, while these degenerative genomic traits were less severe than those in the symbiont of a subsocial parastrachiid. These results suggest that not only sociality but also other ecological and evolutionary aspects of the host stinkbugs, including the host-symbiont co-evolutionary history, may have substantially affected their symbiont transmission strategies.

  15. Microbial Ecophysiology of Vibrio ruber

    Directory of Open Access Journals (Sweden)

    Tjaša Danevčič

    2014-01-01

    Full Text Available Bacteria use different adaptation strategies to survive environmental perturbations. In this minireview, adaptation strategies of new red-pigmented Vibrio ruber isolated from coastal environments to different environmental stresses (i.e. salinity, viscosity, UV light, mitomycin C, nutrient availability and temperature are reviewed. To cope with environmental stresses Vibrio ruber uses several different adaptive strategies. For example, lipid composition as well as phase behaviour are strongly dependent on salt concentration. Vibrio ruber membrane has no hydroxy fatty acids, but exceptionally high lysolipid content compared to other related Vibrio species. Inorganic nutrient uptake by bacteria is selective, depends on environmental conditions and varies several fold with environmental perturbations. Protein composition, carbon flow through the central metabolic pathways, energy generation as well as secondary metabolite production adapt readily to stress conditions. The activity of glucose-6-phosphate dehydrogenase proved to be a good indicator of Vibrio ruber stress. Cells are able to modulate their local viscosity in response to variations of environmental viscosity. The bacterium harbours several viral genetic elements in its genome, which could be induced by mitomycin C. Environmental conditions during growth of bacteria have a significant effect on lysate carbon turnover. Secondary metabolite prodigiosin confers protection against UV in the environment, which adds to the known repertoire of prodigiosin ecophysiological functions. In conclusion, Vibrio ruber in its short acquaintance with the scientific community (less than ten years has proven to be an immensely valuable model system for ecophysiological studies of bacteria.

  16. Fiber, food, fuel, and fungal symbionts.

    Science.gov (United States)

    Ruehle, J L; Marx, D H

    1979-10-26

    Virtually all plants of economic importance form mycorrhizae. These absorbing organs of higher plants result from a symbiotic union of beneficial soil fungi and feeder roots. In forestry, the manipulation of fungal symbionts ecologically adapted to the planting site can increase survival and growth of forest trees, particularly on adverse sites. Vesicular-arbuscular mycorrhizae, which occur not only on many trees but also on most cultivated crops, are undoubtedly more important to world food crops. Imperatives for mycorrhizal research in forestry and agriculture are (i) the development of mass inoculum of mycorrhizal fungi, (ii) the interdisciplinary coordination with soil management, plant breeding, cultivation practices, and pest control to ensure maximum survival and development of fungal symbionts in the soil, and (iii) the institution of nursery and field tests to determine the circumstances in which mycorrhizae benefit plant growth in forestry and agri-ecosystems.

  17. Social insect symbionts: evolution in homeostatic fortresses

    DEFF Research Database (Denmark)

    Hughes, David P; Pierce, Naomi E; Boomsma, Jacobus J

    2008-01-01

    The massive environmentally buffered nests of some social insects can contain millions of individuals and a wide variety of parasites, commensals and mutualists. We suggest that the ways in which these homeostatic fortress environments affect the evolution of social insect symbionts are relevant...... in these nests. We hypothesize that biodiversity gradients in these hotspots might be less affected by abiotic latitudinal clines than gradients in neighboring 'control' habitats. We suggest several research lines to test these ideas....

  18. The Calyptogena magnifica chemoautotrophic symbiont genome

    Energy Technology Data Exchange (ETDEWEB)

    Newton, I.L.; Woyke, T.; Auchtung, T.A.; Dilly, G.F.; Dutton,R.J.; Fisher, M.C.; Fontanez, K.M.; Lau, E.; Stewart, F.J.; Richardson,P.M.; Barry, K.W.; Saunders, E.; Detter, J.C.; Wu, D.; Eisen, J.A.; Cavanaugh, C.M.

    2007-03-01

    Chemoautotrophic endosymbionts are the metabolic cornerstone of hydrothermal vent communities, providing invertebrate hosts with nearly all of their nutrition. The Calyptogena magnifica (Bivalvia: Vesicomyidae) symbiont, Candidatus Ruthia magnifica, is the first intracellular sulfur-oxidizing endosymbiont to have its genome sequenced, revealing a suite of metabolic capabilities. The genome encodes major chemoautotrophic pathways as well as pathways for biosynthesis of vitamins, cofactors, and all 20 amino acids required by the clam.

  19. Accumulation of radionuclides by lichen symbionts

    Energy Technology Data Exchange (ETDEWEB)

    Nifontova, M G; Kulikov, N V [AN SSSR, Sverdlovsk. Inst. Ehkologii Rastenij i Zhivotnykh

    1983-01-01

    The aim of investigation is the quantitative estimation of ability and role of separate symbionts in the accumulation of radionuclides. As investigation volumes, durably cultivated green lichen alga Trebouxia erici and lichen fungi extracted from Cladonia rangiferina, Parmelia caperata and Acarospora fuscata are used. The accumulation of radioactive isotopes with fungi and seaweeds is estimated according to accumulation coefficients (AC) which are the ratio of radiation concentration in plants and agarized medium. Radionuclide content (/sup 90/Sr and /sup 137/Cs) is determined radiometrically. A special series of experiments is done to investigate radionuclide accumulation dependences with lichen seaweed and fungi on light conditions. It is shown that both symbionts of lichen-seaweed and fungus take part in the accumulation of radionuclide from outer medium (atmospheric fall-out and soil). However fungus component constituting the base of structural organization of thallus provides the greater part of radionuclides accumulated by the plant. Along with this the violation of viability of seaweed symbionts particularly in the case of light deficiency brings about the reduction of /sup 137/Cs sorption by seaweeds and tells on the total content of radiocesium in plant thallus.

  20. Predatory bacteria as natural modulators of Vibrio parahaemolyticus and Vibrio vulnificus in seawater and oysters

    Science.gov (United States)

    This study shows that naturally occurring Vibrio predatory bacteria (VPB) exert a major role in controlling pathogenic vibrios in seawater and shellfish. The growth and persistence of Vibrio parahaemolyticus (Vp) and Vibrio vulnificus (Vv) were assessed in natural seawater and in the Eastern oyster...

  1. Light organ symbioses in fishes.

    Science.gov (United States)

    Haygood, M G

    1993-01-01

    Most bioluminescent fishes are self-luminescent, but a substantial minority of bioluminescent teleosts produce light that is due to symbiotic luminous bacteria housed in elaborate light organs. The majority of symbiotically bioluminescent fishes (ten families in five orders) harbors common free-living species of marine luminous bacteria: Photobacterium phosphoreum, P. leiognathi, and P. fischeri (= Vibrio fischeri). Others, associated with the beryciform family Anomalopidae and nine families in the lophiiform suborder Ceratioidei, have apparently obligate symbionts that have recently been identified by small subunit (16S) rRNA analysis as new groups within the genus Vibrio. This article summarizes what is currently known about relationships between light organ symbionts and their hosts, including characteristics of light organ environments, physiology of light organ symbionts, and the evolution of light organ symbionts and their associations.

  2. Hyperprogesteronemia in response to Vitex fischeri consumption in wild chimpanzees (Pan troglodytes schweinfurthii).

    Science.gov (United States)

    Emery Thompson, Melissa; Wilson, Michael L; Gobbo, Grace; Muller, Martin N; Pusey, Anne E

    2008-11-01

    Chimpanzees in Gombe National Park consume fruits of Vitex fischeri during a short annual fruiting season. This fruit species is a member of a genus widely studied for phytoestrogen composition and varied physiological effects. One particularly well-studied species, V. agnus-castus, is noted for its documented effects on female reproductive function, evidenced in increased progesterone levels and consequent regulation of luteal function. We examined reproductive hormone levels in both male and female chimpanzees during a 6-week period of intense V. fischeri consumption. V. fischeri consumption was associated with an abrupt and dramatic increase in urinary progesterone levels of female chimpanzees to levels far exceeding the normal range of variation. Female estrogen levels were not significantly impacted, nor were male testosterone levels. These are some of the first data indicating that phytochemicals in the natural diet of a primate can have significant impacts on the endocrine system, though the fluctuating nature of chimpanzee diet and reproductive function does not allow us to determine whether the effects observed during this short period had a broader positive or negative impact on female fertility. Given the widespread use of various Vitex species by African primates and the as-yet-undescribed phytochemical properties of these species, we predict that our observations may be indicative of a broader phenomenon. Copyright 2008 Wiley-Liss, Inc.

  3. Horizontal Transmission of Intracellular Insect Symbionts via Plants

    Directory of Open Access Journals (Sweden)

    Ewa Chrostek

    2017-11-01

    Full Text Available Experimental evidence is accumulating that endosymbionts of phytophagous insects may transmit horizontally via plants. Intracellular symbionts known for manipulating insect reproduction and altering fitness (Rickettsia, Cardinium, Wolbachia, and bacterial parasite of the leafhopper Euscelidius variegatus have been found to travel from infected insects into plants. Other insects, either of the same or different species can acquire the symbiont from the plant through feeding, and in some cases transfer it to their progeny. These reports prompt many questions regarding how intracellular insect symbionts are delivered to plants and how they affect them. Are symbionts passively transported along the insect-plant-insect path, or do they actively participate in the process? How widespread are these interactions? How does symbiont presence influence the plant? And what conditions are required for the new infection to establish in an insect? From an ecological, evolutionary, and applied perspective, this mode of horizontal transmission could have profound implications if occurring frequently enough or if new stable symbiont infections are established. Transmission of symbionts through plants likely represents an underappreciated means of infection, both in terms of symbiont epidemiology and the movement of symbionts to new host species.

  4. Microencapsulated Aliivibrio fischeri in Alginate Microspheres for Monitoring Heavy Metal Toxicity in Environmental Waters

    Directory of Open Access Journals (Sweden)

    Dedi Futra

    2014-12-01

    Full Text Available In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri encapsulated in alginate microspheres is described. Cu(II, Cd(II, Pb(II, Zn(II, Cr(VI, Co(II, Ni(II, Ag(I and Fe(II were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD range of 2.4–5.7% (n = 8. The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD for Cu(II (6.40 μg/L, Cd(II (1.56 μg/L, Pb(II (47 μg/L, Ag(I (18 μg/L than Zn(II (320 μg/L, Cr(VI (1,000 μg/L, Co(II (1700 μg/L, Ni(II (2800 μg/L, and Fe(III (3100 μg/L. Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples.

  5. Vibrio Parahaemolyticus: The Threat of Another Vibrio Acquiring Pandemic Potential

    Digital Repository Service at National Institute of Oceanography (India)

    Ramamurthy, T.; Nair, G.B.

    investigations of Vibrio parahaemolyticus in oysters following outbreaks in Washington, Texas, and New York. (1997 and 1998). Appl. Envrion. Microbiol. 66, 4649- 4654. DePaola, A., Ulaszek, J., Kaysner, C. A., Tenge, B. J., Nordstrom, J. L., Wells, J., Puhr, N...-710. Andrews, L. S., DeBlanc, S., Veal, C. D., Park, D. L., 2003. Response of Vibrio parahaemolyticus O3:K6 to a hot water/ cold shock pasteurization process. Food Addit. Contam. 20, 331-334. Bag, P. K., Nandi, S., Bhadra, R. K., Ramamurthy, T., Bhattacharya, S...

  6. The ecology of Vibrio vulnificus, Vibrio cholerae, and Vibrio parahaemolyticus in North Carolina estuaries.

    Science.gov (United States)

    Blackwell, Karen Dyer; Oliver, James D

    2008-04-01

    While numerous studies have characterized the distribution and/or ecology of various pathogenic Vibrio spp., here we have simultaneously examined several estuarine sites for Vibrio vulnificus, V. cholerae, and V. parahaemolyticus. For a one year period, waters and sediment were monitored for the presence of these three pathogens at six different sites on the east coast of North Carolina in the United States. All three pathogens, identified using colony hybridization and PCR methods, occurred in these estuarine environments, although V. cholerae occurred only infrequently and at very low levels. Seventeen chemical, physical, and biological parameters were investigated, including salinity, water temperature, turbidity, dissolved oxygen, levels of various inorganic nutrients and dissolved organic carbon, as well as total vibrios, total coliforms, and E. coli. We found each of the Vibrio spp. in water and sediment to correlate to several of these environmental measurements, with water temperature and total Vibrio levels correlating highly (P<0.0001) with occurrence of the three pathogens. Thus, these two parameters may represent simple assays for characterizing the potential public health hazard of estuarine waters.

  7. Comparative genomics of vesicomyid clam (Bivalvia: Mollusca chemosynthetic symbionts

    Directory of Open Access Journals (Sweden)

    Girguis Peter R

    2008-12-01

    Full Text Available Abstract Background The Vesicomyidae (Bivalvia: Mollusca are a family of clams that form symbioses with chemosynthetic gamma-proteobacteria. They exist in environments such as hydrothermal vents and cold seeps and have a reduced gut and feeding groove, indicating a large dependence on their endosymbionts for nutrition. Recently, two vesicomyid symbiont genomes were sequenced, illuminating the possible nutritional contributions of the symbiont to the host and making genome-wide evolutionary analyses possible. Results To examine the genomic evolution of the vesicomyid symbionts, a comparative genomics framework, including the existing genomic data combined with heterologous microarray hybridization results, was used to analyze conserved gene content in four vesicomyid symbiont genomes. These four symbionts were chosen to include a broad phylogenetic sampling of the vesicomyid symbionts and represent distinct chemosynthetic environments: cold seeps and hydrothermal vents. Conclusion The results of this comparative genomics analysis emphasize the importance of the symbionts' chemoautotrophic metabolism within their hosts. The fact that these symbionts appear to be metabolically capable autotrophs underscores the extent to which the host depends on them for nutrition and reveals the key to invertebrate colonization of these challenging environments.

  8. Standard methods for research on apis mellifera gut symbionts

    Science.gov (United States)

    Gut microbes can play an important role in digestion, disease resistance, and the general health of animals, but little is known about the biology of gut symbionts in Apis mellifera. This paper is part of a series on honey bee research methods, providing protocols for studying gut symbionts. We desc...

  9. Sensitivity of the vibrios to ultraviolet-radiation

    International Nuclear Information System (INIS)

    Banerjee, S.K.; Chatterjee, S.N.

    1977-01-01

    The ultraviolet-inactivation kinetics of a number of strains of Vibrio cholerae (classical), Vibrio cholerae (el tor), NAG vibrios and Vibrio parahaemolyticus were investigated. Statistical analyses revealed significant differences between any two of the four types of vibrio in respect of their sensitivity to U.V. (author)

  10. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    Energy Technology Data Exchange (ETDEWEB)

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from (1-14C)myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from (14C)C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from (14C)acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development.

  11. A soluble fatty acyl-acyl carrier protein synthetase from the bioluminescent bacterium Vibrio harveyi.

    Science.gov (United States)

    Byers, D M; Holmes, C G

    1990-01-01

    An enzyme catalyzing the ligation of long chain fatty acids to bacterial acyl carrier protein (ACP) has been detected and partially characterized in cell extracts of the bioluminescent bacterium Vibrio harveyi. Acyl-ACP synthetase activity (optimal pH 7.5-8.0) required millimolar concentrations of ATP and Mg2+ and was slightly activated by Ca2+, but was inhibited at high ionic strength and by Triton X-100. ACP from either Escherichia coli (apparent Km = 20 microM) or V. harveyi was used as a substrate. Of the [14C]fatty acids tested as substrates (8-18 carbons), a preference for fatty acids less than or equal to 14 carbons in length was observed. Vibrio harveyi acyl-ACP synthetase appears to be a soluble hydrophilic enzyme on the basis of subcellular fractionation and Triton X-114 phase partition assay. The enzyme was not coinduced with luciferase activity or light emission in vivo during the late exponential growth phase in liquid culture. Acyl-ACP synthetase activity was also detected in extracts from the luminescent bacterium Vibrio fischeri, but not Photobacterium phosphoreum. The cytosolic nature and enzymatic properties of V. harveyi acyl-ACP synthetase indicate that it may have a different physiological role than the membrane-bound activity of E. coli, which has been implicated in phosphatidylethanolamine turnover. Acyl-ACP synthetase activity in V. harveyi could be involved in the intracellular activation and elongation of exogenous fatty acids that occurs in this species or in the reactivation of free myristic acid generated by luciferase.

  12. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    International Nuclear Information System (INIS)

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from [1-14C]myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from [14C]C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from [14C]acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development

  13. Prevalence of Vibrio vulnificus and Vibrio parahaemolyticus in the Maryland Coastal Bays

    Science.gov (United States)

    De Pascuale, V. O.

    2016-02-01

    The bacterial family of Vibrionaceae is indigenous in the marine estuarine environments such as the Maryland Coastal Bays. Vibrio vulnificus and Vibrio parahaemolyticus are both pathogenic bacteria. Understanding the distribution of Vibrio species is crucial because of the health concerns associated with the bacteria. The aim of this study was to evaluate the overall abundance of bacteria with a focus on Vibrio species in the Maryland Coastal Bays. Seawater samples were collected from 10 different sites that differ with regard to water quality. The total bacteria count (TBC) was determined by two methods: Total plate count and Epifluorescence microscopy. The most-probable-number (MPN) methodology was used to estimate the population of Vibrio parahaemolyticus and Vibrio vulnificus. In addition to the bacteriological analysis, the environmental parameters of temperature and salinity were measured using YSI 6600 multiparameter meter. The average total bacteria count was 2.21 log CFU ml-1. Vibrio vulnificus comprised 5% of the total bacteria count while Vibrio parahaemolyticus comprised only 2% of the total bacteria count. Vibrio vulnificus ranged from 0.30 to 2.48 log MPN ml-1 at the sites tested. Lower Vibrio parahaemolyticus count was observed at the sites with a range of 0.30 to 1.97 log MPN ml-1. There was no significant correlation between the environmental parameters and the Vibrio spp. Since both Vibrio vulnificus and Vibrio parahaemolyticus peak in the summer, there is a potential for a risk of wound infections and gastrointestinal illness based on this data.

  14. POTENSI BEBERAPA ISOLAT PROBIOTIK SEBAGAI ANTIBAKTERI TERHADAP PERTUMBUHAN Vibrio spp.

    OpenAIRE

    HASBIAH

    2015-01-01

    The research about potential of some probiotic isolates as an antibacterial on the growth of Vibrio spp had been done. This research aimed to know the antibacterial potency from some isolates probiotic on the growth of Vibrio spp. This research to tested the inhibition on the three species of Vibrio that are Vibrio harveyi, Vibrio prahaemolyticus, and Vibrio cholerae using agar diffusion method. Probiotic isolates come from lactic acid bacteria group that provide beneficial effects on health ...

  15. White shrimp (Litopenaeus vannamei) recombinant lysozyme has antibacterial activity against Gram negative bacteria: Vibrio alginolyticus, Vibrio parahemolyticus and Vibrio cholerae.

    Science.gov (United States)

    de-la-Re-Vega, Enrique; García-Galaz, Alfonso; Díaz-Cinco, Martha E; Sotelo-Mundo, Rogerio R

    2006-03-01

    C-type lysozyme has been described as an antibacterial component of the shrimp innate defence system. We determined quantitatively the antibacterial activity of white shrimp (Litopenaeus vannamei) recombinant lysozyme against three Gram negative bacteria: Vibrio alginolyticus, Vibrio parahemolyticus and Vibrio cholerae, using a turbidimetric assay with live bacteria and differential bacterial viable count after interaction with the protein. In conclusion, the antibacterial activity of recombinant shrimp lysozyme against Vibrio sp. is at least equal to the values against the Gram positive M. luteus and more active against the shrimp pathogens V. alginolyticus and V. parahemolyticus.

  16. Acetic Acid Bacteria as Symbionts of Insects

    KAUST Repository

    Crotti, Elena; Chouaia, Bessem; Alma, Alberto; Favia, Guido; Bandi, Claudio; Bourtzis, Kostas; Daffonchio, Daniele

    2016-01-01

    Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

  17. Acetic Acid Bacteria as Symbionts of Insects

    KAUST Repository

    Crotti, Elena

    2016-06-14

    Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

  18. A decrease in bulk water and mannitol and accumulation of trehalose and trehalose-based oligosaccharides define a two-stage maturation process towards extreme stress resistance in ascospores of Neosartorya fischeri (Aspergillus fischeri)

    NARCIS (Netherlands)

    Wyatt, Timon T; Golovina, Elena A; van Leeuwen, Richard; Hallsworth, John E; Wösten, Han A B; Dijksterhuis, Jan

    Fungal propagules survive stresses better than vegetative cells. Neosartorya fischeri, an Aspergillus teleomorph, forms ascospores that survive high temperatures or drying followed by heat. Not much is known about maturation and development of extreme stress resistance in fungal cells. This study

  19. Vibrio chromosome-specific families

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Ussery, David

    2014-01-01

    We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished...... chromosomes, we find a core set of 1269 encoded protein families for chromosome 1, and a core of 252 encoded protein families for chromosome 2. Many of these core proteins are also found in the draft genomes (although which chromosome they are located on is unknown.) Of the chromosome specific core protein...... families, 1169 and 153 are uniquely found in chromosomes 1 and 2, respectively. Gene ontology (GO) terms for each of the protein families were determined, and the different sets for each chromosome were compared. A total of 363 different "Molecular Function" GO categories were found for chromosome 1...

  20. Tracking transmission of apicomplexan symbionts in diverse Caribbean corals.

    Directory of Open Access Journals (Sweden)

    Nathan L Kirk

    Full Text Available Symbionts in each generation are transmitted to new host individuals either vertically (parent to offspring, horizontally (from exogenous sources, or a combination of both. Scleractinian corals make an excellent study system for understanding patterns of symbiont transmission since they harbor diverse symbionts and possess distinct reproductive modes of either internal brooding or external broadcast spawning that generally correlate with vertical or horizontal transmission, respectively. Here, we focused on the under-recognized, but apparently widespread, coral-associated apicomplexans (Protista: Alveolata to determine if symbiont transmission depends on host reproductive mode. Specifically, a PCR-based assay was utilized towards identifying whether planula larvae and reproductive adults from brooding and broadcast spawning scleractinian coral species in Florida and Belize harbored apicomplexan DNA. Nearly all (85.5%; n = 85/89 examined planulae of five brooding species (Porites astreoides, Agaricia tenuifolia, Agaricia agaricites, Favia fragum, Mycetophyllia ferox and adults of P. astreoides were positive for apicomplexan DNA. In contrast, no (n = 0/10 apicomplexan DNA was detected from planulae of four broadcast spawning species (Acropora cervicornis, Acropora palmata, Pseudodiploria strigosa, and Orbicella faveolata and rarely in gametes (8.9%; n = 5/56 of these species sampled from the same geographical range as the brooding species. In contrast, tissue samples from nearly all (92.0%; n = 81/88 adults of the broadcast spawning species A. cervicornis, A. palmata and O. faveolata harbored apicomplexan DNA, including colonies whose gametes and planulae tested negative for these symbionts. Taken together, these data suggest apicomplexans are transmitted vertically in these brooding scleractinian coral species while the broadcast spawning scleractinian species examined here acquire these symbionts horizontally. Notably, these transmission

  1. Tracking transmission of apicomplexan symbionts in diverse Caribbean corals.

    Science.gov (United States)

    Kirk, Nathan L; Ritson-Williams, Raphael; Coffroth, Mary Alice; Miller, Margaret W; Fogarty, Nicole D; Santos, Scott R

    2013-01-01

    Symbionts in each generation are transmitted to new host individuals either vertically (parent to offspring), horizontally (from exogenous sources), or a combination of both. Scleractinian corals make an excellent study system for understanding patterns of symbiont transmission since they harbor diverse symbionts and possess distinct reproductive modes of either internal brooding or external broadcast spawning that generally correlate with vertical or horizontal transmission, respectively. Here, we focused on the under-recognized, but apparently widespread, coral-associated apicomplexans (Protista: Alveolata) to determine if symbiont transmission depends on host reproductive mode. Specifically, a PCR-based assay was utilized towards identifying whether planula larvae and reproductive adults from brooding and broadcast spawning scleractinian coral species in Florida and Belize harbored apicomplexan DNA. Nearly all (85.5%; n = 85/89) examined planulae of five brooding species (Porites astreoides, Agaricia tenuifolia, Agaricia agaricites, Favia fragum, Mycetophyllia ferox) and adults of P. astreoides were positive for apicomplexan DNA. In contrast, no (n = 0/10) apicomplexan DNA was detected from planulae of four broadcast spawning species (Acropora cervicornis, Acropora palmata, Pseudodiploria strigosa, and Orbicella faveolata) and rarely in gametes (8.9%; n = 5/56) of these species sampled from the same geographical range as the brooding species. In contrast, tissue samples from nearly all (92.0%; n = 81/88) adults of the broadcast spawning species A. cervicornis, A. palmata and O. faveolata harbored apicomplexan DNA, including colonies whose gametes and planulae tested negative for these symbionts. Taken together, these data suggest apicomplexans are transmitted vertically in these brooding scleractinian coral species while the broadcast spawning scleractinian species examined here acquire these symbionts horizontally. Notably, these transmission patterns are

  2. Parasitic wasp responses to symbiont-based defense in aphids

    Directory of Open Access Journals (Sweden)

    Oliver Kerry M

    2012-02-01

    Full Text Available Abstract Background Recent findings indicate that several insect lineages receive protection against particular natural enemies through infection with heritable symbionts, but little is yet known about whether enemies are able to discriminate and respond to symbiont-based defense. The pea aphid, Acyrthosiphon pisum, receives protection against the parasitic wasp, Aphidius ervi, when infected with the bacterial symbiont Hamiltonella defensa and its associated bacteriophage APSE (Acyrthosiphon pisum secondary endosymbiont. Internally developing parasitoid wasps, such as A. ervi, use maternal and embryonic factors to create an environment suitable for developing wasps. If more than one parasitoid egg is deposited into a single aphid host (superparasitism, then additional complements of these factors may contribute to the successful development of the single parasitoid that emerges. Results We performed experiments to determine if superparasitism is a tactic allowing wasps to overcome symbiont-mediated defense. We found that the deposition of two eggs into symbiont-protected aphids significantly increased rates of successful parasitism relative to singly parasitized aphids. We then conducted behavioral assays to determine whether A. ervi selectively superparasitizes H. defensa-infected aphids. In choice tests, we found that A. ervi tends to deposit a single egg in uninfected aphids, but two or more eggs in H. defensa-infected aphids, indicating that oviposition choices may be largely determined by infection status. Finally, we identified differences in the quantity of the trans-β-farnesene, the major component of aphid alarm pheromone, between H. defensa-infected and uninfected aphids, which may form the basis for discrimination. Conclusions Here we show that the parasitic wasp A. ervi discriminates among symbiont-infected and uninfected aphids, and changes its oviposition behavior in a way that increases the likelihood of overcoming symbiont

  3. Symbiont modulates expression of specific gene categories in Angomonas deanei

    Directory of Open Access Journals (Sweden)

    Luciana Loureiro Penha

    Full Text Available Trypanosomatids are parasites that cause disease in humans, animals, and plants. Most are non-pathogenic and some harbor a symbiotic bacterium. Endosymbiosis is part of the evolutionary process of vital cell functions such as respiration and photosynthesis. Angomonas deanei is an example of a symbiont-containing trypanosomatid. In this paper, we sought to investigate how symbionts influence host cells by characterising and comparing the transcriptomes of the symbiont-containing A. deanei (wild type and the symbiont-free aposymbiotic strains. The comparison revealed that the presence of the symbiont modulates several differentially expressed genes. Empirical analysis of differential gene expression showed that 216 of the 7625 modulated genes were significantly changed. Finally, gene set enrichment analysis revealed that the largest categories of genes that downregulated in the absence of the symbiont were those involved in oxidation-reduction process, ATP hydrolysis coupled proton transport and glycolysis. In contrast, among the upregulated gene categories were those involved in proteolysis, microtubule-based movement, and cellular metabolic process. Our results provide valuable information for dissecting the mechanism of endosymbiosis in A. deanei.

  4. Crayfish: a newly recognized vehicle for vibrio infections.

    Science.gov (United States)

    Bean, N H; Maloney, E K; Potter, M E; Korazemo, P; Ray, B; Taylor, J P; Seigler, S; Snowden, J

    1998-10-01

    We conducted a 1-year case-control study of sporadic vibrio infections to identify risk factors related to consumption of seafood products in two coastal areas of Louisiana and Texas. Twenty-six persons with sporadic vibrio infections and 77 matched controls were enrolled. Multivariate analysis revealed that crayfish (P Vibrio parahemolyticus infection (OR 9.24, P vibrio infection.

  5. Quality or quantity: is nutrient transfer driven more by symbiont identity and productivity than by symbiont abundance?

    Science.gov (United States)

    Freeman, Christopher J; Thacker, Robert W; Baker, David M; Fogel, Marilyn L

    2013-06-01

    By forming symbiotic interactions with microbes, many animals and plants gain access to the products of novel metabolic pathways. We investigated the transfer of symbiont-derived carbon and nitrogen to the sponges Aplysina cauliformis, Aplysina fulva, Chondrilla caribensis, Neopetrosia subtriangularis and Xestospongia bocatorensis, all of which host abundant microbial populations, and Niphates erecta, which hosts a sparse symbiont community. We incubated sponges in light and dark bottles containing seawater spiked with (13)C- and (15)N-enriched inorganic compounds and then measured (13)C and (15)N enrichment in the microbial (nutrient assimilation) and sponge (nutrient transfer) fractions. Surprisingly, although most sponges hosting abundant microbial communities were more enriched in (13)C than N. erecta, only N. subtriangularis was more enriched in (15)N than N. erecta. Although photosymbiont abundance varied substantially across species, (13)C and (15)N enrichment was not significantly correlated with photosymbiont abundance. Enrichment was significantly correlated with the ratio of gross productivity to respiration (P:R), which varied across host species and symbiont phylotype. Because irradiance impacts P:R ratios, we also incubated A. cauliformis in (13)C-enriched seawater under different irradiances to determine whether symbiont carbon fixation and transfer are dependent on irradiance. Carbon fixation and transfer to the sponge host occurred in all treatments, but was greatest at higher irradiances and was significantly correlated with P:R ratios. Taken together, these results demonstrate that nutrient transfer from microbial symbionts to host sponges is influenced more by host-symbiont identities and P:R ratios than by symbiont abundance.

  6. Farming termites determine the genetic population structure of Termitomyces fungal symbionts

    DEFF Research Database (Denmark)

    Nobre, Tânia; Fernandes, Cecília; Boomsma, Jacobus J

    2011-01-01

    Symbiotic interactions between macrotermitine termites and their fungal symbionts have a moderate degree of specificity. Consistent with horizontal symbiont transmission, host switching has been frequent over evolutionary time so that single termite species can often be associated with several fu...

  7. Vibrio parahemolyticus bacteremia: case report.

    Science.gov (United States)

    Ng, T C; Chiang, P C; Wu, T L; Leu, H S

    1999-09-01

    Vibrio parahemolyticus (V. parahemolyticus) is a halophilic gram-negative bacillus that lives in the ocean. It is the leading cause of infectious diarrhea in Taiwan and sometimes produces soft tissue infections, but it is rarely a cause of bacteremia. There have been only 11 cases reported in the literature. Most of the cases involved a history of ingestion of seafood or exposure to seawater. In addition, those patients were all immunosuppressed, especially with leukemia and cirrhosis. We report a 60-year-old male patient with chronic hepatitis C and adrenal insufficiency. He developed V. parahemolyticus bacteremia following ingestion of seafood one week prior to admission. His condition was complicated with neck and right lower leg soft tissue infection, as well as multiple organ failure. The patient survived after intravenous ceftazidime, oral doxycycline, and surgical debridement. To our knowledge, this is the 12th reported cases on Medline, and the second bacteremic case in Taiwan. After reviewing the literature, we suggest that all patients with immunosuppressed conditions or adrenal insufficiency should eat foods that are well cooked and avoid raw seafood. Moreover, when patients who are at risk to develop fever, diarrhea, and soft tissue infection after ingestion of seafood, V. parahemolyticus infection should be suspected. All culture specimens should be inoculated on Vibrios selective media.

  8. Metagenomic Analysis of Microbial Symbionts in a Gutless Worm

    Energy Technology Data Exchange (ETDEWEB)

    Woyke, Tanja; Teeling, Hanno; Ivanova, Natalia N.; Hunteman, Marcel; Richter, Michael; Gloeckner, Frank Oliver; Boeffelli, Dario; Barry, Kerrie W.; Shapiro, Harris J.; Anderson, Iain J.; Szeto, Ernest; Kyrpides, Nikos C.; Mussmann, Marc; Amann, Rudolf; Bergin, Claudia; Ruehland, Caroline; Rubin, Edward M.; Dubilier, Nicole

    2006-05-01

    Symbioses between bacteria and eukaryotes are ubiquitous, yet our understanding of the interactions driving these associations is hampered by our inability to cultivate most host-associated microbes. Here we use a metagenomic approach to describe four co-occurring symbionts from the marine oligochaete Olavius algarvensis, a worm lacking a mouth, gut and nephridia. Shotgun sequencing and metabolic pathway reconstruction revealed that the symbionts are sulphur-oxidizing and sulphate-reducing bacteria, all of which are capable of carbon fixation, thus providing the host with multiple sources of nutrition. Molecular evidence for the uptake and recycling of worm waste products by the symbionts suggests how the worm could eliminate its excretory system, an adaptation unique among annelid worms. We propose a model that describes how the versatile metabolism within this symbiotic consortium provides the host with an optimal energy supply as it shuttles between the upper oxic and lower anoxic coastal sediments that it inhabits.

  9. Comparison of Chemical Sensitivity of Fresh and Long-Stored Heat Resistant Neosartorya fischeri Environmental Isolates Using BIOLOG Phenotype MicroArray System.

    Directory of Open Access Journals (Sweden)

    Jacek Panek

    Full Text Available Spoilage of heat processed food and beverage by heat resistant fungi (HRF is a major problem for food industry in many countries. Neosartorya fischeri is the leading source of spoilage in thermally processed products. Its resistance to heat processing and toxigenicity makes studies about Neosartorya fischeri metabolism and chemical sensitivity essential. In this study chemical sensitivity of two environmental Neosartorya fischeri isolates were compared. One was isolated from canned apples in 1923 (DSM3700, the other from thermal processed strawberry product in 2012 (KC179765, used as long-stored and fresh isolate, respectively. The study was conducted using Biolog Phenotype MicroArray platforms of chemical sensitivity panel and traditional hole-plate method. The study allowed for obtaining data about Neosartorya fischeri growth inhibitors. The fresh isolate appeared to be much more resistant to chemical agents than the long-stored isolate. Based on phenotype microarray assay nitrogen compounds, toxic cations and membrane function compounds were the most effective in growth inhibition of N. fischeri isolates. According to the study zaragozic acid A, thallium(I acetate and sodium selenate were potent and promising N. fischeri oriented fungicides which was confirmed by both chemical sensitivity microplates panel and traditional hole-plate methods.

  10. Almost there: transmission routes of bacterial symbionts between trophic levels.

    Directory of Open Access Journals (Sweden)

    Elad Chiel

    Full Text Available Many intracellular microbial symbionts of arthropods are strictly vertically transmitted and manipulate their host's reproduction in ways that enhance their own transmission. Rare horizontal transmission events are nonetheless necessary for symbiont spread to novel host lineages. Horizontal transmission has been mostly inferred from phylogenetic studies but the mechanisms of spread are still largely a mystery. Here, we investigated transmission of two distantly related bacterial symbionts--Rickettsia and Hamiltonella--from their host, the sweet potato whitefly, Bemisia tabaci, to three species of whitefly parasitoids: Eretmocerus emiratus, Eretmocerus eremicus and Encarsia pergandiella. We also examined the potential for vertical transmission of these whitefly symbionts between parasitoid generations. Using florescence in situ hybridization (FISH and transmission electron microscopy we found that Rickettsia invades Eretmocerus larvae during development in a Rickettsia-infected host, persists in adults and in females, reaches the ovaries. However, Rickettsia does not appear to penetrate the oocytes, but instead is localized in the follicular epithelial cells only. Consequently, Rickettsia is not vertically transmitted in Eretmocerus wasps, a result supported by diagnostic polymerase chain reaction (PCR. In contrast, Rickettsia proved to be merely transient in the digestive tract of Encarsia and was excreted with the meconia before wasp pupation. Adults of all three parasitoid species frequently acquired Rickettsia via contact with infected whiteflies, most likely by feeding on the host hemolymph (host feeding, but the rate of infection declined sharply within a few days of wasps being removed from infected whiteflies. In contrast with Rickettsia, Hamiltonella did not establish in any of the parasitoids tested, and none of the parasitoids acquired Hamiltonella by host feeding. This study demonstrates potential routes and barriers to horizontal

  11. Earthworm ecology affects the population structure of their Verminephrobacter symbionts

    DEFF Research Database (Denmark)

    Macedo Viana, Flavia Daniela; Jensen, Christopher Erik; Macey, Michael

    2016-01-01

    from two contrasting ecological types of earthworm hosts: the high population density, fast reproducing compost worms, Eisenia andrei and E. fetida, and the low-density, slow reproducing Aporrectodea tuberculata, commonly found in garden soils; for both types, three distinct populations were...... across host individuals from the same population. Thus, host ecology shapes the population structure of the Verminephrobacter symbionts. The homogeneous symbiont populations in the compost worms indicate that Verminephrobacter can be transferred bi-parentally or via leaky horizontal transmission in high...

  12. 4,5-Di-O-Caffeoylquinic Acid from Ligularia fischeri Suppresses Inflammatory Responses Through TRPV1 Activation.

    Science.gov (United States)

    Kim, Yiseul; Kim, Jung Tae; Park, Joonwoo; Son, Hee Jin; Kim, Eun-Young; Lee, Young Joo; Rhyu, Mee-Ra

    2017-10-01

    Ligularia fischeri (Ledeb.) Turcz., a perennial plant native to northeastern Asia, has long been used as folk remedies for the alleviation of inflammatory symptoms. We investigated whether the extract of L. fischeri (LFEx) and caffeoylquinic acid (CQA) derivatives, the pharmacologically active ingredients identified from L. fischeri, regulate inflammation via a transient receptor potential vanilloid 1 (TRPV1)-mediated pathway. Changes in intracellular Ca 2+ levels to the LFEx and trans-5-O-CQA, 3,4-di-O-CQA, 3,5-di-O-CQA, and 4,5-di-O-CQA were monitored in TRPV1-expressing human embryonic kidney cell HEK 293T. LFEx and 4,5-di-O-CQA (EC 50  = 69.34 ± 1.12 μM) activated TRPV1, and these activations were significantly inhibited by ruthenium red, a general blocker of TRP channels, and capsazepine, a specific antagonist of TRPV1. 4,5-Di-O-CQA has been determined having antiinflammatory effect under hypoxic conditions by detecting the expression of cyclooxygenase-2 (COX-2), a representative inflammatory marker, and cellular migration in human pulmonary epithelial A549 cells. 4,5-Di-O-CQA suppressed COX-2 expression and cell migration, and this inhibition was countered by co-treatment with capsazepine. This study provides evidence that L. fischeri is selective to inflammatory responses via a TRPV1-mediated pathway, and 4,5-di-O-CQA might play a key role to create these effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Resistance to Antimicrobial Peptides in Vibrios

    Directory of Open Access Journals (Sweden)

    Delphine Destoumieux-Garzón

    2014-10-01

    Full Text Available Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.

  14. Hatchery mortalities of larval oysters caused by Vibrio tubiashii and Vibrio coralliilyticus

    Science.gov (United States)

    Hatchery production of bivalve shellfish has been hampered by the occasional presence of opportunistic pathogens, particularly Vibrio coralliilyticus and Vibrio tubiashii. The present study reports the results of several avenues of research to better define these pathogens and the roles they play i...

  15. A nuptially transmitted Ichthyosproean symbiont of Tenebrio molitor (Coleoptera: Tenebrionidae)

    Science.gov (United States)

    The yellow mealworm, Tenebrio molitor, harbors a symbiont that has spores with a thick, laminated wall and infects the fat body and ventral nerve chord of adult and larval beetles. In adult males, there is heavy infection of the epithelial cells of the testes and between testes lobes with occasional...

  16. Understanding nutrient exchange between Azolla and its symbiont, Nostoc

    OpenAIRE

    Eily, Ariana

    2017-01-01

    This is an in-depth look at the research I am doing for my doctoral degree at Duke University, investigating the exchange of nutrients between the aquatic fern genus, Azolla, and its cyanobacterial symbiont, Nostoc azollae. All of the illustrations and microscopy images within this presentation are my own.

  17. Complete Genome Sequence of the Human Gut Symbiont Roseburia hominis

    DEFF Research Database (Denmark)

    Travis, Anthony J.; Kelly, Denise; Flint, Harry J

    2015-01-01

    We report here the complete genome sequence of the human gut symbiont Roseburia hominis A2-183(T) (= DSM 16839(T) = NCIMB 14029(T)), isolated from human feces. The genome is represented by a 3,592,125-bp chromosome with 3,405 coding sequences. A number of potential functions contributing to host...

  18. Rapid proliferation of Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae during freshwater flash floods in French Mediterranean coastal lagoons.

    Science.gov (United States)

    Esteves, Kevin; Hervio-Heath, Dominique; Mosser, Thomas; Rodier, Claire; Tournoud, Marie-George; Jumas-Bilak, Estelle; Colwell, Rita R; Monfort, Patrick

    2015-11-01

    Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae of the non-O1/non-O139 serotype are present in coastal lagoons of southern France. In these Mediterranean regions, the rivers have long low-flow periods followed by short-duration or flash floods during and after heavy intense rainstorms, particularly at the end of the summer and in autumn. These floods bring large volumes of freshwater into the lagoons, reducing their salinity. Water temperatures recorded during sampling (15 to 24°C) were favorable for the presence and multiplication of vibrios. In autumn 2011, before heavy rainfalls and flash floods, salinities ranged from 31.4 to 36.1‰ and concentrations of V. parahaemolyticus, V. vulnificus, and V. cholerae varied from 0 to 1.5 × 10(3) most probable number (MPN)/liter, 0.7 to 2.1 × 10(3) MPN/liter, and 0 to 93 MPN/liter, respectively. Following heavy rainstorms that generated severe flash flooding and heavy discharge of freshwater, salinity decreased, reaching 2.2 to 16.4‰ within 15 days, depending on the site, with a concomitant increase in Vibrio concentration to ca. 10(4) MPN/liter. The highest concentrations were reached with salinities between 10 and 20‰ for V. parahaemolyticus, 10 and 15‰ for V. vulnificus, and 5 and 12‰ for V. cholerae. Thus, an abrupt decrease in salinity caused by heavy rainfall and major flooding favored growth of human-pathogenic Vibrio spp. and their proliferation in the Languedocian lagoons. Based on these results, it is recommended that temperature and salinity monitoring be done to predict the presence of these Vibrio spp. in shellfish-harvesting areas of the lagoons. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Pigments Characterization and Molecular Identification of Bacterial Symbionts of Brown Algae Padinasp. Collected from Karimunjawa Island

    Directory of Open Access Journals (Sweden)

    Damar Bayu Murti

    2016-06-01

    Full Text Available The search for carotenoids in nature has been extensively studied because of their applications in foods. One treasure of the biopigment source is symbiotic-microorganisms with marine biota. The advantages of symbiont bacteria are easy to culture and sensitize pigments. The use of symbiont bacteria helps to conserve fish, coral reefs, seagrass, and seaweed. Therefore, the bacteria keeps their existence in their ecosystems. In this study, bacterial symbionts were successfully isolated from brown algae Padina sp. The bacterial symbionts had yellow pigment associated with carotenoids. The pigments were characterized using High Performance Liquid Chromatography (HPLC with a Photo Diode Array (PDA detector. The carotenoid pigments in the bacterial symbionts were identified as dinoxanthin, lutein and neoxanthin. Molecular identification by using a 16S rRNA gene sequence method, reveals that the bacterial symbionts were closely related to Bacillus marisflavi with a homology of 99%. Keywords :carotenoid pigments, brown algae, Padina, bacterial symbionts, 16S rRNA

  20. Suspension of oysters reduces the populations of Vibrio parahaemolyticus and Vibrio vulnificus.

    Science.gov (United States)

    Cole, K M; Supan, J; Ramirez, A; Johnson, C N

    2015-09-01

    Vibrio parahaemolyticus (Vp) and Vibrio vulnificus (Vv) are associated with the consumption of raw oysters and cause illnesses ranging from simple gastroenteritis to life-threatening septicaemia. These halophilic bacteria are frequently found in marine and estuarine systems, accumulating within the tissues of a number of aquatic organisms and passing on to humans after consumption, through contaminated water, or via open wounds. As benthic organisms capable of filtering 40 gallons of water per hour, sediment is an important source of potentially pathogenic vibrios in oysters destined for raw consumption. This research used off-bottom oyster culture to reduce vibrio concentrations in oysters. Colony hybridization was used to enumerate Vp and Vv in bottom and suspended oysters. Vv and Vp concentrations were generally lower in oysters suspended off-bottom, and suspension decreased vibrio loads in oysters by an average of 13%. Suspension of oysters reduced vibrio concentrations. This study found that oyster suspension significantly reduced some populations of potentially pathogenic vibrios. These results indicate that oyster suspension could be a viable approach for preharvest treatment to reduce illness in consumers of raw oysters. © 2015 The Society for Applied Microbiology.

  1. Effects of Global Warming on Vibrio Ecology.

    Science.gov (United States)

    Vezzulli, Luigi; Pezzati, Elisabetta; Brettar, Ingrid; Höfle, Manfred; Pruzzo, Carla

    2015-06-01

    Vibrio-related infections are increasing worldwide both in humans and aquatic animals. Rise in global sea surface temperature (SST), which is approximately 1 °C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases. In this chapter, major known effects of increasing SST on the biology and ecology of vibrios are described. They include the effects on bacterial growth rate, both in the field and in laboratory, culturability, expression of pathogenicity traits, and interactions with aquatic organisms and abiotic surfaces. Special emphasis is given to the effect of ocean warming on Vibrio interactions with zooplankters, which represent one of the most important aquatic reservoirs for these bacteria. The reported findings highlight the biocomplexity of the interactions between vibrios and their natural environment in a climate change scenario, posing the need for interdisciplinary studies to properly understand the connection between ocean warming and persistence and spread of vibrios in sea waters and the epidemiology of the diseases they cause.

  2. Inheritance patterns of secondary symbionts during sexual reproduction of pea aphid biotypes.

    Science.gov (United States)

    Peccoud, Jean; Bonhomme, Joël; Mahéo, Frédérique; de la Huerta, Manon; Cosson, Olivier; Simon, Jean-Christophe

    2014-06-01

    Herbivorous insects frequently harbor bacterial symbionts that affect their ecology and evolution. Aphids host the obligatory endosymbiont Buchnera, which is required for reproduction, together with facultative symbionts whose frequencies vary across aphid populations. These maternally transmitted secondary symbionts have been particularly studied in the pea aphid, Acyrthosiphon pisum, which harbors at least 8 distinct bacterial species (not counting Buchnera) having environmentally dependent effects on host fitness. In particular, these symbiont species are associated with pea aphid populations feeding on specific plants. Although they are maternally inherited, these bacteria are occasionally transferred across insect lineages. One mechanism of such nonmaternal transfer is paternal transmission to the progeny during sexual reproduction. To date, transmission of secondary symbionts during sexual reproduction of aphids has been investigated in only a handful of aphid lineages and 3 symbiont species. To better characterize this process, we investigated inheritance patterns of 7 symbiont species during sexual reproduction of pea aphids through a crossing experiment involving 49 clones belonging to 9 host-specialized biotypes, and 117 crosses. Symbiont species in the progeny were detected with diagnostic qualitative PCR at the fundatrix stage hatching from eggs and in later parthenogenetic generations. We found no confirmed case of paternal transmission of symbionts to the progeny, and we observed that maternal transmission of a particular symbiont species (Serratia symbiotica) was quite inefficient. We discuss these observations in respect to the ecology of the pea aphid. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  3. Bacteriophage interactions with marine pathogenic Vibrios

    DEFF Research Database (Denmark)

    Kalatzis, Panagiotis

    development and spreading of antibiotic resistant bacteria in the environment. Bacteriophage therapy, constitutes a potent alternative not only for treatment but also for prevention of vibriosis in aquaculture and the current thesis addresses the potential and challenges of using phages to control Vibrio...... pathogens. The combinatory administration of virulent bacteriophages φSt2 and φGrn1, isolated against Vibrio alginolyticus significantly reduced the Vibrio load in cultures of Artemia salina live prey, decreasing subsequently the risk of a vibriosis outbreak in the marine hatchery. During infection...... therapy applications. Lytic phage vB_VspP_pVa5 that has been isolated against the rapidly emerging pathogen V. splendidus is also a promising candidate for phage therapy application according to its gene content and in vitro performance against its host. The genetic features of vB_VspP_pVa5 provide also...

  4. A nuptially transmitted ichthyosporean symbiont of Tenebrio molitor (Coleoptera: Tenebrionidae).

    Science.gov (United States)

    Lord, Jeffrey C; Hartzer, Kris L; Kambhampati, Srinivas

    2012-01-01

    The yellow mealworm, Tenebrio molitor, harbors a symbiont that has spores with a thick, laminated wall and infects the fat body and ventral nerve chord of adult and larval beetles. In adult males, there is heavy infection of the epithelial cells of the testes and between testes lobes with occasional penetration of the lobes. Spores are enveloped in the spermatophores when they are formed at the time of mating and transferred to the female's bursa copulatrix. Infection has not been found in the ovaries. The sequence of the nuclear small subunit rDNA indicates that the symbiont is a member of the Ichthyosporea, a class of protists near the animal-fungi divergence. © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists.

  5. Comparative Genomic Analysis of Holospora spp., Intranuclear Symbionts of Paramecia

    Directory of Open Access Journals (Sweden)

    Sofya K. Garushyants

    2018-04-01

    Full Text Available While most endosymbiotic bacteria are transmitted only vertically, Holospora spp., an alphaproteobacterium from the Rickettsiales order, can desert its host and invade a new one. All bacteria from the genus Holospora are intranuclear symbionts of ciliates Paramecium spp. with strict species and nuclear specificity. Comparative metabolic reconstruction based on the newly sequenced genome of Holospora curviuscula, a macronuclear symbiont of Paramecium bursaria, and known genomes of other Holospora species shows that even though all Holospora spp. can persist outside the host, they cannot synthesize most of the essential small molecules, such as amino acids, and lack some central energy metabolic pathways, including glycolysis and the citric acid cycle. As the main energy source, Holospora spp. likely rely on nucleotides pirated from the host. Holospora-specific genes absent from other Rickettsiales are possibly involved in the lifestyle switch from the infectious to the reproductive form and in cell invasion.

  6. The Physiology of Microbial Symbionts in Fungus-Farming Termites

    DEFF Research Database (Denmark)

    Rodrigues da Costa, Rafael

    . The termites provide the fungus with optimal growth conditions (e.g., stable temperature and humidity), as well as with constant inoculation of growth substrate and protection against alien fungi. In reward, the fungus provides the termites with a protein-rich fungal biomass based diet. In addition...... with their symbionts are main decomposer of organic matter in Africa, and this is reflect of a metabolic complementarity to decompose plant biomass in the genome of the three organisms involved in this symbiosis. Many of the physiological aspects of this symbiosis remain obscure, and here I focus on physiology...... of microbial symbionts associated with fungus-growing termites. Firstly, by using a set of enzyme assays, plant biomass compositional analyses, and RNA sequencing we gained deeper understanding on what enzymes are produced and active at different times of the decomposition process. Our results show that enzyme...

  7. Host and Symbiont Jointly Control Gut Microbiota during Complete Metamorphosis

    Science.gov (United States)

    Johnston, Paul R.; Rolff, Jens

    2015-01-01

    Holometabolous insects undergo a radical anatomical re-organisation during metamorphosis. This poses a developmental challenge: the host must replace the larval gut but at the same time retain symbiotic gut microbes and avoid infection by opportunistic pathogens. By manipulating host immunity and bacterial competitive ability, we study how the host Galleria mellonella and the symbiotic bacterium Enterococcus mundtii interact to manage the composition of the microbiota during metamorphosis. Disenabling one or both symbiotic partners alters the composition of the gut microbiota, which incurs fitness costs: adult hosts with a gut microbiota dominated by pathogens such as Serratia and Staphylococcus die early. Our results reveal an interaction that guarantees the safe passage of the symbiont through metamorphosis and benefits the resulting adult host. Host-symbiont “conspiracies” as described here are almost certainly widespread in holometobolous insects including many disease vectors. PMID:26544881

  8. Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts.

    Science.gov (United States)

    Remigi, Philippe; Zhu, Jun; Young, J Peter W; Masson-Boivin, Catherine

    2016-01-01

    Bacterial accessory genes are genomic symbionts with an evolutionary history and future that is different from that of their hosts. Packages of accessory genes move from strain to strain and confer important adaptations, such as interaction with eukaryotes. The ability to fix nitrogen with legumes is a remarkable example of a complex trait spread by horizontal transfer of a few key symbiotic genes, converting soil bacteria into legume symbionts. Rhizobia belong to hundreds of species restricted to a dozen genera of the Alphaproteobacteria and Betaproteobacteria, suggesting infrequent successful transfer between genera but frequent successful transfer within genera. Here we review the genetic and environmental conditions and selective forces that have shaped evolution of this complex symbiotic trait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Bacteriophages in the control of pathogenic vibrios

    DEFF Research Database (Denmark)

    Plaza, Nicolás; Castillo Bermúdez, Daniel Elías; Perez-Reytor, Diliana

    2018-01-01

    constitute a continuing threat for aquaculture. Moreover, the continuous use of antibiotics has been accompanied by an emergence of antibiotic resistance in Vibrio species, implying a necessity for efficient treatments. One promising alternative that emerges is the use of lytic bacteriophages; however......, there are some drawbacks that should be overcome to make phage therapy a widely accepted method. In this work, we discuss about the major pathogenic Vibrio species and the progress, benefits and disadvantages that have been detected during the experimental use of bacteriophages to their control....

  10. Host-Polarized Cell Growth in Animal Symbionts.

    Science.gov (United States)

    Pende, Nika; Wang, Jinglan; Weber, Philipp M; Verheul, Jolanda; Kuru, Erkin; Rittmann, Simon K-M R; Leisch, Nikolaus; VanNieuwenhze, Michael S; Brun, Yves V; den Blaauwen, Tanneke; Bulgheresi, Silvia

    2018-04-02

    To determine the fundamentals of cell growth, we must extend cell biological studies to non-model organisms. Here, we investigated the growth modes of the only two rods known to widen instead of elongating, Candidatus Thiosymbion oneisti and Thiosymbion hypermnestrae. These bacteria are attached by one pole to the surface of their respective nematode hosts. By incubating live Ca. T. oneisti and T. hypermnestrae with a peptidoglycan metabolic probe, we observed that the insertion of new cell wall starts at the poles and proceeds inward, concomitantly with FtsZ-based membrane constriction. Remarkably, in Ca. T. hypermnestrae, the proximal, animal-attached pole grows before the distal, free pole, indicating that the peptidoglycan synthesis machinery is host oriented. Immunostaining of the symbionts with an antibody against the actin homolog MreB revealed that it was arranged medially-that is, parallel to the cell long axis-throughout the symbiont life cycle. Given that depolymerization of MreB abolished newly synthesized peptidoglycan insertion and impaired divisome assembly, we conclude that MreB function is required for symbiont widening and division. In conclusion, our data invoke a reassessment of the localization and function of the bacterial actin homolog. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. A novel bacterial symbiont in the nematode Spirocerca lupi

    Directory of Open Access Journals (Sweden)

    Gottlieb Yuval

    2012-07-01

    Full Text Available Abstract Background The parasitic nematode Spirocerca lupi (Spirurida: Thelaziidae, the canine esophageal worm, is the causative agent of spirocercosis, a disease causing morbidity and mortality in dogs. Spirocerca lupi has a complex life cycle, involving an obligatory coleopteran intermediate host (vector, an optional paratenic host, and a definitive canid host. The diagnosis of spirocercosis is challenging, especially in the early disease stages, when adult worms and clinical signs are absent. Thus, alternative approaches are needed to promote early diagnosis. The interaction between nematodes and their bacterial symbionts has recently become a focus of novel treatment regimens for other helminthic diseases. Results Using 16S rDNA-based molecular methods, here we found a novel bacterial symbiont in S. lupi that is closely related to Comamonas species (Brukholderiales: Comamonadaceae of the beta-proteobacteria. Its DNA was detected in eggs, larvae and adult stages of S. lupi. Using fluorescent in situ hybridization technique, we localized Comamonas sp. to the gut epithelial cells of the nematode larvae. Specific PCR enabled the detection of this symbiont's DNA in blood obtained from dogs diagnosed with spirocercosis. Conclusions The discovery of a new Comamonas sp. in S. lupi increase the complexity of the interactions among the organisms involved in this system, and may open innovative approaches for diagnosis and control of spirocercosis in dogs.

  12. Vibrio ecology - Identifying Environmental Determinants Favorable for the Presence and Transmission of Pathogenic Vibrios

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In a tri-coastal collaborative study, the population densities of vibrios are being determined in the Mississippi Sound, Puget Sound, Chesapeake Bay, and Timbalier...

  13. Vibrio population structure - Genetic and population structure analysis of clinical and environmental Vibrio parahaemolyticus strains

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Vibrio parahaemolyticus (Vp) is a marine bacterium capable of causing severe gastroenteritis in humans, usually through the consumption of raw shellfish. Before...

  14. A novel extracellular gut symbiont in the marine worm Priapulus caudatus (Priapulida reveals an alphaproteobacterial symbiont clade of the Ecdysozoa

    Directory of Open Access Journals (Sweden)

    Paul eKroer

    2016-04-01

    Full Text Available Priapulus caudatus (phylum Priapulida is a benthic marine predatory worm with a cosmopolitan distribution. In its digestive tract we detected symbiotic bacteria that were consistently present in specimens collected over eight years from three sites at the Swedish west coast. Based on their 16S rRNA gene sequence, these symbionts comprise a novel genus of the order Rickettsiales (Alphaproteobacteria. Electron microscopy and fluorescence in situ hybridization (FISH identified them as extracellular, elongate bacteria closely associated with the microvilli, for which we propose the name ‘Candidatus Tenuibacter priapulorum’. Within Rickettsiales, they form a phylogenetically well-defined, family-level clade with uncultured symbionts of marine, terrestrial, and freshwater arthropods. Cand. Tenuibacter priapulorum expands the host range of this candidate family from Arthropoda to the entire Ecdysozoa, which may indicate an evolutionary adaptation of this bacterial group to the microvilli-lined guts of the Ecdysozoa.

  15. A Novel Extracellular Gut Symbiont in the Marine Worm Priapulus caudatus (Priapulida) Reveals an Alphaproteobacterial Symbiont Clade of the Ecdysozoa.

