WorldWideScience

Sample records for switches modulate gene

  1. Ionic modulation of QPX stability as a nano-switch regulating gene expression in neurons

    Science.gov (United States)

    Baghaee Ravari, Soodeh

    G-quadruplexes (G-QPX) have been the subject of intense research due to their unique structural configuration and potential applications, particularly their functionality in biological process as a novel type of nano--switch. They have been found in critical regions of the human genome such as telomeres, promoter regions, and untranslated regions of RNA. About 50% of human DNA in promoters has G-rich regions with the potential to form G-QPX structures. A G-QPX might act mechanistically as an ON/OFF switch, regulating gene expression, meaning that the formation of G-QPX in a single strand of DNA disrupts double stranded DNA, prevents the binding of transcription factors (TF) to their recognition sites, resulting in gene down-regulation. Although there are numerous studies on biological roles of G-QPXs in oncogenes, their potential formation in neuronal cells, in particular upstream of transcription start sites, is poorly investigated. The main focus of this research is to identify stable G-QPXs in the 97bp active promoter region of the choline acetyltransferase (ChAT) gene, the terminal enzyme involved in synthesis of the neurotransmitter acetylcholine, and to clarify ionic modulation of G-QPX nanostructures through the mechanism of neural action potentials. Different bioinformatics analyses (in silico), including the QGRS, quadparser and G4-Calculator programs, have been used to predict stable G-QPX in the active promoter region of the human ChAT gene, located 1000bp upstream from the TATA box. The results of computational studies (using those three different algorithms) led to the identification of three consecutive intramolecular G-QPX structures in the negative strand (ChAT G17-2, ChAT G17, and ChAT G29) and one intramolecular G-QPX structure in the positive strand (ChAT G30). Also, the results suggest the possibility that nearby G-runs in opposed DNA strands with a short distance of each other may be able to form a stable intermolecular G-QPX involving two DNA

  2. Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Miki L.; Clark, Tyson A.; Gee, Sherry L.; Kang, Jeong-Ah; Schweitzer, Anthony C.; Wickrema, Amittha; Conboy, John G.

    2009-02-03

    Differentiating erythroid cells execute a unique gene expression program that insures synthesis of the appropriate proteome at each stage of maturation. Standard expression microarrays provide important insight into erythroid gene expression but cannot detect qualitative changes in transcript structure, mediated by RNA processing, that alter structure and function of encoded proteins. We analyzed stage-specific changes in the late erythroid transcriptome via use of high-resolution microarrays that detect altered expression of individual exons. Ten differentiation-associated changes in erythroblast splicing patterns were identified, including the previously known activation of protein 4.1R exon 16 splicing. Six new alternative splicing switches involving enhanced inclusion of internal cassette exons were discovered, as well as 3 changes in use of alternative first exons. All of these erythroid stage-specific splicing events represent activated inclusion of authentic annotated exons, suggesting they represent an active regulatory process rather than a general loss of splicing fidelity. The observation that 3 of the regulated transcripts encode RNA binding proteins (SNRP70, HNRPLL, MBNL2) may indicate significant changes in the RNA processing machinery of late erythroblasts. Together, these results support the existence of a regulated alternative pre-mRNA splicing program that is critical for late erythroid differentiation.

  3. Molecular switch of Cre/loxP for radiation modulated gene therapy on hepatoma

    International Nuclear Information System (INIS)

    Hsieh, Y.-J.; Chen, Fu-Du; Wang, F.H.; Ke, C.C.; Wang, H.-E.; Liu, R.-S.

    2007-01-01

    For the purpose of enhancement of AFP promoter for the use of radiation modulated gene therapy for hepatocellular carcinoma (HCC), we combined hepatitis B virus (HBV) enhancer II with AFP promoter which shows the selectivity to the target cells to control the Cre/loxP system. Different gene constructs, pE4luc, pE4Tk, EIIAPA-Cre, E4CMV-STOP-Tk and chimeric promoters combined with HBV enhancer were constructed and transfected into HepG2, HeLa and NIH-3T3 cell lines. Cell experiments revealed that E4 enhancer responses to radiation best after 60 h irradiation at a dose range of 5-7 Gy in HepG2 stable clone. The EIIAPA promoter provided high specificity to hepatoma and activated the Cre downstream and removed the stop cassette only in hepatoma cells. After removal of the stop cassette, the E4 response to radiation could encode more Tk protein and kill more tumor cells. In summary, the chimeric EIIAPA promoter can stringently control the expression of Cre recombinase only in HCC. The radiation effect of the EIIAPA-Cre and E4CMV-STOP-Tk system shows promising results in terms of cell survival of HCC

  4. Molecular switch of Cre/loxP for radiation modulated gene therapy on hepatoma

    Science.gov (United States)

    Hsieh, Ya-Ju; Chen, Fu-Du; Wang, Fu Hui; Ke, Chien Chih; Wang, Hsin-Ell; Liu, Ren-Shyan

    2007-02-01

    For the purpose of enhancement of AFP promoter for the use of radiation modulated gene therapy for hepatocellular carcinoma (HCC), we combined hepatitis B virus (HBV) enhancer II with AFP promoter which shows the selectivity to the target cells to control the Cre/loxP system. Different gene constructs, pE4luc, pE4Tk, EIIAPA-Cre, E4CMV-STOP-Tk and chimeric promoters combined with HBV enhancer were constructed and transfected into HepG2, HeLa and NIH-3T3 cell lines. Cell experiments revealed that E4 enhancer responses to radiation best after 60 h irradiation at a dose range of 5-7 Gy in HepG2 stable clone. The EIIAPA promoter provided high specificity to hepatoma and activated the Cre downstream and removed the stop cassette only in hepatoma cells. After removal of the stop cassette, the E4 response to radiation could encode more Tk protein and kill more tumor cells. In summary, the chimeric EIIAPA promoter can stringently control the expression of Cre recombinase only in HCC. The radiation effect of the EIIAPA-Cre and E4CMV-STOP-Tk system shows promising results in terms of cell survival of HCC.

  5. New pulse modulator with low switching frequency

    Directory of Open Access Journals (Sweden)

    Golub V. S.

    2014-12-01

    Full Text Available The author presents an integrating pulse modulator (analog signal converter with the pulse frequency and duration modulation similar to sigma-delta modulation (with low switching frequency, without quantization. The modulator is characterized by the absence of the quantization noise inherent in sigma-delta modulator, and a low switching frequency, unlike the pulse-frequency modulator. The modulator is recommended, in particular, to convert signals at the input of the class D power amplifier.

  6. Multiple genetic switches spontaneously modulating bacterial mutability

    Directory of Open Access Journals (Sweden)

    Johnston Randal N

    2010-09-01

    Full Text Available Abstract Background All life forms need both high genetic stability to survive as species and a degree of mutability to evolve for adaptation, but little is known about how the organisms balance the two seemingly conflicting aspects of life: genetic stability and mutability. The DNA mismatch repair (MMR system is essential for maintaining genetic stability and defects in MMR lead to high mutability. Evolution is driven by genetic novelty, such as point mutation and lateral gene transfer, both of which require genetic mutability. However, normally a functional MMR system would strongly inhibit such genomic changes. Our previous work indicated that MMR gene allele conversion between functional and non-functional states through copy number changes of small tandem repeats could occur spontaneously via slipped-strand mis-pairing during DNA replication and therefore may play a role of genetic switches to modulate the bacterial mutability at the population level. The open question was: when the conversion from functional to defective MMR is prohibited, will bacteria still be able to evolve by accepting laterally transferred DNA or accumulating mutations? Results To prohibit allele conversion, we "locked" the MMR genes through nucleotide replacements. We then scored changes in bacterial mutability and found that Salmonella strains with MMR locked at the functional state had significantly decreased mutability. To determine the generalizability of this kind of mutability 'switching' among a wider range of bacteria, we examined the distribution of tandem repeats within MMR genes in over 100 bacterial species and found that multiple genetic switches might exist in these bacteria and may spontaneously modulate bacterial mutability during evolution. Conclusions MMR allele conversion through repeats-mediated slipped-strand mis-pairing may function as a spontaneous mechanism to switch between high genetic stability and mutability during bacterial evolution.

  7. An H3K9/S10 methyl-phospho switch modulates Polycomb and Pol II binding at repressed genes during differentiation.

    Science.gov (United States)

    Sabbattini, Pierangela; Sjoberg, Marcela; Nikic, Svetlana; Frangini, Alberto; Holmqvist, Per-Henrik; Kunowska, Natalia; Carroll, Tom; Brookes, Emily; Arthur, Simon J; Pombo, Ana; Dillon, Niall

    2014-03-01

    Methylated histones H3K9 and H3K27 are canonical epigenetic silencing modifications in metazoan organisms, but the relationship between the two modifications has not been well characterized. H3K9me3 coexists with H3K27me3 in pluripotent and differentiated cells. However, we find that the functioning of H3K9me3 is altered by H3S10 phosphorylation in differentiated postmitotic osteoblasts and cycling B cells. Deposition of H3K9me3/S10ph at silent genes is partially mediated by the mitogen- and stress-activated kinases (MSK1/2) and the Aurora B kinase. Acquisition of H3K9me3/S10ph during differentiation correlates with loss of paused S5 phosphorylated RNA polymerase II, which is present on Polycomb-regulated genes in embryonic stem cells. Reduction of the levels of H3K9me3/S10ph by kinase inhibition results in increased binding of RNAPIIS5ph and the H3K27 methyltransferase Ezh1 at silent promoters. Our results provide evidence of a novel developmentally regulated methyl-phospho switch that modulates Polycomb regulation in differentiated cells and stabilizes repressed states.

  8. Optimization of Modulation Waveforms for Improved EMI Attenuation in Switching Frequency Modulated Power Converters

    Directory of Open Access Journals (Sweden)

    Deniss Stepins

    2015-01-01

    Full Text Available Electromagnetic interference (EMI is one of the major problems of switching power converters. This paper is devoted to switching frequency modulation used for conducted EMI suppression in switching power converters. Comprehensive theoretical analysis of switching power converter conducted EMI spectrum and EMI attenuation due the use of traditional ramp and multislope ramp modulation waveforms is presented. Expressions to calculate EMI spectrum and attenuation are derived. Optimization procedure of the multislope ramp modulation waveform is proposed to get maximum benefits from switching frequency modulation for EMI reduction. Experimental verification is also performed to prove that the optimized multislope ramp modulation waveform is very useful solution for effective EMI reduction in switching power converters.

  9. Synchronization Technique for Random Switching Frequency Pulse-Width Modulation

    OpenAIRE

    Apinan Aurasopon; Worawat Sa-ngiavibool

    2008-01-01

    This paper proposes a synchronized random switching frequency pulse width modulation (SRSFPWM). In this technique, the clock signal is used to control the random noise frequency which is produced by the feedback voltage of a hysteresis circuit. These make the triangular carrier frequency equaling to the random noise frequency in each switching period with the symmetrical positive and negative slopes of triangular carrier. Therefore, there is no error voltage in PWM signal. The PSpice simulate...

  10. Multi Carrier Modulator for Switch-Mode Audio Power Amplifiers

    DEFF Research Database (Denmark)

    Knott, Arnold; Pfaffinger, Gerhard; Andersen, Michael Andreas E.

    2008-01-01

    While switch-mode audio power amplifiers allow compact implementations and high output power levels due to their high power efficiency, they are very well known for creating electromagnetic interference (EMI) with other electronic equipment, in particular radio receivers. Lowering the EMI of switch......-mode audio power amplifiers while keeping the performance measures to excellent levels is therefore of high general interest. A modulator utilizing multiple carrier signals to generate a two level pulse train will be shown in this paper. The performance of the modulator will be compared in simulation...

  11. High frequency modulation circuits based on photoconductive wide bandgap switches

    Science.gov (United States)

    Sampayan, Stephen

    2018-02-13

    Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP material conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.

  12. Switching speed limitations of high power IGBT modules

    DEFF Research Database (Denmark)

    Incau, Bogdan Ioan; Trintis, Ionut; Munk-Nielsen, Stig

    2015-01-01

    for the blocking dc-link voltage. Switching losses are analyzed upon a considerable variation of resistor value from turn-on gate driver side. Short circuit operations are investigated along with safe operating area for entire module to validate electrical capabilities under extreme conditions....

  13. Cell state switching factors and dynamical patterning modules ...

    Indian Academy of Sciences (India)

    2009-01-05

    Jan 5, 2009 ... Home; Journals; Journal of Biosciences; Volume 34; Issue 4. Cell state switching factors and dynamical patterning modules: complementary mediators of plasticity in development and evolution. Stuart A Newman Ramray Bhat Nadejda V Mezentseva. Articles Volume 34 Issue 4 October 2009 pp 553-572 ...

  14. Cell state switching factors and dynamical patterning modules ...

    Indian Academy of Sciences (India)

    Prakash

    Plasticity (i.e. stochastic or condition-dependent variability) of developmental outcome in multicellular organisms is due to two principal mechanisms. The first is largely, though not entirely, a function of differential gene expression and is based on the capacity of individual cells to switch between alternative states under ...

  15. Fully reconfigurable 2x2 optical cross-connect using tunable wavelength switching modules

    DEFF Research Database (Denmark)

    Liu, Fenghai; Zheng, Xueyan; Pedersen, Rune Johan Skullerud

    2001-01-01

    A modular tunable wavelength switching module is proposed and used to construct 2x2 fully reconfigurable optical cross-connects. Large size optical switch is avoided in the OXC and it is easy to upgrade to more wavelength channels.......A modular tunable wavelength switching module is proposed and used to construct 2x2 fully reconfigurable optical cross-connects. Large size optical switch is avoided in the OXC and it is easy to upgrade to more wavelength channels....

  16. Temporal prediction errors modulate task-switching performance

    Directory of Open Access Journals (Sweden)

    Roberto eLimongi

    2015-08-01

    Full Text Available We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus’ onset times modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI, causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected, which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad-hoc concepts such as executive control is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching.

  17. Switching on the lights for gene therapy.

    Directory of Open Access Journals (Sweden)

    Alexandra Winkeler

    Full Text Available Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy. To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1 amplicon vectors carrying hormone (mifepristone or antibiotic (tetracycline regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET or bioluminescence (BLI in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application.

  18. A versatile cis-acting inverter module for synthetic translational switches.

    Science.gov (United States)

    Endo, Kei; Hayashi, Karin; Inoue, Tan; Saito, Hirohide

    2013-01-01

    Artificial genetic switches have been designed and tuned individually in living cells. A method to directly invert an existing OFF switch to an ON switch should be highly convenient to construct complex circuits from well-characterized modules, but developing such a technique has remained a challenge. Here we present a cis-acting RNA module to invert the function of a synthetic translational OFF switch to an ON switch in mammalian cells. This inversion maintains the property of the parental switch in response to a particular input signal. In addition, we demonstrate simultaneous and specific expression control of both the OFF and ON switches. The module fits the criteria of universality and expands the versatility of mRNA-based information processing systems developed for artificially controlling mammalian cellular behaviour.

  19. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... that the method can be applied to modulating the expression of native genes on the chromosome. We constructed a series of strains in which the expression of the las operon, containing the genes pfk, pyk, and ldh, was modulated by integrating a truncated copy of the pfk gene. Importantly, the modulation affected...

  20. Soft switching circuit to improve efficiency of all solid-state Marx modulator for DBDs

    Science.gov (United States)

    Liqing, TONG; Kefu, LIU; Yonggang, WANG

    2018-02-01

    For an all solid-state Marx modulator applied in dielectric barrier discharges (DBDs), hard switching results in a very low efficiency. In this paper, a series resonant soft switching circuit, which series an inductance with DBD capacitor, is proposed to reduce the power loss. The power loss of the all circuit status with hard switching was analyzed, and the maximum power loss occurred during discharging at the rising and falling edges. The power loss of the series resonant soft switching circuit was also presented. A comparative analysis of the two circuits determined that the soft switching circuit greatly reduced power loss. The experimental results also demonstrated that the soft switching circuit improved the power transmission efficiency of an all solid-state Marx modulator for DBDs by up to 3 times.

  1. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    Directory of Open Access Journals (Sweden)

    Paola Fuentes-Claramonte

    Full Text Available Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies.

  2. Switched capacitor DC-DC converter with switch conductance modulation and Pesudo-fixed frequency control

    DEFF Research Database (Denmark)

    Larsen, Dennis Øland; Vinter, Martin; Jørgensen, Ivan Harald Holger

    A switched capacitor dc-dc converter with frequency-planned control is presented. By splitting the output stage switches in eight segments the output voltage can be regulated with a combination of switching frequency and switch conductance. This allows for switching at predetermined frequencies, 31.......25 kHz, 250 kHz, 500 kHz, and 1 MHz, while maintaining regulation of the output voltage. The controller is implemented in 180 CMOS with a 1/3 series-parallel output stage designed for 3.6–4.2 V input, 1.2 V output, and 1–40 mA load current. The proposed controller is compared with a co-integrated pulse...

  3. Helical EMG module with explosive current opening switches

    International Nuclear Information System (INIS)

    Chernyshev, V.K.; Vakhrushev, V.V.; Volkov, G.I.; Ivanov, V.A.; Fetisov, I.K.

    1990-01-01

    To carry out the experimental work to study plasma properties, electromagnetic sources with 10 6 to 10 8 J of stored energy delivered to the load in microsecond time, are required. Among the current electromagnetic storage devices, the explosive magnetic generators (EMG) are of the largest energy capacity. The disadvantages of this type of generators is relatively long time (ten of microseconds) of electromagnetic energy cumulation in the deformable circuit. To reduce the time of energy transfer to the load to a microsecond range the switching scheme is generally used, where the cumulation circuit and that of the load are separated and connected in parallel via a switching element (opening switch) providing generation of desired power. In this paper, some ways and means of designing opening switches to generate high current pulses have been investigated. The opening switches to generate high current pulses have been investigated. The opening switches which operation is based on mechanic destruction of the conductor using high explosive, have the highest and most reliable performance. The authors have explored the mechanic disruption of a thin conductor (foil), the technique based on throwing the foil at the ribbed barrier of electric insulator material. The report presents the data obtained in studying the operation of this type of opening switch having cylindrical shape, 200 mm in diameter and 200 mm long, designed for generation of 5.5 MA current pulse in the load

  4. Modular space-vector pulse-width modulation for nine-switch converters

    DEFF Research Database (Denmark)

    Dehghan, Seyed Mohammad; Amiri, Arash; Mohamadian, Mustafa

    2013-01-01

    Recently, nine-switch inverter (NSI) has been presented as a dual-output inverter with constant frequency (CF) or different frequency (DF) operation modes. However, the CF mode is more interesting because of its lower switching device rating. This study proposes a new space-vector modulation (SVM......) method for the NSI that supports both the CF and DF modes, whereas conventional SVM of NSI can be used only in the DF mode. The proposed SVM can be easily implemented based on the conventional six-switch inverter SVM modules. The performance of the proposed SVM is verified by the simulation...

  5. Phasevarions mediate random switching of gene expression in pathogenic Neisseria.

    Directory of Open Access Journals (Sweden)

    Yogitha N Srikhanta

    2009-04-01

    Full Text Available Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression. In Haemophilus influenzae, the random switching of the modA gene controls expression of a phase-variable regulon of genes (a "phasevarion", via differential methylation of the genome in the modA ON and OFF states. Phase-variable mod genes are also present in Neisseria meningitidis and Neisseria gonorrhoeae, suggesting that phasevarions may occur in these important human pathogens. Phylogenetic studies on phase-variable mod genes associated with type III restriction modification (R-M systems revealed that these organisms have two distinct mod genes--modA and modB. There are also distinct alleles of modA (abundant: modA11, 12, 13; minor: modA4, 15, 18 and modB (modB1, 2. These alleles differ only in their DNA recognition domain. ModA11 was only found in N. meningitidis and modA13 only in N. gonorrhoeae. The recognition site for the modA13 methyltransferase in N. gonorrhoeae strain FA1090 was identified as 5'-AGAAA-3'. Mutant strains lacking the modA11, 12 or 13 genes were made in N. meningitidis and N. gonorrhoeae and their phenotype analyzed in comparison to a corresponding mod ON wild-type strain. Microarray analysis revealed that in all three modA alleles multiple genes were either upregulated or downregulated, some of which were virulence-associated. For example, in N. meningitidis MC58 (modA11, differentially expressed genes included those encoding the candidate vaccine antigens lactoferrin binding proteins A and B. Functional studies using N. gonorrhoeae FA1090 and the clinical isolate O1G1370 confirmed that modA13 ON and OFF strains have distinct phenotypes in antimicrobial resistance, in a primary human cervical epithelial cell model of infection, and in biofilm formation. This study, in conjunction with our previous work in H. influenzae, indicates

  6. Phasevarions mediate random switching of gene expression in pathogenic Neisseria.

    Science.gov (United States)

    Srikhanta, Yogitha N; Dowideit, Stefanie J; Edwards, Jennifer L; Falsetta, Megan L; Wu, Hsing-Ju; Harrison, Odile B; Fox, Kate L; Seib, Kate L; Maguire, Tina L; Wang, Andrew H-J; Maiden, Martin C; Grimmond, Sean M; Apicella, Michael A; Jennings, Michael P

    2009-04-01

    Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae, the random switching of the modA gene controls expression of a phase-variable regulon of genes (a "phasevarion"), via differential methylation of the genome in the modA ON and OFF states. Phase-variable mod genes are also present in Neisseria meningitidis and Neisseria gonorrhoeae, suggesting that phasevarions may occur in these important human pathogens. Phylogenetic studies on phase-variable mod genes associated with type III restriction modification (R-M) systems revealed that these organisms have two distinct mod genes--modA and modB. There are also distinct alleles of modA (abundant: modA11, 12, 13; minor: modA4, 15, 18) and modB (modB1, 2). These alleles differ only in their DNA recognition domain. ModA11 was only found in N. meningitidis and modA13 only in N. gonorrhoeae. The recognition site for the modA13 methyltransferase in N. gonorrhoeae strain FA1090 was identified as 5'-AGAAA-3'. Mutant strains lacking the modA11, 12 or 13 genes were made in N. meningitidis and N. gonorrhoeae and their phenotype analyzed in comparison to a corresponding mod ON wild-type strain. Microarray analysis revealed that in all three modA alleles multiple genes were either upregulated or downregulated, some of which were virulence-associated. For example, in N. meningitidis MC58 (modA11), differentially expressed genes included those encoding the candidate vaccine antigens lactoferrin binding proteins A and B. Functional studies using N. gonorrhoeae FA1090 and the clinical isolate O1G1370 confirmed that modA13 ON and OFF strains have distinct phenotypes in antimicrobial resistance, in a primary human cervical epithelial cell model of infection, and in biofilm formation. This study, in conjunction with our previous work in H. influenzae, indicates that

  7. Synthetic RNA switches as a tool for temporal and spatial control over gene expression.

    Science.gov (United States)

    Chang, Andrew L; Wolf, Joshua J; Smolke, Christina D

    2012-10-01

    The engineering of biological systems offers significant promise for advances in areas including health and medicine, chemical synthesis, energy production, and environmental sustainability. Realizing this potential requires tools that enable design of sophisticated genetic systems. The functional diversity of RNA makes it an attractive and versatile substrate for programming sensing, information processing, computation, and control functions. Recent advances in the design of synthetic RNA switches capable of detecting and responding to molecular and environmental signals enable dynamic modulation of gene expression through diverse mechanisms, including transcription, splicing, stability, RNA interference, and translation. Furthermore, implementation of these switches in genetic circuits highlights the potential for building synthetic cell systems targeted to applications in environmental remediation and next-generation therapeutics and diagnostics. Copyright © 2012. Published by Elsevier Ltd.

  8. A 3rd Order Low Power Switched Current Sigma-Delta Modulator

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Herald Holger; Bogason, Gudmundur

    1996-01-01

    This paper presents a 3rd order switched current Sigma-Delta modulator. The Sigma-Delta modulator operates at a sampling rate of 600kHz and the signal band is 5.5kHz, i.e. an oversampling factor of 54.5 is used. Multiple input signals are used to reduce the internal signal swings which results...

  9. Gene expression profiling reveals large regulatory switches between succeeding stipe stages in Volvariella volvacea.

    Directory of Open Access Journals (Sweden)

    Yongxin Tao

    Full Text Available The edible mushroom Volvariella volvacea is an important crop in Southeast Asia and is predominantly harvested in the egg stage. One of the main factors that negatively affect its yield and value is the rapid transition from the egg to the elongation stage, which has a decreased commodity value and shelf life. To improve our understanding of the changes during stipe development and the transition from egg to elongation stage in particular, we analyzed gene transcription in stipe tissue of V. volvacea using 3'-tag based digital expression profiling. Stipe development turned out to be fairly complex with high numbers of expressed genes, and regulation of stage differences is mediated mainly by changes in expression levels of genes, rather than on/off modulation. Most explicit is the strong up-regulation of cell division from button to egg, and the very strong down-regulation hereof from egg to elongation, that continues in the maturation stage. Button and egg share cell division as means of growth, followed by a major developmental shift towards rapid stipe elongation based on cell extension as demonstrated by inactivation of cell division throughout elongation and maturation. Examination of regulatory genes up-regulated from egg to elongation identified three potential high upstream regulators for this switch. The new insights in stipe dynamics, together with a series of new target genes, will provide a sound base for further studies on the developmental mechanisms of mushroom stipes and the switch from egg to elongation in V. volvacea in particular.

  10. LTCC phase shifter modules for RF-MEMS-switch integration

    NARCIS (Netherlands)

    Bartnitzek, T.; Muller, E.; Dijk, R. van

    2005-01-01

    The European 1ST project ARHMS is covering a wide field of R&D activities with the final goal: a satellite based car communication system with a fiat electronically steerable roof antenna based on RF-MEMS. The required phase shift for beam steering will be done with MEMS switches and RF networks. An

  11. Frequent interchromosomal template switches during gene conversion in S. cerevisiae

    Science.gov (United States)

    Tsaponina, Olga; Haber, James E.

    2014-01-01

    Summary Although repair of double-strand breaks (DSBs) by gene conversion is the most accurate way to repair such lesions, in budding yeast there is a thousand-fold increase in accompanying mutations, including interchromosomal template switches (ICTS) involving highly mismatched (homeologous) ectopic sequences. Although such events are rare and appear at a rate of 2×10−7 when template jumps occur between 71% identical sequences, they are surprisingly frequent (0.3% of all repair events) when the second template is identical to the first, revealing the remarkable instability of repair DNA synthesis. With homeologous donors, ICTS uses microhomologies as small as 2 bp. Cells lacking mismatch repair proteins Msh6 and Mlh1 form chimeric recombinants with two distinct patches of microhomology, implying that these proteins are crucial for strand discrimination of heteroduplex DNA formed during ICTS. We identify the chromatin remodeler Rdh54 as the first protein required for template switching that does not affect simple gene conversion. PMID:25066232

  12. Drosophila switch gene Sex-lethal can bypass its switch-gene target transformer to regulate aspects of female behavior

    Science.gov (United States)

    Evans, Daniel S.; Cline, Thomas W.

    2013-01-01

    The switch gene Sex-lethal (Sxl) was thought to elicit all aspects of Drosophila female somatic differentiation other than size dimorphism by controlling only the switch gene transformer (tra). Here we show instead that Sxl controls an aspect of female sexual behavior by acting on a target other than or in addition to tra. We inferred the existence of this unknown Sxl target from the observation that a constitutively feminizing tra transgene that restores fertility to tra− females failed to restore fertility to Sxl-mutant females that were adult viable but functionally tra−. The sterility of these mutant females was caused by an ovulation failure. Because tra expression is not sufficient to render these Sxl-mutant females fertile, we refer to this pathway as the tra-insufficient feminization (TIF) branch of the sex-determination regulatory pathway. Using a transgene that conditionally expresses two Sxl feminizing isoforms, we find that the TIF branch is required developmentally for neurons that also sex-specifically express fruitless, a tra gene target controlling sexual behavior. Thus, in a subset of fruitless neurons, targets of the TIF and tra pathways appear to collaborate to control ovulation. In most insects, Sxl has no sex-specific functions, and tra, rather than Sxl, is both the target of the primary sex signal and the gene that maintains the female developmental commitment via positive autoregulation. The TIF pathway may represent an ancestral female-specific function acquired by Sxl in an early evolutionary step toward its becoming the regulator of tra in Drosophila. PMID:24191002

  13. Switched capacitor DC-DC converter with switch conductance modulation and Pesudo-fixed frequency control

    DEFF Research Database (Denmark)

    Larsen, Dennis Øland; Vinter, Martin; Jørgensen, Ivan Harald Holger

    .25 kHz, 250 kHz, 500 kHz, and 1 MHz, while maintaining regulation of the output voltage. The controller is implemented in 180 CMOS with a 1/3 series-parallel output stage designed for 3.6–4.2 V input, 1.2 V output, and 1–40 mA load current. The proposed controller is compared with a co-integrated pulse...... skipping controller and yields a 84.8% reduction in worst-case low-load output ripple voltage and a 1.5% increase in peak efficiency reaching 92.5%, while also providing a predictable spectrum of the switching noise, reducing the risk of interfering with other sensitive circuits....

  14. How Sequential Changes in Reward Magnitude Modulate Cognitive Flexibility: Evidence from Voluntary Task Switching

    Science.gov (United States)

    Fröber, Kerstin; Dreisbach, Gesine

    2016-01-01

    There is much evidence that the prospect of reward modulates cognitive control in terms of more stable behavior. Increases in expected reward magnitude, however, have been suggested to increase flexible behavior as evidenced by reduced switch costs. In a series of experiments, the authors provide evidence that this increased cognitive flexibility…

  15. Pulse-modulated control of switching valves for an electro-hydraulic servo actuator

    Science.gov (United States)

    Tersteegen, Johannes

    1992-02-01

    The consequent step in using digital technology in servohydraulics leads to the use of fast switching electrohydraulic control valves. By changing the pulse duty ratio between opening and closing (pulse width modulation) a quasi-continuous control of the fluid flow can be achieved. The essential design criteria of a valve controlled actuator including the pulse modulated closed loop position control are described. Those computer programs which are dealt with in detail include the digital control circuit with its pulse modulated control as well as fault detection and fault elimination.

  16. Joint switched transmit diversity and adaptive modulation in spectrum sharing systems

    KAUST Repository

    Qaraqe, Khalid A.

    2011-01-01

    Under the scenario of an underlay cognitive radio network, we propose in this paper an adaptive scheme using switched transmit diversity and adaptive modulation in order to minimize the average number of switched branches at the secondary transmitter while increasing the capacity of the secondary link. The proposed switching efficient scheme (SES) uses the scan and wait (SWC) combining technique where a transmission occurs only when a branch with an acceptable performance is found, otherwise data is buffered. In our scheme, the modulation constellation size and the used transmit branch are determined to achieve the highest spectral efficiency with a minimum processing power, given the fading channel conditions, the required error rate performance, and a peak interference constraint to the primary receiver. Selected numerical examples show that the SES scheme minimizes the average number of switched branches for the average and the high secondary signal-to-noise ratio range. This improvement comes at the expense of a small delay introduced by the SWC technique. For reference, we also compare the performance of the SES scheme to the selection diversity scheme (SDS) where the best branch verifying the modulation mode and the interference constraint is always selected. © 2011 ICST.

  17. Abacus Training Affects Math and Task Switching Abilities and Modulates Their Relationships in Chinese Children.

    Science.gov (United States)

    Wang, Chunjie; Geng, Fengji; Yao, Yuan; Weng, Jian; Hu, Yuzheng; Chen, Feiyan

    2015-01-01

    Our previous work demonstrated that abacus-based mental calculation (AMC), a traditional Chinese calculation method, could help children improve their math abilities (e.g. basic arithmetical ability) and executive function (e.g. working memory). This study further examined the effects of long-term AMC training on math ability in visual-spatial domain and the task switching component of executive function. More importantly, this study investigated whether AMC training modulated the relationship between math abilities and task switching. The participants were seventy 7-year-old children who were randomly assigned into AMC and control groups at primary school entry. Children in AMC group received 2-hour AMC training every week since primary school entry. On the contrary, children in the control group had never received any AMC training. Math and task switching abilities were measured one year and three years respectively after AMC training began. The results showed that AMC children performed better than their peers on math abilities in arithmetical and visual-spatial domains. In addition, AMC group responded faster than control group in the switching task, while no group difference was found in switch cost. Most interestingly, group difference was present in the relationships between math abilities and switch cost. These results implied the effect of AMC training on math abilities as well as its relationship with executive function.

  18. Abacus Training Affects Math and Task Switching Abilities and Modulates Their Relationships in Chinese Children.

    Directory of Open Access Journals (Sweden)

    Chunjie Wang

    Full Text Available Our previous work demonstrated that abacus-based mental calculation (AMC, a traditional Chinese calculation method, could help children improve their math abilities (e.g. basic arithmetical ability and executive function (e.g. working memory. This study further examined the effects of long-term AMC training on math ability in visual-spatial domain and the task switching component of executive function. More importantly, this study investigated whether AMC training modulated the relationship between math abilities and task switching. The participants were seventy 7-year-old children who were randomly assigned into AMC and control groups at primary school entry. Children in AMC group received 2-hour AMC training every week since primary school entry. On the contrary, children in the control group had never received any AMC training. Math and task switching abilities were measured one year and three years respectively after AMC training began. The results showed that AMC children performed better than their peers on math abilities in arithmetical and visual-spatial domains. In addition, AMC group responded faster than control group in the switching task, while no group difference was found in switch cost. Most interestingly, group difference was present in the relationships between math abilities and switch cost. These results implied the effect of AMC training on math abilities as well as its relationship with executive function.

  19. Two Micron Pixel Pitch Active Matrix Spatial Light Modulator Driven by Spin Transfer Switching

    Directory of Open Access Journals (Sweden)

    Hidekazu Kinjo

    2016-09-01

    Full Text Available We have developed an active matrix-addressed magneto-optical spatial light modulator driven by spin-transfer switching (spin-SLM which has a 100 × 100 array pixel layout with a 2 µm pixel pitch. It has pixel-selection-transistors and logic circuits which convert serial data into parallel data to reduce input terminals. We have confirmed successful magnetization switching of each pixel by injecting a pulse current generated from the logic circuit, and its optical display capability by showing digital characters.

  20. What makes the lac-pathway switch: identifying the fluctuations that trigger phenotype switching in gene regulatory systems.