    Science.gov (United States)

    Kroer, Paul; Kjeldsen, Kasper U; Nyengaard, Jens R; Schramm, Andreas; Funch, Peter

    2016-01-01

    Priapulus caudatus (phylum Priapulida) is a benthic marine predatory worm with a cosmopolitan distribution. In its digestive tract we detected symbiotic bacteria that were consistently present in specimens collected over 8 years from three sites at the Swedish west coast. Based on their 16S rRNA gene sequence, these symbionts comprise a novel genus of the order Rickettsiales (Alphaproteobacteria). Electron microscopy and fluorescence in situ hybridization (FISH) identified them as extracellular, elongate bacteria closely associated with the microvilli, for which we propose the name "Candidatus Tenuibacter priapulorum". Within Rickettsiales, they form a phylogenetically well-defined, family-level clade with uncultured symbionts of marine, terrestrial, and freshwater arthropods. Cand. Tenuibacter priapulorum expands the host range of this candidate family from Arthropoda to the entire Ecdysozoa, which may indicate an evolutionary adaptation of this bacterial group to the microvilli-lined guts of the Ecdysozoa.

  16. Cellular tropism, population dynamics, host range and taxonomic status of an aphid secondary symbiont, SMLS (Sitobion miscanthi L type symbiont.

    Directory of Open Access Journals (Sweden)

    Tong Li

    Full Text Available SMLS (Sitobion miscanthi L type symbiont is a newly reported aphid secondary symbiont. Phylogenetic evidence from molecular markers indicates that SMLS belongs to the Rickettsiaceae and has a sibling relationship with Orientia tsutsugamushi. A comparative analysis of coxA nucleotide sequences further supports recognition of SMLS as a new genus in the Rickettsiaceae. In situ hybridization reveals that SMLS is housed in both sheath cells and secondary bacteriocytes and it is also detected in aphid hemolymph. The population dynamics of SMLS differ from those of Buchnera aphidicola and titer levels of SMLS increase in older aphids. A survey of 13 other aphids reveals that SMLS only occurs in wheat-associated species.

  17. Aktivitas Antibakteri Ekstrak Buah Adas (Foeniculum vulgare, Mill) pada Vibrio harveyi dan Vibrio alginolyticus

    OpenAIRE

    Budianto, Budianto; Prajitno, Arief; Yuniarti, Ating

    2017-01-01

    Evaluation of natural products as a safe and effective antimicrobial agent is a scientific strategy to treat the drugresistant pathogens.Fennel(FoeniculumvulgareMill) is an herbal plant that has an active in gredient which is one of its benefit sasan antibacterial material. In thisstudy,water extract of fennel fruit determined the antibacterial activity against Vibrio harveyi and Vibrio alginolyticus using the minimum Inhibitory  Concentration Test (MIC) and paper disk diffusion method....

  18. Diversity and Phylogenetic Analyses of Bacterial Symbionts in Three Whitefly Species from Southeast Europe

    OpenAIRE

    Skaljac, Marisa; Kanakala, Surapathrudu; Zanic, Katja; Puizina, Jasna; Lepen Pleic, Ivana; Ghanim, Murad

    2017-01-01

    Bemisia tabaci (Gennadius), Trialeurodes vaporariorum (Westwood), and Siphoninus phillyreae (Haliday) are whitefly species that harm agricultural crops in many regions of the world. These insects live in close association with bacterial symbionts that affect host fitness and adaptation to the environment. In the current study, we surveyed the infection of whitefly populations in Southeast Europe by various bacterial symbionts and performed phylogenetic analyses on the different symbionts dete...

  19. A Novel Extracellular Gut Symbiont in the Marine Worm Priapulus caudatus (Priapulida) Reveals an Alphaproteobacterial Symbiont Clade of the Ecdysozoa

    OpenAIRE

    Kroer, Paul; Kjeldsen, Kasper U.; Nyengaard, Jens R.; Schramm, Andreas; Funch, Peter

    2016-01-01

    Priapulus caudatus (phylum Priapulida) is a benthic marine predatory worm with a cosmopolitan distribution. In its digestive tract we detected symbiotic bacteria that were consistently present in specimens collected over eight years from three sites at the Swedish west coast. Based on their 16S rRNA gene sequence, these symbionts comprise a novel genus of the order Rickettsiales (Alphaproteobacteria). Electron microscopy and fluorescence in situ hybridization (FISH) identified them as extrace...

  20. Luminescence, virulence and quorum sensing signal production by pathogenic Vibrio campbellii and Vibrio harveyi isolates.

    Science.gov (United States)

    Defoirdt, T; Verstraete, W; Bossier, P

    2008-05-01

    To study the relationship between luminescence, autoinducer production and virulence of pathogenic vibrios. Luminescence, quorum sensing signal production and virulence towards brine shrimp nauplii of 13 Vibrio campbellii and Vibrio harveyi strains were studied. Although only two of the tested strains were brightly luminescent, all of them were shown to produce the three different types of quorum sensing signals known to be produced by Vibrio harveyi. Cell-free culture fluids of all strains significantly induced bioluminescence in the cholerae autoinducer 1, autoinducer 2 and harveyi autoinducer 1 reporter strains JAF375, JMH597 and JMH612, respectively. There was no relation between luminescence and signal production and virulence towards brine shrimp. There is a large difference between different strains of Vibrio campbellii and Vibrio harveyi with respect to bioluminescence. However, this is not reflected in signal production and virulence towards gnotobiotic brine shrimp. Moreover, there seems to be no relation between quorum sensing signal production and virulence towards brine shrimp. The results presented here indicate that strains that are most brightly luminescent are not necessarily the most virulent ones and that the lower virulence of some of the strains is not due to a lack of autoinducer production.

  1. Aphid facultative symbionts reduce survival of the predatory lady beetle Hippodamia convergens

    Science.gov (United States)

    2014-01-01

    Background Non-essential facultative endosymbionts can provide their hosts with protection from parasites, pathogens, and predators. For example, two facultative bacterial symbionts of the pea aphid (Acyrthosiphon pisum), Serratia symbiotica and Hamiltonella defensa, protect their hosts from parasitism by two species of parasitoid wasp. Previous studies have not explored whether facultative symbionts also play a defensive role against predation in this system. We tested whether feeding on aphids harboring different facultative symbionts affected the fitness of an aphid predator, the lady beetle Hippodamia convergens. Results While these aphid faculative symbionts did not deter lady beetle feeding, they did decrease survival of lady beetle larvae. Lady beetle larvae fed a diet of aphids with facultative symbionts had significantly reduced survival from egg hatching to pupation and therefore had reduced survival to adult emergence. Additionally, lady beetle adults fed aphids with facultative symbionts were significantly heavier than those fed facultative symbiont-free aphids, though development time was not significantly different. Conclusions Aphids reproduce clonally and are often found in large groups. Thus, aphid symbionts, by reducing the fitness of the aphid predator H. convergens, may indirectly defend their hosts’ clonal descendants against predation. These findings highlight the often far-reaching effects that symbionts can have in ecological systems. PMID:24555501

  2. Identification of Spiroplasma insolitum symbionts in Anopheles gambiae [version 1; referees: 2 approved, 1 not approved

    Directory of Open Access Journals (Sweden)

    Sharon T. Chepkemoi

    2017-09-01

    Full Text Available Background: Insect symbionts have the potential to block the transmission of vector-borne diseases by their hosts. The advancement of a symbiont-based transmission blocking strategy for malaria requires the identification and study of Anopheles symbionts. Methods: High throughput 16S amplicon sequencing was used to profile the bacteria associated with Anopheles gambiae sensu lato and identify potential symbionts. The polymerase chain reaction (PCR with specific primers were subsequently used to monitor symbiont prevalence in field populations, as well as symbiont transmission patterns. Results: We report the discovery of the bacterial symbiont, Spiroplasma, in Anopheles gambiae in Kenya. We determine that geographically dispersed Anopheles gambiae populations in Kenya are infected with Spiroplasma at low prevalence levels. Molecular phylogenetics indicates that this Anopheles gambiae associated Spiroplasma is a member of the insolitum clade. We demonstrate that this symbiont is stably maternally transmitted across at least two generations and does not significantly affect the fecundity or egg to adult survival of its host. Conclusions: In diverse insect species, Spiroplasma has been found to render their host resistant to infection by pathogens. The identification of a maternally transmitted strain of Spiroplasma in Anopheles gambiae may therefore open new lines of investigation for the development of symbiont-based strategies for blocking malaria transmission.

  3. A Novel, Extremely Elongated, and Endocellular Bacterial Symbiont Supports Cuticle Formation of a Grain Pest Beetle.

    Science.gov (United States)

    Hirota, Bin; Okude, Genta; Anbutsu, Hisashi; Futahashi, Ryo; Moriyama, Minoru; Meng, Xian-Ying; Nikoh, Naruo; Koga, Ryuichi; Fukatsu, Takema

    2017-09-26

    The saw-toothed grain beetle, Oryzaephilus surinamensis (Silvanidae), is a cosmopolitan stored-product pest. Early studies on O. surinamensis in the 1930s described the presence of peculiar bacteriomes harboring endosymbiotic bacteria in the abdomen. Since then, however, the microbiological nature of the symbiont has been elusive. Here we investigated the endosymbiotic system of O. surinamensis in detail. In the abdomen of adults, pupae, and larvae, four oval bacteriomes were consistently identified, whose cytoplasm was full of extremely elongated tubular bacterial cells several micrometers wide and several hundred micrometers long. Molecular phylogenetic analysis identified the symbiont as a member of the Bacteroidetes , in which the symbiont was the most closely related to the endosymbiont of a grain pest beetle, Rhyzopertha dominica (Bostrichidae). The symbiont was detected in developing embryos, corroborating vertical symbiont transmission through host generations. The symbiont gene showed AT-biased nucleotide composition and accelerated molecular evolution, plausibly reflecting degenerative evolution of the symbiont genome. When the symbiont infection was experimentally removed, the aposymbiotic insects grew and reproduced normally, but exhibited a slightly but significantly more reddish cuticle and lighter body mass. These results indicate that the symbiont of O. surinamensis is not essential for the host's growth and reproduction but contributes to the host's cuticle formation. Symbiont genome sequencing and detailed comparison of fitness parameters between symbiotic and aposymbiotic insects under various environmental conditions will provide further insights into the symbiont's biological roles for the stored-product pest. IMPORTANCE Some beetles notorious as stored-product pests possess well-developed symbiotic organs called bacteriomes for harboring specific symbiotic bacteria, although their biological roles have been poorly understood. Here we report

  4. Aphid secondary symbionts do not affect prey attractiveness to two species of predatory lady beetles.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kovacs

    Full Text Available Heritable symbionts have been found to mediate interactions between host species and their natural enemies in a variety of organisms. Aphids, their facultative symbionts, and their potential fitness effects have been particularly well-studied. For example, the aphid facultative symbiont Regiella can protect its host from infection from a fungal pathogen, and aphids with Hamiltonella are less likely to be parasitized by parasitic wasps. Recent work has also found there to be negative fitness effects for the larvae of two species of aphidophagous lady beetles that consumed aphids with facultative symbionts. In both species, larvae that consumed aphids with secondary symbionts were significantly less likely to survive to adulthood. In this study we tested whether adult Harmonia axyridis and Hippodamia convergens lady beetles avoided aphids with symbionts in a series of choice experiments. Adults of both lady beetle species were as likely to choose aphids with symbionts as those without, despite the potential negative fitness effects associated with consuming aphids with facultative symbionts. This may suggest that under natural conditions aphid secondary symbionts are not a significant source of selection for predatory lady beetles.

  5. Organic metabolites produced by Vibrio parahaemolyticus strain ...

    African Journals Online (AJOL)

    Identification and action of several antibacterial metabolites produced by a fish pathogen Vibrio parahaemolyticus strain An3 from marine ecosystem of Goa has been demonstrated. Antibacterial activity of the crude cell extract of the test bacterium has been evaluated against indicator pathogenic bacterial strains such as ...

  6. Comparison of classifications of aptamers against Vibrio ...

    African Journals Online (AJOL)

    As a novel method to detect the pathogen Vibrio alginolyticus, 45 aptamers were previously selected and tested. In order to better understand the properties of these aptamers, it was essential to classify these aptamers based on appropriate criteria. The primary structure of 45 aptamers against V. alginolyticus was analyzed ...

  7. AKTIVITAS ANTIBAKTERI EKSTRAK BUAH ADAS (Foeniculum vulgare, Mill PADA Vibrio harveyi DAN Vibrio alginolyticus Antibacterial Activity of Fennel (Foeniculum vulgare Mill Extract on Vibrio alginolyticus and Vibrio harveyi

    Directory of Open Access Journals (Sweden)

    Budianto Budianto

    2015-10-01

    Pada penelitian ini menggunakan ekstrak air dari buah adas untuk mengetahui aktivitas antibakteri terhadap Vibrio harveyi dan Vibrio alginolyticus dengan menggunakan metode uji Minimum Inhibitory Concentration (MIC dan difusi cakram kertas. Hasil yang diperoleh pada uji MIC, konsentrasi terkecil untuk menghambat pertumbuhan adalah 0,060 g/ml, untuk kedua spesies bakteri. Variasi perlakuan pada uji cakram kertas yaitu konsentrasi A (0,065 g/ml, B (0,070 g/ml, C (0,075 g/ml, D (0,080 g/ml, E (0,085 g/ml, F (0,090 g/ml dan kontrol (0,000 g/ml, hasil yang diperoleh adalah konsentrasi 0,090 g/ml memiliki diameter zona hambat tertinggi sebesar 11,17 ± 0,5 mm (V. harveyi dan 12,53 ± 1,14 mm (V. alginolyticus, sehingga dapat disimpulkan bahwa buah adas (F. vulgare Mill memiliki peranan ekologi yang sangat penting sebagai bahan pengobatan alternatif dalam pengendalian penyebaran penyakit Vibriosis yang disebabkan oleh V. harveyi dan V. alginolyticus. Kata kunci: Foeniculum vulgare Mill, Vibrio harveyi, Vibrio alginolyticus, uji MIC dan difusi cakram kertas

  8. Isolation of lytic bacteriophage against Vibrio harveyi.

    Science.gov (United States)

    Crothers-Stomps, C; Høj, L; Bourne, D G; Hall, M R; Owens, L

    2010-05-01

    The isolation of lytic bacteriophage of Vibrio harveyi with potential for phage therapy of bacterial pathogens of phyllosoma larvae from the tropical rock lobster Panulirus ornatus. Water samples from discharge channels and grow-out ponds of a prawn farm in northeastern Australia were enriched for 24 h in a broth containing four V. harveyi strains. The bacteriophage-enriched filtrates were spotted onto bacterial lawns demonstrating that the bacteriophage host range for the samples included strains of V. harveyi, Vibrio campbellii, Vibrio rotiferianus, Vibrio parahaemolyticus and Vibrio proteolyticus. Bacteriophage were isolated from eight enriched samples through triple plaque purification. The host range of purified phage included V. harveyi, V. campbellii, V. rotiferianus and V. parahaemolyticus. Transmission electron microscope examination revealed that six purified phage belonged to the family Siphoviridae, whilst two belonged to the family Myoviridae. The Myoviridae appeared to induce bacteriocin production in a limited number of host bacterial strains, suggesting that they were lysogenic rather than lytic. A purified Siphoviridae phage could delay the entry of a broth culture of V. harveyi strain 12 into exponential growth, but could not prevent the overall growth of the bacterial strain. Bacteriophage with lytic activity against V. harveyi were isolated from prawn farm samples. Purified phage of the family Siphoviridae had a clear lytic ability and no apparent transducing properties, indicating they are appropriate for phage therapy. Phage resistance is potentially a major constraint to the use of phage therapy in aquaculture as bacteria are not completely eliminated. Phage therapy is emerging as a potential antibacterial agent that can be used to control pathogenic bacteria in aquaculture systems. The development of phage therapy for aquaculture requires initial isolation and determination of the bacteriophage host range, with subsequent creation of

  9. Genes encoding the Vibrio harveyi haemolysin (VHH)/thermolabile haemolysin (TLH) are widespread in Vibrios%VHH/TLH溶血素基因在海洋弧菌中分布的研究

    Institute of Scientific and Technical Information of China (English)

    王淑娴; 张晓华; 钟英斌; 孙铂光; 陈吉祥

    2007-01-01

    deduced amino acid sequences are up to 85.6%), is a putative virulence factor to marine cultured fish. A VHH probe, which is specific to V. harveyi vhhA haemolysin gene, was used to screen EcoR Ⅰ digests of total DNA from 57 vibrio strains, including 26 vibrio type strains, 20 V. harveyi isolates and 11 V. parahaemolyticus isolates. As a result, 1 strong hybridisation band was detected in 13 type strains, including 2 of Vibrio alginolyticus , 2 of V. harveyi , and 1 strain each of Grimontia hollisae , V. campbellii , V. cincinnatiensis , V. fischeri , V. mimicus , V.natriegens, V. parahaemolyticus, V. proteolyticus and V. logei. Also, 1 weak band was detected in 6 type strains, including V.anguillarum, V. aestuarianus, Photobacterium damselae subsp. damselae, V. fluvialis, V. furnissii and V. vulnificus. There was not any hybridization signal in other type strains. Also, vhh/tlh was present in all isolates of V. harveyi and V. parahaemolyticus. Moreover, 3 isolates of V. harveyi, i.e. VIB 645, VIB 648 and SF1, had duplicated vhh genes. The data indicates that vhh/tlh is widespread in vibrios,especially in V. harveyi related species and V. fischeri related species. To support this conclusion, the vhh/tlh homologue genes in V.anguillarum VIB 72, V. campbellii VIB 285, V. natriegens VIB 299 and V. harveyi VIB 647 were cloned and sequenced, and the deduced amino acid sequences showed high degree of identities to VHH (67% ~ 99% ) and TLH haemolysin (69% ~ 91% ). This study will help us to identify the role of vhh/tlh haemolysin gene in the pathogenicity of vibrios.

  10. Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts.

    Science.gov (United States)

    Sanders, J G; Beinart, R A; Stewart, F J; Delong, E F; Girguis, P R

    2013-08-01

    Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic analyses are useful for linking physiological poise to environmental conditions, but recovering samples from the deep sea is challenging, as the long recovery times can change expression profiles before preservation. Here, we present a novel, in situ RNA sampling and preservation device, which we used to compare the symbiont metatranscriptomes associated with Alviniconcha, a genus of vent snail, in which specific host-symbiont combinations are predictably distributed across a regional geochemical gradient. Metatranscriptomes of these symbionts reveal key differences in energy and nitrogen metabolism relating to both environmental chemistry (that is, the relative expression of genes) and symbiont phylogeny (that is, the specific pathways employed). Unexpectedly, dramatic differences in expression of transposases and flagellar genes suggest that different symbiont types may also have distinct life histories. These data further our understanding of these symbionts' metabolic capabilities and their expression in situ, and suggest an important role for symbionts in mediating their hosts' interaction with regional-scale differences in geochemistry.

  11. Ephemeral windows of opportunity for horizontal transmission of fungal symbionts in leaf-cutting ants

    DEFF Research Database (Denmark)

    Poulsen, Michael; Fernández-Marín, Hermógenes; Currie, Cameron R.

    2009-01-01

    Evolutionary theory predicts that hosts are selected to prevent mixing of genetically different symbionts when competition among lineages reduces the productivity of a mutualism. The symbionts themselves may also defend their interests: recent studies of Acromyrmex leaf-cutting ants showed that s...

  12. Diversity and Phylogenetic Analyses of Bacterial Symbionts in Three Whitefly Species from Southeast Europe

    Science.gov (United States)

    Skaljac, Marisa; Zanic, Katja; Puizina, Jasna; Lepen Pleic, Ivana; Ghanim, Murad

    2017-01-01

    Bemisia tabaci (Gennadius), Trialeurodes vaporariorum (Westwood), and Siphoninus phillyreae (Haliday) are whitefly species that harm agricultural crops in many regions of the world. These insects live in close association with bacterial symbionts that affect host fitness and adaptation to the environment. In the current study, we surveyed the infection of whitefly populations in Southeast Europe by various bacterial symbionts and performed phylogenetic analyses on the different symbionts detected. Arsenophonus and Hamiltonella were the most prevalent symbionts in all three whitefly species. Rickettsia was found to infect mainly B. tabaci, while Wolbachia mainly infected both B. tabaci and S. phillyreae. Furthermore, Cardinium was rarely found in the investigated whitefly populations, while Fritschea was never found in any of the whitefly species tested. Phylogenetic analyses revealed a diversity of several symbionts (e.g., Hamiltonella, Arsenophonus, Rickettsia), which appeared in several clades. Reproductively isolated B. tabaci and T. vaporariorum shared the same (or highly similar) Hamiltonella and Arsenophonus, while these symbionts were distinctive in S. phillyreae. Interestingly, Arsenophonus from S. phillyreae did not cluster with any of the reported sequences, which could indicate the presence of Arsenophonus, not previously associated with whiteflies. In this study, symbionts (Wolbachia, Rickettsia, and Cardinium) known to infect a wide range of insects each clustered in the same clades independently of the whitefly species. These results indicate horizontal transmission of bacterial symbionts between reproductively isolated whitefly species, a mechanism that can establish new infections that did not previously exist in whiteflies. PMID:29053633

  13. Presumptive horizontal symbiont transmission in the fungus-growing termite Macrotermes natalensis

    NARCIS (Netherlands)

    Fine Licht, de H.H.; Boomsma, J.J.; Aanen, D.K.

    2006-01-01

    All colonies of the fungus-growing termite Macrotermes natalensis studied so far are associated with a single genetically variable lineage of Termitomyces symbionts. Such limited genetic variation of symbionts and the absence of sexual fruiting bodies (mushrooms) on M. natalensis mounds would be

  14. Diversity and Phylogenetic Analyses of Bacterial Symbionts in Three Whitefly Species from Southeast Europe

    Directory of Open Access Journals (Sweden)

    Marisa Skaljac

    2017-10-01

    Full Text Available Bemisia tabaci (Gennadius, Trialeurodes vaporariorum (Westwood, and Siphoninus phillyreae (Haliday are whitefly species that harm agricultural crops in many regions of the world. These insects live in close association with bacterial symbionts that affect host fitness and adaptation to the environment. In the current study, we surveyed the infection of whitefly populations in Southeast Europe by various bacterial symbionts and performed phylogenetic analyses on the different symbionts detected. Arsenophonus and Hamiltonella were the most prevalent symbionts in all three whitefly species. Rickettsia was found to infect mainly B. tabaci, while Wolbachia mainly infected both B. tabaci and S. phillyreae. Furthermore, Cardinium was rarely found in the investigated whitefly populations, while Fritschea was never found in any of the whitefly species tested. Phylogenetic analyses revealed a diversity of several symbionts (e.g., Hamiltonella, Arsenophonus, Rickettsia, which appeared in several clades. Reproductively isolated B. tabaci and T. vaporariorum shared the same (or highly similar Hamiltonella and Arsenophonus, while these symbionts were distinctive in S. phillyreae. Interestingly, Arsenophonus from S. phillyreae did not cluster with any of the reported sequences, which could indicate the presence of Arsenophonus, not previously associated with whiteflies. In this study, symbionts (Wolbachia, Rickettsia, and Cardinium known to infect a wide range of insects each clustered in the same clades independently of the whitefly species. These results indicate horizontal transmission of bacterial symbionts between reproductively isolated whitefly species, a mechanism that can establish new infections that did not previously exist in whiteflies.

  15. The role of symbiont genetic distance and potential adaptability in host preference towards Pseudonocardia symbionts in Acromyrmex leaf-cutting ants

    DEFF Research Database (Denmark)

    Thomas-Poulsen, Michael; Maynard, Janielle; Roland, Damien L.

    2011-01-01

    Fungus-growing ants display symbiont preference in behavioral assays, both towards the fungus they cultivate for food and Actinobacteria they maintain on their cuticle for antibiotic production against parasites. These Actinobacteria, genus Pseudonocardia Henssen (Pseudonocardiacea: Actinomycetales...

  16. AN INVESTIGATION ON PATHOGENIC VIBRIOS DISTRIBUTION IN DOMESTIC WASTEWATER

    OpenAIRE

    A. Almasi

    2005-01-01

    Municipal wastewater is one of the most important pollution sources for water supply resources. Identification and enumeration of pathogenic agents particularly pathogenic Vibrios are beneficial for controlling and prevention planning of the infectious diseases. This research was carried out to identify the distribution of the recognized pathogenic Vibrios with emphasizing on identification of Vibrio cholera in the wastewater of Kermanshah city western Iran in 2002. The method of study was cr...

  17. Highly diverse recombining populations of Vibrio cholerae and Vibrio parahaemolyticus in French Mediterranean coastal lagoons

    Directory of Open Access Journals (Sweden)

    Kevin eEsteves

    2015-07-01

    Full Text Available Vibrio parahaemolyticus and Vibrio cholerae are ubiquitous to estuarine and marine environments. These two species can induce infections in humans. Therefore understanding the structure and dynamics of non-pandemic environmental populations in temperate regions, such as Mediterranean coastal systems, is important if we are to evaluate the risks of infection to humans.Environmental isolates of V. cholerae (n=109 and V. parahaemolyticus (n=89 sampled at different dates, stations and water salinities were investigated for virulence genes and by a multilocus sequence-based analysis (MLSA. V. cholerae isolates were all ctxA negative and only one isolate of V. parahaemolyticus displayed trh2 gene. Most Sequence Types (ST corresponded to unique ST isolated at one date or one station. Frequent recombination events were detected among different pathogenic species, V. parahaemolyticus, V. cholerae, Vibrio mimicus and Vibrio metoecus. Recombination had a major impact on the diversification of lineages. The genetic diversity assessed by the number of ST/strain was higher in low salinity conditions for V. parahaemolyticus and V. cholerae whereas the frequency of recombination events in V. cholerae was lower in low salinity. Mediterranean coastal lagoon systems housed V. cholerae and V. parahaemolyticus with genetic diversities equivalent to the worldwide diversity described so far. The presence of STs found in human infections as well as the frequency of recombination events in environmental vibrios populations could predict a potential epidemiological risk.

  18. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3930 Vibrio... from cultured isolates derived from clinical specimens. The identification aids in the diagnosis of...

  19. Why Do Corals Bleach? Conflict and Conflict Mediation in a Host/Symbiont Community.

    Science.gov (United States)

    Blackstone, Neil W; Golladay, Jeff M

    2018-06-26

    Coral bleaching has attracted considerable study, yet one central question remains unanswered: given that corals and their Symbiodinium symbionts have co-evolved for millions of years, why does this clearly maladaptive process occur? Bleaching may result from evolutionary conflict between the host corals and their symbionts. Selection at the level of the individual symbiont favors using the products of photosynthesis for selfish replication, while selection at the higher level favors using these products for growth of the entire host/symbiont community. To hold the selfish lower-level units in check, mechanisms of conflict mediation must evolve. Fundamental features of photosynthesis have been co-opted into conflict mediation so that symbionts that fail to export these products produce high levels of reactive oxygen species and undergo programmed cell death. These mechanisms function very well under most environmental conditions, but under conditions particularly detrimental to photosynthesis, it is these mechanisms of conflict mediation that trigger bleaching. © 2018 WILEY Periodicals, Inc.

  20. A Novel, Extremely Elongated, and Endocellular Bacterial Symbiont Supports Cuticle Formation of a Grain Pest Beetle

    Directory of Open Access Journals (Sweden)

    Bin Hirota

    2017-09-01

    Full Text Available The saw-toothed grain beetle, Oryzaephilus surinamensis (Silvanidae, is a cosmopolitan stored-product pest. Early studies on O. surinamensis in the 1930s described the presence of peculiar bacteriomes harboring endosymbiotic bacteria in the abdomen. Since then, however, the microbiological nature of the symbiont has been elusive. Here we investigated the endosymbiotic system of O. surinamensis in detail. In the abdomen of adults, pupae, and larvae, four oval bacteriomes were consistently identified, whose cytoplasm was full of extremely elongated tubular bacterial cells several micrometers wide and several hundred micrometers long. Molecular phylogenetic analysis identified the symbiont as a member of the Bacteroidetes, in which the symbiont was the most closely related to the endosymbiont of a grain pest beetle, Rhyzopertha dominica (Bostrichidae. The symbiont was detected in developing embryos, corroborating vertical symbiont transmission through host generations. The symbiont gene showed AT-biased nucleotide composition and accelerated molecular evolution, plausibly reflecting degenerative evolution of the symbiont genome. When the symbiont infection was experimentally removed, the aposymbiotic insects grew and reproduced normally, but exhibited a slightly but significantly more reddish cuticle and lighter body mass. These results indicate that the symbiont of O. surinamensis is not essential for the host’s growth and reproduction but contributes to the host’s cuticle formation. Symbiont genome sequencing and detailed comparison of fitness parameters between symbiotic and aposymbiotic insects under various environmental conditions will provide further insights into the symbiont’s biological roles for the stored-product pest.

  1. Specific Midgut Region Controlling the Symbiont Population in an Insect-Microbe Gut Symbiotic Association

    Science.gov (United States)

    Kim, Jiyeun Kate; Kim, Na Hyang; Jang, Ho Am; Kikuchi, Yoshitomo; Kim, Chan-Hee

    2013-01-01

    Many insects possess symbiotic bacteria that affect the biology of the host. The level of the symbiont population in the host is a pivotal factor that modulates the biological outcome of the symbiotic association. Hence, the symbiont population should be maintained at a proper level by the host's control mechanisms. Several mechanisms for controlling intracellular symbionts of insects have been reported, while mechanisms for controlling extracellular gut symbionts of insects are poorly understood. The bean bug Riptortus pedestris harbors a betaproteobacterial extracellular symbiont of the genus Burkholderia in the midgut symbiotic organ designated the M4 region. We found that the M4B region, which is directly connected to the M4 region, also harbors Burkholderia symbiont cells, but the symbionts therein are mostly dead. A series of experiments demonstrated that the M4B region exhibits antimicrobial activity, and the antimicrobial activity is specifically potent against the Burkholderia symbiont but not the cultured Burkholderia and other bacteria. The antimicrobial activity of the M4B region was detected in symbiotic host insects, reaching its highest point at the fifth instar, but not in aposymbiotic host insects, which suggests the possibility of symbiont-mediated induction of the antimicrobial activity. This antimicrobial activity was not associated with upregulation of antimicrobial peptides of the host. Based on these results, we propose that the M4B region is a specialized gut region of R. pedestris that plays a critical role in controlling the population of the Burkholderia gut symbiont. The molecular basis of the antimicrobial activity is of great interest and deserves future study. PMID:24038695

  2. Anemone bleaching increases the metabolic demands of symbiont anemonefish.

    Science.gov (United States)

    Norin, Tommy; Mills, Suzanne C; Crespel, Amélie; Cortese, Daphne; Killen, Shaun S; Beldade, Ricardo

    2018-04-11

    Increased ocean temperatures are causing mass bleaching of anemones and corals in the tropics worldwide. While such heat-induced loss of algal symbionts (zooxanthellae) directly affects anemones and corals physiologically, this damage may also cascade on to other animal symbionts. Metabolic rate is an integrative physiological trait shown to relate to various aspects of organismal performance, behaviour and locomotor capacity, and also shows plasticity during exposure to acute and chronic stressors. As climate warming is expected to affect the physiology, behaviour and life history of animals, including ectotherms such as fish, we measured if residing in bleached versus unbleached sea anemones ( Heteractis magnifica ) affected the standard (i.e. baseline) metabolic rate and behaviour (activity) of juvenile orange-fin anemonefish ( Amphiprion chrysopterus ) . Metabolic rate was estimated from rates of oxygen uptake [Formula: see text], and the standard metabolic rate [Formula: see text] of anemonefish from bleached anemones was significantly higher by 8.2% compared with that of fish residing in unbleached anemones, possibly due to increased stress levels. Activity levels did not differ between fish from bleached and unbleached anemones. As [Formula: see text] reflects the minimum cost of living, the increased metabolic demands may contribute to the negative impacts of bleaching on important anemonefish life history and fitness traits observed previously (e.g. reduced spawning frequency and lower fecundity). © 2018 The Author(s).

  3. Standing genetic variation in host preference for mutualist microbial symbionts.

    Science.gov (United States)

    Simonsen, Anna K; Stinchcombe, John R

    2014-12-22

    Many models of mutualisms show that mutualisms are unstable if hosts lack mechanisms enabling preferential associations with mutualistic symbiotic partners over exploitative partners. Despite the theoretical importance of mutualism-stabilizing mechanisms, we have little empirical evidence to infer their evolutionary dynamics in response to exploitation by non-beneficial partners. Using a model mutualism-the interaction between legumes and nitrogen-fixing soil symbionts-we tested for quantitative genetic variation in plant responses to mutualistic and exploitative symbiotic rhizobia in controlled greenhouse conditions. We found significant broad-sense heritability in a legume host's preferential association with mutualistic over exploitative symbionts and selection to reduce frequency of associations with exploitative partners. We failed to detect evidence that selection will favour the loss of mutualism-stabilizing mechanisms in the absence of exploitation, as we found no evidence for a fitness cost to the host trait or indirect selection on genetically correlated traits. Our results show that genetic variation in the ability to preferentially reduce associations with an exploitative partner exists within mutualisms and is under selection, indicating that micro-evolutionary responses in mutualism-stabilizing traits in the face of rapidly evolving mutualistic and exploitative symbiotic bacteria can occur in natural host populations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Effects of Intertidal Harvest Practices on Levels of Vibrio parahaemolyticus and Vibrio vulnificus Bacteria in Oysters.

    Science.gov (United States)

    Jones, J L; Kinsey, T P; Johnson, L W; Porso, R; Friedman, B; Curtis, M; Wesighan, P; Schuster, R; Bowers, J C

    2016-08-01

    Vibrio parahaemolyticus and Vibrio vulnificus can grow rapidly in shellfish subjected to ambient air conditions, such as during intertidal exposure. In this study, levels of total and pathogenic (tdh(+) and/or trh(+)) V. parahaemolyticus and total V. vulnificus were determined in oysters collected from two study locations where intertidal harvest practices are common. Samples were collected directly off intertidal flats, after exposure (ambient air [Washington State] or refrigerated [New Jersey]), and after reimmersion by natural tidal cycles. Samples were processed using a most-probable-number (MPN) real-time PCR method for total and pathogenic V. parahaemolyticus or V. vulnificus In Washington State, the mean levels of V. parahaemolyticus increased 1.38 log MPN/g following intertidal exposure and dropped 1.41 log MPN/g after reimmersion for 1 day, but the levels were dependent upon the container type utilized. Pathogenic V. parahaemolyticus levels followed a similar trend. However, V. vulnificus levels increased 0.10 log MPN/g during intertidal exposure in Washington but decreased by >1 log MPN/g after reimmersion. In New Jersey, initial levels of all vibrios studied were not significantly altered during the refrigerated sorting and containerizing process. However, there was an increase in levels after the first day of reimmersion by 0.79, 0.72, 0.92, and 0.71 log MPN/g for total, tdh(+) and trh(+) V. parahaemolyticus, and V. vulnificus, respectively. The levels of all targets decreased to those similar to background after a second day of reimmersion. These data indicate that the intertidal harvest and handling practices for oysters that were studied in Washington and New Jersey do not increase the risk of illness from V. parahaemolyticus or V. vulnificus Vibrio parahaemolyticus and Vibrio vulnificus are the leading causes of seafood-associated infectious morbidity and mortality in the United States. Vibrio spp. can grow rapidly in shellfish subjected to ambient

  5. Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs

    Directory of Open Access Journals (Sweden)

    Kamagata Yoichi

    2009-01-01

    Full Text Available Abstract Background Host-symbiont co-speciation and reductive genome evolution have been commonly observed among obligate endocellular insect symbionts, while such examples have rarely been identified among extracellular ones, the only case reported being from gut symbiotic bacteria of stinkbugs of the family Plataspidae. Considering that gut symbiotic communities are vulnerable to invasion of foreign microbes, gut symbiotic associations have been thought to be evolutionarily not stable. Stinkbugs of the family Acanthosomatidae harbor a bacterial symbiont in the midgut crypts, the lumen of which is completely sealed off from the midgut main tract, thereby retaining the symbiont in the isolated cryptic cavities. We investigated histological, ecological, phylogenetic, and genomic aspects of the unique gut symbiosis of the acanthosomatid stinkbugs. Results Phylogenetic analyses showed that the acanthosomatid symbionts constitute a distinct clade in the γ-Proteobacteria, whose sister groups are the obligate endocellular symbionts of aphids Buchnera and the obligate gut symbionts of plataspid stinkbugs Ishikawaella. In addition to the midgut crypts, the symbionts were located in a pair of peculiar lubricating organs associated with the female ovipositor, by which the symbionts are vertically transmitted via egg surface contamination. The symbionts were detected not from ovaries but from deposited eggs, and surface sterilization of eggs resulted in symbiont-free hatchlings. The symbiont-free insects suffered retarded growth, high mortality, and abnormal morphology, suggesting important biological roles of the symbiont for the host insects. The symbiont phylogeny was generally concordant with the host phylogeny, indicating host-symbiont co-speciation over evolutionary time despite the extracellular association. Meanwhile, some local host-symbiont phylogenetic discrepancies were found, suggesting occasional horizontal symbiont transfers across the host

  6. A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phytoprotection against mercury.

    Directory of Open Access Journals (Sweden)

    Dony Chacko Mathew

    Full Text Available Though heavy metal such as mercury is toxic to plants and microorganisms, the synergistic activity between them may offer benefit for surviving. In this study, a mercury-reducing bacterium, Photobacterium spp. strain MELD1, with an MIC of 33 mg x kg(-1 mercury was isolated from a severely mercury and dioxin contaminated rhizosphere soil of reed (Phragmites australis. While the whole genome sequencing of MELD1 confirmed the presence of a mer operon, the mercury reductase MerA gene showed 99% sequence identity to Vibrio shilloni AK1 and implicates its route resulted from the event of horizontal gene transfer. The efficiency of MELD1 to vaporize mercury (25 mg x kg(-1, 24 h and its tolerance to toxic metals and xenobiotics such as lead, cadmium, pentachlorophenol, pentachloroethylene, 3-chlorobenzoic acid, 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin is promising. Combination of a long yard bean (Vigna unguiculata ssp. Sesquipedalis and strain MELD1 proved beneficial in the phytoprotection of mercury in vivo. The effect of mercury (Hg on growth, distribution and tolerance was examined in root, shoot, leaves and pod of yard long bean with and without the inoculation of strain MELD1. The model plant inoculated with MELD1 had significant increases in biomass, root length, seed number, and increased mercury uptake limited to roots. Biolog plate assay were used to assess the sole-carbon source utilization pattern of the isolate and Indole-3-acetic acid (IAA productivity was analyzed to examine if the strain could contribute to plant growth. The results of this study suggest that, as a rhizosphere-associated symbiont, the synergistic activity between the plant and MELD1 can improve the efficiency for phytoprotection, phytostabilization and phytoremediation of mercury.

  7. A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phytoprotection against mercury.

    Science.gov (United States)

    Mathew, Dony Chacko; Ho, Ying-Ning; Gicana, Ronnie Gicaraya; Mathew, Gincy Marina; Chien, Mei-Chieh; Huang, Chieh-Chen

    2015-01-01

    Though heavy metal such as mercury is toxic to plants and microorganisms, the synergistic activity between them may offer benefit for surviving. In this study, a mercury-reducing bacterium, Photobacterium spp. strain MELD1, with an MIC of 33 mg x kg(-1) mercury was isolated from a severely mercury and dioxin contaminated rhizosphere soil of reed (Phragmites australis). While the whole genome sequencing of MELD1 confirmed the presence of a mer operon, the mercury reductase MerA gene showed 99% sequence identity to Vibrio shilloni AK1 and implicates its route resulted from the event of horizontal gene transfer. The efficiency of MELD1 to vaporize mercury (25 mg x kg(-1), 24 h) and its tolerance to toxic metals and xenobiotics such as lead, cadmium, pentachlorophenol, pentachloroethylene, 3-chlorobenzoic acid, 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin is promising. Combination of a long yard bean (Vigna unguiculata ssp. Sesquipedalis) and strain MELD1 proved beneficial in the phytoprotection of mercury in vivo. The effect of mercury (Hg) on growth, distribution and tolerance was examined in root, shoot, leaves and pod of yard long bean with and without the inoculation of strain MELD1. The model plant inoculated with MELD1 had significant increases in biomass, root length, seed number, and increased mercury uptake limited to roots. Biolog plate assay were used to assess the sole-carbon source utilization pattern of the isolate and Indole-3-acetic acid (IAA) productivity was analyzed to examine if the strain could contribute to plant growth. The results of this study suggest that, as a rhizosphere-associated symbiont, the synergistic activity between the plant and MELD1 can improve the efficiency for phytoprotection, phytostabilization and phytoremediation of mercury.

  8. A Rhizosphere-Associated Symbiont, Photobacterium spp. Strain MELD1, and Its Targeted Synergistic Activity for Phytoprotection against Mercury

    Science.gov (United States)

    Mathew, Dony Chacko; Ho, Ying-Ning; Gicana, Ronnie Gicaraya; Mathew, Gincy Marina; Chien, Mei-Chieh; Huang, Chieh-Chen

    2015-01-01

    Though heavy metal such as mercury is toxic to plants and microorganisms, the synergistic activity between them may offer benefit for surviving. In this study, a mercury-reducing bacterium, Photobacterium spp. strain MELD1, with an MIC of 33 mg . kg-1 mercury was isolated from a severely mercury and dioxin contaminated rhizosphere soil of reed (Phragmites australis). While the whole genome sequencing of MELD1 confirmed the presence of a mer operon, the mercury reductase MerA gene showed 99% sequence identity to Vibrio shilloni AK1 and implicates its route resulted from the event of horizontal gene transfer. The efficiency of MELD1 to vaporize mercury (25 mg . kg-1, 24 h) and its tolerance to toxic metals and xenobiotics such as lead, cadmium, pentachlorophenol, pentachloroethylene, 3-chlorobenzoic acid, 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,7,8,9-hexachlorodibenzo-p-dioxin is promising. Combination of a long yard bean (Vigna unguiculata ssp. Sesquipedalis) and strain MELD1 proved beneficial in the phytoprotection of mercury in vivo. The effect of mercury (Hg) on growth, distribution and tolerance was examined in root, shoot, leaves and pod of yard long bean with and without the inoculation of strain MELD1. The model plant inoculated with MELD1 had significant increases in biomass, root length, seed number, and increased mercury uptake limited to roots. Biolog plate assay were used to assess the sole-carbon source utilization pattern of the isolate and Indole-3-acetic acid (IAA) productivity was analyzed to examine if the strain could contribute to plant growth. The results of this study suggest that, as a rhizosphere-associated symbiont, the synergistic activity between the plant and MELD1 can improve the efficiency for phytoprotection, phytostabilization and phytoremediation of mercury. PMID:25816328

  9. Surfing the vegetal pole in a small population: extracellular vertical transmission of an 'intracellular' deep-sea clam symbiont.

    Science.gov (United States)

    Ikuta, Tetsuro; Igawa, Kanae; Tame, Akihiro; Kuroiwa, Tsuneyoshi; Kuroiwa, Haruko; Aoki, Yui; Takaki, Yoshihiro; Nagai, Yukiko; Ozawa, Genki; Yamamoto, Masahiro; Deguchi, Ryusaku; Fujikura, Katsunori; Maruyama, Tadashi; Yoshida, Takao

    2016-05-01

    Symbiont transmission is a key event for understanding the processes underlying symbiotic associations and their evolution. However, our understanding of the mechanisms of symbiont transmission remains still fragmentary. The deep-sea clam Calyptogena okutanii harbours obligate sulfur-oxidizing intracellular symbiotic bacteria in the gill epithelial cells. In this study, we determined the localization of their symbiont associating with the spawned eggs, and the population size of the symbiont transmitted via the eggs. We show that the symbionts are located on the outer surface of the egg plasma membrane at the vegetal pole, and that each egg carries approximately 400 symbiont cells, each of which contains close to 10 genomic copies. The very small population size of the symbiont transmitted via the eggs might narrow the bottleneck and increase genetic drift, while polyploidy and its transient extracellular lifestyle might slow the rate of genome reduction. Additionally, the extracellular localization of the symbiont on the egg surface may increase the chance of symbiont exchange. This new type of extracellular transovarial transmission provides insights into complex interactions between the host and symbiont, development of both host and symbiont, as well as the population dynamics underlying genetic drift and genome evolution in microorganisms.

  10. Carriage of vibrio species by shrimps harvested from the coastal ...

    African Journals Online (AJOL)

    Objectives: To determine the prevalence of Vibrio spp in unprocessed shrimps and their susceptibility to antibiotics. Design: A prospective study of Vibrio spp associated with shrimps harvested from the coastal waters of South West Cameroon. Setting: A laboratory based study at the Department of Life Sciences, University ...

  11. Primates, Lice and Bacteria: Speciation and Genome Evolution in the Symbionts of Hominid Lice.

    Science.gov (United States)

    Boyd, Bret M; Allen, Julie M; Nguyen, Nam-Phuong; Vachaspati, Pranjal; Quicksall, Zachary S; Warnow, Tandy; Mugisha, Lawrence; Johnson, Kevin P; Reed, David L

    2017-07-01

    Insects with restricted diets rely on symbiotic bacteria to provide essential metabolites missing in their diet. The blood-sucking lice are obligate, host-specific parasites of mammals and are themselves host to symbiotic bacteria. In human lice, these bacterial symbionts supply the lice with B-vitamins. Here, we sequenced the genomes of symbiotic and heritable bacterial of human, chimpanzee, gorilla, and monkey lice and used phylogenomics to investigate their evolutionary relationships. We find that these symbionts have a phylogenetic history reflecting the louse phylogeny, a finding contrary to previous reports of symbiont replacement. Examination of the highly reduced symbiont genomes (0.53-0.57 Mb) reveals much of the genomes are dedicated to vitamin synthesis. This is unchanged in the smallest symbiont genome and one that appears to have been reorganized. Specifically, symbionts from human lice, chimpanzee lice, and gorilla lice carry a small plasmid that encodes synthesis of vitamin B5, a vitamin critical to the bacteria-louse symbiosis. This plasmid is absent in an old world monkey louse symbiont, where this pathway is on its primary chromosome. This suggests the unique genomic configuration brought about by the plasmid is not essential for symbiosis, but once obtained, it has persisted for up to 25 My. We also find evidence that human, chimpanzee, and gorilla louse endosymbionts have lost a pathway for synthesis of vitamin B1, whereas the monkey louse symbiont has retained this pathway. It is unclear whether these changes are adaptive, but they may point to evolutionary responses of louse symbionts to shifts in primate biology. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa

    Directory of Open Access Journals (Sweden)

    de Beer Z Wilhelm

    2007-07-01

    Full Text Available Abstract Background Termites of the subfamily Macrotermitinae live in a mutualistic symbiosis with basidiomycete fungi of the genus Termitomyces. Here, we explored interaction specificity in fungus-growing termites using samples from 101 colonies in South-Africa and Senegal, belonging to eight species divided over three genera. Knowledge of interaction specificity is important to test the hypothesis that inhabitants (symbionts are taxonomically less diverse than 'exhabitants' (hosts and to test the hypothesis that transmission mode is an important determinant for interaction specificity. Results Analysis of Molecular Variance among symbiont ITS sequences across termite hosts at three hierarchical levels showed that 47 % of the variation occurred between genera, 18 % between species, and the remaining 35 % between colonies within species. Different patterns of specificity were evident. High mutual specificity was found for the single Macrotermes species studied, as M. natalensis was associated with a single unique fungal haplotype. The three species of the genus Odontotermes showed low symbiont specificity: they were all associated with a genetically diverse set of fungal symbionts, but their fungal symbionts showed some host specificity, as none of the fungal haplotypes were shared between the studied Odontotermes species. Finally, bilaterally low specificity was found for the four tentatively recognized species of the genus Microtermes, which shared and apparently freely exchanged a common pool of divergent fungal symbionts. Conclusion Interaction specificity was high at the genus level and generally much lower at the species level. A comparison of the observed diversity among fungal symbionts with the diversity among termite hosts, indicated that the fungal symbiont does not follow the general pattern of an endosymbiont, as we found either similar diversity at both sides or higher diversity in the symbiont. Our results further challenge the

  13. Interspecific competition between entomopathogenic nematodes (Steinernema is modified by their bacterial symbionts (Xenorhabdus

    Directory of Open Access Journals (Sweden)

    Pages Sylvie

    2006-09-01

    Full Text Available Abstract Background Symbioses between invertebrates and prokaryotes are biological systems of particular interest in order to study the evolution of mutualism. The symbioses between the entomopathogenic nematodes Steinernema and their bacterial symbiont Xenorhabdus are very tractable model systems. Previous studies demonstrated (i a highly specialized relationship between each strain of nematodes and its naturally associated bacterial strain and (ii that mutualism plays a role in several important life history traits of each partner such as access to insect host resources, dispersal and protection against various biotic and abiotic factors. The goal of the present study was to address the question of the impact of Xenorhabdus symbionts on the progression and outcome of interspecific competition between individuals belonging to different Steinernema species. For this, we monitored experimental interspecific competition between (i two nematode species: S. carpocapsae and S. scapterisci and (ii their respective symbionts: X. nematophila and X. innexi within an experimental insect-host (Galleria mellonella. Three conditions of competition between nematodes were tested: (i infection of insects with aposymbiotic IJs (i.e. without symbiont of both species (ii infection of insects with aposymbiotic IJs of both species in presence of variable proportion of their two Xenorhabdus symbionts and (iii infection of insects with symbiotic IJs (i.e. naturally associated with their symbionts of both species. Results We found that both the progression and the outcome of interspecific competition between entomopathogenic nematodes were influenced by their bacterial symbionts. Thus, the results obtained with aposymbiotic nematodes were totally opposite to those obtained with symbiotic nematodes. Moreover, the experimental introduction of different ratios of Xenorhabdus symbionts in the insect-host during competition between Steinernema modified the proportion of

  14. Superparasitism Drives Heritable Symbiont Epidemiology and Host Sex Ratio in a Wasp.

    Directory of Open Access Journals (Sweden)

    Steven R Parratt

    2016-06-01

    Full Text Available Heritable microbial symbionts have profound impacts upon the biology of their arthropod hosts. Whilst our current understanding of the dynamics of these symbionts is typically cast within a framework of vertical transmission only, horizontal transmission has been observed in a number of cases. For instance, several symbionts can transmit horizontally when their parasitoid hosts share oviposition patches with uninfected conspecifics, a phenomenon called superparasitism. Despite this, horizontal transmission, and the host contact structures that facilitates it, have not been considered in heritable symbiont epidemiology. Here, we tested for the importance of host contact, and resulting horizontal transmission, for the epidemiology of a male-killing heritable symbiont (Arsenophonus nasoniae in parasitoid wasp hosts. We observed that host contact through superparasitism is necessary for this symbiont's spread in populations of its primary host Nasonia vitripennis, such that when superparasitism rates are high, A. nasoniae almost reaches fixation, causes highly female biased population sex ratios and consequently causes local host extinction. We further tested if natural interspecific variation in superparasitism behaviours predicted symbiont dynamics among parasitoid species. We found that A. nasoniae was maintained in laboratory populations of a closely related set of Nasonia species, but declined in other, more distantly related pteromalid hosts. The natural proclivity of a species to superparasitise was the primary factor determining symbiont persistence. Our results thus indicate that host contact behaviour is a key factor for heritable microbe dynamics when horizontal transmission is possible, and that 'reproductive parasite' phenotypes, such as male-killing, may be of secondary importance in the dynamics of such symbiont infections.

  15. Vibrio damsela as a pathogenic agent causing mortalities in cultured sea bass (Lates calcarifer)

    OpenAIRE

    Renault, Tristan; Haffner, Philippe; Malfondet, C.; Weppe, Maurice

    1994-01-01

    Vibrio anguillarum and Vibrio ordali are species frequently described as fish pathogens. Seven species of Vibrio can also be implicated in disease problems in mariculture (Toranzo 1990). sorne of Vibrios and Barja, In addition, these marine such as V. vulnificus (Tison et al.. 1982) and V. damsela (Love et al., 1981) can also cause illness homoiothermic animals

  16. Genomic diversification of giant enteric symbionts reflects host dietary lifestyles

    KAUST Repository

    Ngugi, David

    2017-08-24

    Herbivorous surgeonfishes are an ecologically successful group of reef fish that rely on marine algae as their principal food source. Here, we elucidated the significance of giant enteric symbionts colonizing these fishes regarding their roles in the digestive processes of hosts feeding predominantly on polysiphonous red algae and brown Turbinaria algae, which contain different polysaccharide constituents. Using metagenomics, single-cell genomics, and metatranscriptomic analyses, we provide evidence of metabolic diversification of enteric microbiota involved in the degradation of algal biomass in these fishes. The enteric microbiota is also phylogenetically and functionally simple relative to the complex lignocellulose-degrading microbiota of terrestrial herbivores. Over 90% of the enzymes for deconstructing algal polysaccharides emanate from members of a single bacterial lineage,

  17. Caste-specific symbiont policing by workers of Acromyrmex fungus-growing ants

    DEFF Research Database (Denmark)

    Ivens, Aniek B.F.; Nash, David R.; Poulsen, Michael

    2009-01-01

    The interaction between leaf-cutting ants and their fungus garden mutualists is ideal for studying the evolutionary stability of interspecific cooperation. Although the mutualism has a long history of diffuse coevolution, there is ample potential for conflicts between the partners over the mixing...... and transmission of symbionts. Symbiont transmission is vertical by default, and both the ants and resident fungus actively protect the fungal monoculture growing in their nest against secondary introductions of genetically dissimilar symbionts from other colonies. An earlier study showed that mixtures of major...

  18. High Symbiont Relatedness Stabilizes Mutualistic Cooperation in Fungus-Growing Termites

    DEFF Research Database (Denmark)

    Aanen, Duur K; de Fine Licht, Henrik H; Debets, Alfons J M

    2009-01-01

    It is unclear how mutualistic relationships can be stable when partners disperse freely and have the possibility of forming associations with many alternative genotypes. Theory predicts that high symbiont relatedness should resolve this problem, but the mechanisms to enforce this have rarely been...... of spore production in proportion to strain frequency. This positive reinforcement results in an exclusive lifetime association of each host colony with a single fungal symbiont and hinders the evolution of cheating. Our findings explain why vertical symbiont transmission in fungus-growing termites is rare...

  19. Use of Hybridization Chain Reaction-Fluorescent In Situ Hybridization To Track Gene Expression by Both Partners during Initiation of Symbiosis.

    Science.gov (United States)

    Nikolakakis, K; Lehnert, E; McFall-Ngai, M J; Ruby, E G

    2015-07-01

    The establishment of a productive symbiosis between Euprymna scolopes, the Hawaiian bobtail squid, and its luminous bacterial symbiont, Vibrio fischeri, is mediated by transcriptional changes in both partners. A key challenge to unraveling the steps required to successfully initiate this and many other symbiotic associations is characterization of the timing and location of these changes. We report on the adaptation of hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) to simultaneously probe the spatiotemporal regulation of targeted genes in both E. scolopes and V. fischeri. This method revealed localized, transcriptionally coregulated epithelial cells within the light organ that responded directly to the presence of bacterial cells while, at the same time, provided a sensitive means to directly show regulated gene expression within the symbiont population. Thus, HCR-FISH provides a new approach for characterizing habitat transition in bacteria and for discovering host tissue responses to colonization. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Understanding regulation of the host-mediated gut symbiont population and the symbiont-mediated host immunity in the Riptortus-Burkholderia symbiosis system.

    Science.gov (United States)

    Kim, Jiyeun Kate; Lee, Jun Beom; Jang, Ho Am; Han, Yeon Soo; Fukatsu, Takema; Lee, Bok Luel

    2016-11-01

    Valuable insect models have tremendously contributed to our understanding of innate immunity and symbiosis. Bean bug, Riptortus pedestris, is a useful insect symbiosis model due to harboring cultivable monospecific gut symbiont, genus Burkholderia. Bean bug is a hemimetabolous insect whose immunity is not well-understood. However, we recently identified three major antimicrobial peptides of Riptortus and examined the relationship between gut symbiosis and host immunity. We found that the presence of Burkholderia gut symbiont positively affects Riptortus immunity. From studying host regulation mechanisms of symbiont population, we revealed that the symbiotic Burkholderia cells are much more susceptible to Riptortus immune responses than the cultured cells. We further elucidated that the immune-susceptibility of the Burkholderia gut symbionts is due to the drastic change of bacterial cell envelope. Finally, we show that the immune-susceptible Burkholderia symbionts are able to prosper in host owing to the suppression of immune responses of the symbiotic midgut. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Stress response and virulence in Vibrio anguillarum

    OpenAIRE

    Weber, Barbara

    2010-01-01

    Bacteria use quorum sensing, a cell to cell signaling mechanism mediated by small molecules that are produced by specific signal molecule synthases, to regulate gene expression in response to population density. In Vibrio anguillarum, the quorum-sensing phosphorelay channels information from three hybrid sensor kinases VanN, VanQ, CqsS that sense signal molecules produced by the synthases VanM, VanS and CqsA, onto the phosphotransferase VanU, to regulate activity of the response regulator Van...

  2. Investigations on abundance and activity of microbial sponge symbionts using quantitative real - time PCR

    DEFF Research Database (Denmark)

    Kumala, Lars; Hentschel, Ute; Bayer, Kristina

    Marine sponges are hosts to dense and diverse microbial consortia that are likely to play a key role in the metabolic processes of the host sponge due to their enormous abundance. Common symbioses between nitrogen transforming microorganisms and sponges indicate complex nitrogen cycling within...... the host. Of particular interest is determining the community structure and function of microbial symbionts in order to gain deeper insight into host-symbiont interactions. We investigated the abundance and activity of microbial symbionts in two Mediterranean sponge species using quantitative real-time PCR....... An absolute quantification of functional genes and transcripts in archaeal and bacterial symbionts was conducted to determine their involvement in nitrification and denitrification, comparing the low microbial abundance (LMA) sponge Dysidea avara with the high microbial abundance (HMA) representative Aplysina...

  3. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation

    NARCIS (Netherlands)

    Petersen, J.M.; Kemper, A.; Gruber-Vodicka, H.R.; Cardini, U.; van der Geest, M.; Kleiner, M.; Bulgheresi, S.; Mußmann, M; Herbold, C.W.; Seah, B.K.B.; Antony, C.P.; Liu, D.; Belitz, A.; Weber, M.