    Science.gov (United States)

    Bhogale, Prasanna M; Sorg, Robin A; Veening, Jan-Willem; Berg, Johannes

    2014-10-01

    Multistable gene regulatory systems sustain different levels of gene expression under identical external conditions. Such multistability is used to encode phenotypic states in processes including nutrient uptake and persistence in bacteria, fate selection in viral infection, cell-cycle control and development. Stochastic switching between different phenotypes can occur as the result of random fluctuations in molecular copy numbers of mRNA and proteins arising in transcription, translation, transport and binding. However, which component of a pathway triggers such a transition is generally not known. By linking single-cell experiments on the lactose-uptake pathway in E. coli to molecular simulations, we devise a general method to pinpoint the particular fluctuation driving phenotype switching and apply this method to the transition between the uninduced and induced states of the lac-genes. We find that the transition to the induced state is not caused only by the single event of lac-repressor unbinding, but depends crucially on the time period over which the repressor remains unbound from the lac-operon. We confirm this notion in strains with a high expression level of the lac-repressor (leading to shorter periods over which the lac-operon remains unbound), which show a reduced switching rate. Our techniques apply to multistable gene regulatory systems in general and allow to identify the molecular mechanisms behind stochastic transitions in gene regulatory circuits. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Power adaptation for joint switched diversity and adaptive modulation schemes in spectrum sharing systems

    KAUST Repository

    Bouida, Zied

    2012-09-01

    Under the scenario of an underlay cognitive radio network, we propose in this paper an adaptive scheme using transmit power adaptation, switched transmit diversity, and adaptive modulation in order to improve the performance of existing switching efficient schemes (SES) and bandwidth efficient schemes (BES). Taking advantage of the channel reciprocity principle, we assume that the channel state information (CSI) of the interference link is available to the secondary transmitter. This information is then used by the secondary transmitter to adapt its transmit power, modulation constellation size, and used transmit branch. The goal of this joint adaptation is to minimize the average number of switched branches and the average system delay given the fading channel conditions, the required error rate performance, and a peak interference constraint to the primary receiver. We analyze the proposed scheme in terms of the average number of branch switching, average delay, and we provide a closed-form expression of the average bit error rate (BER). We demonstrate through numerical examples that the proposed scheme provides a compromise between the SES and the BES schemes. © 2012 IEEE.

  2. Differential preparation intervals modulate repetition processes in task switching: an ERP study

    Directory of Open Access Journals (Sweden)

    Min eWang

    2016-02-01

    Full Text Available In task-switching paradigms, reaction times (RTs switch cost (SC and the neural correlates underlying the SC are affected by different preparation intervals. However, little is known about the effect of the preparation interval on the repetition processes in task-switching. To examine this effect we utilized a cued task-switching paradigm with long sequences of repeated trials. Response-stimulus intervals (RSI and cue-stimulus intervals (CSI were manipulated in short and long conditions. Electroencephalography (EEG and behavioral data were recorded. We found that with increasing repetitions, RTs were faster in the short CSI conditions, while P3 amplitudes decreased in the LS (long RSI and short CSI conditions. Positive correlations between RT benefit and P3 activation decrease (repeat 1 minus repeat 5, and between the slope of the RT and P3 regression lines were observed only in the LS condition. Our findings suggest that differential preparation intervals modulate repetition processes in task switching.

  3. An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane.

    Science.gov (United States)

    Kinkema, Mark; Geijskes, R Jason; Shand, Kylie; Coleman, Heather D; De Lucca, Paulo C; Palupe, Anthony; Harrison, Mark D; Jepson, Ian; Dale, James L; Sainz, Manuel B

    2014-03-01

    Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology.

  4. FUMET: A fuzzy network module extraction technique for gene ...

    Indian Academy of Sciences (India)

    Supplementary figure 1. (A): Visualization of one of the network modules by GeneMania for dataset 4 (B): Visualization of one of the network modules by GeneMania for dataset 1 (C): Visualization of one of the network modules by GeneMania for dataset 3.

  5. Switch-like genes populate cell communication pathways and are enriched for extracellular proteins

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2008-01-01

    Full Text Available Abstract Background Recent studies have placed gene expression in the context of distribution profiles including housekeeping, graded, and bimodal (switch-like. Single-gene studies have shown bimodal expression results from healthy cell signaling and complex diseases such as cancer, however developing a comprehensive list of human bimodal genes has remained a major challenge due to inherent noise in human microarray data. This study presents a two-component mixture analysis of mouse gene expression data for genes on the Affymetrix MG-U74Av2 array for the detection and annotation of switch-like genes. Two-component normal mixtures were fit to the data to identify bimodal genes and their potential roles in cell signaling and disease progression. Results Seventeen percent of the genes on the MG-U74Av2 array (1519 out of 9091 were identified as bimodal or switch-like. KEGG pathways significantly enriched for bimodal genes included ECM-receptor interaction, cell communication, and focal adhesion. Similarly, the GO biological process "cell adhesion" and cellular component "extracellular matrix" were significantly enriched. Switch-like genes were found to be associated with such diseases as congestive heart failure, Alzheimer's disease, arteriosclerosis, breast neoplasms, hypertension, myocardial infarction, obesity, rheumatoid arthritis, and type I and type II diabetes. In diabetes alone, over two hundred bimodal genes were in a different mode of expression compared to normal tissue. Conclusion This research identified and annotated bimodal or switch-like genes in the mouse genome using a large collection of microarray data. Genes with bimodal expression were enriched within the cell membrane and extracellular environment. Hundreds of bimodal genes demonstrated alternate modes of expression in diabetic muscle, pancreas, liver, heart, and adipose tissue. Bimodal genes comprise a candidate set of biomarkers for a large number of disease states because

  6. Periodically Swapping Modulation (PSM) Strategy for Three-Level (TL) DC/DC Converter with Balanced Switch Currents

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Zhang, Qi

    2018-01-01

    The asymmetrical modulation strategy is widely used in various types of three-level (TL) DC/DC converters, while the current imbalance among the power switches is one of the important issues. In this paper, a novel periodically swapping modulation (PSM) strategy is proposed for balancing the power...... switches’ currents in various types of TL DC/DC converters. In the proposed PSM strategy, the driving signals of the switch pairs are swapped periodically, which guarantees that the currents through the power switches are kept balanced in every two switching periods. Therefore, the proposed PSM...... strategy can effectively improve the reliability of the converter by balancing the power losses and thermal stresses among the power switches. The operation principle and performances of the proposed PSM strategy are analyzed in detail. Finally, the simulation and experimental results are presented...

  7. Module Integrated GaN Power Stage for High Switching Frequency Operation

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold

    2017-01-01

    is integrated on a high glass transition temperature 0.4 mmthick FR4 substrate configured as a 70 pin ball grid arraypackage. The power stage is tested up to switching frequency of12 MHz. The power stage achieved 88.5 % peak efficiency whenconfigured as a soft switching buck converter operating at 7MHz......An increased attention has been detected todevelop smaller and lighter high voltage power converters in therange of 50 V to 400 V domains. The applications for theseconverters are mainly focused for Power over Ethernet (PoE),LED lighting and ac adapters. Design for high power density isone...... of the targets for next generation power converters. Thispaper presents an 80 V input capable multi-chip moduleintegration of enhancement mode gallium nitride (GaN) fieldeffect transistors (FETs) based power stage. The module design ispresented and validated through experimental results. The powerstage...

  8. Switching Loss Reduction in the Three-Phase Quasi-Z-Source Inverters Utilizing Modified Space Vector Modulation Strategies

    DEFF Research Database (Denmark)

    Abdelhakim, Ahmed; Davari, Pooya; Blaabjerg, Frede

    2018-01-01

    , and the multiple commutations at a time. Hence, this paper proposes two modified space vector (MSV) modulation strategies, aimed at the reduction of the qZSI number of switch commutations at high current level for shorter periods during the fundamental cycle, i.e. reducing the switching loss, simplifying...... multiple reference signals, have been developed as well. However, prior art modulation methods have some demerits, such as the complexity of generating the gate signals, the increased number of switch commutations with continuous commutation at high current level during the entire fundamental cycle...... the generation of the gate signals by utilizing only three reference signals, and achieving a single switch commutation at a time. These modulation strategies are analyzed and compared to the conventional ones, where a reduced-scale 1 kVA three-phase qZSI is designed and simulated using these different...

  9. Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting.

    Science.gov (United States)

    Wu, Shwu-Yuan; Lee, A-Young; Lai, Hsien-Tsung; Zhang, Hong; Chiang, Cheng-Ming

    2013-03-07

    Bromodomain-containing protein 4 (Brd4) is an epigenetic reader and transcriptional regulator recently identified as a cancer therapeutic target for acute myeloid leukemia, multiple myeloma, and Burkitt's lymphoma. Although chromatin targeting is a crucial function of Brd4, there is little understanding of how bromodomains that bind acetylated histones are regulated, nor how the gene-specific activity of Brd4 is determined. Via interaction screen and domain mapping, we identified p53 as a functional partner of Brd4. Interestingly, Brd4 association with p53 is modulated by casein kinase II (CK2)-mediated phosphorylation of a conserved acidic region in Brd4 that selectively contacts either a juxtaposed bromodomain or an adjacent basic region to dictate the ability of Brd4 binding to chromatin and also the recruitment of p53 to regulated promoters. The unmasking of bromodomains and activator recruitment, concurrently triggered by the CK2 phospho switch, provide an intriguing mechanism for gene-specific targeting by a universal epigenetic reader. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Genes contribute to the switching dynamics of bistable perception.

    Science.gov (United States)

    Shannon, Robert W; Patrick, Christopher J; Jiang, Yi; Bernat, Edward; He, Sheng

    2011-03-09

    Ordinarily, the visual system provides an unambiguous representation of the world. However, at times alternative plausible interpretations of a given stimulus arise, resulting in a dynamic perceptual alternation of the differing interpretations, commonly referred to as bistable or rivalrous perception. Recent research suggests that common neural mechanisms may be involved in the dynamics of very different types of bistable phenomena. Further, evidence has emerged that genetic factors may be involved in determining the rate of switch for at least one form of bistable perception, known as binocular rivalry. The current study evaluated whether genetic factors contribute to the switching dynamics for distinctly different variants of bistable perception in the same participant sample. Switching rates were recorded for MZ and DZ twin participants in two different bistable perception tasks, binocular rivalry and the Necker Cube. Strong concordance in switching rates across both tasks was evident for MZ but not DZ twins, indicating that genetic factors indeed contribute to the dynamics of multiple forms of bistable perception.

  11. Monitoring Gene Expression In Vivo with Nucleic Acid Molecular Switches

    Energy Technology Data Exchange (ETDEWEB)

    David C. Ward; Patricia Bray-Ward

    2005-01-26

    The overall objectives of this project were (1) to develop allosteric ribozymes capable of acting as molecular switches for monitoring the levels of both wild-type and mutant mRNA species in living cells and whole animals and (2) to develop highly efficient reagents to deliver nucleic acid molecular switches into living cells, tissues and animals with the ultimate goal of expression profiling specific mRNAs of diagnostic or prognostic value within tumors in animals. During the past year, we have moved our laboratory to Nevada and in the moving process we have lost electronic and paper copies of prior progress reports concerning the construction and biological properties of the molecular switches. Since there was minimal progress during the last year on molecular switches, we are relying on past project reports to provide a summary of our data on this facet of the grant. Here we are summarizing the work done on the delivery reagents and their application to inducing mutations in living cells, which will include work done during the no cost extension.

  12. Relatively slow stochastic gene-state switching in the presence of positive feedback significantly broadens the region of bimodality through stabilizing the uninduced phenotypic state.

    Science.gov (United States)

    Ge, Hao; Wu, Pingping; Qian, Hong; Xie, Xiaoliang Sunney

    2018-03-01

    Within an isogenic population, even in the same extracellular environment, individual cells can exhibit various phenotypic states. The exact role of stochastic gene-state switching regulating the transition among these phenotypic states in a single cell is not fully understood, especially in the presence of positive feedback. Recent high-precision single-cell measurements showed that, at least in bacteria, switching in gene states is slow relative to the typical rates of active transcription and translation. Hence using the lac operon as an archetype, in such a region of operon-state switching, we present a fluctuating-rate model for this classical gene regulation module, incorporating the more realistic operon-state switching mechanism that was recently elucidated. We found that the positive feedback mechanism induces bistability (referred to as deterministic bistability), and that the parameter range for its occurrence is significantly broadened by stochastic operon-state switching. We further show that in the absence of positive feedback, operon-state switching must be extremely slow to trigger bistability by itself. However, in the presence of positive feedback, which stabilizes the induced state, the relatively slow operon-state switching kinetics within the physiological region are sufficient to stabilize the uninduced state, together generating a broadened parameter region of bistability (referred to as stochastic bistability). We illustrate the opposite phenotype-transition rate dependence upon the operon-state switching rates in the two types of bistability, with the aid of a recently proposed rate formula for fluctuating-rate models. The rate formula also predicts a maximal transition rate in the intermediate region of operon-state switching, which is validated by numerical simulations in our model. Overall, our findings suggest a biological function of transcriptional "variations" among genetically identical cells, for the emergence of bistability and

  13. A nanoparticle-based epigenetic modulator for efficient gene modulation

    Science.gov (United States)

    Pongkulapa, Thanapat

    Modulation of gene expression through chromatin remodeling involves epigenetic mechanisms, such as histone acetylation. Acetylation is tightly regulated by two classes of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). Molecules that can regulate these enzymes by altering (activating or inhibiting) their functions have become a valuable tool for understanding cell development and diseases. HAT activators, i.e. N-(4-Chloro-(3-trifluoromethyl)phenyl)-2-ethoxybenzamide (CTB), have shown a therapeutic potential for many diseases, including cancer and neurodegeneration. However, these compounds encounter a solubility and a membrane permeability issue, which restricts their full potential for practical usage, especially for in vivo applications. To address this issue, in this work, we developed a nanoparticle-based HAT activator CTB, named Au-CTB, by incorporating a new CTB analogue onto gold nanoparticles (AuNPs) along with a poly(ethylene glycol) moiety and a nuclear localization signal (NLS) peptide to assist with solubility and membrane permeability. We found that our new CTB analogue and Au-CTB could activate HAT activity. Significantly, an increase in potency to activate HAT activity by Au-CTB proved the effectiveness of using the nanoparticle delivery platform. In addition, the versatility of Au-CTB platform permits the attachment of multiple ligands with tunable ratios on the nanoparticle surface via facile surface functionalization of gold nanoparticles. Due to its high delivery efficiency and versatility, Au-CTB can be a powerful platform for applications in epigenetic regulation of gene expression.

  14. Genome-wide identification of key modulators of gene-gene interaction networks in breast cancer.

    Science.gov (United States)

    Chiu, Yu-Chiao; Wang, Li-Ju; Hsiao, Tzu-Hung; Chuang, Eric Y; Chen, Yidong

    2017-10-03

    With the advances in high-throughput gene profiling technologies, a large volume of gene interaction maps has been constructed. A higher-level layer of gene-gene interaction, namely modulate gene interaction, is composed of gene pairs of which interaction strengths are modulated by (i.e., dependent on) the expression level of a key modulator gene. Systematic investigations into the modulation by estrogen receptor (ER), the best-known modulator gene, have revealed the functional and prognostic significance in breast cancer. However, a genome-wide identification of key modulator genes that may further unveil the landscape of modulated gene interaction is still lacking. We proposed a systematic workflow to screen for key modulators based on genome-wide gene expression profiles. We designed four modularity parameters to measure the ability of a putative modulator to perturb gene interaction networks. Applying the method to a dataset of 286 breast tumors, we comprehensively characterized the modularity parameters and identified a total of 973 key modulator genes. The modularity of these modulators was verified in three independent breast cancer datasets. ESR1, the encoding gene of ER, appeared in the list, and abundant novel modulators were illuminated. For instance, a prognostic predictor of breast cancer, SFRP1, was found the second modulator. Functional annotation analysis of the 973 modulators revealed involvements in ER-related cellular processes as well as immune- and tumor-associated functions. Here we present, as far as we know, the first comprehensive analysis of key modulator genes on a genome-wide scale. The validity of filtering parameters as well as the conservativity of modulators among cohorts were corroborated. Our data bring new insights into the modulated layer of gene-gene interaction and provide candidates for further biological investigations.

  15. S-Nitrosylation-Mediated Redox Transcriptional Switch Modulates Neurogenesis and Neuronal Cell Death

    Directory of Open Access Journals (Sweden)

    Shu-ichi Okamoto

    2014-07-01

    Full Text Available Redox-mediated posttranslational modifications represent a molecular switch that controls major mechanisms of cell function. Nitric oxide (NO can mediate redox reactions via S-nitrosylation, representing transfer of an NO group to a critical protein thiol. NO is known to modulate neurogenesis and neuronal survival in various brain regions in disparate neurodegenerative conditions. However, a unifying molecular mechanism linking these phenomena remains unknown. Here, we report that S-nitrosylation of myocyte enhancer factor 2 (MEF2 transcription factors acts as a redox switch to inhibit both neurogenesis and neuronal survival. Structure-based analysis reveals that MEF2 dimerization creates a pocket, facilitating S-nitrosylation at an evolutionally conserved cysteine residue in the DNA binding domain. S-Nitrosylation disrupts MEF2-DNA binding and transcriptional activity, leading to impaired neurogenesis and survival in vitro and in vivo. Our data define a molecular switch whereby redox-mediated posttranslational modification controls both neurogenesis and neurodegeneration via a single transcriptional signaling cascade.

  16. Polarisation-insensitive strip-loaded waveguide for electro-optic modulators and switches

    Science.gov (United States)

    Sun, Jie; Chen, Changming; Gao, Lei; Sun, Xiaoqiang; Gao, Weinan; Ma, Chunsheng; Zhang, Daming

    2009-06-01

    A polarisation-insensitive electro-optic (EO) waveguide consisting of a dye-doped TiO2/SiO2 slab and a SU-8 strip-loaded rib is designed and fabricated. By optimizing the refractive index and size of waveguide, a trade-off between polarisation-insensitive condition and large EO efficiency (optical field interaction with the EO material) is obtained. The average transmission loss of the waveguide is less than 2.0 dB/cm. A Mach-Zehnder (M-Z) interferometer intensity modulator based on this waveguide with excellent poling stability is fabricated and measured, exhibiting 7 V half-wave voltage with 1.8 cm EO interaction length and 2.7 cm total length. This strip-loaded structure is proved to be a valuable application in EO modulators and switches.

  17. Dynamical behavior and phase locking in a passively Q-switched Nd:YVO4 laser with pump modulation

    Science.gov (United States)

    Hong, Kun-Guei; Wei, Ming-Dar

    2013-08-01

    This study obtained theoretical and experimental periodic and quasiperiodic pulse trains in a passively Q-switched Nd:YVO4 laser with pump modulation. Phase locking generated period-one, period-two and period-three pulse trains when the ratio between the modulation frequency and the repetition frequency without modulation was approximately 1,1/2 and 2/3, respectively. Outside these regions, quasiperiodic evolution dominated the pulse train dynamics.

  18. Force-dependent isomerization kinetics of a highly conserved proline switch modulates the mechanosensing region of filamin

    Science.gov (United States)

    Rognoni, Lorenz; Möst, Tobias; Žoldák, Gabriel; Rief, Matthias

    2014-01-01

    Proline switches, controlled by cis–trans isomerization, have emerged as a particularly effective regulatory mechanism in a wide range of biological processes. In this study, we use single-molecule mechanical measurements to develop a full kinetic and energetic description of a highly conserved proline switch in the force-sensing domain 20 of human filamin and how prolyl isomerization modulates the force-sensing mechanism. Proline isomerization toggles domain 20 between two conformations. A stable cis conformation with slow unfolding, favoring the autoinhibited closed conformation of filamin’s force-sensing domain pair 20–21, and a less stable, uninhibited conformation promoted by the trans form. The data provide detailed insight into the folding mechanisms that underpin the functionality of this binary switch and elucidate its remarkable efficiency in modulating force-sensing, thus combining two previously unconnected regulatory mechanisms, proline switches and mechanosensing. PMID:24706888

  19. An integrative approach to inferring biologically meaningful gene modules

    Directory of Open Access Journals (Sweden)

    Wang Kai

    2011-07-01

    Full Text Available Abstract Background The ability to construct biologically meaningful gene networks and modules is critical for contemporary systems biology. Though recent studies have demonstrated the power of using gene modules to shed light on the functioning of complex biological systems, most modules in these networks have shown little association with meaningful biological function. We have devised a method which directly incorporates gene ontology (GO annotation in construction of gene modules in order to gain better functional association. Results We have devised a method, Semantic Similarity-Integrated approach for Modularization (SSIM that integrates various gene-gene pairwise similarity values, including information obtained from gene expression, protein-protein interactions and GO annotations, in the construction of modules using affinity propagation clustering. We demonstrated the performance of the proposed method using data from two complex biological responses: 1. the osmotic shock response in Saccharomyces cerevisiae, and 2. the prion-induced pathogenic mouse model. In comparison with two previously reported algorithms, modules identified by SSIM showed significantly stronger association with biological functions. Conclusions The incorporation of semantic similarity based on GO annotation with gene expression and protein-protein interaction data can greatly enhance the functional relevance of inferred gene modules. In addition, the SSIM approach can also reveal the hierarchical structure of gene modules to gain a broader functional view of the biological system. Hence, the proposed method can facilitate comprehensive and in-depth analysis of high throughput experimental data at the gene network level.

  20. Erasing the Epigenetic Memory and Beginning to Switch—The Onset of Antigenic Switching of var Genes in Plasmodium falciparum

    Science.gov (United States)

    Fastman, Yair; Noble, Robert; Recker, Mario; Dzikowski, Ron

    2012-01-01

    Antigenic variation in Plasmodium falciparum is regulated by transcriptional switches among members of the var gene family, each expressed in a mutually exclusive manner and encoding a different variant of the surface antigens collectively named PfEMP1. Antigenic switching starts when the first merozoites egress from the liver and begin their asexual proliferation within red blood cells. By erasing the epigenetic memory we created parasites with no var background, similar to merozoites that egress from the liver where no var gene is expressed. Creating a null-var background enabled us to investigate the onset of antigenic switches at the early phase of infection. At the onset of switching, var transcription pattern is heterogeneous with numerous genes transcribed at low levels including upsA vars, a subtype that was implicated in severe malaria, which are rarely activated in growing cultures. Analysis of subsequent in vitro switches shows that the probability of a gene to turn on or off is not associated with its chromosomal position or promoter type per se but on intrinsic properties of each gene. We concluded that var switching is determined by gene specific associated switch rates rather than general promoter type or locus associated switch rates. In addition, we show that fine tuned reduction in var transcription increases their switch rate, indicating that transcriptional perturbation can alter antigenic switching. PMID:22461905

  1. Ecdysone Receptor-Based Gene Switches for Applications in Plants

    Science.gov (United States)

    There are a number of circumstances in which it is advantageous to use an inducible gene regulation system, the most obvious being when introducing transgenes whose constitutive expression is detrimental or even lethal to the host plants. The selective induction of gene expression is typically accom...

  2. DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks.

    Science.gov (United States)

    Tse, Margaret J; Chu, Brian K; Roy, Mahua; Read, Elizabeth L

    2015-10-20

    Gene regulatory networks are multistable dynamical systems in which attractor states represent cell phenotypes. Spontaneous, noise-induced transitions between these states are thought to underlie critical cellular processes, including cell developmental fate decisions, phenotypic plasticity in fluctuating environments, and carcinogenesis. As such, there is increasing interest in the development of theoretical and computational approaches that can shed light on the dynamics of these stochastic state transitions in multistable gene networks. We applied a numerical rare-event sampling algorithm to study transition paths of spontaneous noise-induced switching for a ubiquitous gene regulatory network motif, the bistable toggle switch, in which two mutually repressive genes compete for dominant expression. We find that the method can efficiently uncover detailed switching mechanisms that involve fluctuations both in occupancies of DNA regulatory sites and copy numbers of protein products. In addition, we show that the rate parameters governing binding and unbinding of regulatory proteins to DNA strongly influence the switching mechanism. In a regime of slow DNA-binding/unbinding kinetics, spontaneous switching occurs relatively frequently and is driven primarily by fluctuations in DNA-site occupancies. In contrast, in a regime of fast DNA-binding/unbinding kinetics, switching occurs rarely and is driven by fluctuations in levels of expressed protein. Our results demonstrate how spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins and DNA. Computational approaches capable of simulating dynamics over many system variables are thus well suited to exploring dynamic mechanisms in gene networks. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. 'Molecular switch' vectors for hypoxia- and radiation-mediated gene therapy of cancer

    International Nuclear Information System (INIS)

    Greco, O.; Marples, B.; Joiner, M.C.; Scott, S.D.

    2003-01-01

    Intratumoral areas of low oxygen concentration are known to be refractive to radiotherapy treatment. However, this physiological condition can be exploited for selective cancer gene therapy. We have developed a series of synthetic promoters selectively responsive to both hypoxia and ionizing radiation (IR). These promoters contain hypoxia regulatory elements (HREs) from the erythropoietin (Epo), the phosphoglycerate kinase1(PGK1) and vascular endothelial growth factor (VEGF) genes, and/or IR-responsive CArG elements from the Early Growth Response 1 (Egr1) gene. The HRE and CArG promoters were able to regulate expression of reporter and suicide genes in human tumor cells, following corresponding stimulation with hypoxia (0.1% O2) or X-irradiation (5Gy) [Greco et al, 2002, Gene Therapy 9:1403]. Furthermore, the chimeric HRE + CArG promoters could be activated by these stimuli independently or even more significantly when given in combination, with the Epo HRE/CArG promoter proving to be the most responsive and robust. In order to amplify and maintain transgene expression even following withdrawal of the triggering stimuli, we have developed a 'molecular switch' system [Scott et al, 2000, Gene Therapy 7:1121]. This 'switch' system has now been engineered as a single vector molecule, containing HRE and CArG promoters. This new series of HRE/CArG switch vectors have been tested in a herpes simplex thymidine kinase (HSVtk)/ganciclovir (GCV) suicide gene assay. Results indicate that a) higher and more selective tumor cell kill is achieved with the switch when compared with the HRE and CArG promoters directly driving HSVtk expression and b) the Epo HRE/CArG switch vectors appear to function as efficiently as the strong constitutive cytomegalovirus (CMV) promoter construct

  4. SWITCH MODE PULSE WIDTH MODULATED DC-DC CONVERTER WITH MULTIPLE POWER TRANSFORMERS

    DEFF Research Database (Denmark)

    2009-01-01

    A switch mode pulse width modulated DC-DC power converter comprises at least one first electronic circuit on a input side (1) and a second electronic circuit on a output side (2). The input side (1) and the output side (2) are coupled via at least two power transformers (T1, T2). Each power...... transformer (T1, T2) comprises a first winding (T1a, T2a) arranged in a input side converter stage (3, 4) on the input side (1) and a second winding (T1 b, T2b) arranged in a output side converter stage (5) on the output side (2), and each of the windings (T1a, T1 b, T2a, T2b) has a first end and a second end....... The first electronic circuit comprises terminals (AO, A1) for connecting a source or a load, at least one energy storage inductor (L) coupled in series with at least one of the first windings (T1a, T2a) of the power transformers (T1, T2), and for each power transformer (T1, T2), an arrangement of switches...

  5. Using light-switching molecules to modulate charge mobility in a quantum dot array

    Science.gov (United States)

    Chu, Iek-Heng; Trinastic, Jonathan; Wang, Lin-Wang; Cheng, Hai-Ping

    2014-03-01

    We have studied the electron hopping in a two-CdSe quantum dot (QD) system linked by an azobenzene-derived light-switching molecule. This system can be considered as a prototype of a QD supercrystal. Following the computational strategies given in our recent work [I.-H. Chu et al., J. Phys. Chem. C 115, 21409 (2011), 10.1021/jp206526s], we have investigated the effects of molecular attachment, molecular isomer (trans and cis), and QD size on the electron hopping rate using Marcus theory. Our results indicate that molecular attachment has a large impact on the system for both isomers. In the most energetically favorable attachment, the cis isomer provides significantly greater coupling between the two QDs and hence the electron hopping rate is greater compared to the trans isomer. As a result, the carrier mobility of the QD array in the low carrier density, weak external electric-field regime is several orders of magnitude higher in the cis compared to the trans configuration. This demonstration of mobility modulation using QDs and azobenzene could lead to an alternative type of switching device.

  6. High voltage photo-switch package module having encapsulation with profiled metallized concavities

    Science.gov (United States)

    Sullivan, James S; Sanders, David M; Hawkins, Steven A; Sampayan, Stephen A

    2015-05-05

    A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces metalized with first metallic layers formed thereon, and encapsulated with a dielectric encapsulation material such as for example epoxy. The first metallic layers are exposed through the encapsulation via encapsulation concavities which have a known contour profile, such as a Rogowski edge profile. Second metallic layers are then formed to line the concavities and come in contact with the first metal layer, to form profiled and metalized encapsulation concavities which mitigate enhancement points at the edges of electrodes matingly seated in the concavities. One or more optical waveguides may also be bonded to the substrate for coupling light into the photo-conductive wafer, with the encapsulation also encapsulating the waveguides.

  7. Modulating the Stability of 2-Pyridinyl Thermolabile Hydroxyl Protecting Groups via the "Chemical Switch" Approach.

    Science.gov (United States)

    Witkowska, Agnieszka; Krygier, Dominika; Brzezinska, Jolanta; Chmielewski, Marcin K

    2015-12-18

    A novel and effective method is presented for modulating the stability of 2-Pyridinyl Thermolabile Protecting Groups (2-Py TPGs) in the "chemical switch" approach. The main advantage of the discussed approach is the possibility of changing the nucleophilic character of pyridine nitrogen using different switchable factors, which results in an increase or decrease in the thermal deprotection rate. One of the factors is transformation of a nitro into an amine group via reduction with a low-valent titanium in mild conditions. The usefulness of our approach is corroborated using 3'-O-acetyl nucleosides as model compounds. Their stability in various solvents and temperatures before and after reduction is also examined. Pyridine N-oxide and pH are other factors responsible for the nucleophilicity and stability of 2-Pyridinyl Thermolabile Protecting Groups in thermal deprotection. Protonation of 4-amino 2-Pyridinyl Thermolabile Protecting Groups is demonstrated by (1)H-(15)N HMBC and HSQC NMR analysis.

  8. Monolithic InP-based fast optical switch module for optical networks of the future

    DEFF Research Database (Denmark)

    Xi, Chen; Regan, James; Durrant, Tim

    2015-01-01

    We summarized the development of Venture Photonics’ sub-10 ns fast optical switch which demonstrates low insertion loss, excellent crosstalk level and polarization independent switching performance.......We summarized the development of Venture Photonics’ sub-10 ns fast optical switch which demonstrates low insertion loss, excellent crosstalk level and polarization independent switching performance....

  9. A behaviorally related developmental switch in nitrergic modulation of locomotor rhythmogenesis in larval Xenopus tadpoles

    Science.gov (United States)

    Currie, Stephen P.; Combes, Denis; Scott, Nicholas W.; Simmers, John

    2016-01-01

    Locomotor control requires functional flexibility to support an animal's full behavioral repertoire. This flexibility is partly endowed by neuromodulators, allowing neural networks to generate a range of motor output configurations. In hatchling Xenopus tadpoles, before the onset of free-swimming behavior, the gaseous modulator nitric oxide (NO) inhibits locomotor output, shortening swim episodes and decreasing swim cycle frequency. While populations of nitrergic neurons are already present in the tadpole's brain stem at hatching, neurons positive for the NO-synthetic enzyme, NO synthase, subsequently appear in the spinal cord, suggesting additional as yet unidentified roles for NO during larval development. Here, we first describe the expression of locomotor behavior during the animal's change from an early sessile to a later free-swimming lifestyle and then compare the effects of NO throughout tadpole development. We identify a discrete switch in nitrergic modulation from net inhibition to overall excitation, coincident with the transition to free-swimming locomotion. Additionally, we show in isolated brain stem-spinal cord preparations of older larvae that NO's excitatory effects are manifested as an increase in the probability of spontaneous swim episode occurrence, as found previously for the neurotransmitter dopamine, but that these effects are mediated within the brain stem. Moreover, while the effects of NO and dopamine are similar, the two modulators act in parallel rather than NO operating serially by modulating dopaminergic signaling. Finally, NO's activation of neurons in the brain stem also leads to the release of NO in the spinal cord that subsequently contributes to NO's facilitation of swimming. PMID:26763775

  10. Effect of temperature on the performance of a bipolar transistor carrier-injected optical waveguide modulator/switch.

    Science.gov (United States)

    Okada, Y

    1991-05-15

    The effect of ambient temperature on the performance of a GaAs/AlGaAs heterojunction bipolar transistor waveguide structure carrier-injected optical intensity modulator/switch is discussed. An increase in the temperature increases the achievable optical modulation ratio at the expense of increased absorption loss, and vice versa. Analysis also shows that for practical use a tolerable temperature change should be no more than approximately 10 degrees C.

  11. Single-Switch Equalization Charger Using Multiple Stacked Buck-Boost Converters for Series-Connected Energy-Storage Modules

    Science.gov (United States)

    Uno, Masatoshi; Tanaka, Koji

    Series connections of energy-storage modules such as electric double-layer capacitors (EDLCs) and lithium-ion batteries result in voltage imbalance because of the nonuniform properties of individual modules. Conventional voltage equalizers based on traditional dc-dc converters require numerous switches and/or transformers, and therefore, their costs and complexity tend to increase. This paper proposes a novel single-switch equalization charger using multiple stacked buck-boost converters. The single-switch operation not only reduces the circuit complexity but also contributes to increasing the reliability. The fundamental operating principles and design procedures of key components are presented in detail. An experimental charge test using a 25W prototype of the proposed equalization charger was performed for four series-connected EDLC modules whose initial voltages were intentionally imbalanced. Experimental results demonstrated that the proposed equalization charger could charge the series-connected modules preferentially in the order of increasing module voltage and that all the modules could be charged up to a uniform voltage level.

  12. Human and mouse switch-like genes share common transcriptional regulatory mechanisms for bimodality

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2008-12-01

    Full Text Available Abstract Background Gene expression is controlled over a wide range at the transcript level through complex interplay between DNA and regulatory proteins, resulting in profiles of gene expression that can be represented as normal, graded, and bimodal (switch-like distributions. We have previously performed genome-scale identification and annotation of genes with switch-like expression at the transcript level in mouse, using large microarray datasets for healthy tissue, in order to study the cellular pathways and regulatory mechanisms involving this class of genes. We showed that a large population of bimodal mouse genes encoding for cell membrane and extracellular matrix proteins is involved in communication pathways. This study expands on previous results by annotating human bimodal genes, investigating their correspondence to bimodality in mouse orthologs and exploring possible regulatory mechanisms that contribute to bimodality in gene expression in human and mouse. Results Fourteen percent of the human genes on the HGU133A array (1847 out of 13076 were identified as bimodal or switch-like. More than 40% were found to have bimodal mouse orthologs. KEGG pathways enriched for bimodal genes included ECM-receptor interaction, focal adhesion, and tight junction, showing strong similarity to the results obtained in mouse. Tissue-specific modes of expression of bimodal genes among brain, heart, and skeletal muscle were common between human and mouse. Promoter analysis revealed a higher than average number of transcription start sites per gene within the set of bimodal genes. Moreover, the bimodal gene set had differentially methylated histones compared to the set of the remaining genes in the genome. Conclusion The fact that bimodal genes were enriched within the cell membrane and extracellular environment make these genes as candidates for biomarkers for tissue specificity. The commonality of the important roles bimodal genes play in tissue

  13. Properties of a Telomerase-Specific Cre/Lox Switch for Transcriptionally Targeted Cancer Gene Therapy

    Directory of Open Access Journals (Sweden)

    Alan E. Bilsland

    2005-11-01

    Full Text Available Telomerase expression represents a good target for cancer gene therapy. The promoters of the core telomerase catalytic [human telomerase reverse transcriptase (hTERT] and RNA [human telomerase RNA (hTR] subunits show selective activity in cancer cells but not in normal cells. This property can be harnessed to express therapeutic transgenes in a wide range of cancer cells. Unfortunately, weak hTR and hTERT promoter activities in some cancer cells could limit the target cell range. Therefore, strategies to enhance telomerasespecific gene therapy are of interest. We constructed a Cre/Lox reporter switch coupling telomerase promoter specificity with Cytomegalovirus (CMV promoter activity, which is generally considered to be constitutively high. In this approach, a telomerase-specific vector expressing Cre recombinase directs excisive recombination on a second vector, removing a transcriptional blockade to CMV-dependent luciferase expression. We tested switch activation in cell lines over a wide range of telomerase promoter activities. However, Cre/Lox-dependent luciferase expression was not enhanced relative to expression using hTR or hTERT promoters directly. Cell-specific differences between telomerase and CMV promoter activities and incomplete sigmoid switch activation were limiting factors. Notably, CMV activity was not always significantly stronger than telomerase promoter activity. Our conclusions provide a general basis for a more rational design of novel recombinase switches in gene therapy.

  14. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange

    DEFF Research Database (Denmark)

    Liu, Yi; Dentin, Renaud; Chen, Danica

    2008-01-01

    During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory...... expression through the dephosphorylation and nuclear shuttling of forkhead box O1 (FOXO1). Here we show that a fasting-inducible switch, consisting of the histone acetyltransferase p300 and the nutrient-sensing deacetylase sirtuin 1 (SIRT1), maintains energy balance in mice through the sequential induction...... of CRTC2 and FOXO1. After glucagon induction, CRTC2 stimulated gluconeogenic gene expression by an association with p300, which we show here is also activated by dephosphorylation at Ser 89 during fasting. In turn, p300 increased hepatic CRTC2 activity by acetylating it at Lys 628, a site that also...

  15. Modulating gene function with peptide nucleic acids (PNA)

    DEFF Research Database (Denmark)

    Nielsen, Peter E.; Crooke, Stanley T.

    2008-01-01

    A review on peptide nucleic acid (PNA) oligomers as modulators of gene expression ranging from gene silencing at the mRNAor the dsDNA (antigene) level, and redirection of mRNA splicing to gene activation through transcription bubble mimicking. PNA chem., anti-infective agents, cellular delivery...

  16. Design of 5 V DC to 20 V DC switching regulator for power supply module

    Science.gov (United States)

    Azmi, N. A.; Murad, S. A. Z.; Harun, A.; Ismail, R. C.; Isa, M. N. M.; Zulkifeli, M. A.

    2017-09-01

    This paper presents the design of 5 V to 20 V DC switching regulator for power supply module. A voltage multiplier which consists of cascaded diode-capacitor combination is used in order to obtain a high voltage power supply. Due to power loss that has occurred in a stray of component arrangement, the proposed design employs a pulse width modulation (PWM) controller circuit with an inclusion of a capacitor, diode, and inductor components. The input supply of 5 V DC to LT1618 controller circuit has produced 20.35 V based from simulation results. Meanwhile, the measurement results of 19.36 V are obtained and the feedback signal is required for the purpose of stabilizing the output. The proposed design can reduce the components as well as the PCB size, thus minimizing the overall cost of making a switching regulator for power supply module.

  17. Development of an x-ray klystron modulator with a pulse-forming line and magnetic switch

    International Nuclear Information System (INIS)

    Akemoto, M.; Takeda, S.

    1992-01-01

    A new type of klystron modulator has been developed for the Japan Linear Collider. It consists of a pulse-forming line (PFL), a pulse transformer and a magnetic switch. In order to realize a compact modulator, a triplate strip transmission line using deionized water as a dielectric was adapted. An Fe amorphous core was used for the magnetic switch and the pulse transformer to reduce the size and cost. A preliminary test has shown that an output pulse with a peak voltage of 550 kV, a pulse length (flat-top) of 440 ns and a rise time of 165 ns can be generated for a dummy load with an impedance of 412Ω. It was also experimentally confirmed that the power efficiency of the modulator is approximately 83%. (Author) 7 figs., 3 tabs., 2 refs

  18. Chicken globin gene transcription is cell lineage specific during the time of the switch

    International Nuclear Information System (INIS)

    Lois, R.; Martinson, H.G.

    1989-01-01

    Posttranscriptional silencing of embryonic globin gene expression occurs during hemoglobin switching in chickens. Here the authors use Percoll density gradients to fractionate the red blood cells of 5-9 day embryos in order to determine the cellular source and the timing of this posttranscriptional process. By means of nuclear run-on transcription in vitro they show that it is within mature primitive cells that production of embryonic globin mRNA is terminated posttranscriptionally. In contrast, young definitive cells produce little (or no) embryonic globin mRNA because of regulation at the transcriptional level. Thus the lineage specificity of embryonic and adult globin gene expression is determined transcriptionally, and the posttranscriptional process described by Landes et al. is a property of the senescing primitive cells, not a mechanism operative in the hemoglobin switch. This conclusion is supported by [ 3 H]leucine incorporation experiments on Percoll-fractionated cells which reveal no posttranscriptional silencing of the embryonic genes during the early stages of the switch. In the course of these studies they have noticed a strong transcriptional pause near the second exon of the globin genes which is induced by 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) and which resembles a natural pause near that position

  19. Trait Cheerfulness Does Not Influence Switching Costs But Modulates Preparation and Repetition Effects in a Task-Switching Paradigm

    Directory of Open Access Journals (Sweden)

    Raúl López-Benítez

    2017-06-01

    Full Text Available Many studies have shown the beneficial effect of positive emotions on various cognitive processes, such as creativity and cognitive flexibility. Cheerfulness, understood as an affective predisposition to sense of humor, has been associated with positive emotions. So far, however, no studies have shown the relevance of this dimension in cognitive flexibility processes. The aim of this research was to analyze the relationship between cheerfulness and these processes. To this end, we carried out two studies using a task-switching paradigm. Study 1 aimed at analyzing whether high trait cheerfulness was related to better cognitive flexibility (as measured by reduced task-switching costs, whereas Study 2 aimed at replicating the pattern of data observed in Study 1. The total sample was composed of 139 participants (of which 86 were women selected according to their high versus low scores in trait cheerfulness. In a random way, participants had to judge whether the face presented to them in each trial was that of a man or a woman (gender recognition task or whether it expressed anger or happiness (expressed emotion recognition task. We expected participants with high versus low trait cheerfulness to show a lower task-switching cost (i.e., higher cognitive flexibility. Results did not confirm this hypothesis. However, in both studies, participants with high versus low trait cheerfulness showed a higher facilitation effect when the stimuli attributes were repeated and also when a cue was presented anticipating the demand to perform. We discuss the relevance of these results for a better understanding of cheerfulness.

  20. A linear 180 nm SOI CMOS antenna switch module using integrated passive device filters for cellular applications

    International Nuclear Information System (INIS)

    Cui Jie; Chen Lei; Liu Yi; Zhao Peng; Niu Xu

    2014-01-01

    A broadband monolithic linear single pole, eight throw (SP8T) switch has been fabricated in 180 nm thin film silicon-on-insulator (SOI) CMOS technology with a quad-band GSM harmonic filter in integrated passive devices (IPD) technology, which is developed for cellular applications. The antenna switch module (ASM) features 1.2 dB insertion loss with filter on 2G bands and 0.4 dB insertion loss in 3G bands, less than −45 dB isolation and maximum −103 dB intermodulation distortion for mobile front ends by applying distributed architecture and adaptive supply voltage generator. (semiconductor integrated circuits)

  1. Cable Insulation Breakdowns in the Modulator with a Switch Mode High Voltage Power Supply

    CERN Document Server

    Cours, A

    2004-01-01

    The Advanced Photon Source modulators are PFN-type pulsers with 40 kV switch mode charging power supplies (PSs). The PS and the PFN are connected to each other by 18 feet of high-voltage (HV) cable. Another HV cable connects two separate parts of the PFN. The cables are standard 75 kV x-ray cables. All four cable connectors were designed by the PS manufacturer. Both cables were operating at the same voltage level (about 35 kV). The PS’s output connector has never failed during five years of operation. One of the other three connectors failed approximately five times more often than the others. In order to resolve the failure problem, a transient analysis was performed for all connectors. It was found that transient voltage in the connector that failed most often was subjected to more high-frequency, high-amplitude AC components than the other three connectors. It was thought that these components caused partial discharge in the connector insulation and led to the insulation breakdown. Modification o...

  2. Fluorescence modulation of cadmium sulfide quantum dots by azobenzene photochromic switches.

    Science.gov (United States)

    Javed, Hina; Fatima, Kalsoom; Akhter, Zareen; Nadeem, Muhammad Arif; Siddiq, Muhammad; Iqbal, Azhar

    2016-02-01

    We have investigated the attachment of azobenzene photochromic switches on the modified surface of cadmium sulfide (CdS) quantum dots (QDs). The modification of CdS QDs is done by varying the concentration of the capping agent (mercaptoacetic acid) and NH 3 in order to control the size of the QDs. The X-ray diffraction studies revealed that the crystallite size of CdS QDs ranged from 6 to 10 nm. The azobenzene photochromic derivatives bis(4-hydroxybenzene-1-azo)4,4'(1,1' diphenylmethane) (I) and 4,4'-diazenyldibenzoic acid (II) were synthesized and attached with surface-modified CdS QDs to make fluorophore-photochrome CdS-(I) and CdS-(II) dyad assemblies. Upon UV irradiation, the photochromic compounds (I) and (II) undergo a reversible trans - cis isomerization. The photo-induced trans - cis transformation helps to transfer photo-excited electrons from the conduction band of the CdS QDs to the lowest unoccupied molecular orbital of cis isomer of photochromic compounds (I) and (II). As a result, the fluorescence of CdS-(I) and CdS-(II) dyads is suppressed approximately five times compared to bare CdS QDs. The fluorescence modulation in such systems could help to design luminescent probes for bioimaging applications.

  3. A Fasting Inducible Switch Modulates Gluconeogenesis Via Activator-Coactivator Exchange

    Science.gov (United States)

    Liu, Yi; Dentin, Renaud; Chen, Danica; Hedrick, Susan; Ravnskjaer, Kim; Schenk, Simon; Milne, Jill; Meyers, David J.; Cole, Phil; Yates, John; Olefsky, Jerrold; Guarente, Leonard; Montminy, Marc

    2008-01-01

    During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory fuel for glucose-dependent tissues 1–4. Glucagon stimulates the gluconeogenic program by triggering the dephosphorylation and nuclear translocation of the CREB regulated transcription coactivator 2 (CRTC2; also known as TORC2), while parallel decreases in insulin signaling augment gluconeogenic gene expression through the de-phosphorylation and nuclear shuttling of Forkhead Box O1 (FOXO1) 5–7. Here we show that a fasting-inducible switch, consisting of the histone acetyl-transferase (HAT) P300 and the nutrient-sensing deacetylase Sirtuin 1 (SIRT1), maintains energy balance through the sequential induction of CRTC2 and FOXO1. Following glucagon induction, CRTC2 stimulated gluconeogenic gene expression through an association with P300, which we show here is also activated by de-phosphorylation at Ser89 during fasting. In turn, P300 increased hepatic CRTC2 activity by acetylating it at Lys628, a site that also targets CRTC2 for degradation following its ubiquitination by the E3 ligase Constitutive Photomorphogenic Protein (COP1) 8. Glucagon effects were attenuated during late fasting, when CRTC2 was down-regulated due to SIRT1-mediated deacetylation and when FOXO1 supported expression of the gluconeogenic program. Disrupting SIRT1 activity, by liver-specific knockout of the SIRT1 gene or by administration of SIRT1 antagonist, increased CRTC2 activity and glucose output, while exposure to SIRT1 agonists reduced them. In view of the reciprocal activation of FOXO1 and its coactivator peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC-1α) by SIRT1 activators 9–12, our results illustrate how the exchange of two gluconeogenic regulators during

  4. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange.

    Science.gov (United States)

    Liu, Yi; Dentin, Renaud; Chen, Danica; Hedrick, Susan; Ravnskjaer, Kim; Schenk, Simon; Milne, Jill; Meyers, David J; Cole, Phil; Yates, John; Olefsky, Jerrold; Guarente, Leonard; Montminy, Marc

    2008-11-13

    During early fasting, increases in skeletal muscle proteolysis liberate free amino acids for hepatic gluconeogenesis in response to pancreatic glucagon. Hepatic glucose output diminishes during the late protein-sparing phase of fasting, when ketone body production by the liver supplies compensatory fuel for glucose-dependent tissues. Glucagon stimulates the gluconeogenic program by triggering the dephosphorylation and nuclear translocation of the CREB regulated transcription coactivator 2 (CRTC2; also known as TORC2), while parallel decreases in insulin signalling augment gluconeogenic gene expression through the dephosphorylation and nuclear shuttling of forkhead box O1 (FOXO1). Here we show that a fasting-inducible switch, consisting of the histone acetyltransferase p300 and the nutrient-sensing deacetylase sirtuin 1 (SIRT1), maintains energy balance in mice through the sequential induction of CRTC2 and FOXO1. After glucagon induction, CRTC2 stimulated gluconeogenic gene expression by an association with p300, which we show here is also activated by dephosphorylation at Ser 89 during fasting. In turn, p300 increased hepatic CRTC2 activity by acetylating it at Lys 628, a site that also targets CRTC2 for degradation after its ubiquitination by the E3 ligase constitutive photomorphogenic protein (COP1). Glucagon effects were attenuated during late fasting, when CRTC2 was downregulated owing to SIRT1-mediated deacetylation and when FOXO1 supported expression of the gluconeogenic program. Disrupting SIRT1 activity, by liver-specific knockout of the Sirt1 gene or by administration of a SIRT1 antagonist, increased CRTC2 activity and glucose output, whereas exposure to SIRT1 agonists reduced them. In view of the reciprocal activation of FOXO1 and its coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha, encoded by Ppargc1a) by SIRT1 activators, our results illustrate how the exchange of two gluconeogenic regulators during fasting

  5. Pulse characteristics in a doubly Q-switched Nd:GGG laser with an acousto-optic modulator and a monolayer graphene saturable absorber

    Science.gov (United States)

    Wang, Di; Zhao, Jia; Yang, Kejian; Zhao, Shengzhi; Li, Tao; Li, Dechun; Li, Guiqiu; Qiao, Wenchao

    2017-11-01

    A doubly Q-switched Nd:GGG laser emitting 1064 nm wavelength with an acousto-optic modulator (AOM) and a monolayer graphene saturable absorber (SA) is presented to study the pulse characteristics. In comparison with singly passive Q-switched laser (SPQSL) with grapheme SA, the doubly Q-switched laser (DQSL) can effectively shorten the pulse width and improve the pulse peak power. The existence of the ramping behavior of pulse characteristics versus modulation frequency in DQSL is shown. The average output power, the pulse width, the pulse energy and the peak power are related to modulation frequency of AOM, and the point of inflection is dominated by pump power.

  6. Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.).

    Science.gov (United States)

    Hope, A J; Partridge, J C; Hayes, P K

    1998-01-01

    The rod photoreceptors of the European eel, Anguilla anguilla (L.), alter their wavelength of maximum sensitivity (lambda max) from c.a. 523 nm to c.a. 482 nm at maturation, a switch involving the synthesis of a new visual pigment protein (opsin) that is inserted into the outer segments of existing rods. We artificially induced the switch in rod opsin production by the administration of hormones, and monitored the switch at the level of mRNA accumulation using radiolabelled oligonuleotides that hybridized differently to the two forms of eel rod opsin. The production of the deep-sea form of rod opsin was detected 6 h after the first hormone injection, and the switch in rod opsin expression was complete within four weeks, at which time only the mRNA for the deep-sea opsin was detectable in the retinal cells. It is suggested that this system could be used as a tractable model for studying the regulatory control of opsin gene expression. PMID:9633112

  7. Antagonistic control of a dual-input mammalian gene switch by food additives.

    Science.gov (United States)

    Xie, Mingqi; Ye, Haifeng; Hamri, Ghislaine Charpin-El; Fussenegger, Martin

    2014-08-01

    Synthetic biology has significantly advanced the design of mammalian trigger-inducible transgene-control devices that are able to programme complex cellular behaviour. Fruit-based benzoate derivatives licensed as food additives, such as flavours (e.g. vanillate) and preservatives (e.g. benzoate), are a particularly attractive class of trigger compounds for orthogonal mammalian transgene control devices because of their innocuousness, physiological compatibility and simple oral administration. Capitalizing on the genetic componentry of the soil bacterium Comamonas testosteroni, which has evolved to catabolize a variety of aromatic compounds, we have designed different mammalian gene expression systems that could be induced and repressed by the food additives benzoate and vanillate. When implanting designer cells engineered for gene switch-driven expression of the human placental secreted alkaline phosphatase (SEAP) into mice, blood SEAP levels of treated animals directly correlated with a benzoate-enriched drinking programme. Additionally, the benzoate-/vanillate-responsive device was compatible with other transgene control systems and could be assembled into higher-order control networks providing expression dynamics reminiscent of a lap-timing stopwatch. Designer gene switches using licensed food additives as trigger compounds to achieve antagonistic dual-input expression profiles and provide novel control topologies and regulation dynamics may advance future gene- and cell-based therapies. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. A lipid-mediated conformational switch modulates the thermosensing activity of DesK.

    Science.gov (United States)

    Inda, María Eugenia; Vandenbranden, Michel; Fernández, Ariel; de Mendoza, Diego; Ruysschaert, Jean-Marie; Cybulski, Larisa Estefanía

    2014-03-04

    The thermosensor DesK is a multipass transmembrane histidine-kinase that allows the bacterium Bacillus subtilis to adjust the levels of unsaturated fatty acids required to optimize membrane lipid fluidity. The cytoplasmic catalytic domain of DesK behaves like a kinase at low temperature and like a phosphatase at high temperature. Temperature sensing involves a built-in instability caused by a group of hydrophilic residues located near the N terminus of the first transmembrane (TM) segment. These residues are buried in the lipid phase at low temperature and partially "buoy" to the aqueous phase at higher temperature with the thinning of the membrane, promoting the required conformational change. Nevertheless, the core question remains poorly understood: How is the information sensed by the transmembrane region converted into a rearrangement in the cytoplasmic catalytic domain to control DesK activity? Here, we identify a "linker region" (KSRKERERLEEK) that connects the TM sensor domain with the cytoplasmic catalytic domain involved in signal transmission. The linker adopts two conformational states in response to temperature-dependent membrane thickness changes: (i) random coiled and bound to the phospholipid head groups at the water-membrane interface, promoting the phosphatase state or (ii) unbound and forming a continuous helix spanning a region from the membrane to the cytoplasm, promoting the kinase state. Our results uphold the view that the linker is endowed with a helix/random coil conformational duality that enables it to behave like a transmission switch, with helix disruption decreasing the kinase/phosphatase activity ratio, as required to modulate the DesK output response.

  9. Histone H2B monoubiquitination facilitates the rapid modulation of gene expression during Arabidopsis photomorphogenesis.

    Directory of Open Access Journals (Sweden)

    Clara Bourbousse

    Full Text Available Profiling of DNA and histone modifications has recently allowed the establishment of reference epigenomes from several model organisms. This identified a major chromatin state for active genes that contains monoubiquitinated H2B (H2Bub, a mark linked to transcription elongation. However, assessment of dynamic chromatin changes during the reprogramming of gene expression in response to extrinsic or developmental signals has been more difficult. Here we used the major developmental switch that Arabidopsis thaliana plants undergo upon their initial perception of light, known as photomorphogenesis, as a paradigm to assess spatial and temporal dynamics of monoubiquitinated H2B (H2Bub and its impact on transcriptional responses. The process involves rapid and extensive transcriptional reprogramming and represents a developmental window well suited to studying cell division-independent chromatin changes. Genome-wide H2Bub distribution was determined together with transcriptome profiles at three time points during early photomorphogenesis. This revealed de novo marking of 177 genes upon the first hour of illumination, illustrating the dynamic nature of H2Bub enrichment in a genomic context. Gene upregulation was associated with H2Bub enrichment, while H2Bub levels generally remained stable during gene downregulation. We further report that H2Bub influences the modulation of gene expression, as both gene up- and downregulation were globally weaker in hub1 mutant plants that lack H2Bub. H2Bub-dependent regulation notably impacted genes with fast and transient light induction, and several circadian clock components whose mRNA levels are tightly regulated by sharp oscillations. Based on these findings, we propose that H2B monoubiquitination is part of a transcription-coupled, chromatin-based mechanism to rapidly modulate gene expression.

  10. Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila

    Science.gov (United States)

    Oortveld, Merel A. W.; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G.; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A.; Schenck, Annette

    2013-01-01

    Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules. PMID:24204314

  11. Optimization and Design of a Low Power Switched Current A/D Sigma-Delta-Modulator for Voice Band Applications

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Harald Holger; Bogason, Gudmundur

    1998-01-01

    This paper presents a third order switched current sigma delta-modulator. The modulator is optimized at the system level for minimum power consumption by careful design of the noise transfer function. A thorough noise analysis of the cascode type current copiers used to implement the modulator......, together with a new methodology for evaluating the nonlinear settling behavior is presented. This leads to a new optimization methodology that minimize the power consumption in switched current circuits for given design parameters. The optimization methodology takes process variations into account....... The modulator is implemented in a standard 2.4 mu m CMOS process only using MOS capacitors. For a power supply of 3.3 V the power consumption is approximately 2.5 mW when operating at a sampling rate of 600 kHz. Under these condition the peak SNR it measured to 74.5 dB with a signal band width of 5.5 kHz. Due...

  12. A bistable switch and anatomical site control Vibrio cholerae virulence gene expression in the intestine.

    Directory of Open Access Journals (Sweden)

    Alex T Nielsen

    2010-09-01

    Full Text Available A fundamental, but unanswered question in host-pathogen interactions is the timing, localization and population distribution of virulence gene expression during infection. Here, microarray and in situ single cell expression methods were used to study Vibrio cholerae growth and virulence gene expression during infection of the rabbit ligated ileal loop model of cholera. Genes encoding the toxin-coregulated pilus (TCP and cholera toxin (CT were powerfully expressed early in the infectious process in bacteria adjacent to epithelial surfaces. Increased growth was found to co-localize with virulence gene expression. Significant heterogeneity in the expression of tcpA, the repeating subunit of TCP, was observed late in the infectious process. The expression of tcpA, studied in single cells in a homogeneous medium, demonstrated unimodal induction of tcpA after addition of bicarbonate, a chemical inducer of virulence gene expression. Striking bifurcation of the population occurred during entry into stationary phase: one subpopulation continued to express tcpA, whereas the expression declined in the other subpopulation. ctxA, encoding the A subunit of CT, and toxT, encoding the proximal master regulator of virulence gene expression also exhibited the bifurcation phenotype. The bifurcation phenotype was found to be reversible, epigenetic and to persist after removal of bicarbonate, features consistent with bistable switches. The bistable switch requires the positive-feedback circuit controlling ToxT expression and formation of the CRP-cAMP complex during entry into stationary phase. Key features of this bistable switch also were demonstrated in vivo, where striking heterogeneity in tcpA expression was observed in luminal fluid in later stages of the infection. When this fluid was diluted into artificial seawater, bacterial aggregates continued to express tcpA for prolonged periods of time. The bistable control of virulence gene expression points to a

  13. Q-switching of an all-fiber ring laser based on in-fiber acousto-optic bandpass modulator

    Science.gov (United States)

    Ramírez-Meléndez, G.; Bello-Jiménez, M.; Pottiez, O.; Escalante-Zarate, L.; López-Estopier, R.; Ibarra-Escamilla, B.; Durán-Sánchez, M.; Kuzin, E. A.; Andrés, M. V.

    2017-09-01

    Active Q-switching of an all-fiber ring laser utilizing a novel in-fiber acousto-optic tunable bandpass filter (AOTBF) is reported. The transmission characteristics of the AOTBF are controlled by amplitude modulation of the acoustic wave; the device exhibits a 3-dB power insertion loss, 0.91-nm optical bandwidth, and 28-dB nonresonant light suppression. Cavity loss modulation is achieved by full acousto-optic mode re-coupling cycle induced by traveling flexural acoustic waves. When the acoustical signal is switched on, cavity losses are reduced, and then, laser emission is generated. In addition, by varying the acoustic wave frequency, a wide wavelength tuning range of 30.7 nm is achieved from 1542 to 1572.7 nm. The best Q-switched pulses were obtained at 1.1-kHz repetition rate, with a pump power of 242 mW, at the optical wavelength of 1569.4 nm. A maximum pulse energy of 8.3 μJ at an average output power of 9.3 mW was achieved, corresponding to optical pulses of 7.8-W peak power and 1-μs temporal width.

  14. A Fault-Tolerant Modulation Method to Counteract the Double Open-Switch Fault in Matrix Converter Drive Systems without Redundant Power Devices

    DEFF Research Database (Denmark)

    Chen, Der-Fa; Nguyen-Duy, Khiem; Liu, Tian-Hua

    2012-01-01

    This paper studies the double open-switch fault issue occurring within the conventional matrix converter driving a three-phase permanent-magnet synchronous motor system and proposes a fault-tolerant solution by introducing a revised modulation strategy. In this switching strategy, the rectifier......-stage modulation is adjusted based on the knowledge of the switching logics of the inverter-stage and the operating input voltage sectors. However, the proposed fault-tolerant method does not rely on the assist of any redundant power devices or any reconfiguration of the matrix converter circuit by means of using...

  15. Experimental Validation of Source Temperature Modulation Via a Thermal Switch in Thermal Energy Harvesting (Preprint)

    National Research Council Canada - National Science Library

    McCarty, R; Monaghan, D; Hallinan, K. P; Sanders, B

    2007-01-01

    This paper provides a description of research seeking to experimentally verify the effectiveness of a thermal switch used in series with TE devices for waste heat recovery for constant and variable...

  16. Atomic Scale Modulation of Self-Rectifying Resistive Switching by Interfacial Defects

    KAUST Repository

    Wu, Xing

    2018-04-14

    Higher memory density and faster computational performance of resistive switching cells require reliable array‐accessible architecture. However, selecting a designated cell within a crossbar array without interference from sneak path currents through neighboring cells is a general problem. Here, a highly doped n++ Si as the bottom electrode with Ni‐electrode/HfOx/SiO2 asymmetric self‐rectifying resistive switching device is fabricated. The interfacial defects in the HfOx/SiO2 junction and n++ Si substrate result in the reproducible rectifying behavior. In situ transmission electron microscopy is used to quantitatively study the properties of the morphology, chemistry, and dynamic nucleation–dissolution evolution of the chains of defects at the atomic scale. The spatial and temporal correlation between the concentration of oxygen vacancies and Ni‐rich conductive filament modifies the resistive switching effect. This study has important implications at the array‐level performance of high density resistive switching memories.

  17. A bistable gene switch for antibiotic biosynthesis: the butyrolactone regulon in Streptomyces coelicolor.

    Directory of Open Access Journals (Sweden)

    Sarika Mehra

    2008-07-01

    Full Text Available Many microorganisms, including bacteria of the class Streptomycetes, produce various secondary metabolites including antibiotics to gain a competitive advantage in their natural habitat. The production of these compounds is highly coordinated in a population to expedite accumulation to an effective concentration. Furthermore, as antibiotics are often toxic even to their producers, a coordinated production allows microbes to first arm themselves with a defense mechanism to resist their own antibiotics before production commences. One possible mechanism of coordination among individuals is through the production of signaling molecules. The gamma-butyrolactone system in Streptomyces coelicolor is a model of such a signaling system for secondary metabolite production. The accumulation of these signaling molecules triggers antibiotic production in the population. A pair of repressor-amplifier proteins encoded by scbA and scbR mediates the production and action of one particular gamma-butyrolactone, SCB1. Based on the proposed interactions of scbA and scbR, a mathematical model was constructed and used to explore the ability of this system to act as a robust genetic switch. Stability analysis shows that the butyrolactone system exhibits bistability and, in response to a threshold SCB1 concentration, can switch from an OFF state to an ON state corresponding to the activation of genes in the cryptic type I polyketide synthase gene cluster, which are responsible for production of the hypothetical polyketide. The switching time is inversely related to the inducer concentration above the threshold, such that short pulses of low inducer concentration cannot switch on the system, suggesting its possible role in noise filtering. In contrast, secondary metabolite production can be triggered rapidly in a population of cells producing the butyrolactone signal due to the presence of an amplification loop in the system. S. coelicolor was perturbed experimentally

  18. Cooperative Epigenetic Modulation by Cancer Amplicon Genes

    Science.gov (United States)

    Rui, Lixin; Tolga Emre, N. C.; Kruhlak, Michael J.; Chung, Hye-Jung; Steidl, Christian; Slack, Graham; Wright, George W.; Lenz, Georg; Ngo, Vu N.; Shaffer, Arthur L.; Xu, Weihong; Zhao, Hong; Yang, Yandan; Lamy, Laurence; Davis, R. Eric; Xiao, Wenming; Powell, John; Maloney, David; Thomas, Craig J.; Möller, Peter; Rosenwald, Andreas; Ott, German; Muller-Hermelink, Hans Konrad; Savage, Kerry; Connors, Joseph M.; Rimsza, Lisa M.; Campo, Elias; Jaffe, Elaine S.; Delabie, Jan; Smeland, Erlend B.; Weisenburger, Dennis D.; Chan, Wing C.; Gascoyne, Randy D.; Levens, David; Staudt, Louis M.

    2010-01-01

    Chromosome band 9p24 is frequently amplified in primary mediastinal B-cell lymphoma (PMBL) and Hodgkin lymphoma (HL). To identify oncogenes in this amplicon, we screened an RNA interference library targeting amplicon genes and thereby identified JAK2 and the histone demethylase JMJD2C as essential genes in these lymphomas. Inhibition of JAK2 and JMJD2C cooperated in killing these lymphomas by decreasing tyrosine 41 phosphorylation and increasing lysine 9 trimethylation of histone H3, promoting heterochromatin formation. MYC, a major target of JAK2-mediated histone phosphorylation, was silenced following JAK2 and JMJD2C inhibition, with a corresponding increase in repressive chromatin. Hence, JAK2 and JMJD2C cooperatively remodel the PMBL and HL epigenome, offering a mechanistic rationale for the development of JAK2 and JMJD2C inhibitors in these diseases. PMID:21156283

  19. Serum response factor MADS box serine -162 phosphorylation switches proliferation and myogenic gene programs

    Science.gov (United States)

    Iyer, Dinakar; Chang, David; Marx, Joe; Wei, Lei; Olson, Eric N.; Parmacek, Michael S.; Balasubramanyam, Ashok; Schwartz, Robert J.

    2006-01-01

    Phosphorylation of a cluster of amino acids in the serum response factor (SRF) “MADS box” αI coil DNA binding domain regulated the transcription of genes associated with proliferation or terminal muscle differentiation. Mimicking phosphorylation of serine-162, a target of protein kinase C-α, with an aspartic acid substitution (SRF-S162D) completely inhibited SRF–DNA binding and blocked α-actin gene transcription even in the presence of potent myogenic cofactors, while preserving c-fos promoter activity because of stabilization of the ternary complex via Elk-1. Introduction of SRF-S162D into SRF null ES cells permitted transcription of the c-fos gene but was unable to rescue expression of myogenic contractile genes. Transition of proliferating C2C12 myoblasts to postfusion myocytes after serum withdrawal was associated with a progressive decline in SRF-S162 phosphorylation and an increase in α-actin gene expression. Hence, the phosphorylation status of serine-162 in the αI coil may constitute a novel switch that directs target gene expression into proliferation or differentiation programs. PMID:16537394

  20. Performance analysis of joint multi-branch switched diversity and adaptive modulation schemes for spectrum sharing systems

    KAUST Repository

    Bouida, Zied

    2012-12-01

    Under the scenario of an underlay cognitive radio network, we propose in this paper two adaptive schemes using switched transmit diversity and adaptive modulation in order to increase the spectral efficiency of the secondary link and maintain a desired performance for the primary link. The proposed switching efficient scheme (SES) and bandwidth efficient scheme (BES) use the scan and wait combining technique (SWC) where a transmission occurs only when a branch with an acceptable performance is found, otherwise data is buffered. In these schemes, the modulation constellation size and the used transmit branch are determined to minimize the average number of switched branches and to achieve the highest spectral efficiency given the fading channel conditions, the required error rate performance, and a peak interference constraint to the primary receiver (PR). For delay-sensitive applications, we also propose two variations of the SES and BES schemes using power control (SES-PC and BES-PC) where the secondary transmitter (ST) starts sending data using a nominal power level which is selected in order to minimize the average delay introduced by the SWC technique. We demonstrate through numerical examples that the BES scheme increases the capacity of the secondary link when compared to the SES scheme. This spectral efficiency improvement comes at the expense of an increased average number of switched branches and thus an increased average delay. We also show that the SES-PC and the BES-PC schemes minimize the average delay while satisfying the same spectral efficiency as the SES and BES schemes, respectively. © 2012 IEEE.