    2016-01-01

    Chemosynthetic symbioses are partnerships between invertebrate animals and chemosynthetic bacteria. The latter are theprimary producers, providing most of the organic carbon needed for the animal host’s nutrition. We sequenced genomesof the chemosynthetic symbionts from the lucinid bivalve Loripes

  4. Mechanisms of symbiont-conferred protection against natural enemies: an ecological and evolutionary framework.

    Science.gov (United States)

    Gerardo, Nicole M; Parker, Benjamin J

    2014-10-01

    Many vertically-transmitted microbial symbionts protect their insect hosts from natural enemies, including host-targeted pathogens and parasites, and those vectored by insects to other hosts. Protection is often achieved through production of inhibiting toxins, which is not surprising given that toxin production mediates competition in many environments. Classical models of macroecological interactions, however, demonstrate that interspecific competition can be less direct, and recent research indicates that symbiont-protection can be mediated through exploitation of limiting resources, and through activation of host immune mechanisms that then suppress natural enemies. Available data, though limited, suggest that effects of symbionts on vectored pathogens and parasites, as compared to those that are host-targeted, are more likely to result from symbiont activation of the host immune system. We discuss these different mechanisms in light of their potential impact on the evolution of host physiological processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Recent expansion of heat-activated retrotransposons in the coral symbiont Symbiodinium microadriaticum

    KAUST Repository

    Chen, Jit Ern; Cui, Guoxin; Wang, Xin; Liew, Yi Jin; Aranda, Manuel

    2017-01-01

    Rising sea surface temperature is the main cause of global coral reef decline. Abnormally high temperatures trigger the breakdown of the symbiotic association between corals and their photosynthetic symbionts in the genus Symbiodinium. Higher

  6. Co-Speciation of Earthworms and their nephridial symbionts, Acidovorax Spp

    DEFF Research Database (Denmark)

    Lund, Marie Braad; Fritz, Michael; Holmstrup, Martin

    2006-01-01

    the extracted DNA. The presence of the symbionts in the ampulla was verified by performing fluorescence in situ hybridization (FISH) on all worm species using an Acidovorax-specific probe. Earthworm and symbiont phylogeny was largely congruent, indicating that host and symbiont have indeed co-evolved since...... the initial bacterial colonization of an ancestral lumbricid worm. However, the association is complicated by the recent discovery of additional, putative symbiotic bacteria which have been detected in the ampulla of several earthworms by FISH. Identity, distribution among earthworms, and function...... within the genus Acidovorax [2], and they are transmitted vertically [3]. For these reasons, we suggest that the earthworm-Acidovorax association has evolved by co-speciation. This hypothesis was tested by a comparative study of earthworm and symbiont phylogeny. Different earthworm species were collected...

  7. Symbiont shuffling linked to differential photochemical dynamics of Symbiodinium in three Caribbean reef corals

    Science.gov (United States)

    Cunning, Ross; Silverstein, Rachel N.; Baker, Andrew C.

    2018-03-01

    Dynamic symbioses with functionally diverse dinoflagellate algae in the genus Symbiodinium may allow some reef corals to alter their phenotypes through `symbiont shuffling', or changes in symbiont community composition. In particular, corals may become more bleaching resistant by increasing the relative abundance of thermally tolerant Symbiodinium in clade D after bleaching. Despite the immediate relevance of this phenomenon to corals living in warming oceans—and to interventions aimed at boosting coral resilience—the mechanisms governing how, why, and when symbiont shuffling occurs are still poorly understood. Here, we performed controlled thermal bleaching and recovery experiments on three species of Caribbean corals hosting mixtures of D1a ( S. trenchii) and other symbionts in clades B or C. We show that the degree of symbiont shuffling is related to (1) the duration of stress exposure and (2) the difference in photochemical efficiency ( F v /F m) of co-occurring symbionts under stress (i.e., the `photochemical advantage' of one symbiont over the other). The advantage of D1a under stress was greatest in Montastraea cavernosa, intermediate in Siderastrea siderea, and lowest in Orbicella faveolata and correlated positively with the magnitude of shuffling toward D1a. In holobionts where D1a had less of an advantage over co-occurring symbionts (i.e., only slightly higher F v /F m under stress), a longer stress duration was required to elicit commensurate increases in D1a abundance. In fact, across these three coral species, 92.9% of variation in the degree of symbiont shuffling could be explained by the time-integrated photochemical advantage of D1a under heat stress. Although F v /F m is governed by numerous factors that this study is unable to resolve mechanistically, its strong empirical relationship with symbiont shuffling helps elucidate general features that govern this process in reef corals, which will help refine predictions of coral responses to

  8. Live imaging of symbiosis: spatiotemporal infection dynamics of a GFP-labelled Burkholderia symbiont in the bean bug Riptortus pedestris

    Science.gov (United States)

    Kikuchi, Yoshitomo; Fukatsu, Takema

    2014-01-01

    Many insects possess endosymbiotic bacteria inside their body, wherein intimate interactions occur between the partners. While recent technological advancements have deepened our understanding of metabolic and evolutionary features of the symbiont genomes, molecular mechanisms underpinning the intimate interactions remain difficult to approach because the insect symbionts are generally uncultivable. The bean bug Riptortus pedestris is associated with the betaproteobacterial Burkholderia symbiont in a posterior region of the midgut, which develops numerous crypts harbouring the symbiont extracellularly. Distinct from other insect symbiotic systems, R. pedestris acquires the Burkholderia symbiont not by vertical transmission but from the environment every generation. By making use of the cultivability and the genetic tractability of the symbiont, we constructed a transgenic Burkholderia strain labelled with green fluorescent protein (GFP), which enabled detailed observation of spatiotemporal dynamics and the colonization process of the symbiont in freshly prepared specimens. The symbiont live imaging revealed that, at the second instar, colonization of the symbiotic midgut M4 region started around 6 h after inoculation (hai). By 24 hai, the symbiont cells appeared in the main tract and also in several crypts of the M4. By 48 hai, most of the crypts were colonized by the symbiont cells. By 72 hai, all the crypts were filled up with the symbiont cells and the symbiont localization pattern continued during the subsequent nymphal development. Quantitative PCR of the symbiont confirmed the infection dynamics quantitatively. These results highlight the stinkbug-Burkholderia gut symbiosis as an unprecedented model for comprehensive understanding of molecular mechanisms underpinning insect symbiosis. PMID:24103110

  9. The herbaceous landlord: integrating the effects of symbiont consortia within a single host

    Directory of Open Access Journals (Sweden)

    Roo Vandegrift

    2015-11-01

    Full Text Available Plants are typically infected by a consortium of internal fungal associates, including endophytes in their leaves, as well as arbuscular mycorrhizal fungi (AMF and dark septate endophytes (DSE in their roots. It is logical that these organisms will interact with each other and the abiotic environment in addition to their host, but there has been little work to date examining the interactions of multiple symbionts within single plant hosts, or how the relationships among symbionts and their host change across environmental conditions. We examined the grass Agrostis capillaris in the context of a climate manipulation experiment in prairies in the Pacific Northwest, USA. Each plant was tested for presence of foliar endophytes in the genus Epichloë, and we measured percent root length colonized (PRLC by AMF and DSE. We hypothesized that the symbionts in our system would be in competition for host resources, that the outcome of that competition could be driven by the benefit to the host, and that the host plants would be able to allocate carbon to the symbionts in such a way as to maximize fitness benefit within a particular environmental context. We found a correlation between DSE and AMF PRLC across climatic conditions; we also found a fitness cost to increasing DSE colonization, which was negated by presence of Epichloë endophytes. These results suggest that selective pressure on the host is likely to favor host/symbiont relationships that structure the community of symbionts in the most beneficial way possible for the host, not necessarily favoring the individual symbiont that is most beneficial to the host in isolation. These results highlight the need for a more integrative, systems approach to the study of host/symbiont consortia.

  10. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments

    Science.gov (United States)

    Mey, Alexandra R.; Wyckoff, Elizabeth E.

    2015-01-01

    SUMMARY Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats. PMID:26658001

  11. Vibrio elicits targeted transcriptional responses from copepod hosts.

    Science.gov (United States)

    Almada, Amalia A; Tarrant, Ann M

    2016-06-01

    Copepods are abundant crustaceans that harbor diverse bacterial communities, yet the nature of their interactions with microbiota are poorly understood. Here, we report that Vibrio elicits targeted transcriptional responses in the estuarine copepod Eurytemora affinis We pre-treated E. affinis with an antibiotic cocktail and exposed them to either a zooplankton specialist (Vibrio sp. F10 9ZB36) or a free-living species (Vibrio ordalii 12B09) for 24 h. We then identified via RNA-Seq a total of 78 genes that were differentially expressed following Vibrio exposure, including homologs of C-type lectins, chitin-binding proteins and saposins. The response differed between the two Vibrio treatments, with the greatest changes elicited upon inoculation with V. sp. F10 We suggest that these differentially regulated genes play important roles in cuticle integrity, the innate immune response, and general stress response, and that their expression may enable E. affinis to recognize and regulate symbiotic vibrios. We further report that V. sp. F10 culturability is specifically altered upon colonization of E. affinis These findings suggest that rather than acting as passive environmental vectors, copepods discriminately interact with vibrios, which may ultimately impact the abundance and activity of copepod-associated bacteria. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. QStatin, a Selective Inhibitor of Quorum Sensing in Vibrio Species

    Directory of Open Access Journals (Sweden)

    Byoung Sik Kim

    2018-01-01

    Full Text Available Pathogenic Vibrio species cause diseases in diverse marine animals reared in aquaculture. Since their pathogenesis, persistence, and survival in marine environments are regulated by quorum sensing (QS, QS interference has attracted attention as a means to control these bacteria in aquatic settings. A few QS inhibitors of Vibrio species have been reported, but detailed molecular mechanisms are lacking. Here, we identified a novel, potent, and selective Vibrio QS inhibitor, named QStatin [1-(5-bromothiophene-2-sulfonyl-1H-pyrazole], which affects Vibrio harveyi LuxR homologues, the well-conserved master transcriptional regulators for QS in Vibrio species. Crystallographic and biochemical analyses showed that QStatin binds tightly to a putative ligand-binding pocket in SmcR, the LuxR homologue in V. vulnificus, and changes the flexibility of the protein, thereby altering its transcription regulatory activity. Transcriptome analysis revealed that QStatin results in SmcR dysfunction, affecting the expression of SmcR regulon required for virulence, motility/chemotaxis, and biofilm dynamics. Notably, QStatin attenuated representative QS-regulated phenotypes in various Vibrio species, including virulence against the brine shrimp (Artemia franciscana. Together, these results provide molecular insights into the mechanism of action of an effective, sustainable QS inhibitor that is less susceptible to resistance than other antimicrobial agents and useful in controlling the virulence of Vibrio species in aquacultures.

  13. Effects of ambient exposure, refrigeration, and icing on Vibrio vulnificus and Vibrio parahaemolyticus abundances in oysters.

    Science.gov (United States)

    Jones, J L; Lydon, K A; Kinsey, T P; Friedman, B; Curtis, M; Schuster, R; Bowers, J C

    2017-07-17

    Vibrio vulnificus (Vv) and V. parahaemolyticus (Vp) illnesses are typically acquired through the consumption of raw molluscan shellfish, particularly oysters. As Vibrio spp. are naturally-occurring bacteria, one means of mitigation of illness is achieved by limiting post-harvest growth. In this study, effects of ambient air storage, refrigeration, and icing of oysters on Vibrio spp. abundances were examined at two sites in Alabama (AL) [Dog River (DR) and Cedar Point (CP)] and one site in Delaware Bay, New Jersey (NJ). As the United States shellfish program recommendations include testing for total these organisms and gene targets, Vv and total (tlh) and pathogenic (tdh+ and trh+) Vp were enumerated from samples using MPN-real-time-PCR approaches. Mean Vv and Vp abundances in oysters from AL-DR were lowest in immediately iced samples (2.3 and -0.1 log MPN/g, respectively) and highest in the 5h ambient then refrigerated samples (3.4 and 0.5 log MPN/g, respectively). Similarly, in AL-CP Vv and Vp mean levels in oysters were lowest in immediately iced samples (3.6 and 1.2 log MPN/g, respectively) and highest in 5h ambient then refrigerated samples (5.1 and 3.2 log MPN/g, respectively). Mean levels of pathogenic Vp from AL sites were frequently below the limit of detection (oysters were highest in samples which were held for 7h in the shade (5.3 and 4.8 log MPN/g, respectively). Mean pathogenic Vp levels in oysters at initial harvest were also highest in oysters 7h in the shade (2.1 and 2.2 log MPN/g for tdh+ and trh+ Vp). Regardless of sampling location, Vibrio spp. levels were generally significantly (poysters exposed to 5h of air storage compared to the initially harvested samples. In addition, the data demonstrated that the use of layered ice resulted in lower Vibrio spp. levels in oysters, compared to those that were refrigerated post-harvest. These results suggest vibriosis risk can be mitigated by shorter storage times and more rapid cooling of oysters

  14. [Mexican phenotype and genotype Vibrio cholerae 01].

    Science.gov (United States)

    Giono, S; Gutiérrez Cogno, L; Rodríguez Angeles, G; del Rio Zolezzi, A; Valdespino González, J L; Sepúlveda Amor, J

    1995-01-01

    This paper presents the phenotypical and genotypical characterization of 26922 Vibrio cholerae 01 strains isolated in Mexico from 1991 to 1993. All strains isolated were El Tor biovar. Strains were sensitive to antibiotics excluding furazolidone, streptomycin and sulfisoxasole to which we found resistance in 97% and we are using this characteristic as epidemiological markers. We detected a marked change in frequency of Inaba serotype from 1991, when it was dominant, with 99.5%, until 1992 when Ogawa serotype turned to be dominant with 95% of isolates. All Vibrio cholerae 01 strains, except one Ogawa strain, were to igenic, and V. choleraeno 01 were not toxigenic by ELISA, PCR and cell culture tests. Dominant ribotype was 5, but we found some strains with 6a pattern and two with ribotype 12. We are searching for ribotype 2 among hemolytic strains in order to learn if there is any relation to Gulf Coast strains prevalent in the USA, but until now we have not found any V. cholerae ribotype 2 in our isolates. Even if rapid tests are recommended for immediate diagnosis of cholera, it is necessary to continue bacterial isolation in order to have strains for phenotyping and genotyping studies that may support epidemiological analysis.

  15. Luminescence, virulence and quorum sensing signal production by pathogenic Vibrio campbellii and Vibrio harveyi isolates

    OpenAIRE

    Defoirdt, T.; Verstraete, W.; Bossier, P.

    2008-01-01

    Aims: To study the relationship between luminescence, autoinducer production and virulence of pathogenic vibrios.Methods and Results: Luminescence, quorum sensing signal production and virulence towards brine shrimp nauplii of 13 Vibrio campbellii and Vibrio harveyi strains were studied. Although only two of the tested strains were brightly luminescent, all of them were shown to produce the three different types of quorum sensing signals known to be produced by Vibrio harveyi. Cell-free cultu...

  16. Acquisition of a Novel Sulfur-Oxidizing Symbiont in the Gutless Marine Worm Inanidrilus exumae

    Science.gov (United States)

    2018-01-01

    ABSTRACT Gutless phallodrilines are marine annelid worms without a mouth or gut, which live in an obligate association with multiple bacterial endosymbionts that supply them with nutrition. In this study, we discovered an unusual symbiont community in the gutless phallodriline Inanidrilus exumae that differs markedly from the microbiomes of all 22 of the other host species examined. Comparative 16S rRNA gene sequence analysis and fluorescence in situ hybridization revealed that I. exumae harbors cooccurring gamma-, alpha-, and deltaproteobacterial symbionts, while all other known host species harbor gamma- and either alpha- or deltaproteobacterial symbionts. Surprisingly, the primary chemoautotrophic sulfur oxidizer “Candidatus Thiosymbion” that occurs in all other gutless phallodriline hosts does not appear to be present in I. exumae. Instead, I. exumae harbors a bacterial endosymbiont that resembles “Ca. Thiosymbion” morphologically and metabolically but originates from a novel lineage within the class Gammaproteobacteria. This endosymbiont, named Gamma 4 symbiont here, had a 16S rRNA gene sequence that differed by at least 7% from those of other free-living and symbiotic bacteria and by 10% from that of “Ca. Thiosymbion.” Sulfur globules in the Gamma 4 symbiont cells, as well as the presence of genes characteristic for autotrophy (cbbL) and sulfur oxidation (aprA), indicate that this symbiont is a chemoautotrophic sulfur oxidizer. Our results suggest that a novel lineage of free-living bacteria was able to establish a stable and specific association with I. exumae and appears to have displaced the “Ca. Thiosymbion” symbionts originally associated with these hosts. IMPORTANCE All 22 gutless marine phallodriline species examined to date live in a highly specific association with endosymbiotic, chemoautotrophic sulfur oxidizers called “Ca. Thiosymbion.” These symbionts evolved from a single common ancestor and represent the ancestral trait for

  17. Co-infection and localization of secondary symbionts in two whitefly species

    Science.gov (United States)

    2010-01-01

    Background Whiteflies are cosmopolitan phloem-feeding pests that cause serious damage to many crops worldwide due to direct feeding and vectoring of many plant viruses. The sweetpotato whitefly Bemisia tabaci (Gennadius) and the greenhouse whitefly Trialeurodes vaporariorum (Westwood) are two of the most widespread and damaging whitefly species. To complete their unbalanced diet, whiteflies harbor the obligatory bacterium Portiera aleyrodidarum. B. tabaci further harbors a diverse array of secondary symbionts, including Hamiltonella, Arsenophonus, Cardinium, Wolbachia, Rickettsia and Fritschea. T. vaporariorum is only known to harbor P. aleyrodidarum and Arsenophonus. We conducted a study to survey the distribution of whitefly species in Croatia, their infection status by secondary symbionts, and the spatial distribution of these symbionts in the developmental stages of the two whitefly species. Results T. vaporariorum was found to be the predominant whitefly species across Croatia, while only the Q biotype of B. tabaci was found across the coastal part of the country. Arsenophonus and Hamiltonella were detected in collected T. vaporariorum populations, however, not all populations harbored both symbionts, and both symbionts showed 100% infection rate in some of the populations. Only the Q biotype of B. tabaci was found in the populations tested and they harbored Hamiltonella, Rickettsia, Wolbachia and Cardinium, while Arsenophonus and Fritschea were not detected in any B. tabaci populations. None of the detected symbionts appeared in all populations tested, and multiple infections were detected in some of the populations. All endosymbionts tested were localized inside the bacteriocyte in both species, but only Rickettsia and Cardinium in B. tabaci showed additional localization outside the bacteriocyte. Conclusions Our study revealed unique co-infection patterns by secondary symbionts in B. tabaci and T. vaporariorum. Co-sharing of the bacteriocyte by the primary

  18. A survey of oysters (Crassostrea gigas) in New Zealand for Vibrio parahaemolyticus and Vibrio vulnificus.

    Science.gov (United States)

    Kirs, M; Depaola, A; Fyfe, R; Jones, J L; Krantz, J; Van Laanen, A; Cotton, D; Castle, M

    2011-05-27

    A microbiological survey was conducted to determine the levels of total and pathogenic Vibrio parahaemolyticus (Vp) and Vibrio vulnificus (Vv) in Pacific oysters (Crassostrea gigas) collected from commercial growing areas in the North Island, New Zealand. The survey was intended to be geographically representative of commercial growing areas of Pacific oysters in New Zealand, while selecting the time frame most likely to coincide with the increased abundance of pathogenic vibrio species. Vp was detected in 94.8% of oyster samples examined (n=58) with a geometric mean concentration of 99.3 MPN/g, while Vv was detected in 17.2% of oyster samples examined with a geometric mean concentration of 7.4 MPN/g. The frequency of Vp positive samples was 1.7 fold greater than reported in a study conducted three decades ago in New Zealand. Potentially virulent (tdh positive) Vp was detected in two samples (3.4%, n=58) while no trh (another virulence marker) positive samples were detected. 16S rRNA genotype could be assigned only to 58.8% of Vv isolates (8:1:1 A:B:AB ratio, n=10). There was a good agreement [98.2% of Vp (n=280) and 94.4% of Vv (n=18) isolates] between molecular tests and cultivation based techniques used to identify Vibrio isolates and there was a significant (R(2)=0.95, Pcultivation. There was no significant correlation between any of the environmental parameters tested and Vp or Vv concentrations. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Regulation of Metalloprotease Gene Expression in Vibrio vulnificus by a Vibrio harveyi LuxR Homologue

    Science.gov (United States)

    Shao, Chung-Ping; Hor, Lien-I

    2001-01-01

    Expression of the Vibrio vulnificus metalloprotease gene, vvp, was turned up rapidly when bacterial growth reached the late log phase. A similar pattern of expression has been found in the metalloprotease gene of Vibrio cholerae, and this has been shown to be regulated by a Vibrio harveyi LuxR-like transcriptional activator. To find out whether a LuxR homologue exists in V. vulnificus, a gene library of this organism was screened by colony hybridization using a probe derived from a sequence that is conserved in various luxR-like genes of vibrios. A gene containing a 618-bp open reading frame was identified and found to be identical to the smcR gene of V. vulnificus reported previously. An isogenic SmcR-deficient (RD) mutant was further constructed by an in vivo allelic exchange technique. This mutant exhibited an extremely low level of vvp transcription compared with that of the parent strain. On the other hand, the cytolysin gene, vvhA, was expressed at a higher level in the RD mutant than in the parent strain during the log phase of growth. These data suggested that SmcR might not only be a positive regulator of the protease gene but might also be involved in negative regulation of the cytolysin gene. Virulence of the RD mutant in either normal or iron-overloaded mice challenged by intraperitoneal injection was comparable to that of the parent strain, indicating that SmcR is not required for V. vulnificus virulence in mice. PMID:11157950

  20. Vibrio lentus protects gnotobiotic sea bass (Dicentrarchus labrax L.) larvae against challenge with Vibrio harveyi.

    Science.gov (United States)

    Schaeck, M; Duchateau, L; Van den Broeck, W; Van Trappen, S; De Vos, P; Coulombet, C; Boon, N; Haesebrouck, F; Decostere, A

    2016-03-15

    Due to the mounting awareness of the risks associated with the use of antibiotics in aquaculture, treatment with probiotics has recently emerged as the preferred environmental-friendly prophylactic approach in marine larviculture. However, the presence of unknown and variable microbiota in fish larvae makes it impossible to disentangle the efficacy of treatment with probiotics. In this respect, the recent development of a germ-free culture model for European sea bass (Dicentrarchus labrax L.) larvae opened the door for more controlled studies on the use of probiotics. In the present study, 206 bacterial isolates, retrieved from sea bass larvae and adults, were screened in vitro for haemolytic activity, bile tolerance and antagonistic activity against six sea bass pathogens. Subsequently, the harmlessness and the protective effect of the putative probiotic candidates against the sea bass pathogen Vibrio harveyi were evaluated in vivo adopting the previously developed germ-free sea bass larval model. An equivalence trial clearly showed that no harmful effect on larval survival was elicited by all three selected probiotic candidates: Bacillus sp. LT3, Vibrio lentus and Vibrio proteolyticus. Survival of Vibrio harveyi challenged larvae treated with V. lentus was superior in comparison with the untreated challenged group, whereas this was not the case for the larvae supplemented with Bacillus sp. LT3 and V. proteolyticus. In this respect, our results unmistakably revealed the protective effect of V. lentus against vibriosis caused by V. harveyi in gnotobiotic sea bass larvae, rendering this study the first in its kind. Copyright © 2016. Published by Elsevier B.V.

  1. Combined thermal and herbicide stress in functionally diverse coral symbionts

    International Nuclear Information System (INIS)

    Dam, J.W. van; Uthicke, S.; Beltran, V.H.; Mueller, J.F.; Negri, A.P.

    2015-01-01

    Most reef building corals rely on symbiotic microalgae (genus Symbiodinium) to supply a substantial proportion of their energy requirements. Functional diversity of different Symbiodinium genotypes, endorsing the host with physiological advantages, has been widely reported. Yet, the influence of genotypic specificity on the symbiont's susceptibility to contaminants or cumulative stressors is unknown. Cultured Symbiodinium of presumed thermal-tolerant clade D tested especially vulnerable to the widespread herbicide diuron, suggesting important free-living populations may be at risk in areas subjected to terrestrial runoff. Co-exposure experiments where cultured Symbiodinium were exposed to diuron over a thermal stress gradient demonstrated how fast-growing clade C1 better maintained photosynthetic capability than clade D. The mixture toxicity model of Independent Action, considering combined thermal stress and herbicide contamination, revealed response additivity for inhibition of photosynthetic yield in both tested cultures, emphasizing the need to account for cumulative stressor impacts in ecological risk assessment and resource management. - Highlights: • Water quality influences thermal stress thresholds in different Symbiodinium types. • Photosystem of clade D tested more sensitive than C1 to a common herbicide. • Increased thermal tolerance quickly countered in presence of herbicide. • Mixture toxicity approach demonstrated response additivity for combined stressors. • Symbiotic partnership may be compromised in areas subjected to terrestrial runoff. - Thermal-tolerant Symbiodinium type D tested especially vulnerable to a common herbicide, emphasizing the significance of cumulative stressors in ecological risk management

  2. Antibiotic Resistant Salmonella and Vibrio Associated with Farmed Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Sanjoy Banerjee

    2012-01-01

    Full Text Available Salmonella and Vibrio species were isolated and identified from Litopenaeus vannamei cultured in shrimp farms. Shrimp samples showed occurrence of 3.3% of Salmonella and 48.3% of Vibrio. The isolates were also screened for antibiotic resistance to oxolinic acid, sulphonamides, tetracycline, sulfamethoxazole/trimethoprim, norfloxacin, ampicillin, doxycycline hydrochloride, erythromycin, chloramphenicol, and nitrofurantoin. Salmonella enterica serovar Corvallis isolated from shrimp showed individual and multiple antibiotic resistance patterns. Five Vibrio species having individual and multiple antibiotic resistance were also identified. They were Vibrio cholerae (18.3%, V. mimicus (16.7%, V. parahaemolyticus (10%, V. vulnificus (6.7%, and V. alginolyticus (1.7%. Farm owners should be concerned about the presence of these pathogenic bacteria which also contributes to human health risk and should adopt best management practices for responsible aquaculture to ensure the quality of shrimp.

  3. QStatin, a Selective Inhibitor of Quorum Sensing in Vibrio Species.

    Science.gov (United States)

    Kim, Byoung Sik; Jang, Song Yee; Bang, Ye-Ji; Hwang, Jungwon; Koo, Youngwon; Jang, Kyung Ku; Lim, Dongyeol; Kim, Myung Hee; Choi, Sang Ho

    2018-01-30

    Pathogenic Vibrio species cause diseases in diverse marine animals reared in aquaculture. Since their pathogenesis, persistence, and survival in marine environments are regulated by quorum sensing (QS), QS interference has attracted attention as a means to control these bacteria in aquatic settings. A few QS inhibitors of Vibrio species have been reported, but detailed molecular mechanisms are lacking. Here, we identified a novel, potent, and selective Vibrio QS inhibitor, named QStatin [1-(5-bromothiophene-2-sulfonyl)-1H-pyrazole], which affects Vibrio harveyi LuxR homologues, the well-conserved master transcriptional regulators for QS in Vibrio species. Crystallographic and biochemical analyses showed that QStatin binds tightly to a putative ligand-binding pocket in SmcR, the LuxR homologue in V. vulnificus , and changes the flexibility of the protein, thereby altering its transcription regulatory activity. Transcriptome analysis revealed that QStatin results in SmcR dysfunction, affecting the expression of SmcR regulon required for virulence, motility/chemotaxis, and biofilm dynamics. Notably, QStatin attenuated representative QS-regulated phenotypes in various Vibrio species, including virulence against the brine shrimp ( Artemia franciscana ). Together, these results provide molecular insights into the mechanism of action of an effective, sustainable QS inhibitor that is less susceptible to resistance than other antimicrobial agents and useful in controlling the virulence of Vibrio species in aquacultures. IMPORTANCE Yields of aquaculture, such as penaeid shrimp hatcheries, are greatly affected by vibriosis, a disease caused by pathogenic Vibrio infections. Since bacterial cell-to-cell communication, known as quorum sensing (QS), regulates pathogenesis of Vibrio species in marine environments, QS inhibitors have attracted attention as alternatives to conventional antibiotics in aquatic settings. Here, we used target-based high-throughput screening to identify

  4. The geographical patterns of symbiont diversity in the invasive legume Mimosa pudica can be explained by the competitiveness of its symbionts and by the host genotype.

    Science.gov (United States)

    Melkonian, Rémy; Moulin, Lionel; Béna, Gilles; Tisseyre, Pierre; Chaintreuil, Clémence; Heulin, Karine; Rezkallah, Naïma; Klonowska, Agnieszka; Gonzalez, Sophie; Simon, Marcelo; Chen, Wen-Ming; James, Euan K; Laguerre, Gisèle

    2014-07-01

    Variations in the patterns of diversity of symbionts have been described worldwide on Mimosa pudica, a pan-tropical invasive species that interacts with both α and β-rhizobia. In this study, we investigated if symbiont competitiveness can explain these variations and the apparent prevalence of β- over α-rhizobia. We developed an indirect method to measure the proportion of nodulation against a GFP reference strain and tested its reproducibility and efficiency. We estimated the competitiveness of 54 strains belonging to four species of β-rhizobia and four of α-rhizobia, and the influence of the host genotype on their competitiveness. Our results were compared with biogeographical patterns of symbionts and host varieties. We found: (i) a strong strain effect on competitiveness largely explained by the rhizobial species, with Burkholderia phymatum being the most competitive species, followed by B. tuberum, whereas all other species shared similar and reduced levels of competitiveness; (ii) plant genotype can increase the competitiveness of Cupriavidus taiwanensis. The latter data support the likelihood of the strong adaptation of C. taiwanensis with the M. pudica var. unijuga and help explain its prevalence as a symbiont of this variety over Burkholderia species in some environments, most notably in Taiwan. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Autoinducers act as biological timers in Vibrio harveyi

    OpenAIRE

    Anetzberger, C.; Reiger, M.; Fekete, A.; Schell, U.; Stambrau, N.; Plener, L.; Kopka, J.; Schmitt-Kopplin, P.; Hilbi, H.; Jung, K.

    2012-01-01

    Quorum sensing regulates cell density-dependent phenotypes and involves the synthesis, excretion and detection of so-called autoinducers. Vibrio harveyi strain ATCC BAA-1116 (recently reclassified as Vibrio campbellii), one of the best-characterized model organisms for the study of quorum sensing, produces and responds to three autoinducers. HAI-1, AI-2 and CAI-1 are recognized by different receptors, but all information is channeled into the same signaling cascade, which controls a specific ...

  6. A selective and differential medium for Vibrio harveyi.

    OpenAIRE

    Harris, L; Owens, L; Smith, S

    1996-01-01

    A new medium, termed Vibrio harveyi agar, has been developed for the isolation and enumeration of V. harveyi. It is possible to differentiate V. harveyi colonies from the colonies of strains representing 15 other Vibrio species with this medium. This medium has been shown to inhibit the growth of two strains of marine Pseudomonas spp. and two strains of marine Flavobacterium spp. but to allow the growth of Photobacterium strains. Colonies displaying typical V. harveyi morphology were isolated...

  7. Characterization of Vibrio species isolated from freshwater fishes by ribotyping

    OpenAIRE

    Mishra, P.; Samanta, M.; Mohanty, S.; Maiti, N. K.

    2010-01-01

    Three Vibrio species from the resident microflora of gastrointestinal tract of freshwater carps and prawns were isolated and confirmed biochemically as V. fluvialis from Cyprinus carpio/Labeo rohita; V. parahaemolyticus from Macrobrachium rosenbergii and V. harveyi from Macrobrachium malcomsoni. The genetic relationship among these Vibrio species was carried out by polymerase chain reaction (PCR) amplification of 16S rRNA gene followed by restriction digestion with Hae III, Bam HI and Pst I. ...

  8. Septicemia caused by Vibrio parahemolyticus: a case report.

    Science.gov (United States)

    Hsu, G J; Young, T; Peng, M Y; Chang, F Y; Chou, M Y

    1993-11-01

    Vibrio parahemolyticus is a halophilic marine vibrio commonly associated with outbreaks of acute gastroenteritis which also sometimes causes serious wound infection. It is an uncommon cause of septicemia. A few reports suggest that patients with chronic liver disease and leukemia are more susceptible. A case of liver cirrhosis with septicemia caused by this organism is discussed. The patient's condition rapidly deteriorated, and he died 12 hours after admission.

  9. Niche acclimatization in Red Sea corals is dependent on flexibility of host-symbiont association

    KAUST Repository

    Ziegler, Maren

    2015-08-06

    Knowledge of host-symbiont specificity and acclimatization capacity of corals is crucial for understanding implications of environmental change. Whilst some corals have been shown to associate with a number of symbionts that may comprise different physiologies, most corals associate with only one dominant Symbiodinium species at a time. Coral communities in the Red Sea thrive under large fluctuations of environmental conditions, but the degree and mechanisms of coral acclimatization are largely unexplored. Here we investigated the potential for niche acclimatization in 2 dominant corals from the central Red Sea, Pocillopora verrucosa and Porites lutea, in relation to the fidelity of the underlying coral-symbiont association. Repeated sampling over 2 seasons along a cross-shelf and depth gradient revealed a stable symbiont association in P. verrucosa and flexible association in P. lutea. A statistical biological-environmental matching routine revealed that the high plasticity of photophysiology and photopigments in the stable Symbiodinium microadriaticum (type A1) community in P. verrucosa were correlated with environmental influences along spatio-temporal dimensions. In contrast, photophysiology and pigments were less variable within each symbiont type from P. lutea indicating that niche acclimatization was rather regulated by a flexible association with a variable Symbiodinium community. Based on these data, we advocate an extended concept of phenotypic plasticity of the coral holobiont, in which the scleractinian host either associates with a specific Symbiodinium type with a broad physiological tolerance, or the host-symbiont pairing is more flexible to accommodate for different symbiont associations, each adapted to specific environmental settings.

  10. Niche acclimatization in Red Sea corals is dependent on flexibility of host-symbiont association

    KAUST Repository

    Ziegler, Maren; Roder, Cornelia; Bü chel, C; Voolstra, Christian R.

    2015-01-01

    Knowledge of host-symbiont specificity and acclimatization capacity of corals is crucial for understanding implications of environmental change. Whilst some corals have been shown to associate with a number of symbionts that may comprise different physiologies, most corals associate with only one dominant Symbiodinium species at a time. Coral communities in the Red Sea thrive under large fluctuations of environmental conditions, but the degree and mechanisms of coral acclimatization are largely unexplored. Here we investigated the potential for niche acclimatization in 2 dominant corals from the central Red Sea, Pocillopora verrucosa and Porites lutea, in relation to the fidelity of the underlying coral-symbiont association. Repeated sampling over 2 seasons along a cross-shelf and depth gradient revealed a stable symbiont association in P. verrucosa and flexible association in P. lutea. A statistical biological-environmental matching routine revealed that the high plasticity of photophysiology and photopigments in the stable Symbiodinium microadriaticum (type A1) community in P. verrucosa were correlated with environmental influences along spatio-temporal dimensions. In contrast, photophysiology and pigments were less variable within each symbiont type from P. lutea indicating that niche acclimatization was rather regulated by a flexible association with a variable Symbiodinium community. Based on these data, we advocate an extended concept of phenotypic plasticity of the coral holobiont, in which the scleractinian host either associates with a specific Symbiodinium type with a broad physiological tolerance, or the host-symbiont pairing is more flexible to accommodate for different symbiont associations, each adapted to specific environmental settings.

  11. Symbiont dynamics during thermal acclimation using cnidarian-dinoflagellate model holobionts.

    Science.gov (United States)

    Núñez-Pons, Laura; Bertocci, Iacopo; Baghdasarian, Garen

    2017-09-01

    Warming oceans menace reef ecosystems by disrupting symbiosis between cnidarians and Symbiodinium zooxanthellae, thus triggering bleach episodes. Temperature fluctuations promote adjustments in physiological variables and symbiont composition, which can cause stress responses, but can also yield adaptation if fitter host-symbiont homeostasis are achieved. To understand such processes manipulative studies are required, but many reef-building cnidarians pose limitations to experimental prospects. We exposed Exaiptasia anemones to Gradual Thermal Stress (GTS) and Heat Shock (HS) exposures and monitored chlorophyll and symbiont dynamics to test the phenotypic plasticity of these photosynthetic holobionts. GTS enhanced chlorophyll concentrations and decreased Symbiodinium proliferation. A recovery period after GTS returned chlorophyll to lower concentrations and symbiont divisions to higher rates. HS triggered a stress response characterized by intense symbiont declines through degradation and expulsion, algal compensatory proliferation, and chlorophyll accumulation. Anemones pre-exposed to GTS displayed more acute signs of symbiont paucity after HS, demonstrating that recurrent stress does not always induce bleaching-resistance. Our study is the first documenting Symbiodinium C and D, along with the predominant Clade B1 in Exaiptasia anemones. C subclades found in outdoor specimens faded under laboratory exposures. Clade D emerged after HS treatments, and especially after GTS pre-exposure. This highlights the thermotolerance of D subclades found in E. pallida and shows that bleaching-recovery can involve shifts of background symbiont phylotypes. This study enlightens the capability of Exaiptasia anemones to acclimate to gradually increased temperatures, and explores into how thermal history influences in subsequent stress tolerance in symbiotic cnidarians. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Behavior of bacteriome symbionts during transovarial transmission and development of the Asian citrus psyllid.

    Directory of Open Access Journals (Sweden)

    Hiroki Dan

    Full Text Available The Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae is a serious pest worldwide, transmitting Candidatus Liberibacter spp. (Alphaproteobacteria, the causative agents of a devastating citrus disease known as huanglongbing or greening disease. In a symbiotic organ called the bacteriome, D. citri possesses an organelle-like defensive symbiont, Candidatus Profftella armatura (Betaproteobacteria, and a nutritional symbiont, Ca. Carsonella ruddii (Gammaproteobacteria. Drastically reduced symbiont genomes and metabolic complementarity among the symbionts and D. citri indicate their mutually indispensable association. Moreover, horizontal gene transfer between the Profftella and Liberibacter lineages suggests ecological and evolutionary interactions between the bacteriome symbiont and the HLB pathogen. Using fluorescence in situ hybridization, we examined the behavior of Profftella and Carsonella during transovarial transmission and the development of D. citri. In the bacteriomes of sexually-mature female adults, symbionts transformed from an extremely elongated tubular form into spherical or short-rod forms, which migrated toward the ovary. The symbionts then formed mosaic masses, which entered at the posterior pole of the vitellogenic oocytes. After anatrepsis, Carsonella and Profftella migrated to the central and peripheral parts of the mass, respectively. Following the appearance of host nuclei, the mass cellularized, segregating Carsonella and Profftella in the central syncytium and peripheral uninucleate bacteriocytes, respectively. Subsequently, the uninucleate bacteriocytes harboring Profftella assembled at the posterior pole, while the syncytium, containing Carsonella, sat on the anterior side facing the germ band initiating katatrepsis. During dorsal closure, the syncytium was divided into uninuclear bacteriocytes, which surrounded the mass of bacteriocytes containing Profftella. Once fully surrounded, the bacteriocyte mass

  13. Candidatus Sodalis melophagi sp. nov.: phylogenetically independent comparative model to the tsetse fly symbiont Sodalis glossinidius.

    Directory of Open Access Journals (Sweden)

    Tomáš Chrudimský

    Full Text Available Bacteria of the genus Sodalis live in symbiosis with various groups of insects. The best known member of this group, a secondary symbiont of tsetse flies Sodalis glossinidius, has become one of the most important models in investigating establishment and evolution of insect-bacteria symbiosis. It represents a bacterium in the early/intermediate state of the transition towards symbiosis, which allows for exploring such interesting topics as: usage of secretory systems for entering the host cell, tempo of the genome modification, and metabolic interaction with a coexisting primary symbiont. In this study, we describe a new Sodalis species which could provide a useful comparative model to the tsetse symbiont. It lives in association with Melophagus ovinus, an insect related to tsetse flies, and resembles S. glossinidius in several important traits. Similar to S. glossinidius, it cohabits the host with another symbiotic bacterium, the bacteriome-harbored primary symbiont of the genus Arsenophonus. As a typical secondary symbiont, Candidatus Sodalis melophagi infects various host tissues, including bacteriome. We provide basic morphological and molecular characteristics of the symbiont and show that these traits also correspond to the early/intermediate state of the evolution towards symbiosis. Particularly, we demonstrate the ability of the bacterium to live in insect cell culture as well as in cell-free medium. We also provide basic characteristics of type three secretion system and using three reference sequences (16 S rDNA, groEL and spaPQR region we show that the bacterium branched within the genus Sodalis, but originated independently of the two previously described symbionts of hippoboscoids. We propose the name Candidatus Sodalis melophagi for this new bacterium.

  14. Candidatus Sodalis melophagi sp. nov.: phylogenetically independent comparative model to the tsetse fly symbiont Sodalis glossinidius.

    Science.gov (United States)

    Chrudimský, Tomáš; Husník, Filip; Nováková, Eva; Hypša, Václav

    2012-01-01

    Bacteria of the genus Sodalis live in symbiosis with various groups of insects. The best known member of this group, a secondary symbiont of tsetse flies Sodalis glossinidius, has become one of the most important models in investigating establishment and evolution of insect-bacteria symbiosis. It represents a bacterium in the early/intermediate state of the transition towards symbiosis, which allows for exploring such interesting topics as: usage of secretory systems for entering the host cell, tempo of the genome modification, and metabolic interaction with a coexisting primary symbiont. In this study, we describe a new Sodalis species which could provide a useful comparative model to the tsetse symbiont. It lives in association with Melophagus ovinus, an insect related to tsetse flies, and resembles S. glossinidius in several important traits. Similar to S. glossinidius, it cohabits the host with another symbiotic bacterium, the bacteriome-harbored primary symbiont of the genus Arsenophonus. As a typical secondary symbiont, Candidatus Sodalis melophagi infects various host tissues, including bacteriome. We provide basic morphological and molecular characteristics of the symbiont and show that these traits also correspond to the early/intermediate state of the evolution towards symbiosis. Particularly, we demonstrate the ability of the bacterium to live in insect cell culture as well as in cell-free medium. We also provide basic characteristics of type three secretion system and using three reference sequences (16 S rDNA, groEL and spaPQR region) we show that the bacterium branched within the genus Sodalis, but originated independently of the two previously described symbionts of hippoboscoids. We propose the name Candidatus Sodalis melophagi for this new bacterium.

  15. Passive Immune-Protection of Litopenaeus vannamei against Vibrio harveyi and Vibrio parahaemolyticus Infections with Anti-Vibrio Egg Yolk (IgY-Encapsulated Feed

    Directory of Open Access Journals (Sweden)

    Xiaojian Gao

    2016-05-01

    Full Text Available Vibrio spp. are major causes of mortality in white shrimp (Litopenaeus vannamei which is lacking adaptive immunity. Passive immunization with a specific egg yolk antibody (IgY is a potential method for the protection of shrimp against vibriosis. In this study, immune effects of the specific egg yolk powders (IgY against both V. harveyi and V. parahaemolyticus on white shrimp were evaluated. The egg yolk powders against V. harveyi and V. parahaemolyticus for passive immunization of white shrimp were prepared, while a tube agglutination assay and an indirect enzyme-linked immunosorbent assay (ELISA were used for detection of IgY titer. Anti-Vibrio egg yolk was encapsulated by β-cyclodextrin, which could keep the activity of the antibody in the gastrointestinal tract of shrimp. The results showed that the anti-Vibrio egg powders had an inhibiting effect on V. harveyi and V. parahaemolyticus in vitro. Lower mortality of infected zoeae, mysis, and postlarva was observed in groups fed with anti-Vibrio egg powders, compared with those fed with normal egg powders. The bacterial load in postlarva fed with specific egg powders in seeding ponds was significantly lower than those fed with normal egg powders in seeding ponds. These results show that passive immunization by oral administration with specific egg yolk powders (IgY may provide a valuable protection of vibrio infections in white shrimp.

  16. Occurance and survival of Vibrio alginolyticus in Tamouda Bay (Morocco).

    Science.gov (United States)

    Sabir, M; Cohen, N; Boukhanjer, A; Ennaji, M M

    2011-10-15

    The objectives of this study were to investigate the spatial and seasonal fluctuations of Vibrio alginolyticus in marine environment of the Tamouda Bay on the Mediterranean coast of Morocco and to determine the dominant factors of the environment that govern these fluctuations. The samples (sea water, plankton, shellfish and sediment) were collected fortnightly for two years from three study sites on the coast Tamouda Bay in northern Morocco. The charge of Vibrio alginolyticus is determined by MPN method. The physicochemical parameters including temperature of sea water, pH, salinity, turbidity and chlorophyll a concentration were determined. Analysis of variance of specific variables and several principal component analyses showed that the temperature of seawater is the major determinant of seasonal distribution of Vibrio alginolyticus. The results showed a positive linear correlation between Vibrio alginolyticus and the water temperature, pH, turbidity and chlorophyll a. Similarly, there are seasonal variations and spatial of Vibrio alginolyticus in marine environment of the Tamouda bay and the highest concentrations were recorded in both years of study during the warm season whereas it was minimal during the cold season. Linear positive correlation was recorded between Vibrio alginolyticus populations in all ecological types of samples studied.

  17. VISCOSITY DICTATES METABOLIC ACTIVITY of Vibrio ruber

    Directory of Open Access Journals (Sweden)

    Maja eBoric

    2012-07-01

    Full Text Available Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment.

  18. Intestinal Colonization Dynamics of Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Salvador Almagro-Moreno

    2015-05-01

    Full Text Available To cause the diarrheal disease cholera, Vibrio cholerae must effectively colonize the small intestine. In order to do so, the bacterium needs to successfully travel through the stomach and withstand the presence of agents such as bile and antimicrobial peptides in the intestinal lumen and mucus. The bacterial cells penetrate the viscous mucus layer covering the epithelium and attach and proliferate on its surface. In this review, we discuss recent developments and known aspects of the early stages of V. cholerae intestinal colonization and highlight areas that remain to be fully understood. We propose mechanisms and postulate a model that covers some of the steps that are required in order for the bacterium to efficiently colonize the human host. A deeper understanding of the colonization dynamics of V. cholerae and other intestinal pathogens will provide us with a variety of novel targets and strategies to avoid the diseases caused by these organisms.

  19. Vibrio vulnificus: An Environmental and Clinical Burden

    Directory of Open Access Journals (Sweden)

    Sing-Peng Heng

    2017-05-01

    Full Text Available Vibrio vulnificus is a Gram negative, rod shaped bacterium that belongs to the family Vibrionaceae. It is a deadly, opportunistic human pathogen which is responsible for the majority of seafood-associated deaths worldwide. V. vulnificus infection can be fatal as it may cause severe wound infections potentially requiring amputation or lead to sepsis in susceptible individuals. Treatment is increasingly challenging as V. vulnificus has begun to develop resistance against certain antibiotics due to their indiscriminate use. This article aims to provide insight into the antibiotic resistance of V. vulnificus in different parts of the world as well as an overall review of its clinical manifestations, treatment, and prevention. Understanding the organism's antibiotic resistance profile is vital in order to select appropriate treatment and initiate appropriate prevention measures to treat and control V. vulnificus infections, which should eventually help lower the mortality rate associated with this pathogen worldwide.

  20. Differential responses of the coral host and their algal symbiont to thermal stress.

    Directory of Open Access Journals (Sweden)

    William Leggat

    Full Text Available The success of any symbiosis under stress conditions is dependent upon the responses of both partners to that stress. The coral symbiosis is particularly susceptible to small increases of temperature above the long term summer maxima, which leads to the phenomenon known as coral bleaching, where the intracellular dinoflagellate symbionts are expelled. Here we for the first time used quantitative PCR to simultaneously examine the gene expression response of orthologs of the coral Acropora aspera and their dinoflagellate symbiont Symbiodinium. During an experimental bleaching event significant up-regulation of genes involved in stress response (HSP90 and HSP70 and carbon metabolism (glyceraldehyde-3-phosphate dehydrogenase, α-ketoglutarate dehydrogenase, glycogen synthase and glycogen phosphorylase from the coral host were observed. In contrast in the symbiont, HSP90 expression decreased, while HSP70 levels were increased on only one day, and only the α-ketoglutarate dehydrogenase expression levels were found to increase. In addition the changes seen in expression patterns of the coral host were much larger, up to 10.5 fold, compared to the symbiont response, which in all cases was less than 2-fold. This targeted study of the expression of key metabolic and stress genes demonstrates that the response of the coral and their symbiont vary significantly, also a response in the host transcriptome was observed prior to what has previously been thought to be the temperatures at which thermal stress events occur.

  1. Orally Delivered Scorpion Antimicrobial Peptides Exhibit Activity against Pea Aphid (Acyrthosiphon pisum) and Its Bacterial Symbionts.

    Science.gov (United States)

    Luna-Ramirez, Karen; Skaljac, Marisa; Grotmann, Jens; Kirfel, Phillipp; Vilcinskas, Andreas

    2017-08-24

    Aphids are severe agricultural pests that damage crops by feeding on phloem sap and vectoring plant pathogens. Chemical insecticides provide an important aphid control strategy, but alternative and sustainable control measures are required to avoid rapidly emerging resistance, environmental contamination, and the risk to humans and beneficial organisms. Aphids are dependent on bacterial symbionts, which enable them to survive on phloem sap lacking essential nutrients, as well as conferring environmental stress tolerance and resistance to parasites. The evolution of aphids has been accompanied by the loss of many immunity-related genes, such as those encoding antibacterial peptides, which are prevalent in other insects, probably because any harm to the bacterial symbionts would inevitably affect the aphids themselves. This suggests that antimicrobial peptides (AMPs) could replace or at least complement conventional insecticides for aphid control. We fed the pea aphids ( Acyrthosiphon pisum ) with AMPs from the venom glands of scorpions. The AMPs reduced aphid survival, delayed their reproduction, displayed in vitro activity against aphid bacterial symbionts, and reduced the number of symbionts in vivo. Remarkably, we found that some of the scorpion AMPs compromised the aphid bacteriome, a specialized organ that harbours bacterial symbionts. Our data suggest that scorpion AMPs holds the potential to be developed as bio-insecticides, and are promising candidates for the engineering of aphid-resistant crops.

  2. Orally Delivered Scorpion Antimicrobial Peptides Exhibit Activity against Pea Aphid (Acyrthosiphon pisum and Its Bacterial Symbionts

    Directory of Open Access Journals (Sweden)

    Karen Luna-Ramirez

    2017-08-01

    Full Text Available Aphids are severe agricultural pests that damage crops by feeding on phloem sap and vectoring plant pathogens. Chemical insecticides provide an important aphid control strategy, but alternative and sustainable control measures are required to avoid rapidly emerging resistance, environmental contamination, and the risk to humans and beneficial organisms. Aphids are dependent on bacterial symbionts, which enable them to survive on phloem sap lacking essential nutrients, as well as conferring environmental stress tolerance and resistance to parasites. The evolution of aphids has been accompanied by the loss of many immunity-related genes, such as those encoding antibacterial peptides, which are prevalent in other insects, probably because any harm to the bacterial symbionts would inevitably affect the aphids themselves. This suggests that antimicrobial peptides (AMPs could replace or at least complement conventional insecticides for aphid control. We fed the pea aphids (Acyrthosiphon pisum with AMPs from the venom glands of scorpions. The AMPs reduced aphid survival, delayed their reproduction, displayed in vitro activity against aphid bacterial symbionts, and reduced the number of symbionts in vivo. Remarkably, we found that some of the scorpion AMPs compromised the aphid bacteriome, a specialized organ that harbours bacterial symbionts. Our data suggest that scorpion AMPs holds the potential to be developed as bio-insecticides, and are promising candidates for the engineering of aphid-resistant crops.

  3. Co-niche construction between hosts and symbionts: ideas and evidence.

    Science.gov (United States)

    Borges, Renee M

    2017-07-01

    Symbiosis is a process that can generate evolutionary novelties and can extend the phenotypic niche space of organisms. Symbionts can act together with their hosts to co-construct host organs, within which symbionts are housed. Once established within hosts, symbionts can also influence various aspects of host phenotype, such as resource acquisition, protection from predation by acquisition of toxicity, as well as behaviour. Once symbiosis is established, its fidelity between generations must be ensured. Hosts evolve various mechanisms to screen unwanted symbionts and to facilitate faithful transmission of mutualistic partners between generations. Microbes are the most important symbionts that have influenced plant and animal phenotypes; multicellular organisms engage in developmental symbioses with microbes at many stages in ontogeny. The co-construction of niches may result in composite organisms that are physically nested within each other. While it has been advocated that these composite organisms need new evolutionary theories and perspectives to describe their properties and evolutionary trajectories, it appears that standard evolutionary theories are adequate to explore selection pressures on their composite or individual traits. Recent advances in our understanding of composite organisms open up many important questions regarding the stability and transmission of these units.

  4. Cyanobacterial diversity and a new acaryochloris-like symbiont from Bahamian sea-squirts.

    Directory of Open Access Journals (Sweden)

    Susanna López-Legentil

    Full Text Available Symbiotic interactions between ascidians (sea-squirts and microbes are poorly understood. Here we characterized the cyanobacteria in the tissues of 8 distinct didemnid taxa from shallow-water marine habitats in the Bahamas Islands by sequencing a fragment of the cyanobacterial 16S rRNA gene and the entire 16S-23S rRNA internal transcribed spacer region (ITS and by examining symbiont morphology with transmission electron (TEM and confocal microscopy (CM. As described previously for other species, Trididemnum spp. mostly contained symbionts associated with the Prochloron-Synechocystis group. However, sequence analysis of the symbionts in Lissoclinum revealed two unique clades. The first contained a novel cyanobacterial clade, while the second clade was closely associated with Acaryochloris marina. CM revealed the presence of chlorophyll d (chl d and phycobiliproteins (PBPs within these symbiont cells, as is characteristic of Acaryochloris species. The presence of symbionts was also observed by TEM inside the tunic of both the adult and larvae of L. fragile, indicating vertical transmission to progeny. Based on molecular phylogenetic and microscopic analyses, Candidatus Acaryochloris bahamiensis nov. sp. is proposed for this symbiotic cyanobacterium. Our results support the hypothesis that photosymbiont communities in ascidians are structured by host phylogeny, but in some cases, also by sampling location.

  5. Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes

    Directory of Open Access Journals (Sweden)

    Zhou Xuguo

    2009-10-01

    Full Text Available Abstract Background Termite lignocellulose digestion is achieved through a collaboration of host plus prokaryotic and eukaryotic symbionts. In the present work, we took a combined host and symbiont metatranscriptomic approach for investigating the digestive contributions of host and symbiont in the lower termite Reticulitermes flavipes. Our approach consisted of parallel high-throughput sequencing from (i a host gut cDNA library and (ii a hindgut symbiont cDNA library. Subsequently, we undertook functional analyses of newly identified phenoloxidases with potential importance as pretreatment enzymes in industrial lignocellulose processing. Results Over 10,000 expressed sequence tags (ESTs were sequenced from the 2 libraries that aligned into 6,555 putative transcripts, including 171 putative lignocellulase genes. Sequence analyses provided insights in two areas. First, a non-overlapping complement of host and symbiont (prokaryotic plus protist glycohydrolase gene families known to participate in cellulose, hemicellulose, alpha carbohydrate, and chitin degradation were identified. Of these, cellulases are contributed by host plus symbiont genomes, whereas hemicellulases are contributed exclusively by symbiont genomes. Second, a diverse complement of previously unknown genes that encode proteins with homology to lignase, antioxidant, and detoxification enzymes were identified exclusively from the host library (laccase, catalase, peroxidase, superoxide dismutase, carboxylesterase, cytochrome P450. Subsequently, functional analyses of phenoloxidase activity provided results that were strongly consistent with patterns of laccase gene expression. In particular, phenoloxidase activity and laccase gene expression are mostly restricted to symbiont-free foregut plus salivary gland tissues, and phenoloxidase activity is inducible by lignin feeding. Conclusion To our knowledge, this is the first time that a dual host-symbiont transcriptome sequencing effort

  6. Mixed infections may promote diversification of mutualistic symbionts: why are there ineffective rhizobia?

    Science.gov (United States)

    Friesen, M L; Mathias, A

    2010-02-01

    While strategy variation is a key feature of symbiotic mutualisms, little work focuses on the origin of this diversity. Rhizobia strategies range from mutualistic nitrogen fixers to parasitic nonfixers that hoard plant resources to increase their own survival in soil. Host plants reward beneficial rhizobia with higher nodule growth rates, generating a trade-off between reproduction in nodules and subsequent survival in soil. However, hosts might not discriminate between strains in mixed infections, allowing nonfixing strains to escape sanctions. We construct an adaptive dynamics model of symbiotic nitrogen-fixation and find general situations where symbionts undergo adaptive diversification, but in most situations complete nonfixers do not evolve. Social conflict in mixed infections when symbionts face a survival-reproduction trade-off can drive the origin of some coexisting symbiont strategies, where less mutualistic strains exploit benefits generated by better mutualists.

  7. Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects

    KAUST Repository

    Gonella, Elena

    2015-11-13

    Intracellular reproductive manipulators, such as Candidatus Cardinium and Wolbachia are vertically transmitted to progeny but rarely show co-speciation with the host. In sap-feeding insects, plant tissues have been proposed as alternative horizontal routes of interspecific transmission, but experimental evidence is limited. Here we report results from experiments that show that Cardinium is horizontally transmitted between different phloem sap-feeding insect species through plants. Quantitative PCR and in situ hybridization experiments indicated that the leafhopper Scaphoideus titanus releases Cardinium from its salivary glands during feeding on both artificial media and grapevine leaves. Successional time-course feeding experiments with S. titanus initially fed sugar solutions or small areas of grapevine leaves followed by feeding by the phytoplasma vector Macrosteles quadripunctulatus or the grapevine feeder Empoasca vitis revealed that the symbionts were transmitted to both species. Explaining interspecific horizontal transmission through plants improves our understanding of how symbionts spread, their lifestyle and the symbiont-host intermixed evolutionary pattern.

  8. Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects.

    Science.gov (United States)

    Gonella, Elena; Pajoro, Massimo; Marzorati, Massimo; Crotti, Elena; Mandrioli, Mauro; Pontini, Marianna; Bulgari, Daniela; Negri, Ilaria; Sacchi, Luciano; Chouaia, Bessem; Daffonchio, Daniele; Alma, Alberto

    2015-11-13

    Intracellular reproductive manipulators, such as Candidatus Cardinium and Wolbachia are vertically transmitted to progeny but rarely show co-speciation with the host. In sap-feeding insects, plant tissues have been proposed as alternative horizontal routes of interspecific transmission, but experimental evidence is limited. Here we report results from experiments that show that Cardinium is horizontally transmitted between different phloem sap-feeding insect species through plants. Quantitative PCR and in situ hybridization experiments indicated that the leafhopper Scaphoideus titanus releases Cardinium from its salivary glands during feeding on both artificial media and grapevine leaves. Successional time-course feeding experiments with S. titanus initially fed sugar solutions or small areas of grapevine leaves followed by feeding by the phytoplasma vector Macrosteles quadripunctulatus or the grapevine feeder Empoasca vitis revealed that the symbionts were transmitted to both species. Explaining interspecific horizontal transmission through plants improves our understanding of how symbionts spread, their lifestyle and the symbiont-host intermixed evolutionary pattern.

  9. Liquid holding recovery and photoreactivation of the ultraviolet-inactivated vibrios

    International Nuclear Information System (INIS)

    Banerjee, S.K.; Chatterjee, S.N.