  1. Rad-Hard, Miniaturized, Scalable, High-Voltage Switching Module for Power Applications Rad-Hard, Miniaturized

    Science.gov (United States)

    Adell, Philippe C.; Mojarradi, Mohammad; DelCastillo, Linda Y.; Vo, Tuan A.

    2011-01-01

    A paper discusses the successful development of a miniaturized radiation hardened high-voltage switching module operating at 2.5 kV suitable for space application. The high-voltage architecture was designed, fabricated, and tested using a commercial process that uses a unique combination of 0.25 micrometer CMOS (complementary metal oxide semiconductor) transistors and high-voltage lateral DMOS (diffusion metal oxide semiconductor) device with high breakdown voltage (greater than 650 V). The high-voltage requirements are achieved by stacking a number of DMOS devices within one module, while two modules can be placed in series to achieve higher voltages. Besides the high-voltage requirements, a second generation prototype is currently being developed to provide improved switching capabilities (rise time and fall time for full range of target voltages and currents), the ability to scale the output voltage to a desired value with good accuracy (few percent) up to 10 kV, to cover a wide range of high-voltage applications. In addition, to ensure miniaturization, long life, and high reliability, the assemblies will require intensive high-voltage electrostatic modeling (optimized E-field distribution throughout the module) to complete the proposed packaging approach and test the applicability of using advanced materials in a space-like environment (temperature and pressure) to help prevent potential arcing and corona due to high field regions. Finally, a single-event effect evaluation would have to be performed and single-event mitigation methods implemented at the design and system level or developed to ensure complete radiation hardness of the module.

  2. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    2016-10-26

    Oct 26, 2016 ... The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the.

  3. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the ZmNR1, ZmNR2, ...

  4. FUMET: A fuzzy network module extraction technique for gene ...

    Indian Academy of Sciences (India)

    FUMET: A fuzzy network module extraction technique for gene expression data. PRIYAKSHI MAHANTA, HASIN AFZAL AHMED, DHRUBA KUMAR BHATTACHARYYA and ASHISH GHOSH http://www.ias.ac.in/jbiosci. J. Biosci. 39(3), June 2014, 351–364, © Indian Academy of Sciences. Supplementary material ...

  5. Network Diffusion-Based Prioritization of Autism Risk Genes Identifies Significantly Connected Gene Modules

    Directory of Open Access Journals (Sweden)

    Ettore Mosca

    2017-09-01

    Full Text Available Autism spectrum disorder (ASD is marked by a strong genetic heterogeneity, which is underlined by the low overlap between ASD risk gene lists proposed in different studies. In this context, molecular networks can be used to analyze the results of several genome-wide studies in order to underline those network regions harboring genetic variations associated with ASD, the so-called “disease modules.” In this work, we used a recent network diffusion-based approach to jointly analyze multiple ASD risk gene lists. We defined genome-scale prioritizations of human genes in relation to ASD genes from multiple studies, found significantly connected gene modules associated with ASD and predicted genes functionally related to ASD risk genes. Most of them play a role in synapsis and neuronal development and function; many are related to syndromes that can be in comorbidity with ASD and the remaining are involved in epigenetics, cell cycle, cell adhesion and cancer.

  6. Design and realization of a tactile switches module with capacitive sensing method implemented with a microcontroller

    Directory of Open Access Journals (Sweden)

    Lorenzo Capineri

    2016-08-01

    Full Text Available The aim of this research project is the architecture and the design of an electronic system for controlling domestic tactile switches to be integrated into a home automation system based on the KNX standard. All the steps that led to the fulfillment of the finished prototype are reported, from the study and design of the capacitive tactile sensors and the electronic control board according to the specifications imposed by KNX standard. The touch event detection is reached as a trade-off with the footprint requirements of the switch. Experimental results of the fabricated prototype are presented to demonstrate the feasibility of this device.

  7. [The First Switched Time of PML/RARα Fusion Gene in Patients with Acute Promyelocytic Leukemia and Its Clinical Significance].

    Science.gov (United States)

    Pu, Lian-Fang; Tao, Qian-Shan; Wang, Hui-Ping; Zhai, Zhi-Min; Xiong, Shu-Dao

    2015-12-01

    To investigate the first switched time of PML/RARα fusion gene in patients with acute promyelocytic leukemia (APL) and its clinical significance. sixty cases of newly diagnosed APL were enrolled in this study. They received standard remission induction, consolidation and maintenance treatments according to the clinical pathway for APL, and were followed up. During the same time the PML/RARα fusion gene mRNA expression of all cases was detected by multi-nested PCR. except for 3 death cases and 1 case failed to follow-up, the PML/RARα fusion genes in the remaining 56 cases were firstly found to be negative from 24 to 381 days respectively, the mean value of the first switched time was 131 ± 90 days. There was no statistically significant difference in age, sex and risk stratification between different groups. However, the cases with L-type PML/RARα gene had shorter time compared with the patients with S-type PML/RARα gene (P = 0.032); then, for the above-mentimed 56 cases, the follow-up duration ranged from 25-1979 days (median 946 days), long-term molecular remissions had been observed in most cases, but 1 case with the first switched time of 133 days unfortunately recurred to be positive and followed by clinical relapse. The PML/RARα fusion gene in newly diagnosed APL patients was first switched to be negative in about 4 months after treatment. The first switched time of PML/RARα fusion gene can objectively reflect the reduction of leukemia cells, and the differences among different subtypes of PML/RARα fusion gene may have some suggestions for the treatment, but without important significance for the evaluation of prognosis and recurrence for APL patients. In addition, minimal residual disease (MRD) can be dynamically monitored by detecting PML/RARα fusion gene, thus having an important clinical significance for analysis of APL recurrence.

  8. Deletion of the nucleotide excision repair gene Ercc1 reduces immunoglobulin class switching and alters mutations near switch recombination junctions.

    Science.gov (United States)

    Schrader, Carol E; Vardo, Joycelyn; Linehan, Erin; Twarog, Michael Z; Niedernhofer, Laura J; Hoeijmakers, Jan H J; Stavnezer, Janet

    2004-08-02

    The structure-specific endonuclease ERCC1-XPF is an essential component of the nucleotide excision DNA repair pathway. ERCC1-XPF nicks double-stranded DNA immediately adjacent to 3' single-strand regions. Substrates include DNA bubbles and flaps. Furthermore, ERCC1 interacts with Msh2, a mismatch repair (MMR) protein involved in class switch recombination (CSR). Therefore, ERCC1-XPF has abilities that might be useful for antibody CSR. We tested whether ERCC1 is involved in CSR and found that Ercc1(-)(/)(-) splenic B cells show moderately reduced CSR in vitro, demonstrating that ERCC1-XPF participates in, but is not required for, CSR. To investigate the role of ERCC1 in CSR, the nucleotide sequences of switch (S) regions were determined. The mutation frequency in germline Smicro segments and recombined Smicro-Sgamma3 segments cloned from Ercc1(-)(/)(-) splenic B cells induced to switch in culture was identical to that of wild-type (WT) littermates. However, Ercc1(-)(/)(-) cells show increased targeting of the mutations to G:C bp in RGYW/WRCY hotspots and mutations occur at sites more distant from the S-S junctions compared with WT mice. The results indicate that ERCC1 is not epistatic with MMR and suggest that ERCC1 might be involved in processing or repair of DNA lesions in S regions during CSR.

  9. Symbiont modulates expression of specific gene categories in Angomonas deanei

    Directory of Open Access Journals (Sweden)

    Luciana Loureiro Penha

    Full Text Available Trypanosomatids are parasites that cause disease in humans, animals, and plants. Most are non-pathogenic and some harbor a symbiotic bacterium. Endosymbiosis is part of the evolutionary process of vital cell functions such as respiration and photosynthesis. Angomonas deanei is an example of a symbiont-containing trypanosomatid. In this paper, we sought to investigate how symbionts influence host cells by characterising and comparing the transcriptomes of the symbiont-containing A. deanei (wild type and the symbiont-free aposymbiotic strains. The comparison revealed that the presence of the symbiont modulates several differentially expressed genes. Empirical analysis of differential gene expression showed that 216 of the 7625 modulated genes were significantly changed. Finally, gene set enrichment analysis revealed that the largest categories of genes that downregulated in the absence of the symbiont were those involved in oxidation-reduction process, ATP hydrolysis coupled proton transport and glycolysis. In contrast, among the upregulated gene categories were those involved in proteolysis, microtubule-based movement, and cellular metabolic process. Our results provide valuable information for dissecting the mechanism of endosymbiosis in A. deanei.

  10. Emergent bimodality and switch induced by time delays and noises in a synthetic gene circuit

    Science.gov (United States)

    Zhang, Chun; Du, Liping; Xie, Qingshuang; Wang, Tonghuan; Zeng, Chunhua; Nie, Linru; Duan, Weilong; Jia, Zhenglin; Wang, Canjun

    2017-10-01

    Based on the kinetic model for obtaining emergent bistability proposed by Tan et al. (2009), the effects of the fluctuations of protein synthesis rate and maximum dilution rate, the cross-correlation between two noises, and the time delay and the strength of the feedback loop in the synthetic gene circuit have been investigated through theoretical analysis and numerical simulation. Our results show that: (i) the fluctuations of protein synthesis rate and maximum dilution rate enhance the emergent bimodality of the probability distribution phenomenon, while the cross-correlation between two noises(λ), the time delay(τ) and the strength of the feedback loop(K) cause it to disappear; and (ii) the mean first passage time(MFPT) as functions of the noise strengths exhibits a maximum, this maximum is called noise-delayed switching (NDS) of the high concentration state. The NDS phenomenon shows that the noise can modify the stability of a metastable system in a counterintuitive way, the system remains in the metastable state for a longer time compared to the deterministic case. And the τ and the K enhances the stability of the ON state. The physical mechanisms for the switch between the ON and OFF states can be explained from the point of view of the effective potential.

  11. Improved current-regulated delta modulator for reducing switching frequency and low-frequency current error in permanent magnet brushless AC drives \\ud

    OpenAIRE

    Wipasuramonton, P.; Zhu, Z.Q.; Howe, D.

    2005-01-01

    The conventional current-regulated delta modulator (CRDM) results in a high current ripple and a high switching frequency at low rotational speeds, and in low-frequency current harmonics, including a fundamental current error, at high rotational speeds. An improved current controller based on CRDM is proposed which introduces a zero-vector zone and a current error correction technique. It reduces the current ripple and switching frequency at low speeds, without the need to detect the back-emf...

  12. Spatial proximity of homologous alleles and long noncoding RNAs regulate a switch in allelic gene expression.

    Science.gov (United States)

    Stratigi, Kalliopi; Kapsetaki, Manouela; Aivaliotis, Michalis; Town, Terrence; Flavell, Richard A; Spilianakis, Charalampos G

    2015-03-31

    Physiological processes rely on the regulation of total mRNA levels in a cell. In diploid organisms, the transcriptional activation of one or both alleles of a gene may involve trans-allelic interactions that provide a tight spatial and temporal level of gene expression regulation. The mechanisms underlying such interactions still remain poorly understood. Here, we demonstrate that lipopolysaccharide stimulation of murine macrophages rapidly resulted in the actin-mediated and transient homologous spatial proximity of Tnfα alleles, which was necessary for the mono- to biallelic switch in gene expression. We identified two new complementary long noncoding RNAs transcribed from the TNFα locus and showed that their knockdown had opposite effects in Tnfα spatial proximity and allelic expression. Moreover, the observed spatial proximity of Tnfα alleles depended on pyruvate kinase muscle isoform 2 (PKM2) and T-helper-inducing POZ-Krüppel-like factor (ThPOK). This study suggests a role for lncRNAs in the regulation of somatic homologous spatial proximity and allelic expression control necessary for fine-tuning mammalian immune responses.

  13. Switching current imbalance mitigation in power modules with parallel connected SiC MOSFETs

    DEFF Research Database (Denmark)

    Beczkowski, Szymon; Jørgensen, Asger Bjørn; Li, Helong

    2017-01-01

    Multichip power modules use parallel connected chips to achieve high current rating. Due to a finite flexibility in a DBC layout, some electrical asymmetries will occur in the module. Parallel connected transistors will exhibit uneven static and dynamic current sharing due to these asymmetries...

  14. Optical label switching in telecommunication using semiconductor lasers, amplifiers and electro-absorption modulators

    DEFF Research Database (Denmark)

    Chi, Nan; Christiansen, Lotte Jin; Jeppesen, Palle

    2004-01-01

    We demonstrate all-optical label encoding and updating for an orthogonally labeled signal in combined IM/FSK modulation format utilizing semiconductor lasers, semiconductor optical amplifiers and electro-absorption modulators. Complete functionality of a network node including two-hop transmissio...

  15. Resistive switching and voltage induced modulation of tunneling magnetoresistance in nanosized perpendicular organic spin valves

    Directory of Open Access Journals (Sweden)

    Robert Göckeritz

    2016-04-01

    Full Text Available Nanoscale multifunctional perpendicular organic spin valves have been fabricated. The devices based on an La0.7Sr0.3MnO3/Alq3/Co trilayer show resistive switching of up to 4-5 orders of magnitude and magnetoresistance as high as -70% the latter even changing sign when voltage pulses are applied. This combination of phenomena is typically observed in multiferroic tunnel junctions where it is attributed to magnetoelectric coupling between a ferromagnet and a ferroelectric material. Modeling indicates that here the switching originates from a modification of the La0.7Sr0.3MnO3 surface. This modification influences the tunneling of charge carriers and thus both the electrical resistance and the tunneling magnetoresistance which occurs at pinholes in the organic layer.

  16. A behavioral simulator for switched-capacitor sigma-delta modulator analog-to-digital converter

    International Nuclear Information System (INIS)

    San, H. Y.; Rezaul Hasan, S. M.

    1998-01-01

    In this paper, a PC-based simulator for state of the art oversampled switched-capacitor sigma-delta analog-to-digital converters is presented. The proposed simulator employs behavioral model of switched-capacitor integrator and non-linear quantizer to stimulate the system. The behavioral simulation of the integrator is also verified with SPICE. The simulator is fully integrated and standalone. It integrates an input netlist file interpreter, a behavioral simulator, a generic part library and a powerful post-processor to evaluate the SNR, SDR And TSNR. Both passive and active sensitivities can be investigated by the proposed simulator. The simulator is coded in C++, and is very fast

  17. Resistive switching and voltage induced modulation of tunneling magnetoresistance in nanosized perpendicular organic spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Göckeritz, Robert; Homonnay, Nico; Müller, Alexander [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale) (Germany); Fuhrmann, Bodo [Interdisziplinäres Zentrum für Materialwissenschaften, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale) (Germany); Schmidt, Georg, E-mail: georg.schmidt@physik.uni-halle.de [Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale) (Germany); Interdisziplinäres Zentrum für Materialwissenschaften, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle (Saale) (Germany)

    2016-04-15

    Nanoscale multifunctional perpendicular organic spin valves have been fabricated. The devices based on an La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/Alq3/Co trilayer show resistive switching of up to 4-5 orders of magnitude and magnetoresistance as high as -70% the latter even changing sign when voltage pulses are applied. This combination of phenomena is typically observed in multiferroic tunnel junctions where it is attributed to magnetoelectric coupling between a ferromagnet and a ferroelectric material. Modeling indicates that here the switching originates from a modification of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} surface. This modification influences the tunneling of charge carriers and thus both the electrical resistance and the tunneling magnetoresistance which occurs at pinholes in the organic layer.

  18. 3-5 modulation and switching devices for optical systems applications

    Science.gov (United States)

    Singh, Jasprit; Bhattacharya, Pallab

    1995-04-01

    The thrust for this three year program has been to develop novel devices and systems applications for multiple quantum well based devices. We have investigated architectures based upon the quantum confined Stark effect (QCSE), a means by which excitonic resonances in a quantum well are electric field tuned to shift the peaked absorption spectrum of the material. The devices based upon this concept have been used, in the past, to realize switching structures employing the characteristic negative differential resistance available in PIN-MQW diodes under illumination. We have focuses, primarily on three schemes based upon the QCSE, to extend the utility of quantum well based devices. Firstly, we have developed, tested and optimized a novel tunable optical filter for wavelength selective applications. Secondly, we have demonstrated an MQW based scheme for optical pattern recognition which we have applied towards header recognition in a packet switching network environment. Thirdly, we have extended previous MQW based switching schemes to implement an optical read only memory (ROM) which can store two bits of information on a single sight, read by two different probe wavelengths of light.

  19. What makes the lac-pathway switch : identifying the fluctuations that trigger phenotype switching in gene regulatory systems

    NARCIS (Netherlands)

    Bhogale, Prasanna M; Sorg, Robin A; Veening, Jan-Willem; Berg, Johannes

    2014-01-01

    Multistable gene regulatory systems sustain different levels of gene expression under identical external conditions. Such multistability is used to encode phenotypic states in processes including nutrient uptake and persistence in bacteria, fate selection in viral infection, cell-cycle control and

  20. Modulation of resistive switching characteristics for individual BaTiO3 microfiber by surface oxygen vacancies

    Science.gov (United States)

    Miao, Zhilei; Chen, Lei; Zhou, Fang; Wang, Qiang

    2018-01-01

    Different from traditional thin-film BaTiO3 (BTO) RRAM device with planar structure, individual microfiber-shaped RRAM device, showing promising application potentials in the micro-sized non-volatile memory system, has not been investigated so far to demonstrate resistive switching behavior. In this work, individual sol-gel BTO microfiber has been formed using the draw-bench method, followed by annealing in different atmospheres of air and argon, respectively. The resistive switching characteristics of the individual BTO microfiber have been investigated by employing double-probe SEM measurement system, which shows great convenience to test local electrical properties by modulating the contact sites between the W probes and the BTO microfiber. For the sample annealed in air, the average resistive ON/OFF ratio is as high as 108, enhanced about four orders in comparison with the counterpart that annealed in Argon. For the sample annealed in argon ambience, the weakened resistive ON/OFF ratio can be attributed to the increased presence of oxygen vacancies in the surface of BTO fibers, and the underlying electrical conduction mechanisms are also discussed.

  1. Modulation of Metabolism and Switching to Biofilm Prevail over Exopolysaccharide Production in the Response of Rhizobium alamii to Cadmium

    Science.gov (United States)

    Schue, Mathieu; Fekete, Agnes; Ortet, Philippe; Brutesco, Catherine; Heulin, Thierry; Schmitt-Kopplin, Philippe; Achouak, Wafa; Santaella, Catherine

    2011-01-01

    Heavy metals such as cadmium (Cd2+) affect microbial metabolic processes. Consequently, bacteria adapt by adjusting their cellular machinery. We have investigated the dose-dependent growth effects of Cd2+ on Rhizobium alamii, an exopolysaccharide (EPS)-producing bacterium that forms a biofilm on plant roots. Adsorption isotherms show that the EPS of R. alamii binds cadmium in competition with calcium. A metabonomics approach based on ion cyclotron resonance Fourier transform mass spectrometry has showed that cadmium alters mainly the bacterial metabolism in pathways implying sugars, purine, phosphate, calcium signalling and cell respiration. We determined the influence of EPS on the bacterium response to cadmium, using a mutant of R. alamii impaired in EPS production (MSΔGT). Cadmium dose-dependent effects on the bacterial growth were not significantly different between the R. alamii wild type (wt) and MSΔGT strains. Although cadmium did not modify the quantity of EPS isolated from R. alamii, it triggered the formation of biofilm vs planktonic cells, both by R. alamii wt and by MSΔGT. Thus, it appears that cadmium toxicity could be managed by switching to a biofilm way of life, rather than producing EPS. We conclude that modulations of the bacterial metabolism and switching to biofilms prevails in the adaptation of R. alamii to cadmium. These results are original with regard to the conventional role attributed to EPS in a biofilm matrix, and the bacterial response to cadmium. PMID:22096497

  2. Performance analysis of switch-based multiuser scheduling schemes with adaptive modulation in spectrum sharing systems

    KAUST Repository

    Qaraqe, Marwa

    2014-04-01

    This paper focuses on the development of multiuser access schemes for spectrum sharing systems whereby secondary users are allowed to share the spectrum with primary users under the condition that the interference observed at the primary receiver is below a predetermined threshold. In particular, two scheduling schemes are proposed for selecting a user among those that satisfy the interference constraint and achieve an acceptable signal-to-noise ratio level. The first scheme focuses on optimizing the average spectral efficiency by selecting the user that reports the best channel quality. In order to alleviate the relatively high feedback required by the first scheme, a second scheme based on the concept of switched diversity is proposed, where the base station (BS) scans the secondary users in a sequential manner until a user whose channel quality is above an acceptable predetermined threshold is found. We develop expressions for the statistics of the signal-to-interference and noise ratio as well as the average spectral efficiency, average feedback load, and the delay at the secondary BS. We then present numerical results for the effect of the number of users and the interference constraint on the optimal switching threshold and the system performance and show that our analysis results are in perfect agreement with the numerical results. © 2014 John Wiley & Sons, Ltd.

  3. "Molecular Switches" on mGluR Allosteric Ligands That Modulate Modes of Pharmacology

    Science.gov (United States)

    Wood, Michael R.; Hopkins, Corey R.; Brogan, John T.; Conn, P. Jeffrey; Lindsley, Craig W.

    2013-01-01

    G-Protein-coupled receptors (GPCRs) represent the largest class of drug targets, accounting for more than 40% of marketed drugs; however, discovery efforts for many GPCRs have failed to provide viable drug candidates. Historically, drug discovery efforts have focused on developing ligands that act at the orthosteric site of the endogenous agonist. Recently, efforts have focused on functional assay paradigms and the discovery of ligands that act at allosteric sites to modulate receptor function in either a positive, negative, or neutral manner. Allosteric modulators have numerous advantages over orthosteric ligands, including high subtype selectivity; the ability to mimic physiological conditions; the lack of densensitization, downregulation, and internalization; and reduced side effects. Despite these virtues, challenging issues have now arisen for allosteric modulators of metabotropic glutamate receptors (mGluRs): shallow SAR, ligand-directed trafficking, and the identification of subtle “molecular switches” that modulate the modes of pharmacology. Here, we will discuss the impact of modest structural changes to multiple mGluR allosteric ligands scaffolds that unexpectedly modulate pharmacology and raise concerns over metabolism and the pharmacology of metabolites. PMID:21341760

  4. Reduction of pattern effects in SOA-based all-optical switches by using cross-gain modulated holding signal

    DEFF Research Database (Denmark)

    Bischoff, Svend; Mørk, Jesper

    2002-01-01

    , and reduces the fluctuations of the total energy injected into the interferometer within a bit-slot. Thus, we demonstrate a technique for reducing pattern effects in SOAs by employing a partially inverted holding beam. The method should be useful for increasing the data rates of all-optical switches.......The effective carrier lifetime of SOAs is typically shortened by an intense Continuous Wave (CW) holding signal. However, the SOA gain is reduced by the holding signal resulting in smaller gain and refractive index changes induced by the data signal. Accordingly, an optimum exists for the CW...... and data signal power. Here, we demonstrate that the modulation bandwidth (amplitude jitter) is significantly improved (reduced) by replacing the CW holding beam with a signal, which is low-pass filtered and inverted with respect to the data signal. Such a holding beam can be generated by XGM WC in an SOA...

  5. Effective switching frequency multiplier inverter

    Science.gov (United States)

    Su, Gui-Jia; Peng, Fang Z.

    2007-08-07

    A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

  6. 40 Gb/s Pulse Generation Using Gain Switching of a Commercially Available Laser Module

    DEFF Research Database (Denmark)

    Nørregaard, Jesper; Hanberg, Jesper; Franck, Thorkild

    1999-01-01

    to ease RF connection. The laser die is connected to a gold plated AlN microwave substrate that also acts as a heat spreader. The microwave substrate contains an impedance matching resistor for the RF signal as well as a bias-T for the DC bias. 50 ohm Flexguide technology is used for the interconnection......The laser module contains a single-mode, distributed feedback (DFB) laser diode. The epi-structure of the laser diode is grown by MOCVD as a multiple quantum well heterostructure. The DFB grating is defined by holography, and the laser diode is designed with a co-planar contact metallization...... between the microwave substrate and the RF feed-through in the wall of the module. The module is build as a 14 pin butterfly package with the RF feed-through designed as a coplanar 50 ohm impedance port. Included in the module are a built-in optical isolator, a thermistor, a thermo-electric cooler...

  7. A Three-State Markov-Modulated Switching Model for Exchange Rates

    Directory of Open Access Journals (Sweden)

    Idowu Oluwasayo Ayodeji

    2016-01-01

    Full Text Available Several authors have examined the long swings hypothesis in exchange rates using a two-state Markov switching model. This study developed a model to investigate long swings hypothesis in currencies which may exhibit a k-state (k≥2 pattern. The proposed model was then applied to euros, British pounds, Japanese yen, and Nigerian naira. Specification measures such as AIC, BIC, and HIC favoured a three-state pattern in Nigerian naira but a two-state one in the other three currencies. For the period January 2004 to May 2016, empirical results suggested the presence of asymmetric swings in naira and yen and long swings in euros and pounds. In addition, taking 0.5 as the benchmark for smoothing probabilities, choice models provided a clear reading of the cycle in a manner that is consistent with the realities of the movements in corresponding exchange rate series.

  8. Doubly Q-switched Nd:GGG laser with a few-layer MoS2 saturable absorber and an acousto-optic modulator

    Science.gov (United States)

    Wang, Di; Zhao, Jia; Yang, Kejian; Zhao, Shengzhi; Li, Tao; Li, Dechun; Li, Guiqiu; Qiao, Wenchao

    2017-10-01

    A doubly Q-switched Nd:GGG laser emitting 1064 nm wavelength with an acousto-optic modulator (AOM) and a few-layer MoS2 saturable absorber (SA) is presented to study the pulsed laser characteristics. The average output power, the pulse width, the pulse energy and the peak power versus pump power for different modulation frequency of AOM are measured. In comparison with singly passive Q-switched laser (SPQSL) with MoS2 SA, the doubly Q-switched laser (DQSL) can effectively shorten the pulse width, improve the pulse peak power and the stability. The shortest pulse width is 150.1 ns and the maximum peak power reaches 33.7 W. The maximum pulse compression ratio 5.8 and the highest peak power enhancement factor 21.3 are obtained, respectively.

  9. Transcription of the var genes from a freshly-obtained field isolate of Plasmodium falciparum shows more variable switching patterns than long laboratory-adapted isolates.

    Science.gov (United States)

    Ye, Run; Zhang, Dongmei; Chen, Biaobang; Zhu, Yongqiang; Zhang, Yilong; Wang, Shengyue; Pan, Weiqing

    2015-02-07

    Antigenic variation in Plasmodium falciparum involves switching among multicopy var gene family and is responsible for immune evasion and the maintenance of chronic infections. Current understanding of var gene expression and switching patterns comes from experiments conducted on long laboratory-adapted strains, with little known about their wild counterparts. Genome sequencing was used to obtain 50 var genes from a parasite isolated from the China-Myanmar border. Four clones with different dominant var genes were cultured in vitro in replicates for 50 generations. Transcription of the individual var gene was detected by real-time PCR and then the switching process was analysed. The expression of multicopy var genes is mutually exclusive in clones of a wild P. falciparum isolate. The activation of distinct primary dominant var genes leads to different and favoured switching patterns in the four clones. The on/off rates of individual var genes are variable and the choice of subsequent dominant var genes are random, which results in the different switching patterns among replicates of each clonal wild P. falciparum isolate with near identical initial transcription profiles. This study suggests that the switching patterns of var genes are abundant, which consist of both conserved and random parts.

  10. Sarcoptes scabiei mites modulate gene expression in human skin equivalents.

    Directory of Open Access Journals (Sweden)

    Marjorie S Morgan

    Full Text Available The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin's protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host's protective response allowing these mites to survive in the skin.

  11. Sarcoptes scabiei mites modulate gene expression in human skin equivalents.

    Science.gov (United States)

    Morgan, Marjorie S; Arlian, Larry G; Markey, Michael P

    2013-01-01

    The ectoparasitic mite, Sarcoptes scabiei that burrows in the epidermis of mammalian skin has a long co-evolution with its hosts. Phenotypic studies show that the mites have the ability to modulate cytokine secretion and expression of cell adhesion molecules in cells of the skin and other cells of the innate and adaptive immune systems that may assist the mites to survive in the skin. The purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents (HSEs) that changed expression in response to the burrowing of live scabies mites. Overall, of the more than 25,800 genes measured, 189 genes were up-regulated >2-fold in response to scabies mite burrowing while 152 genes were down-regulated to the same degree. HSEs differentially expressed large numbers of genes that were related to host protective responses including those involved in immune response, defense response, cytokine activity, taxis, response to other organisms, and cell adhesion. Genes for the expression of interleukin-1α (IL-1α) precursor, IL-1β, granulocyte/macrophage-colony stimulating factor (GM-CSF) precursor, and G-CSF precursor were up-regulated 2.8- to 7.4-fold, paralleling cytokine secretion profiles. A large number of genes involved in epithelium development and keratinization were also differentially expressed in response to live scabies mites. Thus, these skin cells are directly responding as expected in an inflammatory response to products of the mites and the disruption of the skin's protective barrier caused by burrowing. This suggests that in vivo the interplay among these skin cells and other cell types, including Langerhans cells, dendritic cells, lymphocytes and endothelial cells, is responsible for depressing the host's protective response allowing these mites to survive in the skin.

  12. Thermal Simulation of Switching Pulses in an Insulated Gate Bipolar Transistor (IGBT) Power Module

    Science.gov (United States)

    2015-02-01

    prepared with SolidWorks computer-aided design software. The module has 8 silicon IGBTs mounted on copper (Cu) lands bonded onto a dielectric circuit...aluminum nitride ARL US Army Research Laboratory Cu copper IGBT insulated gate bipolar transistor ms millisecond 3D 3-dimensional W watt...RDRL CIO LL TECHL LIB 1 GOVT PRNTG OFC (PDF) ATTN A MALHOTRA 5 US ARMY RSRCH LAB (PDF) ATTN RDRL SED C W TIPTON ATTN RDRL SED P D

  13. Joint multiuser switched diversity and adaptive modulation schemes for spectrum sharing systems

    KAUST Repository

    Qaraqe, Marwa

    2012-12-01

    In this paper, we develop multiuser access schemes for spectrum sharing systems whereby secondary users are allowed to share the spectrum with primary users under the condition that the interference observed at the primary receiver is below a predetermined threshold. In particular, we devise two schemes for selecting a user among those that satisfy the interference constraint and achieve an acceptable signal-to-noise ratio level. The first scheme selects the user that reports the best channel quality. In order to alleviate the high feedback load associated with the first scheme, we develop a second scheme based on the concept of switched diversity where the base station scans the users in a sequential manner until an acceptable user is found. In addition to these two selection schemes, we consider two power adaptive settings at the secondary users based on the amount of interference available at the secondary transmitter. In the On/Off power setting, users are allowed to transmit based on whether the interference constraint is met or not, while in the full power adaptive setting, the users are allowed to vary their transmission power to satisfy the interference constraint. Finally, we present numerical results for our proposed algorithms where we show the trade-off between the average spectral efficiency and average feedback load for both schemes. © 2012 IEEE.

  14. Ligand-modulated conformational switching in a fully synthetic membrane-bound receptor

    Science.gov (United States)

    Lister, Francis G. A.; Le Bailly, Bryden A. F.; Webb, Simon J.; Clayden, Jonathan

    2017-05-01

    Signal transduction through G-protein-coupled receptors (GPCRs) involves binding to signalling molecules at the cell surface, which leads to global changes in molecular conformation that are communicated through the membrane. Artificial mechanisms for communication involving ligand binding and global conformational switching have been demonstrated so far only in the solution phase. Here, we report a membrane-bound synthetic receptor that responds to binding of a ligand by undergoing a conformational change that is propagated over several nanometres, deep into the phospholipid bilayer. Our design uses a helical foldamer core, with structural features borrowed from a class of membrane-active fungal antibiotics, ligated to a water-compatible, metal-centred binding site and a conformationally responsive fluorophore. Using the fluorophore as a remote reporter of conformational change, we find that binding of specific carboxylate ligands to a Cu(II) cofactor at the binding site perturbs the foldamer's global conformation, mimicking the conformational response of a GPCR to ligand binding.

  15. Solid-state Marx based two-switch voltage modulator for the On-Line Isotope Mass Separator accelerator at the European Organization for Nuclear Research.

    Science.gov (United States)

    Redondo, L M; Silva, J Fernando; Canacsinh, H; Ferrão, N; Mendes, C; Soares, R; Schipper, J; Fowler, A

    2010-07-01

    A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.

  16. Engineering zinc finger protein transcription factors : The therapeutic relevance of switching endogenous gene expression on or off at command

    NARCIS (Netherlands)

    Gommans, WM; Haisma, HJ; Rots, MG

    2005-01-01

    Modulating gene expression directly at the DNA level represents a novel approach to control cellular processes. In this respect, zinc finger protein DNA-binding domains can be engineered to target virtually any gene. Coupling of a transcription activation or repression domain to these zinc fingers

  17. Liver X Receptor Genes Variants Modulate ALS Phenotype.

    Science.gov (United States)

    Mouzat, Kevin; Molinari, Nicolas; Kantar, Jovana; Polge, Anne; Corcia, Philippe; Couratier, Philippe; Clavelou, Pierre; Juntas-Morales, Raul; Pageot, Nicolas; Lobaccaro, Jean -Marc A; Raoul, Cedric; Lumbroso, Serge; Camu, William

    2018-03-01

    Amyotrophic lateral sclerosis (ALS) is one of the most severe motor neuron (MN) disorders in adults. Phenotype of ALS patients is highly variable and may be influenced by modulators of energy metabolism. Recent works have implicated the liver X receptors α and β (LXRs), either in the propagation process of ALS or in the maintenance of MN survival. LXRs are nuclear receptors activated by oxysterols, modulating cholesterol levels, a suspected modulator of ALS severity. In a cohort of 438 ALS patients and 330 healthy controls, the influence of LXR genes on ALS risk and phenotype was studied using single nucleotide polymorphisms (SNPs). The two LXRα SNPs rs2279238 and rs7120118 were shown to be associated with age at onset in ALS patients. Consistently, homozygotes were twice more correlated than were heterozygotes to delayed onset. The onset was thus delayed by 3.9 years for rs2279238 C/T carriers and 7.8 years for T/T carriers. Similar results were obtained for rs7120118 (+2.1 years and +6.7 years for T/C and C/C genotypes, respectively). The LXRβ SNP rs2695121 was also shown to be associated with a 30% increase of ALS duration (p = 0.0055, FDR = 0.044). The tested genotypes were not associated with ALS risk. These findings add further evidence to the suspected implication of LXR genes in the disease process of ALS and might open new perspectives in ALS therapeutics.