    1981-01-01

    The kinetics of liquid holding recovery and photoreactivation of the ultra-violet-inactivated vibrios have been investigated. Photoreactivation was highest (about 80%) for Vibrio cholerae (classical) strains but the liquid holding recovery was highest (about 29%) for Vibrio parahemolyticus ones. Significance of the differences between any two of the four vibrio biotypes in respect of their liquid holding recovery and also photoreactivation was analysed statistically. (auth.)

  10. Vibrio spp. ISOLATED FROM SHRIMPS AND WATER FROM A MARINE FARM IN PERNAMBUCO, BRAZIL Víbrios en el agua y en las gambas del mar (Litopenaeus vannamei, Boone, 1931 cultivado en Pernambuco Vibrio spp. ISOLADOS DE CAMARÃO E ÁGUA DE CULTIVO DE FAZENDA MARINHA EM PERNAMBUCO

    Directory of Open Access Journals (Sweden)

    Carlos André Bezerra Alves

    2009-12-01

    Full Text Available

    Water and shrimp samples were collected monthly, during all cultivation phases, in three located farms at Pernambuco coast, on winter and summer, for Vibrio spp. quantification and identification. The counting’s were correlated, through mathematical models (P<0.05, with the variables season, water biochemical parameters, wet mount, histopathology exam, toxins presence and handling techniques used. Just the variable cultivation time interfered at total counting of Vibrio spp. in all samples were obtained countings that varied 0.1x 10 to 6.2 x 103 UFC/mL in water, of 7.0 x 10 to 8.2 x 105 UFC/g in powder-larva, of 1.1 x 10 to 1.1 x 105 UFC/mL in hemolymph and of 2.5 x 102 to 1.1 x 106UFC/g in hepatopancreas. The species V. mediterranei (1%, V. mimicus (1.25%, V. fischeri (4.25%, V. cincinnatiensis (4.25%, V. metschnikovii (4.25%, V. proteolyticus (5.5%, V. harveyi (5.5%, V. hollisae (5.5%, V. carchariae (7%, V. vulnificus (8.5%, V. damsela (8.5%, V. parahaemolyticus (13%, V. fluvialis (15%, V. anguillarum (16.5% were identified. It is concluded that the Vibrionaceae load increases proportionally with cultivation time, due to the organic matter increment, what can turn the susceptible animals to the infection for vibrios.

    KEY WORD: Vibrionaceae, Vibrio spp., shrimp and pond water.
    El agua y muestras de la gamba eran la publicación mensual reunido, durante todas las fases del cultivo, en tres granjas localizadas a la costa de Pernambuco, en invierno y verano, para la cuantificación e identificación el de Vibrio spp.. El contando fueron puestos en correlación, a través de los modelos matemáticos (P <0,05, con la estación de las variables, agua que los parámetros bioquímicos, montaña mojada, examen del histopatologia, presencia de las toxinas y técnicas manejando usaron. Simplemente el tiempo del cultivo inconstante interfirió a total que

  11. Mortalities of Eastern and Pacific oyster Larvae caused by the pathogens Vibrio coralliilyticus and Vibrio tubiashii.

    Science.gov (United States)

    Richards, Gary P; Watson, Michael A; Needleman, David S; Church, Karlee M; Häse, Claudia C

    2015-01-01

    Vibrio tubiashii is reported to be a bacterial pathogen of larval Eastern oysters (Crassostrea virginica) and Pacific oysters (Crassostrea gigas) and has been associated with major hatchery crashes, causing shortages in seed oysters for commercial shellfish producers. Another bacterium, Vibrio coralliilyticus, a well-known coral pathogen, has recently been shown to elicit mortality in fish and shellfish. Several strains of V. coralliilyticus, such as ATCC 19105 and Pacific isolates RE22 and RE98, were misidentified as V. tubiashii until recently. We compared the mortalities caused by two V. tubiashii and four V. coralliilyticus strains in Eastern and Pacific oyster larvae. The 50% lethal dose (LD50) of V. coralliilyticus in Eastern oysters (defined here as the dose required to kill 50% of the population in 6 days) ranged from 1.1 × 10(4) to 3.0 × 10(4) CFU/ml seawater; strains RE98 and RE22 were the most virulent. This study shows that V. coralliilyticus causes mortality in Eastern oyster larvae. Results for Pacific oysters were similar, with LD50s between 1.2 × 10(4) and 4.0 × 10(4) CFU/ml. Vibrio tubiashii ATCC 19106 and ATCC 19109 were highly infectious toward Eastern oyster larvae but were essentially nonpathogenic toward healthy Pacific oyster larvae at dosages of ≥1.1 × 10(4) CFU/ml. These data, coupled with the fact that several isolates originally thought to be V. tubiashii are actually V. coralliilyticus, suggest that V. coralliilyticus has been a more significant pathogen for larval bivalve shellfish than V. tubiashii, particularly on the U.S. West Coast, contributing to substantial hatchery-associated morbidity and mortality in recent years. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Restriction Fragment Length Polymorphism Analysis Reveals High Levels of Genetic Divergence Among the Light Organ Symbionts of Flashlight Fish.

    Science.gov (United States)

    Wolfe, C J; Haygood, M G

    1991-08-01

    Restriction fragment length polymorphisms within the lux and 16S ribosomal RNA gene regions were used to compare unculturable bacterial light organ symbionts of several anomalopid fish species. The method of Nei and Li (1979) was used to calculate phylogenetic distance from the patterns of restriction fragment lengths of the luxA and 16S rRNA regions. Phylogenetic trees constructed from each distance matrix (luxA and 16S rDNA data) have similar branching orders. The levels of divergence among the symbionts, relative to other culturable luminous bacteria, suggests that the symbionts differ at the level of species among host fish genera. Symbiont relatedness and host geographic location do not seem to be correlated, and the symbionts do not appear to be strains of common, free-living, luminous bacteria. In addition, the small number of hybridizing fragments within the 16S rRNA region of the symbionts, compared with that of the free-living species, suggests a decrease in copy number of rRNA operons relative to free-living species. At this level of investigation, the symbiont phylogeny is consistent with the proposed phylogeny of the host fish family and suggests that each symbiont strain coevolved with its host fish species.

  13. Biogeography and molecular diversity of coral symbionts in the genus Symbiodinium around the Arabian Peninsula

    KAUST Repository

    Ziegler, Maren; Arif, Chatchanit; Burt, John A.; Dobretsov, Sergey; Roder, Cornelia; Lajeunesse, Todd C.; Voolstra, Christian R.

    2017-01-01

    Aim: Coral reefs rely on the symbiosis between scleractinian corals and intracellular, photosynthetic dinoflagellates of the genus Symbiodinium making the assessment of symbiont diversity critical to our understanding of ecological resilience of these ecosystems. This study characterizes Symbiodinium diversity around the Arabian Peninsula, which contains some of the most thermally diverse and understudied reefs on Earth. Location: Shallow water coral reefs throughout the Red Sea (RS), Sea of Oman (SO), and Persian/Arabian Gulf (PAG). Methods: Next-generation sequencing of the ITS2 marker gene was used to assess Symbiodinium community composition and diversity comprising 892 samples from 46 hard and soft coral genera. Results: Corals were associated with a large diversity of Symbiodinium, which usually consisted of one or two prevalent symbiont types and many types at low abundance. Symbiodinium communities were strongly structured according to geographical region and to a lesser extent by coral host identity. Overall symbiont communities were composed primarily of species from clade A and C in the RS, clade A, C, and D in the SO, and clade C and D in the PAG, representing a gradual shift from C- to D-dominated coral hosts. The analysis of symbiont diversity in an Operational Taxonomic Unit (OTU)-based framework allowed the identification of differences in symbiont taxon richness over geographical regions and host genera. Main conclusions: Our study represents a comprehensive overview over biogeography and molecular diversity of Symbiodinium in the Arabian Seas, where coral reefs thrive in one of the most extreme environmental settings on the planet. As such our data will serve as a baseline for further exploration into the effects of environmental change on host-symbiont pairings and the identification and ecological significance of Symbiodinium types from regions already experiencing 'Future Ocean' conditions.

  14. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts.

    Directory of Open Access Journals (Sweden)

    Helen E Dunbar

    2007-05-01

    Full Text Available Symbiosis is a ubiquitous phenomenon generating biological complexity, affecting adaptation, and expanding ecological capabilities. However, symbionts, which can be subject to genetic limitations such as clonality and genomic degradation, also impose constraints on hosts. A model of obligate symbiosis is that between aphids and the bacterium Buchnera aphidicola, which supplies essential nutrients. We report a mutation in Buchnera of the aphid Acyrthosiphon pisum that recurs in laboratory lines and occurs in field populations. This single nucleotide deletion affects a homopolymeric run within the heat-shock transcriptional promoter for ibpA, encoding a small heat-shock protein. This Buchnera mutation virtually eliminates the transcriptional response of ibpA to heat stress and lowers its expression even at cool or moderate temperatures. Furthermore, this symbiont mutation dramatically affects host fitness in a manner dependent on thermal environment. Following a short heat exposure as juveniles, aphids bearing short-allele symbionts produced few or no progeny and contained almost no Buchnera, in contrast to aphids bearing symbionts without the deletion. Conversely, under constant cool conditions, aphids containing symbionts with the short allele reproduced earlier and maintained higher reproductive rates. The short allele has appreciable frequencies in field populations (up to 20%, further supporting the view that lowering of ibpA expression improves host fitness under some conditions. This recurring Buchnera mutation governs thermal tolerance of aphid hosts. Other cases in which symbiont microevolution has a major effect on host ecological tolerance are likely to be widespread because of the high mutation rates of symbiotic bacteria and their crucial roles in host metabolism and development.

  15. Biogeography and molecular diversity of coral symbionts in the genus Symbiodinium around the Arabian Peninsula

    KAUST Repository

    Ziegler, Maren

    2017-01-02

    Aim: Coral reefs rely on the symbiosis between scleractinian corals and intracellular, photosynthetic dinoflagellates of the genus Symbiodinium making the assessment of symbiont diversity critical to our understanding of ecological resilience of these ecosystems. This study characterizes Symbiodinium diversity around the Arabian Peninsula, which contains some of the most thermally diverse and understudied reefs on Earth. Location: Shallow water coral reefs throughout the Red Sea (RS), Sea of Oman (SO), and Persian/Arabian Gulf (PAG). Methods: Next-generation sequencing of the ITS2 marker gene was used to assess Symbiodinium community composition and diversity comprising 892 samples from 46 hard and soft coral genera. Results: Corals were associated with a large diversity of Symbiodinium, which usually consisted of one or two prevalent symbiont types and many types at low abundance. Symbiodinium communities were strongly structured according to geographical region and to a lesser extent by coral host identity. Overall symbiont communities were composed primarily of species from clade A and C in the RS, clade A, C, and D in the SO, and clade C and D in the PAG, representing a gradual shift from C- to D-dominated coral hosts. The analysis of symbiont diversity in an Operational Taxonomic Unit (OTU)-based framework allowed the identification of differences in symbiont taxon richness over geographical regions and host genera. Main conclusions: Our study represents a comprehensive overview over biogeography and molecular diversity of Symbiodinium in the Arabian Seas, where coral reefs thrive in one of the most extreme environmental settings on the planet. As such our data will serve as a baseline for further exploration into the effects of environmental change on host-symbiont pairings and the identification and ecological significance of Symbiodinium types from regions already experiencing \\'Future Ocean\\' conditions.

  16. Burkholderia Species Are the Most Common and Preferred Nodulating Symbionts of the Piptadenia Group (Tribe Mimoseae)

    Science.gov (United States)

    Bournaud, Caroline; de Faria, Sergio Miana; dos Santos, José Miguel Ferreira; Tisseyre, Pierre; Silva, Michele; Chaintreuil, Clémence; Gross, Eduardo; James, Euan K.; Prin, Yves; Moulin, Lionel

    2013-01-01

    Burkholderia legume symbionts (also called α-rhizobia) are ancient in origin and are the main nitrogen-fixing symbionts of species belonging to the large genus Mimosa in Brazil. We investigated the extent of the affinity between Burkholderia and species in the tribe Mimoseae by studying symbionts of the genera Piptadenia (P.), Parapiptadenia (Pp.), Pseudopiptadenia (Ps.), Pityrocarpa (Py.), Anadenanthera (A.) and Microlobius (Mi.), all of which are native to Brazil and are phylogenetically close to Mimosa, and which together with Mimosa comprise the “Piptadenia group”. We characterized 196 strains sampled from 18 species from 17 locations in Brazil using two neutral markers and two symbiotic genes in order to assess their species affiliations and the evolution of their symbiosis genes. We found that Burkholderia are common and highly diversified symbionts of species in the Piptadenia group, comprising nine Burkholderia species, of which three are new ones and one was never reported as symbiotic (B. phenoliruptrix). However, α-rhizobia were also detected and were occasionally dominant on a few species. A strong sampling site effect on the rhizobial nature of symbionts was detected, with the symbiont pattern of the same legume species changing drastically from location to location, even switching from β to α-rhizobia. Coinoculation assays showed a strong affinity of all the Piptadenia group species towards Burkholderia genotypes, with the exception of Mi. foetidus. Phylogenetic analyses of neutral and symbiotic markers showed that symbiosis genes in Burkholderia from the Piptadenia group have evolved mainly through vertical transfer, but also by horizontal transfer in two species. PMID:23691052

  17. Immunochemical localization of ribulose-1,5-bisphosphate carboxylase in the symbiont-containing gills of Solemya velum (Bivalvia: Mollusca).

    Science.gov (United States)

    Cavanaugh, C M; Abbott, M S; Veenhuis, M

    1988-10-01

    The distribution of the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase (RbuP(2)Case; EC 4.1.1.39) was examined by using two immunological methods in tissues of Solemya velum, an Atlantic coast bivalve containing putative chemoautotrophic symbionts. Antibodies elicited by the purified large subunit of RbuP(2)Case from tobacco (Nicotiana tabacum) cross-reacted on immunoblots with a protein of similar molecular mass occurring in extracts of the symbiont-containing gill tissue of S. velum. No cross-reactivity was detected in symbiont-free tissue extracts. The antiserum also cross-reacted in immunoblots with proteins of Thiobacillus neapolitanus, a free-living sulfuroxidizing chemoautotroph whose RbuP(2)Case has been well characterized. In protein A-gold immunoelectron microscopy studies, this antiserum consistently labeled the symbionts but not surrounding host gill tissue, indicating that the symbionts are responsible for the RbuP(2)Case activity.

  18. Prevalence study of Vibrio species and frequency of the virulence genes of Vibrio parahaemolyticus isolated from fresh and salted shrimps in Genaveh seaport

    Directory of Open Access Journals (Sweden)

    S Hosseini

    2014-08-01

    Full Text Available Vibrio species are important seafood-borne pathogens that are responsible for 50-70% of gasteroenteritis. The present study was carried out in order to determine the prevalence of Vibrio species and the distribution of tdh, tlh and trh virulence genes in Vibrio parahaemolyticus isolated from fresh and salted shrimp samples. Totally, 60 fresh and salted shrimp samples were collected from the Genaveh seaport. Microbial culture was used to isolate Vibrio species. In addition, the presences of Vibrio parahaemolyticus, Vibrio cholera, Vibrio vulnificus and Vibrio harveyi and the virulence genes of V. parahaemolyticus were studied using the PCR method. Results showed that 20% of fresh and 23.33% of salted shrimp samples were positive for Vibrio species. In studied samples, V. vulnificus had the highest prevalence rate (8.33%, while V. cholera had the lowest prevalence rate (1.66%. From a total of 4 detected V. parahaemolyticus, all of them had tlh gene (100%. The distribution of tdh and trh genes in isolated V. parahaemolyticus strains were 50% and 25%, respectively. High prevalence of Vibrio species and especially virulent V. parahaemolyticus in samples confirmed the lack of hygienic condition in the production and distribution centers of shrimp.

  19. Bovine Lactoferrin and Lactoferrin-Derived Peptides Inhibit the Growth of Vibrio cholerae and Other Vibrio species

    Directory of Open Access Journals (Sweden)

    Erika Acosta-Smith

    2018-01-01

    Full Text Available Vibrio is a genus of Gram-negative bacteria, some of which can cause serious infectious diseases. Vibrio infections are associated with the consumption of contaminated food and classified in Vibrio cholera infections and non-cholera Vibrio infections. In the present study, we investigate whether bovine lactoferrin (bLF and several synthetic peptides corresponding to bLF sequences, are able to inhibit the growth or have bactericidal effect against V. cholerae and other Vibrio species. The antibacterial activity of LF and LF-peptides was assessed by kinetics of growth or determination of colony forming unit in bacteria treated with the peptides and antibiotics. To get insight in the mode of action, the interaction between bLF and bLF-peptides (coupled to FITC and V. cholera was evaluated. The damage of effector-induced bacterial membrane permeability was measured by inclusion of the fluorescent dye propidium iodide using flow cytometry, whereas the bacterial ultrastructural damage in bacteria treated was observed by transmission electron microscopy. The results showed that bLF and LFchimera inhibited the growth of the V. cholerae strains; LFchimera permeabilized the bacteria which membranes were seriously damaged. Assays with a multidrug-resistant strain of Vibrio species indicated that combination of sub-lethal doses of LFchimera with ampicillin or tetracycline strongly reduced the concentration of the antibiotics to reach 95% growth inhibition. Furthermore, LFchimera were effective to inhibit the V. cholerae counts and damage due to this bacterium in a model mice. These data suggest that LFchimera and bLF are potential candidates to combat the V. cholerae and other multidrug resistant Vibrio species.

  20. Bovine Lactoferrin and Lactoferrin-Derived Peptides Inhibit the Growth of Vibrio cholerae and Other Vibrio species

    Science.gov (United States)

    Acosta-Smith, Erika; Viveros-Jiménez, Karina; Canizalez-Román, Adrian; Reyes-Lopez, Magda; Bolscher, Jan G. M.; Nazmi, Kamran; Flores-Villaseñor, Hector; Alapizco-Castro, Gerardo; de la Garza, Mireya; Martínez-Garcia, Jesús J.; Velazquez-Roman, Jorge; Leon-Sicairos, Nidia

    2018-01-01

    Vibrio is a genus of Gram-negative bacteria, some of which can cause serious infectious diseases. Vibrio infections are associated with the consumption of contaminated food and classified in Vibrio cholera infections and non-cholera Vibrio infections. In the present study, we investigate whether bovine lactoferrin (bLF) and several synthetic peptides corresponding to bLF sequences, are able to inhibit the growth or have bactericidal effect against V. cholerae and other Vibrio species. The antibacterial activity of LF and LF-peptides was assessed by kinetics of growth or determination of colony forming unit in bacteria treated with the peptides and antibiotics. To get insight in the mode of action, the interaction between bLF and bLF-peptides (coupled to FITC) and V. cholera was evaluated. The damage of effector-induced bacterial membrane permeability was measured by inclusion of the fluorescent dye propidium iodide using flow cytometry, whereas the bacterial ultrastructural damage in bacteria treated was observed by transmission electron microscopy. The results showed that bLF and LFchimera inhibited the growth of the V. cholerae strains; LFchimera permeabilized the bacteria which membranes were seriously damaged. Assays with a multidrug-resistant strain of Vibrio species indicated that combination of sub-lethal doses of LFchimera with ampicillin or tetracycline strongly reduced the concentration of the antibiotics to reach 95% growth inhibition. Furthermore, LFchimera were effective to inhibit the V. cholerae counts and damage due to this bacterium in a model mice. These data suggest that LFchimera and bLF are potential candidates to combat the V. cholerae and other multidrug resistant Vibrio species. PMID:29375503

  1. Proteomics Analysis Reveals Previously Uncharacterized Virulence Factors in Vibrio proteolyticus

    Directory of Open Access Journals (Sweden)

    Ann Ray

    2016-07-01

    Full Text Available Members of the genus Vibrio include many pathogens of humans and marine animals that share genetic information via horizontal gene transfer. Hence, the Vibrio pan-genome carries the potential to establish new pathogenic strains by sharing virulence determinants, many of which have yet to be characterized. Here, we investigated the virulence properties of Vibrio proteolyticus, a Gram-negative marine bacterium previously identified as part of the Vibrio consortium isolated from diseased corals. We found that V. proteolyticus causes actin cytoskeleton rearrangements followed by cell lysis in HeLa cells in a contact-independent manner. In search of the responsible virulence factor involved, we determined the V. proteolyticus secretome. This proteomics approach revealed various putative virulence factors, including active type VI secretion systems and effectors with virulence toxin domains; however, these type VI secretion systems were not responsible for the observed cytotoxic effects. Further examination of the V. proteolyticus secretome led us to hypothesize and subsequently demonstrate that a secreted hemolysin, belonging to a previously uncharacterized clan of the leukocidin superfamily, was the toxin responsible for the V. proteolyticus-mediated cytotoxicity in both HeLa cells and macrophages. Clearly, there remains an armory of yet-to-be-discovered virulence factors in the Vibrio pan-genome that will undoubtedly provide a wealth of knowledge on how a pathogen can manipulate host cells.

  2. Abundance and antibiotic susceptibility of Vibrio spp. isolated from microplastics

    Science.gov (United States)

    Laverty, A. L.; Darr, K.; Dobbs, F. C.

    2016-02-01

    In recent years, there has been a growing concern for `microplastics' (particles pieces, paired seawater samples, and from them cultured 44 putative Vibrio spp. isolates, 18 of which were PCR-confirmed as V. parahaemolyticus and 3 as V. vulnificus. There were no PCR-confirmed V. cholerae isolates. We used the Kirby-Bauer disk diffusion susceptibility test to examine the isolates' response to six antibiotics: chloramphenicol (30μg), gentamicin (10μg), ampicillin (10μg), streptomycin (10μg), tetracycline (30μg), and rifampin (5μg). Vibrio isolates were susceptible to three or more of the six antibiotics tested and all were susceptible to tetracycline and chloramphenicol. There were no apparent differences between the antibiotic susceptibilities of vibrios isolated from microplastics compared to those from the water column. In every instance tested, vibrios on microplastics were enriched by at least two orders of magnitude compared to those from paired seawater samples. This study demonstrates that microplastic particles serve as a habitat for Vibrio species, in particular V. vulnificus and V. parahaemolyticus, confirming the conjecture of Zettler et al. (2013) that plastics may serve as a vector for these and other potentially pathogenic bacteria.

  3. Global diversity of marine isopods (except Asellota and crustacean symbionts.

    Directory of Open Access Journals (Sweden)

    Gary C B Poore

    Full Text Available The crustacean order Isopoda (excluding Asellota, crustacean symbionts and freshwater taxa comprise 3154 described marine species in 379 genera in 37 families according to the WoRMS catalogue. The history of taxonomic discovery over the last two centuries is reviewed. Although a well defined order with the Peracarida, their relationship to other orders is not yet resolved but systematics of the major subordinal taxa is relatively well understood. Isopods range in size from less than 1 mm to Bathynomus giganteus at 365 mm long. They inhabit all marine habitats down to 7280 m depth but with few doubtful exceptions species have restricted biogeographic and bathymetric ranges. Four feeding categories are recognised as much on the basis of anecdotal evidence as hard data: detritus feeders and browsers, carnivores, parasites, and filter feeders. Notable among these are the Cymothooidea that range from predators and scavengers to external blood-sucking micropredators and parasites. Isopods brood 10-1600 eggs depending on individual species. Strong sexual dimorphism is characteristic of several families, notably in Gnathiidae where sessile males live with a harem of females while juvenile praniza stages are ectoparasites of fish. Protandry is known in Cymothoidae and protogyny in Anthuroidea. Some Paranthuridae are neotenous. About half of all coastal, shelf and upper bathyal species have been recorded in the MEOW temperate realms, 40% in tropical regions and the remainder in polar seas. The greatest concentration of temperate species is in Australasia; more have been recorded from temperate North Pacific than the North Atlantic. Of tropical regions, the Central Indo-Pacific is home to more species any other region. Isopods are decidedly asymmetrical latitudinally with 1.35 times as many species in temperate Southern Hemisphere than the temperate North Atlantic and northern Pacific, and almost four times as many Antarctic as Arctic species. More species

  4. Vibrio parahaemolyticus- An emerging foodborne pathogen

    Directory of Open Access Journals (Sweden)

    S Nelapati

    2012-02-01

    Full Text Available Vibrio parahaemolyticus is a halophilic gram negative, motile, oxidase positive, straight or curved rod-shaped, facultative anaerobic bacteria that occur naturally in the marine environment. They form part of the indigenous microflora of aquatic habitats of various salinity and are the major causative agents for some of the most serious diseases in fish, shellfish and penacid shrimp. This human pathogen causes acute gastroenteritis characterized by diarrhea, vomiting and abdominal cramps through consumption of contaminated raw fish or shellfish. V. parahaemolyticus is the leading cause of gastroenteritis due to the consumption of seafood worldwide. The incidence of V. parahaemolyticus infection has been increasing in many parts of the world, due to the emergence of O3:K6 serotype carrying the tdh gene which is responsible for most outbreaks worldwide. The pathogenicity of this organism is closely correlated with the Kanagawa phenomenon (KP + due to production of Kanagawa hemolysin or the thermostable direct hemolysin (TDH. The TDH and TRH (TDH-related hemolysin encoded by tdh and trh genes are considered to be important virulence factors. [Vet. World 2012; 5(1.000: 48-63

  5. Cell vacuolation caused by Vibrio cholerae hemolysin.

    Science.gov (United States)

    Figueroa-Arredondo, P; Heuser, J E; Akopyants, N S; Morisaki, J H; Giono-Cerezo, S; Enríquez-Rincón, F; Berg, D E

    2001-03-01

    Non-O1 strains of Vibrio cholerae implicated in gastroenteritis and diarrhea generally lack virulence determinants such as cholera toxin that are characteristic of epidemic strains; the factors that contribute to their virulence are not understood. Here we report that at least one-third of diarrhea-associated nonepidemic V. cholerae strains from Mexico cause vacuolation of cultured Vero cells. Detailed analyses indicated that this vacuolation was related to that caused by aerolysin, a pore-forming toxin of Aeromonas; it involved primarily the endoplasmic reticulum at early times (approximately 1 to 4 h after exposure), and resulted in formation of large, acidic, endosome-like multivesicular vacuoles (probably autophagosomes) only at late times (approximately 16 h). In contrast to vacuolation caused by Helicobacter pylori VacA protein, that induced by V. cholerae was exacerbated by agents that block vacuolar proton pumping but not by endosome-targeted weak bases. It caused centripetal redistribution of endosomes, reflecting cytoplasmic alkalinization. The gene for V. cholerae vacuolating activity was cloned and was found to correspond to hlyA, the structural gene for hemolysin. HlyA protein is a pore-forming toxin that causes ion leakage and, ultimately, eukaryotic cell lysis. Thus, a distinct form of cell vacuolation precedes cytolysis at low doses of hemolysin. We propose that this vacuolation, in itself, contributes to the virulence of V. cholerae strains, perhaps by perturbing intracellular membrane trafficking or ion exchange in target cells and thereby affecting local intestinal inflammatory or other defense responses.

  6. Relationship of aquatic environmental factors with the abundance of Vibrio cholerae, Vibrio parahaemolyticus, Vibrio mimicus and Vibrio vulnificus in the coastal area of Guaymas, Sonora, Mexico.

    Science.gov (United States)

    León Robles, A; Acedo Félix, E; Gomez-Gil, B; Quiñones Ramírez, E I; Nevárez-Martínez, M; Noriega-Orozco, L

    2013-12-01

    Members of the genus Vibrio are common in aquatic environments. Among them are V. cholerae, V. vulnificus, V. parahaemolyticus and V. mimicus. Several studies have shown that environmental factors, such as temperature, salinity, and dissolved oxygen, are involved in their epidemiology. Therefore, the main objective of this study is to determine if there is a correlation between the presence/amount of V. cholerae, V, vulnificus, V. parahaemolyticus and V. mimicus and the environmental conditions of the seawater off the coast of Guaymas, México. Quantification of all four pathogenic bacteria was performed using the most probable number method, and suspected colonies were identified by polymerase chain reaction (PCR). Correlations were found using principal component analysis. V. parahaemolyticus was the most abundant and widely distributed bacteria, followed by V. vulnificus, V. mimicus and V. cholerae. Positive correlations between V. parahaemolyticus, V. vulnificus and V. mimicus with temperature, salinity, electric conductivity, and total dissolved solids were found. The abundance of V. cholerae was mainly affected by the sampling site and not by physicochemical parameters.

  7. A pan-European ring trial to validate an International Standard for detection of Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus in seafoods.

    Science.gov (United States)

    Hartnell, R E; Stockley, L; Keay, W; Rosec, J-P; Hervio-Heath, D; Van den Berg, H; Leoni, F; Ottaviani, D; Henigman, U; Denayer, S; Serbruyns, B; Georgsson, F; Krumova-Valcheva, G; Gyurova, E; Blanco, C; Copin, S; Strauch, E; Wieczorek, K; Lopatek, M; Britova, A; Hardouin, G; Lombard, B; In't Veld, P; Leclercq, A; Baker-Austin, C

    2018-02-10

    Globally, vibrios represent an important and well-established group of bacterial foodborne pathogens. The European Commission (EC) mandated the Comite de European Normalisation (CEN) to undertake work to provide validation data for 15 methods in microbiology to support EC legislation. As part of this mandated work programme, merging of ISO/TS 21872-1:2007, which specifies a horizontal method for the detection of V. parahaemolyticus and V. cholerae, and ISO/TS 21872-2:2007, a similar horizontal method for the detection of potentially pathogenic vibrios other than V. cholerae and V. parahaemolyticus was proposed. Both parts of ISO/TS 21872 utilized classical culture-based isolation techniques coupled with biochemical confirmation steps. The work also considered simplification of the biochemical confirmation steps. In addition, because of advances in molecular based methods for identification of human pathogenic Vibrio spp. classical and real-time PCR options were also included within the scope of the validation. These considerations formed the basis of a multi-laboratory validation study with the aim of improving the precision of this ISO technical specification and providing a single ISO standard method to enable detection of these important foodborne Vibrio spp.. To achieve this aim, an international validation study involving 13 laboratories from 9 countries in Europe was conducted in 2013. The results of this validation have enabled integration of the two existing technical specifications targeting the detection of the major foodborne Vibrio spp., simplification of the suite of recommended biochemical identification tests and the introduction of molecular procedures that provide both species level identification and discrimination of putatively pathogenic strains of V. parahaemolyticus by the determination of the presence of theromostable direct and direct related haemolysins. The method performance characteristics generated in this have been included in revised

  8. Vibriophages and Their Interactions with the Fish Pathogen Vibrio anguillarum

    DEFF Research Database (Denmark)

    Tan, Demeng; Gram, Lone; Middelboe, Mathias

    2014-01-01

    Vibrio anguillarum is an important pathogen in aquaculture, responsible for the disease vibriosis in many fish and invertebrate species. Disease control by antibiotics is a concern due to potential development and spread of antibiotic resistance. The use of bacteriophages to control the pathogen...... patterns of the individual host isolates, key phenotypic properties related to phage susceptibility are distributed worldwide and maintained in the global Vibrio community for decades. The phage susceptibility pattern of the isolates did not show any relation to the physiological relationships obtained...... from Biolog GN2 profiles, demonstrating that similar phage susceptibility patterns occur across broad phylogenetic and physiological differences in Vibrio strains. Subsequent culture experiments with two phages and two V. anguillarum hosts demonstrated an initial strong lytic potential of the phages...

  9. Multiple enzymatic profiles of Vibrio parahaemolyticus strains isolated from oysters

    Directory of Open Access Journals (Sweden)

    Renata Albuquerque Costa

    Full Text Available The enzymatic characterization of vibrios has been used as a virulence indicator of sanitary interest. The objective of this study was to determine the enzymatic profile of Vibrio parahaemolyticus strains (n = 70 isolated from Crassostrea rhizophorae oysters. The strains were examined for the presence of gelatinase (GEL, caseinase (CAS, elastase (ELAS, phospholipase (PHOS, lipase (LIP, amilase (AML and DNase. All enzymes, except elastase, were detected in more than 60% of the strains. The most recurrent enzymatic profiles were AML + DNase + PHOS + GEL + LIP (n = 16; 22.9% and AML + CAS + DNase + PHOS + GEL + LIP (n = 21; 30%. Considering the fact that exoenzyme production by vibrios is closely related to virulence, one must be aware of the bacteriological risk posed to human health by the consumption of raw or undercooked oysters.

  10. Insights into bacteriophage application in controlling Vibrio species

    Directory of Open Access Journals (Sweden)

    Vengadesh Letchumanan

    2016-07-01

    Full Text Available Bacterial infections from various organisms including Vibrio sp. pose a serious hazard to humans in many forms from clinical infection to affecting the yield of agriculture and aquaculture via infection of livestock. Vibrio sp. is one of the main foodborne pathogens causing human infection and is also a common cause of losses in the aquaculture industry. Prophylactic and therapeutic usage of antibiotics has become the mainstay of managing this problem, however this in turn led to the emergence of multidrug resistant strains of bacteria in the environment; which has raised awareness of the critical need for alternative non antibiotic based methods of preventing and treating bacterial infections. Bacteriophages - viruses that infect and result in the death of bacteria – are currently of great interest as a highly viable alternative to antibiotics. This article provides an insight into bacteriophage application in controlling Vibrio species as well underlining the advantages and drawbacks of phage therapy.

  11. A selective and differential medium for Vibrio harveyi.

    Science.gov (United States)

    Harris, L; Owens, L; Smith, S

    1996-01-01

    A new medium, termed Vibrio harveyi agar, has been developed for the isolation and enumeration of V. harveyi. It is possible to differentiate V. harveyi colonies from the colonies of strains representing 15 other Vibrio species with this medium. This medium has been shown to inhibit the growth of two strains of marine Pseudomonas spp. and two strains of marine Flavobacterium spp. but to allow the growth of Photobacterium strains. Colonies displaying typical V. harveyi morphology were isolated from the larval rearing water of a commercial prawn hatchery with V. harveyi agar as a primary isolation medium and were positively identified, by conventional tests, as V. harveyi. This agar displays great potential as a primary isolation medium and offers significant advantages over thiosulfate-citrate-bile salts-sucrose agar as a medium for differentiating V. harveyi from other marine and estuarine Vibrio species. PMID:8795252

  12. Chitovibrin: a chitin-binding lectin from Vibrio parahemolyticus.

    Science.gov (United States)

    Gildemeister, O S; Zhu, B C; Laine, R A

    1994-12-01

    A novel 134 kDa, calcium-independent chitin-binding lectin, 'chitovibrin', is secreted by the marine bacterium Vibrio parahemolyticus, inducible with chitin or chitin-oligomers. Chitovibrin shows no apparent enzymatic activity but exhibits a strong affinity for chitin and chito-oligomers > dp9. The protein has an isoelectric pH of 3.6, shows thermal tolerance, binds chitin with an optimum at pH 6 and is active in 0-4 M NaCl. Chitovibrin appears to be completely different from other reported Vibrio lectins and may function to bind V. parahemolyticus to chitin substrates, or to capture or sequester chito-oligomers. It may be a member of a large group of recently described proteins in Vibrios related to a complex chitinoclastic (chitinivorous) system.

  13. Ozone Technology for Pathogenic Bacteria of Shrimp (Vibrio sp.) Disinfection

    Science.gov (United States)

    Wulansarie, Ria; Dyah Pita Rengga, Wara; Rustamadji

    2018-03-01

    One of important marine commodities in Indonesia, shrimps are susceptible with Vibrio sp bacteria infection. That infection must be cleared. One of the technologies for disinfecting Vibrio sp. is ozone technology. In this research, Vibrio sp. is a pathogenic bacterium which infects Penaeus vannamei. Ozone technology is applied for threatening Vibrio sp. In this research, ozonation was performed in different pH. Those are neutral, acid (pH=4), and base (pH=9). The sample was water from shrimp embankment from Balai Besar Perikanan Budidaya Air Payau (BBPBAP) located in Jepara. That water was the habitat of Penaeus vannamei shrimp. The brand of ozonator used in this research was “AQUATIC”. The used ozonator in this research had 0,0325 g/hour concentration. The flow rate of sample used in this research was 2 L/minute. The ozonation process was performed in continuous system. A tank, pipe, pump, which was connected with microfilter, flowmeter and ozone generator were the main tools in this research. It used flowmeter and valve to set the flow rate scalable as desired. The first step was the insert of 5 L sample into the receptacle. Then, by using a pump, a sample supplied to the microfilter to be filtered and passed into the flow meter. The flow rate was set to 2 LPM. Furthermore, gas from ozonator passed to the flow for the disinfection of bacteria and then was recycled to the tank and the process run continuously. Samples of the results of ozonation were taken periodically from time 0, 3, 7, 12, 18, 24 to 30 minutes. The samples of the research were analyzed using Total Plate Count (TPC) test in BBPBAP Jepara to determine the number of Vibrio sp. bacteria. The result of this research was the optimal condition for pathogenic bacteria of shrimp (Vibrio sp.) ozonation was in neutral condition.

  14. Cardinium symbionts induce haploid thelytoky in most clones of three closely related Brevipalpus species

    NARCIS (Netherlands)

    Groot, T.V.M.; Breeuwer, J.A.J.

    2006-01-01

    Bacterial symbionts that manipulate the reproduction of their host to increase their own transmission are widespread. Most of these bacteria are Wolbachia, but recently a new bacterium, named Cardinium, was discovered that is capable of the same manipulations. In the host species Brevipalpus

  15. Gastrointestinal symbionts of chimpanzees in Cantanhez National Park, Guinea-Bissau with respect to habitat fragmentation

    Czech Academy of Sciences Publication Activity Database

    Sá, R. M.; Petrášová, J.; Pomajbíková, K.; Profousová, I.; Petrželková, Klára Judita; Sousa, C.; Cable, J.; Bruford, M. W.; Modrý, David

    2013-01-01

    Roč. 75, č. 10 (2013), s. 1032-1041 ISSN 0275-2565 Institutional support: RVO:68081766 ; RVO:60077344 Keywords : Cantanhez National Park * fragmentation * Pan troglodytes verus * parasites * symbionts * Trichuris sp Subject RIV: EG - Zoology Impact factor: 2.136, year: 2013

  16. The roles and interactions of symbiont, host and environment in defining coral fitness

    NARCIS (Netherlands)

    Mieog, J.C.; Olsen, J.L.; Berkelmans, R; Bleuler-Martinez, S.A.; Willis, B.; van Oppen, M.J H

    2009-01-01

    Background: Reef-building corals live in symbiosis with a diverse range of dinoflagellate algae ( genus Symbiodinium) that differentially influence the fitness of the coral holobiont. The comparative role of symbiont type in holobiont fitness in relation to host genotype or the environment, however,

  17. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians

    KAUST Repository

    Wolfowicz, Iliona

    2016-09-01

    Symbiosis, defined as the persistent association between two distinct species, is an evolutionary and ecologically critical phenomenon facilitating survival of both partners in diverse habitats. The biodiversity of coral reef ecosystems depends on a functional symbiosis with photosynthetic dinoflagellates of the highly diverse genus Symbiodinium, which reside in coral host cells and continuously support their nutrition. The mechanisms underlying symbiont selection to establish a stable endosymbiosis in non-symbiotic juvenile corals are unclear. Here we show for the first time that symbiont selection patterns for larvae of two Acropora coral species and the model anemone Aiptasia are similar under controlled conditions. We find that Aiptasia larvae distinguish between compatible and incompatible symbionts during uptake into the gastric cavity and phagocytosis. Using RNA-Seq, we identify a set of candidate genes potentially involved in symbiosis establishment. Together, our data complement existing molecular resources to mechanistically dissect symbiont phagocytosis in cnidarians under controlled conditions, thereby strengthening the role of Aiptasia larvae as a powerful model for cnidarian endosymbiosis establishment.

  18. Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera

    Science.gov (United States)

    Hillyer, Katie E.; Dias, Daniel A.; Lutz, Adrian; Wilkinson, Shaun P.; Roessner, Ute; Davy, Simon K.

    2017-03-01

    Rising seawater temperatures pose a significant threat to the persistence of coral reefs. Despite the importance of these systems, major gaps remain in our understanding of how thermal stress and bleaching affect the metabolic networks that underpin holobiont function. We applied gas chromatography-mass spectrometry (GC-MS) metabolomics to detect changes in the intracellular free metabolite pools (polar and semi-polar compounds) of in hospite dinoflagellate symbionts and their coral hosts (and any associated microorganisms) during early- and late-stage thermal bleaching (a reduction of approximately 50 and 70% in symbiont density, respectively). We detected characteristic changes to the metabolite profiles of each symbiotic partner associated with individual cellular responses to thermal, oxidative and osmotic stress, which progressed with the severity of bleaching. Alterations were also indicative of changes to energy-generating and biosynthesis pathways in both partners, with a shift to the increased catabolism of lipid stores. Specifically, in symbiont intracellular metabolite pools, we observed accumulations of multiple free fatty acids, plus the chloroplast-associated antioxidant alpha-tocopherol. In the host, we detected a decline in the abundance of pools of multiple carbohydrates, amino acids and intermediates, in addition to the antioxidant ascorbate. These findings further our understanding of the metabolic changes that occur to symbiont and host (and its associated microorganisms) during thermal bleaching. These findings also provide further insight into the largely undescribed roles of free metabolite pools in cellular homeostasis, signalling and acclimation to thermal stress in the cnidarian-dinoflagellate symbiosis.

  19. Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont "Candidatus Synechococcus pongiarum"

    KAUST Repository

    Gao, Zhao-Ming

    2014-04-01

    "Candidatus Synechococcus spongiarum" is a cyanobacterial symbiont widely distributed in sponges, but its functions at the genome level remain unknown. Here, we obtained the draft genome (1.66 Mbp, 90% estimated genome recovery) of "Ca. Synechococcus spongiarum" strain SH4 inhabiting the Red Sea sponge Carteriospongia foliascens. Phylogenomic analysis revealed a high dissimilarity between SH4 and free-living cyanobacterial strains. Essential functions, such as photosynthesis, the citric acid cycle, and DNA replication, were detected in SH4. Eukaryoticlike domains that play important roles in sponge-symbiont interactions were identified exclusively in the symbiont. However, SH4 could not biosynthesize methionine and polyamines and had lost partial genes encoding low-molecular-weight peptides of the photosynthesis complex, antioxidant enzymes, DNA repair enzymes, and proteins involved in resistance to environmental toxins and in biosynthesis of capsular and extracellular polysaccharides. These genetic modifications imply that "Ca. Synechococcus spongiarum" SH4 represents a low-light-adapted cyanobacterial symbiont and has undergone genome streamlining to adapt to the sponge\\'s mild intercellular environment. 2014 Gao et al.

  20. igh Symbiont Relatedness Stabilizes Mutualistic Cooperation in Fungus-Growing Termites

    NARCIS (Netherlands)

    Aanen, D.K.; Fine Licht, De H.H.; Debets, A.J.M.; Kerstes, N.A.G.; Hoekstra, R.F.; Boomsma, J.J.

    2009-01-01

    It is unclear how mutualistic relationships can be stable when partners disperse freely and have the possibility of forming associations with many alternative genotypes. Theory predicts that high symbiont relatedness should resolve this problem, but the mechanisms to enforce this have rarely been

  1. Asymmetric interaction specificity between two sympatric termites and their fungal symbionts.

    NARCIS (Netherlands)

    Fine Licht, De H.H.; Boomsma, J.J.

    2007-01-01

    1. Fungus-growing termites live in an obligate mutualistic symbiosis with Termitomyces fungi. The functions of the fungal symbiont have been hypothesised to differ between species and to range from highly specific roles of providing plant-degrading enzymes complementary to termite gut enzymes, to

  2. Host immunostimulation and substrate utilization of the gut symbiont Akkermansia muciniphila

    NARCIS (Netherlands)

    Ottman, N.A.

    2015-01-01

    Host immunostimulation and substrate utilization of the gut symbiont Akkermansia muciniphila

    Noora A. Ottman

    The human gastrointestinal tract is colonized by a complex community of micro-organisms, the gut microbiota. The majority of these

  3. Marine Maladies? Worms, Germs, and Other Symbionts from the Northern Gulf of Mexico.

    Science.gov (United States)

    Overstreet, Robin M.

    Parasites and related symbionts of marine and estuarine hosts of the northern Gulf of Mexico are described in this guidebook. It is meant primarily to serve as a teaching aid for the novice student, but it also contains more technical aspects for the experienced parasitologist. Forms and examples of symbiosis are explained in an introductory…

  4. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians

    KAUST Repository

    Wolfowicz, Iliona; Baumgarten, Sebastian; Voss, Philipp A.; Hambleton, Elizabeth A.; Voolstra, Christian R.; Hatta, Masayuki; Guse, Annika

    2016-01-01

    Symbiosis, defined as the persistent association between two distinct species, is an evolutionary and ecologically critical phenomenon facilitating survival of both partners in diverse habitats. The biodiversity of coral reef ecosystems depends on a functional symbiosis with photosynthetic dinoflagellates of the highly diverse genus Symbiodinium, which reside in coral host cells and continuously support their nutrition. The mechanisms underlying symbiont selection to establish a stable endosymbiosis in non-symbiotic juvenile corals are unclear. Here we show for the first time that symbiont selection patterns for larvae of two Acropora coral species and the model anemone Aiptasia are similar under controlled conditions. We find that Aiptasia larvae distinguish between compatible and incompatible symbionts during uptake into the gastric cavity and phagocytosis. Using RNA-Seq, we identify a set of candidate genes potentially involved in symbiosis establishment. Together, our data complement existing molecular resources to mechanistically dissect symbiont phagocytosis in cnidarians under controlled conditions, thereby strengthening the role of Aiptasia larvae as a powerful model for cnidarian endosymbiosis establishment.

  5. Isolation of symbionts and GC-MS analysis of lichens collected from ...

    African Journals Online (AJOL)

    In Nigeria, a good number of lichen species have been recorded and so far not much work has been done to isolate or identify the symbionts. The utility of lichen comes from a range of secondary compounds produced by them. In view of this, two lichen samples, foliose (Parmalia reticulata Taylor) and fruticose Usnea ...

  6. Comparative Genomics of Facultative Bacterial Symbionts Isolated from European Orius Species Reveals an Ancestral Symbiotic Association

    Directory of Open Access Journals (Sweden)

    Xiaorui Chen

    2017-10-01

    Full Text Available Pest control in agriculture employs diverse strategies, among which the use of predatory insects has steadily increased. The use of several species within the genus Orius in pest control is widely spread, particularly in Mediterranean Europe. Commercial mass rearing of predatory insects is costly, and research efforts have concentrated on diet manipulation and selective breeding to reduce costs and improve efficacy. The characterisation and contribution of microbial symbionts to Orius sp. fitness, behaviour, and potential impact on human health has been neglected. This paper provides the first genome sequence level description of the predominant culturable facultative bacterial symbionts associated with five Orius species (O. laevigatus, O. niger, O. pallidicornis, O. majusculus, and O. albidipennis from several geographical locations. Two types of symbionts were broadly classified as members of the genera Serratia and Leucobacter, while a third constitutes a new genus within the Erwiniaceae. These symbionts were found to colonise all the insect specimens tested, which evidenced an ancestral symbiotic association between these bacteria and the genus Orius. Pangenome analyses of the Serratia sp. isolates offered clues linking Type VI secretion system effector–immunity proteins from the Tai4 sub-family to the symbiotic lifestyle.

  7. Comparative Genomics of Facultative Bacterial Symbionts Isolated from European Orius Species Reveals an Ancestral Symbiotic Association

    Science.gov (United States)

    Chen, Xiaorui; Hitchings, Matthew D.; Mendoza, José E.; Balanza, Virginia; Facey, Paul D.; Dyson, Paul J.; Bielza, Pablo; Del Sol, Ricardo

    2017-01-01

    Pest control in agriculture employs diverse strategies, among which the use of predatory insects has steadily increased. The use of several species within the genus Orius in pest control is widely spread, particularly in Mediterranean Europe. Commercial mass rearing of predatory insects is costly, and research efforts have concentrated on diet manipulation and selective breeding to reduce costs and improve efficacy. The characterisation and contribution of microbial symbionts to Orius sp. fitness, behaviour, and potential impact on human health has been neglected. This paper provides the first genome sequence level description of the predominant culturable facultative bacterial symbionts associated with five Orius species (O. laevigatus, O. niger, O. pallidicornis, O. majusculus, and O. albidipennis) from several geographical locations. Two types of symbionts were broadly classified as members of the genera Serratia and Leucobacter, while a third constitutes a new genus within the Erwiniaceae. These symbionts were found to colonise all the insect specimens tested, which evidenced an ancestral symbiotic association between these bacteria and the genus Orius. Pangenome analyses of the Serratia sp. isolates offered clues linking Type VI secretion system effector–immunity proteins from the Tai4 sub-family to the symbiotic lifestyle. PMID:29067021

  8. Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans

    Science.gov (United States)

    Cunning, R.; Gillette, P.; Capo, T.; Galvez, K.; Baker, A. C.

    2015-03-01

    The growth and survival of reef corals are influenced by their symbiotic algal partners ( Symbiodinium spp.), which may be flexible in space and time. Tradeoffs among partnerships exist such that corals with thermotolerant symbionts (e.g., clade D) resist bleaching but grow more slowly, making the long-term ecosystem-level impacts of different host-symbiont associations uncertain. However, much of this uncertainty is due to limited data regarding these tradeoffs and particularly how they are mediated by the environment. To address this knowledge gap, we measured growth and survival of Pocillopora damicornis with thermally sensitive (clade C) or tolerant (clade D) symbionts at three temperatures over 18-55 weeks. Warming reduced coral growth overall, but altered the tradeoffs associated with symbiont type. While clade D corals grew 35-40 % slower than clade C corals at cooler temperatures (26 °C), warming of 1.5-3 °C reduced and eliminated this growth disadvantage. These results suggest that although warmer oceans will negatively impact corals, clade D may enhance survival at no cost to growth relative to clade C. Understanding these genotype-environment interactions can help improve modeling efforts and conservation strategies for reefs under global climate change.

  9. Horizontal transmission of the insect symbiont Rickettsia is plant-mediated

    Science.gov (United States)

    Caspi-Fluger, Ayelet; Inbar, Moshe; Mozes-Daube, Netta; Katzir, Nurit; Portnoy, Vitaly; Belausov, Eduard; Hunter, Martha S.; Zchori-Fein, Einat

    2012-01-01

    Bacteria in the genus Rickettsia, best known as vertebrate pathogens vectored by blood-feeding arthropods, can also be found in phytophagous insects. The presence of closely related bacterial symbionts in evolutionarily distant arthropod hosts presupposes a means of horizontal transmission, but no mechanism for this transmission has been described. Using a combination of experiments with live insects, molecular analyses and microscopy, we found that Rickettsia were transferred from an insect host (the whitefly Bemisia tabaci) to a plant, moved inside the phloem, and could be acquired by other whiteflies. In one experiment, Rickettsia was transferred from the whitefly host to leaves of cotton, basil and black nightshade, where the bacteria were restricted to the phloem cells of the plant. In another experiment, Rickettsia-free adult whiteflies, physically segregated but sharing a cotton leaf with Rickettsia-plus individuals, acquired the Rickettsia at a high rate. Plants can serve as a reservoir for horizontal transmission of Rickettsia, a mechanism which may explain the occurrence of phylogenetically similar symbionts among unrelated phytophagous insect species. This plant-mediated transmission route may also exist in other insect–symbiont systems and, since symbionts may play a critical role in the ecology and evolution of their hosts, serve as an immediate and powerful tool for accelerated evolution. PMID:22113034

  10. Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont "Candidatus Synechococcus pongiarum"

    KAUST Repository

    Gao, Zhao-Ming; Wang, Yong; Tian, Ren-Mao; Wong, Yue Him; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Bajic, Vladimir B.; Qian, Pei-Yuan

    2014-01-01

    "Candidatus Synechococcus spongiarum" is a cyanobacterial symbiont widely distributed in sponges, but its functions at the genome level remain unknown. Here, we obtained the draft genome (1.66 Mbp, 90% estimated genome recovery) of "Ca. Synechococcus spongiarum" strain SH4 inhabiting the Red Sea sponge Carteriospongia foliascens. Phylogenomic analysis revealed a high dissimilarity between SH4 and free-living cyanobacterial strains. Essential functions, such as photosynthesis, the citric acid cycle, and DNA replication, were detected in SH4. Eukaryoticlike domains that play important roles in sponge-symbiont interactions were identified exclusively in the symbiont. However, SH4 could not biosynthesize methionine and polyamines and had lost partial genes encoding low-molecular-weight peptides of the photosynthesis complex, antioxidant enzymes, DNA repair enzymes, and proteins involved in resistance to environmental toxins and in biosynthesis of capsular and extracellular polysaccharides. These genetic modifications imply that "Ca. Synechococcus spongiarum" SH4 represents a low-light-adapted cyanobacterial symbiont and has undergone genome streamlining to adapt to the sponge's mild intercellular environment. 2014 Gao et al.

  11. Symbiont recognition of mutualistic bacteria by Acromyrmex leaf-cutting ants

    DEFF Research Database (Denmark)

    Zhang, Mingzi; Poulsen, Michael; Currie, Cameron R

    2007-01-01

    Symbiont choice has been proposed to play an important role in shaping many symbiotic relationships, including the fungus-growing ant-microbe mutualism. Over millions of years, fungus-growing ants have defended their fungus gardens from specialized parasites with antibiotics produced...

  12. Environmental Transmission of the Gut Symbiont Burkholderia to Phloem-Feeding Blissus insularis.

    Science.gov (United States)

    Xu, Yao; Buss, Eileen A; Boucias, Drion G

    2016-01-01

    The plant-phloem-feeding Blissus insularis possesses specialized midgut crypts, which harbor a dense population of the exocellular bacterial symbiont Burkholderia. Most individual B. insularis harbor a single Burkholderia ribotype in their midgut crypts; however, a diverse Burkholderia community exists within a host population. To understand the mechanism underlying the consistent occurrence of various Burkholderia in B. insularis and their specific association, we investigated potential gut symbiont transmission routes. PCR amplification detected a low titer of Burkholderia in adult reproductive tracts; however, fluorescence in situ hybridization assays failed to produce detectable signals in these tracts. Furthermore, no Burkholderia-specific PCR signals were detected in eggs and neonates, suggesting that it is unlikely that B. insularis prenatally transmits gut symbionts via ovarioles. In rearing experiments, most nymphs reared on St. Augustinegrass treated with cultured Burkholderia harbored the cultured Burkholderia strains. Burkholderia was detected in the untreated host grass of B. insularis, and most nymphs reared on untreated grass harbored a Burkholderia ribotype that was closely related to a plant-associated Burkholderia strain. These findings revealed that B. insularis neonates acquired Burkholderia primarily from the environment (i.e., plants and soils), even though the possibility of acquisition via egg surface cannot be excluded. In addition, our study explains how the diverse Burkholderia symbiont community in B. insularis populations can be maintained.

  13. Long-term effects of ocean warming on vibrios

    Science.gov (United States)

    Pruzzo, C.; Pezzati, E.; Brettar, I.; Reid, P. C.; Colwell, R.; Höfle, M. G.; vezzulli, L.

    2012-12-01

    Vibrios are a major source of human disease, play an important role in the ecology and health of marine animals and are regarded as an abundant fraction of culturable bacteria of the ocean. There has been a considerable global effort to reduce the risk of Vibrio infections and yet in most countries both human and non-human illnesses associated with these bacteria are increasing. The cause of this increase is not known, but since vibrios are strongly thermodependant there is good reason to believe that global warming may have contributed. To investigate this possibility we examined historical samples from the Continuous Plankton Recorder (CPR) archive using advanced molecular analysis and pyrosequencing. For the first time we were able to recover environmental DNA from CPR samples that had been stored for up to ~50 years in a formalin-fixed format, which is suitable for molecular analyses of the associated prokaryotic community. To overcome the problem of DNA degradation due to the sample age and storage in formalin we develop an unbiased index of abundance for Vibrio quantification in CPR samples termed a 'relative Vibrio Abundance Index' (VAI). VAI is defined as the ratio of Vibrio spp. cells to total bacterial cells assessed by Real-Time PCR using genus-specific and universal primers, respectively, producing small amplicons of similar size (~100bp). We assessed VAI index on 55 samples (each representing 10 nautical miles tow equal to 3 m3 of filtered sewater) collected in August by the CPR survey in the North Sea from off the Rhine and Humber estuaries between 1961 to 2005 showing that the genus Vibrio has increased in prevalence in the last 44 years and that this increase is correlated significantly, during the same period, with warming sea surface temperature. In addition, by applying deep sequencing analysis of a subset of these samples we provide evidence that bacteria belonging to the genus Vibrio, including the human pathogen V. cholerae, not only increased

  14. The Anatomy and Morphology of the Adult Bacterial Light Organ of Euprymna scolopes Berry (Cephalopoda:Sepiolidae).

    Science.gov (United States)

    McFall-Ngai, M; Montgomery, M K

    1990-12-01

    The sepiolid squid, Euprymna scolopes, has a bilobed luminous organ in the center of the mantle cavity, associated with the ink sac. Luminous bacterial symbionts (Vibrio fischeri) are housed in narrow channels of host epithelial tissue. The channels of each lobe of the light organ empty into a ciliated duct, which is contiguous with the mantle cavity of the squid. Surrounding the symbiotic bacteria and their supportive host cells are host tissues recruited into the light organ system, including a muscle-derived lens and thick reflector that appear to permit the squid to control the quality of bacterial light emission.

  15. Vibrio infections in Louisiana: twenty-five years of surveillance 1980-2005.

    Science.gov (United States)

    Thomas, Annu; Straif-Bourgeois, Susanne; Sokol, Theresa M; Ratard, Raoult C

    2007-01-01

    A total of 1,007 Vibrio infections were reported to the Infectious Disease Epidemiology Department at the Louisiana Office of Public Heath, between 1980 and 2005. The most common were Vibrio vulnificus (257 infections), Vibrio parahemolyticus (249 infections), and Vibrio cholerae non O1 (200 cases). Other species were much less common. Vibrio vulnificus infections, which are associated with consumption of raw seafood (particularly oysters) or contact with sea water, and severe immuno-suppression or liver disease were increasing. Septicemia and blood stream infections are the main manifestations of this infection. The number of infections due to Vibrio parahemolyticus on the other hand, causing mostly gastroenteritis, has remained stable. Vibrio cholerae infections are less common and almost always associated with consumption of partially cooked or contaminated crabs.

  16. Contrasting physiological plasticity in response to environmental stress within different cnidarians and their respective symbionts

    Science.gov (United States)

    Hoadley, Kenneth D.; Pettay, Daniel. T.; Dodge, Danielle; Warner, Mark E.

    2016-06-01

    Given concerns surrounding coral bleaching and ocean acidification, there is renewed interest in characterizing the physiological differences across the multiple host-algal symbiont combinations commonly found on coral reefs. Elevated temperature and CO2 were used to compare physiological responses within the scleractinian corals Montipora hirsuta ( Symbiodinium C15) and Pocillopora damicornis ( Symbiodinium D1), as well as the corallimorph (a non-calcifying anthozoan closely related to scleractinians) Discosoma nummiforme ( Symbiodinium C3). Several physiological proxies were affected more by temperature than CO2, including photochemistry, algal number and cellular chlorophyll a. Marked differences in symbiont number, chlorophyll and volume contributed to distinctive patterns of chlorophyll absorption among these animals. In contrast, carbon fixation either did not change or increased under elevated temperature. Also, the rate of photosynthetically fixed carbon translocated to each host did not change, and the percent of carbon translocated to the host increased in the corallimorph. Comparing all data revealed a significant negative correlation between photosynthetic rate and symbiont density that corroborates previous hypotheses about carbon limitation in these symbioses. The ratio of symbiont-normalized photosynthetic rate relative to the rate of symbiont-normalized carbon translocation (P:T) was compared in these organisms as well as the anemone, Exaiptasia pallida hosting Symbiodinium minutum, and revealed a P:T close to unity ( D. nummiforme) to a range of 2.0-4.5, with the lowest carbon translocation in the sea anemone. Major differences in the thermal responses across these organisms provide further evidence of a range of acclimation potential and physiological plasticity that highlights the need for continued study of these symbioses across a larger group of host taxa.

  17. Cell Vacuolation Caused by Vibrio cholerae Hemolysin

    Science.gov (United States)

    Figueroa-Arredondo, Paula; Heuser, John E.; Akopyants, Natalia S.; Morisaki, J. Hiroshi; Giono-Cerezo, Silvia; Enríquez-Rincón, Fernando; Berg, Douglas E.

    2001-01-01

    Non-O1 strains of Vibrio cholerae implicated in gastroenteritis and diarrhea generally lack virulence determinants such as cholera toxin that are characteristic of epidemic strains; the factors that contribute to their virulence are not understood. Here we report that at least one-third of diarrhea-associated nonepidemic V. cholerae strains from Mexico cause vacuolation of cultured Vero cells. Detailed analyses indicated that this vacuolation was related to that caused by aerolysin, a pore-forming toxin of Aeromonas; it involved primarily the endoplasmic reticulum at early times (∼1 to 4 h after exposure), and resulted in formation of large, acidic, endosome-like multivesicular vacuoles (probably autophagosomes) only at late times (∼16 h). In contrast to vacuolation caused by Helicobacter pylori VacA protein, that induced by V. cholerae was exacerbated by agents that block vacuolar proton pumping but not by endosome-targeted weak bases. It caused centripetal redistribution of endosomes, reflecting cytoplasmic alkalinization. The gene for V. cholerae vacuolating activity was cloned and was found to correspond to hlyA, the structural gene for hemolysin. HlyA protein is a pore-forming toxin that causes ion leakage and, ultimately, eukaryotic cell lysis. Thus, a distinct form of cell vacuolation precedes cytolysis at low doses of hemolysin. We propose that this vacuolation, in itself, contributes to the virulence of V. cholerae strains, perhaps by perturbing intracellular membrane trafficking or ion exchange in target cells and thereby affecting local intestinal inflammatory or other defense responses. PMID:11179335

  18. Development and efficacy of an attenuated Vibrio harveyi vaccine candidate with cross protectivity against Vibrio alginolyticus.

    Science.gov (United States)

    Hu, Yong-hua; Deng, Tian; Sun, Bo-guang; Sun, Li

    2012-06-01

    Vibrio harveyi is a Gram-negative bacterial pathogen that can infect a wide range of marine animals. In previous studies, we have reported a virulent V. harveyi strain, T4D. In the present study, an attenuated mutant of T4D, T4DM, was obtained by selection of rifampicin resistance. Compared to the wild type, T4DM was different in whole-cell protein profile and much slower in growth rate when cultured in stress conditions caused by iron depletion. Virulence analysis showed that compared to T4D, T4DM exhibited a dramatically increased median lethal dose, impaired tissue dissemination capacity, defective hemolytic activity, and significantly reduced resistance against the killing effect of host serum. To examine the potential of T4DM as a live attenuated vaccine, Japanese flounder (Paralichthys olivaceus) were vaccinated with T4DM via intraperitoneal injection or immersion. The results showed that at one and two months post-vaccination, fish administered with T4DM via both approaches, in particular that of immersion, were effectively protected against not only V. harveyi but also Vibrio alginolyticus, another important fish pathogen. Microbiological analysis showed that following immersion vaccination, T4DM was recovered from the internal organs of the vaccinated fish in a time-dependent manner within the first 6 days post-vaccination. Serum antibodies against V. harveyi and V. alginolyticus were detected in T4DM-vaccinated fish, and, compared to serum from control fish, serum from T4DM-vaccinated fish was significantly enhanced in bactericidal activity. These results indicate that T4DM is an attenuated strain with residual infectivity and that T4DM can induce effective cross-species protection against both V. harveyi and V. alginolyticus when used as a live immersion vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Localization of immunodominant linear B-cell epitopes of Vibrio ...

    African Journals Online (AJOL)

    Outer membrane protein U (OmpU), an adhesion protein of Vibrio mimicus, is a good antigen, but its epitopes are still unclear. In order to locate the epitopes of OmpU protein, epitope prediction was performed using the amino acid sequence of OmpU protein of V. mimicus HX4 strain that was isolated from the diseased ...

  20. Pseudomonas piscicida kills vibrios by two distinct mechanisms

    Science.gov (United States)

    Pseudoalteromonas piscicida is a naturally-occurring marine bacterium which kills competing bacteria, including vibrios. In studies by Richards et al. (AEM00175-17), three strains of P. piscicida were isolated and characterized. Strains secreted proteolytic enzymes which likely killed competing or...

  1. Vibrio Cholerae 01 Infections In Jos, Nigeria | Opajobi | African ...

    African Journals Online (AJOL)

    A study to determine the prevalence of Vibrio cholerae 01 in stool sample submitted for routine examination of enteric pathogens, as well as identify the serotypes and antibiogram of the isolates to commonly used antibiotics was undertaken. The survey involved the examination of 774 (763 stool and 11 rectal swabs) ...

  2. Outbreak of Vibrio parahaemolyticus Sequence Type 120, Peru, 2009.

    Science.gov (United States)

    Gonzalez-Escalona, Narjol; Gavilan, Ronnie G; Toro, Magaly; Zamudio, Maria L; Martinez-Urtaza, Jaime

    2016-07-01

    In 2009, an outbreak of Vibrio parahaemolyticus occurred in Piura, Cajamarca, Lambayeque, and Lima, Peru. Whole-genome sequencing of clinical and environmental samples from the outbreak revealed a new V. parahaemolyticus clone. All the isolates identified belonged to a single clonal complex described exclusively in Asia before its emergence in Peru.

  3. Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus

    DEFF Research Database (Denmark)

    Boyd, EF; Cohen, AL; Naughton, LM

    2008-01-01

    Background Vibrio parahaemolyticus is abundant in the aquatic environment particularly in warmer waters and is the leading cause of seafood borne gastroenteritis worldwide. Prior to 1995, numerous V. parahaemolyticus serogroups were associated with disease, however, in that year an O3:K6 serogrou...

  4. Vibrio trends in the ecology of the Venice lagoon.

    Science.gov (United States)

    Rahman, Mohammad Shamsur; Martino, Maria Elena; Cardazzo, Barbara; Facco, Pierantonio; Bordin, Paola; Mioni, Renzo; Novelli, Enrico; Fasolato, Luca

    2014-04-01

    Vibrio is a very diverse genus that is responsible for different human and animal diseases. The accurate identification of Vibrio at the species level is important to assess the risks related to public health and diseases caused by aquatic organisms. The ecology of Vibrio spp., together with their genetic background, represents an important key for species discrimination and evolution. Thus, analyses of population structure and ecology association are necessary for reliable characterization of bacteria and to investigate whether bacterial species are going through adaptation processes. In this study, a population of Vibrionaceae was isolated from shellfish of the Venice lagoon and analyzed in depth to study its structure and distribution in the environment. A multilocus sequence analysis (MLSA) was developed on the basis of four housekeeping genes. Both molecular and biochemical approaches were used for species characterization, and the results were compared to assess the consistency of the two methods. In addition, strain ecology and the association between genetic information and environment were investigated through statistical models. The phylogenetic and population analyses achieved good species clustering, while biochemical identification was demonstrated to be imprecise. In addition, this study provided a fine-scale overview of the distribution of Vibrio spp. in the Venice lagoon, and the results highlighted a preferential association of the species toward specific ecological variables. These findings support the use of MLSA for taxonomic studies and demonstrate the need to consider environmental information to obtain broader and more accurate bacterial characterization.

  5. In situ measured elimination of Vibrio cholerae from brackish water

    Czech Academy of Sciences Publication Activity Database

    Martínez-P., M. E.; Macek, Miroslav; Castro-G., M. T.

    2004-01-01

    Roč. 9, č. 1 (2004), s. 133-140 ISSN 1360-2276 R&D Projects: GA MŠk(CZ) ME 296 Grant - others:UNAM/DGAPA/PAPIT(MX) IN216796 Keywords : Vibrio cholerae * protozoan feeding * brackish water Subject RIV: EE - Microbiology, Virology Impact factor: 1.969, year: 2004

  6. Survival of Vibrio cholerae in industrially polluted water, with ...

    African Journals Online (AJOL)

    containing industrial effluents. The effect of iron as well as pH on the survival of Vibrio cholerae (non-O1, El Tor and classical strains) in water samples from 12 points, where selected industrial effluents were discharged into rivers, was studied.

  7. Detection of quorum sensing molecules from Vibrio harveyi and use ...

    African Journals Online (AJOL)

    This paper explores the extraction and detection processes of quorum sensing molecules such as N-aceyl homoserine lactone compounds (AHL) from marine Vibrio harveyi. The spent culture of V. harveyi was solvent partitioned for AHL, rotary evaporated and re-suspended in 50% acetonitrile then detected with reporter ...

  8. Salmonella and Vibrio cholerae in Nile perch ( Lates niloticus ...

    African Journals Online (AJOL)

    The Nile perch (Lates niloticus) industry in East Africa has suffered severe economic losses in the last few years due to failure to comply with the microbiological standards of European Union (E.U). Fresh and frozen products have been suspected to be contaminated with Salmonella and Vibrio cholerae. This has led to a ...

  9. Isolation and molecular identification of Vibrio spp. by sequencing of ...

    African Journals Online (AJOL)

    Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6% of samples of meat and meat products showed colonies on TCBS.

  10. Natural modulators of Vibrios in seawater and shellfish

    Science.gov (United States)

    Naturally occurring marine bacteria, Vibrio parahaemolyticus and V. vulnificus, are major threats to the safety of molluscan shellfish in the US and elsewhere. Illnesses range from mild gastrointestinal upset to septicemia and death. In studies on the uptake and persistence of V. parahaemolyticus ...

  11. antimicrobial susceptibility pattern of vibrio cholerae 01 strains

    African Journals Online (AJOL)

    hi-tech

    East African Medical Journal Vol. 77 No. 7 July 2000. ANTIMICROBIAL SUSCEPTIBILITY PATTERN OF VIBRIO CHOLERAE 01 STRAINS DURING TWO CHOLERA OUTBREAKS IN DAR ES SALAAM,. TANZANIA. W.K. Urassa, MD, MSc, MMed, Lecturer, Department of Microbiology and Immunology, Muhimbili University ...

  12. Thermal death rate of ascospores of Neosartorya fischeri ATCC 200957 in the presence of organic acids and preservatives in fruit juices.

    Science.gov (United States)

    Rajashekhara, E; Suresh, E R; Ethiraj, S

    1998-10-01

    Heat-resistant molds, including Neosartorya fischeri, are known to spoil thermally processed fruit products. The control measures required for such problems must not cause an appreciable loss of the organoleptic qualities of the final products. In the present study we determined the thermal death rates of ascospores of N. fischeri ATCC 200957 in fruit juices containing organic acids and preservatives. The ascospores were able to survive for more than 6 h of heating at 75 degrees C, 5 h at 80 degrees C, and 3 to 4 h at 85 degrees C in mango or grape juice. Of the four organic acids tested, citric acid exhibited the maximal destruction of ascospores in mango juice at 85 degrees C (1/k = 27.22 min), and tartaric acid the least (1/k = 61.73 min). The effect of common preservatives on the thermal death rates of ascospores at .85 degrees C in mango and grape juices was studied. Almost similar effects on thermal inactivation of ascospores were noted when potassium sorbate (1/k = 29.38 min) or sodium benzoate (1/k = 27.64 min) or the combination of both (1/k = 27.53 min) was used in mango juice. In grape juice, potassium sorbate (1/k = 25.07 min) was more effective than sodium benzoate (1/k = 50.08 min) or the combination of both (1/k = 40.79 min) in inactivation of ascospores of the mold. The thermal death rate (1/k) values in mango and grape juices in the absence of any preservative were 63.51 and 69.27 min respectively.

  13. Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers

    Science.gov (United States)

    Fujita, K.; Hikami, M.; Suzuki, A.; Kuroyanagi, A.; Sakai, K.; Kawahata, H.; Nojiri, Y.

    2011-08-01

    Ocean acidification (decreases in carbonate ion concentration and pH) in response to rising atmospheric pCO2 is generally expected to reduce rates of calcification by reef calcifying organisms, with potentially severe implications for coral reef ecosystems. Large, algal symbiont-bearing benthic foraminifers, which are important primary and carbonate producers in coral reefs, produce high-Mg calcite shells, whose solubility can exceed that of aragonite produced by corals, making them the "first responder" in coral reefs to the decreasing carbonate saturation state of seawater. Here we report results of culture experiments performed to assess the effects of ongoing ocean acidification on the calcification of symbiont-bearing reef foraminifers using a high-precision pCO2 control system. Living clone individuals of three foraminiferal species (Baculogypsina sphaerulata, Calcarina gaudichaudii, and Amphisorus hemprichii) were subjected to seawater at five pCO2 levels from 260 to 970 μatm. Cultured individuals were maintained for about 12 weeks in an indoor flow-through system under constant water temperature, light intensity, and photoperiod. After the experiments, the shell diameter and weight of each cultured specimen were measured. Net calcification of B. sphaerulata and C. gaudichaudii, which secrete a hyaline shell and host diatom symbionts, increased under intermediate levels of pCO2 (580 and/or 770 μatm) and decreased at a higher pCO2 level (970 μatm). Net calcification of A. hemprichii, which secretes a porcelaneous shell and hosts dinoflagellate symbionts, tended to decrease at elevated pCO2. Observed different responses between hyaline and porcelaneous species are possibly caused by the relative importance of elevated pCO2, which induces CO2 fertilization effects by algal symbionts, versus associated changes in seawater carbonate chemistry, which decreases a carbonate concentration. Our findings suggest that ongoing ocean acidification might favor symbiont

  14. Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers

    Directory of Open Access Journals (Sweden)

    K. Fujita

    2011-08-01

    Full Text Available Ocean acidification (decreases in carbonate ion concentration and pH in response to rising atmospheric pCO2 is generally expected to reduce rates of calcification by reef calcifying organisms, with potentially severe implications for coral reef ecosystems. Large, algal symbiont-bearing benthic foraminifers, which are important primary and carbonate producers in coral reefs, produce high-Mg calcite shells, whose solubility can exceed that of aragonite produced by corals, making them the "first responder" in coral reefs to the decreasing carbonate saturation state of seawater. Here we report results of culture experiments performed to assess the effects of ongoing ocean acidification on the calcification of symbiont-bearing reef foraminifers using a high-precision pCO2 control system. Living clone individuals of three foraminiferal species (Baculogypsina sphaerulata, Calcarina gaudichaudii, and Amphisorus hemprichii were subjected to seawater at five pCO2 levels from 260 to 970 μatm. Cultured individuals were maintained for about 12 weeks in an indoor flow-through system under constant water temperature, light intensity, and photoperiod. After the experiments, the shell diameter and weight of each cultured specimen were measured. Net calcification of B. sphaerulata and C. gaudichaudii, which secrete a hyaline shell and host diatom symbionts, increased under intermediate levels of pCO2 (580 and/or 770 μatm and decreased at a higher pCO2 level (970 μatm. Net calcification of A. hemprichii, which secretes a porcelaneous shell and hosts dinoflagellate symbionts, tended to decrease at elevated pCO2. Observed different responses between hyaline and porcelaneous species are possibly caused by the relative importance of elevated pCO2, which induces CO2 fertilization effects by

  15. Household Transmission of Vibrio cholerae in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Jonathan D Sugimoto

    2014-11-01

    Full Text Available Vibrio cholerae infections cluster in households. This study's objective was to quantify the relative contribution of direct, within-household exposure (for example, via contamination of household food, water, or surfaces to endemic cholera transmission. Quantifying the relative contribution of direct exposure is important for planning effective prevention and control measures.Symptom histories and multiple blood and fecal specimens were prospectively collected from household members of hospital-ascertained cholera cases in Bangladesh from 2001-2006. We estimated the probabilities of cholera transmission through 1 direct exposure within the household and 2 contact with community-based sources of infection. The natural history of cholera infection and covariate effects on transmission were considered. Significant direct transmission (p-value<0.0001 occurred among 1414 members of 364 households. Fecal shedding of O1 El Tor Ogawa was associated with a 4.9% (95% confidence interval: 0.9%-22.8% risk of infection among household contacts through direct exposure during an 11-day infectious period (mean length. The estimated 11-day risk of O1 El Tor Ogawa infection through exposure to community-based sources was 2.5% (0.8%-8.0%. The corresponding estimated risks for O1 El Tor Inaba and O139 infection were 3.7% (0.7%-16.6% and 8.2% (2.1%-27.1% through direct exposure, and 3.4% (1.7%-6.7% and 2.0% (0.5%-7.3% through community-based exposure. Children under 5 years-old were at elevated risk of infection. Limitations of the study may have led to an underestimation of the true risk of cholera infection. For instance, available covariate data may have incompletely characterized levels of pre-existing immunity to cholera infection. Transmission via direct exposure occurring outside of the household was not considered.Direct exposure contributes substantially to endemic transmission of symptomatic cholera in an urban setting. We provide the first estimate of

  16. Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and metabolic change in a beneficial symbiosis.

    Science.gov (United States)

    Wier, Andrew M; Nyholm, Spencer V; Mandel, Mark J; Massengo-Tiassé, R Prisca; Schaefer, Amy L; Koroleva, Irina; Splinter-Bondurant, Sandra; Brown, Bartley; Manzella, Liliana; Snir, Einat; Almabrazi, Hakeem; Scheetz, Todd E; Bonaldo, Maria de Fatima; Casavant, Thomas L; Soares, M Bento; Cronan, John E; Reed, Jennifer L; Ruby, Edward G; McFall-Ngai, Margaret J

    2010-02-02

    Mechanisms for controlling symbiont populations are critical for maintaining the associations that exist between a host and its microbial partners. We describe here the transcriptional, metabolic, and ultrastructural characteristics of a diel rhythm that occurs in the symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri. The rhythm is driven by the host's expulsion from its light-emitting organ of most of the symbiont population each day at dawn. The transcriptomes of both the host epithelium that supports the symbionts and the symbiont population itself were characterized and compared at four times over this daily cycle. The greatest fluctuation in gene expression of both partners occurred as the day began. Most notable was an up-regulation in the host of >50 cytoskeleton-related genes just before dawn and their subsequent down-regulation within 6 h. Examination of the epithelium by TEM revealed a corresponding restructuring, characterized by effacement and blebbing of its apical surface. After the dawn expulsion, the epithelium reestablished its polarity, and the residual symbionts began growing, repopulating the light organ. Analysis of the symbiont transcriptome suggested that the bacteria respond to the effacement by up-regulating genes associated with anaerobic respiration of glycerol; supporting this finding, lipid analysis of the symbionts' membranes indicated a direct incorporation of host-derived fatty acids. After 12 h, the metabolic signature of the symbiont population shifted to one characteristic of chitin fermentation, which continued until the following dawn. Thus, the persistent maintenance of the squid-vibrio symbiosis is tied to a dynamic diel rhythm that involves both partners.

  17. Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya

    OpenAIRE

    S.M. Azwai; E.A. Alfallani; S.K. Abolghait; A.M. Garbaj; H.T. Naas; A.A. Moawad; F.T. Gammoudi; H.M. Rayes; I. Barbieri; I.M. Eldaghayes

    2016-01-01

    The genus Vibrio includes several food-borne pathogens that cause a spectrum of clinical conditions including septicemia, cholera and milder forms of gastroenteritis. Several Vibrio spp. are commonly associated with food-borne transmission including Vibrio cholerae, Vibrio parahemolyticus, and Vibrio vulnificus. Microbiological analysis for enumeration and isolation of Vibrio spp. were carried out for a total of 93 samples of seafood, meat and meat products from different geographic localitie...

  18. Vibrio vulnificus phage PV94 is closely related to temperate phages of V. cholerae and other Vibrio species.

    Directory of Open Access Journals (Sweden)

    Mark Pryshliak

    Full Text Available BACKGROUND: Vibrio vulnificus is an important pathogen which can cause serious infections in humans. Yet, there is limited knowledge on its virulence factors and the question whether temperate phages might be involved in pathogenicity, as is the case with V. cholerae. Thus far, only two phages (SSP002 and VvAW1 infecting V. vulnificus have been genetically characterized. These phages were isolated from the environment and are not related to Vibrio cholerae phages. The lack of information on temperate V. vulnificus phages prompted us to isolate those phages from lysogenic strains and to compare them with phages of other Vibrio species. RESULTS: In this study the temperate phage PV94 was isolated from a V. vulnificus biotype 1 strain by mitomycin C induction. PV94 is a myovirus whose genome is a linear double-stranded DNA of 33,828 bp with 5'-protruding ends. Sequence analysis of PV94 revealed a modular organization of the genome. The left half of the genome comprising the immunity region and genes for the integrase, terminase and replication proteins shows similarites to V. cholerae kappa phages whereas the right half containing genes for structural proteins is closely related to a prophage residing in V. furnissii NCTC 11218. CONCLUSION: We present the first genomic sequence of a temperate phage isolated from a human V. vulnificus isolate. The sequence analysis of the PV94 genome demonstrates the wide distribution of closely related prophages in various Vibrio species. Moreover, the mosaicism of the PV94 genome indicates a high degree of horizontal genetic exchange within the genus Vibrio, by which V. vulnificus might acquire virulence-associated genes from other species.

  19. Oral administration of formalin killed Vibrio anguillarum cells improves growth and protection against challenge with Vibrio harveyi in banana shrimp.

    Science.gov (United States)

    Patil, P K; Gopal, C; Panigrahi, A; Rajababu, D; Pillai, S M

    2014-03-01

    Larval rearing in hatcheries and highly intensive grow-out culture practices followed in shrimp production systems favour the growth of potential pathogenic bacterial loads. This study reports the efficacy of formalin-killed vibrio bacterin on growth, survival and protection to challenge with virulent Vibrio harveyi and Vibrio anguillarum in juveniles of banana shrimp Fenneropenaeus merguiensis. Postlarvae 15 (0·24 ± 0·01 g) were administered orally in different concentrations of bacterial preparation (0, 10(6) , 10(8) , 10(10) and 10(12 ) CFU kg(-1) feed) for a period of 6 weeks. Physicochemical and microbial quality of water in larval rearing tanks, and growth and survival of the postlarvae were monitored at regular intervals, and body composition was estimated at the end of the experiment. Shrimps were challenged with V. harveyi and V. anguillarum, and cumulative mortality was calculated. The group receiving 10(8)  CFU kg(-1) feed showed highest average weight gain (162·66 ± 22·94 mg) and survival (90·33 ± 4·5%) and lowest cumulative mortality following the challenge with V. anguillarum (26%) and V. harveyi (36·67%). The results of the study suggest that formalized vibrio administered orally to F. merguiensis postlarvae could induce both homologous and heterologous protection against V. anguillarum and V. harveyi. 'Vaccination' of shrimp postlarvae at hatcheries would help in preventing the losses due to vibriosis and the most susceptible stages of shrimp development. The study demonstrates the cross-protection offered by the oral feeding of formalin-killed Vibrio anguillarum against pathogenic V. harveyi challenge at the early developmental stages of banana shrimp, Fenneropenaeus merguiensis. © 2013 The Society for Applied Microbiology.

  20. Vibrio Parahemolyticus in the Wastewater of Kermanshah City

    Directory of Open Access Journals (Sweden)

    Ali Almasi

    2005-11-01

    Full Text Available آب و فاضلاب                                                                                                                                                                                                               شماره 51- سال 1383     Municipal wastewater is one of the most important pollution sources for water supply resources. Soil, vegetable, and food material are exposed as well. Identification and enumeration of pathogenic agents particularly pathogenic Vibrios are beneficial for control and prevention planning of the infectious diseases. This research carried out to identify the distribution of the recognized pathogenic Vibrios emphasizing on identification of Vibrio cholerain the wastewater of city of Kermanshah in 2001. Population of city of Kermanshah was estimated over 713000 and produced wastewater was approximately 150 l/cap/d. The method of study was cross-sectional descriptive. Sampling procedure was adopted from standard Methods for the Examination of water and wastewater, and the method for Vibrios identification was according to finegold 1990. There were 8 discharge outlet domestic wastewaters, which had been chosen as sampling sites. Samples were collected weekly in randomized manner in day time. Although 288 samples should be collected statistically, 339 samples were collected and analyzed. The results indicated that site 7 with 5 positives, sites 4 and 8 with 3 positives, site 5 with 2 postitives and sites 2, 3 and 6 with one positive suspected to vibrio pathogens. However, not any Vibrio detected in site 1. The most positive samples were seen in spring, late summer and early autumn. The positive results were detected in May, June, September, and October. Among samples which have been detected as a

  1. Rhizobium laguerreae is the main nitrogen-fixing symbiont of cultivated lentil (Lens culinaris) in Morocco.

    Science.gov (United States)

    Taha, Kaoutar; Berraho, El Bekkay; El Attar, Imane; Dekkiche, Samia; Aurag, Jamal; Béna, Gilles

    2018-03-01

    Genetic diversity and population structure of 268 Lens culinaris symbiotic rhizobia collected from 40 cultivated fields in the main lentil production regions in Morocco were estimated. Three chromosomal housekeeping genes (recA, glnII and atpD) and one common symbiotic gene (nodC) were sequenced and analyzed in order to identify the local symbionts of lentil. The molecular phylogeny of the concatenated housekeeping genes clustered more than 95% of the isolates in one main clade together with Rhizobium laguerreae species. R. laguerreae represents the main symbiont of cultivated lentil in Morocco and, for the first time, a large sample of individuals is obtained for this species. There is a significant and high genetic differentiation of bacterial populations among the four regions for their symbiotic gene, and much lower for their housekeeping genes. The reasons why R. laguerreae is so frequently recovered in our study is discussed. Copyright © 2018 Elsevier GmbH. All rights reserved.

  2. Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect-microbe symbiotic associations.

    Science.gov (United States)

    Takeshita, Kazutaka; Kikuchi, Yoshitomo

    2017-04-01

    A number of insects establish symbiotic associations with beneficial microorganisms in various manners. The bean bug Riptortus pedestris and allied stink bugs possess an environmentally acquired Burkholderia symbiont in their midgut crypts. Unlike other insect endosymbionts, the Burkholderia symbiont is easily culturable and genetically manipulatable outside the host. In conjunction with the experimental advantages of the host insect, the Riptortus-Burkholderia symbiosis is an ideal model system for elucidating the molecular bases underpinning insect-microbe symbioses, which opens a new window in the research field of insect symbiosis. This review summarizes current knowledge of this system and discusses future perspectives. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Tapping the biotechnological potential of insect microbial symbionts: new insecticidal porphyrins

    OpenAIRE

    Martinez, Ana Fl?via Canovas; de Almeida, Lu?s Gustavo; Moraes, Luiz Alberto Beraldo; C?nsoli, Fernando Lu?s

    2017-01-01

    Background The demand for sustainable agricultural practices and the limited progress toward newer and safer chemicals for use in pest control maintain the impetus for research and identification of new natural molecules. Natural molecules are preferable to synthetic organic molecules because they are biodegradable, have low toxicity, are often selective and can be applied at low concentrations. Microbes are one source of natural insecticides, and microbial insect symbionts have attracted att...

  4. Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability.

    Directory of Open Access Journals (Sweden)

    James R White

    Full Text Available BACKGROUND: Marine sponge species are of significant interest to many scientific fields including marine ecology, conservation biology, genetics, host-microbe symbiosis and pharmacology. One of the most intriguing aspects of the sponge "holobiont" system is the unique physiology, interaction with microbes from the marine environment and the development of a complex commensal microbial community. However, intraspecific variability and temporal stability of sponge-associated bacterial symbionts remain relatively unknown. METHODOLOGY/PRINCIPAL FINDINGS: We have characterized the bacterial symbiont community biodiversity of seven different individuals of the Caribbean reef sponge Axinella corrugata, from two different Florida reef locations during variable seasons using multiplex 454 pyrosequencing of 16 S rRNA amplicons. Over 265,512 high-quality 16 S rRNA sequences were generated and analyzed. Utilizing versatile bioinformatics methods and analytical software such as the QIIME and CloVR packages, we have identified 9,444 distinct bacterial operational taxonomic units (OTUs. Approximately 65,550 rRNA sequences (24% could not be matched to bacteria at the class level, and may therefore represent novel taxa. Differentially abundant classes between seasonal Axinella communities included Gammaproteobacteria, Flavobacteria, Alphaproteobacteria, Cyanobacteria, Acidobacter and Nitrospira. Comparisons with a proximal outgroup sponge species (Amphimedon compressa, and the growing sponge symbiont literature, indicate that this study has identified approximately 330 A. corrugata-specific symbiotic OTUs, many of which are related to the sulfur-oxidizing Ectothiorhodospiraceae. This family appeared exclusively within A. corrugata, comprising >34.5% of all sequenced amplicons. Other A. corrugata symbionts such as Deltaproteobacteria, Bdellovibrio, and Thiocystis among many others are described. CONCLUSIONS/SIGNIFICANCE: Slight shifts in several bacterial taxa

  5. Characterization of a Newly Discovered Symbiont of the Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae)

    Science.gov (United States)

    Bing, Xiao-Li; Yang, Jiao; Zchori-Fein, Einat; Wang, Xiao-Wei

    2013-01-01

    Bemisia tabaci (Hemiptera: Aleyrodidae) is a species complex containing >28 cryptic species, some of which are important crop pests worldwide. Like many other sap-sucking insects, whiteflies harbor an obligatory symbiont, “Candidatus Portiera aleyrodidarum,” and a number of secondary symbionts. So far, six genera of secondary symbionts have been identified in B. tabaci. In this study, we report and describe the finding of an additional bacterium in the indigenous B. tabaci cryptic species China 1 (formerly known as B. tabaci biotype ZHJ3). Phylogenetic analysis based on the 16S rRNA and gltA genes showed that the bacterium belongs to the Alphaproteobacteria subdivision of the Proteobacteria and has a close relationship with human pathogens of the genus Orientia. Consequently, we temporarily named it Orientia-like organism (OLO). OLO was found in six of eight wild populations of B. tabaci China 1, with the infection rate ranging from 46.2% to 76.8%. Fluorescence in situ hybridization (FISH) of B. tabaci China 1 in nymphs and adults revealed that OLOs are confined to the bacteriome and co-occur with “Ca. Portiera aleyrodidarum.” The vertical transmission of OLO was demonstrated by detection of OLO at the anterior pole end of the oocytes through FISH. Quantitative PCR analysis of population dynamics suggested a complex interaction between “Ca. Portiera aleyrodidarum” and OLO. Based on these results, we propose “Candidatus Hemipteriphilus asiaticus” for the classification of this symbiont from B. tabaci. PMID:23144129

  6. Genetic connectivity between north and south Mid-Atlantic Ridge chemosynthetic bivalves and their symbionts.

    Directory of Open Access Journals (Sweden)

    Karina van der Heijden

    Full Text Available Transform faults are geological structures that interrupt the continuity of mid-ocean ridges and can act as dispersal barriers for hydrothermal vent organisms. In the equatorial Atlantic Ocean, it has been hypothesized that long transform faults impede gene flow between the northern and the southern Mid-Atlantic Ridge (MAR and disconnect a northern from a southern biogeographic province. To test if there is a barrier effect in the equatorial Atlantic, we examined phylogenetic relationships of chemosynthetic bivalves and their bacterial symbionts from the recently discovered southern MAR hydrothermal vents at 5°S and 9°S. We examined Bathymodiolus spp. mussels and Abyssogena southwardae clams using the mitochondrial cytochrome c oxidase subunit I (COI gene as a phylogenetic marker for the hosts and the bacterial 16S rRNA gene as a marker for the symbionts. Bathymodiolus spp. from the two southern sites were genetically divergent from the northern MAR species B. azoricus and B. puteoserpentis but all four host lineages form a monophyletic group indicating that they radiated after divergence from their northern Atlantic sister group, the B. boomerang species complex. This suggests dispersal of Bathymodiolus species from north to south across the equatorial belt. 16S rRNA genealogies of chemoautotrophic and methanotrophic symbionts of Bathymodiolus spp. were inconsistent and did not match the host COI genealogy indicating disconnected biogeography patterns. The vesicomyid clam Abyssogena southwardae from 5°S shared an identical COI haplotype with A. southwardae from the Logatchev vent field on the northern MAR and their symbionts shared identical 16S phylotypes, suggesting gene flow across the Equator. Our results indicate genetic connectivity between the northern and southern MAR and suggest that a strict dispersal barrier does not exist.

  7. Genetic Diversity of Nostoc Symbionts Endophytically Associated with Two Bryophyte Species

    OpenAIRE

    Costa, José-Luis; Paulsrud, Per; Rikkinen, Jouko; Lindblad, Peter

    2001-01-01

    The diversity of the endophytic Nostoc symbionts of two thalloid bryophytes, the hornwort Anthoceros fusiformis and the liverwort Blasia pusilla, was examined using the tRNALeu (UAA) intron sequence as a marker. The results confirmed that many different Nostoc strains are involved in both associations under natural conditions in the field. The level of Nostoc diversity within individual bryophyte thalli varied, but single DNA fragments were consistently amplified from individual symbiotic col...

  8. MR findings of infectious myositis caused by vibrio vulnificus: case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon Ho; Na, Jae Boem [Gyeongsang National University College of Medicine, Jinju (Korea, Republic of)

    2003-03-01

    Vibrio vulnificus infection is a fatal disease occurring after the consumption of seafood in patients with underlying liver disease. Inflammation of the skin, subcutanous fat and fascia disseminates from the lower extremity to the trunk and upper extremity. Infection myositis caused by vibrio vulnificus is rare, and its MR findings have not been reported. We report these in a case of infectious myositis caused by vibrio vulnificus involving both lower extremities.

  9. MR findings of infectious myositis caused by vibrio vulnificus: case report

    International Nuclear Information System (INIS)

    Lee, Joon Ho; Na, Jae Boem

    2003-01-01

    Vibrio vulnificus infection is a fatal disease occurring after the consumption of seafood in patients with underlying liver disease. Inflammation of the skin, subcutanous fat and fascia disseminates from the lower extremity to the trunk and upper extremity. Infection myositis caused by vibrio vulnificus is rare, and its MR findings have not been reported. We report these in a case of infectious myositis caused by vibrio vulnificus involving both lower extremities

  10. Efek Antibakteri Ekstrak Daun Mimba (Azadirachta indica A. Juss) terhadap Bakteri Vibrio algynoliticus Secara In Vitro

    OpenAIRE

    Uli Ayini; Siti Harnina B.; Titis Candra Dewi

    2014-01-01

    Budidaya udang windu di Indonesia telah berkembang pesat. Salah satu kendala budidaya udang adalah penyakit Vibriosis yang disebabkan oleh bakteri Vibrio algynoliticus. Tujuan penelitian ini adalah untuk mengetahui efek antibakeri ekstrak daun mimba terhadap bakteri Vibrio algynoliticus. Penelitian ini menggunakan metode dilusi untuk mengetahui efek antibakteri ekstrak daun mimba terhadap bakteri Vibrio algynoliticus secara in vitro. Konsentrasi ekstrak yang digunakan (%) yaitu: 0; 2,5; 5; 7,...

  11. Emergent Patterns of Diversity and Dynamics in Natural Populations of Planktonic Vibrio Bacteria

    Science.gov (United States)

    2005-06-01

    1973. Ecology of Vibrio parahemolyticus in mixed-template amplifications: formation, consequences and elimination by Chesapeake Bay. J. Bacteriol. 113...Science 1930 and Engineering DOCTORAL DISSERTATION Emergent Patterns of Diversity and Dynamics in Natural Populations of Planktonic Vibrio Bacteria by...DYNAMICS IN NATURAL POPULATIONS OF PLANKTONIC VIBRIO BACTERIA by Janelle Ren6e Thompson B.S. Biological Sciences, Stanford University 1998 M.S

  12. Vibrio parahemolyticus septicaemia in a liver transplant patient: a case report

    OpenAIRE

    Fairweather Morgan G; Krishnan Sujatha; Fernando Rajeev R; Ericsson Charles D

    2011-01-01

    Abstract Introduction Vibrio parahemolyticus is the leading cause of vibrio-associated gastroenteritis in the United States of America, usually related to poor food handling; only rarely has it been reported to cause serious infections including sepsis and soft tissue infections. In contrast, Vibrio vulnificus is a well-known cause of septicaemia, especially in patients with cirrhosis. We present a patient with V. parahemolyticus sepsis who had an orthotic liver transplant in 2007 and was on ...

  13. Impacts of Antibiotic and Bacteriophage Treatments on the Gut-Symbiont-Associated Blissus insularis (Hemiptera: Blissidae

    Directory of Open Access Journals (Sweden)

    Yao Xu

    2016-11-01

    Full Text Available The Southern chinch bug, Blissus insularis, possesses specialized midgut crypts that harbor dense populations of the exocellular symbiont Burkholderia. Oral administration of antibiotics suppressed the gut symbionts in B. insularis and negatively impacted insect host fitness, as reflected by retarded development, smaller body size, and higher susceptibility to an insecticide, bifenthrin. Considering that the antibiotics probably had non-lethal but toxic effects on host fitness, attempts were conducted to reduce gut symbionts using bacteriophage treatment. Soil-lytic phages active against the cultures of specific Burkholderia ribotypes were successfully isolated using a soil enrichment protocol. Characterization of the BiBurk16MC_R phage determined its specificity to the Bi16MC_R_vitro ribotype and placed it within the family Podoviridae. Oral administration of phages to fifth-instar B. insularis, inoculated with Bi16MC_R_vitro as neonates had no deleterious effects on host fitness. However, the ingested phages failed to impact the crypt-associated Burkholderia. The observed inactivity of the phage was likely due to the blockage of the connection between the anterior and posterior midgut regions. These findings suggest that the initial colonization by Burkholderia programs the ontogeny of the midgut, providing a sheltered residence protected from microbial antagonists.

  14. Identification and characterization of bacterial symbionts in three species of filth fly parasitoids.

    Science.gov (United States)

    Betelman, Kfir; Caspi-Fluger, Ayelet; Shamir, Maayan; Chiel, Elad

    2017-09-01

    Facultative bacterial symbionts are widespread among insects and have diverse effects on their biology. Here, we focused on bacterial symbionts of three ecologically and economically important filth flies parasitoid species-Spalangia cameroni, Spalangia endius and Muscidifurax raptor. Both Spalangia species harbored a Sodalis bacterium that is closely related to Spalangia praecaptivus (a free-living bacterium) and to Sodalis symbionts of weevils. This is the only case of Sodalis infection in the important order Hymenoptera. We also found, for the first time in this parasitoid guild, a Rickettsia infecting the two Spalangia spp., albeit in much higher prevalence in S. cameroni. Molecular and phylogenetic analyses revealed that it is closely related to Rickettsia felis and other Rickettsia species from the 'transitional' group. All three parasitoid species harbored Wolbachia. Using multi-locus sequence typing, we found that M. raptor harbors a single Wolbachia strain whereas the Spalangia spp. have multiple strains. By controlled crossings, we found that Wolbachia infection in S. endius causes incomplete cytoplasmic incompatibility and increased longevity, thereby promoting Wolbachia's spread. In contrast, no effects of Wolbachia on the reproduction and longevity of M. raptor were found. This study underscores the diversity and nature of symbiotic interactions between microbes and insects. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Earthworm symbiont Verminephrobacter eiseniae mediates natural transformation within the host egg capsules using type IV pili

    Directory of Open Access Journals (Sweden)

    SEANA Kelyn DAVIDSON

    2014-10-01

    Full Text Available The dense microbial communities commonly associated with plants and animals should offer many opportunities for horizontal gene transfer (HGT through described mechanisms of DNA exchange including natural transformation. However, studies of the significance of natural transformation have focused primarily on pathogens. The study presented here demonstrates highly efficient DNA exchange by natural transformation in a common symbiont of earthworms. The obligate bacterial symbiont Verminephrobacter eiseniae is a member of a microbial consortium of the earthworm Eisenia fetida that is transmitted into the egg capsules to colonize the embryonic worms. In the study presented here, by testing for transformants under different conditions in culture, we demonstrate that V. eiseniae can incorporate free DNA from the environment, that competency is regulated by environmental factors, and that it is sequence specific. Mutations in the type IV pili of V. eiseniae resulted in loss of DNA uptake, implicating the type IV pilus (TFP apparatus in DNA uptake. Furthermore, injection of DNA carrying antibiotic-resistance genes into egg capsules resulted in transformants within the capsule, demonstrating the relevance of DNA uptake within the earthworm system. The ability to take up species-specific DNA from the environment may explain the maintenance of the relatively large, intact genome of this long-associated obligate symbiont, and provides a mechanism for acquisition of foreign genes within the earthworm system.

  16. Facultative symbiont Hamiltonella confers benefits to Bemisia tabaci (Hemiptera: Aleyrodidae), an invasive agricultural pest worldwide.

    Science.gov (United States)

    Su, Qi; Oliver, Kerry M; Pan, Huipeng; Jiao, Xiaoguo; Liu, Baiming; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Xu, Baoyun; White, Jennifer A; Zhou, Xuguo; Zhang, Youjun

    2013-12-01

    Bacterial symbionts infect most insect species, including important pests such as whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), and often exert important effects on host ecology. The facultative symbiont Hamiltonella is found at high frequencies in the B. tabaci MED (type: Mediterranean-MED) in China. The prevalence of this symbiont in natural populations suggests beneficial effects of infection or manipulation of host reproduction. To date, however, no empirical studies on the biological role of Hamiltonella on the host B. tabaci have been reported. Here, we investigated the effects of Hamiltonella infection on the sex ratio and several fitness parameters in B. tabaci MED by comparing Hamiltonella-infected whiteflies with Hamiltonella-free ones. We found that Hamiltonella-infected whiteflies produced significantly more eggs, exhibited significantly higher nymphal survival, faster development times, and larger adult body size in comparison with Hamiltonella-free whiteflies, while no evidence of reproductive manipulation by Hamiltonella were found in B. tabaci MED. In conclusion, Hamiltonella infection substantially enhanced B. tabaci MED performance. This beneficial role may, at least partially, explain the high prevalence of Hamiltonella in B. tabaci MED populations and may also contribute to their effectiveness in spread of the plant pathogens tomato yellow leaf curl virus.

  17. Preferential host switching and codivergence shaped radiation of bark beetle symbionts, nematodes of Micoletzkya (Nematoda: Diplogastridae).

    Science.gov (United States)

    Susoy, V; Herrmann, M

    2014-05-01

    Host-symbiont systems are of particular interest to evolutionary biology because they allow testable inferences of diversification processes while also providing both a historical basis and an ecological context for studies of adaptation. Our investigations of bark beetle symbionts, predatory nematodes of the genus Micoletzkya, have revealed remarkable diversity of the group along with a high level of host specificity. Cophylogenetic analyses suggest that evolution of the nematodes was largely influenced by the evolutionary history of beetles. The diversification of the symbionts, however, could not be attributed to parallel divergence alone; our results indicate that adaptive radiation of the nematodes was shaped by preferential host shifts among closely related beetles along with codivergence. Whereas ecological and geographic isolation have played a major role in the diversification of Micoletzkya at shallow phylogenetic depths, adaptations towards related hosts have played a role in shaping cophylogenetic structure at a larger evolutionary scale. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  18. Unraveling the role of fungal symbionts in plant abiotic stress tolerance

    Science.gov (United States)

    Singh, Lamabam Peter

    2011-01-01

    Fungal symbionts have been found to be associated with every plant studied in the natural ecosystem, where they colonize and reside entirely or partially in the internal tissues of their host plant. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress and heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is an increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered. PMID:21512319

  19. Rare symbionts may contribute to the resilience of coral–algal assemblages

    KAUST Repository

    Ziegler, Maren

    2017-12-01

    The association between corals and photosynthetic dinoflagellates (Symbiodinium spp.) is the key to the success of reef ecosystems in highly oligotrophic environments, but it is also their Achilles‘ heel due to its vulnerability to local stressors and the effects of climate change. Research during the last two decades has shaped a view that coral host–Symbiodinium pairings are diverse, but largely exclusive. Deep sequencing has now revealed the existence of a rare diversity of cryptic Symbiodinium assemblages within the coral holobiont, in addition to one or a few abundant algal members. While the contribution of the most abundant resident Symbiodinium species to coral physiology is widely recognized, the significance of the rare and low abundant background Symbiodinium remains a matter of debate. In this study, we assessed how coral–Symbiodinium communities assemble and how rare and abundant components together constitute the Symbiodinium community by analyzing 892 coral samples comprising >110 000 unique Symbiodinium ITS2 marker gene sequences. Using network modeling, we show that host–Symbiodinium communities assemble in non-random ‘clusters‘ of abundant and rare symbionts. Symbiodinium community structure follows the same principles as bacterial communities, for which the functional significance of rare members (the ‘rare bacterial biosphere’) has long been recognized. Importantly, the inclusion of rare Symbiodinium taxa in robustness analyses revealed a significant contribution to the stability of the host–symbiont community overall. As such, it highlights the potential functions rare symbionts may provide to environmental resilience of the coral holobiont.

  20. Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont.

    Science.gov (United States)

    Futahashi, Ryo; Tanaka, Kohjiro; Tanahashi, Masahiko; Nikoh, Naruo; Kikuchi, Yoshitomo; Lee, Bok Luel; Fukatsu, Takema

    2013-01-01

    The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations.

  1. Earthworms and their Nephridial Symbionts: Co-diversification and Maintenance of the Symbiosis

    DEFF Research Database (Denmark)

    Lund, Marie Braad; Holmstrup, Martin; Davidson, Seana K.

    Earthworms harbor in their nephridia (excretory organs) symbiotic bacteria which densely colonize a specific part of the nephridia, called the ampulla [1]. The symbiosis is species-specific and the symbionts form their own monophyletic genus Verminephrobacter (β-proteobacteria) [2] and are vertic......,J. 1926. Z Morph Ökol Tiere, 6(3):588-624. [2] Schramm,A. et al. 2003. Environ Microbiol 5(9):804-809. [3] Davidson,S.K. & Stahl,D.A. 2006. Appl Environ Microbiol 72(1):769-775. [4] Pandazis,G. 1931. Zentralbl Bakteriol 120:440-453.......Earthworms harbor in their nephridia (excretory organs) symbiotic bacteria which densely colonize a specific part of the nephridia, called the ampulla [1]. The symbiosis is species-specific and the symbionts form their own monophyletic genus Verminephrobacter (β-proteobacteria) [2...... showed no significant differences in growth rate and fecundity between symbiotic and aposymbiotic worms. Thus the symbionts do not appear to have an effect on worm fitness, under growth conditions tested. The underlying functional and maintaining mechanisms of this symbiosis remain a conundrum. [1] Knop...

  2. Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals.

    Science.gov (United States)

    Boulotte, Nadine M; Dalton, Steven J; Carroll, Andrew G; Harrison, Peter L; Putnam, Hollie M; Peplow, Lesa M; van Oppen, Madeleine Jh

    2016-11-01

    Reef-building corals possess a range of acclimatisation and adaptation mechanisms to respond to seawater temperature increases. In some corals, thermal tolerance increases through community composition changes of their dinoflagellate endosymbionts (Symbiodinium spp.), but this mechanism is believed to be limited to the Symbiodinium types already present in the coral tissue acquired during early life stages. Compelling evidence for symbiont switching, that is, the acquisition of novel Symbiodinium types from the environment, by adult coral colonies, is currently lacking. Using deep sequencing analysis of Symbiodinium rDNA internal transcribed spacer 2 (ITS2) PCR amplicons from two pocilloporid coral species, we show evidence consistent with de novo acquisition of Symbiodinium types from the environment by adult corals following two consecutive bleaching events. Most of these newly detected symbionts remained in the rare biosphere (background types occurring below 1% relative abundance), but one novel type reached a relative abundance of ~33%. Two de novo acquired Symbiodinium types belong to the thermally resistant clade D, suggesting that this switching may have been driven by consecutive thermal bleaching events. Our results are particularly important given the maternal mode of Symbiodinium transmission in the study species, which generally results in high symbiont specificity. These findings will cause a paradigm shift in our understanding of coral-Symbiodinium symbiosis flexibility and mechanisms of environmental acclimatisation in corals.

  3. Hemolytic and urease activities in vibrios isolated from fresh and frozen oysters

    Directory of Open Access Journals (Sweden)

    Renata Albuquerque Costa

    2013-01-01

    Full Text Available INTRODUCTION: The present study aimed to survey the Vibrio microbiota of oysters (Crassostrea rhizophorae obtained from restaurants in Fortaleza, State of Ceará, Brazil, and to identify virulence factors. METHODS: The isolated vibrios were submitted to biochemical identification and were tested for hemolytic and urease activities. RESULTS: The isolated strains belonged to 13 species, with predominance of Vibrio mimicus. Of the strain isolates only from fresh samples, 20.5% and 2.8% showed hemolytic and urease activities, respectively. CONCLUSIONS: The findings support the little-publicized claim that Vibrio species other than V. parahaemolyticus and V. vulnificus can represent a health risk to public health.

  4. Role and regulation of the orphan AphA protein of quorum sensing in pathogenic Vibrios.

    Science.gov (United States)

    Lu, Renfei; Osei-Adjei, George; Huang, Xinxiang; Zhang, Yiquan

    2018-03-01

    Quorum sensing (QS), a cell-to-cell communication process, is widely distributed in the bacterial kingdom. Bacteria use QS to control gene expression in response to cell density by detecting the signal molecules called autoinducers. AphA protein is the master QS regulator of vibrios operating at low cell density. It regulates the expression of a variety of genes, especially those encoding virulence factors, flagella/motility and biofilm formation. The role and regulation of AphA in vibrios, especially in human pathogenic vibrios, are summarized in this review. Clarification of the roles of AphA will help us to understand the pathogenesis of vibrios.

  5. A journey into the wild of the cnidarian model system Aiptasia and its symbionts

    KAUST Repository

    Voolstra, Christian R.

    2013-08-27

    The existence of coral reef ecosystems relies critically on the mutualistic relationship between calcifying cnidarians and photosynthetic, dinoflagellate endosymbionts in the genus Symbiodinium. Reef-corals have declined globally due to anthropogenic stressors, for example, rising sea-surface temperatures and pollution that often disrupt these symbiotic relationships (known as coral bleaching), exacerbating mass mortality and the spread of disease. This threatens one of the most biodiverse marine ecosystems providing habitats to millions of species and supporting an estimated 500 million people globally (Hoegh-Guldberg et al. 2007). Our understanding of cnidarian-dinoflagellate symbioses has improved notably with the recent application of genomic and transcriptomic tools (e.g. Voolstra et al. 2009; Bayer et al. 2012; Davy et al. 2012), but a model system that allows for easy manipulation in a laboratory environment is needed to decipher underlying cellular mechanisms important to the functioning of these symbioses. To this end, the sea anemone Aiptasia, otherwise known as a \\'pest\\' to aquarium hobbyists, is emerging as such a model system (Schoenberg & Trench 1980; Sunagawa et al. 2009; Lehnert et al. 2012). Aiptasia is easy to grow in culture and, in contrast to its stony relatives, can be maintained aposymbiotically (i.e. dinoflagellate free) with regular feeding. However, we lack basic information on the natural distribution and genetic diversity of these anemones and their endosymbiotic dinoflagellates. These data are essential for placing the significance of this model system into an ecological context. In this issue of Molecular Ecology, Thornhill et al. (2013) are the first to present genetic evidence on the global distribution, diversity and population structure of Aiptasia and its associated Symbiodinium spp. By integrating analyses of the host and symbiont, this research concludes that the current Aitpasia taxonomy probably needs revision and that two

  6. Comparative Profiling of coral symbiont communities from the Caribbean, Indo-Pacific, and Arabian Seas

    KAUST Repository

    Arif, Chatchanit

    2014-12-01

    Coral reef ecosystems are in rapid decline due to global and local anthropogenic factors. Being among the most diverse ecosystems on Earth, a loss will decrease species diversity, and remove food source for people along the coast. The coral together with its symbionts (i.e. Symbiodinium, bacteria, and other microorganisms) is called the ‘coral holobiont’. The coral host offers its associated symbionts suitable habitats and nutrients, while Symbiodinium and coral-associated bacteria provide the host with photosynthates and vital nutrients. Association of corals with certain types of Symbiodinium and bacteria confer coral stress tolerance, and lack or loss of these symbionts coincides with diseased or bleached corals. However, a detailed understanding of the coral holobiont diversity and structure in regard to diseases and health states or across global scales is missing. This dissertation addressed coral-associated symbiont diversity, specifically of Symbiodinium and bacteria, in various coral species from different geographic locations and different health states. The main aims were (1) to expand the scope of existing technologies, (2) to establish a standardized framework to facilitate comparison of symbiont assemblages over coral species and sites, (3) to assess Symbiodinium diversity in the Arabian Seas, and (4) to elucidate whether coral health states have conserved bacterial footprints. In summary, a next generation sequencing pipeline for Symbiodinium diversity typing of the ITS2 marker is developed and applied to describe Symbiodinium diversity in corals around the Arabian Peninsula. The data show that corals in the Arabian Seas are dominated by a single Symbiodinium type, but harbor a rich variety of types in low abundant. Further, association with different Symbiodinium types is structured according to geographic locations. In addition, the application of 16S rRNA gene microarrays to investigate how differences in microbiome structure relate to

  7. Investigation of household contamination of Vibrio cholerae in Bangladesh

    DEFF Research Database (Denmark)

    Hossain, Zenat Zebin; Farhana, Israt; Mohan Tulsiani, Suhella

    . cholerae El Tor strain N16961, showed hemolysis and proteolysis activity but none of them exhibited any hemagglutinin activity on human erythrocytes. The study findings indicate that V. cholerae contamination is mostly originated in and around kitchen area rather than latrine area. Contaminated food...... and water supply may be the reason behind this relatively high presence of virulence factors in food plates and water pots. Direct exposure routes of disease transmission should be a major consideration in cholera prevention policies. Investigation of household contamination of Vibrio cholerae in Bangladesh......The role of in-house transmission on the incidence of Vibrio cholerae, the deadly waterborne pathogen, is still not developed. The aim of the current study was to investigate possible contamination routes in household domain for effective cholera control in Bangladesh. To examine the prevalence...

  8. Vibrio bacteria in raw oysters: managing risks to human health.

    Science.gov (United States)

    Froelich, Brett A; Noble, Rachel T

    2016-03-05

    The human-pathogenic marine bacteria Vibrio vulnificus and V. parahaemolyticus are strongly correlated with water temperature, with concentrations increasing as waters warm seasonally. Both of these bacteria can be concentrated in filter-feeding shellfish, especially oysters. Because oysters are often consumed raw, this exposes people to large doses of potentially harmful bacteria. Various models are used to predict the abundance of these bacteria in oysters, which guide shellfish harvest policy meant to reduce human health risk. Vibrio abundance and behaviour varies from site to site, suggesting that location-specific studies are needed to establish targeted risk reduction strategies. Moreover, virulence potential, rather than simple abundance, should be also be included in future modeling efforts. © 2016 The Author(s).

  9. Characterization of the secretomes of two vibrios pathogenic to mollusks.

    Directory of Open Access Journals (Sweden)

    Stéphanie Madec

    Full Text Available Vibrio tapetis causes the brown ring disease in the Japanese clam Ruditapes philippinarum while Vibrio aestuarianus is associated with massive oyster mortalities. As extracellular proteins are often associated with the virulence of pathogenic bacteria, we undertook a proteomic approach to characterize the secretomes of both vibrios. The extracellular proteins (ECPs of both species were fractionated by SEC-FPLC and in vitro assays were performed to measure the effects of each fraction on hemocyte cellular parameters (phagocytosis and adhesion. Fractions showing a significant effect were subjected to SDS-PAGE, and proteins were identified by nano LC-MS/MS. 45 proteins were identified for V. aestuarianus and 87 for V. tapetis. Most of them belonged to outer membrane or were periplasmic, including porins or adhesins that were already described as virulence factors in other bacterial species. Others were transporter components, flagella proteins, or proteins of unknown function (14 and 15 respectively. Interestingly, for V. aestuarianus, we noted the secretion of 3 extracellular enzymes including the Vam metalloprotease and two other enzymes (one putative lipase and one protease. For V. tapetis, we identified five extracellular enymes, i.e. two different endochitinases, one protease, one lipase and an adhesin. A comparison of both secretomes also showed that only the putative extracellular lipase was common to both secretomes, underscoring the difference in pathogenicity mechanisms between these two species. Overall, these results characterize for the first time the secretomes of these two marine pathogenic vibrios and constitute a useful working basis to further analyze the contribution of specific proteins in the virulence mechanisms of these species.

  10. Marine Vibrio Species Produce the Volatile Organic Compound Acetone

    OpenAIRE

    Nemecek-Marshall, M.; Wojciechowski, C.; Kuzma, J.; Silver, G. M.; Fall, R.

    1995-01-01

    While screening aerobic, heterotrophic marine bacteria for production of volatile organic compounds, we found that a group of isolates produced substantial amounts of acetone. Acetone production was confirmed by gas chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The major acetone producers were identified as nonclinical Vibrio species. Acetone production was maximal in the stationary phase of growth and was stimulated by addition of l-leucine...

  11. Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan

    OpenAIRE

    Hsin-I Hsiao; Man-Ser Jan; Hui-Ju Chi

    2016-01-01

    This study aimed to investigate and quantify the relationship between climate variation and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated moving average (ARIMA) models (including autoregression, seasonality, and a lag-time effect) were employed to predict the role of climatic factors (including temperature, rainfall, relative humidity, ocean temperature and ocean salinity) on the incidence of V. parahaemolyticus in Taiwan between 2000 and 201...

  12. Infectious speciation revisited: impact of symbiont-depletion on female fitness and mating behavior of Drosophila paulistorum.