  18. Switch-like reprogramming of gene expression after fusion of multinucleate plasmodial cells of two Physarum polycephalum sporulation mutants

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Pauline; Hoffmann, Xenia-Katharina; Ebeling, Britta; Haas, Markus; Marwan, Wolfgang, E-mail: wolfgang.marwan@ovgu.de

    2013-05-24

    Highlights: •We investigate reprogramming of gene expression in multinucleate single cells. •Cells of two differentiation control mutants are fused. •Fused cells proceed to alternative gene expression patterns. •The population of nuclei damps stochastic fluctuations in gene expression. •Dynamic processes of cellular reprogramming can be observed by repeated sampling of a cell. -- Abstract: Nonlinear dynamic processes involving the differential regulation of transcription factors are considered to impact the reprogramming of stem cells, germ cells, and somatic cells. Here, we fused two multinucleate plasmodial cells of Physarum polycephalum mutants defective in different sporulation control genes while being in different physiological states. The resulting heterokaryons established one of two significantly different expression patterns of marker genes while the plasmodial halves that were fused to each other synchronized spontaneously. Spontaneous synchronization suggests that switch-like control mechanisms spread over and finally control the entire plasmodium as a result of cytoplasmic mixing. Regulatory molecules due to the large volume of the vigorously streaming cytoplasm will define concentrations in acting on the population of nuclei and in the global setting of switches. Mixing of a large cytoplasmic volume is expected to damp stochasticity when individual nuclei deliver certain RNAs at low copy number into the cytoplasm. We conclude that spontaneous synchronization, the damping of molecular noise in gene expression by the large cytoplasmic volume, and the option to take multiple macroscopic samples from the same plasmodium provide unique options for studying the dynamics of cellular reprogramming at the single cell level.

  19. A Double-Switch Cell Fusion-Inducible Transgene Expression System for Neural Stem Cell-Based Antiglioma Gene Therapy

    Directory of Open Access Journals (Sweden)

    Yumei Luo

    2015-01-01

    Full Text Available Recent progress in neural stem cell- (NSC- based tumor-targeted gene therapy showed that NSC vectors expressing an artificially engineered viral fusogenic protein, VSV-G H162R, could cause tumor cell death specifically under acidic tumor microenvironment by syncytia formation; however, the killing efficiency still had much room to improve. In the view that coexpression of another antitumoral gene with VSV-G can augment the bystander effect, a synthetic regulatory system that triggers transgene expression in a cell fusion-inducible manner has been proposed. Here we have developed a double-switch cell fusion-inducible transgene expression system (DoFIT to drive transgene expression upon VSV-G-mediated NSC-glioma cell fusion. In this binary system, transgene expression is coregulated by a glioma-specific promoter and targeting sequences of a microRNA (miR that is highly expressed in NSCs but lowly expressed in glioma cells. Thus, transgene expression is “switched off” by the miR in NSC vectors, but after cell fusion with glioma cells, the miR is diluted and loses its suppressive effect. Meanwhile, in the syncytia, transgene expression is “switched on” by the glioma-specific promoter. Our in vitro and in vivo experimental data show that DoFIT successfully abolishes luciferase reporter gene expression in NSC vectors but activates it specifically after VSV-G-mediated NSC-glioma cell fusion.

  20. Localization of genes modulating the predisposition to schizophrenia: a revision

    Directory of Open Access Journals (Sweden)

    E.Z. Lopes-Machado

    2000-09-01

    Full Text Available The genetics of schizophrenia or bipolar affective disorder has advanced greatly at the molecular level since the introduction of probes for the localization of specific genes. Research on gene candidates for susceptibility to schizophrenia can broadly be divided into two types, i.e., linkage studies, where a gene is found near a specific DNA marker on a specific chromosome, and association studies, when a condition is associated with a specific allele of a specific gene. This review covers a decade of publications in this area, from the 1988 works of Bassett et al. and Sherrington et al. on a gene localized on the long arm of chromosome 5 at the 5q11-13 loci, to the 1997 work of Lin et al. pointing to the 13q14.1-q32 loci of chromosome 13 and to the 1998 work of Wright et al. on an HLA DRB1 gene locus on chromosome 6 at 6p21-3. The most replicated loci were those in the long arm of chromosome 22 (22q12-q13.1 and on the short arm of chromosome 6 (6p24-22. In this critical review of the molecular genetic studies involved in the localization of genes which modulate the predisposition to schizophrenia the high variability in the results obtained by different workers suggests that multiple loci are involved in the predisposition to this illness.A genética da esquizofrenia (como também do distúrbio bipolar teve grande avanço a partir da descoberta, a nível de genética molecular, da técnica de localização de genes com uso de sondas de DNA (Botstein et al., 1980. Os estudos que procuram "genes candidatos" a exercerem algum papel na susceptibilidade à esquizofrenia são, basicamente, de dois tipos: de ligação ("linkage" e de associação. Quando, à luz da genética molecular, um gene é localizado próximo a um marcador de DNA específico no cromossomo, fala-se em estudo "de ligação". Por outro lado, quando a doença é associada a um alelo específico de um determinado gene, fala-se em estudo "de associação". Esta revisão cobriu uma d

  1. Omics for Investigating Chitosan as an Antifungal and Gene Modulator

    Directory of Open Access Journals (Sweden)

    Federico Lopez-Moya

    2016-03-01

    Full Text Available Chitosan is a biopolymer with a wide range of applications. The use of chitosan in clinical medicine to control infections by fungal pathogens such as Candida spp. is one of its most promising applications in view of the reduced number of antifungals available. Chitosan increases intracellular oxidative stress, then permeabilizes the plasma membrane of sensitive filamentous fungus Neurospora crassa and yeast. Transcriptomics reveals plasma membrane homeostasis and oxidative metabolism genes as key players in the response of fungi to chitosan. A lipase and a monosaccharide transporter, both inner plasma membrane proteins, and a glutathione transferase are main chitosan targets in N. crassa. Biocontrol fungi such as Pochonia chlamydosporia have a low content of polyunsaturated free fatty acids in their plasma membranes and are resistant to chitosan. Genome sequencing of P. chlamydosporia reveals a wide gene machinery to degrade and assimilate chitosan. Chitosan increases P. chlamydosporia sporulation and enhances parasitism of plant parasitic nematodes by the fungus. Omics studies allow understanding the mode of action of chitosan and help its development as an antifungal and gene modulator.

  2. The g0/g1 switch gene 2 is an important regulator of hepatic triglyceride metabolism.

    Science.gov (United States)

    Wang, Yinfang; Zhang, Yahui; Qian, Hang; Lu, Juan; Zhang, Zhifeng; Min, Xinwen; Lang, Mingjian; Yang, Handong; Wang, Nanping; Zhang, Peng

    2013-01-01

    Nonalcoholic fatty liver disease is associated with obesity and insulin resistance. Factors that regulate the disposal of hepatic triglycerides contribute to the development of hepatic steatosis. G0/G1 switch gene 2 (G0S2) is a target of peroxisome proliferator-activated receptors and plays an important role in regulating lipolysis in adipocytes. Therefore, we investigated whether G0S2 plays a role in hepatic lipid metabolism. Adenovirus-mediated expression of G0S2 (Ad-G0S2) potently induced fatty liver in mice. The liver mass of Ad-G0S2-infected mice was markedly increased with excess triglyceride content compared to the control mice. G0S2 did not change cellular cholesterol levels in hepatocytes. G0S2 was found to be co-localized with adipose triglyceride lipase at the surface of lipid droplets. Hepatic G0S2 overexpression resulted in an increase in plasma Low-density lipoprotein (LDL)/Very-Low-density (VLDL) lipoprotein cholesterol level. Plasma High-density lipoprotein (HDL) cholesterol and ketone body levels were slightly decreased in Ad-G0S2 injected mice. G0S2 also increased the accumulation of neutral lipids in cultured HepG2 and L02 cells. However, G0S2 overexpression in the liver significantly improved glucose tolerance in mice. Livers expressing G0S2 exhibited increased 6-(N-(7-nitrobenz-2-oxa-1-3-diazol-4-yl) amino)-6-deoxyglucose uptake compared with livers transfected with control adenovirus. Taken together, our results provide evidence supporting an important role for G0S2 as a regulator of triglyceride content in the liver and suggest that G0S2 may be a molecular target for the treatment of insulin resistance and other obesity-related metabolic disorders.

  3. Dopamine Receptor Genes Modulate Associative Memory in Old Age.

    Science.gov (United States)

    Papenberg, Goran; Becker, Nina; Ferencz, Beata; Naveh-Benjamin, Moshe; Laukka, Erika J; Bäckman, Lars; Brehmer, Yvonne

    2017-02-01

    Previous research shows that associative memory declines more than item memory in aging. Although the underlying mechanisms of this selective impairment remain poorly understood, animal and human data suggest that dopaminergic modulation may be particularly relevant for associative binding. We investigated the influence of dopamine (DA) receptor genes on item and associative memory in a population-based sample of older adults (n = 525, aged 60 years), assessed with a face-scene item associative memory task. The effects of single-nucleotide polymorphisms of DA D1 (DRD1; rs4532), D2 (DRD2/ANKK1/Taq1A; rs1800497), and D3 (DRD3/Ser9Gly; rs6280) receptor genes were examined and combined into a single genetic score. Individuals carrying more beneficial alleles, presumably associated with higher DA receptor efficacy (DRD1 C allele; DRD2 A2 allele; DRD3 T allele), performed better on associative memory than persons with less beneficial genotypes. There were no effects of these genes on item memory or other cognitive measures, such as working memory, executive functioning, fluency, and perceptual speed, indicating a selective association between DA genes and associative memory. By contrast, genetic risk for Alzheimer disease (AD) was associated with worse item and associative memory, indicating adverse effects of APOE ε4 and a genetic risk score for AD (PICALM, BIN1, CLU) on episodic memory in general. Taken together, our results suggest that DA may be particularly important for associative memory, whereas AD-related genetic variations may influence overall episodic memory in older adults without dementia.

  4. The paf gene product modulates asexual development in Penicillium chrysogenum.

    Science.gov (United States)

    Hegedüs, Nikoletta; Sigl, Claudia; Zadra, Ivo; Pócsi, Istvan; Marx, Florentine

    2011-06-01

    Penicillium chrysogenum secretes a low molecular weight, cationic and cysteine-rich protein (PAF). It has growth inhibitory activity against the model organism Aspergillus nidulans and numerous zoo- and phytopathogenic fungi but shows only minimal conditional antifungal activity against the producing organism itself. In this study we provide evidence for an additional function of PAF which is distinct from the antifungal activity against putative ecologically concurrent microorganisms. Our data indicate that PAF enhances conidiation in P. chrysogenum by modulating the expression of brlA, the central regulatory gene for mitospore development. A paf deletion strain showed a significant impairment of mitospore formation which sustains our hypothesis that PAF plays an important role in balancing asexual differentiation in P. chrysogenum. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Conserved gene regulatory module specifies lateral neural borders across bilaterians.

    Science.gov (United States)

    Li, Yongbin; Zhao, Di; Horie, Takeo; Chen, Geng; Bao, Hongcun; Chen, Siyu; Liu, Weihong; Horie, Ryoko; Liang, Tao; Dong, Biyu; Feng, Qianqian; Tao, Qinghua; Liu, Xiao

    2017-08-01

    The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors. First, like in vertebrates, the conserved neuroectoderm lateral border specifier Msx/vab-15 specifies lateral neuroblasts in Caenorhabditis elegans Second, orthologs of the vertebrate NPB specification module ( Msx/vab-15 , Pax3/7/pax-3 , and Zic/ref-2 ) are significantly enriched in worm lateral neuroblasts. In addition, like in other bilaterians, the expression domain of Msx/vab-15 is more lateral than those of Pax3/7/pax-3 and Zic/ref- 2 in C. elegans Third, we show that Msx/vab-15 regulates the development of mechanosensory neurons derived from lateral neural progenitors in multiple invertebrate species, including C. elegans , Drosophila melanogaster , and Ciona intestinalis We also identify a novel lateral neural border specifier, ZNF703/tlp-1 , which functions synergistically with Msx/vab- 15 in both C. elegans and Xenopus laevis These data suggest a common origin of the molecular mechanism specifying lateral neural borders across bilaterians.

  6. Fast phase switching within the bunch train of the PHIN photo-injector at CERN using fiber-optic modulators on the drive laser

    CERN Document Server

    Divall Csatari, M; Bolzon, B; Bravin, E; Chevallay, E; Dobert, S; Drozdy, A; Fedosseev, V; Hessler, C; Lefevre, T; Livesley, S; Losito, R; Mete, O; Petrarca, M; Rabiller, A N

    2011-01-01

    The future Compact Linear Collider (CLIC) e^-/e^+ collider is based on the two-beam acceleration concept, whereby interleaving electron bunches of the drive beam through a delay loop and combiner rings as well as high peak RF power at 12GHz are created locally to accelerate a second beam, the main beam. One of the main objectives of the currently operational CLIC Test Facility (CTF3) is to demonstrate beam combination from 1.5GHz to 12GHz, which requires satellite-free fast phase-switching of the drive beam with sub-ns speed. The PHIN photo-injector, with the photo-injector laser, provides flexibility in the time structure of the electron bunches produced, by direct manipulation of the laser pulses. A novel fiber modulator-based phase-switching technique allows clean and fast phase-switch at 1.5GHz. This paper describes the switching system based on fiber-optic modulators, and the measurements carried out on both the laser and the electron beam to verify the scheme.

  7. A Gene Module-Based eQTL Analysis Prioritizing Disease Genes and Pathways in Kidney Cancer

    Directory of Open Access Journals (Sweden)

    Mary Qu Yang

    Full Text Available Clear cell renal cell carcinoma (ccRCC is the most common and most aggressive form of renal cell cancer (RCC. The incidence of RCC has increased steadily in recent years. The pathogenesis of renal cell cancer remains poorly understood. Many of the tumor suppressor genes, oncogenes, and dysregulated pathways in ccRCC need to be revealed for improvement of the overall clinical outlook of the disease. Here, we developed a systems biology approach to prioritize the somatic mutated genes that lead to dysregulation of pathways in ccRCC. The method integrated multi-layer information to infer causative mutations and disease genes. First, we identified differential gene modules in ccRCC by coupling transcriptome and protein-protein interactions. Each of these modules consisted of interacting genes that were involved in similar biological processes and their combined expression alterations were significantly associated with disease type. Then, subsequent gene module-based eQTL analysis revealed somatic mutated genes that had driven the expression alterations of differential gene modules. Our study yielded a list of candidate disease genes, including several known ccRCC causative genes such as BAP1 and PBRM1, as well as novel genes such as NOD2, RRM1, CSRNP1, SLC4A2, TTLL1 and CNTN1. The differential gene modules and their driver genes revealed by our study provided a new perspective for understanding the molecular mechanisms underlying the disease. Moreover, we validated the results in independent ccRCC patient datasets. Our study provided a new method for prioritizing disease genes and pathways. Keywords: ccRCC, Causative mutation, Pathways, Protein-protein interaction, Gene module, eQTL

  8. Enterasys Networks delivers standards-based 10-Gigabit ethernet modules for its Enterasys X-Pedition Routers and Enterasys Matrix Switches

    CERN Multimedia

    2002-01-01

    Enterasys Networks Inc. has announced new 10-Gigabit Ethernet modules for the Enterasys X-Pedition ER16 routers and Enterasys Matrix E1 OAS (Optical Access Switch). The addition of 10-Gigabit Ethernet technology enables the Enterasys X-Pedition ER16 enables real-time delivery of high-bandwidth, advanced applications across local area network (LAN), wide area network (WAN) and metropolitan area network (MAN) environments (1/2 page).

  9. Ecdysone Receptor-based Singular Gene Switches for Regulated Transgene Expression in Cells and Adult Rodent Tissues

    Directory of Open Access Journals (Sweden)

    Seoghyun Lee

    2016-01-01

    Full Text Available Controlled gene expression is an indispensable technique in biomedical research. Here, we report a convenient, straightforward, and reliable way to induce expression of a gene of interest with negligible background expression compared to the most widely used tetracycline (Tet-regulated system. Exploiting a Drosophila ecdysone receptor (EcR-based gene regulatory system, we generated nonviral and adenoviral singular vectors designated as pEUI(+ and pENTR-EUI, respectively, which contain all the required elements to guarantee regulated transgene expression (GAL4-miniVP16-EcR, termed GvEcR hereafter, and 10 tandem repeats of an upstream activation sequence promoter followed by a multiple cloning site. Through the transient and stable transfection of mammalian cell lines with reporter genes, we validated that tebufenozide, an ecdysone agonist, reversibly induced gene expression, in a dose- and time-dependent manner, with negligible background expression. In addition, we created an adenovirus derived from the pENTR-EUI vector that readily infected not only cultured cells but also rodent tissues and was sensitive to tebufenozide treatment for regulated transgene expression. These results suggest that EcR-based singular gene regulatory switches would be convenient tools for the induction of gene expression in cells and tissues in a tightly controlled fashion.

  10. Ultrafast all-optical switching based on cross modulation utilizing intersubband transitions in InGaAs/AlAs/AlAsSb coupled quantum wells with DFB grating waveguides.

    Science.gov (United States)

    Ma, Ping; Fedoryshyn, Yuriy; Jäckel, Heinz

    2011-05-09

    A distributed feedback Bragg grating waveguide all-optical switch design relying on the ultrafast cross modulation effect of the intersubband transitions in InGaAs/AlAs/AlAsSb coupled double quantum wells is demonstrated. The pump-induced phase modulation to the signal light is converted to intensity modulation efficiently on chip with the help of the grating structures. To our best knowledge, the switching dynamic characteristics of such design are reported for the first time. With a 400 μm long grating waveguide, 3 dB modulation depth with switching energy of 5.5 pJ and recovery time of 4.5 ps is obtained for the switch-off operation. © 2011 Optical Society of America

  11. Global changes in gene expression associated with phenotypic switching of wild yeast

    Czech Academy of Sciences Publication Activity Database

    Šťovíček, V.; Váchová, Libuše; Begany, Markéta; Wilkinson, D.; Palková, Z.

    2014-01-01

    Roč. 15, FEB 2014 (2014) ISSN 1471-2164 R&D Projects: GA ČR GA13-08605S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Biofilm colony * Histone deacetylase * Phenotypic switching Subject RIV: EE - Microbiology, Virology Impact factor: 3.986, year: 2014

  12. big bang gene modulates gut immune tolerance in Drosophila.

    Science.gov (United States)

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.

  13. A fuzzy network module extraction technique for gene expression data

    Indian Academy of Sciences (India)

    2014-05-01

    May 1, 2014 ... organization. 1.25e−9. Regulation of neurological system process. 1.76e−9. Protein tyrosine kinase activity. 8.22e−9. Protein autophosphorylation. 2.78e−8. Table 9. Q-value of one of the network modules of Dataset 1. Module. GO annotation. Q-value. Module 1. Anatomical structure formation involved.

  14. Integrated network analysis identifies fight-club nodes as a class of hubs encompassing key putative switch genes that induce major transcriptome reprogramming during grapevine development.

    Science.gov (United States)

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-12-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named "fight-club hubs" characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named "switch genes" was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. © 2014 American Society of Plant Biologists. All rights reserved.

  15. Network statistics of genetically-driven gene co-expression modules in mouse crosses

    Directory of Open Access Journals (Sweden)

    Marie-Pier eScott-Boyer

    2013-12-01

    Full Text Available In biology, networks are used in different contexts as ways to represent relationships between entities, such as for instance interactions between genes, proteins or metabolites. Despite progress in the analysis of such networks and their potential to better understand the collective impact of genes on complex traits, one remaining challenge is to establish the biologic validity of gene co-expression networks and to determine what governs their organization. We used WGCNA to construct and analyze seven gene expression datasets from several tissues of mouse recombinant inbred strains (RIS. For six out of the 7 networks, we found that linkage to module QTLs (mQTLs could be established for 29.3% of gene co-expression modules detected in the several mouse RIS. For about 74.6% of such genetically-linked modules, the mQTL was on the same chromosome as the one contributing most genes to the module, with genes originating from that chromosome showing higher connectivity than other genes in the modules. Such modules (that we considered as genetically-driven had network statistic properties (density, centralization and heterogeneity that set them apart from other modules in the network. Altogether, a sizeable portion of gene co-expression modules detected in mouse RIS panels had genetic determinants as their main organizing principle. In addition to providing a biologic interpretation validation for these modules, these genetic determinants imparted on them particular properties that set them apart from other modules in the network, to the point that they can be predicted to a large extent on the basis of their network statistics.

  16. Modulation of a Molecular π-Electron System in a Purely Organic Conductor that Shows Hydrogen-Bond-Dynamics-Based Switching of Conductivity and Magnetism.

    Science.gov (United States)

    Ueda, Akira; Hatakeyama, Akari; Enomoto, Masaya; Kumai, Reiji; Murakami, Youichi; Mori, Hatsumi

    2015-10-12

    New important aspects of the hydrogen-bond (H-bond)-dynamics-based switching of electrical conductivity and magnetism in an H-bonded, purely organic conductor crystal have been discovered by modulating its tetrathiafulvalene (TTF)-based molecular π-electron system by means of partial sulfur/selenium substitution. The prepared selenium analogue also showed a similar type of phase transition, induced by H-bonded deuterium transfer followed by electron transfer between the H-bonded TTF skeletons, and the resulting switching of the physical properties; however, subtle but critical differences due to sulfur/selenium substitution were detected in the electronic structure, phase transition nature, and switching function. A molecular-level discussion based on the crystal structures shows that this chemical modification of the TTF skeleton influences not only its own π-electronic structure and π-π interactions within the conducting layer, but also the H-bond dynamics between the TTF π skeletons in the neighboring layers, which enables modulation of the interplay between the H-bond and π electrons to cause such differences. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. LPS-induced modules of co-expressed genes in equine peripheral blood mononuclear cells.

    Science.gov (United States)

    Pacholewska, Alicja; Marti, Eliane; Leeb, Tosso; Jagannathan, Vidhya; Gerber, Vincent

    2017-01-05

    Lipopolysaccharide (endotoxin, LPS) is a strong inducer of the innate immune response. It is widespread in our environment, e.g. in house dust and contributes to asthma. Compared to humans, horses are even more sensitive to LPS. However, data on LPS effects on the equine transcriptome are very limited. Using RNA-seq we analysed LPS-induced differences in the gene expression in equine peripheral blood mononuclear cells at the gene and gene-network level in two half-sib families and one group of unrelated horses. 24 h-LPS challenge of equine immune cells resulted in substantial changes in the transcriptomic profile (1,265 differentially expressed genes) showing partial overlap with human data. One of the half-sib families showed a specific response different from the other two groups of horses. We also identified co-expressed gene modules that clearly differentiated 24 h-LPS- from non-stimulated samples. These modules consisted of 934 highly interconnected genes and included genes involved in the immune response (e.g. IL6, CCL22, CXCL6, CXCL2), however, none of the top ten hub genes of the modules have been annotated as responsive to LPS in gene ontology. Using weighted gene co-expression network analysis we identified ten co-expressed gene modules significantly regulated by in vitro stimulation with LPS. Apart from 47 genes (5%) all other genes highly interconnected within the most up- and down-regulated modules were also significantly differentially expressed (FDR LPS-regulated module hub genes have not yet been described as having a role in the immune response to LPS (e.g. VAT1 and TTC25).

  18. Intracavity KTP-based OPO pumped by a dual-loss modulated, simultaneously Q-switched and mode-locked Nd:GGG laser.

    Science.gov (United States)

    Chu, Hongwei; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Yufei; Li, Dechun; Li, Guiqiu; Li, Tao; Qiao, Wenchao

    2014-11-03

    An intracavity KTiOPO(4) (KTP) optical parametric oscillator (OPO) pumped by a simultaneously Q-switched and mode-locked (QML) Nd:Gd(3)Ga(5)O(12) (Nd:GGG) laser with an acousto-optic modulator (AOM) and a Cr(4+):YAG saturable absorber is presented. A minimum mode-locking pulse duration underneath the Q-switched envelope was evaluated to be about 290 ps. A maximum QML output power of 82 mW at the signal wavelength of 1570 nm was achieved, corresponding to a maximum mode-locked pulse energy of about 5.12 μJ. The M(2) values were measured to be about 1.3 and 1.5 for tangential and sagittal directions using knife-edge technique.

  19. Computational identification of genes modulating stem height-diameter allometry.

    Science.gov (United States)

    Jiang, Libo; Ye, Meixia; Zhu, Sheng; Zhai, Yi; Xu, Meng; Huang, Minren; Wu, Rongling

    2016-12-01

    The developmental variation in stem height with respect to stem diameter is related to a broad range of ecological and evolutionary phenomena in trees, but the underlying genetic basis of this variation remains elusive. We implement a dynamic statistical model, functional mapping, to formulate a general procedure for the computational identification of quantitative trait loci (QTLs) that control stem height-diameter allometry during development. Functional mapping integrates the biological principles underlying trait formation and development into the association analysis of DNA genotype and endpoint phenotype, thus providing an incentive for understanding the mechanistic interplay between genes and development. Built on the basic tenet of functional mapping, we explore two core ecological scenarios of how stem height and stem diameter covary in response to environmental stimuli: (i) trees pioneer sunlit space by allocating more growth to stem height than diameter and (ii) trees maintain their competitive advantage through an inverse pattern. The model is equipped to characterize 'pioneering' QTLs (piQTLs) and 'maintaining' QTLs (miQTLs) which modulate these two ecological scenarios, respectively. In a practical application to a mapping population of full-sib hybrids derived from two Populus species, the model has well proven its versatility by identifying several piQTLs that promote height growth at a cost of diameter growth and several miQTLs that benefit radial growth at a cost of height growth. Judicious application of functional mapping may lead to improved strategies for studying the genetic control of the formation mechanisms underlying trade-offs among quantities of assimilates allocated to different growth parts. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Computational integration of homolog and pathway gene module expression reveals general stemness signatures.

    Directory of Open Access Journals (Sweden)

    Martina Koeva

    Full Text Available The stemness hypothesis states that all stem cells use common mechanisms to regulate self-renewal and multi-lineage potential. However, gene expression meta-analyses at the single gene level have failed to identify a significant number of genes selectively expressed by a broad range of stem cell types. We hypothesized that stemness may be regulated by modules of homologs. While the expression of any single gene within a module may vary from one stem cell type to the next, it is possible that the expression of the module as a whole is required so that the expression of different, yet functionally-synonymous, homologs is needed in different stem cells. Thus, we developed a computational method to test for stem cell-specific gene expression patterns from a comprehensive collection of 49 murine datasets covering 12 different stem cell types. We identified 40 individual genes and 224 stemness modules with reproducible and specific up-regulation across multiple stem cell types. The stemness modules included families regulating chromatin remodeling, DNA repair, and Wnt signaling. Strikingly, the majority of modules represent evolutionarily related homologs. Moreover, a score based on the discovered modules could accurately distinguish stem cell-like populations from other cell types in both normal and cancer tissues. This scoring system revealed that both mouse and human metastatic populations exhibit higher stemness indices than non-metastatic populations, providing further evidence for a stem cell-driven component underlying the transformation to metastatic disease.

  1. Global changes in gene expression associated with phenotypic switching of wild yeast

    DEFF Research Database (Denmark)

    Stovicek, Vratislav; Váchová, Libuše; Begany, Markéta

    2014-01-01

    . The resulting domesticated strains switch off certain protective mechanisms and form smooth colonies that resemble those of common laboratory strains.  Results : Here, we show that domestication can be reversed when a domesticated strain is challenged by various adverse conditions; the resulting feral strain...... restores its ability to form structured biofilm colonies. Phenotypic, microscopic and transcriptomic analyses show that phenotypic transition is a complex process that affects various aspects of feral strain physiology; it leads to a phenotype that resembles the original wild strain in some aspects...

  2. Idler-resonant intracavity KTA-based OPO pumped by a dual-loss modulated-Q-switched-laser with AOM and Cr4+:YAG

    Science.gov (United States)

    Qiao, Junpeng; Zhao, Shengzhi; Yang, Kejian; Zhao, Jia; Li, Guiqiu; Li, Dechun; Li, Tao; Qiao, Wenchao

    2017-06-01

    An idler-resonant KTiOAsO4 (KTA)-based intracavity optical parametric oscillator (IOPO) pumped by a dual-loss-modulated Q-switched laser with an acousto-optic modulator (AOM) and a Cr4+:YAG saturable absorber (Cr4+:YAG-SA) has been presented. By utilizing a type-II non-critically phase-matched KTA crystal, signal wave at 1535 nm and idler wave at 3467 nm have been generated. Under an incident pump power of 18.3 W, maximum output powers of 615 mW for signal wave and 228 mW for idler wave were obtained at an AOM modulation rate of 10 kHz, corresponding to a whole optical-to-optical conversion efficiency of 4.6%. The shortest pulse widths of signal and idler wave were measured to be 898 ps and 2.9 ns, corresponding to the highest peak powers of 68.4 and 7.9 kW, respectively. In comparison with IOPO pumped by a singly Q-switched laser with an AOM, the IOPO pumped by a doubly Q-switched laser (DIOPO) with an AOM and a Cr4+:YAG-SA can generate signal wave and idler wave with shorter pulse width and higher peak power. By considering the spatial Gaussian distribution of intracavity photon density, a set of coupled rate equations for the idler-resonant DIOPO were built for the first time to the best of our knowledge. The simulation results agreed well with the experimental results.

  3. Switching behaviour of modulated ferroelectrics: the kinetics of the field induced lock-in transition in K{sub 2}SeO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Leist, J; Gibhardt, H; Hradil, K; Eckold, G [Institute of Physical Chemistry, Georg-August-University of Goettingen (Germany)

    2011-08-03

    The field induced switching process across the ferroelectric lock-in transition in K{sub 2}SeO{sub 4} has been studied on a millisecond timescale using stroboscopic neutron diffraction. The time evolution of both the first and the third order satellites was examined. The time constants are found to vary with temperature between 0.2 and 1.2 ms. This is an order of magnitude faster than in the isostructural Rb{sub 2}ZnCl{sub 4}. Moreover, the time dependence of the satellite's linewidth provides information about the evolution of the coherence of the modulated structure.

  4. Improving functional modules discovery by enriching interaction networks with gene profiles

    KAUST Repository

    Salem, Saeed

    2013-05-01

    Recent advances in proteomic and transcriptomic technologies resulted in the accumulation of vast amount of high-throughput data that span multiple biological processes and characteristics in different organisms. Much of the data come in the form of interaction networks and mRNA expression arrays. An important task in systems biology is functional modules discovery where the goal is to uncover well-connected sub-networks (modules). These discovered modules help to unravel the underlying mechanisms of the observed biological processes. While most of the existing module discovery methods use only the interaction data, in this work we propose, CLARM, which discovers biological modules by incorporating gene profiles data with protein-protein interaction networks. We demonstrate the effectiveness of CLARM on Yeast and Human interaction datasets, and gene expression and molecular function profiles. Experiments on these real datasets show that the CLARM approach is competitive to well established functional module discovery methods.

  5. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes.

    NARCIS (Netherlands)

    de Groote, M.L.; Verschure, P.J.; Rots, M.G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined

  6. Epigenetic Editing : targeted rewriting of epigenetic marks to modulate expression of selected target genes

    NARCIS (Netherlands)

    de Groote, Marloes L.; Verschure, Pernette J.; Rots, Marianne G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined

  7. Modulation and Expression of Tumor Suppressor Genes by Environmental Agents

    National Research Council Canada - National Science Library

    Ostrander, Gary Kent

    1996-01-01

    ... in the retinoblastoma gene in retinoblastoma and hepatocarcinomas following induction with known environmental carcinogens. Studies to date suggest the retinoblastoma gene/protein may play a role in oncogenesis in the medaka.

  8. Protein modulator of multidrug efflux gene expression in Pseudomonas aeruginosa.

    Science.gov (United States)

    Daigle, Denis M; Cao, Lily; Fraud, Sebastien; Wilke, Mark S; Pacey, Angela; Klinoski, Rachael; Strynadka, Natalie C; Dean, Charles R; Poole, Keith

    2007-08-01

    nalC multidrug-resistant mutants of Pseudomonas aeruginosa show enhanced expression of the mexAB-oprM multidrug efflux system as a direct result of the production of a ca. 6,100-Da protein, PA3719, in these mutants. Using a bacterial two-hybrid system, PA3719 was shown to interact in vivo with MexR, a repressor of mexAB-oprM expression. Isothermal titration calorimetry (ITC) studies confirmed a high-affinity interaction (equilibrium dissociation constant [K(D)], 158.0 +/- 18.1 nM) of PA3719 with MexR in vitro. PA3719 binding to and formation of a complex with MexR obviated repressor binding to its operator, which overlaps the efflux operon promoter, suggesting that mexAB-oprM hyperexpression in nalC mutants results from PA3719 modulation of MexR repressor activity. Consistent with this, MexR repression of mexA transcription in an in vitro transcription assay was alleviated by PA3719. Mutations in MexR compromising its interaction with PA3719 in vivo were isolated and shown to be located internally and distributed throughout the protein, suggesting that they impacted PA3719 binding by altering MexR structure or conformation rather than by having residues interacting specifically with PA3719. Four of six mutant MexR proteins studied retained repressor activity even in a nalC strain producing PA3719. Again, this is consistent with a PA3719 interaction with MexR being necessary to obviate MexR repressor activity. The gene encoding PA3719 has thus been renamed armR (antirepressor for MexR). A representative "noninteracting" mutant MexR protein, MexR(I104F), was purified, and ITC confirmed that it bound PA3719 with reduced affinity (5.4-fold reduced; K(D), 853.2 +/- 151.1 nM). Consistent with this, MexR(I104F) repressor activity, as assessed using the in vitro transcription assay, was only weakly compromised by PA3719. Finally, two mutations (L36P and W45A) in ArmR compromising its interaction with MexR have been isolated and mapped to a putative C-terminal alpha

  9. MAR elements regulate the probability of epigenetic switching between active and inactive gene expression.

    Science.gov (United States)

    Galbete, José Luis; Buceta, Montserrat; Mermod, Nicolas

    2009-02-01

    Gene expression often cycles between active and inactive states in eukaryotes, yielding variable or noisy gene expression in the short-term, while slow epigenetic changes may lead to silencing or variegated expression. Understanding how cells control these effects will be of paramount importance to construct biological systems with predictable behaviours. Here we find that a human matrix attachment region (MAR) genetic element controls the stability and heritability of gene expression in cell populations. Mathematical modeling indicated that the MAR controls the probability of long-term transitions between active and inactive expression, thus reducing silencing effects and increasing the reactivation of silent genes. Single-cell short-terms assays revealed persistent expression and reduced expression noise in MAR-driven genes, while stochastic burst of expression occurred without this genetic element. The MAR thus confers a more deterministic behavior to an otherwise stochastic process, providing a means towards more reliable expression of engineered genetic systems.