    Directory of Open Access Journals (Sweden)

    Wolfgang J Miller

    2010-12-01

    Full Text Available The neotropical Drosophila paulistorum superspecies, consisting of at least six geographically overlapping but reproductively isolated semispecies, has been the object of extensive research since at least 1955, when it was initially trapped mid-evolution in flagrant statu nascendi. In this classic system females express strong premating isolation patterns against mates belonging to any other semispecies, and yet uncharacterized microbial reproductive tract symbionts were described triggering hybrid inviability and male sterility. Based on theoretical models and limited experimental data, prime candidates fostering symbiont-driven speciation in arthropods are intracellular bacteria belonging to the genus Wolbachia. They are maternally inherited symbionts of many arthropods capable of manipulating host reproductive biology for their own benefits. However, it is an ongoing debate as to whether or not reproductive symbionts are capable of driving host speciation in nature and if so, to what extent. Here we have reevaluated this classic case of infectious speciation by means of present day molecular approaches and artificial symbiont depletion experiments. We have isolated the α-proteobacteria Wolbachia as the maternally transmitted core endosymbionts of all D. paulistorum semispecies that have coevolved towards obligate mutualism with their respective native hosts. In hybrids, however, these mutualists transform into pathogens by overreplication causing embryonic inviability and male sterility. We show that experimental reduction in native Wolbachia titer causes alterations in sex ratio, fecundity, and mate discrimination. Our results indicate that formerly designated Mycoplasma-like organisms are most likely Wolbachia that have evolved by becoming essential mutualistic symbionts in their respective natural hosts; they have the potential to trigger pre- and postmating isolation. Furthermore, in light of our new findings, we revisit the concept of

  13. The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels

    Science.gov (United States)

    Fisher, C.R.; Childress, J.J.; Oremland, R.S.; Bidigare, R.R.

    1987-01-01

    Undescribed hydrocarbon-seep mussels were collected from the Louisiana Slope, Gulf of Mexico, during March 1986, and the ultrastructure of their gills was examined and compared to Bathymodiolus thermophilus, a mussel collected from the deep-sea hydrothermal vents on the Gala??pagos Rift in March 1985. These closely related mytilids both contain abundant symbiotic bacteria in their gills. However, the bacteria from the two species are distinctly different in both morphology and biochemistry, and are housed differently within the gills of the two mussels. The symbionts from the seep mussel are larger than the symbionts from B. thermophilus and, unlike the latter, contain stacked intracytoplasmic membranes. In the seep mussel three or fewer symbionts appear to be contained in each host-cell vacuole, while in B. thermophilus there are often more than twenty bacteria visible in a single section through a vacuole. The methanotrophic nature of the seep-mussel symbionts was confirmed in 14C-methane uptake experiments by the appearance of label in both CO2 and acid-stable, non-volatile, organic compounds after a 3 h incubation of isolated gill tissue. Furthermore, methane consumption was correlated with methanol dehydrogenase activity in isolated gill tissue. Activity of ribulose-1,5-biphosphate (RuBP) carboxylase and 14CO2 assimilation studies indicate the presence of either a second type of symbiont or contaminating bacteria on the gills of freshly captured seep mussels. A reevaluation of the nutrition of the symbionts in B. thermophilus indicates that while the major symbiont is not a methanotroph, its status as a sulfur-oxidizing chemoautotroph, as has been suggested previously, is far from proven. ?? 1987 Springer-Verlag.

  14. Distribution ofVibrio cholerae in two Florida estuaries.

    Science.gov (United States)

    Hood, M A; Ness, G E; Rodrick, G E; Blake, N J

    1983-04-01

    The distribution ofVibrio cholerae was examined in 2 Florida estuaries, Apalachicola and Tampa Bay.Vibrio cholerae serotype non-01 was the most abundant serotype, being isolated from 45% of the oyster samples, 30% of the sediments, 50% of the waters, and 75% of the blue crabs.Vibrio cholerae serotype 01 was isolated from only one oyster sample. Strong linear correlations betweenV. cholerae and temperature, salinity, or the other physical/chemical parameters measured,Escherichia coli, or fecal coliforms were not observed, but a range of temperatures and salinities appeared relevant to the distribution of the organism. The organism was present in the highest concentrations when salinities were 10‰-25‰ and temperatures were 20‡C-35‡C.In vitro growth curves of 95V. cholerae environmental isolates further supported that 10‰-25‰ was an ideal salinity range for the organisms. The results suggest thatV. cholerae is a widely distributed organism in the nutrient-rich warm waters of the Gulf Coast estuaries.

  15. [Characterization of haemolysis of the Vibrio parahaemolyticus no.93].

    Science.gov (United States)

    Su, S C; Lee, C Y

    1997-02-01

    Vibrio parahaemolyticus is a causative bacterium of food poisoning, and the haemolysin produced by this organism has been considered as one of the important virulence factors. In order to understand the pathogenic mechanism of this bacterium, the characteristics of haemolysin from Vibrio parahaemolyticus isolated from Taiwan were studied. One of the clinical strains, V. parahaemolyticus No.93, presents a weak hemolytic zone on 7% NaCl-Wagatsuma medium. The DNA hybridization results show that V. parahemolyticus has neither tdh nor trh gene. V. parahaemolyticus No.93 shows obviously hemolytic zone on 3%-NaCl Wagatsuma medium (human blood). The crude extracellular protein of V. parahaemolyticus No. 93 was evaluated for its heat tolerance and enzyme activities by media assay. The results show that this crude extracellular protein is thermolabile. The crude extracellular protein of V. parahaemolyticus No.93 was analyzed on 10% SDS-PAGE and an apparent band of 64 kDa protein was observed. Furthermore, the crude extracellular protein was analyzed by running gelatin-SDS-PAGE and hemoglobin-SDS-PAGE, and three clear zones on 62 kDa, 52 kDa and 41 kDa were observed on both SDS-PAGEs. Thus we propose that the crude extracellular protein of the V. parahaemolyticus No.93 can degrade gelatin as well as hemoglobin. Whether these protease being the virulence factors of Vibrio parahaemolyticus No.93 needs to be further studied.

  16. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters.

    Science.gov (United States)

    Westrich, Jason R; Ebling, Alina M; Landing, William M; Joyner, Jessica L; Kemp, Keri M; Griffin, Dale W; Lipp, Erin K

    2016-05-24

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrio after natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust-Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health.

  17. Lutzomyia (Pintomyia) fischeri (Diptera: Psychodidae: Phlebotominae), a probable vector of American cutaneous leishmaniasis: detection of natural infection by Leishmania (Viannia) DNA in specimens from the municipality of Porto Alegre (RS), Brazil, using multiplex PCR assay.

    Science.gov (United States)

    Pita-Pereira, Daniela de; Souza, Getúlio D; Pereira, Thaís de Araújo; Zwetsch, Adriana; Britto, Constança; Rangel, Elizabeth F

    2011-12-01

    In order to determine natural Leishmania (Viannia) infection in Lutzomyia (Pintomyia) fischeri, a multiplex PCR methodology coupled to non-isotopic hybridization was adopted for the analysis of sand fly samples collected by CDC light traps in an endemic area of American Cutaneous Leishmaniasis (ACL) in the periurban region of the municipality of Porto Alegre, Rio Grande do Sul State, Brazil. We analyzed by PCR methodology 560 specimens of Lutzomyia (Pintomyia) fischeri (520 females and 40 males). The wild sand flies were grouped into 56 pools (52 females and 4 males) of 10 each, and positive results were detected in 2 of the 52 female pools, representing a minimum infection rate of 0.38% based on the presence of at least 1 infected insect in the pool. This result associated with some local evidence such as anthopophily, spatial distribution in accordance with the transmission area and human case incidence, suggests that L. (P.)fischeri may be considered as a secondary vector of ACL in the studied locality. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Extract from the fermented soybean product Natto inhibits Vibrio biofilm formation and reduces shrimp mortality from Vibrio harveyi infection.

    Science.gov (United States)

    Yatip, Pattanan; Nitin Chandra Teja, D; Flegel, Timothy W; Soowannayan, Chumporn

    2018-01-01

    Many bacteria, including Vibrio pathogens of shrimp, need to colonize and/or form biofilms in hosts or the environment to cause disease. Thus, one possible control strategy for shrimp Vibriosis is biofilm inhibition. With this objective, an extract from the Japanese fermented soybean product, Natto was tested with the luminescent shrimp pathogen Vibrio harveyi (VH) for its ability to inhibit or degrade biofilm and to interfere with cell growth in broth. Natto is a traditional fermentation product of Bacillus subtilis var Natto (BSN1). Using 96 well microtiter plates coated with 0.4% chitosan, we found that biofilm formation by VH was inhibited, while growth in parallel broth cultures was not. When an extract from Natto prepared using BSN1 was mixed with feed for the whiteleg shrimp Penaeus vannamei before immersion challenge with V. harveyi at 10 6  cfu/ml, survival was significantly higher (p≤0.05) than for control shrimp given feed without these additives. Further work done to test whether d-amino acids were involved in biofilm formation as previously reported for B. subtilis, Staphylococus aureus and Pseudomonas aeruginosa gave negative results. In conclusion, we discovered that Natto extract can inhibit Vibrio biofilm formation and that it or BSN1 alone added to shrimp feed can significantly reduce shrimp mortality in immersion challenges with pathogenic VH. This shows some promise for possible application against Vibriosis in shrimp since Natto is generally regarded as safe (GRAS) for human consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A nonnative and a native fungal plant pathogen similarly stimulate ectomycorrhizal development but are perceived differently by a fungal symbiont.

    Science.gov (United States)

    Zampieri, Elisa; Giordano, Luana; Lione, Guglielmo; Vizzini, Alfredo; Sillo, Fabiano; Balestrini, Raffaella; Gonthier, Paolo

    2017-03-01

    The effects of plant symbionts on host defence responses against pathogens have been extensively documented, but little is known about the impact of pathogens on the symbiosis and if such an impact may differ for nonnative and native pathogens. Here, this issue was addressed in a study of the model system comprising Pinus pinea, its ectomycorrhizal symbiont Tuber borchii, and the nonnative and native pathogens Heterobasidion irregulare and Heterobasidion annosum, respectively. In a 6-month inoculation experiment and using both in planta and gene expression analyses, we tested the hypothesis that H. irregulare has greater effects on the symbiosis than H. annosum. Although the two pathogens induced the same morphological reaction in the plant-symbiont complex, with mycorrhizal density increasing exponentially with pathogen colonization of the host, the number of target genes regulated in T. borchii in plants inoculated with the native pathogen (i.e. 67% of tested genes) was more than twice that in plants inoculated with the nonnative pathogen (i.e. 27% of genes). Although the two fungal pathogens did not differentially affect the amount of ectomycorrhizas, the fungal symbiont perceived their presence differently. The results may suggest that the symbiont has the ability to recognize a self/native and a nonself/nonnative pathogen, probably through host plant-mediated signal transduction. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Charles A. Osunla

    2017-10-01

    Full Text Available Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.

  1. Genome Sequence of Vibrio cholerae Strain O1 Ogawa El Tor, Isolated in Mexico, 2013

    OpenAIRE

    Díaz-Quiñonez, José Alberto; Hernández-Monroy, Irma; López-Martínez, Irma; Ortiz-Alcántara, Joanna; González-Durán, Elizabeth; Ruiz-Matus, Cuitláhuac; Kuri-Morales, Pablo; Ramírez-González, José Ernesto

    2014-01-01

    We present the draft genome sequence of Vibrio cholerae InDRE 3140 recovered in 2013 during a cholera outbreak in Mexico. The genome showed the Vibrio 7th pandemic islands VSP1 and VSP2, the pathogenic islands VPI-1 and VPI-2, the integrative and conjugative element SXT/R391 (ICE-SXT), and both prophages CTXφ and RS1φ.

  2. Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus

    NARCIS (Netherlands)

    Leon-Sicairos, N.; Canizalez-Roman, A.; de la Garza, M.; Reyes-Lopez, M.; Zazueta-Beltran, J.; Nazmi, K.; Gomez-Gil, B.; Bolscher, J.G.

    2009-01-01

    Infections caused by Vibrio parahaemolyticus, an halophilic member of the genus Vibrio, have increased globally in the last 5 years. Diarrhea caused by V. parahaemolyticus results from eating raw or undercooked seafood. The aim of this work was to investigate whether lactoferrin and some

  3. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa.

    Science.gov (United States)

    Osunla, Charles A; Okoh, Anthony I

    2017-10-07

    Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.

  4. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa

    Science.gov (United States)

    Osunla, Charles A.

    2017-01-01

    Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens. PMID:28991153

  5. Effects of Pollution on Vibrios in Woji River | Ojesanmi | Journal of ...

    African Journals Online (AJOL)

    The effect of pollution on Vibrio spp. in five sampling stations along Woji River in Port Harcourt was studied in the months of April and November 2010. Vibrio vulnificus, V. parahaemolyticus and V. alginolyticus were isolated. The Plate count technique on Thiosulphate Citrate Bile Salt agar revealed a high population density ...

  6. Genomic diversity of vibrios associated with the Brazilian coral Mussismilia hispida and its sympatric zoanthids (Palythoa caribaeorum, Palythoa variabilis and Zoanthus solanderi).

    Science.gov (United States)

    Chimetto, L A; Brocchi, M; Gondo, M; Thompson, C C; Gomez-Gil, B; Thompson, F L

    2009-06-01

    A taxonomic survey of the vibrios associated with the Brazilian endemic coral Mussismilia hispida and the sympatric zoanthids (i.e. Palythoa caribaeorum, Palythoa variabilis and Zoanthus solanderi). Mucus of 54 cnidarian specimens collected in three different places at São Sebastião in two consecutive years (i.e. 2005 and 2006) was used for taxonomic characterization of the cnidarian microbiota. Ninety-eight of the 151 vibrio isolates fell within the vibrio core group according to partial 16S rDNA sequences. We performed the sequencing of recA and pyrH genes of all vibrio isolates. The most abundant taxa belonged to the vibrio core group (Vibrio harveyi, Vibrio rotiferianus, Vibrio campbellii and Vibrio alginolyticus), Vibrio mediterranei (=Vibrio shillonii) and Vibrio chagasii. With the exception of V. chagasii which was found only in the mucus of M. hispida, the other species appeared in different hosts with no evidence for the presence of host-specific clones or species. Using rep-PCR analysis, we observed a high genomic heterogeneity within the vibrios. Each vibrio isolate generated a different rep-PCR fingerprint pattern. There was a complete agreement between the grouping based on rep-PCR and concatenated sequences of pyrH, recA and 16S rDNA, but the pyrH gene has the highest discriminatory power for vibrio species identification. The vibrio core group is dominant in the mucus of these cnidarians. There is a tremendous diversity of vibrio lineages within the coral mucus. pyrH gene sequences permit a clear-cut identification of vibrios. The taxonomic resolution provided by pyrH (but not recA) appears to be enough for identifying species of vibrios and for disclosing putative new taxa. The vibrio core group appears to be dominant in the mucus of the Brazilian cnidarians. The overrepresentation of these vibrios may reflect as yet unknown ecological functions in the coral holobiont.

  7. Efek Antibakteri Ekstrak Daun Mimba (Azadirachta indica A. Juss terhadap Bakteri Vibrio algynoliticus Secara In Vitro

    Directory of Open Access Journals (Sweden)

    Uli Ayini

    2014-03-01

    Full Text Available Budidaya udang windu di Indonesia telah berkembang pesat. Salah satu kendala budidaya udang adalah penyakit Vibriosis yang disebabkan oleh bakteri Vibrio algynoliticus. Tujuan penelitian ini adalah untuk mengetahui efek antibakeri ekstrak daun mimba terhadap bakteri Vibrio algynoliticus. Penelitian ini menggunakan metode dilusi untuk mengetahui efek antibakteri ekstrak daun mimba terhadap bakteri Vibrio algynoliticus secara in vitro. Konsentrasi ekstrak yang digunakan (% yaitu: 0; 2,5; 5; 7,5; 10; 12,5 dan sebagai kontrol terdiri dari kontrol positif, dan kontrol negatif. Pengumpulan data untuk menentukan MIC (Minimum Inhibitory Concentration dilakukan dengan membandingkan kejernihan kultur di medium TSB 2% pada berbagai konsentrasi yang berbeda, dengan kontrol positif dan kontrol negatif. Penentuan MBC (Minimum Bacterisidal Concentration dilakukan dengan melihat ada tidaknya dan jumlah koloni bakteri Vibrio alginolyticus yang muncul pada medium subkultur TSA 2% setelah inkubasi 24 jam. Hasil penelitian menunjukkan nilai MIC yaitu konsentrasi 5%, hal ini ditunjukkan dengan tabung yang mulai jernih. Nilai MBC ekstrak daun mimba terhadap bakteri Vibrio alginolyticus adalah konsentrasi 12,5% ditandai dengan sudah tidak munculnya  koloni bakteri Vibrio alginolyticus. Berdasarkan penelitian ini dapat disimpulkan bahwa ekstrak daun mimba dapat memberikan efek antibakteri terhadap bakteri Vibrio alginolyticus secara in vitro.Tiger shrimp cultivation in Indonesia has been growing rapidly. The main obstacle is the shrimp farming vibriosis disease caused by the bacterium Vibrio algynoliticus. The aim of this research was to determine the effects of neem leaf extract antibakeri against Vibrio algynoliticus. This study used a dilution method to determine the antibacterial effect of neem leaf extract against Vibrio algynoliticus bacteria in vitro. The concentration of the extract used (%: 0; 2.5; 5; 7.5; 10; 12.5 and as a control consisting of a positive

  8. Vibrios on the half shell: what the walrus and the carpenter didn't know.

    Science.gov (United States)

    Blake, P A

    1983-10-01

    At least nine Vibrio species have been associated with disease in the United States. Vibrio fluvialis, V. hollisae, V. mimicus, and V. parahaemolyticus cause diarrheal diseases, but may also be encountered in extraintestinal infections such as wound and ear infections, septicemia, and cholecystitis. Vibrio alginolyticus, V. damsela, V. metschnikovii, and V. vulnificus primarily cause extraintestinal disease. Toxigenic V. cholerae O1 is the cause of epidemic cholera, whereas nontoxigenic V. cholerae O1 and non-O1 V. cholerae have been associated with both diarrheal and extraintestinal diseases. Most reports of vibrio infections have come from states along the Atlantic Ocean and Gulf of Mexico and from Hawaii, and most of the infections have occurred during summer and fall. Wound and ear infections have occurred after exposure to salty or brackish water or to drippings from raw seafoods. Foodborne vibrio infections are almost all caused by seafoods, especially oysters eaten raw. Thorough cooking and careful handling will render seafoods safe for consumption.

  9. Vibrio parahaemolyticus: A Review on the Pathogenesis, Prevalence and Advance Molecular Identification Techniques

    Directory of Open Access Journals (Sweden)

    Vengadesh eLetchumanan

    2014-12-01

    Full Text Available Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. Vibrio parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked or mishandled marine products. In rare cases, Vibrio parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. Vibrio parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh, which plays a similar role as thermostable direct hemolysin (tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2 to ensure its survival in the environment. This review aims at discussing the Vibrio parahemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques.

  10. Phylogenetic analysis of algal symbionts associated with four North American amphibian egg masses.

    Science.gov (United States)

    Kim, Eunsoo; Lin, Yuan; Kerney, Ryan; Blumenberg, Lili; Bishop, Cory

    2014-01-01

    Egg masses of the yellow-spotted salamander Ambystoma maculatum form an association with the green alga "Oophila amblystomatis" (Lambert ex Wille), which, in addition to growing within individual egg capsules, has recently been reported to invade embryonic tissues and cells. The binomial O. amblystomatis refers to the algae that occur in A. maculatum egg capsules, but it is unknown whether this population of symbionts constitutes one or several different algal taxa. Moreover, it is unknown whether egg masses across the geographic range of A. maculatum, or other amphibians, associate with one or multiple algal taxa. To address these questions, we conducted a phylogeographic study of algae sampled from egg capsules of A. maculatum, its allopatric congener A. gracile, and two frogs: Lithobates sylvatica and L. aurora. All of these North American amphibians form associations with algae in their egg capsules. We sampled algae from egg capsules of these four amphibians from localities across North America, established representative algal cultures, and amplified and sequenced a region of 18S rDNA for phylogenetic analysis. Our combined analysis shows that symbiotic algae found in egg masses of four North American amphibians are closely related to each other, and form a well-supported clade that also contains three strains of free-living chlamydomonads. We designate this group as the 'Oophila' clade, within which the symbiotic algae are further divided into four distinct subclades. Phylogenies of the host amphibians and their algal symbionts are only partially congruent, suggesting that host-switching and co-speciation both play roles in their associations. We also established conditions for isolating and rearing algal symbionts from amphibian egg capsules, which should facilitate further study of these egg mass specialist algae.

  11. Dark production of extracellular superoxide by the coral Porites astreoides and representative symbionts

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2016-11-01

    Full Text Available The reactive oxygen species (ROS superoxide has been implicated in both beneficial and detrimental processes in coral biology, ranging from pathogenic disease resistance to coral bleaching. Despite the critical role of ROS in coral health, there is a distinct lack of ROS measurements and thus an incomplete understanding of underpinning ROS sources and production mechanisms within coral systems. Here, we quantified in situ extracellular superoxide concentrations at the surfaces of aquaria-hosted Porites astreoides during a diel cycle. High concentrations of superoxide (~10’s of nM were present at coral surfaces, and these levels did not change significantly as a function of time of day. These results indicate that the coral holobiont produces extracellular superoxide in the dark, independent of photosynthesis. As a short-lived anion at physiological pH, superoxide has a limited ability to cross intact biological membranes. Further, removing surface mucus layers from the P. astreoides colonies did not impact external superoxide concentrations. We therefore attribute external superoxide derived from the coral holobiont under these conditions to the activity of the coral host epithelium, rather than mucus-derived epibionts or internal sources such as endosymbionts (e.g., Symbiodinium. However, endosymbionts likely contribute to internal ROS levels via extracellular superoxide production. Indeed, common coral symbionts, including multiple strains of Symbiodinium (clades A to D and the bacterium Endozoicomonas montiporae LMG 24815, produced extracellular superoxide in the dark and at low light levels. Further, representative P. astreoides symbionts, Symbiodinium CCMP2456 (clade A and E. montiporae, produced similar concentrations of superoxide alone and in combination with each other, in the dark and low light, and regardless of time of day. Overall, these results indicate that healthy, non-stressed P. astreoides and representative symbionts produce

  12. Molecular evidence for Lessepsian invasion of soritids (larger symbiont bearing benthic foraminifera.

    Directory of Open Access Journals (Sweden)

    Gily Merkado

    Full Text Available The Mediterranean Sea is considered as one of the hotspots of marine bioinvasions, largely due to the influx of tropical species migrating through the Suez Canal, so-called Lessepsian migrants. Several cases of Lessepsian migration have been documented recently, however, little is known about the ecological characteristics of the migrating species and their aptitude to colonize the new areas. This study focused on Red Sea soritids, larger symbiont-bearing benthic foraminifera (LBF that are indicative of tropical and subtropical environments and were recently found in the Israeli coast of the Eastern Mediterranean. We combined molecular phylogenetic analyses of soritids and their algal symbionts as well as network analysis of Sorites orbiculus Forskål to compare populations from the Gulf of Elat (northern Red Sea and from a known hotspot in Shikmona (northern Israel that consists of a single population of S. orbiculus. Our phylogenetic analyses show that all specimens found in Shikmona are genetically identical to a population of S. orbiculus living on a similar shallow water pebbles habitat in the Gulf of Elat. Our analyses also show that the symbionts found in Shikmona and Elat soritids belong to the Symbiodinium clade F5, which is common in the Red Sea and also present in the Indian Ocean and Caribbean Sea. Our study therefore provides the first genetic and ecological evidences that indicate that modern population of soritids found on the Mediterranean coast of Israel is probably Lessepsian, and is less likely the descendant of a native ancient Mediterranean species.

  13. Productivity links morphology, symbiont specificity and bleaching in the evolution of Caribbean octocoral symbioses.

    Science.gov (United States)

    Baker, David M; Freeman, Christopher J; Knowlton, Nancy; Thacker, Robert W; Kim, Kiho; Fogel, Marilyn L

    2015-12-01

    Many cnidarians host endosymbiotic dinoflagellates from the genus Symbiodinium. It is generally assumed that the symbiosis is mutualistic, where the host benefits from symbiont photosynthesis while providing protection and photosynthetic substrates. Diverse assemblages of symbiotic gorgonian octocorals can be found in hard bottom communities throughout the Caribbean. While current research has focused on the phylo- and population genetics of gorgonian symbiont types and their photo-physiology, relatively less work has focused on biogeochemical benefits conferred to the host and how these benefits vary across host species. Here we examine this symbiosis among 11 gorgonian species collected in Bocas del Toro, Panama. By coupling light and dark bottle incubations (P/R) with (13)C-bicarbonate tracers, we quantified the link between holobiont oxygen metabolism with carbon assimilation and translocation from symbiont to host. Our data show that P/R varied among species, and was correlated with colony morphology and polyp size. Sea fans and sea plumes were net autotrophs (P/R>1.5), while nine species of sea rods were net heterotrophs with most below compensation (P/R<1.0). (13)C assimilation corroborated the P/R results, and maximum δ(13)Chost values were strongly correlated with polyp size, indicating higher productivity by colonies with high polyp SA:V. A survey of gorgonian-Symbiodinium associations revealed that productive species maintain specialized, obligate symbioses and are more resistant to coral bleaching, whereas generalist and facultative associations are common among sea rods that have higher bleaching sensitivities. Overall, productivity and polyp size had strong phylogenetic signals with carbon fixation and polyp size showing evidence of trait covariance.

  14. Phylogenetic analysis of algal symbionts associated with four North American amphibian egg masses.

    Directory of Open Access Journals (Sweden)

    Eunsoo Kim

    Full Text Available Egg masses of the yellow-spotted salamander Ambystoma maculatum form an association with the green alga "Oophila amblystomatis" (Lambert ex Wille, which, in addition to growing within individual egg capsules, has recently been reported to invade embryonic tissues and cells. The binomial O. amblystomatis refers to the algae that occur in A. maculatum egg capsules, but it is unknown whether this population of symbionts constitutes one or several different algal taxa. Moreover, it is unknown whether egg masses across the geographic range of A. maculatum, or other amphibians, associate with one or multiple algal taxa. To address these questions, we conducted a phylogeographic study of algae sampled from egg capsules of A. maculatum, its allopatric congener A. gracile, and two frogs: Lithobates sylvatica and L. aurora. All of these North American amphibians form associations with algae in their egg capsules. We sampled algae from egg capsules of these four amphibians from localities across North America, established representative algal cultures, and amplified and sequenced a region of 18S rDNA for phylogenetic analysis. Our combined analysis shows that symbiotic algae found in egg masses of four North American amphibians are closely related to each other, and form a well-supported clade that also contains three strains of free-living chlamydomonads. We designate this group as the 'Oophila' clade, within which the symbiotic algae are further divided into four distinct subclades. Phylogenies of the host amphibians and their algal symbionts are only partially congruent, suggesting that host-switching and co-speciation both play roles in their associations. We also established conditions for isolating and rearing algal symbionts from amphibian egg capsules, which should facilitate further study of these egg mass specialist algae.

  15. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica.

    Directory of Open Access Journals (Sweden)

    Alga Zuccaro

    2011-10-01

    Full Text Available Recent sequencing projects have provided deep insight into fungal lifestyle-associated genomic adaptations. Here we report on the 25 Mb genome of the mutualistic root symbiont Piriformospora indica (Sebacinales, Basidiomycota and provide a global characterization of fungal transcriptional responses associated with the colonization of living and dead barley roots. Extensive comparative analysis of the P. indica genome with other Basidiomycota and Ascomycota fungi that have diverse lifestyle strategies identified features typically associated with both, biotrophism and saprotrophism. The tightly controlled expression of the lifestyle-associated gene sets during the onset of the symbiosis, revealed by microarray analysis, argues for a biphasic root colonization strategy of P. indica. This is supported by a cytological study that shows an early biotrophic growth followed by a cell death-associated phase. About 10% of the fungal genes induced during the biotrophic colonization encoded putative small secreted proteins (SSP, including several lectin-like proteins and members of a P. indica-specific gene family (DELD with a conserved novel seven-amino acids motif at the C-terminus. Similar to effectors found in other filamentous organisms, the occurrence of the DELDs correlated with the presence of transposable elements in gene-poor repeat-rich regions of the genome. This is the first in depth genomic study describing a mutualistic symbiont with a biphasic lifestyle. Our findings provide a significant advance in understanding development of biotrophic plant symbionts and suggest a series of incremental shifts along the continuum from saprotrophy towards biotrophy in the evolution of mycorrhizal association from decomposer fungi.

  16. Unique and conserved genome regions in Vibrio harveyi and related species in comparison with the shrimp pathogen Vibrio harveyi CAIM 1792

    DEFF Research Database (Denmark)

    Valles, Iliana Espinoza; Vora, Gary J; Lin, Baochuan

    2015-01-01

    Vibrio harveyi CAIM 1792 is a marine bacterial strain that causes mortality in farmed shrimp in north-west Mexico, and the identification of virulence genes in this strain is important for understanding its pathogenicity. The aim of this work was to compare the V. harveyi CAIM 1792 genome....... The proteome of CAIM 1792 had higher similarity to those of other V. harveyi strains (78 %) than to those of the other closely related species Vibrio owensii (67 %), Vibrio rotiferianus (63 %) and Vibrio campbellii (59 %). Pan-genome ORFans trees showed the best fit with the accepted phylogeny based on DNA......-DNA hybridization and multi-locus sequence analysis of 11 concatenated housekeeping genes. SNP analysis clustered 34/38 genomes within their accepted species. The pangenomic and SNP trees showed that V. harveyi is the most conserved of the four species studied and V. campbellii may be divided into at least three...

  17. Vibrio ecology in PNW - The Ecology of Vibrio parahaemolyticus in the Pacific Northwest: Implications for risk assessment and early warning systems

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Over the past decade, there has been a significant increase in Vibrio parahaemolyticus-related gastroenteritis from the consumption of raw oysters harvested in...

  18. Genome sequence of Bradyrhizobium sp. LMTR 3, a diazotrophic symbiont of Lima bean (Phaseolus lunatus

    Directory of Open Access Journals (Sweden)

    Ernesto Ormeño-Orrillo

    2017-09-01

    Full Text Available Bradyrhizobium sp. LMTR 3 is a representative strain of one of the geno(species of diazotrophic symbionts associated with Lima bean (Phaseolus lunatus in Peru. Its 7.83 Mb genome was sequenced using the Illumina technology and found to encode a complete set of genes required for nodulation and nitrogen fixation, and additional genes putatively involved in root colonization. Its draft genome sequence and annotation have been deposited at GenBank under the accession number MAXC00000000.

  19. Spatial distribution of symbiont-bearing dinoflagellates in the Indian Ocean in relation to oceanographic regimes

    DEFF Research Database (Denmark)

    Tarangkoon, Woraporn; Hansen, Gert; Hansen, Per Juel

    2010-01-01

    , and the highest species diversity and cell concentrations were found at temperatures around 20 to 30°C. The symbiont-bearing dinoflagellates were always associated with water masses with low nutrient (N-limited) and chl a concentrations. Special attention was given to the ectosymbiont-bearing dinoflagellates....... Under light microscopy, some of the food vacuoles of Ornithocercus spp. resembled ectosymbionts in size, shape and colour. Transmission electron microscopy of O. magnificus and O. quadratus revealed the presence of a peduncle and many rhabdosomes; both may serve in prey capture. Also, numerous food...

  20. Temperature-dependent inhibition of opportunistic Vibrio pathogens by native coral commensal bacteria.

    Science.gov (United States)

    Frydenborg, Beck R; Krediet, Cory J; Teplitski, Max; Ritchie, Kim B

    2014-02-01

    Bacteria living within the surface mucus layer of corals compete for nutrients and space. A number of stresses affect the outcome of this competition. The interactions between native microorganisms and opportunistic pathogens largely determine the coral holobiont's overall health and fitness. In this study, we tested the hypothesis that commensal bacteria isolated from the mucus layer of a healthy elkhorn coral, Acropora palmata, are capable of inhibition of opportunistic pathogens, Vibrio shiloi AK1 and Vibrio coralliilyticus. These vibrios are known to cause disease in corals and their virulence is temperature dependent. Elevated temperature (30 °C) increased the cell numbers of one commensal and both Vibrio pathogens in monocultures. We further tested the hypothesis that elevated temperature favors pathogenic organisms by simultaneously increasing the fitness of vibrios and decreasing the fitness of commensals by measuring growth of each species within a co-culture over the course of 1 week. In competition experiments between vibrios and commensals, the proportion of Vibrio spp. increased significantly under elevated temperature. We finished by investigating several temperature-dependent mechanisms that could influence co-culture differences via changes in competitive fitness. The ability of Vibrio spp. to utilize glycoproteins found in A. palmata mucus increased or remained stable when exposed to elevated temperature, while commensals' tended to decrease utilization. In both vibrios and commensals, protease activity increased at 30 °C, while chiA expression increased under elevated temperatures for Vibrio spp. These results provide insight into potential mechanisms through which elevated temperature may select for pathogenic bacterial dominance and lead to disease or a decrease in coral fitness.

  1. Investigation of Vibrio alginolyticus, V. harveyi, and V. parahaemolyticus in large yellow croaker, Pseudosciaena crocea (Richardson reared in Xiangshan Bay, China

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2016-05-01

    Full Text Available Large yellow croaker (LYC, Pseudosciaena crocea is an economically important fish species of mariculture in China. The variation of yearly production of LYC has been increasingly related to the outbreaks of fish diseases. Moreover, Vibrio infections have been identified in this fish frequently. To understand the pattern of Vibrio infections in LYC, we conducted a culture-independent survey of Vibrios in farmed LYC populations using a multiplex PCR method targeting Vibrio alginolyticus, Vibrio harveyi and Vibrio parahaemolyticus. The results showed that three fish pathogenic Vibrios had been detected in LYC populations at each sampling with a prevalence ranging from 6.7% to 73.3% but no single species dominated the Vibrio infection. The findings indicate that three Vibrio species still have impact on health status of farmed LYC and LYC aquaculture requires more efficacious prophylactic strategies. Keywords: Vibrio, Large yellow croaker, Multiplex PCR, Epidemiology

  2. In situ photobiology of corals over large depth ranges: A multivariate analysis on the roles of environment, host, and algal symbiont

    NARCIS (Netherlands)

    Frade, P.R.; Bongaerts, P.; Winkelhagen, A.J.S.; Tonk, L.; Bak, R.P.M.

    2008-01-01

    We applied a multivariate analysis to investigate the roles of host and symbiont on the in situ physiological response of genus Madracis holobionts towards light. Across a large depth gradient (5-40 m) and for four Madracis species and three symbiont genotypes, we assessed several variables by

  3. Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef : implications for symbiont shuffling

    NARCIS (Netherlands)

    Mieog, J. C.; van Oppen, M. J. H.; Cantin, N. E.; Stam, W. T.; Olsen, J. L.

    Reef corals form associations with an array of genetically and physiologically distinct endosymbionts from the genus Symbiodinium. Some corals harbor different clades of symbionts simultaneously, and over time the relative abundances of these clades may change through a process called symbiont

  4. Beneficial effect of Verminephrobacter nephridial symbionts on the fitness of the earthworm Aporrectodea tuberculata

    DEFF Research Database (Denmark)

    Lund, Marie Braad; Holmstrup, Martin; Lomstein, Bente Aagaard

    2010-01-01

    grown on the low nutrient diet. Thus, the Verminephrobacter nephridial symbionts do have a beneficial effect on their earthworm host. Cocoons with and without symbionts did not significantly differ in total organic carbon (TOC), total nitrogen (TN), or total hydrolysable amino acid (THAA) content, which...

  5. Arsenophonus and Sodalis Symbionts in Louse Flies: an Analogy to the Wigglesworthia and Sodalis System in Tsetse Flies.

    Science.gov (United States)

    Nováková, Eva; Husník, Filip; Šochová, Eva; Hypša, Václav

    2015-09-01

    Symbiosis between insects and bacteria result in a variety of arrangements, genomic modifications, and metabolic interconnections. Here, we present genomic, phylogenetic, and morphological characteristics of a symbiotic system associated with Melophagus ovinus, a member of the blood-feeding family Hippoboscidae. The system comprises four unrelated bacteria representing different stages in symbiosis evolution, from typical obligate mutualists inhabiting bacteriomes to freely associated commensals and parasites. Interestingly, the whole system provides a remarkable analogy to the association between Glossina and its symbiotic bacteria. In both, the symbiotic systems are composed of an obligate symbiont and two facultative intracellular associates, Sodalis and Wolbachia. In addition, extracellular Bartonella resides in the gut of Melophagus. However, the phylogenetic origins of the two obligate mutualist symbionts differ. In Glossina, the mutualistic Wigglesworthia appears to be a relatively isolated symbiotic lineage, whereas in Melophagus, the obligate symbiont originated within the widely distributed Arsenophonus cluster. Although phylogenetically distant, the two obligate symbionts display several remarkably similar traits (e.g., transmission via the host's "milk glands" or similar pattern of genome reduction). To obtain better insight into the biology and possible role of the M. ovinus obligate symbiont, "Candidatus Arsenophonus melophagi," we performed several comparisons of its gene content based on assignments of the Cluster of Orthologous Genes (COG). Using this criterion, we show that within a set of 44 primary and secondary symbionts, "Ca. Arsenophonus melophagi" is most similar to Wigglesworthia. On the other hand, these two bacteria also display interesting differences, such as absence of flagellar genes in Arsenophonus and their presence in Wigglesworthia. This finding implies that a flagellum is not essential for bacterial transmission via milk glands

  6. Incidence of Vibrio cholerae and related vibrios in a coastal lagoon and seawater influenced by lake discharges along an annual cycle.

    Science.gov (United States)

    Garay, E; Arnau, A; Amaro, C

    1985-08-01

    Most probable numbers of Vibrio cholerae and related vibrios were determined in Albufera Lake, Valencia, Spain, and in coastal waters under the influence of the lake discharges over the course of an annual cycle. The influence of temperature, kind of water, and characteristics of the different sampling sites on the numbers of vibrios recovered was evaluated. Maximum recovery of vibrios reached 10(3)/ml in both types of waters analyzed. V. cholerae numbers reached 10(3)/ml in the lake and 10(2) in one of the coastal sites. Frequently during the warm season, all vibrios isolated were identified as V. cholerae. Occasionally, no V. cholerae was recovered. The recovery of vibrios was significantly influenced by the temperature of the water and the type of water analyzed. Most of the V. cholerae isolates were included in Heiberg groups I and II, and nearly 50% of the strains used chitin as sole carbon source. Indole was not produced by 100% of the strains. All strains tested were non-O1 serovars.

  7. ORF Alignment: NC_006840 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available endodeoxyribonuclease RuvC [Vibrio fischeri ES114] ... Length = 157 ... Query: 2 ... SIILGIDPGSRITGYGVIRQNGRHLQYLGSGCIRMS...EKELPGRLKQIYAGVSEIITQFQP 61 ... SIILGIDPGSRITGYGVIRQNGRHLQYLGSGCIRMS...EKELPGRLKQIYAGVSEIITQFQP Sbjct: 1 ... SIILGIDPGSRITGYGVIRQNGRHLQYLGSGCIRMSEKELPGRLKQIYAGVSEIITQFQP 6

  8. ORF Alignment: NC_006840 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available ... acetyltransferase [Vibrio fischeri ES114] ... Length = 146 ... Query: 2 ... VSIRTAEKTDLARIFDIETEAFGD...HGYPSFFIRQAFDCWADGLLVAKKEKETLGYVLQVP 61 ... VSIRTAEKTDLARIFDIETEAFGDHGYPSF...FIRQAFDCWADGLLVAKKEKETLGYVLQVP Sbjct: 1 ... VSIRTAEKTDLARIFDIETEAFGDHGYPSFFIRQAFDCWADGLLVAKKEKETLGYVLQVP 60 ... Q

  9. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals.

    Science.gov (United States)

    Silverstein, Rachel N; Cunning, Ross; Baker, Andrew C

    2015-01-01

    Mutualistic organisms can be particularly susceptible to climate change stress, as their survivorship is often limited by the most vulnerable partner. However, symbiotic plasticity can also help organisms in changing environments by expanding their realized niche space. Coral-algal (Symbiodinium spp.) symbiosis exemplifies this dichotomy: the partnership is highly susceptible to 'bleaching' (stress-induced symbiosis breakdown), but stress-tolerant symbionts can also sometimes mitigate bleaching. Here, we investigate the role of diverse and mutable symbiotic partnerships in increasing corals' ability to thrive in high temperature conditions. We conducted repeat bleaching and recovery experiments on the coral Montastraea cavernosa, and used quantitative PCR and chlorophyll fluorometry to assess the structure and function of Symbiodinium communities within coral hosts. During an initial heat exposure (32 °C for 10 days), corals hosting only stress-sensitive symbionts (Symbiodinium C3) bleached, but recovered (at either 24 °C or 29 °C) with predominantly (>90%) stress-tolerant symbionts (Symbiodinium D1a), which were not detected before bleaching (either due to absence or extreme low abundance). When a second heat stress (also 32 °C for 10 days) was applied 3 months later, corals that previously bleached and were now dominated by D1a Symbiodinium experienced less photodamage and symbiont loss compared to control corals that had not been previously bleached, and were therefore still dominated by Symbiodinium C3. Additional corals that were initially bleached without heat by a herbicide (DCMU, at 24 °C) also recovered predominantly with D1a symbionts, and similarly lost fewer symbionts during subsequent thermal stress. Increased thermotolerance was also not observed in C3-dominated corals that were acclimated for 3 months to warmer temperatures (29 °C) before heat stress. These findings indicate that increased thermotolerance post-bleaching resulted from

  10. Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection

    International Nuclear Information System (INIS)

    Sharma, Anshu; Rawat, Kamla; Solanki, Pratima R; Bohidar, H B; Baral, Dinesh

    2015-01-01

    We report the studies relating to fabrication of an efficient immunosensor for Vibrio cholerae detection. Magnetite (iron oxide (Fe 3 O 4 )) nanoparticles (NPs) have been synthesized by the co-precipitation method and capped by citric acid (CA). These NPs were electrophoretically deposited onto indium-tin-oxide (ITO)-coated glass substrate and used for immobilization of monoclonal antibodies against Vibrio cholerae (Ab) and bovine serum albumin (BSA) for Vibrio cholerae detection using an electrochemical technique. The structural and morphological studies of Fe 3 O 4 and CA-Fe 3 O 4 /ITO were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) techniques. The average crystalline size of Fe 3 O 4 , CA-Fe 3 O 4 nanoparticles obtained were about 29 ± 1 nm and 37 ± 1 nm, respectively. The hydrodynamic radius of the nanoparticles was found to be 77.35 nm (Fe 3 O 4 ) and 189.51 nm (CA-Fe 3 O 4 ) by DLS measurement. The results of electrochemical response studies of the fabricated BSA/Ab/CA-Fe 2 O 3 /ITO immunosensor exhibits a good detection range of 12.5–500 ng mL −1 with a low detection limit of 0.32 ng mL −1 , sensitivity 0.03 Ω/ng ml −1 cm −2 , and reproducibility more than 11 times. (paper)

  11. Quorum Sensing Disruption in Vibrio harveyi Bacteria by Clay Materials.

    Science.gov (United States)

    Naik, Sajo P; Scholin, Jonathon; Ching, San; Chi, Fang; Herpfer, Marc

    2018-01-10

    This work describes the use of clay minerals as catalysts for the degradation of quorum sensing molecule N-(3-oxooctanoyl)-dl-homoserine lactone. Certain clay minerals as a result of their surface properties and porosity can catalytically degrade the quorum sensing molecule into smaller fragments. The disruption of quorum sensing by clay in a growing Gram-negative Vibrio harveyi bacteria culture was also studied by monitoring luminescence and population density of the bacteria, wherein quenching of bacterial quorum sensing activity was observed by means of luminescence reduction. The results of this study show that food-grade clays can be used as biocatalysts in disrupting bacterial activity in various media.

  12. Vibrio cholerae Classical Biotype Strains Reveal Distinct Signatures in Mexico

    OpenAIRE

    Alam, Munirul; Islam, M. Tarequl; Rashed, Shah Manzur; Johura, Fatema-tuz; Bhuiyan, Nurul A.; Delgado, Gabriela; Morales, Rosario; Mendez, Jose Luis; Navarro, Armando; Watanabe, Haruo; Hasan, Nur-A; Colwell, Rita R.; Cravioto, Alejandro

    2012-01-01

    Vibrio cholerae O1 classical (CL) biotype caused the fifth and sixth pandemics, and probably the earlier cholera pandemics, before the El Tor (ET) biotype initiated the seventh pandemic in Asia in the 1970s by completely displacing the CL biotype. Although the CL biotype was thought to be extinct in Asia and although it had never been reported from Latin America, V. cholerae CL and ET biotypes, including a hybrid ET, were found associated with areas of cholera endemicity in Mexico between 199...

  13. Environmental determinants of Vibrio parahaemolyticus in the Chesapeake Bay.

    Science.gov (United States)

    Davis, Benjamin J K; Jacobs, John M; Davis, Meghan F; Schwab, Kellogg J; DePaola, Angelo; Curriero, Frank C

    2017-08-25

    Vibrio parahaemolyticus naturally-occurs in brackish and marine waters and is one of the leading causes of seafood-borne illness. Previous work studying the ecology of V. parahaemolyticus is often limited in geographic extent and lacking a full range of environmental measures. This study used a unique, large dataset of surface water samples in the Chesapeake Bay ( n =1,385) collected from 148 monitoring stations from 2007 to 2010. Water was analyzed for over 20 environmental parameters with additional meteorological and surrounding land use data. V. parahaemolyticus -specific genetic markers thermolabile hemolysin ( tlh ), thermostable direct hemolysin ( tdh ), and tdh -related hemolysin ( trh ) were assayed using quantitative PCR (qPCR), and interval-censored regression models with non-linear effects were estimated to account for limits of detection and quantitation. tlh was detected in 19.6% of water samples; tdh or trh markers were not detected. Results confirmed previously reported positive associations for V. parahaemolyticus abundance with temperature and turbidity and negative associations with high salinity (> 10-23‰). Furthermore, the salinity relationship was determined to be a function of both low temperature and turbidity, with an increase of either nullifying the high salinity effect. Associations with dissolved oxygen and phosphate also appeared stronger when samples were taken nearby human developments. Renewed focus on the V. parahaemolyticus ecological paradigm is warranted to protect public health. Importance Vibrio parahaemolyticus is one of the leading causes of seafood-borne illness in the United States and across the globe. Exposure is often through consuming raw or undercooked shellfish. Given the natural presence of the bacterium in the marine environment, improved understanding of its environmental determinants is necessary for future preventative measures. This analysis of environmental Vibrio parahaemolyticus is one of only a few that

  14. Zooxanthellar symbionts shape host sponge trophic status through translocation of carbon.

    Science.gov (United States)

    Weisz, Jeremy B; Massaro, Andrew J; Ramsby, Blake D; Hill, Malcolm S

    2010-12-01

    Sponges belonging to the genus Cliona are common inhabitants of many coral reefs, and as bioeroders, they play an important role in the carbonate cycle of the reef. Several Cliona species maintain intracellular populations of dinoflagellate zooxanthellae (i.e., Symbiodinium spp.), which also form symbioses with a variety of other invertebrates and protists (e.g., corals, molluscs, foraminifera). Unlike the case of coral symbioses, however, almost nothing is known of the metabolic interaction between sponges and their zooxanthella symbionts. To assess this interaction, we performed a tracer experiment to follow C and N in the system, performed a reciprocal transplant experiment, and measured the stable carbon isotope ratio of Cliona spp. with and without zooxanthellae to study the influence of environment on the interaction. We found strong evidence of a transfer of C from zooxanthellae to their sponge hosts but no evidence of a transfer of N from sponge to zooxanthellae. We also saw significant influences of the environment on the metabolism of the sponges. Finally, we observed significant differences in carbon metabolism of sponge species with and without symbionts. These data strongly support hypotheses of metabolic integration between zooxanthellae and their sponge host and extend our understanding of basic aspects of benthic-pelagic coupling in shallow-water marine environments.

  15. Antagonistic interactions between honey bee bacterial symbionts and implications for disease

    Directory of Open Access Journals (Sweden)

    Armstrong Tamieka-Nicole

    2006-03-01

    Full Text Available Abstract Background Honey bees, Apis mellifera, face many parasites and pathogens and consequently rely on a diverse set of individual and group-level defenses to prevent disease. One route by which honey bees and other insects might combat disease is through the shielding effects of their microbial symbionts. Bees carry a diverse assemblage of bacteria, very few of which appear to be pathogenic. Here we explore the inhibitory effects of these resident bacteria against the primary bacterial pathogen of honey bees, Paenibacillus larvae. Results Here we isolate, culture, and describe by 16S rRNA and protein-coding gene sequences 61 bacterial isolates from honey bee larvae, reflecting a total of 43 distinct bacterial taxa. We culture these bacteria alongside the primary larval pathogen of honey bees, Paenibacillus larvae, and show that many of these isolates severely inhibit the growth of this pathogen. Accordingly, symbiotic bacteria including those described here are plausible natural antagonists toward this widespread pathogen. Conclusion The results suggest a tradeoff in social insect colonies between the maintenance of potentially beneficial bacterial symbionts and deterrence at the individual and colony level of pathogenic species. They also provide a novel mechanism for recently described social components behind disease resistance in insect colonies, and point toward a potential control strategy for an important bee disease.

  16. Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Coleman-Derr, Devin [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Tringe, Susannah G. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2014-06-06

    The exponential growth in world population is feeding a steadily increasing global need for arable farmland, a resource that is already in high demand. This trend has led to increased farming on subprime arid and semi-arid lands, where limited availability of water and a host of environmental stresses often severely reduce crop productivity. The conventional approach to mitigating the abiotic stresses associated with arid climes is to breed for stress-tolerant cultivars, a time and labor intensive venture that often neglects the complex ecological context of the soil environment in which the crop is grown. In recent years, studies have attempted to identify microbial symbionts capable of conferring the same stress-tolerance to their plant hosts, and new developments in genomic technologies have greatly facilitated such research. Here in this paper, we highlight many of the advantages of these symbiont-based approaches and argue in favor of the broader recognition of crop species as ecological niches for a diverse community of microorganisms that function in concert with their plant hosts and each other to thrive under fluctuating environmental conditions

  17. Bacteriocins with a broader antimicrobial spectrum prevail in enterococcal symbionts isolated from the hoopoe's uropygial gland.

    Science.gov (United States)

    Ruiz-Rodríguez, Magdalena; Martínez-Bueno, Manuel; Martín-Vivaldi, Manuel; Valdivia, Eva; Soler, Juan J

    2013-09-01

    The use of compounds produced by symbiotic bacteria against pathogens in animals is one of the most exciting discoveries in ecological immunology. The study of those antibiotic metabolites will enable an understanding of the defensive strategies against pathogenic infections. Here, we explore the role of bacteriocins explaining the antimicrobial properties of symbiotic bacteria isolated from the uropygial gland of the hoopoe (Upupa epops). The antagonistic activity of 187 strains was assayed against eight indicator bacteria, and the presence of six bacteriocin genes was detected in the genomic DNA. The presence of bacteriocin genes correlated with the antimicrobial activity of isolates. The most frequently detected bacteriocin genes were those encoding for the MR10 and AS-48 enterocins, which confer the highest inhibition capacity. All the isolates belonged to the genus Enterococcus, with E. faecalis as the most abundant species, with the broadest antimicrobial spectrum and the highest antagonistic activity. The vast majority of E. faecalis strains carried the genes of MR10 and AS-48 in their genome. Therefore, we suggest that fitness-related benefits for hoopoes associated with harbouring the most bactericidal symbionts cause the highest frequency of strains carrying MR10 and AS-48 genes. The study of mechanisms associated with the acquisition and selection of bacterial symbionts by hoopoes is necessary, however, to reach further conclusions. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Human symbionts inject and neutralize antibacterial toxins to persist in the gut.

    Science.gov (United States)

    Wexler, Aaron G; Bao, Yiqiao; Whitney, John C; Bobay, Louis-Marie; Xavier, Joao B; Schofield, Whitman B; Barry, Natasha A; Russell, Alistair B; Tran, Bao Q; Goo, Young Ah; Goodlett, David R; Ochman, Howard; Mougous, Joseph D; Goodman, Andrew L

    2016-03-29

    The human gut microbiome is a dynamic and densely populated microbial community that can provide important benefits to its host. Cooperation and competition for nutrients among its constituents only partially explain community composition and interpersonal variation. Notably, certain human-associated Bacteroidetes--one of two major phyla in the gut--also encode machinery for contact-dependent interbacterial antagonism, but its impact within gut microbial communities remains unknown. Here we report that prominent human gut symbionts persist in the gut through continuous attack on their immediate neighbors. Our analysis of just one of the hundreds of species in these communities reveals 12 candidate antibacterial effector loci that can exist in 32 combinations. Through the use of secretome studies, in vitro bacterial interaction assays and multiple mouse models, we uncover strain-specific effector/immunity repertoires that can predict interbacterial interactions in vitro and in vivo, and find that some of these strains avoid contact-dependent killing by accumulating immunity genes to effectors that they do not encode. Effector transmission rates in live animals can exceed 1 billion events per minute per gram of colonic contents, and multiphylum communities of human gut commensals can partially protect sensitive strains from these attacks. Together, these results suggest that gut microbes can determine their interactions through direct contact. An understanding of the strategies human gut symbionts have evolved to target other members of this community may provide new approaches for microbiome manipulation.

  19. THE ROLE OF BACTERIAL SYMBIONTS IN AMINO ACID COMPOSITION OF BLACK BEAN APHIDS

    Institute of Scientific and Technical Information of China (English)

    MingGan; De-ChengDing; Xue-xiaMiao

    2003-01-01

    To evaluate the role of bacterial symbionts ( Buchnera spp. ) in the black bean aphids ( Aphis craccivora Koch), the aphids were treated with the antibiotic, rifampicin, to eliminate their intracellular symbiotic bacteria. Analysis of protein and amino acid concentration in 7-day-old of aposymbiotic aphids showed that the total protein content per mg fresh weight was significantly reduced by 29 %, but free amino acid titers were increased by 17% . The ratio of the essential amino acids was in general only around 20% essential amino acids in phloem sap of broad bean, whereas it was 44% and 37% in symbiotic and aposymbiotic aphids, respectively,suggesting that the composition of the free amino acids was unbalanced. For example, the essential amino acid,threonine represented 21. 6% of essential amino acids in symbiotic aphids, but it was only 16.7% in aposymbiotic aphids. Likewise, two nonessential amino acids, tyrosine and serine, represented 8.9% and 5.6% of total amino acids in symbiontic aphids, respectively, but they enhanced to 21.1% and 13.6% in aposymbiotic aphids. It seems likely that the elevated free amino acid concentration in aposymbiotic aphids was caused by the limited protein anabolism as the result of the unbalanced amino acid composition.

  20. Juvenile corals can acquire more carbon from high-performance algal symbionts

    Science.gov (United States)

    Cantin, N. E.; van Oppen, M. J. H.; Willis, B. L.; Mieog, J. C.; Negri, A. P.

    2009-06-01

    Algal endosymbionts of the genus Symbiodinium play a key role in the nutrition of reef building corals and strongly affect the thermal tolerance and growth rate of the animal host. This study reports that 14C photosynthate incorporation into juvenile coral tissues was doubled in Acropora millepora harbouring Symbiodinium C1 compared with juveniles from common parentage harbouring Symbiodinium D in a laboratory experiment. Rapid light curves performed on the same corals revealed that the relative electron transport rate of photosystem II (rETRMAX) was 87% greater in Symbiodinium C1 than in Symbiodinium D in hospite. The greater relative electron transport through photosystem II of Symbiodinium C1 is positively correlated with increased carbon delivery to the host under the applied experimental conditions ( r 2 = 0.91). This may translate into a competitive advantage for juveniles harbouring Symbiodinium C1 under certain field conditions, since rapid early growth typically limits mortality. Both symbiont types exhibited severe reductions in 14C incorporation during a 10-h exposure to the electron transport blocking herbicide diuron (DCMU), confirming the link between electron transport through PSII and photosynthate incorporation within the host tissue. These findings advance the current understanding of symbiotic relationships between corals and their symbionts, providing evidence that enhanced growth rates of juvenile corals may result from greater translocation of photosynthates from Symbiodinium C1.

  1. Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance

    Directory of Open Access Journals (Sweden)

    Devin eColeman-Derr

    2014-06-01

    Full Text Available The exponential growth in world population is feeding a steadily increasing global need for arable farmland, a resource that is already in high demand. This trend has led to increased farming on subprime arid and semi-arid lands, where limited availability of water and a host of environmental stresses often severely reduce crop productivity. The conventional approach to mitigating the abiotic stresses associated with arid climes is to breed for stress-tolerant cultivars, a time and labor intensive venture that often neglects the complex ecological context of the soil environment in which the crop is grown. In recent years, studies have attempted to identify microbial symbionts capable of conferring the same stress-tolerance to their plant hosts, and new developments in genomic technologies have greatly facilitated such research. Here, we highlight many of the advantages of these symbiont-based approaches and argue in favor of the broader recognition of crop species as ecological niches for a diverse community of microorganisms that function in concert with their plant hosts and each other to thrive under fluctuating environmental conditions.

  2. Conditional Reduction of Predation Risk Associated with a Facultative Symbiont in an Insect.

    Directory of Open Access Journals (Sweden)

    Sarah Polin

    Full Text Available Symbionts are widespread among eukaryotes and their impacts on the ecology and evolution of their hosts are meaningful. Most insects harbour obligate and facultative symbiotic bacteria that can influence their phenotype. In the pea aphid Acyrthosiphon pisum, an astounding symbiotic-mediated phenotype has been recently observed: when infected with the symbiotic bacteria Rickettsiella viridis, young red aphid larvae become greener at adulthood and even darker green when co-infected with Rickettsiella viridis and Hamiltonella defensa. As body colour affects the susceptibility towards natural enemies in aphids, the influence of the colour change due to these facultative symbionts on the host survival in presence of predators was tested. Our results suggested that the Rickettsiella viridis infection may impact positively host survival by reducing predation risk. Due to results from uninfected aphids (i.e., more green ones attacked, the main assumption is that this symbiotic infection would deter the predatory ladybird feeding by reducing the profitability of their hosts rather than decreasing host detection through body colour change. Aphids co-infected with Rickettsiella viridis and Hamiltonella defensa were, however, more exposed to predation suggesting an ecological cost associated with multiple infections. The underlying mechanisms and ecological consequences of these symbiotic effects are discussed.

  3. Recent expansion of heat-activated retrotransposons in the coral symbiont Symbiodinium microadriaticum

    KAUST Repository

    Chen, Jit Ern

    2017-10-20

    Rising sea surface temperature is the main cause of global coral reef decline. Abnormally high temperatures trigger the breakdown of the symbiotic association between corals and their photosynthetic symbionts in the genus Symbiodinium. Higher genetic variation resulting from shorter generation times has previously been proposed to provide increased adaptability to Symbiodinium compared to the host. Retrotransposition is a significant source of genetic variation in eukaryotes and some transposable elements are specifically expressed under adverse environmental conditions. We present transcriptomic and phylogenetic evidence for the existence of heat stress-activated Ty1-copia-type LTR retrotransposons in the coral symbiont Symbiodinium microadriaticum. Genome-wide analyses of emergence patterns of these elements further indicate recent expansion events in the genome of S. microadriaticum. Our findings suggest that acute temperature increases can activate specific retrotransposons in the Symbiodinium genome with potential impacts on the rate of retrotransposition and the generation of genetic variation under heat stress.The ISME Journal advance online publication, 20 October 2017; doi:10.1038/ismej.2017.179.