  10. uv preilluminated gas switches

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, L.P.; Orham, E.L.; Stowers, I.F.; Braucht, J.R.

    1980-06-03

    We have designed, built, and characterized uv preilluminated gas switches for a trigger circuit and a low inductance discharge circuit. These switches have been incorporated into a 54 x 76 x 150 cm pulser module to produce a 1 Ma output current rising at 5 x 10/sup 12/ amps/sec with 1 ns jitter. Twenty such modules will be used on the Nova Inertial Confinement Fusion Laser System for plasma retropulse shutters.

  11. uv preilluminated gas switches

    International Nuclear Information System (INIS)

    Bradley, L.P.; Orham, E.L.; Stowers, I.F.; Braucht, J.R.

    1980-01-01

    We have designed, built, and characterized uv preilluminated gas switches for a trigger circuit and a low inductance discharge circuit. These switches have been incorporated into a 54 x 76 x 150 cm pulser module to produce a 1 Ma output current rising at 5 x 10 12 amps/sec with 1 ns jitter. Twenty such modules will be used on the Nova Inertial Confinement Fusion Laser System for plasma retropulse shutters

  12. Contribution of Nrf2 to Atherogenic Phenotype Switching of Coronary Arterial Smooth Muscle Cells Lacking CD38 Gene

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2015-08-01

    Full Text Available Background/Aims: Recent studies have indicated that CD38 gene deficiency results in dedifferentiation or transdifferentiation of arterial smooth muscle cells upon atherogenic stimulations. However, the molecular mechanisms mediating this vascular smooth muscle (SMC phenotypic switching remain unknown. Methods & Results: In the present study, we first characterized the phenotypic change in the primary cultures of coronary arterial myocytes (CAMs from CD38-/- mice. It was shown that CD38 deficiency decreased the expression of contractile marker calponin, SM22α and α-SMA but increased the expression of SMC dedifferentiation marker, vimentin, which was accompanied by enhanced cell proliferation. This phenotypic change in CD38-/- CAMs was enhanced by 7-ketocholesterol (7-Ket, an atherogenic stimulus. We further found that the CD38 deficiency decreased the expression and activity of nuclear factor E2-related factor 2 (Nrf2, a basic leucine zipper (bZIP transcription factor sensitive to redox regulation. Similar to CD38 deletion, Nrf2 gene silencing increased CAM dedifferentiation upon 7-Ket stimulation. In contrast, the overexpression of Nrf2 gene abolished 7-Ket-induced dedifferentiation in CD38-/- CAMs. Given the sensitivity of Nrf2 to oxidative stress, we determined the role of redox signaling in the regulation of Nrf2 expression and activity associated with CD38 effect in CAM phenotype changes. It was demonstrated that in CD38-/- CAMs, 7-Ket failed to stimulate the production of O2-., while in CD38+/+ CAMs 7-Ket induced marked O2-. production and enhancement of Nrf2 activity, which was substantially attenuated by NOX4 gene silencing. Finally, we demonstrated that 7-Ket-induced and NOX4-dependent O2-. production was inhibited by 8-Br-cADPR, an antagonist of cADPR or NED-19, an antagonist of NAADP as product of CD38 ADP-ribosylcyclase, which significantly inhibited the level of cytosolic Ca2+ and the activation of Nrf2 under 7-Ket. Conclusion

  13. Gene set-based module discovery in the breast cancer transcriptome

    Directory of Open Access Journals (Sweden)

    Zhang Michael Q

    2009-02-01

    Full Text Available Abstract Background Although microarray-based studies have revealed global view of gene expression in cancer cells, we still have little knowledge about regulatory mechanisms underlying the transcriptome. Several computational methods applied to yeast data have recently succeeded in identifying expression modules, which is defined as co-expressed gene sets under common regulatory mechanisms. However, such module discovery methods are not applied cancer transcriptome data. Results In order to decode oncogenic regulatory programs in cancer cells, we developed a novel module discovery method termed EEM by extending a previously reported module discovery method, and applied it to breast cancer expression data. Starting from seed gene sets prepared based on cis-regulatory elements, ChIP-chip data, and gene locus information, EEM identified 10 principal expression modules in breast cancer based on their expression coherence. Moreover, EEM depicted their activity profiles, which predict regulatory programs in each subtypes of breast tumors. For example, our analysis revealed that the expression module regulated by the Polycomb repressive complex 2 (PRC2 is downregulated in triple negative breast cancers, suggesting similarity of transcriptional programs between stem cells and aggressive breast cancer cells. We also found that the activity of the PRC2 expression module is negatively correlated to the expression of EZH2, a component of PRC2 which belongs to the E2F expression module. E2F-driven EZH2 overexpression may be responsible for the repression of the PRC2 expression modules in triple negative tumors. Furthermore, our network analysis predicts regulatory circuits in breast cancer cells. Conclusion These results demonstrate that the gene set-based module discovery approach is a powerful tool to decode regulatory programs in cancer cells.

  14. A Bistable Switch and Anatomical Site Control Vibrio cholerae Virulence Gene Expression in the Intestine

    DEFF Research Database (Denmark)

    Nielsen, Alex Toftgaard; Dolganov, N. A.; Rasmussen, Thomas

    2010-01-01

    A fundamental, but unanswered question in host-pathogen interactions is the timing, localization and population distribution of virulence gene expression during infection. Here, microarray and in situ single cell expression methods were used to study Vibrio cholerae growth and virulence gene...... expression during infection of the rabbit ligated ileal loop model of cholera. Genes encoding the toxin-coregulated pilus (TCP) and cholera toxin (CT) were powerfully expressed early in the infectious process in bacteria adjacent to epithelial surfaces. Increased growth was found to co......, a chemical inducer of virulence gene expression. Striking bifurcation of the population occurred during entry into stationary phase: one subpopulation continued to express tcpA, whereas the expression declined in the other subpopulation. ctxA, encoding the A subunit of CT, and toxT, encoding the proximal...

  15. A Robust 96.6-dB-SNDR 50-kHz-Bandwidth Switched-Capacitor Delta-Sigma Modulator for IR Imagers in Space Instrumentation †

    Science.gov (United States)

    Dei, Michele; Sutula, Stepan; Cisneros, Jose; Pun, Ernesto; Jansen, Richard Jan Engel; Terés, Lluís; Serra-Graells, Francisco

    2017-01-01

    Infrared imaging technology, used both to study deep-space bodies’ radiation and environmental changes on Earth, experienced constant improvements in the last few years, pushing data converter designers to face new challenges in terms of speed, power consumption and robustness against extremely harsh operating conditions. This paper presents a 96.6-dB-SNDR (Signal-to-Noise-plus-Distortion Ratio) 50-kHz-bandwidth fourth-order single-bit switched-capacitor delta-sigma modulator for ADC operating at 1.8 V and consuming 7.9 mW fit for space instrumentation. The circuit features novel Class-AB single-stage switched variable-mirror amplifiers (SVMAs) enabling low-power operation, as well as low sensitivity to both process and temperature deviations for the whole modulator. The physical implementation resulted in a 1.8-mm2 chip integrated in a standard 0.18-μm 1-poly-6-metal (1P6M) CMOS technology, and it reaches a 164.6-dB Schreier figure of merit from experimental SNDR measurements without making use of any clock bootstrapping, analog calibration, nor digital compensation technique. When coupled to a 2048×2048 IR imager, the current design allows more than 50 frames per minute with a resolution of 16 effective number of bits (ENOB) while consuming less than 300 mW. PMID:28574466

  16. A Robust 96.6-dB-SNDR 50-kHz-Bandwidth Switched-Capacitor Delta-Sigma Modulator for IR Imagers in Space Instrumentation.

    Science.gov (United States)

    Dei, Michele; Sutula, Stepan; Cisneros, Jose; Pun, Ernesto; Jansen, Richard Jan Engel; Terés, Lluís; Serra-Graells, Francisco

    2017-06-02

    Infrared imaging technology, used both to study deep-space bodies' radiation and environmental changes on Earth, experienced constant improvements in the last few years, pushing data converter designers to face new challenges in terms of speed, power consumption and robustness against extremely harsh operating conditions. This paper presents a 96.6-dB-SNDR (Signal-to-Noise-plus-Distortion Ratio) 50-kHz-bandwidth fourth-order single-bit switched-capacitor delta-sigma modulator for ADC operating at 1.8 V and consuming 7.9 mW fit for space instrumentation. The circuit features novel Class-AB single-stage switched variable-mirror amplifiers (SVMAs) enabling low-power operation, as well as low sensitivity to both process and temperature deviations for the whole modulator. The physical implementation resulted in a 1.8-mm 2 chip integrated in a standard 0.18-µm 1-poly-6-metal (1P6M) CMOS technology, and it reaches a 164.6-dB Schreier figure of merit from experimental SNDR measurements without making use of any clock bootstrapping,analogcalibration,nordigitalcompensationtechnique. Whencoupledtoa2048×2048 IR imager, the current design allows more than 50 frames per minute with a resolution of 16 effective number of bits (ENOB) while consuming less than 300 mW.

  17. Radiation-modulated gene expression in C. elegans

    International Nuclear Information System (INIS)

    Nelson, G.A.; Bayeta, E.; Perez, C.; Lloyd, E.; Jones, T.; Smith, A.; Tian, J.

    2003-01-01

    Full text: We use the nematode C. elegans to characterize the genotoxic and cytotoxic effects of ionizing radiation with emphasis effects of charged particle radiation and have described the fluence vs. response relationships for mutation, chromosome aberration and certain developmental errors. These endpoints quantify the biological after repair and compensation pathways have completed their work. In order to address the control of these reactions we have turned to gene expression profiling to identify genes that uniquely respond to high LET species or respond differentially as a function of radiation properties. We have employed whole genome microarray methods to map gene expression following exposure to gamma rays, protons and accelerated iron ions. We found that 599 of 17871 genes analyzed showed differential expression 3 hrs after exposure to 3 Gy of at least one radiation types. 193 were up-regulated, 406 were down-regulated, and 90% were affected by only one species of radiation. Genes whose transcription levels responded significantly mapped to definite statistical clusters that were unique for each radiation type. We are now trying to establish the functional relationships of the genes their relevance to mitigation of radiation-induced damage. Three approaches are being used. First, bioinformatics tools are being used to determine the roles of genes in co-regulated gene sets. Second, we are applying the technique of RNA interference to determine whether our radiation-induced genes affect cell survival (measured in terms of embryo survival) and chromosome aberration (intestinal anaphase bridges). Finally we are focussing on the response of the most strongly-regulated gene in our data set. This is the autosomal gene, F36D3.9, whose predicted structure is that of a cysteine protease resembling cathepsin B. An enzymological approach is being used to characterize this gene at the protein level. This work was supported by NASA Cooperative Agreement NCC9-149

  18. Investigation of the genes involved in antigenic switching at the vlsE locus in Borrelia burgdorferi: an essential role for the RuvAB branch migrase.

    Directory of Open Access Journals (Sweden)

    Ashley R Dresser

    2009-12-01

    Full Text Available Persistent infection by pathogenic organisms requires effective strategies for the defense of these organisms against the host immune response. A common strategy employed by many pathogens to escape immune recognition and clearance is to continually vary surface epitopes through recombinational shuffling of genetic information. Borrelia burgdorferi, a causative agent of Lyme borreliosis, encodes a surface-bound lipoprotein, VlsE. This protein is encoded by the vlsE locus carried at the right end of the linear plasmid lp28-1. Adjacent to the expression locus are 15 silent cassettes carrying information that is moved into the vlsE locus through segmental gene conversion events. The protein players and molecular mechanism of recombinational switching at vlsE have not been characterized. In this study, we analyzed the effect of the independent disruption of 17 genes that encode factors involved in DNA recombination, repair or replication on recombinational switching at the vlsE locus during murine infection. In Neisseria gonorrhoeae, 10 such genes have been implicated in recombinational switching at the pilE locus. Eight of these genes, including recA, are either absent from B. burgdorferi, or do not show an obvious requirement for switching at vlsE. The only genes that are required in both organisms are ruvA and ruvB, which encode subunits of a Holliday junction branch migrase. Disruption of these genes results in a dramatic decrease in vlsE recombination with a phenotype similar to that observed for lp28-1 or vls-minus spirochetes: productive infection at week 1 with clearance by day 21. In SCID mice, the persistence defect observed with ruvA and ruvB mutants was fully rescued as previously observed for vlsE-deficient B. burgdorferi. We report the requirement of the RuvAB branch migrase in recombinational switching at vlsE, the first essential factor to be identified in this process. These findings are supported by the independent work of Lin et

  19. Prioritization of gene regulatory interactions from large-scale modules in yeast

    Directory of Open Access Journals (Sweden)

    Bringas Ricardo

    2008-01-01

    Full Text Available Abstract Background The identification of groups of co-regulated genes and their transcription factors, called transcriptional modules, has been a focus of many studies about biological systems. While methods have been developed to derive numerous modules from genome-wide data, individual links between regulatory proteins and target genes still need experimental verification. In this work, we aim to prioritize regulator-target links within transcriptional modules based on three types of large-scale data sources. Results Starting with putative transcriptional modules from ChIP-chip data, we first derive modules in which target genes show both expression and function coherence. The most reliable regulatory links between transcription factors and target genes are established by identifying intersection of target genes in coherent modules for each enriched functional category. Using a combination of genome-wide yeast data in normal growth conditions and two different reference datasets, we show that our method predicts regulatory interactions with significantly higher predictive power than ChIP-chip binding data alone. A comparison with results from other studies highlights that our approach provides a reliable and complementary set of regulatory interactions. Based on our results, we can also identify functionally interacting target genes, for instance, a group of co-regulated proteins related to cell wall synthesis. Furthermore, we report novel conserved binding sites of a glycoprotein-encoding gene, CIS3, regulated by Swi6-Swi4 and Ndd1-Fkh2-Mcm1 complexes. Conclusion We provide a simple method to prioritize individual TF-gene interactions from large-scale transcriptional modules. In comparison with other published works, we predict a complementary set of regulatory interactions which yields a similar or higher prediction accuracy at the expense of sensitivity. Therefore, our method can serve as an alternative approach to prioritization for

  20. Clock Genes: Critical Modulators of Breast Cancer Risk

    National Research Council Canada - National Science Library

    Kennaway, David J; Butler, Lisa M; Tilley, Wayne D

    2005-01-01

    .... Circadian rhythms are regulated by a panel of specific transcription factors, called clock genes, and our current understanding of endogenous cellular rhythmicity is that both positive and negative...

  1. A gene network switch enhances the oxidative capacity of ovine skeletal muscle during late fetal development

    Directory of Open Access Journals (Sweden)

    Bidwell Christopher A

    2010-06-01

    Full Text Available Abstract Background The developmental transition between the late fetus and a newborn animal is associated with profound changes in skeletal muscle function as it adapts to the new physiological demands of locomotion and postural support against gravity. The mechanisms underpinning this adaption process are unclear but are likely to be initiated by changes in hormone levels. We tested the hypothesis that this developmental transition is associated with large coordinated changes in the transcription of skeletal muscle genes. Results Using an ovine model, transcriptional profiling was performed on Longissimus dorsi skeletal muscle taken at three fetal developmental time points (80, 100 and 120 d of fetal development and two postnatal time points, one approximately 3 days postpartum and a second at 3 months of age. The developmental time course was dominated by large changes in expression of 2,471 genes during the interval between late fetal development (120 d fetal development and 1-3 days postpartum. Analysis of the functions of genes that were uniquely up-regulated in this interval showed strong enrichment for oxidative metabolism and the tricarboxylic acid cycle indicating enhanced mitochondrial activity. Histological examination of tissues from these developmental time points directly confirmed a marked increase in mitochondrial activity between the late fetal and early postnatal samples. The promoters of genes that were up-regulated during this fetal to neonatal transition were enriched for estrogen receptor 1 and estrogen related receptor alpha cis-regulatory motifs. The genes down-regulated during this interval highlighted de-emphasis of an array of functions including Wnt signaling, cell adhesion and differentiation. There were also changes in gene expression prior to this late fetal - postnatal transition and between the two postnatal time points. The former genes were enriched for functions involving the extracellular matrix and immune

  2. Evolution of CONSTANS Regulation and Function after Gene Duplication Produced a Photoperiodic Flowering Switch in the Brassicaceae.

    Science.gov (United States)

    Simon, Samson; Rühl, Mark; de Montaigu, Amaury; Wötzel, Stefan; Coupland, George

    2015-09-01

    Environmental control of flowering allows plant reproduction to occur under optimal conditions and facilitates adaptation to different locations. At high latitude, flowering of many plants is controlled by seasonal changes in day length. The photoperiodic flowering pathway confers this response in the Brassicaceae, which colonized temperate latitudes after divergence from the Cleomaceae, their subtropical sister family. The CONSTANS (CO) transcription factor of Arabidopsis thaliana, a member of the Brassicaceae, is central to the photoperiodic flowering response and shows characteristic patterns of transcription required for day-length sensing. CO is believed to be widely conserved among flowering plants; however, we show that it arose after gene duplication at the root of the Brassicaceae followed by divergence of transcriptional regulation and protein function. CO has two close homologs, CONSTANS-LIKE1 (COL1) and COL2, which are related to CO by tandem duplication and whole-genome duplication, respectively. The single CO homolog present in the Cleomaceae shows transcriptional and functional features similar to those of COL1 and COL2, suggesting that these were ancestral. We detect cis-regulatory and codon changes characteristic of CO and use transgenic assays to demonstrate their significance in the day-length-dependent activation of the CO target gene FLOWERING LOCUS T. Thus, the function of CO as a potent photoperiodic flowering switch evolved in the Brassicaceae after gene duplication. The origin of CO may have contributed to the range expansion of the Brassicaceae and suggests that in other families CO genes involved in photoperiodic flowering arose by convergent evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Evolution of CONSTANS Regulation and Function after Gene Duplication Produced a Photoperiodic Flowering Switch in the Brassicaceae

    Science.gov (United States)

    Simon, Samson; Rühl, Mark; de Montaigu, Amaury; Wötzel, Stefan; Coupland, George

    2015-01-01

    Environmental control of flowering allows plant reproduction to occur under optimal conditions and facilitates adaptation to different locations. At high latitude, flowering of many plants is controlled by seasonal changes in day length. The photoperiodic flowering pathway confers this response in the Brassicaceae, which colonized temperate latitudes after divergence from the Cleomaceae, their subtropical sister family. The CONSTANS (CO) transcription factor of Arabidopsis thaliana, a member of the Brassicaceae, is central to the photoperiodic flowering response and shows characteristic patterns of transcription required for day-length sensing. CO is believed to be widely conserved among flowering plants; however, we show that it arose after gene duplication at the root of the Brassicaceae followed by divergence of transcriptional regulation and protein function. CO has two close homologs, CONSTANS-LIKE1 (COL1) and COL2, which are related to CO by tandem duplication and whole-genome duplication, respectively. The single CO homolog present in the Cleomaceae shows transcriptional and functional features similar to those of COL1 and COL2, suggesting that these were ancestral. We detect cis-regulatory and codon changes characteristic of CO and use transgenic assays to demonstrate their significance in the day-length-dependent activation of the CO target gene FLOWERING LOCUS T. Thus, the function of CO as a potent photoperiodic flowering switch evolved in the Brassicaceae after gene duplication. The origin of CO may have contributed to the range expansion of the Brassicaceae and suggests that in other families CO genes involved in photoperiodic flowering arose by convergent evolution. PMID:25972346

  4. Internal filament modulation in low-dielectric gap design for built-in selector-less resistive switching memory application

    Science.gov (United States)

    Chen, Ying-Chen; Lin, Chih-Yang; Huang, Hui-Chun; Kim, Sungjun; Fowler, Burt; Chang, Yao-Feng; Wu, Xiaohan; Xu, Gaobo; Chang, Ting-Chang; Lee, Jack C.

    2018-02-01

    Sneak path current is a severe hindrance for the application of high-density resistive random-access memory (RRAM) array designs. In this work, we demonstrate nonlinear (NL) resistive switching characteristics of a HfO x /SiO x -based stacking structure as a realization for selector-less RRAM devices. The NL characteristic was obtained and designed by optimizing the internal filament location with a low effective dielectric constant in the HfO x /SiO x structure. The stacking HfO x /SiO x -based RRAM device as the one-resistor-only memory cell is applicable without needing an additional selector device to solve the sneak path issue with a switching voltage of ~1 V, which is desirable for low-power operating in built-in nonlinearity crossbar array configurations.

  5. Does the Novel KLF1 Gene Mutation Lead to a Delay in Fetal Hemoglobin Switch?

    Science.gov (United States)

    Hariharan, Priya; Gorivale, Manju; Colah, Roshan; Ghosh, Kanjaksha; Nadkarni, Anita

    2017-05-01

    The Kruppel-like factor 1 (KLF1) gene is an essential transcription factor that is required for the proper maturation of the erythroid cells. Recent studies have reported that KLF1 variations are associated with increased fetal hemoglobin (HbF) levels. Here we report a novel KLF1 gene variation codon 211 A→G (c.632 A>G) in a family who was referred for hemoglobinopathy screening. Both parents were classical β-thalassemia trait (mother: HbA 2 4.1%, HbF 8.6%; father: HbA 2 5.5%, HbF 0.6%) codon 15 G→A heterozygous, and the child was β-thalassemia homozygous. Because the mother showed a high HbF level, the genetic determinants for raised HbF were screened. We detected a novel KLF1 gene variant in the mother and the child in the heterozygous state. The co-inheritance of this novel KLF1 variant might have increased the HbF levels in the mother and may have ameliorated the clinical manifestations of the 6-year-old untransfused β-thalassemia homozygous child. Identification of KLF1 gene variants may act as a novel target for increasing HbF levels in patients with β-hemoglobinopathies. © 2017 John Wiley & Sons Ltd/University College London.

  6. Effective Nanoparticle-based Gene Delivery by a Protease Triggered Charge Switch

    DEFF Research Database (Denmark)

    Gjetting, Torben; Jølck, Rasmus Irming; Andresen, Thomas Lars

    2014-01-01

    (ethylene glycol) (PEG) chain is investigated. Utilizing ethanol-mediated nucleic acid encapsulation to prepare lipo-nanoparticles (LNPs), LNPs that are stable in serum are obtained. The LNPs constitute a highly effective gene delivery systems in vitro and possess the right features for further...

  7. Highly preserved consensus gene modules in human papilloma virus 16 positive cervical cancer and head and neck cancers.

    Science.gov (United States)

    Zhang, Xianglan; Cha, In-Ho; Kim, Ki-Yeol

    2017-12-26

    In this study, we investigated the consensus gene modules in head and neck cancer (HNC) and cervical cancer (CC). We used a publicly available gene expression dataset, GSE6791, which included 42 HNC, 14 normal head and neck, 20 CC and 8 normal cervical tissue samples. To exclude bias because of different human papilloma virus (HPV) types, we analyzed HPV16-positive samples only. We identified 3824 genes common to HNC and CC samples. Among these, 977 genes showed high connectivity and were used to construct consensus modules. We demonstrated eight consensus gene modules for HNC and CC using the dissimilarity measure and average linkage hierarchical clustering methods. These consensus modules included genes with significant biological functions, including ATP binding and extracellular exosome. Eigengen network analysis revealed the consensus modules were highly preserved with high connectivity. These findings demonstrate that HPV16-positive head and neck and cervical cancers share highly preserved consensus gene modules with common potentially therapeutic targets.

  8. A NUP98-HOXD13 leukemic fusion gene leads to impaired class switch recombination and antibody production.

    Science.gov (United States)

    Puthiyaveetil, Abdul Gafoor; Heid, Bettina; Reilly, Christopher M; HogenEsch, Harm; Caudell, David L

    2012-08-01

    Myelodysplastic syndrome is a clonal process characterized by ineffective hematopoiesis and progression to acute leukemia. Although many myelodysplastic syndrome and leukemic patients have compromised immunity, the role of underlying mutations in regulating immune function is poorly understood. Recent studies show that NUP98-HOXD13 (NHD13) fusion gene results in myelodysplastic syndrome and impairs lymphocyte differentiation in transgenic mice. In our studies, we sought to elucidate the mechanism by which NHD13 affects B-lymphocyte development and function. Based on our preliminary findings that transgenic mice had increased levels of IgM and reduced IgG1 and IgE, we hypothesized that the fusion gene might impair class switch recombination (CSR). Mice were immunologically challenged with dinitrophenol. NHD13 mice showed a marked reduction in B-lymphocyte differentiation in their bone marrow and spleen following dinitrophenol stimulation and had reduced production of dinitrophenol-specific antibodies. Spleen follicles from these mice were small and hypocellular, indicating failure of clonal expansion. When isolated NHD13 B lymphocytes were stimulated in vitro using Escherichia coli lipopolysaccharide or lipopolysaccharide + interleukin-4, they failed to undergo sufficient CSR and proliferation. Taken together, our findings show that expression of NUP98-HOXD13 impairs CSR and reduces the antibody-mediated immune response, in addition to its role in leukemia. Further delineation of the NUP98-HOXD13 transgene may reveal novel pathways involved in CSR. Copyright © 2012 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  9. An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster.

    Directory of Open Access Journals (Sweden)

    Yannick R Brunet

    2011-07-01

    Full Text Available Type VI secretion systems (T6SS are macromolecular machines of the cell envelope of Gram-negative bacteria responsible for bacterial killing and/or virulence towards different host cells. Here, we characterized the regulatory mechanism underlying expression of the enteroagregative Escherichia coli sci1 T6SS gene cluster. We identified Fur as the main regulator of the sci1 cluster. A detailed analysis of the promoter region showed the presence of three GATC motifs, which are target of the DNA adenine methylase Dam. Using a combination of reporter fusion, gel shift, and in vivo and in vitro Dam methylation assays, we dissected the regulatory role of Fur and Dam-dependent methylation. We showed that the sci1 gene cluster expression is under the control of an epigenetic switch depending on methylation: fur binding prevents methylation of a GATC motif, whereas methylation at this specific site decreases the affinity of Fur for its binding box. A model is proposed in which the sci1 promoter is regulated by iron availability, adenine methylation, and DNA replication.

  10. The pharmacodynamics of the p53-Mdm2 targeting drug Nutlin: the role of gene-switching noise.

    Directory of Open Access Journals (Sweden)

    Krzysztof Puszynski

    2014-12-01

    Full Text Available In this work we investigate, by means of a computational stochastic model, how tumor cells with wild-type p53 gene respond to the drug Nutlin, an agent that interferes with the Mdm2-mediated p53 regulation. In particular, we show how the stochastic gene-switching controlled by p53 can explain experimental dose-response curves, i.e., the observed inter-cell variability of the cell viability under Nutlin action. The proposed model describes in some detail the regulation network of p53, including the negative feedback loop mediated by Mdm2 and the positive loop mediated by PTEN, as well as the reversible inhibition of Mdm2 caused by Nutlin binding. The fate of the individual cell is assumed to be decided by the rising of nuclear-phosphorylated p53 over a certain threshold. We also performed in silico experiments to evaluate the dose-response curve after a single drug dose delivered in mice, or after its fractionated administration. Our results suggest that dose-splitting may be ineffective at low doses and effective at high doses. This complex behavior can be due to the interplay among the existence of a threshold on the p53 level for its cell activity, the nonlinearity of the relationship between the bolus dose and the peak of active p53, and the relatively fast elimination of the drug.

  11. A role for MeCP2 in switching gene activity via chromatin unfolding and HP1γ displacement.

    Directory of Open Access Journals (Sweden)

    Maartje C Brink

    Full Text Available Methyl-CpG-binding protein 2 (MeCP2 is generally considered to act as a transcriptional repressor, whereas recent studies suggest that MeCP2 is also involved in transcription activation. To gain insight into this dual function of MeCP2, we assessed the impact of MeCP2 on higher-order chromatin structure in living cells using mammalian cell systems harbouring a lactose operator and reporter gene-containing chromosomal domain to assess the effect of lactose repressor-tagged MeCP2 (and separate MeCP2 domains binding in living cells. Our data reveal that targeted binding of MeCP2 elicits extensive chromatin unfolding. MeCP2-induced chromatin unfolding is triggered independently of the methyl-cytosine-binding domain. Interestingly, MeCP2 binding triggers the loss of HP1γ at the chromosomal domain and an increased HP1γ mobility, which is not observed for HP1α and HP1β. Surprisingly, MeCP2-induced chromatin unfolding is not associated with transcriptional activation. Our study suggests a novel role for MeCP2 in reorganizing chromatin to facilitate a switch in gene activity.

  12. Development of a chromosomally integrated metabolite-inducible Leu3p-alpha-IPM "off-on" gene switch.

    Directory of Open Access Journals (Sweden)

    Maria Poulou

    2010-08-01

    Full Text Available Present technology uses mostly chimeric proteins as regulators and hormones or antibiotics as signals to induce spatial and temporal gene expression.Here, we show that a chromosomally integrated yeast 'Leu3p-alpha-IotaRhoMu' system constitutes a ligand-inducible regulatory "off-on" genetic switch with an extensively dynamic action area. We find that Leu3p acts as an active transcriptional repressor in the absence and as an activator in the presence of alpha-isopropylmalate (alpha-IotaRhoMu in primary fibroblasts isolated from double transgenic mouse embryos bearing ubiquitously expressing Leu3p and a Leu3p regulated GFP reporter. In the absence of the branched amino acid biosynthetic pathway in animals, metabolically stable alpha-IPM presents an EC(50 equal to 0.8837 mM and fast "OFF-ON" kinetics (t(50ON = 43 min, t(50OFF = 2.18 h, it enters the cells via passive diffusion, while it is non-toxic to mammalian cells and to fertilized mouse eggs cultured ex vivo.Our results demonstrate that the 'Leu3p-alpha-IotaRhoMu' constitutes a simpler and safer system for inducible gene expression in biomedical applications.

  13. Gene Networks in the Wild: Identifying Transcriptional Modules that Mediate Coral Resistance to Experimental Heat Stress.

    Science.gov (United States)

    Rose, Noah H; Seneca, Francois O; Palumbi, Stephen R

    2015-12-28

    Organisms respond to environmental variation partly through changes in gene expression, which underlie both homeostatic and acclimatory responses to environmental stress. In some cases, so many genes change in expression in response to different influences that understanding expression patterns for all these individual genes becomes difficult. To reduce this problem, we use a systems genetics approach to show that variation in the expression of thousands of genes of reef-building corals can be explained as variation in the expression of a small number of coexpressed "modules." Modules were often enriched for specific cellular functions and varied predictably among individuals, experimental treatments, and physiological state. We describe two transcriptional modules for which expression levels immediately after heat stress predict bleaching a day later. One of these early "bleaching modules" is enriched for sequence-specific DNA-binding proteins, particularly E26 transformation-specific (ETS)-family transcription factors. The other module is enriched for extracellular matrix proteins. These classes of bleaching response genes are clear in the modular gene expression analysis we conduct but are much more difficult to discern in single gene analyses. Furthermore, the ETS-family module shows repeated differences in expression among coral colonies grown in the same common garden environment, suggesting a heritable genetic or epigenetic basis for these expression polymorphisms. This finding suggests that these corals harbor high levels of gene-network variation, which could facilitate rapid evolution in the face of environmental change. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Individual differences in aging and cognitive control modulate the neural indexes of context updating and maintenance during task switching.

    Science.gov (United States)

    Adrover-Roig, Daniel; Barceló, Francisco

    2010-04-01

    This study aimed to explore the combined influence of age and cognitive control on the behavioural and electrophysiological indicators of local, restart and mixing costs. Two groups of middle-aged (49-60 y.o., N=40) and older (61-80 y.o., N=40) adults were split according to their overall z-score in a composite of six neuropsychological measures of executive function. All participants performed a task-cueing version of the Wisconsin Card Sorting Test (WCST) adapted for measuring event-related potentials, whereby tonal cues instructed to switch or repeat the task rule. A single-task condition with identical sensory and motor response demands was used to aid interpretation of behavioural and brain responses to cues and target events. Working memory updating of stimulus-response mappings, as putatively indexed by local switch costs and cue-locked P3 activity (350-460 msec post-cue onset), was preserved in both older and low control adults. In turn, low control adults showed larger restart costs and enhanced cue-locked P2 amplitudes (190-250 msec) in the task-switching condition only, suggesting lesser preparatory control in the presence of interference. Low control adults showed comparatively larger mixing costs and smaller cue-locked fronto-central slow negativities (500-700 msec), suggesting an inefficient online maintenance of task-set information over time. In contrast, target-locked brain responses were mostly sensitive to age-related effects, with older adults showing two well-known effects: (1) an "anterior shift" in target P3 activity (350-460 msec), and (2) an attenuation of fronto-central slow negativities in single-task and task-switching conditions, respectively. The additive association found between age and cognitive control for different behavioural indexes of task-switch costs suggests a differential influence of these factors upon two successive information processing stages: individual differences in cognitive control mainly influenced the neural

  15. White-opaque Switching in Different Mating Type-like Locus Gene Types of Clinical Candida albicans Isolates

    Science.gov (United States)

    Li, Hou-Min; Shimizu-Imanishi, Yumi; Tanaka, Reiko; Li, Ruo-Yu; Yaguchi, Takashi

    2016-01-01

    Background: Candida albicans (C. albicans) can become a pathogen causing superficial as well as life-threatening systemic infections, especially in immunocompromised patients. Many phenotypic attributes contribute to its capacity to colonize human organs. In our study, 93 C. albicans isolates from patients of various candidiasis in a hospital of China were surveyed. We aimed to investigate the white-opaque (WO) switching competence, drug sensitivity, and virulence of mating type-like (MTL) a/α isolates. Methods: Internal transcribed spacer (ITS) gene and the MTL configuration were detected in all the isolates by reverse transcription-polymerase chain reaction. White/opaque phenotype and doubling time of cell growth were determined. The minimum inhibitory concentrations of antifungal agent were measured using broth microdilution method. Results: Sixty-four isolates (69.6%) were classified to serotype A, 19 (20.6%) to serotype B, and 9 (9.8%) to serotype C. Moreover, phylogenetic analysis showed that these isolates were divided into four different subgroups of ITS genotypes. Most of our clinical isolates were MTLa/α type, while 6.8% remained MTLa or MTLα type. The frequency of opaque phenotype was 71.0% (66 isolates). Following the guidelines of Clinical and Laboratory Standards Institute M27-A3, all isolates were susceptible to caspofungin and a few (0.6–3.2%) of them showed resistance against amphotericin B, flucytosine, fluconazole, itraconazole, and voriconazole. Conclusions: From these analyses, there were comparatively more C. albicans strains classified into serotype B, and the frequency of opaque phase strains was significant in the clinical isolates from China. Genetic, phenotypic, or drug susceptibility patterns were not significantly different from previous studies. MTLa/α isolates could also undergo WO switching which facilitates their survival. PMID:27824006

  16. Differentially expressed genes during spontaneous lytic switch of Marek's disease virus in lymphoblastoid cell lines determined by global gene expression profiling.

    Science.gov (United States)

    Mwangi, William N; Vasoya, Deepali; Kgosana, Lydia B; Watson, Mick; Nair, Venugopal

    2017-04-01

    Marek's disease virus (MDV), an alphaherpesvirus of poultry, causes Marek's disease and is characterized by visceral CD4+TCRαβ+ T-cell lymphomas in susceptible hosts. Immortal cell lines harbouring the viral genome have been generated from ex vivo cultures of MD tumours. As readily available sources of large numbers of cells, MDV-transformed lymphoblastoid cell lines (LCLs) are extremely valuable for studies of virus-host interaction. While the viral genome in most cells is held in a latent state, minor populations of cells display spontaneous reactivation identifiable by the expression of lytic viral genes. Spontaneous reactivation in these cells presents an opportunity to investigate the biological processes involved in the virus reactivation. For detailed characterization of the molecular events associated with reactivation, we used two lymphoblastoid cell lines derived from lymphomas induced by pRB1B-UL47eGFP, a recombinant MDV engineered to express enhanced green fluorescent protein (EGFP) fused with the UL47. We used fluorescence-activated cell sorting to purify the low-frequency EGFP-positive cells with a spontaneously activating viral genome from the majority EGFP-negative cells and analysed their gene expression profiles by RNA-seq using Illumina HiSeq2500. Ingenuity pathway analysis on more than 2000 differentially expressed genes between the lytically infected (EGFP-positive) and latently infected (EGFP-negative) cell populations identified the biological pathways involved in the reactivation. Virus-reactivating cells exhibited differential expression of a significant number of viral genes, with hierarchical differences in expression levels. Downregulation of a number of host genes including those directly involved in T-cell activation, such as CD3, CD28, ICOS and phospholipase C, was also noticed in the LCL undergoing lytic switch.

  17. Mutational Pleiotropy and the Strength of Stabilizing Selection Within and Between Functional Modules of Gene Expression.

    Science.gov (United States)

    Collet, Julie M; McGuigan, Katrina; Allen, Scott L; Chenoweth, Stephen F; Blows, Mark W

    2018-02-01

    Variational modules, sets of pleiotropically covarying traits, affect phenotypic evolution, and therefore are predicted to reflect functional modules, such that traits within a variational module also share a common function. Such an alignment of function and pleiotropy is expected to facilitate adaptation by reducing the deleterious effects of mutations, and allowing coordinated evolution of functionally related sets of traits. Here, we adopt a high-dimensional quantitative genetic approach using a large number of gene expression traits in Drosophila serrata to test whether functional grouping, defined by GO terms, predicts variational modules. Mutational or standing genetic covariance was significantly greater than among randomly grouped sets of genes for 38% of our functional groups, indicating that GO terms can predict variational modularity to some extent. We estimated stabilizing selection acting on mutational covariance to test the prediction that functional pleiotropy would result in reduced deleterious effects of mutations within functional modules. Stabilizing selection within functional modules was weaker than that acting on randomly grouped sets of genes in only 23% of functional groups indicating that functional alignment can reduce deleterious effects of pleiotropic mutation, but typically does not. Our analyses also revealed the presence of variational modules that spanned multiple functions. Copyright © 2018, Genetics.

  18. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes

    Directory of Open Access Journals (Sweden)

    Xinguo Lu

    2018-01-01

    Full Text Available With advances in next-generation sequencing(NGS technologies, a large number of multiple types of high-throughput genomics data are available. A great challenge in exploring cancer progression is to identify the driver genes from the variant genes by analyzing and integrating multi-types genomics data. Breast cancer is known as a heterogeneous disease. The identification of subtype-specific driver genes is critical to guide the diagnosis, assessment of prognosis and treatment of breast cancer. We developed an integrated frame based on gene expression profiles and copy number variation (CNV data to identify breast cancer subtype-specific driver genes. In this frame, we employed statistical machine-learning method to select gene subsets and utilized an module-network analysis method to identify potential candidate driver genes. The final subtype-specific driver genes were acquired by paired-wise comparison in subtypes. To validate specificity of the driver genes, the gene expression data of these genes were applied to classify the patient samples with 10-fold cross validation and the enrichment analysis were also conducted on the identified driver genes. The experimental results show that the proposed integrative method can identify the potential driver genes and the classifier with these genes acquired better performance than with genes identified by other methods.

  19. A High Resolution Switched Capacitor 1bit Sigma-Delta Modulator for Low-Voltage/Low-Power Applications

    DEFF Research Database (Denmark)

    Furst, Claus Efdmann

    1996-01-01

    A high resolution 1bit Sigma-Delta modulator for low power/low voltage applications is presented. The modulator operates at a supply of 1-1.5V, the current drain is 0.1mA. The maximum resolution is 87dB equivalent to 14 bits of resolution. This is achieved with a signal-band of 5kHz, over......-sampling ratio (OSR) of 128 and a sampling frequency of 1.28MHz. The very low power consumption is achieved by using a new type of efficient class AB amplifiers in a fully differential configuration. The modulator is implemented in a 0.7 micron n-well CMOS technology. Optimisation details concerning modulator...

  20. Predictability of Genetic Interactions from Functional Gene Modules

    Directory of Open Access Journals (Sweden)

    Jonathan H. Young

    2017-02-01

    Full Text Available Characterizing genetic interactions is crucial to understanding cellular and organismal response to gene-level perturbations. Such knowledge can inform the selection of candidate disease therapy targets, yet experimentally determining whether genes interact is technically nontrivial and time-consuming. High-fidelity prediction of different classes of genetic interactions in multiple organisms would substantially alleviate this experimental burden. Under the hypothesis that functionally related genes tend to share common genetic interaction partners, we evaluate a computational approach to predict genetic interactions in Homo sapiens, Drosophila melanogaster, and Saccharomyces cerevisiae. By leveraging knowledge of functional relationships between genes, we cross-validate predictions on known genetic interactions and observe high predictive power of multiple classes of genetic interactions in all three organisms. Additionally, our method suggests high-confidence candidate interaction pairs that can be directly experimentally tested. A web application is provided for users to query genes for predicted novel genetic interaction partners. Finally, by subsampling the known yeast genetic interaction network, we found that novel genetic interactions are predictable even when knowledge of currently known interactions is minimal.

  1. Gamma-Tocotrienol Modulated Gene Expression in Senescent Human Diploid Fibroblasts as Revealed by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Suzana Makpol

    2013-01-01

    Full Text Available The effect of γ-tocotrienol, a vitamin E isomer, in modulating gene expression in cellular aging of human diploid fibroblasts was studied. Senescent cells at passage 30 were incubated with 70 μM of γ-tocotrienol for 24 h. Gene expression patterns were evaluated using Sentrix HumanRef-8 Expression BeadChip from Illumina, analysed using GeneSpring GX10 software, and validated using quantitative RT-PCR. A total of 100 genes were differentially expressed (P<0.001 by at least 1.5 fold in response to γ-tocotrienol treatment. Amongst the genes were IRAK3, SelS, HSPA5, HERPUD1, DNAJB9, SEPR1, C18orf55, ARF4, RINT1, NXT1, CADPS2, COG6, and GLRX5. Significant gene list was further analysed by Gene Set Enrichment Analysis (GSEA, and the Normalized Enrichment Score (NES showed that biological processes such as inflammation, protein transport, apoptosis, and cell redox homeostasis were modulated in senescent fibroblasts treated with γ-tocotrienol. These findings revealed that γ-tocotrienol may prevent cellular aging of human diploid fibroblasts by modulating gene expression.

  2. Modulation of microfilament protein composition by transfected cytoskeletal actin genes

    Energy Technology Data Exchange (ETDEWEB)

    Ng, S.Y.; Erba, H.; Latter, G.; Kedes, L.; Leavitt, J.

    1988-04-01

    HuT-14T is a highly tumorigenic fibroblast cell line which exhibits a reduced steady-state level of ..beta..-actin due to coding mutations in one of two ..beta..-actin alleles. The normal rate of total actin synthesis could be restored in some clones of cells following transfection of the functional ..beta..-actin gene but not following transfection of the functional ..gamma..-actin gene. In ..gamma..-actin gene-transfected substrains that have increased rates of ..gamma..-actin synthesis, ..beta..-actin synthesis is further reduced in a manner consistent with an autoregulatory mechanism, resulting in abnormal ratios of actin isoforms. Thus, both ..beta..- and ..gamma..-actin proteins can apparently regulate the synthesis of their coexpressed isoforms. In addition, decreased synthesis of normal ..beta..-actin seems to correlate with a concomitant down-regulation of tropomyosin isoforms.

  3. A Low-Noise CMOS THz Imager Based on Source Modulation and an In-Pixel High-Q Passive Switched-Capacitor N-Path Filter.

    Science.gov (United States)

    Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian

    2016-03-03

    This paper presents the first low noise complementary metal oxide semiconductor (CMOS) deletedCMOS terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31 × 31 focal plane array has been fully integrated in a 0 . 13 μ m standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0 . 2 μ V RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0 . 6 nW at 270 GHz and 0 . 8 nW at 600 GHz.

  4. Improvement of out-of-band Behaviour in Switch-Mode Amplifiers and Power Supplies by their Modulation Topology

    DEFF Research Database (Denmark)

    Knott, Arnold

    2010-01-01

    will be put into perspective and self-oscillating amplifiers will be compared with external synchronized topologies. After that, solutions to the problem, which are widespread in industry will be given and explained (chapter 3). The challenges and advantages will be described. The improvement of the described...... the interference of power electronics circuits and telecommunication circuits is to stay away from the frequencies used for information transmission. Even though the electromagnetic spectrum is used without any exceptions, the situation can be optimized for audio applications. This is done by using switching...

  5. Assessment of citalopram and escitalopram on neuroblastoma cell lines: Cell toxicity and gene modulation

    Science.gov (United States)

    Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume

    2017-01-01

    Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (pescitalopram. PMID:28467792

  6. Assessment of citalopram and escitalopram on neuroblastoma cell lines. Cell toxicity and gene modulation.

    Science.gov (United States)

    Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume

    2017-06-27

    Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (pescitalopram.

  7. Meta-analysis of peripheral blood gene expression modules for COPD phenotypes.

    Directory of Open Access Journals (Sweden)

    Dominik Reinhold

    Full Text Available Chronic obstructive pulmonary disease (COPD occurs typically in current or former smokers, but only a minority of people with smoking history develops the disease. Besides environmental factors, genetics is an important risk factor for COPD. However, the relationship between genetics, environment and phenotypes is not well understood. Sample sizes for genome-wide expression studies based on lung tissue have been small due to the invasive nature of sample collection. Increasing evidence for the systemic nature of the disease makes blood a good alternative source to study the disease, but there have also been few large-scale blood genomic studies in COPD. Due to the complexity and heterogeneity of COPD, examining groups of interacting genes may have more relevance than identifying individual genes. Therefore, we used Weighted Gene Co-expression Network Analysis to find groups of genes (modules that are highly connected. However, module definitions may vary between individual data sets. To alleviate this problem, we used a consensus module definition based on two cohorts, COPDGene and ECLIPSE. We studied the relationship between the consensus modules and COPD phenotypes airflow obstruction and emphysema. We also used these consensus module definitions on an independent cohort (TESRA and performed a meta analysis involving all data sets. We found several modules that are associated with COPD phenotypes, are enriched in functional categories and are overrepresented for cell-type specific genes. Of the 14 consensus modules, three were strongly associated with airflow obstruction (meta p ≤ 0.0002, and two had some association with emphysema (meta p ≤ 0.06; some associations were stronger in the case-control cohorts, and others in the cases-only subcohorts. Gene Ontology terms that were overrepresented included "immune response" and "defense response." The cell types whose type-specific genes were overrepresented in modules (p < 0.05 included

  8. Revealing targeted therapy for human cancer by gene module maps

    NARCIS (Netherlands)

    Wong, David J.; Nuyten, Dimitry S. A.; Regev, Aviv; Lin, Meihong; Adler, Adam S.; Segal, Eran; van de Vijver, Marc J.; Chang, Howard Y.

    2008-01-01

    A major goal of cancer research is to match specific therapies to molecular targets in cancer. Genome-scale expression profiling has identified new subtypes of cancer based on consistent patterns of variation in gene expression, leading to improved prognostic predictions. However, how these new

  9. A fuzzy network module extraction technique for gene expression data

    Indian Academy of Sciences (India)

    2014-05-01

    May 1, 2014 ... tion. Therefore, in this study, the structural properties of the co-expression network inferred from gene expression microarray data were compared with the topological prop- erties of the known, well-established network data of the same organism. We use a Web application called. topoGSA (Glaab et al.

  10. Coronavirus gene 7 counteracts host defenses and modulates virus virulence.

    Science.gov (United States)

    Cruz, Jazmina L G; Sola, Isabel; Becares, Martina; Alberca, Berta; Plana, Joan; Enjuanes, Luis; Zuñiga, Sonia

    2011-06-01

    Transmissible gastroenteritis virus (TGEV) genome contains three accessory genes: 3a, 3b and 7. Gene 7 is only present in members of coronavirus genus a1, and encodes a hydrophobic protein of 78 aa. To study gene 7 function, a recombinant TGEV virus lacking gene 7 was engineered (rTGEV-Δ7). Both the mutant and the parental (rTGEV-wt) viruses showed the same growth and viral RNA accumulation kinetics in tissue cultures. Nevertheless, cells infected with rTGEV-Δ7 virus showed an increased cytopathic effect caused by an enhanced apoptosis mediated by caspase activation. Macromolecular synthesis analysis showed that rTGEV-Δ7 virus infection led to host translational shut-off and increased cellular RNA degradation compared with rTGEV-wt infection. An increase of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation and an enhanced nuclease, most likely RNase L, activity were observed in rTGEV-Δ7 virus infected cells. These results suggested that the removal of gene 7 promoted an intensified dsRNA-activated host antiviral response. In protein 7 a conserved sequence motif that potentially mediates binding to protein phosphatase 1 catalytic subunit (PP1c), a key regulator of the cell antiviral defenses, was identified. We postulated that TGEV protein 7 may counteract host antiviral response by its association with PP1c. In fact, pull-down assays demonstrated the interaction between TGEV protein 7, but not a protein 7 mutant lacking PP1c binding motif, with PP1. Moreover, the interaction between protein 7 and PP1 was required, during the infection, for eIF2α dephosphorylation and inhibition of cell RNA degradation. Inoculation of newborn piglets with rTGEV-Δ7 and rTGEV-wt viruses showed that rTGEV-Δ7 virus presented accelerated growth kinetics and pathology compared with the parental virus. Overall, the results indicated that gene 7 counteracted host cell defenses, and modified TGEV persistence increasing TGEV survival. Therefore, the acquisition of

  11. Coronavirus gene 7 counteracts host defenses and modulates virus virulence.

    Directory of Open Access Journals (Sweden)

    Jazmina L G Cruz

    2011-06-01

    Full Text Available Transmissible gastroenteritis virus (TGEV genome contains three accessory genes: 3a, 3b and 7. Gene 7 is only present in members of coronavirus genus a1, and encodes a hydrophobic protein of 78 aa. To study gene 7 function, a recombinant TGEV virus lacking gene 7 was engineered (rTGEV-Δ7. Both the mutant and the parental (rTGEV-wt viruses showed the same growth and viral RNA accumulation kinetics in tissue cultures. Nevertheless, cells infected with rTGEV-Δ7 virus showed an increased cytopathic effect caused by an enhanced apoptosis mediated by caspase activation. Macromolecular synthesis analysis showed that rTGEV-Δ7 virus infection led to host translational shut-off and increased cellular RNA degradation compared with rTGEV-wt infection. An increase of eukaryotic translation initiation factor 2 (eIF2α phosphorylation and an enhanced nuclease, most likely RNase L, activity were observed in rTGEV-Δ7 virus infected cells. These results suggested that the removal of gene 7 promoted an intensified dsRNA-activated host antiviral response. In protein 7 a conserved sequence motif that potentially mediates binding to protein phosphatase 1 catalytic subunit (PP1c, a key regulator of the cell antiviral defenses, was identified. We postulated that TGEV protein 7 may counteract host antiviral response by its association with PP1c. In fact, pull-down assays demonstrated the interaction between TGEV protein 7, but not a protein 7 mutant lacking PP1c binding motif, with PP1. Moreover, the interaction between protein 7 and PP1 was required, during the infection, for eIF2α dephosphorylation and inhibition of cell RNA degradation. Inoculation of newborn piglets with rTGEV-Δ7 and rTGEV-wt viruses showed that rTGEV-Δ7 virus presented accelerated growth kinetics and pathology compared with the parental virus. Overall, the results indicated that gene 7 counteracted host cell defenses, and modified TGEV persistence increasing TGEV survival. Therefore, the

  12. Investigation of epigenetic gene regulation in Arabidopsis modulated by gamma radiation

    International Nuclear Information System (INIS)

    Woo, Hye Ryun; Kim, Jae Sung; Lee, Myung Jin; Lee, Dong Joon; Kim, Young Min; Jung, Joon Yong; Han, Wan Keun; Kang, Soo Jin

    2011-12-01

    To investigate epigenetic gene regulation in Arabidopsis modulated by gamma radiation, we examined the changes in DNA methylation and histone modification after gamma radiation and investigated the effects of gamma radiation on epigenetic information and gene expression. We have selected 14 genes with changes in DNA methylation by gamma radiation, analyzed the changes of histone modification in the selected genes to reveal the relationship between DNA methylation and histone modification by gamma radiation. We have also analyzed the effects of gamma radiation on gene expression to investigate the relationship between epigenetic information and gene expression by gamma radiation. The results will be useful to reveal the effects of gamma radiation on DNA methylation, histone modification and gene expression. We anticipate that the information generated in this proposal will help to find out the mechanism underlying the changes in epigenetic information by gamma radiation

  13. Thoughts modulate the expression of inflammatory genes and may improve the coronary blood flow in patients after a myocardial infarction

    Directory of Open Access Journals (Sweden)

    Carlo Dal Lin

    2018-01-01

    Conclusions: The RR helps to advantageously modulate the expression of inflammatory genes through a cascade of NEI messengers improving, over time, microvascular function and the arteriosclerotic process.

  14. Analysis of Gene Expression in Human Dermal Fibroblasts Treated with Senescence-Modulating COX Inhibitors

    Directory of Open Access Journals (Sweden)

    Jeong A. Han

    2017-06-01

    Full Text Available We have previously reported that NS-398, a cyclooxygenase-2 (COX-2–selective inhibitor, inhibited replicative cellular senescence in human dermal fibroblasts and skin aging in hairless mice. In contrast, celecoxib, another COX-2–selective inhibitor, and aspirin, a non-selective COX inhibitor, accelerated the senescence and aging. To figure out causal factors for the senescence-modulating effect of the inhibitors, we here performed cDNA microarray experiment and subsequent Gene Set Enrichment Analysis. The data showed that several senescence-related gene sets were regulated by the inhibitor treatment. NS-398 up-regulated gene sets involved in the tumor necrosis factor β receptor pathway and the fructose and mannose metabolism, whereas it down-regulated a gene set involved in protein secretion. Celecoxib up-regulated gene sets involved in G2M checkpoint and E2F targets. Aspirin up-regulated the gene set involved in protein secretion, and down-regulated gene sets involved in RNA transcription. These results suggest that COX inhibitors modulate cellular senescence by different mechanisms and will provide useful information to understand senescence-modulating mechanisms of COX inhibitors.

  15. Novel security enhancement technique against eavesdropper for OCDMA system using 2-D modulation format with code switching scheme

    Science.gov (United States)

    Singh, Simranjit; Kaur, Ramandeep; Singh, Amanvir; Kaler, R. S.

    2015-03-01

    In this paper, security of the spectrally encoded-optical code division multiplexed access (OCDMA) system is enhanced by using 2-D (orthogonal) modulation technique. This is an effective approach for simultaneous improvement of the system capacity and security. Also, the results show that the hybrid modulation technique proved to be a better option to enhance the data confidentiality at higher data rates using minimum utilization of bandwidth in a multiuser environment. Further, the proposed system performance is compared with the current state-of-the-art OCDMA schemes.

  16. A complex genetic switch involving overlapping divergent promoters and DNA looping regulates expression of conjugation genes of a gram-positive plasmid.

    Science.gov (United States)

    Ramachandran, Gayetri; Singh, Praveen K; Luque-Ortega, Juan Roman; Yuste, Luis; Alfonso, Carlos; Rojo, Fernando; Wu, Ling J; Meijer, Wilfried J J

    2014-10-01

    Plasmid conjugation plays a significant role in the dissemination of antibiotic resistance and pathogenicity determinants. Understanding how conjugation is regulated is important to gain insights into these features. Little is known about regulation of conjugation systems present on plasmids from Gram-positive bacteria. pLS20 is a native conjugative plasmid from the Gram-positive bacterium Bacillus subtilis. Recently the key players that repress and activate pLS20 conjugation have been identified. Here we studied in detail the molecular mechanism regulating the pLS20 conjugation genes using both in vivo and in vitro approaches. Our results show that conjugation is subject to the control of a complex genetic switch where at least three levels of regulation are integrated. The first of the three layers involves overlapping divergent promoters of different strengths regulating expression of the conjugation genes and the key transcriptional regulator RcoLS20. The second layer involves a triple function of RcoLS20 being a repressor of the main conjugation promoter and an activator and repressor of its own promoter at low and high concentrations, respectively. The third level of regulation concerns formation of a DNA loop mediated by simultaneous binding of tetrameric RcoLS20 to two operators, one of which overlaps with the divergent promoters. The combination of these three layers of regulation in the same switch allows the main conjugation promoter to be tightly repressed during conditions unfavorable to conjugation while maintaining the sensitivity to accurately switch on the conjugation genes when appropriate conditions occur. The implications of the regulatory switch and comparison with other genetic switches involving DNA looping are discussed.

  17. Spatial Interferer Rejection in a 4-Element Beamforming Receiver Frontend with a Switched-Capacitor Vector Modulator

    NARCIS (Netherlands)

    Soer, M.C.M.; Klumperink, Eric A.M.; Nauta, Bram; van Vliet, Frank Edward

    2011-01-01

    A 1-4GHz 4-element phased array receiver frontend demonstrates spatial interferer rejection using null steering. Element phase and amplitude control are performed by a switchedcapacitor vector modulator with integrated downconversion, utilizing a rational sine/cosine approximation. The 65nm CMOS

  18. Self-assembled incorporation of modulated block copolymer nanostructures in phase-change memory for switching power reduction.

    Science.gov (United States)

    Park, Woon Ik; You, Byoung Kuk; Mun, Beom Ho; Seo, Hyeon Kook; Lee, Jeong Yong; Hosaka, Sumio; Yin, You; Ross, C A; Lee, Keon Jae; Jung, Yeon Sik

    2013-03-26

    Phase change memory (PCM), which exploits the phase change behavior of chalcogenide materials, affords tremendous advantages over conventional solid-state memory due to its nonvolatility, high speed, and scalability. However, high power consumption of PCM poses a critical challenge and has been the most significant obstacle to its widespread commercialization. Here, we present a novel approach based on the self-assembly of a block copolymer (BCP) to form a thin nanostructured SiOx layer that locally blocks the contact between a heater electrode and a phase change material. The writing current is decreased 5-fold (corresponding to a power reduction by 1/20) as the occupying area fraction of SiOx nanostructures is increased from a fill factor of 9.1% to 63.6%. Simulation results theoretically explain the current reduction mechanism by localized switching of BCP-blocked phase change materials.

  19. Critical genes of hepatocellular carcinoma revealed by network and module analysis of RNA-seq data.

    Science.gov (United States)

    Yang, M-R; Zhang, Y; Wu, X-X; Chen, W

    2016-10-01

    RNA-seq data of hepatocellular carcinoma (HCC) was analyzed to identify critical genes related to the pathogenesis and prognosis. Three RNA-seq datasets of HCC (GSE69164, GSE63863 and GSE55758) were downloaded from Gene Expression Omnibus (GEO), while another dataset including 54 HCC cases with survival time was obtained from The Cancer Genome Atlas (TCGA). Differentially expressed genes (DEGs) were identified by significant analysis of microarrays (SAM) method using package samr of R. As followed, we constructed a protein-protein interaction (PPI) network based on the information in Human Protein Reference Database (HPRD). Modules in the PPI network were identified with MCODE method using plugin clusterViz of CytoScape. Gene Ontology (GO) enrichment analysis and pathway enrichment analysis were performed with DAVID. The difference in survival curves was analyzed with Kaplan-Meier (K-M) method using package survival. A total of 2572 DEGs were identified in the 3 datasets from GEO (GSE69164, GSE63863 and GSE55758). The PPI network was constructed including 660 nodes and 1008 edges, and 4 modules were disclosed in the network. Module A (containing 244 DEGs) was found to related to HCC closely, which genes were involved in transcription factor binding, protein metabolism as well as regulation of apoptosis. Nine hub genes were identified in the module A, including PRKCA, YWHAZ, KRT18, NDRG1, HSPA1A, HSP90AA1, HSF1, IKGKB and UBE21. The network provides the protein-protein interaction of these critical genes, which were implicated in the pathogenesis of HCC. Survival analysis showed that there is a significant difference between two groups classified by the genes in module A. Further Univariate Cox regression analysis showed that 72 genes were associated with survival time significantly, such as NPM1, PRKDC, SPARC, HMGA1, COL1A1 and COL1A2. Nine critical genes related to the pathogenesis and 72 potential prognostic markers were revealed in HCC by the network and module

  20. Gene Network for Identifying the Entropy Changes of Different Modules in Pediatric Sepsis

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2016-12-01

    Full Text Available Background/Aims: Pediatric sepsis is a disease that threatens life of children. The incidence of pediatric sepsis is higher in developing countries due to various reasons, such as insufficient immunization and nutrition, water and air pollution, etc. Exploring the potential genes via different methods is of significance for the prevention and treatment of pediatric sepsis. This study aimed to identify potential genes associated with pediatric sepsis utilizing analysis of gene network and entropy. Methods: The mRNA expression in the blood samples collected from 20 septic children and 30 healthy controls was quantified by using Affymetrix HG-U133A microarray. Two condition-specific protein-protein interaction networks (PINs, one for the healthy control and the other one for the children with sepsis, were deduced by combining the fundamental human PINs with gene expression profiles in the two phenotypes. Subsequently, distinct modules from the two conditional networks were extracted by adopting a maximal clique-merging approach. Delta entropy (ΔS was calculated between sepsis and control modules. Results: Then, key genes displaying changes in gene composition were identified by matching the control and sepsis modules. Two objective modules were obtained, in which ribosomal protein RPL4 and RPL9 as well as TOP2A were probably considered as the key genes differentiating sepsis from healthy controls. Conclusion: According to previous reports and this work, TOP2A is the potential gene therapy target for pediatric sepsis. The relationship between pediatric sepsis and RPL4 and RPL9 needs further investigation.

  1. Chloroquine mediated modulation of Anopheles gambiae gene expression.

    Directory of Open Access Journals (Sweden)

    Patrícia Abrantes

    2008-07-01

    Full Text Available Plasmodium development in the mosquito is crucial for malaria transmission and depends on the parasite's interaction with a variety of cell types and specific mosquito factors that have both positive and negative effects on infection. Whereas the defensive response of the mosquito contributes to a decrease in parasite numbers during these stages, some components of the blood meal are known to favor infection, potentiating the risk of increased transmission. The presence of the antimalarial drug chloroquine in the mosquito's blood meal has been associated with an increase in Plasmodium infectivity for the mosquito, which is possibly caused by chloroquine interfering with the capacity of the mosquito to defend against the infection.In this study, we report a detailed survey of the Anopheles gambiae genes that are differentially regulated by the presence of chloroquine in the blood meal, using an A. gambiae cDNA microarray. The effect of chloroquine on transcript abundance was evaluated separately for non-infected and Plasmodium berghei-infected mosquitoes. Chloroquine was found to affect the abundance of transcripts that encode proteins involved in a variety of processes, including immunity, apoptosis, cytoskeleton and the response to oxidative stress. This pattern of differential gene expression may explain the weakened mosquito defense response which accounts for the increased infectivity observed in chloroquine-treated mosquitoes.The results of the present study suggest that chloroquine can interfere with several putative mosquito mechanisms of defense against Plasmodium at the level of gene expression and highlight the need for a better understanding of the impacts of antimalarial agents on parasite transmission.

  2. The WWOX Gene Modulates HDL and Lipid Metabolism

    Science.gov (United States)

    Iatan, Iulia; Choi, Hong Y.; Ruel, Isabelle; Linga Reddy, M.V. Prasad; Kil, Hyunsuk; Lee, Jaeho; Abu Odeh, Mohammad; Salah, Zaidoun; Abu-Remaileh, Muhannad; Weissglas-Volkov, Daphna; Nikkola, Elina; Civelek, Mete; Awan, Zuhier; Croce, Carlo M.; Aqeilan, Rami I.; Pajukanta, Päivi; Aldaz, C. Marcelo; Genest, Jacques

    2014-01-01

    Background Low high-density lipoprotein-cholesterol (HDL-C) constitutes a major risk factor for atherosclerosis. Recent studies from our group reported a genetic association between the WW domain-containing oxidoreductase (WWOX) gene and HDL-C levels. Here, through next-generation resequencing, in vivo functional studies and gene microarray analyses, we investigated the role of WWOX in HDL and lipid metabolism. Methods and Results Using next-generation resequencing of the WWOX region, we first identified 8 variants significantly associated and perfectly segregating with the low-HDL trait in two multi-generational French Canadian dyslipidemic families. To understand in vivo functions of WWOX, we used liver-specific Wwoxhep−/− and total Wwox−/− mice models, where we found decreased ApoA-I and ABCA1 levels in hepatic tissues. Analyses of lipoprotein profiles in Wwox−/−, but not Wwox hep−/− littermates, also showed marked reductions in serum HDL-C concentrations, concordant with the low-HDL findings observed in families. We next obtained evidence of a gender-specific effect in female Wwoxhep−/− mice, where an increase in plasma triglycerides and altered lipid metabolic pathways by microarray analyses were observed. We further identified a significant reduction in ApoA-I and LPL, and upregulation in Fas, Angptl4 and Lipg, suggesting that the effects of Wwox involve multiple pathways, including cholesterol homeostasis, ApoA-I/ABCA1 pathway, and fatty acid biosynthesis/triglyceride metabolism. Conclusions Our data indicate that WWOX disruption alters HDL and lipoprotein metabolism through several mechanisms and may account for the low-HDL phenotype observed in families expressing the WWOX variants. These findings thus describe a novel gene involved in cellular lipid homeostasis, which effects may impact atherosclerotic disease development. PMID:24871327

  3. Transcriptional Modulation of Squalene Synthase Genes in Barley Treated with PGPR

    Directory of Open Access Journals (Sweden)

    Anam eYousaf

    2015-09-01

    Full Text Available Phytosterol contents and food quality of plant produce is directly associated with transcription of gene Squalene Synthase (SS. In current study, barley plants were treated with different rhizobacterial strains under semi controlled (27±3°C greenhouse conditions in order to modulate expression of SS gene. Plant samples were analysed through semi-quantitative PCR to evaluate effect of rhizobacterial application on transcriptional status of squalene synthase. Results revealed that among four SS genes (i.e. SSA, SS1, SS2 and SS3, the most expressive gene was SSA; while, SS2 was screened out as the second best induced gene due to Acetobacter aceti. The most efficient bacterial strain which recorded maximum gene expression was A. aceti AC8. Moreover, AC7 was reported as the least efficient bacterial species for inducing SS gene expression. AC8 enhanced the share of SSA and SS2 up to 43% and 31%, respectively. The study also described ribosomal sequence of the most efficient bacterial strain AC8, which was used to determine its phylogenetic relationships with other microbial strains. The study would be helpful to improve quality of plant produce by modulating transcription of SS genes.

  4. Transcriptional modulation of squalene synthase genes in barley treated with PGPR

    Science.gov (United States)

    Yousaf, Anam; Qadir, Abdul; Anjum, Tehmina; Ahmad, Aqeel

    2015-01-01

    Phytosterol contents and food quality of plant produce is directly associated with transcription of gene squalene synthase (SS). In current study, barley plants were treated with different rhizobacterial strains under semi controlled (27 ± 3°C) greenhouse conditions in order to modulate expression of SS gene. Plant samples were analyzed through semi-quantitative PCR to evaluate effect of rhizobacterial application on transcriptional status of SS. Results revealed that among four SS genes (i.e., SSA, SS1, SS2, and SS3), the most expressive gene was SSA; while, SS2 was screened out as the second best induced gene due to Acetobacter aceti. The most efficient bacterial strain which recorded maximum gene expression was A. aceti AC8. Moreover, AC7 was reported as the least efficient bacterial species for inducing SS gene expression. AC8 enhanced the share of SSA and SS2 up to 43 and 31%, respectively. The study also described ribosomal sequence of the most efficient bacterial strain AC8, which was used to determine its phylogenetic relationships with other microbial strains. The study would be helpful to improve quality of plant produce by modulating transcription of SS genes. PMID:26388880

  5. Tang-Nai-Kang alleviates pre-diabetes and metabolic disorders and induces a gene expression switch toward fatty acid oxidation in SHR.Cg-Leprcp/NDmcr rats.