  4. Complete Genome Sequence of the Soybean Symbiont Bradyrhizobium japonicum Strain USDA6T

    Directory of Open Access Journals (Sweden)

    Nobukazu Uchiike

    2011-10-01

    Full Text Available The complete nucleotide sequence of the genome of the soybean symbiont Bradyrhizobium japonicum strain USDA6T was determined. The genome of USDA6T is a single circular chromosome of 9,207,384 bp. The genome size is similar to that of the genome of another soybean symbiont, B. japonicum USDA110 (9,105,828 bp. Comparison of the whole-genome sequences of USDA6T and USDA110 showed colinearity of major regions in the two genomes, although a large inversion exists between them. A significantly high level of sequence conservation was detected in three regions on each genome. The gene constitution and nucleotide sequence features in these three regions indicate that they may have been derived from a symbiosis island. An ancestral, large symbiosis island, approximately 860 kb in total size, appears to have been split into these three regions by unknown large-scale genome rearrangements. The two integration events responsible for this appear to have taken place independently, but through comparable mechanisms, in both genomes.

  5. Application of Reverse Transcriptase-PCR-DGGE as a rapid method for routine determination of Vibrio spp. in foods.

    Science.gov (United States)

    Chahorm, Kanchana; Prakitchaiwattana, Cheunjit

    2018-01-02

    The aim of this research was to evaluate the feasibility of PCR-DGGE and Reverse Transcriptase-PCR-DGGE techniques for rapid detection of Vibrio species in foods. Primers GC567F and 680R were initially evaluated for amplifying DNA and cDNA of ten references Vibrio species by PCR method. The GC-clamp PCR amplicons were separated according to their sequences by the DGGE using 10% (w/v) polyacrylamide gel containing 45-70% urea and formamide denaturants. Two pair of Vibrio species, which could not be differentiated on the gel, was Vibrio fluvialis - Vibrio furnissii and Vibrio parahaemolyticus - Vibrio harveyi. To determine the detection limit, in the community of 10 reference strains containing the same viable population, distinct DNA bands of 3 species; Vibrio cholerae, Vibrio mimicus and Vibrio alginolyticus were consistently observed by PCR-DGGE technique. In fact, 5 species; Vibrio cholerae, Vibrio mimicus, Vibrio alginolyticus, Vibrio parahaemolyticus and Vibrio fluvialis consistently observed by Reverse Transcriptase-PCR-DGGE. In the community containing different viable population increasing from 10 2 to 10 5 CFU/mL, PCR-DGGE analysis only detected the two most prevalent species, while RT-PCR-DGGE detected the five most prevalent species. Therefore, Reverse Transcriptase-PCR-DGGE was also selected for detection of various Vibrio cell conditions, including viable cell (VC), injured cells from frozen cultures (IVC) and injured cells from frozen cultures with pre-enrichment (PIVC). It was found that cDNA band of all cell conditions gave the same migratory patterns, except that multiple cDNA bands of Plesiomonas shigelloides under IVC and PIVC conditions were found. When Reverse Transcriptase-PCR-DGGE was used for detecting Vibrio parahaemolyticus in the pathogen-spiked food samples, Vibrio parahaemolyticus could be detected in the spiked samples containing at least 10 2 CFU/g of this pathogen. The results obtained also corresponded to standard method (USFDA, 2004

  6. Preliminary study of transplanting as a process for reducing levels of Vibrio vulnificus and Vibrio parahaemolyticus in shellstock oysters.

    Science.gov (United States)

    Walton, William C; Nelson, Chris; Hochman, Mona; Schwarz, John

    2013-01-01

    Increasingly strict standards for harvest of oysters for the raw, half-shell market (designated as "white tag") should increase the proportion of oysters not meeting these standards (designated as "green tag"). Transplanting of green tag oysters into highsalinity waters (>20 practical salinity units) was explored as a means of returning Vibrio vulnificus and Vibrio parahaemolyticus levels to levels present on initial harvest. In summer 2011, oysters originally harvested in Louisiana were transplanted on two separate occasions (n = 2) to two sites in Mississippi Sound, AL: Sandy Bay and Dauphin Island. Oysters were tested for V. vulnificus and V. parahaemolyticus densities (by using the U.S. Food and Drug Administration enrichment method) after 2, 7, and 14 days deployed, with baseline samples taken (i) at the time of original harvest and iced, (ii) from oysters refrigerated within 1 h of harvest at oysters not refrigerated during the harvest trip (green tag) but refrigerated after an 8-h trip. White and green tag oysters were sampled ∼24 h on arrival in Bon Secour, AL, put on ice, and shipped for analysis. Among baseline samples, there were no significant differences in V. vulnificus and V. parahaemolyticus densities, although the densities in the green tag oysters tended to be highest. After transplanting, V. vulnificus densities were significantly highest on day 2, with no significant differences among any of the other days within a site. On day 2, Sandy Bay had significantly greater densities of V. vulnificus than the Dauphin Island site, but no other days differed from time zero. For Vibrio parahaemolyticus, densities were greatest on day 2 and lowest at time zero, but this did not differ significantly from abundance on day 14. Average survival was 83.4% (± 3.13 SD), with no differences between sites. These preliminary results indicate that high-salinity transplanting could be an effective method of converting green tag oysters to oysters suitable for

  7. Inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in oysters by high-hydrostatic pressure and mild heat.

    Science.gov (United States)

    Ye, Mu; Huang, Yaoxin; Chen, Haiqiang

    2012-10-01

    Several recent outbreaks associated with oysters have heightened safety concerns of raw shellfish consumptions, with the majority being attributed to Vibrio spp. The objective of this study was to determine the effect of high-hydrostatic pressure (HHP) followed by mild heating on the inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in live oysters. Inoculated oysters were randomly subjected to: a) pressurization at 200-300 MPa for 2 min at 21 °C, b) mild heat treatment at 40, 45 or 50 °C for up to 20 min and c) pressure treatment of 200-300 MPa for 2 min at 21 °C followed by heat treatment at 40-50 °C. Counts of V. parahaemolyticus and V. vulnificus were then determined using the most probable number (MPN) method. Pressurization at 200-300 MPa for 2 min resulted in various degrees of inactivation, from 1.2 to >7 log MPN/g reductions. Heat treatment at 40 and 45 °C for 20 min only reduced V. parahaemolyticus and V. vulnificus by 0.7-2.5 log MPN/g while at 50 °C for 15 min achieved >7 log MPN/g reduction. HHP and mild heat had synergistic effects. Combinations such as HHP at 250 MPa for 2 min followed by heat treatment at 45 °C for 15 min and HHP at 200 MPa for 2 min followed by heat treatment at 50 °C for 5 min reduced both V. parahaemolyticus and V. vulnificus to non-detectable levels by the MPN method (oysters (negative enrichment results). This study demonstrated the efficiency of HHP followed by mild heat treatments on inactivation of V. parahaemolyticus and V. vulnificus and could help the industry to establish parameters for processing oysters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Vibrios patogênicos em ostras (Crassostrea rhizophorae servidas em restaurantes no Rio de Janeiro: um alerta para a Saúde Pública Pathogenic Vibrios in oysters (Crassostrea rhizophorae served at restaurants in Rio de Janeiro: a public health warning

    Directory of Open Access Journals (Sweden)

    Christiane Soares Pereira

    2007-06-01

    Full Text Available Avaliaram-se 40 amostras de ostras (Crassostrea rhizophorae servidas in natura em 15 restaurantes da Cidade do Rio de Janeiro, a fim de investigar a presença de Vibrio spp. As amostras de ostras foram analisadas e submetidas a enriquecimento em água peptonada alcalina adicionada de 1 e 3% de NaCl, incubadas a 37°C por 24 horas. Em seguida, os cultivos foram semeados em agar tiossulfato citrato bile sacarose e as colônias suspeitas foram submetidas à caracterização bioquímica. Vibrio parahaemolyticus, Vibrio carchariae, Vibrio alginolyticus e Vibrio vulnificus representaram as principais espécies (> 60% isoladas a partir das ostras in natura.Forty oyster samples (Crassostrea rhizophorae served raw in 15 restaurants in the city of Rio de Janeiro were evaluated in order to investigate the presence of Vibrio spp. The oyster samples were analyzed and subjected to enrichment in alkaline peptone water with the addition of 1 and 3% NaCl and incubated at 37°C for 24 hours. Following this, the cultures were seeded onto thiosulfate citrate bile sucrose agar (TCBS and the suspected colonies were subjected to biochemical characterization. Vibrio parahaemolyticus, Vibrio carchariae, Vibrio alginolyticus and Vibrio vulnificus were the main species (> 60% isolated from raw oysters.

  9. Extracellular proteolytic enzymes produced by human pathogenic Vibrio species

    Directory of Open Access Journals (Sweden)

    Shin-Ichi eMiyoshi

    2013-11-01

    Full Text Available Bacteria in the genus Vibrio produce extracellular proteolytic enzymes to obtain nutrients via digestion of various protein substrates. However, the enzymes secreted by human pathogenic species have been documented to modulate the bacterial virulence. Several species including Vibrio cholerae and V. vulnificus are known to produce thermolysin-like metalloproteases termed vibriolysin. The vibriolysin from V. vulnificus, a causative agent of serious systemic infection, is a major toxic factor eliciting the secondary skin damage characterized by formation of the hemorrhagic brae. The vibriolysin from intestinal pathogens may play indirect roles in pathogenicity because it can activate protein toxins and hemagglutinin by the limited proteolysis and can affect the bacterial attachment to or detachment from the intestinal surface by degradation of the mucus layer. Two species causing wound infections, V. alginolyticus and V. parahaemolyticus, produce another metalloproteases so-called collagenases. Although the detailed pathological roles have not been studied, the collagenase is potent to accelerate the bacterial dissemination through digestion of the protein components of the extracellular matrix. Some species produce cymotrypsin-like serine proteases, which may also affect the bacterial virulence potential. The intestinal pathogens produce sufficient amounts of the metalloprotease at the small intestinal temperature; however, the metalloprotease production by extra-intestinal pathogens is much higher around the body surface temperature. On the other hand, the serine protease is expressed only in the absence of the metalloprotease.

  10. Identification and Initial Characterization of Prophages in Vibrio campbellii.

    Directory of Open Access Journals (Sweden)

    Nicola Lorenz

    Full Text Available Phages are bacteria targeting viruses and represent the most abundant biological entities on earth. Marine environments are exceptionally rich in bacteriophages, harboring a total of 4x1030 viruses. Nevertheless, marine phages remain poorly characterized. Here we describe the identification of intact prophage sequences in the genome of the marine γ-proteobacterium Vibrio campbellii ATCC BAA-1116 (formerly known as V. harveyi ATCC BAA-1116, which presumably belong to the family of Myoviridae. One prophage was found on chromosome I and shows significant similarities to the previously identified phage ΦHAP-1. The second prophage region is located on chromosome II and is related to Vibrio phage kappa. Exposure of V. campbellii to mitomycin C induced the lytic cycle of two morphologically distinct phages and, as expected, extracellular DNA from induced cultures was found to be specifically enriched for the sequences previously identified as prophage regions. Heat stress (50°C, 30 min was also found to induce phage release in V. campbellii. Notably, promoter activity of two representative phage genes indicated heterogeneous phage induction within the population.

  11. Antibiotic Resistance of Vibrio cholerae Isolates from Kashan, Iran

    Directory of Open Access Journals (Sweden)

    Afzali H.MD,

    2016-03-01

    Full Text Available Abstract Aims: Cholera is an acute diarrheal disease that can lead to severe dehydration and death. Antibiotic resistance is a big challenge in infective disease like Cholera. The present study aimed to understand the characteristics and trends of antibiotic resistance of V. cholerae isolations in and around Kashan, Iran. Instrument & Methods: In this descriptive cross-sectional study, samples were gathered using census method from 1998 to 2013 in Kashan, Iran. 1132 fecal samples of patients with acute diarrhea and 237 samples of suspected water samples were taken. The serotypes and biotypes were determined by an enzymatic method. Antibiotic susceptibility test was performed by using Disk Diffusion Method. Data were analyzed using SPSS 23 software. Fisher-exact and Chi-square tests were used to compare the statistical parameters. Findings: 96 fecal samples (8.5% and 18 water samples (7.6% were positive for Vibrio cholerae. Non-agglutinating (Nag isolates (75.4% were more common than serotype Inaba (13.2% and Ogawa (11.4%. Nag serotypes were mostly resistant to cefixime (44% and ampicillin (33%. In contaminated water samples also the most frequent cases were Nag serotype (50%. Nag serotype showed 22.2% of resistance to ampicillin and nitrofurantoin. Conclusion: Vibrio cholerae isolates in Kashan, Iran, are highly resistant to antibiotics, especially Nag serotypes.

  12. Effect of organic acids on shrimp pathogen, Vibrio harveyi.

    Science.gov (United States)

    Mine, Saori; Boopathy, Raj

    2011-07-01

    Shrimp farming accounts for more than 40% of the world shrimp production. Luminous vibriosis is a shrimp disease that causes major economic losses in the shrimp industry as a result of massive shrimp kills due to infection. Some farms in the South Asia use antibiotics to control Vibrio harveyi, a responsible pathogen for luminous vibriosis. However, the antibiotic-resistant strain was found recently in many shrimp farms, which makes it necessary to develop alternative pathogen control methods. Short-chain fatty acids are metabolic products of organisms, and they have been used as food preservatives for a long time. Organic acids are also commonly added in feeds in animal husbandry, but not in aquaculture. In this study, growth inhibitory effects of short-chain fatty acids, namely formic acid, acetic acid, propionic acid, and butyric acid, on V. harveyi were investigated. Among four acids, formic acid showed the strongest inhibitory effect followed by acetic acid, propionic acid, and butyric acid. The minimum inhibitory concentration (MIC) of 0.035% formic acid suppressed growth of V. harveyi. The major inhibitory mechanism seems to be the pH effect of organic acids. The effective concentration 50 (EC50) values at 96 h inoculation for all organic acids were determined to be 0.023, 0.041, 0.03, and 0.066% for formic, acetic, propionic, and butyric acid, respectively. The laboratory study results are encouraging to formulate shrimp feeds with organic acids to control vibrio infection in shrimp aquaculture farms.

  13. Quorum sensing negatively regulates chitinase in Vibrio harveyi.

    Science.gov (United States)

    Defoirdt, Tom; Darshanee Ruwandeepika, H A; Karunasagar, Indrani; Boon, Nico; Bossier, Peter

    2010-02-01

    Quorum sensing, bacterial cell-to-cell communication, regulates the virulence of Vibrio harveyi towards different hosts. Chitinase can be considered as a virulence factor because it helps pathogenic bacteria to attach to the host and to penetrate its tissues (e.g. in case of shrimp). Here, we show that quorum sensing negatively regulates chitinase in V. harveyi. Chitinolytic activity towards natural chitin from crab shells, the synthetic chitin derivative chitin azure, and fluorogenic chitin oligomers was significantly higher in a mutant in which the quorum-sensing system is completely inactivated when compared with a mutant in which the system is maximally active. Furthermore, the addition of signal molecule containing cell-free culture fluids decreased chitinase activity in a Harveyi Autoinducer 1 and Autoinducer 2-deficient double mutant. Finally, chitinase A mRNA levels were fivefold lower in the mutant in which the quorum-sensing system is maximally active when compared with the mutant in which the system is completely inactivated. [Correction added on 25 September 2009, after first online publication: the preceding sentence was corrected from 'Finally, chitinase A mRNA levels were fivefold lower in the mutant in which the quorum-sensing system is completely inactivated when compared with the mutant in which the system is maximally active.'] We argue that this regulation might help the vibrios to switch between host-associated and free-living life styles. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Vibrio harveyi effect under survival of Litopenaeus vannamei larvae

    Directory of Open Access Journals (Sweden)

    Gabriel Aguirre-Guzmán

    2013-06-01

    Full Text Available The culture of aquatic organisms show a high relevance in the human feeding and the culture activities can create artificial conditions that increase the growth and selection of specific bacteria. Vibrio species are normal bacteria’s from microflora of penaeid shrimp, those are opportunistic pathogens that can take advantage of the ecological changes generated for the culture of aquatic organisms and which may cause diseases, low survival and economic losses in the shrimp production. The aim of this research was to determine the variation in the survival of different larval substages (nauplius, zoea I-III, mysis I-III and postlarvae 1, of Pacific white shrimp Litopenaeus vannamei exposed at three doses [103 , 105 , and 107 colony-forming unit (CFU ml-1 [ of V. harveyi, by immersion (30 min as infection method. This species generated a significant low survival in larvae (p < 0.05 only in high doses (105 and 107 CFU ml-1 , where higher doses show the lowest values of survival. Larval substages and postlarvae 1 of shrimp showed sensitivity associate to the increase of Vibrio doses and this sensitivity decreased with the growth of larval substages and postlarvae 1. This information has high significance for the fisheries and aquaculture industry, which help to generate strategies to reduce the effects of V. harveyi with positive effect in growth and survival of the shrimp larvae and postlarvae 1.

  15. Simulated hatchery system to assess bacteriophage efficacy against Vibrio harveyi.

    Science.gov (United States)

    Raghu Patil, J; Desai, Srividya Narayanamurthy; Roy, Panchali; Durgaiah, Murali; Saravanan, R Sanjeev; Vipra, Aradhana

    2014-12-02

    Vibriosis caused by luminous Vibrio harveyi commonly contributes to poor survival in shrimp hatcheries and aquaculture ponds. Lytic bacteriophages pathogenic for V. harveyi are currently being investigated as an alternative to antibiotics to prevent vibriosis. Here, 8 bacteriophages were isolated from oysters and clams using V. harveyi strains as baiting hosts. Among these bacteriophages, 1 strain (VHP6b) identified as broadly pathogenic for 27 V. harveyi strains examined was further characterized by electron microscopy and genome sequence analysis. Phage VHP6b possessed a tail and morphology consistent with it being a member of the family Siphoviridae, and its genome and proteome were most closely related to the Vibrio phages SSP02 and MAR10. An integrase gene essential for lysogeny was not evident. The ability of bacteriophage VHP6b to protect shrimp postlarvae against vibriosis caused by V. harveyi strain VH6 was demonstrated in a model system designed to simulate typical hatchery conditions. Bacteriophage treatment improved survival of postlarvae by 40 to 60% under these conditions, so therapies based on this or other bacteriophages may be useful in shrimp hatcheries.

  16. Antimicrobial effect of dietary oregano essential oil against Vibrio bacteria in shrimps

    Directory of Open Access Journals (Sweden)

    Gracia-Valenzuela M.H.

    2014-01-01

    Full Text Available The effect of dietary oregano essential oils on the growth of Vibrio bacteria in shrimps was evaluated. Shrimps were fed: (i food with oregano oil with a high level of thymol; (ii food with oregano oil with a high level of carvacrol, and (iii food without oregano oil (the control. The animals were infected by three species of Vibrio (vulnificus, parahaemolyticus and cholerae. The microbial counts of Vibrio species were significantly lower (p <0.05 in tissues from animals whose food was supplemented with oregano oil. We concluded that dietary supplementation of shrimps with oregano oil provides antimicrobial activity into the body of the penaeids.

  17. Detection of Vibrio harveyi using hemolysin primer in tiger shrimp Penaeus monodon

    Directory of Open Access Journals (Sweden)

    Irma Suriyani

    2015-05-01

    Full Text Available ABSTRACT This study was aimed to analyze the sensitivity and ability of primer hemolysin in detecting pathogenetic Vibrio on tiger shrimp post-larvae (PL exposed under different exposure times in media inoculated with Vibrio harveyi. The PL of tiger shrimp were infected with 106 cfu/mL of V. harveyi by immersion method for three, six, 12, 24, 48 and 72 hours. The presence of hemolisin genes was detected by PCR techniques. The electrophoresis detected narrow hemolysin genes after PL were exposed for three and six hours. Clear visible bands of DNA Vibrio were observed for 12 hours of exposure. In contrast, no detected hemolysin gene of Vibrio was observed for PL exposed within 24, 48, and 72 hours. The rapid detection on Vibrio pathogenic for tiger shrimp PL should be conducted within three to 12 hours of exposure. No recommendation in utilizing this rapid detection for tiger shrimp PL exposed beyond 12 hours of V. harveyi. Keywords: specific primer, luminous Vibrio bacteria, pathogenic, PCR method, hemolysin gene  ABSTRAK Penelitian ini bertujuan untuk mengetahui kemampuan atau sensitivitas primer hemolisin dalam mendeteksi Vibrio patogen dengan lama pemaparan berbeda. Penelitian ini dilakukan dengan menginfeksikan Vibrio harveyi pada benur udang dengan metode perendaman pada konsentrasi 106 cfu/mL. Pengambilan sampel dilakukan pada waktu tiga, enam, 12, 24, 48, dan 72 jam pascainfeksi. Keberadaan gen hemolisin pada bakteri V. harveyi dideteksi menggunakan teknik polymerase chain reaction (PCR. Hasil elektroforesis memperlihatkan bahwa pada pemaparan tiga dan enam jam keberadaan gen hemolisin dari bakteri Vibrio patogen yang diinfeksikan sudah dapat terdeteksi pada benur walaupun masih terlihat tipis. Pada pemaparan 12 jam terlihat sangat jelas pita-pita DNA dari bakteri patogen. Sedangkan pada pemaparan 24, 48, dan 72 jam sudah tidak terdeteksi lagi gen hemolisin dari bakteri Vibrio. Hal ini diduga disebabkan terjadinya penurunan populasi

  18. Antagonistic Activities of Purple Non-sulfur Bacterial Extracts Against Antibiotic Resistant Vibrio sp.

    Directory of Open Access Journals (Sweden)

    Chandrasekaran, R.

    2011-01-01

    Full Text Available Solvent extracts of native purple non-sulfur bacterial (PNSB isolates from the effluents of brackish shrimp culture ponds, near Nagapattinam coast (South India were evaluated for antibacterial activity by the disc diffusion method. Best results were shown by the chloroform extracts against oxytetracycline resistant Vibrio harveyi and Vibrio fischerii. Among the purple non-sulfur bacterial isolates, Rhodobacter sphaeroides, showed maximum antagonistic activity. The findings suggest that the antagonistic extracts from Rba. sphaeroides could be used as an effective antibiotic in controlling Vibrio spp., in aquaculture systems.

  19. Expression patterns of mRNAs for methanotrophy and thiotrophy in symbionts of the hydrothermal vent mussel Bathymodiolus puteoserpentis

    Science.gov (United States)

    Wendeberg, Annelie; Zielinski, Frank U; Borowski, Christian; Dubilier, Nicole

    2012-01-01

    The hydrothermal vent mussel Bathymodiolus puteoserpentis (Mytilidae) from the Mid-Atlantic Ridge hosts symbiotic sulfur- and methane-oxidizing bacteria in its gills. In this study, we investigated the activity and distribution of these two symbionts in juvenile mussels from the Logatchev hydrothermal vent field (14°45′N Mid-Atlantic Ridge). Expression patterns of two key genes for chemosynthesis were examined: pmoA (encoding subunit A of the particulate methane monooxygenase) as an indicator for methanotrophy, and aprA (encoding the subunit A of the dissimilatory adenosine-5′-phosphosulfate reductase) as an indicator for thiotrophy. Using simultaneous fluorescence in situ hybridization (FISH) of rRNA and mRNA we observed highest mRNA FISH signals toward the ciliated epithelium where seawater enters the gills. The levels of mRNA expression differed between individual specimens collected in a single grab from the same sampling site, whereas no obvious differences in symbiont abundance or distribution were observed. We propose that the symbionts respond to the steep temporal and spatial gradients in methane, reduced sulfur compounds and oxygen by modifying gene transcription, whereas changes in symbiont abundance and distribution take much longer than regulation of mRNA expression and may only occur in response to long-term changes in vent fluid geochemistry. PMID:21734728

  20. Meta-analysis reveals host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia

    KAUST Repository

    Cui, Guoxin

    2018-02-22

    The metabolic symbiosis with photosynthetic algae of the genus Symbiodinium allows corals to thrive in the oligotrophic environments of tropical seas. Many aspects of this relationship have been investigated using transcriptomic analyses in the emerging model organism Aiptasia. However, previous studies identified thousands of putatively symbiosis-related genes, making it difficult to disentangle symbiosis-induced responses from undesired experimental parameters. Using a meta-analysis approach, we identified a core set of 731 high-confidence symbiosis-associated genes that reveal host-dependent recycling of waste ammonium and amino acid synthesis as central processes in this relationship. Combining transcriptomic and metabolomic analyses, we show that symbiont-derived carbon enables host recycling of ammonium into nonessential amino acids. We propose that this provides a regulatory mechanism to control symbiont growth through a carbon-dependent negative feedback of nitrogen availability to the symbiont. The dependence of this mechanism on symbiont-derived carbon highlights the susceptibility of this symbiosis to changes in carbon translocation, as imposed by environmental stress.

  1. Bacterial symbiont sharing in Megalomyrmex social parasites and their fungus-growing ant hosts

    DEFF Research Database (Denmark)

    Liberti, Joanito; Sapountzis, Panagiotis; Hansen, Lars H.

    2015-01-01

    nests such as consumption of the same fungus garden food, eating of host brood by social parasites, trophallaxis and grooming interactions between the ants, or parallel acquisition from the same nest environment. Our results imply that cohabiting ant social parasites and hosts may obtain functional...... benefits from bacterial symbiont transfer even when they are not closely related....

  2. Immunochemical localization of ribulose-1,5-bisphosphate carboxylase in the symbiont-containing gills of Solemya velum (Bivalvia : Mollusca)

    NARCIS (Netherlands)

    Cavanaugh, Colleen M.; Abbott, Marilyn S.; Veenhuis, Marten

    1988-01-01

    The distribution of the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase (RbuP2Case; EC 4.1.1.39) was examined by using two immunological methods in tissues of Solemya velum, an Atlantic coast bivalve containing putative chemoautotrophic symbionts. Antibodies elicited by the purified large

  3. Distinct effects of the nephridial symbionts Verminephrobacter and Candidatus Nephrothrix on reproduction and maturation of its earthworm host Eisenia andrei

    DEFF Research Database (Denmark)

    Viana, Flavia; Paz, Laura-Carlota; Methling, Karen

    2018-01-01

    to these two symbionts also hosts Agromyces-like bacteria in its mixed nephridial community: while growth was identical between control, Verminephrobacter-free and aposymbiotic worms, control worms produced significantly more cocoons and offspring than both Verminephrobacter-free and aposymbiotic worms...

  4. Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans.

    Directory of Open Access Journals (Sweden)

    Uzma Alam

    2011-12-01

    Full Text Available Tsetse flies are vectors of the protozoan parasite African trypanosomes, which cause sleeping sickness disease in humans and nagana in livestock. Although there are no effective vaccines and efficacious drugs against this parasite, vector reduction methods have been successful in curbing the disease, especially for nagana. Potential vector control methods that do not involve use of chemicals is a genetic modification approach where flies engineered to be parasite resistant are allowed to replace their susceptible natural counterparts, and Sterile Insect technique (SIT where males sterilized by chemical means are released to suppress female fecundity. The success of genetic modification approaches requires identification of strong drive systems to spread the desirable traits and the efficacy of SIT can be enhanced by identification of natural mating incompatibility. One such drive mechanism results from the cytoplasmic incompatibility (CI phenomenon induced by the symbiont Wolbachia. CI can also be used to induce natural mating incompatibility between release males and natural populations. Although Wolbachia infections have been reported in tsetse, it has been a challenge to understand their functional biology as attempts to cure tsetse of Wolbachia infections by antibiotic treatment damages the obligate mutualistic symbiont (Wigglesworthia, without which the flies are sterile. Here, we developed aposymbiotic (symbiont-free and fertile tsetse lines by dietary provisioning of tetracycline supplemented blood meals with yeast extract, which rescues Wigglesworthia-induced sterility. Our results reveal that Wolbachia infections confer strong CI during embryogenesis in Wolbachia-free (Gmm(Apo females when mated with Wolbachia-infected (Gmm(Wt males. These results are the first demonstration of the biological significance of Wolbachia infections in tsetse. Furthermore, when incorporated into a mathematical model, our results confirm that Wolbachia can

  5. Tapping the biotechnological potential of insect microbial symbionts: new insecticidal porphyrins.

    Science.gov (United States)

    Martinez, Ana Flávia Canovas; de Almeida, Luís Gustavo; Moraes, Luiz Alberto Beraldo; Cônsoli, Fernando Luís

    2017-06-27

    The demand for sustainable agricultural practices and the limited progress toward newer and safer chemicals for use in pest control maintain the impetus for research and identification of new natural molecules. Natural molecules are preferable to synthetic organic molecules because they are biodegradable, have low toxicity, are often selective and can be applied at low concentrations. Microbes are one source of natural insecticides, and microbial insect symbionts have attracted attention as a source of new bioactive molecules because these microbes are exposed to various selection pressures in their association with insects. Analytical techniques must be used to isolate and characterize new compounds, and sensitive analytical tools such as mass spectrometry and high-resolution chromatography are required to identify the least-abundant molecules. We used classical fermentation techniques combined with tandem mass spectrometry to prospect for insecticidal substances produced by the ant symbiont Streptomyces caniferus. Crude extracts from this bacterium showed low biological activity (less than 10% mortality) against the larval stage of the fall armyworm Spodoptera frugiperda. Because of the complexity of the crude extract, we used fractionation-guided bioassays to investigate if the low toxicity was related to the relative abundance of the active molecule, leading to the isolation of porphyrins as active molecules. Porphyrins are a class of photoactive molecules with a broad range of bioactivity, including insecticidal. The active fraction, containing a mixture of porphyrins, induced up to 100% larval mortality (LD 50  = 37.7 μg.cm -2 ). Tandem mass-spectrometry analyses provided structural information for two new porphyrin structures. Data on the availability of porphyrins in 67 other crude extracts of ant ectosymbionts were also obtained with ion-monitoring experiments. Insect-associated bacterial symbionts are a rich source of bioactive compounds. Exploring

  6. The Biological Nature of Geochemical Proxies: algal symbionts affect coral skeletal chemistry

    Science.gov (United States)

    Owens, K.; Cohen, A. L.; Shimizu, N.

    2001-12-01

    The strontium-calcium ratio (Sr/Ca) of reef coral skeleton is an important ocean temperature proxy that has been used to address some particularly controversial climate change issues. However, the paleothermometer has sometimes proven unreliable and there are indications that the temperature-dependence of Sr/Ca in coral aragonite is linked to the photosynthetic activity of algal symbionts (zooxanthellae) in coral tissue. We examined the effect of algal symbiosis on skeletal chemistry using Astrangia danae, a small colonial temperate scleractinian that occurs naturally with and without zooxanthellae. Live symbiotic (deep brown) and asymbiotic (white) colonies of similar size were collected in Woods Hole where water temperatures fluctuate seasonally between -2oC and 23oC. We used a microbeam technique (Secondary Ion Mass Spectrometry) and a 30 micron diameter sampling beam to construct high-resolution Sr/Ca profiles, 2500 microns long, down the growth axes of the outer calical (thecal) walls. Profiles generated from co-occuring symbiotic and asymbiotic colonies are remarkably different despite their exposure to identical water temperatures. Symbiotic coral Sr/Ca displays four large-amplitude annual cycles with high values in the winter, low values in the summer and a temperature dependence similar to that of tropical reef corals. By comparison, Sr/Ca profiles constructed from asymbiotic coral skeleton display little variability over the same time period. Asymbiont Sr/Ca is relatively insensitive to the enormous temperature changes experienced over the year; the temperature dependence is similar to that of nighttime skeletal deposits in tropical reef corals and non-biological aragonite precipitates. We propose that the large variations in skeletal Sr/Ca observed in all symbiont-hosting coral species are not related to SST variability per se but are driven primarily by large seasonal variations in skeletal calcification rate associated with symbiont photosynthesis. Our

  7. Single-Cell Biomolecular Analysis of Coral Algal Symbionts Reveals Opposing Metabolic Responses to Heat Stress and Expulsion

    Directory of Open Access Journals (Sweden)

    Katherina Petrou

    2018-03-01

    Full Text Available The success of corals in nutrient poor environments is largely attributed to the symbiosis between the cnidarian host and its intracellular alga. Warm water anomalies have been shown to destabilize this symbiosis, yet detailed analysis of the effect of temperature and expulsion on cell-specific carbon and nutrient allocation in the symbiont is limited. Here, we exposed colonies of the hard coral Acropora millepora to heat stress and using synchrotron-based infrared microspectroscopy measured the biomolecular profiles of individual in hospite and expelled symbiont cells at an acute state of bleaching. Our results showed symbiont metabolic profiles to be remarkably distinct with heat stress and expulsion, where the two effectors elicited opposing metabolic adjustments independent of treatment or cell type. Elevated temperature resulted in biomolecular changes reflecting cellular stress, with relative increases in free amino acids and phosphorylation of molecules and a concomitant decline in protein content, suggesting protein modification and degradation. This contrasted with the metabolic profiles of expelled symbionts, which showed relative decreases in free amino acids and phosphorylated molecules, but increases in proteins and lipids, suggesting expulsion lessens the overall effect of heat stress on the metabolic signature of the algal symbionts. Interestingly, the combined effects of expulsion and thermal stress were additive, reducing the overall shifts in all biomolecules, with the notable exception of the significant accumulation of lipids and saturated fatty acids. This first use of a single-cell metabolomics approach on the coral symbiosis provides novel insight into coral bleaching and emphasizes the importance of a single-cell approach to demark the cell-to-cell variability in the physiology of coral cellular populations.

  8. The importance of gut symbionts in the development of the brown marmorated stink bug, Halyomorpha halys (Stål.

    Directory of Open Access Journals (Sweden)

    Christopher M Taylor

    Full Text Available The invasive brown marmorated stink bug, Halyomorpha halys (Stål, has become a severe agricultural pest and nuisance problem since its introduction in the U.S. Research is being conducted to understand its biology and to find management solutions. Its symbiotic relationship with gut symbionts is one aspect of its biology that is not understood. In the family Pentatomidae, the reliance on gut symbionts for successful development seems to vary depending on the species of stink bug. This research assessed the role of gut symbionts in the development, survivorship, and fecundity of H. halys. We compared various fitness parameters of nymphs and adults reared from surface sterilized and untreated egg masses during two consecutive generations under laboratory conditions. Results provided direct evidence that H. halys is negatively impacted by the prevention of vertical transmission of its gut symbionts and that this impact is significant in the first generation and manifests dramatically in the subsequent generation. Developmental time and survivorship of treated cohorts in the first generation were significantly affected during third instar development through to the adult stage. Adults from the sterilized treatment group exhibited longer pre-oviposition periods, produced fewer egg masses, had significantly smaller clutch sizes, and the hatch rate and survivorship of those eggs were significantly reduced. Observations following hatch of surface sterilized eggs also revealed significant effects on wandering behavior of the first instars. The second generation progeny from adults of the sterilized cohorts showed significantly lower survival to adulthood, averaging only 0.3% compared to 20.8% for the control cohorts. Taken together, results demonstrate that H. halys is heavily impacted by deprival of its gut symbionts. Given the economic status of this invasive pest, further investigations may lead to management tactics that disrupt this close symbiotic

  9. The inadequacy of morphology for species and genus delineation in microbial eukaryotes: an example from the parabasalian termite symbiont coronympha.

    Directory of Open Access Journals (Sweden)

    James T Harper

    Full Text Available BACKGROUND: For the majority of microbial eukaryotes (protists, algae, there is no clearly superior species concept that is consistently applied. In the absence of a practical biological species concept, most species and genus level delineations have historically been based on morphology, which may lead to an underestimate of the diversity of microbial eukaryotes. Indeed, a growing body of molecular evidence, such as barcoding surveys, is beginning to support the conclusion that significant cryptic species diversity exists. This underestimate of diversity appears to be due to a combination of using morphology as the sole basis for assessing diversity and our inability to culture the vast majority of microbial life. Here we have used molecular markers to assess the species delineations in two related but morphologically distinct genera of uncultivated symbionts found in the hindgut of termites. METHODOLOGY/PRINCIPAL FINDINGS: Using single-cell isolation and environmental PCR, we have used a barcoding approach to characterize the diversity of Coronympha and Metacoronympha symbionts in four species of Incisitermes termites, which were also examined using scanning electron microscopy and light microcopy. Despite the fact that these genera are significantly different in morphological complexity and structural organisation, we find they are two life history stages of the same species. At the same time, we show that the symbionts from different termite hosts show an equal or greater level of sequence diversity than do the hosts, despite the fact that the symbionts are all classified as one species. CONCLUSIONS/SIGNIFICANCE: The morphological information used to describe the diversity of these microbial symbionts is misleading at both the genus and species levels, and led to an underestimate of species level diversity as well as an overestimate of genus level diversity. The genus 'Metacoronympha' is invalid and appears to be a life history stage of

  10. Evidence of environmental and vertical transmission of Burkholderia symbionts in the oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae).

    Science.gov (United States)

    Itoh, Hideomi; Aita, Manabu; Nagayama, Atsushi; Meng, Xian-Ying; Kamagata, Yoichi; Navarro, Ronald; Hori, Tomoyuki; Ohgiya, Satoru; Kikuchi, Yoshitomo

    2014-10-01

    The vertical transmission of symbiotic microorganisms is omnipresent in insects, while the evolutionary process remains totally unclear. The oriental chinch bug, Cavelerius saccharivorus (Heteroptera: Blissidae), is a serious sugarcane pest, in which symbiotic bacteria densely populate the lumen of the numerous tubule-like midgut crypts that the chinch bug develops. Cloning and sequence analyses of the 16S rRNA genes revealed that the crypts were dominated by a specific group of bacteria belonging to the genus Burkholderia of the Betaproteobacteria. The Burkholderia sequences were distributed into three distinct clades: the Burkholderia cepacia complex (BCC), the plant-associated beneficial and environmental (PBE) group, and the stinkbug-associated beneficial and environmental group (SBE). Diagnostic PCR revealed that only one of the three groups of Burkholderia was present in ∼89% of the chinch bug field populations tested, while infections with multiple Burkholderia groups within one insect were observed in only ∼10%. Deep sequencing of the 16S rRNA gene confirmed that the Burkholderia bacteria specifically colonized the crypts and were dominated by one of three Burkholderia groups. The lack of phylogenetic congruence between the symbiont and the host population strongly suggested host-symbiont promiscuity, which is probably caused by environmental acquisition of the symbionts by some hosts. Meanwhile, inspections of eggs and hatchlings by diagnostic PCR and egg surface sterilization demonstrated that almost 30% of the hatchlings vertically acquire symbiotic Burkholderia via symbiont-contaminated egg surfaces. The mixed strategy of symbiont transmission found in the oriental chinch bug might be an intermediate stage in evolution from environmental acquisition to strict vertical transmission in insects. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Aspects of vibrio parahaemolyticus(SAK) in fish preservation by irradiation 1. The presence of vibrio parahaemolyticus(SAK) in coastal areas of Sumatra and Java

    International Nuclear Information System (INIS)

    Suhadi, F.

    1984-01-01

    A study was carried out on the presence of vibrio parahaemolyticus in samples of sediment and seafoods originating from the eastern coast of Sumatra and the north coastal areas of Java. In a total of 2.434 samples of sediment and seafoods, 79 (3,3%) were found to contain vibrio parahaemolyticus. Among the 467 sediment samples, 1.650 fish, 133 shellfish, 123 shrimps, and 61 crab samples, 22 (4.7%), 41 (2.5%), 12 (9.0%), 2 (1,6%) and 2 (3.3%) were positive for vibrio parahaemolyticus, respectively. Based on the sampling areas, the high incidence of vibrio parahaemolyticus was found in samples collected from Riau (5.4%), while the samples from East Java was only about 0.4%. The contamination level of vibrio parahaemolyticus in samples collected from coastal areas of Sumatra and Java is relatively lower compared with the data obtained from some other coastal areas in the United States and Japan. (author)

  12. Structural organization of the transfer RNA operon I of Vibrio cholerae

    Indian Academy of Sciences (India)

    Unknown

    [Ghatak A, Majumdar A and Ghosh R K 2005 Structural organization of the transfer RNA operon I of Vibrio cholerae: Differences ..... clonal relationship are of utmost importance. ... rately derived from environmental, nontoxigenic, non-O1.

  13. Uptake of Vibrio cholerae biotype eltor from contaminated water by water hyacinth (eichornia crassipes).

    Science.gov (United States)

    Spira, W M; Huq, A; Ahmed, Q S; Saeed, Y A

    1981-09-01

    Vibrio cholerae biotype eltor appears to concentrate on the surface of the water hyacinth (Eichornia crassipes), thereby enhancing its survival and its potential for transmission through waterways of cholera-endemic regions such as Bangladesh.

  14. Uptake of Vibrio cholerae Biotype eltor from Contaminated Water by Water Hyacinth (Eichornia crassipes)

    OpenAIRE

    Spira, William M.; Huq, Anwarul; Ahmed, Qazi Shafi; Saeed, Yusuf A.

    1981-01-01

    Vibrio cholerae biotype eltor appears to concentrate on the surface of the water hyacinth (Eichornia crassipes), thereby enhancing its survival and its potential for transmission through waterways of cholera-endemic regions such as Bangladesh.

  15. Risk assessment of Vibrio parahaemolyticus in seafood: interpretative summary and technical report

    National Research Council Canada - National Science Library

    2011-01-01

    "Vibrio parahaemolyticus are common causes of diarrhoeal disease worldwide. These marine micro-organisms, native in estuarine waters globally, concentrate in the gut of filter-feeding molluscan shellfish, such as oysters, clams and mussels...

  16. Corrosion of mild steel and stainless steel by marine Vibrio sp.

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Wagh, A.B.

    Microbially induced corrosion (MIC) of stainless steel and mild steel coupons exposed to media with and without a bacterial culture Vibrio sp. was studied using Scanning Electron Microscope (SEM). Pitting type of corrosion was noticed which was more...

  17. INFLUENCE OF SEASONAL FACTORS ON OYSTER HEMOCYTE KILLING OF VIBRIO PARAHEMOLYTICUS

    Science.gov (United States)

    Seasonal variation of cellular defenses of oyster Crassostrea virginica against Vibrio parahaemolyticus were examined from June 1997 to December 1998 using a recently developed bactericidal assay that utilizes a tetrazolium dye. Mean hemocyte numbers, plasma lysozyme, and P. mari...

  18. DIFFERENTIAL EFFECTS OF OYSTER (CRASSOSTREA VIRGINICA) DEFENSES ON CLINICAL AND ENVIRONMENTAL ISOLATES OF VIBRIO PARAHEMOLYTICUS

    Science.gov (United States)

    Three clinical (2030, 2062, and 2107) and three environmental (1094, 1163, and ATCC 17802) isolates of Vibrio parahaemolyticus were exposed to hemocytes and plasma collected from oysters (Crassostrea virginica) to determine their susceptibility to putative oyster defenses. Clinic...

  19. Microbiota of Vibrio sp. in the hepatopancreas of cultured white pacific shrimp (Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Renata Albuquerque C.

    2013-08-01

    Full Text Available Objective. The present study aimed to investigate the presence of vibrios in the hepatopancreas of cultured shrimp. Materials and methods. Vibrios from the hepatopancreas of fifteen samples of five specimens each, of apparently healthy Pacific white shrimp (Litopenaeus vannamei were isolated, identified and quantified. Results. The vibrio density ranged from 430 to 2,400 MPN g-1 (rs MPN cm-1=-0.114; rs MPN g-1 = 0.211. Thirty isolations were obtained, most of which belonged to the species V. cholerae (n=11 and V. parahaemolyticus (n=7. Conclusions. The outcomes of the present study suggest that, even in the absence of symptoms of vibriosis, the microbiota of the hepatopancreas of cultured shrimp may include sucrose positive and negative vibrios.

  20. [Environmental drivers of emergence and spreading of Vibrio epidemics in South America].

    Science.gov (United States)

    Gavilán, Ronnie G; Martínez-Urtaza, Jaime

    2011-03-01

    Vibrio cholerae and V. parahaemolyticus are the two Vibrio species with a major impact on human health. Diseases caused by both pathogens are acquiring increasing relevance due to their expansion at global scale. In this paper, we resume the ecological aspects associated with the arrival and spreading of infections caused by V. parahaemolyticus and V. cholerae in Peru from a South American perspective. Moreover, we discuss the similarities in the emergence in Peru of cholera cases in 1991 and V. parahaemolyticus infections in 1997. These constituted exceptional experiments to evaluate the relationships between the Vibrio epidemics and changes in the environment. The epidemic radiations of V. cholerae and V. parahaemolyticus constitute to clear examples supporting the oceanic dispersion of pathogenic vibrios and have enabled the identification of El Niño events as a potential mechanism for the spreading of diseases through the ocean.

  1. Experimental Reservoirs of Human Pathogens: The Vibrio Cholerae Paradigm (7th Annual SFAF Meeting, 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Colwell, Rita

    2012-06-01

    Rita Colwell on "Experimental Reservoirs of Human Pathogens: The Vibrio cholerae paradigm" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  2. Antibiotic resistance monitoring in Vibrio spp. isolated from rearing environment and intestines of abalone Haliotis diversicolor.

    Science.gov (United States)

    Wang, R X; Wang, J Y; Sun, Y C; B L Yang; A L Wang

    2015-12-30

    546 Vibrio isolates from rearing seawater (292 strains) and intestines of abalone (254 strains) were tested to ten antibiotics using Kirby-Bauer diffusion method. Resistant rates of abalone-derived Vibrio isolates to chloramphenicol (C), enrofloxacin (ENX) and norfloxacin (NOR) were 40%) to kanamycin (KNA), furazolidone (F), tetracycline (TE), gentamicin (GM) and rifampin (RA). 332 isolates from seawater (n=258) and abalone (n=74) were resistant to more than three antibiotics. Peaked resistant rates of seawater-derived isolates to multiple antibiotics were overlapped in May and August. Statistical analysis showed that pH had an important effect on resistant rates of abalone-derived Vibrio isolates to RA, NOR, and ENX. Salinity and dissolved oxygen were negatively correlated with resistant rates of seawater-derived Vibrio isolates to KNA, RA, and PG. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Synchronized sexuality of an algal symbiont and its dinoflagellate host, Peridinium balticum (Levander) Lemmermann.

    Science.gov (United States)

    Chesnick, J M; Cox, E R

    1987-01-01

    We report synchronized sexual reproduction between the chlorophyll c-containing algal endosymbiont and its dinoflagellate host in Peridinium balticum (Pyrrhophyta). This organism's importance lies in that it may represent an intermediate between primitive non-photosynthetic and advanced photosynthetic dinoflagellates. Fusion of the endosymbionts and their nuclei occurred concomitantly with syngamy of the host gametes. Significant morphological changes, including condensation of chromatin and crystalline rod formation, occurred in the symbiont nucleus during zygote development. These observations provide evidence that the endosymbiotic nucleus is not passive in sexual processes, as opposed to its reported passive state during mitosis. P. balticum may not only represent an intermediate in the evolution of chloroplast acquisition by dinoflagellates, but also, an intermediate in the evolution of the peridinian dinoflagellate sexual life history.

  4. Condition-specific RNA editing in the coral symbiont Symbiodinium microadriaticum

    KAUST Repository

    Liew, Yi Jin

    2017-03-01

    RNA editing is a rare post-transcriptional event that provides cells with an additional level of gene expression regulation. It has been implicated in various processes including adaptation, viral defence and RNA interference; however, its potential role as a mechanism in acclimatization has just recently been recognised. Here, we show that RNA editing occurs in 1.6% of all nuclear-encoded genes of Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. All base-substitution edit types were present, and statistically significant motifs were associated with three edit types. Strikingly, a subset of genes exhibited condition-specific editing patterns in response to different stressors that resulted in significant increases of non-synonymous changes. We posit that this previously unrecognised mechanism extends this organism’s capability to respond to stress beyond what is encoded by the genome. This in turn may provide further acclimatization capacity to these organisms, and by extension, their coral hosts.

  5. Nitrogen transfer in the interface between the symbionts in pea root nodules

    DEFF Research Database (Denmark)

    Rosendahl, L.; Mouritzen, P.; Rudbeck, A.

    2001-01-01

    Transport mechanisms for transfer of nitrogen from the bacteroid side across the symbiosome membrane of pea (Pisum sativum L.) root nodules were identified by the use of energised bacteroid side-out symbiosome membrane vesicles. Such membrane vesicles were used to study a mechanism with high...... was not observed. The ammonium transporter has been identified as a voltage-driven channel whereas the symbiosome membrane aspartate transporter appears to be a H+/aspartate symport. The results suggest that nitrogen transfer between the symbionts in pea root nodules involves transfer of amino acids as well...... capacity for transport of ammonium and another mechanism capable of transporting aspartate. Both transport mechanisms are voltage driven and the rate of transport relates positively to the magnitude of the imposed membrane potentials. Competition for transport between ammonium and aspartate...

  6. Symbiont-derived beta-1,3-glucanases in a social insect: mutualism beyond nutrition

    Directory of Open Access Journals (Sweden)

    Rebeca B Rosengaus

    2014-11-01

    Full Text Available Termites have had a long co-evolutionary history with prokaryotic and eukaryotic gut microbes. Historically, the role of these anaerobic obligate symbionts has been attributed to the nutritional welfare of the host. We provide evidence that protozoa (and/or their associated bacteria colonizing the hindgut of the dampwood termite Zootermopsis angusticollis, synthesize multiple functional beta-1,3-glucanases, enzymes known for breaking down beta-1,3-glucans, the main component of fungal cell walls. These enzymes, we propose, may help in both digestion of ingested fungal hyphae and protection against invasion by fungal pathogens. This research points to an additional novel role for the mutualistic hindgut microbial consortia of termites, an association that may extend beyond ligno-cellulolytic activity and nitrogen fixation to include a reduction in the risks of mycosis at both the individual- and colony-levels while nesting in and feeding on microbial-rich decayed wood.

  7. Condition-specific RNA editing in the coral symbiont Symbiodinium microadriaticum

    KAUST Repository

    Liew, Yi Jin; Li, Yong; Baumgarten, Sebastian; Voolstra, Christian R.; Aranda, Manuel

    2017-01-01

    RNA editing is a rare post-transcriptional event that provides cells with an additional level of gene expression regulation. It has been implicated in various processes including adaptation, viral defence and RNA interference; however, its potential role as a mechanism in acclimatization has just recently been recognised. Here, we show that RNA editing occurs in 1.6% of all nuclear-encoded genes of Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. All base-substitution edit types were present, and statistically significant motifs were associated with three edit types. Strikingly, a subset of genes exhibited condition-specific editing patterns in response to different stressors that resulted in significant increases of non-synonymous changes. We posit that this previously unrecognised mechanism extends this organism’s capability to respond to stress beyond what is encoded by the genome. This in turn may provide further acclimatization capacity to these organisms, and by extension, their coral hosts.

  8. Bacterial cell motility of Burkholderia gut symbiont is required to colonize the insect gut.

    Science.gov (United States)

    Lee, Jun Beom; Byeon, Jin Hee; Jang, Ho Am; Kim, Jiyeun Kate; Yoo, Jin Wook; Kikuchi, Yoshitomo; Lee, Bok Luel

    2015-09-14

    We generated a Burkholderia mutant, which is deficient of an N-acetylmuramyl-l-alanine amidase, AmiC, involved in peptidoglycan degradation. When non-motile ΔamiC mutant Burkholderia cells harboring chain form were orally administered to Riptortus insects, ΔamiC mutant cells were unable to establish symbiotic association. But, ΔamiC mutant complemented with amiC gene restored in vivo symbiotic association. ΔamiC mutant cultured in minimal medium restored their motility with single-celled morphology. When ΔamiC mutant cells harboring single-celled morphology were administered to the host insect, this mutant established normal symbiotic association, suggesting that bacterial motility is essential for the successful symbiosis between host insect and Burkholderia symbiont. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites

    DEFF Research Database (Denmark)

    Visser, Anna A.; Nobre, Tânia; Currie, Cameron R.

    2012-01-01

    In fungus-growing termites, fungi of the subgenus Pseudoxylaria threaten colony health through substrate competition with the termite fungus (Termitomyces). The potential mechanisms with which termites suppress Pseudoxylaria have remained unknown. Here we explore if Actinobacteria potentially play...... a role as defensive symbionts against Pseudoxylaria in fungus-growing termites. We sampled for Actinobacteria from 30 fungus-growing termite colonies, spanning the three main termite genera and two geographically distant sites. Our isolations yielded 360 Actinobacteria, from which we selected subsets...... for morphological (288 isolates, grouped in 44 morphotypes) and for 16S rRNA (35 isolates, spanning the majority of morphotypes) characterisation. Actinobacteria were found throughout all sampled nests and colony parts and, phylogenetically, they are interspersed with Actinobacteria from origins other than fungus...

  10. Bacterial Symbionts in Lepidoptera: Their Diversity, Transmission, and Impact on the Host

    Directory of Open Access Journals (Sweden)

    Luis R. Paniagua Voirol

    2018-03-01

    Full Text Available The insect’s microbiota is well acknowledged as a “hidden” player influencing essential insect traits. The gut microbiome of butterflies and moths (Lepidoptera has been shown to be highly variable between and within species, resulting in a controversy on the functional relevance of gut microbes in this insect order. Here, we aim to (i review current knowledge on the composition of gut microbial communities across Lepidoptera and (ii elucidate the drivers of the variability in the lepidopteran gut microbiome and provide an overview on (iii routes of transfer and (iv the putative functions of microbes in Lepidoptera. To find out whether Lepidopterans possess a core gut microbiome, we compared studies of the microbiome from 30 lepidopteran species. Gut bacteria of the Enterobacteriaceae, Bacillaceae, and Pseudomonadaceae families were the most widespread across species, with Pseudomonas, Bacillus, Staphylococcus, Enterobacter, and Enterococcus being the most common genera. Several studies indicate that habitat, food plant, and age of the host insect can greatly impact the gut microbiome, which contributes to digestion, detoxification, or defense against natural enemies. We mainly focus on the gut microbiome, but we also include some examples of intracellular endosymbionts. These symbionts are present across a broad range of insect taxa and are known to exert different effects on their host, mostly including nutrition and reproductive manipulation. Only two intracellular bacteria genera (Wolbachia and Spiroplasma have been reported to colonize reproductive tissues of Lepidoptera, affecting their host’s reproduction. We explore routes of transmission of both gut microbiota and intracellular symbionts and have found that these microbes may be horizontally transmitted through the host plant, but also vertically via the egg stage. More detailed knowledge about the functions and plasticity of the microbiome in Lepidoptera may provide novel leads

  11. The effects of elevated seawater temperatures on Caribbean gorgonian corals and their algal symbionts, Symbiodinium spp.

    Directory of Open Access Journals (Sweden)

    Tamar L Goulet

    Full Text Available Global climate change not only leads to elevated seawater temperatures but also to episodic anomalously high or low temperatures lasting for several hours to days. Scleractinian corals are detrimentally affected by thermal fluctuations, which often lead to an uncoupling of their mutualism with Symbiodinium spp. (coral bleaching and potentially coral death. Consequently, on many Caribbean reefs scleractinian coral cover has plummeted. Conversely, gorgonian corals persist, with their abundance even increasing. How gorgonians react to thermal anomalies has been investigated utilizing limited parameters of either the gorgonian, Symbiodinium or the combined symbiosis (holobiont. We employed a holistic approach to examine the effect of an experimental five-day elevated temperature episode on parameters of the host, symbiont, and the holobiont in Eunicea tourneforti, E. flexuosa and Pseudoplexaura porosa. These gorgonian corals reacted and coped with 32°C seawater temperatures. Neither Symbiodinium genotypes nor densities differed between the ambient 29.5°C and 32°C. Chlorophyll a and c2 per Symbiodinium cell, however, were lower at 32°C leading to a reduction in chlorophyll content in the branches and an associated reduction in estimated absorbance and increase in the chlorophyll a specific absorption coefficient. The adjustments in the photochemical parameters led to changes in photochemical efficiencies, although these too showed that the gorgonians were coping. For example, the maximum excitation pressure, Qm, was significantly lower at 32°C than at 29.5°C. In addition, although per dry weight the amount of protein and lipids were lower at 32°C, the overall energy content in the tissues did not differ between the temperatures. Antioxidant activity either remained the same or increased following exposure to 32°C further reiterating a response that dealt with the stressor. Taken together, the capability of Caribbean gorgonian corals to modify

  12. Is dimethylsulfoniopropionate (DMSP) produced by the symbionts or the host in an anemone-zooxanthella symbiosis?

    Science.gov (United States)

    van Alstyne, K. L.; Dominique, V. J.; Muller-Parker, G.

    2009-03-01

    Many groups of tropical cnidarians including scleractinian corals, octocorals, corallimorphs, and anemones contain the tertiary sulfonium compound dimethylsulfoniopropionate (DMSP). It is not known if the compound is synthesized by the animals, their microalgal symbionts, or derived through their diet. We determined the source of the DMSP in several species of tropical and temperate anemones using three approaches: (1) conducting comparative measurements of DMSP in aposymbiotic and zooxanthellate anemones of three species that harbor zooxanthellae, and similar measurements in one species that can harbor both zooxanthellae and zoochlorellae, (2) manipulating the presence or absence of zooxanthellae by inoculating juvenile aposymbiotic anemones ( Aiptasia pallida) with their symbiont, Symbiodinium bermudense, and (3) manipulating the numbers of S. bermudense by growing aposymbiotic and zooxanthellate A. pallida in the light and the dark. DMSP was present in zooxanthellate anemones in concentrations of 3.4-15 μmol g-1 fresh mass (FM). In aposymbiotic Aiptasia spp. and Anthopleura elegantissima that lacked large numbers of zooxanthellae, concentrations ranged from being undetectable to 0.43 μmol g-1 FM. When aposymbiotic A. pallida were inoculated with zooxanthellae, concentrations of DMSP were an average of 4.24 μmol g-1 FM after 5 weeks; DMSP was undetectable in uninoculated control animals. Aposymbiotic anemones maintained in the light or the dark for 6 weeks contained no DMSP or zooxanthellae. Zooxanthellate anemones in the light contained five times as many zooxanthellae and approximately 7.5 times as much DMSP as zooxanthellate anemones maintained in the dark. Taken together, these data show that the zooxanthellae are the sole source of DMSP in A. pallida. The trends in DMSP concentrations in other species of zooxanthellate anemones suggest that this phenomenon is not limited to A. pallida but may be more generally true for other anemones or even other

  13. Stringent Expression Control of Pathogenic R-body Production in Legume Symbiont Azorhizobium caulinodans

    Directory of Open Access Journals (Sweden)

    Jun-ichi Matsuoka

    2017-07-01

    Full Text Available R bodies are insoluble large polymers consisting of small proteins encoded by reb genes and are coiled into cylindrical structures in bacterial cells. They were first discovered in Caedibacter species, which are obligate endosymbionts of paramecia. Caedibacter confers a killer trait on the host paramecia. R-body-producing symbionts are released from their host paramecia and kill symbiont-free paramecia after ingestion. The roles of R bodies have not been explained in bacteria other than Caedibacter. Azorhizobium caulinodans ORS571, a microsymbiont of the legume Sesbania rostrata, carries a reb operon containing four reb genes that are regulated by the repressor PraR. Herein, deletion of the praR gene resulted in R-body formation and death of host plant cells. The rebR gene in the reb operon encodes an activator. Three PraR binding sites and a RebR binding site are present in the promoter region of the reb operon. Expression analyses using strains with mutations within the PraR binding site and/or the RebR binding site revealed that PraR and RebR directly control the expression of the reb operon and that PraR dominantly represses reb expression. Furthermore, we found that the reb operon is highly expressed at low temperatures and that 2-oxoglutarate induces the expression of the reb operon by inhibiting PraR binding to the reb promoter. We conclude that R bodies are toxic not only in paramecium symbiosis but also in relationships between other bacteria and eukaryotic cells and that R-body formation is controlled by environmental factors.

  14. Genomic Changes Associated with the Evolutionary Transitions of Nostoc to a Plant Symbiont

    Science.gov (United States)

    Liaimer, Anton; Pederson, Eric; Kim, Sea-Yong; Shapiro, Nicole; Woyke, Tanja; Altermark, Bjørn; Pawlowski, Katharina; Weyman, Philip D; Dupont, Christopher L

    2018-01-01

    Abstract Cyanobacteria belonging to the genus Nostoc comprise free-living strains and also facultative plant symbionts. Symbiotic strains can enter into symbiosis with taxonomically diverse range of host plants. Little is known about genomic changes associated with evolutionary transition of Nostoc from free-living to plant symbiont. Here, we compared the genomes derived from 11 symbiotic Nostoc strains isolated from different host plants and infer phylogenetic relationships between strains. Phylogenetic reconstructions of 89 Nostocales showed that symbiotic Nostoc strains with a broad host range, entering epiphytic and intracellular or extracellular endophytic interactions, form a monophyletic clade indicating a common evolutionary history. A polyphyletic origin was found for Nostoc strains which enter only extracellular symbioses, and inference of transfer events implied that this trait was likely acquired several times in the evolution of the Nostocales. Symbiotic Nostoc strains showed enriched functions in transport and metabolism of organic sulfur, chemotaxis and motility, as well as the uptake of phosphate, branched-chain amino acids, and ammonium. The genomes of the intracellular clade differ from that of other Nostoc strains, with a gain/enrichment of genes encoding proteins to generate l-methionine from sulfite and pathways for the degradation of the plant metabolites vanillin and vanillate, and of the macromolecule xylan present in plant cell walls. These compounds could function as C-sources for members of the intracellular clade. Molecular clock analysis indicated that the intracellular clade emerged ca. 600 Ma, suggesting that intracellular Nostoc symbioses predate the origin of land plants and the emergence of their extant hosts. PMID:29554291

  15. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts.

    Science.gov (United States)

    De Fine Licht, Henrik H; Schiøtt, Morten; Rogowska-Wrzesinska, Adelina; Nygaard, Sanne; Roepstorff, Peter; Boomsma, Jacobus J

    2013-01-08

    Leaf-cutting ants combine large-scale herbivory with fungus farming to sustain advanced societies. Their stratified colonies are major evolutionary achievements and serious agricultural pests, but the crucial adaptations that allowed this mutualism to become the prime herbivorous component of neotropical ecosystems has remained elusive. Here we show how coevolutionary adaptation of a specific enzyme in the fungal symbiont has helped leaf-cutting ants overcome plant defensive phenolic compounds. We identify nine putative laccase-coding genes in the fungal genome of Leucocoprinus gongylophorus cultivated by the leaf-cutting ant Acromyrmex echinatior. One of these laccases (LgLcc1) is highly expressed in the specialized hyphal tips (gongylidia) that the ants preferentially eat, and we confirm that these ingested laccase molecules pass through the ant guts and remain active when defecated on the leaf pulp that the ants add to their gardens. This accurate deposition ensures that laccase activity is highest where new leaf material enters the fungus garden, but where fungal mycelium is too sparse to produce extracellular enzymes in sufficient quantities to detoxify phenolic compounds. Phylogenetic analysis of LgLcc1 ortholog sequences from symbiotic and free-living fungi revealed significant positive selection in the ancestral lineage that gave rise to the gongylidia-producing symbionts of leaf-cutting ants and their non-leaf-cutting ant sister group. Our results are consistent with fungal preadaptation and subsequent modification of a particular laccase enzyme for the detoxification of secondary plant compounds during the transition to active herbivory in the ancestor of leaf-cutting ants between 8 and 12 Mya.

  16. Gymnoxanthella radiolariae gen. et sp. nov. (Dinophyceae), a dinoflagellate symbiont from solitary polycystine radiolarians.

    Science.gov (United States)

    Yuasa, Tomoko; Horiguchi, Takeo; Mayama, Shigeki; Takahashi, Osamu

    2016-02-01

    The symbiotic dinoflagellate Gymnoxanthella radiolariae T. Yuasa et T. Horiguchi gen. et sp. nov. isolated from polycystine radiolarians is described herein based on light, scanning and transmission electron microscopy as well as molecular phylogenetic analyses of SSU and LSU rDNA sequences. Motile cells of G. radiolariae were obtained in culture, and appeared to be unarmored. The cells were 9.1-11.4 μm long and 5.7-9.4 μm wide, and oval to elongate oval in the ventral view. They possessed an counterclockwise horseshoe-shaped apical groove, a nuclear envelope with vesicular chambers, cingulum displacement with one cingulum width, and the nuclear fibrous connective; all of these are characteristics of Gymnodinium sensu stricto (Gymnodinium s.s.). Molecular phylogenetic analyses also indicated that G. radiolariae belongs to the clade of Gymnodinium s.s. However, in our molecular phylogenetic trees, G. radiolariae was distantly related to Gymnodinium fuscum, the type species of Gymnodinium. Based on the consistent morphological, genetic, and ecological divergence of our species with the other genera and species of Gymnodinium s.s., we considered it justified to erect a new, separate genus and species G. radiolariae gen. et sp. nov. As for the peridinioid symbiont of radiolarians, Brandtodinium has been erected as a new genus instead of Zooxanthella, but the name Zooxanthella is still valid. Brandtodinium is a junior synonym of Zooxanthella. Our results suggest that at least two dinoflagellate symbiont species, peridinioid Zooxanthella nutricula and gymnodinioid G. radiolariae, exist in radiolarians, and that they may have been mixed and reported as "Z. nutricula" since the 19th century. © 2016 Phycological Society of America.

  17. Asaia symbionts interfere with infection by Flavescence dorée phytoplasma in leafhoppers

    KAUST Repository

    Gonella, Elena

    2018-03-20

    The transmission of microbial pathogens by insect vectors can be affected by the insect’s microbial symbionts, which may compete in colonizing organs, express antagonistic factors or activate host immune response. Acetic acid bacteria of the genus Asaia are symbionts of the leafhopper Scaphoideus titanus, which transmits Flavescence dorée phytoplasma. These bacteria could be used as control agents against the disease. Here, we experimentally investigated the interaction between different strains of Asaia and phytoplasma transmission in the laboratory by using the model leafhopper Euscelidius variegatus and the plant host Vicia faba. We found that uncultivable and low concentrations of Asaia phylotypes were associated with E. variegatus. When we supplied different Asaia strains isolated from other insects and exhibiting different phenotypes to E. variegatus orally, the bacteria stably colonized the leafhopper, reached relatively higher densities and could then be isolated from the host. We conducted transmission trials of Flavescence dorée phytoplasma with individuals colonized with three exogenous Asaia strains. When the phytoplasma became established in the bodies of E. variegatus, leafhoppers were able to transmit it to broad beans, with transmission rates ranging from 33 to 76% in different experiments. However, leafhoppers that were colonized by one of the Asaia strains producing an air–liquid interface biofilm exhibited significantly reduced phytoplasma acquisition, with infection rates at 5–28%, whereas they were 25–77% in control insects. Although the mechanisms regulating this interference remain to be elucidated, our results provide evidence of the potential use of Asaia as a biocontrol agent.

  18. Asaia symbionts interfere with infection by Flavescence dorée phytoplasma in leafhoppers

    KAUST Repository

    Gonella, Elena; Crotti, Elena; Mandrioli, Mauro; Daffonchio, Daniele; Alma, Alberto

    2018-01-01

    The transmission of microbial pathogens by insect vectors can be affected by the insect’s microbial symbionts, which may compete in colonizing organs, express antagonistic factors or activate host immune response. Acetic acid bacteria of the genus Asaia are symbionts of the leafhopper Scaphoideus titanus, which transmits Flavescence dorée phytoplasma. These bacteria could be used as control agents against the disease. Here, we experimentally investigated the interaction between different strains of Asaia and phytoplasma transmission in the laboratory by using the model leafhopper Euscelidius variegatus and the plant host Vicia faba. We found that uncultivable and low concentrations of Asaia phylotypes were associated with E. variegatus. When we supplied different Asaia strains isolated from other insects and exhibiting different phenotypes to E. variegatus orally, the bacteria stably colonized the leafhopper, reached relatively higher densities and could then be isolated from the host. We conducted transmission trials of Flavescence dorée phytoplasma with individuals colonized with three exogenous Asaia strains. When the phytoplasma became established in the bodies of E. variegatus, leafhoppers were able to transmit it to broad beans, with transmission rates ranging from 33 to 76% in different experiments. However, leafhoppers that were colonized by one of the Asaia strains producing an air–liquid interface biofilm exhibited significantly reduced phytoplasma acquisition, with infection rates at 5–28%, whereas they were 25–77% in control insects. Although the mechanisms regulating this interference remain to be elucidated, our results provide evidence of the potential use of Asaia as a biocontrol agent.

  19. Molecular characterization of host-specific biofilm formation in a vertebrate gut symbiont.

    Directory of Open Access Journals (Sweden)

    Steven A Frese

    Full Text Available Although vertebrates harbor bacterial communities in their gastrointestinal tract whose composition is host-specific, little is known about the mechanisms by which bacterial lineages become selected. The goal of this study was to characterize the ecological processes that mediate host-specificity of the vertebrate gut symbiont Lactobacillus reuteri, and to systematically identify the bacterial factors that are involved. Experiments with monoassociated mice revealed that the ability of L. reuteri to form epithelial biofilms in the mouse forestomach is strictly dependent on the strain's host origin. To unravel the molecular basis for this host-specific biofilm formation, we applied a combination of transcriptome analysis and comparative genomics and identified eleven genes of L. reuteri 100-23 that were predicted to play a role. We then determined expression and importance of these genes during in vivo biofilm formation in monoassociated mice. This analysis revealed that six of the genes were upregulated in vivo, and that genes encoding for proteins involved in epithelial adherence, specialized protein transport, cell aggregation, environmental sensing, and cell lysis contributed to biofilm formation. Inactivation of a serine-rich surface adhesin with a devoted transport system (the SecA2-SecY2 pathway completely abrogated biofilm formation, indicating that initial adhesion represented the most significant step in biofilm formation, likely conferring host specificity. In summary, this study established that the epithelial selection of bacterial symbionts in the vertebrate gut can be both specific and highly efficient, resulting in biofilms that are exclusively formed by the coevolved strains, and it allowed insight into the bacterial effectors of this process.

  20. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites.

    Science.gov (United States)

    Visser, Anna A; Nobre, Tânia; Currie, Cameron R; Aanen, Duur K; Poulsen, Michael

    2012-05-01

    In fungus-growing termites, fungi of the subgenus Pseudoxylaria threaten colony health through substrate competition with the termite fungus (Termitomyces). The potential mechanisms with which termites suppress Pseudoxylaria have remained unknown. Here we explore if Actinobacteria potentially play a role as defensive symbionts against Pseudoxylaria in fungus-growing termites. We sampled for Actinobacteria from 30 fungus-growing termite colonies, spanning the three main termite genera and two geographically distant sites. Our isolations yielded 360 Actinobacteria, from which we selected subsets for morphological (288 isolates, grouped in 44 morphotypes) and for 16S rRNA (35 isolates, spanning the majority of morphotypes) characterisation. Actinobacteria were found throughout all sampled nests and colony parts and, phylogenetically, they are interspersed with Actinobacteria from origins other than fungus-growing termites, indicating lack of specificity. Antibiotic-activity screening of 288 isolates against the fungal cultivar and competitor revealed that most of the Actinobacteria-produced molecules with antifungal activity. A more detailed bioassay on 53 isolates, to test the specificity of antibiotics, showed that many Actinobacteria inhibit both Pseudoxylaria and Termitomyces, and that the cultivar fungus generally is more susceptible to inhibition than the competitor. This suggests that either defensive symbionts are not present in the system or that they, if present, represent a subset of the community isolated. If so, the antibiotics must be used in a targeted fashion, being applied to specific areas by the termites. We describe the first discovery of an assembly of antibiotic-producing Actinobacteria occurring in fungus-growing termite nests. However, due to the diversity found, and the lack of both phylogenetic and bioactivity specificity, further work is necessary for a better understanding of the putative role of antibiotic-producing bacteria in the fungus

  1. Genome Sequence of Vibrio cholerae Strain O1 Ogawa El Tor, Isolated in Mexico, 2013.

    Science.gov (United States)

    Díaz-Quiñonez, José Alberto; Hernández-Monroy, Irma; López-Martínez, Irma; Ortiz-Alcántara, Joanna; González-Durán, Elizabeth; Ruiz-Matus, Cuitláhuac; Kuri-Morales, Pablo; Ramírez-González, José Ernesto

    2014-10-30

    We present the draft genome sequence of Vibrio cholerae InDRE 3140 recovered in 2013 during a cholera outbreak in Mexico. The genome showed the Vibrio 7th pandemic islands VSP1 and VSP2, the pathogenic islands VPI-1 and VPI-2, the integrative and conjugative element SXT/R391 (ICE-SXT), and both prophages CTXφ and RS1φ. Copyright © 2014 Díaz-Quiñonez et al.

  2. Prevalence and diversity of Aeromonas and Vibrio spp. in coastal waters of Southern Italy

    DEFF Research Database (Denmark)

    Dumontet, S.; Krovacek, K.; Svenson, S.B.

    2000-01-01

    % of samples were positive for Vibrio spp. It was interesting to note that 38% of the positive stations for both Aeromonas and Vibrio spp. showed a fecal coliform contamination of water at ... coliforms) do not always satisfactorily reflect the hygienic quality of water. The presence of Vibrionaceae on copepods was also investigated. Copepods were sampled at a station located inside the harbour of the city of Naples and were found contaminated by V. cholerae non-Ol, V. alginolyticus, V. fluvialis...

  3. Potensi Ekstrak Daun Binahong (Anredera cordifolia) Sebagai Penghambat Bakteri Vibrio harveyi

    OpenAIRE

    Gde Raka Angga Kartika; Sri Andayani; Soelistyowati Soelistyowati

    2016-01-01

    Binahong (Anredera cordifolia) is a plant that can treat various kinds of diseases, because this plant has a high antioxidant content and as an antibacterial and antiviral. Vibriosis disease caused by the bacterium Vibrio harveyi is a serious problem in marine and brackish culture, this disease can cause death for shrimp and fish that farmed in marine or brackish. This study aims to determine the potential of using leaf extract Binahong with different concentrations as Vibrio harveyi inhibiti...

  4. Molecular variations in Vibrio alginolyticus and V. harveyi in shrimp-farming systems upon stress

    OpenAIRE

    Santhyia,Anix Vivek; Mulloorpeedikayil,Rosalind George; Kollanoor,Riji John; Jeyaseelan,Prince M.J.

    2015-01-01

    A study was performed to investigate the genomic variations in the shrimp farm isolates of Vibrio alginolyticus and V. harveyi when the isolates were subjected to environmental stress. Samples of shrimps, water and sediment were collected from Southern Indian coastal shrimp farms. Vibrio isolates were biochemically identified and confirmed using 16S rDNA and gyrB gene specific PCR. The bacterial strains were genotyped by PCR fingerprinting using GTG(5) and IS (Insertion Sequence) primers. Sev...

  5. Prevalence and Antimicrobial Resistance of Vibrio spp. in Retail and Farm Shrimps in Ecuador.

    Science.gov (United States)

    Sperling, L; Alter, T; Huehn, S

    2015-11-01

    The aim of this study was to investigate the prevalence of Vibrio spp. in shrimp at retail and in shrimp farms in Ecuador and to determine the antimicrobial agent resistance patterns of farm isolates. The presence of genes linked to early mortality syndrome (EMS) or acute hepatopancreatic necrosis disease (AHPND) also was evaluated. Vibrio spp. were isolated from retail shrimps in Cuenca, Ecuador, and farm shrimps originating from provinces El Oro and Guayas, Ecuador. A total of 229 shrimp samples were collected, of which 71 originated from retail markets in Cuenca and 158 came from shrimp farms. Overall, 219 (95.6%) samples tested positive for Vibrio spp. Vibrio parahaemolyticus (80.8%) was the most common species detected, followed by Vibrio alginolyticus (50.2%), Vibrio cholerae (11.3%), and Vibrio vulnificus (3.5%). None of the V. parahaemolyticus isolates carried the virulence-associated tdh and trh genes. In V. parahaemolyticus shrimp farm isolates, high resistance was found to ampicillin (92.2%), and intermediate resistance was found to tetracycline (51.3%) and amikacin (22.1%). Of the V. parahaemolyticus strains, 68 were resistant to at least three antimicrobial agents, and 2 were resistant to seven antimicrobial agents simultaneously. Up to 18 resistant isolates were found for V. alginolyticus, whereas V. vulnificus and V. cholerae isolates were more susceptible. None of the V. parahaemolyticus isolates carried the EMS-AHPND plasmid. The results of this study revealed the ubiquitous occurrence of Vibrio spp. in shrimps at retail and on shrimp farms in Ecuador.

  6. [Factors of persistence and (or) pathogenicity in vibrios and aeromonads belonging to different ecotopes].

    Science.gov (United States)

    Bukharin, O V; Boĭko, A V; Zhuravleva, L A

    1998-01-01

    Factors of persistence and/or pathogenicity in Vibrio parahaemolyticus and Aeromonas hydrophila (hemolytic, lipase, lecithin, DNAase, RNAase, antilysozyme, "anti-interferon", anticomplementary activities and capacity for absorbing Congo red) were studied. The study revealed the interspecific and subpopulation (hospital and extraorganismal parts of the population) differences in the activity of the manifestation of these factors. Strong dependence of the whole complex of persistence and pathogenicity factors of their belonging to the hostal part of Vibrio and Aeromonas populations was shown.

  7. Natural transformation of Vibrio parahaemolyticus: A rapid method to create genetic deletions.

    Science.gov (United States)

    Chimalapati, Suneeta; de Souza Santos, Marcela; Servage, Kelly; De Nisco, Nicole J; Dalia, Ankur B; Orth, Kim

    2018-03-19

    The Gram-negative bacterium Vibrio parahaemolyticus is an opportunistic human pathogen and the leading cause of seafood borne acute gastroenteritis worldwide. Recently, this bacterium was implicated as the etiologic agent of a severe shrimp disease with consequent devastating outcomes to shrimp farming. In both cases, acquisition of genetic material via horizontal transfer provided V. parahaemolyticus with new virulence tools to cause disease. Dissecting the molecular mechanisms of V. parahaemolyticus pathogenesis often requires manipulating its genome. Classically, genetic deletions in V. parahaemolyticus are performed using a laborious, lengthy, multi-step process. Herein, we describe a fast and efficient method to edit this bacterium's genome based on V. parahaemolyticus natural competence. Although this method is similar to one previously described, V. parahaemolyticus requires counter selection for curing of acquired plasmids due to its recalcitrant nature of retaining extrachromosomal DNA. We believe this approach will be of use to the Vibrio community. Importance Spreading of Vibrios throughout the world correlates with increased global temperatures. As they spread, they find new niches to survive, proliferate and invade. Therefore, genetic manipulation of Vibrios is of utmost importance for studying these species. Herein, we have delineated and validated a rapid method to create genetic deletions in Vibrio parahaemolyticus This study provides insightful methodology for studies with other Vibrio species. Copyright © 2018 American Society for Microbiology.

  8. Prevalence of potentially pathogenic Vibrio species in the seafood marketed in Malaysia.

    Science.gov (United States)

    Elhadi, Nasreldin; Radu, Son; Chen, Chien-Hsien; Nishibuchi, Mitsuaki

    2004-07-01

    Seafood samples obtained in seafood markets and supermarkets at 11 sites selected from four states in Malaysia were examined for the presence of nine potentially pathogenic species from the genus Vibrio between July 1998 and June 1999. We examined 768 sample sets that included shrimp, squid, crab, cockles, and mussels. We extensively examined shrimp samples from Selangor State to determine seasonal variation of Vibrio populations. Eight potentially pathogenic Vibrio species were detected, with overall incidence in the samples at 4.6% for V. cholerae, 4.7% for V. parahaemolyticus, 6.0% for V. vulnificus, 11% for V. alginolyticus, 9.9% for V. metschnikovii, 1.3% for V. mimicus, 13% for V. damsela, 7.6% for V. fluvialis, and 52% for a combined population of all of the above. As many as eight Vibrio species were detected in shrimp and only four in squid and peel mussels. The overall percent incidence of any of the eight vibrios was highest (82%) in cockles (Anadara granosa) among the seafoods examined and was highest (100%) in Kuching, Sarawak State, and lowest (25%) in Penang, Pulau Penang State, among the sampling sites. Of 97 strains of V. cholerae isolated, one strain belonged to the O1 serotype and 14 to the O139 serotype. The results indicate that the various seafood markets in Malaysia are contaminated with potentially pathogenic Vibrio species regardless of the season and suggest that there is a need for adequate consumer protection measures.

  9. Vibrio rotiferianus sp. nov., isolated from cultures of the rotifer Brachionus plicatilis.

    Science.gov (United States)

    Gomez-Gil, B; Thompson, F L; Thompson, C C; Swings, J

    2003-01-01

    Five Gram-negative bacterial strains, oxidase-positive, motile by means of more than one polar flagella, facultative anaerobe, arginine dihydrolase-negative, lysine- and omithine decarboxylase-positive, sensitive to the vibriostatic agent O/129, were isolated from a flow-through rotifer culture system in Gent, Belgium, and previously characterized by fluorescent amplified fragment length polymorphism. Comparison of the 16S rDNA sequence of strain LMG 21460T indicated close relationships (approximately 99% similarity) to Vibrio campbellii, Vibrio harveyi, Vibrio alginolyticus and Vibrio parahaemolyticus. However, DNA hybridization experiments revealed similarity values below 70% with its closest species V. campbellii and V. harveyi. Additionally, the analysed strains differ from related Vibrio species by the utilization of melibiose and production of acid from L-arabinose and amygdalin. Among the strains analysed, differences were observed in some phenotypic characters, particularly susceptibility to ampicillin, polymyxin B and amikacin, and urease activity. The major fatty acids identified were 16:0, 18:1 omega7c, 14:0, 12:0 3-OH and 18:0. Vibrio rotiferianus sp. nov. is proposed, with type strain LMG 21460T (=CAIM 577T); it has a DNA G+C content of 44.5 +/- 0.01 mol%.

  10. Prevalence of listeria, Aeromonas, and Vibrio species in fish used for human consumption in Turkey.

    Science.gov (United States)

    Yücel, Nihal; Balci, Senay

    2010-02-01

    A total of 78 raw retail fish samples from 30 freshwater and 48 marine fish were examined for the presence of Listeria, Aeromonas, and Vibrio species. The overall incidence of Listeria spp. was 30% in freshwater samples and 10.4% in marine fish samples. Listeria monocytogenes (44.5%) was the most commonly isolated species in freshwater fish, and Listeria murrayi (83.5%) was the most commonly isolated species in marine fish samples. Motile aeromonads were more common in marine fish samples (93.7%) than in freshwater fish samples (10%). Vibrio alginolyticus, Vibrio fluvialis, and Vibrio damsela were isolated only in marine fish samples, representing 40.9, 38.6, and 36.3% of Vibrio isolates, respectively. In freshwater and marine fish, the highest incidences of Listeria and Aeromonas were found in skin samples; the highest incidence of Vibrio in marine fish was found in gill samples. The location of Listeria spp. and L. monocytogenes in a fish was significantly different among freshwater fish. A high incidence of these bacterial pathogens was found in the brown trout (Salmo trutta) and horse mackerel (Trachurus trachurus). Handling of contaminated fish, cross-contamination, or eating raw fish might pose a health hazard, especially in immunosuppressed individuals, elderly people, and children. This study highlights the importance of bacterial pathogens in fish intended for human consumption, but more study is needed.

  11. Spatiotemporal Dynamics of Total Viable Vibrio spp. in a NW Mediterranean Coastal Area.

    Science.gov (United States)

    Girard, Léa; Peuchet, Sébastien; Servais, Pierre; Henry, Annabelle; Charni-Ben-Tabassi, Nadine; Baudart, Julia

    2017-09-27

    A cellular approach combining Direct Viable Counting and Fluorescent In Situ Hybridization using a one-step multiple-probe technique and Solid Phase Cytometry (DVC-FISH-SPC) was developed to monitor total viable vibrios and cover the detection of a large diversity of vibrios. FISH combined three probes in the same assay and targeted sequences located at different positions on the 16S rRNA of Vibrio and Aliivibrio members. We performed a 10-month in situ study to investigate the weekly dynamics of viable vibrios relative to culturable counts at two northwestern Mediterranean coastal sites, and identified the key physicochemical factors for their occurrence in water using a multivariate analysis. Total viable and culturable cell counts showed the same temporal pattern during the warmer season, whereas the ratios between both methods were inverted during the colder seasons (<15°C), indicating that some of the vibrio community had entered into a viable but non-culturable (VBNC) state. We confirmed that Seawater Surface Temperature explained 51-62% of the total variance in culturable counts, and also showed that the occurrence of viable vibrios is controlled by two variables, pheopigment (15%) and phosphate (12%) concentrations, suggesting that other unidentified factors play a role in maintaining viability.

  12. Acute Otitis due to Vibrio fluvialis after Swimming

    Directory of Open Access Journals (Sweden)

    Ping-Jen Chen

    2012-01-01

    Full Text Available A 40-year-old female presented with purulent exudate through the left auditive duct and pain in the left ear region, which intensified during mastication. After collection of the pus from the left ear lesion, amoxicillin-clavulanic acid for seven days was prescribed for a presumed diagnosis of acute otitis. Four days later, the pus culture grew V. fluvialis which is further identified by API 20E identification system (bioMérieux. Following the successful completion of a course of antibiotics, the patient recovered completely and without complication. To the best of our knowledge, this is the first case of Vibrio fluvialis otitis after swimming in an immunocompetent patient.

  13. In situ measured elimination of Vibrio cholerae from brackish water.

    Science.gov (United States)

    Pérez, María Elena Martínez; Macek, Miroslav; Galván, María Teresa Castro

    2004-01-01

    In situ elimination of fluorescently labelled Vibrio cholerae (FLB) was measured in two saline water bodies in Mexico: in a brackish water lagoon, Mecoacán (Gulf of Mexico; State of Tabasco) and an athalassohaline lake, Alchichica (State of Puebla). Disappearance rates of fluorescently labelled V. cholera O1 showed that they were eliminated from the environment at an average rate of 32% and 63%/day, respectively (based on the bacterial standing stocks). The indirect immunofluorescence method confirmed the presence of V. cholerae O1 in the lagoon. However, the elimination of FLB was not directly related either to the presence or absence of the bacterium in the water body or to the phytoplankton concentration.

  14. Vibrio cholerae as a predator: lessons from evolutionary principles

    Directory of Open Access Journals (Sweden)

    Stefan ePukatzki

    2013-12-01

    Full Text Available Diarrheal diseases are the second-most common cause of death among children under the age of five worldwide. Cholera alone, caused by the marine bacterium Vibrio cholerae, is responsible for several million cases and over 120,000 deaths annually. When contaminated water is ingested, V. cholerae passes through the gastric acid barrier, penetrates the mucin layer of the small intestine, and adheres to the underlying epithelial lining. V. cholerae multiplies rapidly, secretes cholera toxin, and exits the human host in vast numbers during diarrheal purges. How V. cholerae rapidly reaches such high numbers during each purge is not clearly understood. We propose that V. cholerae employs its bactericidal type VI secretion system to engage in intraspecies and intraguild predation for nutrient acquisition to support rapid growth and multiplication.

  15. Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan

    Science.gov (United States)

    Hsiao, Hsin-I; Jan, Man-Ser; Chi, Hui-Ju

    2016-01-01

    This study aimed to investigate and quantify the relationship between climate variation and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated moving average (ARIMA) models (including autoregression, seasonality, and a lag-time effect) were employed to predict the role of climatic factors (including temperature, rainfall, relative humidity, ocean temperature and ocean salinity) on the incidence of V. parahaemolyticus in Taiwan between 2000 and 2011. The results indicated that average temperature (+), ocean temperature (+), ocean salinity of 6 months ago (+), maximum daily rainfall (current (−) and one month ago (−)), and average relative humidity (current and 9 months ago (−)) had significant impacts on the incidence of V. parahaemolyticus. Our findings offer a novel view of the quantitative relationship between climate change and food poisoning by V. parahaemolyticus in Taiwan. An early warning system based on climate change information for the disease control management is required in future. PMID:26848675

  16. Bile Sensing: The Activation of Vibrio parahaemolyticus Virulence

    Directory of Open Access Journals (Sweden)

    Bey-Hing Goh

    2017-04-01

    Full Text Available Bacteria must develop resistance to various inhospitable conditions in order to survive in the human gastrointestinal tract. Bile, which is secreted by the liver, and plays an important role in food digestion also has antimicrobial properties and is able to disrupt cellular homeostasis. Paradoxically, although bile is one of the guts defenses, many studies have reported that bacteria such as Vibrio parahaemolyticus can sense bile and use its presence as an environmental cue to upregulate virulence genes during infection. This article aims to discuss how bile is detected by V. parahaemolyticus and its role in regulating type III secretion system 2 leading to human infection. This bile–bacteria interaction pathway gives us a clearer understanding of the biochemical and structural analysis of the bacterial receptors involved in mediating a response to bile salts which appear to be a significant environmental cue during initiation of an infection.

  17. Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan

    Directory of Open Access Journals (Sweden)

    Hsin-I Hsiao

    2016-02-01

    Full Text Available This study aimed to investigate and quantify the relationship between climate variation and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated moving average (ARIMA models (including autoregression, seasonality, and a lag-time effect were employed to predict the role of climatic factors (including temperature, rainfall, relative humidity, ocean temperature and ocean salinity on the incidence of V. parahaemolyticus in Taiwan between 2000 and 2011. The results indicated that average temperature (+, ocean temperature (+, ocean salinity of 6 months ago (+, maximum daily rainfall (current (− and one month ago (−, and average relative humidity (current and 9 months ago (− had significant impacts on the incidence of V. parahaemolyticus. Our findings offer a novel view of the quantitative relationship between climate change and food poisoning by V. parahaemolyticus in Taiwan. An early warning system based on climate change information for the disease control management is required in future.

  18. Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan.

    Science.gov (United States)

    Hsiao, Hsin-I; Jan, Man-Ser; Chi, Hui-Ju

    2016-02-03

    This study aimed to investigate and quantify the relationship between climate variation and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated moving average (ARIMA) models (including autoregression, seasonality, and a lag-time effect) were employed to predict the role of climatic factors (including temperature, rainfall, relative humidity, ocean temperature and ocean salinity) on the incidence of V. parahaemolyticus in Taiwan between 2000 and 2011. The results indicated that average temperature (+), ocean temperature (+), ocean salinity of 6 months ago (+), maximum daily rainfall (current (-) and one month ago (-)), and average relative humidity (current and 9 months ago (-)) had significant impacts on the incidence of V. parahaemolyticus. Our findings offer a novel view of the quantitative relationship between climate change and food poisoning by V. parahaemolyticus in Taiwan. An early warning system based on climate change information for the disease control management is required in future.

  19. Vibrio cholerae infection, novel drug targets and phage therapy.

    Science.gov (United States)

    Fazil, Mobashar Hussain Urf Turabe; Singh, Durg V

    2011-10-01

    Vibrio cholerae is the causative agent of the diarrheal disease cholera. Although antibiotic therapy shortens the duration of diarrhea, excessive use has contributed to the emergence of antibiotic resistance in V. cholerae. Mobile genetic elements have been shown to be largely responsible for the shift of drug resistance genes in bacteria, including some V. cholerae strains. Quorum sensing communication systems are used for interaction among bacteria and for sensing environmental signals. Sequence analysis of the ctxB gene of toxigenic V. cholerae strains demonstrated its presence in multiple cholera toxin genotypes. Moreover, bacteriophage that lyse the bacterium have been reported to modulate epidemics by decreasing the required infectious dose of the bacterium. In this article, we will briefly discuss the disease, its clinical manifestation, antimicrobial resistance and the novel approaches to locate drug targets to treat cholera.

  20. Competitive Dominance by a Bacteriocin-Producing Vibrio harveyi Strain.

    Science.gov (United States)

    Hoyt, P R; Sizemore, R K

    1982-09-01

    Vibrio (Beneckea) harveyi, a bioluminescent marine bacterium, has been shown to produce a bacteriocin-like substance the production of which is mediated by a plasmid. This substance is assumed to be proteinaceous because of its sensitivity to certain proteolytic enzymes. It is stable at low temperatures and can be concentrated by ammonium sulfate precipitation or negative-pressure dialysis. The molecular weight of the bacteriocin was determined to be 2.4 x 10 by molecular exclusion chromatography. Competition experiments indicated that bacteriocin-producing strains predominated over cured variants of the same strain in broth culture experiments. We studied several environmental parameters (pH, salinity, temperature, nutrient concentration) to determine their effects on the competitive advantage bestowed on a bacteriocin-producing strain. Under simulated free-living conditions, no competitive advantage attributable to bacteriocin production was observed. In a simulated enteric habitat, a bacteriocin-producing strain showed dramatic (>90%) inhibition of the sensitive strain within 24 h.

  1. Sequence and features of the tryptophan operon of Vibrio parahemolyticus.

    Science.gov (United States)

    Crawford, I P; Han, C Y; Silverman, M

    1991-01-01

    The nucleotide sequence of the trp operon of the marine enteric bacterium Vibrio parahemolyticus is presented. The gene order E, G, D, C(F), B, A is identical to that of other enterics. The structural genes of the operon are preceded by a long leader region encoding a 41-residue peptide containing five tryptophan residues. The organization of the leader region suggests that transcription of the operon is subject to attenuation control. The promoter-operator region of the V. parahemolyticus trp operon is almost identical to the corresponding promoter-operator of E. coli. The similarities suggest that promoter strength and operator function are identical in the two species, and that transcription initiation is regulated by repression. The operon appears to lack the internal promoter within trpD that is common in terrestrial enteric species.

  2. Virulence of luminous vibrios to Artemia franciscana nauplii.

    Science.gov (United States)

    Soto-Rodriguez, S A; Roque, A; Lizarraga-Partida, M L; Guerra-Flores, A L; Gomez-Gill, B

    2003-02-27

    From healthy and diseased penaeid shrimp from Asia and the Americas, 25 luminous and 2 non-luminous bacterial strains were isolated, and 14 were phenotypically identified as Vibrio harveyi; 9 isolates produced significant mortalities (45 to 80%) in Artemia franciscana nauplii at inoculation densities of 10(5) to 10(6) CFU ml(-1) compared to the controls (unchallenged nauplii). The maximum number of bacteria ingested (bioencapsulated) by the Artemia nauplii varied from less than 10 to 10(3) CFU nauplius(-1) and no significant relationship was observed between the density of bacteria inoculated, the amount of bacteria ingested, and naupliar mortality. Significant correlations were obtained between naupliar mortality and production of proteases, phospholipases or siderophores, but not between mortality and lipase production, gelatinase production, hydrophobicity or hemolytic activity. The results suggest that virulence of the strains tested was more related to the production of particular exoenzymes than to the measured colonization factors.

  3. Effects of Dry Storage and Resubmersion of Oysters on Total Vibrio vulnificus and Total and Pathogenic (tdh+/trh+) Vibrio parahaemolyticus Levels.

    Science.gov (United States)

    Kinsey, Thomas P; Lydon, Keri A; Bowers, John C; Jones, Jessica L

    2015-08-01

    Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are the two leading causes of bacterial illnesses associated with raw shellfish consumption. Levels of these pathogens in oysters can increase during routine antifouling aquaculture practices involving dry storage in ambient air conditions. After storage, common practice is to resubmerge these stored oysters to reduce elevated Vv and Vp levels, but evidence proving the effectiveness of this practice is lacking. This study examined the changes in Vv and in total and pathogenic (thermostable direct hemolysin gene and the tdh-related hemolysin gene, tdh+ and trh+) Vp levels in oysters after 5 or 24 h of dry storage (28 to 32°C), followed by resubmersion (27 to 32°C) for 14 days. For each trial, replicate oyster samples were collected at initial harvest, after dry storage, after 7 days, and after 14 days of resubmersion. Oysters not subjected to dry storage were collected and analyzed to determine natural undisturbed vibrio levels (background control). Vibrio levels were measured using a most-probable-number enrichment followed by real-time PCR. After storage, vibrio levels (excluding tdh+ and trh+ Vp during 5-h storage) increased significantly (P oysters stored for 5 h) were not significantly different (P oysters. Vv and total and pathogenic Vp levels were not significantly different (P > 0.1) from levels in background oysters after 14 days of resubmersion, regardless of dry storage time. These data demonstrate that oyster resubmersion after dry storage at elevated ambient temperatures allows vibrio levels to return to those of background control samples. These results can be used to help minimize the risk of Vv and Vp illnesses and to inform the oyster industry on the effectiveness of routine storing and resubmerging of aquaculture oysters.

  4. Ozone Disinfection of Vibrio vulnificus in Shrimp Pond Water

    Science.gov (United States)

    Dyah Pita Rengga, Wara; Cahya Julyta Putri, Echa; Wulansarie, Ria; Suryanto, Agus

    2018-03-01

    One variety of shrimp, L.Vanamei, often uses brackish water during the operation in the shrimp pond. Chlorination and ultraviolet are usually used for disinfection of brackish water. However, it is ineffective and forms sediment in the water distribution. It can be a negative impact on the water quality cause a contamination on the shrimp, so the farmers might have loss of profit because Vibrio vulnificus causes infection and dead on the shrimp. It affects the safety of consumers and should be minimized. The purpose of this study is to reduce the number of V. vulnificus bacteria in the pond water. The water was put in the storage tanks then pumped to filter out the impurities of the water. Furthermore, the water set the flow rate in 1 LPM, 2 LPM, and 3 LPM. After that, the ozone was injected to the water flow to sterilize the V. vulnificus bacteria. Finally, the water was returned to the original tank. The water from the tank was taken through a valve and analyzed in 0, 3, 7, 12, 18, 24, 30 minutes. The sample was analyzed immediately using a Total Plate Count method to determine the number of V. vulnificus bacteria in the shrimp pond water. The flow rate shows that the longer time of ozone made a lower amount of Vibrio v. bacteria. In 2 LPM water, it shows the optimum results of V. vulnificus. bacteria reduction for 88.1% compared to the flow rate of 1 LPM and 3 LPM with the bacteria reduction of 68,8% and 70.6%. This study shows that the ozone with a flow rate of 2 LPM circulation is the most effective method to help reducing the number of V. vulnificus in brackish water distribution system in the shrimp environment and potentially as a disinfectant.

  5. Autoinducers act as biological timers in Vibrio harveyi.

    Science.gov (United States)

    Anetzberger, Claudia; Reiger, Matthias; Fekete, Agnes; Schell, Ursula; Stambrau, Nina; Plener, Laure; Kopka, Joachim; Schmitt-Kopplin, Phillippe; Hilbi, Hubert; Jung, Kirsten

    2012-01-01

    Quorum sensing regulates cell density-dependent phenotypes and involves the synthesis, excretion and detection of so-called autoinducers. Vibrio harveyi strain ATCC BAA-1116 (recently reclassified as Vibrio campbellii), one of the best-characterized model organisms for the study of quorum sensing, produces and responds to three autoinducers. HAI-1, AI-2 and CAI-1 are recognized by different receptors, but all information is channeled into the same signaling cascade, which controls a specific set of genes. Here we examine temporal variations of availability and concentration of the three autoinducers in V. harveyi, and monitor the phenotypes they regulate, from the early exponential to the stationary growth phase in liquid culture. Specifically, the exponential growth phase is characterized by an increase in AI-2 and the induction of bioluminescence, while HAI-1 and CAI-1 are undetectable prior to the late exponential growth phase. CAI-1 activity reaches its maximum upon entry into stationary phase, while molar concentrations of AI-2 and HAI-1 become approximately equal. Similarly, autoinducer-dependent exoproteolytic activity increases at the transition into stationary phase. These findings are reflected in temporal alterations in expression of the luxR gene that encodes the master regulator LuxR, and of four autoinducer-regulated genes during growth. Moreover, in vitro phosphorylation assays reveal a tight correlation between the HAI-1/AI-2 ratio as input and levels of receptor-mediated phosphorylation of LuxU as output. Our study supports a model in which the combinations of autoinducers available, rather than cell density per se, determine the timing of various processes in V. harveyi populations.

  6. Autoinducers act as biological timers in Vibrio harveyi.

    Directory of Open Access Journals (Sweden)

    Claudia Anetzberger

    Full Text Available Quorum sensing regulates cell density-dependent phenotypes and involves the synthesis, excretion and detection of so-called autoinducers. Vibrio harveyi strain ATCC BAA-1116 (recently reclassified as Vibrio campbellii, one of the best-characterized model organisms for the study of quorum sensing, produces and responds to three autoinducers. HAI-1, AI-2 and CAI-1 are recognized by different receptors, but all information is channeled into the same signaling cascade, which controls a specific set of genes. Here we examine temporal variations of availability and concentration of the three autoinducers in V. harveyi, and monitor the phenotypes they regulate, from the early exponential to the stationary growth phase in liquid culture. Specifically, the exponential growth phase is characterized by an increase in AI-2 and the induction of bioluminescence, while HAI-1 and CAI-1 are undetectable prior to the late exponential growth phase. CAI-1 activity reaches its maximum upon entry into stationary phase, while molar concentrations of AI-2 and HAI-1 become approximately equal. Similarly, autoinducer-dependent exoproteolytic activity increases at the transition into stationary phase. These findings are reflected in temporal alterations in expression of the luxR gene that encodes the master regulator LuxR, and of four autoinducer-regulated genes during growth. Moreover, in vitro phosphorylation assays reveal a tight correlation between the HAI-1/AI-2 ratio as input and levels of receptor-mediated phosphorylation of LuxU as output. Our study supports a model in which the combinations of autoinducers available, rather than cell density per se, determine the timing of various processes in V. harveyi populations.

  7. Dynamics of Vibrio with virulence genes detected in Pacific harbor seals (Phoca vitulina richardii) off California: implications for marine mammal health.

    Science.gov (United States)

    Hughes, Stephanie N; Greig, Denise J; Miller, Woutrina A; Byrne, Barbara A; Gulland, Frances M D; Harvey, James T

    2013-05-01

    Given their coastal site fidelity and opportunistic foraging behavior, harbor seals (Phoca vitulina) may serve as sentinels for coastal ecosystem health. Seals using urbanized coastal habitat can acquire enteric bacteria, including Vibrio that may affect their health. To understand Vibrio dynamics in seals, demographic and environmental factors were tested for predicting potentially virulent Vibrio in free-ranging and stranded Pacific harbor seals (Phoca vitulina richardii) off California. Vibrio prevalence did not vary with season and was greater in free-ranging seals (29 %, n = 319) compared with stranded seals (17 %, n = 189). Of the factors tested, location, turbidity, and/or salinity best predicted Vibrio prevalence in free-ranging seals. The relationship of environmental factors with Vibrio prevalence differed by location and may be related to oceanographic or terrestrial contributions to water quality. Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio cholerae were observed in seals, with V. cholerae found almost exclusively in stranded pups and yearlings. Additionally, virulence genes (trh and tdh) were detected in V. parahaemolyticus isolates. Vibrio cholerae isolates lacked targeted virulence genes, but were hemolytic. Three out of four stranded pups with V. parahaemolyticus (trh+ and/or tdh+) died in rehabilitation, but the role of Vibrio in causing mortality is unclear, and Vibrio expression of virulence genes should be investigated. Considering that humans share the environment and food resources with seals, potentially virulent Vibrio observed in seals also may be of concern to human health.

  8. Investigating the decay rates of Escherichia coli relative to Vibrio parahemolyticus and Salmonella Typhi in tropical coastal waters.

    Science.gov (United States)

    Lee, Choon Weng; Ng, Angie Yee Fang; Bong, Chui Wei; Narayanan, Kumaran; Sim, Edmund Ui Hang; Ng, Ching Ching

    2011-02-01

    Using the size fractionation method, we measured the decay rates of Escherichia coli, Salmonella Typhi and Vibrio parahaemolyticus in the coastal waters of Peninsular Malaysia. The size fractions were total or unfiltered, 0.7 μm) than in the smaller fraction (Vibrio grew well in seawater. There was usually an increase in Vibrio after one day incubation. Our results confirmed that decay or loss rates of E. coli did not match that of Vibrio, and also did not correlate with Salmonella decay rates. However E. coli showed persistence where its decay rates were generally lower than Salmonella. © 2010 Elsevier Ltd. All rights reserved.

  9. Host tolerance, not symbiont tolerance, determines the distribution of coral species in relation to their environment at a Central Pacific atoll

    Science.gov (United States)

    Wicks, L. C.; Gardner, J. P. A.; Davy, S. K.

    2012-06-01

    Tolerance of environmental variables differs between corals and their dinoflagellate symbionts ( Symbiodinium spp.), controlling the holobiont's (host and symbiont combined) resilience to environmental stress. However, the ecological role that environmental variables play in holobiont distribution remains poorly understood. We compared the drivers of symbiont and coral species distributions at Palmyra Atoll, a location with a range of reef environments from low to high sediment concentrations (1-52 g dry weight m-2 day-1). We observed uniform holobiont partnerships across the atoll (e.g. Montipora spp. with Symbiodinium type C15 at all sites). Multivariate analysis revealed that field-based estimates of settling sediment predominantly explained the spatial variation of coral species among sites ( P coral rather than Symbiodinium physiology. The data highlight the importance of host tolerance to environmental stressors, which should be considered simultaneously with symbiont sensitivity when considering the impact of variations in environmental conditions on coral communities.

  10. Fine-Scale Biogeographical Boundary Delineation and Sub-population Resolution in the Symbiodinium thermophilum Coral Symbiont Group From the Persian/Arabian Gulf and Gulf of Oman

    KAUST Repository

    Hume, Benjamin C. C.; D'Angelo, Cecilia; Burt, John A.; Wiedenmann, Jö rg

    2018-01-01

    The adaptation of tropical coral communities to the world's hottest sea, the Persian/Arabian Gulf (PAG), has recently been associated with ecological selection acting on a group of coral-associated algal symbionts, the Symbiodinium thermophilum

  11. Recovery and evolutionary analysis of complete integron gene cassette arrays from Vibrio

    Directory of Open Access Journals (Sweden)

    Gillings Michael R

    2006-01-01

    Full Text Available Abstract Background Integrons are genetic elements capable of the acquisition, rearrangement and expression of genes contained in gene cassettes. Gene cassettes generally consist of a promoterless gene associated with a recombination site known as a 59-base element (59-be. Multiple insertion events can lead to the assembly of large integron-associated cassette arrays. The most striking examples are found in Vibrio, where such cassette arrays are widespread and can range from 30 kb to 150 kb. Besides those found in completely sequenced genomes, no such array has yet been recovered in its entirety. We describe an approach to systematically isolate, sequence and annotate large integron gene cassette arrays from bacterial strains. Results The complete Vibrio sp. DAT722 integron cassette array was determined through the streamlined approach described here. To place it in an evolutionary context, we compare the DAT722 array to known vibrio arrays and performed phylogenetic analyses for all of its components (integrase, 59-be sites, gene cassette encoded genes. It differs extensively in terms of genomic context as well as gene cassette content and organization. The phylogenetic tree of the 59-be sites collectively found in the Vibrio gene cassette pool suggests frequent transfer of cassettes within and between Vibrio species, with slower transfer rates between more phylogenetically distant relatives. We also identify multiple cases where non-integron chromosomal genes seem to have been assembled into gene cassettes and others where cassettes have been inserted into chromosomal locations outside integrons. Conclusion Our systematic approach greatly facilitates the isolation and annotation of large integrons gene cassette arrays. Comparative analysis of the Vibrio sp. DAT722 integron obtained through this approach to those found in other vibrios confirms the role of this genetic element in promoting lateral gene transfer and suggests a high rate of gene

  12. Relative contributions of Vibrio polysaccharide and quorum sensing to the resistance of Vibrio cholerae to predation by heterotrophic protists.

    Directory of Open Access Journals (Sweden)

    Shuyang Sun

    Full Text Available Protozoan grazing is a major mortality factor faced by bacteria in the environment. Vibrio cholerae, the causative agent of the disease cholera, is a natural inhabitant of aquatic ecosystems, and its survival depends on its ability to respond to stresses, such as predation by heterotrophic protists. Previous results show that grazing pressure induces biofilm formation and enhances a smooth to rugose morphotypic shift, due to increased expression of Vibrio polysaccharide (VPS. In addition to negatively controlling vps genes, the global quorum sensing (QS regulator, HapR, plays a role in grazing resistance as the ΔhapR strain is efficiently consumed while the wild type (WT is not. Here, the relative and combined contributions of VPS and QS to grazing resistance were investigated by exposing VPS and HapR mutants and double mutants in VPS and HapR encoding genes at different phases of biofilm development to amoeboid and flagellate grazers. Data show that the WT biofilms were grazing resistant, the VPS mutants were less resistant than the WT strain, but more resistant than the QS mutant strain, and that QS contributes to grazing resistance mainly in mature biofilms. In addition, grazing effects on biofilms of mixed WT and QS mutant strains were investigated. The competitive fitness of each strain in mixed biofilms was determined by CFU and microscopy. Data show that protozoa selectively grazed the QS mutant in mixed biofilms, resulting in changes in the composition of the mixed community. A small proportion of QS mutant cells which comprised 4% of the mixed biofilm biovolume were embedded in grazing resistant WT microcolonies and shielded from predation, indicating the existence of associational protection in mixed biofilms.

  13. The dominant detritus-feeding invertebrate in Arctic peat soils derives its essential amino acids from gut symbionts

    DEFF Research Database (Denmark)

    Larsen, Thomas; Ventura, Marc; Maraldo, Kristine

    2016-01-01

    insufficiencies of macronutrients such as essential amino acids (EAA). Documenting whether gut symbionts also function as partners for symbiotic EAA supplementation is important because the question of how some detritivores are able to subsist on nutritionally insufficient diets has remained unresolved. 3....... To answer this poorly understood nutritional aspect of symbiont-host interactions, we studied the enchytraeid worm, a bulk soil feeder that thrives in Arctic peatlands. In a combined field and laboratory study, we employed stable isotope fingerprinting of amino acids to identify the biosynthetic origins...... of amino acids to bacteria, fungi and plants in enchytraeids. 4. Enchytraeids collected from Arctic peatlands derived more than 80% of their EAA from bacteria. In a controlled feeding study with the enchytraeid Enchytraeus crypticus, EAA derived almost exclusively from gut bacteria when the worms fed...

  14. Relationships between Environmental Factors and Pathogenic Vibrios in the Northern Gulf of Mexico ▿ †

    Science.gov (United States)

    Johnson, C. N.; Flowers, A. R.; Noriea, N. F.; Zimmerman, A. M.; Bowers, J. C.; DePaola, A.; Grimes, D. J.

    2010-01-01

    Although autochthonous vibrio densities are known to be influenced by water temperature and salinity, little is understood about other environmental factors associated with their abundance and distribution. Densities of culturable Vibrio vulnificus containing vvh (V. vulnificus hemolysin gene) and V. parahaemolyticus containing tlh (thermolabile hemolysin gene, ubiquitous in V. parahaemolyticus), tdh (thermostable direct hemolysin gene, V. parahaemolyticus pathogenicity factor), and trh (tdh-related hemolysin gene, V. parahaemolyticus pathogenicity factor) were measured in coastal waters of Mississippi and Alabama. Over a 19-month sampling period, vibrio densities in water, oysters, and sediment varied significantly with sea surface temperature (SST). On average, tdh-to-tlh ratios were significantly higher than trh-to-tlh ratios in water and oysters but not in sediment. Although tlh densities were lower than vvh densities in water and in oysters, the opposite was true in sediment. Regression analysis indicated that SST had a significant association with vvh and tlh densities in water and oysters, while salinity was significantly related to vibrio densities in the water column. Chlorophyll a levels in the water were correlated significantly with vvh in sediment and oysters and with pathogenic V. parahaemolyticus (tdh and trh) in the water column. Furthermore, turbidity was a significant predictor of V. parahaemolyticus density in all sample types (water, oyster, and sediment), and its role in predicting the risk of V. parahaemolyticus illness may be more important than previously realized. This study identified (i) culturable vibrios in winter sediment samples, (ii) niche-based differences in the abundance of vibrios, and (iii) predictive signatures resulting from correlations between environmental parameters and vibrio densities. PMID:20817802

  15. Relationships between environmental factors and pathogenic Vibrios in the Northern Gulf of Mexico.

    Science.gov (United States)

    Johnson, C N; Flowers, A R; Noriea, N F; Zimmerman, A M; Bowers, J C; DePaola, A; Grimes, D J

    2010-11-01

    Although autochthonous vibrio densities are known to be influenced by water temperature and salinity, little is understood about other environmental factors associated with their abundance and distribution. Densities of culturable Vibrio vulnificus containing vvh (V. vulnificus hemolysin gene) and V. parahaemolyticus containing tlh (thermolabile hemolysin gene, ubiquitous in V. parahaemolyticus), tdh (thermostable direct hemolysin gene, V. parahaemolyticus pathogenicity factor), and trh (tdh-related hemolysin gene, V. parahaemolyticus pathogenicity factor) were measured in coastal waters of Mississippi and Alabama. Over a 19-month sampling period, vibrio densities in water, oysters, and sediment varied significantly with sea surface temperature (SST). On average, tdh-to-tlh ratios were significantly higher than trh-to-tlh ratios in water and oysters but not in sediment. Although tlh densities were lower than vvh densities in water and in oysters, the opposite was true in sediment. Regression analysis indicated that SST had a significant association with vvh and tlh densities in water and oysters, while salinity was significantly related to vibrio densities in the water column. Chlorophyll a levels in the water were correlated significantly with vvh in sediment and oysters and with pathogenic V. parahaemolyticus (tdh and trh) in the water column. Furthermore, turbidity was a significant predictor of V. parahaemolyticus density in all sample types (water, oyster, and sediment), and its role in predicting the risk of V. parahaemolyticus illness may be more important than previously realized. This study identified (i) culturable vibrios in winter sediment samples, (ii) niche-based differences in the abundance of vibrios, and (iii) predictive signatures resulting from correlations between environmental parameters and vibrio densities.

  16. Ecology of Vibrio vulnificus in estuarine waters of eastern North Carolina.

    Science.gov (United States)

    Pfeffer, Courtney S; Hite, M Frances; Oliver, James D

    2003-06-01

    While several studies on the ecology of Vibrio vulnificus in Gulf Coast environments have been reported, there is little information on the distribution of this pathogen in East Coast waters. Thus, we conducted a multiyear study on the ecology of V. vulnificus in estuarine waters of the eastern United States, employing extensive multiple regression analyses to reveal the major environmental factors controlling the presence of this pathogen, and of Vibrio spp., in these environments. Monthly field samplings were conducted between July 2000 and April 2002 at six different estuarine sites along the eastern coast of North Carolina. At each site, water samples were taken and nine physicochemical parameters were measured. V. vulnificus isolates, along with estuarine bacteria, Vibrio spp., Escherichia coli organisms, and total coliforms, were enumerated in samples from each site by using selective media. During the last 6 months of the study, sediment samples were also analyzed for the presence of vibrios, including V. vulnificus. Isolates were confirmed as V. vulnificus by using hemolysin gene PCR or colony hybridization. V. vulnificus was isolated only when water temperatures were between 15 and 27 degrees C, and its presence correlated with water temperature and dissolved oxygen and vibrio levels. Levels of V. vulnificus in sediments were low, and no evidence for an overwintering in this environment was found. Multiple regression analysis indicated that vibrio levels were controlled primarily by temperature, turbidity, and levels of dissolved oxygen, estuarine bacteria, and coliforms. Water temperature accounted for most of the variability in the concentrations of both V. vulnificus (47%) and Vibrio spp. (48%).

  17. Vibrio sp. DSM 14379 pigment production--a competitive advantage in the environment?

    Science.gov (United States)

    Starič, Nejc; Danevčič, Tjaša; Stopar, David

    2010-10-01

    The ability to produce several antibacterial agents greatly increases the chance of producer's survival. In this study, red-pigmented Vibrio sp. DSM 14379 and Bacillus sp., both isolated from the same sampling volume from estuarine waters of the Northern Adriatic Sea, were grown in a co-culture. The antibacterial activity of the red pigment extract was tested on Bacillus sp. in microtiter plates. The MIC(50) for Bacillus sp. was estimated to be around 10⁻⁵ mg/L. The extract prepared form the nonpigmented mutant of Vibrio sp. had no antibacterial effect. The pigment production of Vibrio sp. was studied under different physicochemical conditions. There was no pigment production at high or low temperatures, high or low salt concentrations in peptone yeast extract (PYE) medium, low glucose concentration in mineral growth medium or high glucose concentration in PYE medium. This indicates that the red pigment production is a luxurious good that Vibrio sp. makes only under favorable conditions. The Malthusian fitness of Bacillus sp. in a co-culture with Vibrio sp. under optimal environmental conditions dropped from 4.0 to -7.6, which corresponds to three orders of magnitude decrease in the number of CFU relative to the monoculture. The nonpigmented mutant of Vibrio sp. in a co-culture with Bacillus sp. had a significant antibacterial activity. This result shows that studying antibacterial properties in isolation (i.e. pigment extract only) may not reveal full antibacterial potential of the bacterial strain. The red pigment is a redundant antibacterial agent of Vibrio sp.

  18. Host-symbiont recombination versus natural selection in the response of coral-dinoflagellate symbioses to environmental disturbance.

    Science.gov (United States)

    LaJeunesse, Todd C; Smith, Robin; Walther, Mariana; Pinzón, Jorge; Pettay, Daniel T; McGinley, Michael; Aschaffenburg, Matthew; Medina-Rosas, Pedro; Cupul-Magaña, Amilcar L; Pérez, Andrés López; Reyes-Bonilla, Hector; Warner, Mark E

    2010-10-07

    Mutualisms between reef-building corals and endosymbiotic dinoflagellates are particularly sensitive to environmental stress, yet the ecosystems they construct have endured major oscillations in global climate. During the winter of 2008, an extreme cold-water event occurred in the Gulf of California that bleached corals in the genus Pocillopora harbouring a thermally 'sensitive' symbiont, designated Symbiodinium C1b-c, while colonies possessing Symbiodinium D1 were mostly unaffected. Certain bleached colonies rec