    Science.gov (United States)

    Li, Linyi; Yoshitomi, Hisae; Wei, Ying; Qin, Lingling; Zhou, Jingxin; Xu, Tunhai; Wu, Xinli; Zhou, Tian; Sun, Wen; Guo, Xiangyu; Wu, Lili; Wang, Haiyan; Zhang, Yan; Li, Chunna; Liu, Tonghua; Gao, Ming

    2015-01-01

    Increased energy intake and reduced physical activity can lead to obesity, diabetes and metabolic syndrome. Transcriptional modulation of metabolic networks has become a focus of current drug discovery research into the prevention and treatment of metabolic disorders associated with energy surplus and obesity. Tang-Nai-Kang (TNK), a mixture of five herbal plant extracts, has been shown to improve abnormal glucose metabolism in patients with pre-diabetes. Here, we report the metabolic phenotype of SHR.Cg-Leprcp/NDmcr (SHR/cp) rats treated with TNK. Pre-diabetic SHR/cp rats were randomly divided into control, TNK low-dose (1.67 g/kg) and TNK high-dose (3.24 g/kg) groups. After high-dose treatment for 2 weeks, the serum triglycerides and free fatty acids in SHR/cp rats were markedly reduced compared to controls. After 3 weeks of administration, the high dose of TNK significantly reduced the body weight and fat mass of SHR/cp rats without affecting food consumption. Serum fasting glucose and insulin levels in the TNK-treated groups decreased after 6 weeks of treatment. Furthermore, TNK-treated rats exhibited obvious improvements in glucose intolerance and insulin resistance. The improved glucose metabolism may be caused by the substantial reduction in serum lipids and body weight observed in SHR/cp rats starting at 3 weeks of TNK treatment. The mRNA expression of NAD+-dependent deacetylase sirtuin 1 (SIRT1) and genes related to fatty acid oxidation was markedly up-regulated in the muscle, liver and adipose tissue after TNK treatment. Furthermore, TNK promoted the deacetylation of two well-established SIRT1 targets, PPARγ coactivator 1α (PGC1α) and forkhead transcription factor 1 (FOXO1), and induced the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in different tissues. These observations suggested that TNK may be an alternative treatment for pre-diabetes and metabolic syndrome by inducing a gene expression switch toward fat

  6. Cognitive control and the COMT Val¹⁵⁸Met polymorphism: genetic modulation of videogame training and transfer to task-switching efficiency.

    Science.gov (United States)

    Colzato, Lorenza S; van den Wildenberg, Wery P M; Hommel, Bernhard

    2014-09-01

    The study investigated whether successful transfer of game-based cognitive improvements to untrained tasks might be modulated by preexisting neuro-developmental factors, such as genetic variability related to the catechol-O-methyltransferase (COMT)-an enzyme responsible for the degradation of dopamine. The COMT Val(158)Met genotype may differentially affect cognitive stability and flexibility, and we hypothesized that Val/Val homozygous individuals (who possess low prefrontal dopamine levels) show more pronounced cognitive flexibility than Met/-carriers (who possess high prefrontal dopamine levels). We trained participants, genotyped for the COMT Val(158)Met polymorphism on playing "Half-Life 2", a first-person shooter game which has been shown to improve cognitive flexibility. Pre-training (baseline) and post-training measures of cognitive flexibility were acquired by means of a task-switching paradigm. As expected, Val/Val homozygous individuals showed larger beneficial transfer effects than Met/-carriers. Our findings support the idea that genetic predisposition modulates transfer effects and that playing first-person shooter games promotes cognitive flexibility in individuals with a suitable genetic predisposition.

  7. Systems Genetics Analysis to Identify the Genetic Modulation of a Glaucoma-Associated Gene.

    Science.gov (United States)

    Chintalapudi, Sumana R; Jablonski, Monica M

    2017-01-01

    Loss of retinal ganglion cells (RGCs) is one of the hallmarks of retinal neurodegenerative diseases, glaucoma being one of the most common. Recently, γ-synuclein (SNCG) was shown to be highly expressed in the somas and axons of RGCs. In various mouse models of glaucoma, downregulation of Sncg gene expression correlates with RGC loss. To investigate the regulation of Sncg in RGCs, we used a systems genetics approach to identify a gene that modulates the expression of Sncg, followed by confirmatory studies in both healthy and diseased retinas. We found that chromosome 1 harbors an eQTL that modulates the expression of Sncg in the mouse retina and identified Pfdn2 as the candidate upstream modulator of Sncg expression. Downregulation of Pfdn2 in enriched RGCs causes a concomitant reduction in Sncg. In this chapter, we describe our strategy and methods for identifying and confirming a genetic modulation of a glaucoma-associated gene. A similar method can be applied to other genes expressed in other tissues.

  8. Nigribactin, a Novel Siderophore from Vibrio nigripulchritudo, Modulates Staphylococcus aureus Virulence Gene Expression

    DEFF Research Database (Denmark)

    Nielsen, Anita; Månsson, Maria; Wietz, Matthias

    2012-01-01

    Staphylococcus aureus is a serious human pathogen that employs a number of virulence factors as part of its pathogenesis. The purpose of the present study was to explore marine bacteria as a source of compounds that modulate virulence gene expression in S. aureus. During the global marine Galathe...

  9. Global analysis of the human pathophenotypic similarity gene network merges disease module components.

    Science.gov (United States)

    Reyes-Palomares, Armando; Rodríguez-López, Rocío; Ranea, Juan A G; Sánchez-Jiménez, Francisca; Sánchez Jiménez, Francisca; Medina, Miguel Angel

    2013-01-01

    The molecular complexity of genetic diseases requires novel approaches to break it down into coherent biological modules. For this purpose, many disease network models have been created and analyzed. We highlight two of them, "the human diseases networks" (HDN) and "the orphan disease networks" (ODN). However, in these models, each single node represents one disease or an ambiguous group of diseases. In these cases, the notion of diseases as unique entities reduces the usefulness of network-based methods. We hypothesize that using the clinical features (pathophenotypes) to define pathophenotypic connections between disease-causing genes improve our understanding of the molecular events originated by genetic disturbances. For this, we have built a pathophenotypic similarity gene network (PSGN) and compared it with the unipartite projections (based on gene-to-gene edges) similar to those used in previous network models (HDN and ODN). Unlike these disease network models, the PSGN uses semantic similarities. This pathophenotypic similarity has been calculated by comparing pathophenotypic annotations of genes (human abnormalities of HPO terms) in the "Human Phenotype Ontology". The resulting network contains 1075 genes (nodes) and 26197 significant pathophenotypic similarities (edges). A global analysis of this network reveals: unnoticed pairs of genes showing significant pathophenotypic similarity, a biological meaningful re-arrangement of the pathological relationships between genes, correlations of biochemical interactions with higher similarity scores and functional biases in metabolic and essential genes toward the pathophenotypic specificity and the pleiotropy, respectively. Additionally, pathophenotypic similarities and metabolic interactions of genes associated with maple syrup urine disease (MSUD) have been used to merge into a coherent pathological module.Our results indicate that pathophenotypes contribute to identify underlying co-dependencies among disease

  10. Molecular evolution constraints in the floral organ specification gene regulatory network module across 18 angiosperm genomes.

    Science.gov (United States)

    Davila-Velderrain, Jose; Servin-Marquez, Andres; Alvarez-Buylla, Elena R

    2014-03-01

    The gene regulatory network of floral organ cell fate specification of Arabidopsis thaliana is a robust developmental regulatory module. Although such finding was proposed to explain the overall conservation of floral organ types and organization among angiosperms, it has not been confirmed that the network components are conserved at the molecular level among flowering plants. Using the genomic data that have accumulated, we address the conservation of the genes involved in this network and the forces that have shaped its evolution during the divergence of angiosperms. We recovered the network gene homologs for 18 species of flowering plants spanning nine families. We found that all the genes are highly conserved with no evidence of positive selection. We studied the sequence conservation features of the genes in the context of their known biological function and the strength of the purifying selection acting upon them in relation to their placement within the network. Our results suggest an association between protein length and sequence conservation, evolutionary rates, and functional category. On the other hand, we found no significant correlation between the strength of purifying selection and gene placement. Our results confirm that the studied robust developmental regulatory module has been subjected to strong functional constraints. However, unlike previous studies, our results do not support the notion that network topology plays a major role in constraining evolutionary rates. We speculate that the dynamical functional role of genes within the network and not just its connectivity could play an important role in constraining evolution.

  11. Fast switching of frequency modulation twisted nematic liquid crystal display fabricated by doping nanoparticles and its mechanism (Invited Paper)

    Science.gov (United States)

    Kobayashi, Shunsuke; Miyama, Tomohiro; Sakai, Yoshio; Shiraki, Hiroyuki; Shiraishi, Yukihide; Toshima, Naoki

    2005-04-01

    TN-LCDs fabricated by doping metal nanoparticles of such as Pd, Ag, Au, or Ag-Pd composite are shown to exhibit a frequency modulation electro-optic response with short response time of ms or sub-ms order. These devices are called FM-LCDs. The frequency range spreads from 40 Hz to 2 KHz around a dielectric relaxation frequency that increases with increasing the concentration of metal nanoparticles. This behavior is explained by the equivalent circuit model of heterogeneous dielectrics, for the first time, formulated by the present authors. Further, we discuss the origin of the fast response and the value of electrical conductivity of metal nanoparticles.

  12. Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus).

    Science.gov (United States)

    Fedorov, Vadim B; Goropashnaya, Anna V; Tøien, Øivind; Stewart, Nathan C; Chang, Celia; Wang, Haifang; Yan, Jun; Showe, Louise C; Showe, Michael K; Barnes, Brian M

    2011-03-31

    Hibernation is an adaptive strategy to survive in highly seasonal or unpredictable environments. The molecular and genetic basis of hibernation physiology in mammals has only recently been studied using large scale genomic approaches. We analyzed gene expression in the American black bear, Ursus americanus, using a custom 12,800 cDNA probe microarray to detect differences in expression that occur in heart and liver during winter hibernation in comparison to summer active animals. We identified 245 genes in heart and 319 genes in liver that were differentially expressed between winter and summer. The expression of 24 genes was significantly elevated during hibernation in both heart and liver. These genes are mostly involved in lipid catabolism and protein biosynthesis and include RNA binding protein motif 3 (Rbm3), which enhances protein synthesis at mildly hypothermic temperatures. Elevated expression of protein biosynthesis genes suggests induction of translation that may be related to adaptive mechanisms reducing cardiac and muscle atrophies over extended periods of low metabolism and immobility during hibernation in bears. Coordinated reduction of transcription of genes involved in amino acid catabolism suggests redirection of amino acids from catabolic pathways to protein biosynthesis. We identify common for black bears and small mammalian hibernators transcriptional changes in the liver that include induction of genes responsible for fatty acid β oxidation and carbohydrate synthesis and depression of genes involved in lipid biosynthesis, carbohydrate catabolism, cellular respiration and detoxification pathways. Our findings show that modulation of gene expression during winter hibernation represents molecular mechanism of adaptation to extreme environments.

  13. The diabetogenic mouse MHC class II molecule I-A[subscript g7] is endowed with a switch that modulates TCR affinity

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kenji; Corper, Adam L.; Herro, Rana; Jabri, Bana; Wilson, Ian A.; Teyton, Luc (Scripps); (UC)

    2011-11-16

    Genetic susceptibility to autoimmunity is frequently associated with specific MHC alleles. Diabetogenic MHC class II molecules, such as human HLA-DQ8 and mouse I-A{sub g7}, typically have a small, uncharged amino acid residue at position 57 of their {beta} chain ({beta}57); this results in the absence of a salt bridge between {beta}57 and Arg{alpha}76, which is adjacent to the P9 pocket of the peptide-binding groove. However, the influence of Arg{alpha}76 on the selection of the TCR repertoire remains unknown, particularly when the MHC molecule binds a peptide with a neutral amino acid residue at position P9. Here, we have shown that diabetogenic MHC class II molecules bound to a peptide with a neutral P9 residue primarily selected and expanded cells expressing TCRs bearing a negatively charged residue in the first segment of their complementarity determining region 3{beta}. The crystal structure of one such TCR in complex with I-A{sub g7} bound to a peptide containing a neutral P9 residue revealed that a network of favorable long-range (greater than 4 {angstrom}) electrostatic interactions existed among Arg{alpha}76, the neutral P9 residue, and TCR, which supported the substantially increased TCR/peptide-MHC affinity. This network could be modulated or switched to a lower affinity interaction by the introduction of a negative charge at position P9 of the peptide. Our results support the existence of a switch at residue {beta}57 of the I-Ag7 and HLA-DQ8 class II molecules and potentially link normal thymic TCR selection with abnormal peripheral behavior.

  14. Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids

    International Nuclear Information System (INIS)

    Limtrakul, Pornngarm; Anuchapreeda, Songyot; Buddhasukh, Duang

    2004-01-01

    Multidrug resistance (MDR) is a phenomenon that is often associated with decreased intracellular drug accumulation in patient's tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170), thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells. In this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn), were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR. Western blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin) decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures. These results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents

  15. Spironolactone attenuates bleomycin-induced pulmonary injury partially via modulating mononuclear phagocyte phenotype switching in circulating and alveolar compartments.

    Directory of Open Access Journals (Sweden)

    Wen-Jie Ji

    Full Text Available BACKGROUND: Recent experimental studies provide evidence indicating that manipulation of the mononuclear phagocyte phenotype could be a feasible approach to alter the severity and persistence of pulmonary injury and fibrosis. Mineralocorticoid receptor (MR has been reported as a target to regulate macrophage polarization. The present work was designed to investigate the therapeutic potential of MR antagonism in bleomycin-induced acute lung injury and fibrosis. METHODOLOGY/PRINCIPAL FINDINGS: We first demonstrated the expression of MR in magnetic bead-purified Ly6G-/CD11b+ circulating monocytes and in alveolar macrophages harvested in bronchoalveolar lavage fluid (BALF from C57BL/6 mice. Then, a pharmacological intervention study using spironolactone (20 mg/kg/day by oral gavage revealed that MR antagonism led to decreased inflammatory cell infiltration, cytokine production (downregulated monocyte chemoattractant protein-1, transforming growth factor β1, and interleukin-1β at mRNA and protein levels and collagen deposition (decreased lung total hydroxyproline content and collagen positive area by Masson' trichrome staining in bleomycin treated (2.5 mg/kg, via oropharyngeal instillation male C57BL/6 mice. Moreover, serial flow cytometry analysis in blood, BALF and enzymatically digested lung tissue, revealed that spironolactone could partially inhibit bleomycin-induced circulating Ly6C(hi monocyte expansion, and reduce alternative activation (F4/80+CD11c+CD206+ of mononuclear phagocyte in alveoli, whereas the phenotype of interstitial macrophage (F4/80+CD11c- remained unaffected by spironolactone during investigation. CONCLUSIONS/SIGNIFICANCE: The present work provides the experimental evidence that spironolactone could attenuate bleomycin-induced acute pulmonary injury and fibrosis, partially via inhibition of MR-mediated circulating monocyte and alveolar macrophage phenotype switching.

  16. Combining sequence and Gene Ontology for protein module detection in the Weighted Network.

    Science.gov (United States)

    Yu, Yang; Liu, Jie; Feng, Nuan; Song, Bo; Zheng, Zeyu

    2017-01-07

    Studies of protein modules in a Protein-Protein Interaction (PPI) network contribute greatly to the understanding of biological mechanisms. With the development of computing science, computational approaches have played an important role in locating protein modules. In this paper, a new approach combining Gene Ontology and amino acid background frequency is introduced to detect the protein modules in the weighted PPI networks. The proposed approach mainly consists of three parts: the feature extraction, the weighted graph construction and the protein complex detection. Firstly, the topology-sequence information is utilized to present the feature of protein complex. Secondly, six types of the weighed graph are constructed by combining PPI network and Gene Ontology information. Lastly, protein complex algorithm is applied to the weighted graph, which locates the clusters based on three conditions, including density, network diameter and the included angle cosine. Experiments have been conducted on two protein complex benchmark sets for yeast and the results show that the approach is more effective compared to five typical algorithms with the performance of f-measure and precision. The combination of protein interaction network with sequence and gene ontology data is helpful to improve the performance and provide a optional method for protein module detection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Modulating polyplex-mediated gene transfection by small-molecule regulators of autophagy.

    Science.gov (United States)

    Zhong, Xiao; Panus, David; Ji, Weihang; Wang, Chun

    2015-03-02

    Nonviral gene transfection mediated by cationic polymer/DNA polyplexes often imposes stress and toxicity to cells. To better understand the relationship between cellular stress responses and polyplex-mediated transfection, polyplex-induced early autophagy in mouse fibroblasts was characterized and the impact of autophagy modulation on transgene expression evaluated. Transmission electron microscopy revealed the formation of double-membraned autophagosome in the cytoplasm of polyplex-transfected cells. Immunofluorescence staining and microscopy revealed intracellular LC3 punctation that was characteristic of early autophagy activation. Elevated expression of autophagosome-associated LC3 II protein was also detected by Western blot. When cells were treated with small-molecule modulators of autophagy, polyplex-mediated gene transfection efficiency was significantly affected. 3-Methyladenine (3-MA), an early autophagy inhibitor, reduced transfection efficiency, whereas rapamycin, an autophagy inducer, enhanced transgene expression. Importantly, the observed functional impact on gene transfection by autophagy modulation was decoupled from that of other modes of cellular stress response (apoptosis/necrosis). Treatment of cells by 3-MA or rapamycin did not affect the level of intracellular reactive oxygen species (ROS) but did decrease or increase, respectively, nuclear localization of polyplex-delivered plasmid DNA. These findings suggest new possibilities of enhancing polyplex-mediated gene delivery by codelivery of small-molecule regulators of autophagy.

  18. Gene Profiling of Aortic Valve Interstitial Cells under Elevated Pressure Conditions: Modulation of Inflammatory Gene Networks

    Directory of Open Access Journals (Sweden)

    James N. Warnock

    2011-01-01

    Full Text Available The study aimed to identify mechanosensitive pathways and gene networks that are stimulated by elevated cyclic pressure in aortic valve interstitial cells (VICs and lead to detrimental tissue remodeling and/or pathogenesis. Porcine aortic valve leaflets were exposed to cyclic pressures of 80 or 120 mmHg, corresponding to diastolic transvalvular pressure in normal and hypertensive conditions, respectively. Linear, two-cycle amplification of total RNA, followed by microarray was performed for transcriptome analysis (with qRT-PCR validation. A combination of systems biology modeling and pathway analysis identified novel genes and molecular mechanisms underlying the biological response of VICs to elevated pressure. 56 gene transcripts related to inflammatory response mechanisms were differentially expressed. TNF-α, IL-1α, and IL-1β were key cytokines identified from the gene network model. Also of interest was the discovery that pentraxin 3 (PTX3 was significantly upregulated under elevated pressure conditions (41-fold change. In conclusion, a gene network model showing differentially expressed inflammatory genes and their interactions in VICs exposed to elevated pressure has been developed. This system overview has detected key molecules that could be targeted for pharmacotherapy of aortic stenosis in hypertensive patients.

  19. IGF-I Gene Therapy in Aging Rats Modulates Hippocampal Genes Relevant to Memory Function.

    Science.gov (United States)

    Pardo, Joaquín; Abba, Martin C; Lacunza, Ezequiel; Ogundele, Olalekan M; Paiva, Isabel; Morel, Gustavo R; Outeiro, Tiago F; Goya, Rodolfo G

    2018-03-14

    In rats, learning and memory performance decline during normal aging, which makes this rodent species a suitable model to evaluate therapeutic strategies. In aging rats, insulin-like growth factor-I (IGF-I), is known to significantly improve spatial memory accuracy as compared to control counterparts. A constellation of gene expression changes underlie the hippocampal phenotype of aging but no studies on the effects of IGF-I on the hippocampal transcriptome of old rodents have been documented. Here, we assessed the effects of IGF-I gene therapy on spatial memory performance in old female rats and compared them with changes in the hippocampal transcriptome. In the Barnes maze test, experimental rats showed a significantly higher exploratory frequency of the goal hole than controls. Hippocampal RNA-sequencing showed that 219 genes are differentially expressed in 28-month-old rats intracerebroventricularly injected with an adenovector expressing rat IGF-I as compared with placebo adenovector-injected counterparts. From the differentially expressed genes, 81 were down and 138 upregulated. From those genes, a list of functionally relevant genes, concerning hippocampal IGF-I expression, synaptic plasticity as well as neuronal function was identified. Our results provide an initial glimpse at the molecular mechanisms underlying the neuroprotective actions of IGF-I in the aging brain.

  20. Dietary lutein modulates growth and survival genes in prostate cancer cells.

    Science.gov (United States)

    Rafi, Mohamed M; Kanakasabai, Saravanan; Gokarn, Sarita V; Krueger, Eric G; Bright, John J

    2015-02-01

    Lutein is a carotenoid pigment present in fruits and vegetables that has anti-inflammatory and antitumor properties. In this study, we examined the effect of lutein on proliferation and survival-associated genes in prostate cancer (PC-3) cells. We found that in vitro culture of PC-3 cells with lutein induced mild decrease in proliferation that improved in combination treatment with peroxisome proliferator-activated receptor gamma (PPARγ) agonists and other chemotherapeutic agents. Flow cytometry analyses showed that lutein improved drug-induced cell cycle arrest and apoptosis in prostate cancer. Gene array and quantitative reverse transcription-polymerase chain reaction analyses showed that lutein altered the expression of growth and apoptosis-associated biomarker genes in PC-3 cells. These findings highlight that lutein modulates the expression of growth and survival-associated genes in prostate cancer cells.

  1. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression.

    Science.gov (United States)

    Cheng, Kevin P; Kiernan, Elizabeth A; Eliceiri, Kevin W; Williams, Justin C; Watters, Jyoti J

    2016-02-17

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS.

  2. Blue Light Modulates Murine Microglial Gene Expression in the Absence of Optogenetic Protein Expression

    Science.gov (United States)

    Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.

    2016-01-01

    Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795

  3. The Octopus switch

    NARCIS (Netherlands)

    Havinga, Paul J.M.

    2000-01-01

    This chapter1 discusses the interconnection architecture of the Mobile Digital Companion. The approach to build a low-power handheld multimedia computer presented here is to have autonomous, reconfigurable modules such as network, video and audio devices, interconnected by a switch rather than by a

  4. Weighted gene co-expression network analysis of expression data of monozygotic twins identifies specific modules and hub genes related to BMI

    DEFF Research Database (Denmark)

    Wang, Weijing; Jiang, Wenjie; Hou, Lin

    2017-01-01

    and weighted gene co-expression network analysis (WGCNA) to identify significant genes and specific modules related to BMI based on gene expression profile data of 7 discordant monozygotic twins. RESULTS: In the differential gene expression analysis, it appeared that 32 differentially expressed genes (DEGs......) were with a trend of up-regulation in twins with higher BMI when compared to their siblings. Categories of positive regulation of nitric-oxide synthase biosynthetic process, positive regulation of NF-kappa B import into nucleus, and peroxidase activity were significantly enriched within GO database...... and NF-kappa B signaling pathway within KEGG database. DEGs of NAMPT, TLR9, PTGS2, HBD, and PCSK1N might be associated with obesity. In the WGCNA, among the total 20 distinct co-expression modules identified, coral1 module (68 genes) had the strongest positive correlation with BMI (r = 0.56, P = 0...

  5. From phenotype to gene: detecting disease-specific gene functional modules via a text-based human disease phenotype network construction.

    Science.gov (United States)

    Zhang, Shihua; Zhang, Shi-Hua; Wu, Chao; Li, Xia; Chen, Xi; Jiang, Wei; Gong, Bin-Sheng; Li, Jiang; Yan, Yu-Qing

    2010-08-20

    Currently, some efforts have been devoted to the text analysis of disease phenotype data, and their results indicated that similar disease phenotypes arise from functionally related genes. These related genes work together, as a functional module, to perform a desired cellular function. We constructed a text-based human disease phenotype network and detected 82 disease-specific gene functional modules, each corresponding to a different phenotype cluster, by means of graph-based clustering and mapping from disease phenotype to gene. Since genes in such gene functional modules are functionally related and cause clinically similar diseases, they may share common genetic origin of their associated disease phenotypes. We believe the investigation may facilitate the ultimate understanding of the common pathophysiologic basis of associated diseases. Copyright 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Microarray analysis identifies a common set of cellular genes modulated by different HCV replicon clones

    Directory of Open Access Journals (Sweden)

    Gerosolimo Germano

    2008-06-01

    Full Text Available Abstract Background Hepatitis C virus (HCV RNA synthesis and protein expression affect cell homeostasis by modulation of gene expression. The impact of HCV replication on global cell transcription has not been fully evaluated. Thus, we analysed the expression profiles of different clones of human hepatoma-derived Huh-7 cells carrying a self-replicating HCV RNA which express all viral proteins (HCV replicon system. Results First, we compared the expression profile of HCV replicon clone 21-5 with both the Huh-7 parental cells and the 21-5 cured (21-5c cells. In these latter, the HCV RNA has been eliminated by IFN-α treatment. To confirm data, we also analyzed microarray results from both the 21-5 and two other HCV replicon clones, 22-6 and 21-7, compared to the Huh-7 cells. The study was carried out by using the Applied Biosystems (AB Human Genome Survey Microarray v1.0 which provides 31,700 probes that correspond to 27,868 human genes. Microarray analysis revealed a specific transcriptional program induced by HCV in replicon cells respect to both IFN-α-cured and Huh-7 cells. From the original datasets of differentially expressed genes, we selected by Venn diagrams a final list of 38 genes modulated by HCV in all clones. Most of the 38 genes have never been described before and showed high fold-change associated with significant p-value, strongly supporting data reliability. Classification of the 38 genes by Panther System identified functional categories that were significantly enriched in this gene set, such as histones and ribosomal proteins as well as extracellular matrix and intracellular protein traffic. The dataset also included new genes involved in lipid metabolism, extracellular matrix and cytoskeletal network, which may be critical for HCV replication and pathogenesis. Conclusion Our data provide a comprehensive analysis of alterations in gene expression induced by HCV replication and reveal modulation of new genes potentially useful

  7. Satellite DNA Modulates Gene Expression in the Beetle Tribolium castaneum after Heat Stress.

    Directory of Open Access Journals (Sweden)

    Isidoro Feliciello

    2015-08-01

    Full Text Available Non-coding repetitive DNAs have been proposed to perform a gene regulatory role, however for tandemly repeated satellite DNA no such role was defined until now. Here we provide the first evidence for a role of satellite DNA in the modulation of gene expression under specific environmental conditions. The major satellite DNA TCAST1 in the beetle Tribolium castaneum is preferentially located within pericentromeric heterochromatin but is also dispersed as single repeats or short arrays in the vicinity of protein-coding genes within euchromatin. Our results show enhanced suppression of activity of TCAST1-associated genes and slower recovery of their activity after long-term heat stress relative to the same genes without associated TCAST1 satellite DNA elements. The level of gene suppression is not influenced by the distance of TCAST1 elements from the associated genes up to 40 kb from the genes' transcription start sites, but it does depend on the copy number of TCAST1 repeats within an element, being stronger for the higher number of copies. The enhanced gene suppression correlates with the enrichment of the repressive histone marks H3K9me2/3 at dispersed TCAST1 elements and their flanking regions as well as with increased expression of TCAST1 satellite DNA. The results reveal transient, RNAi based heterochromatin formation at dispersed TCAST1 repeats and their proximal regions as a mechanism responsible for enhanced silencing of TCAST1-associated genes. Differences in the pattern of distribution of TCAST1 elements contribute to gene expression diversity among T. castaneum strains after long-term heat stress and might have an impact on adaptation to different environmental conditions.

  8. Comparison of high-power diode pumped actively Q-switched double-clad flower shape co-doped-Er3+:Yb3+fiber laser using acousto-optic and mechanical (optical) modulators

    Science.gov (United States)

    El-Sherif, Ashraf F.; Harfosh, Amr

    2015-09-01

    A diode-pumped acousto-optic Q-switching Er3+:Yb3+ co-doped high-power fiber laser is reported, laser output average power in excess of 1.65 W was achieved for Q-switching at relatively high repetition rates from 10 to 100 kHz. The shortest pulse duration obtained was 10 ns, giving a highest peak power of 9.8 kW and 98 μJ energy per pulse, this is the highest power yet reported from any type of actively Q-switched flower double-clad Er3+:Yb3+ fiber laser operating in low order mode at 1550 nm. The pulse train with high pulse-to-pulse stability of 95% occurred at a range of repetition rates up to 100 kHz with peak power of 0.4 kW, 40 ns pulse width and 16 μJ energy per pulse at 1550 nm for a launched pump power of 5 W. With the mechanical modulation Q-switching of the Er3+:Yb3+ co-doped fiber laser, it was found that the narrowest pulse width of 35 ns was obtained with peak power of 15.5 kW and energy per pulse 0.5 mJ at pulse repetition frequency of 1 kHz. A moderate pulse-to-pulse stability of 75% occurred over a range of high repetition rates. A comparison between mechanical modulation and acousto-optic Q-switching has been made at a repetition rate of 20 kHz. The energy per pulse, pulse width, and the average power of a mechanical optical Q-switching laser were greater than for the acousto-optic Q-switching, but the pulse width is narrower and so the high peak power of an acousto-optic Q-switching pulse is greater than for the mechanical (optical) Q-switching laser at repetition rates of up to 100 kHz.

  9. Abacus switch: a new scalable multicast ATM switch

    Science.gov (United States)

    Chao, H. Jonathan; Park, Jin-Soo; Choe, Byeong-Seog

    1995-10-01

    This paper describes a new architecture for a scalable multicast ATM switch from a few tens to thousands of input ports. The switch, called Abacus switch, has a nonblocking memoryless switch fabric followed by small switch modules at the output ports; the switch has input and output buffers. Cell replication, cell routing, output contention resolution, and cell addressing are all performed distributedly in the Abacus switch so that it can be scaled up to thousnads input and output ports. A novel algorithm has been proposed to resolve output port contention while achieving input and output ports. A novel algorithm has been proposed to reolve output port contention while achieving input buffers sharing, fairness among the input ports, and multicast call splitting. The channel grouping concept is also adopted in the switch to reduce the hardware complexity and improve the switch's throughput. The Abacus switch has a regular structure and thus has the advantages of: 1) easy expansion, 2) relaxed synchronization for data and clock signals, and 3) building the switch fabric using existing CMOS technology.

  10. Coxiella burnetii Nine Mile II proteins modulate gene expression of monocytic host cells during infection

    Directory of Open Access Journals (Sweden)

    Shaw Edward I

    2010-09-01

    Full Text Available Abstract Background Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV of eukaryotic cells, the biogenesis and maintenance of which is dependent on C. burnetii protein synthesis. These observations suggest that C. burnetii actively subverts host cell processes, however little is known about the cellular biology mechanisms manipulated by the pathogen during infection. Here, we examined host cell gene expression changes specifically induced by C. burnetii proteins during infection. Results We have identified 36 host cell genes that are specifically regulated when de novo C. burnetii protein synthesis occurs during infection using comparative microarray analysis. Two parallel sets of infected and uninfected THP-1 cells were grown for 48 h followed by the addition of chloramphenicol (CAM to 10 μg/ml in one set. Total RNA was harvested at 72 hpi from all conditions, and microarrays performed using Phalanx Human OneArray™ slides. A total of 784 (mock treated and 901 (CAM treated THP-1 genes were up or down regulated ≥2 fold in the C. burnetii infected vs. uninfected cell sets, respectively. Comparisons between the complementary data sets (using >0 fold, eliminated the common gene expression changes. A stringent comparison (≥2 fold between the separate microarrays revealed 36 host cell genes modulated by C. burnetii protein synthesis. Ontological analysis of these genes identified the innate immune response, cell death and proliferation, vesicle trafficking and development, lipid homeostasis, and cytoskeletal organization as predominant cellular functions modulated by C. burnetii protein synthesis. Conclusions Collectively, these data indicate that C. burnetii proteins actively regulate the expression of specific host cell genes and pathways. This is in addition to host cell genes that respond to the presence of the

  11. H-ferritin-regulated microRNAs modulate gene expression in K562 cells.

    Directory of Open Access Journals (Sweden)

    Flavia Biamonte

    Full Text Available In a previous study, we showed that the silencing of the heavy subunit (FHC offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC comparing it with K562 transduced with scrambled RNA (K562shRNA. Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, "Cell Death and Survival, Hematological System Development and Function, Hematopoiesis", is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs.

  12. Growing functional modules from a seed protein via integration of protein interaction and gene expression data

    Directory of Open Access Journals (Sweden)

    Dimitrakopoulou Konstantina

    2007-10-01

    Full Text Available Abstract Background Nowadays modern biology aims at unravelling the strands of complex biological structures such as the protein-protein interaction (PPI networks. A key concept in the organization of PPI networks is the existence of dense subnetworks (functional modules in them. In recent approaches clustering algorithms were applied at these networks and the resulting subnetworks were evaluated by estimating the coverage of well-established protein complexes they contained. However, most of these algorithms elaborate on an unweighted graph structure which in turn fails to elevate those interactions that would contribute to the construction of biologically more valid and coherent functional modules. Results In the current study, we present a method that corroborates the integration of protein interaction and microarray data via the discovery of biologically valid functional modules. Initially the gene expression information is overlaid as weights onto the PPI network and the enriched PPI graph allows us to exploit its topological aspects, while simultaneously highlights enhanced functional association in specific pairs of proteins. Then we present an algorithm that unveils the functional modules of the weighted graph by expanding a kernel protein set, which originates from a given 'seed' protein used as starting-point. Conclusion The integrated data and the concept of our approach provide reliable functional modules. We give proofs based on yeast data that our method manages to give accurate results in terms both of structural coherency, as well as functional consistency.

  13. Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus

    Directory of Open Access Journals (Sweden)

    Yan Jun

    2011-03-01

    Full Text Available Abstract Background Hibernation is an adaptive strategy to survive in highly seasonal or unpredictable environments. The molecular and genetic basis of hibernation physiology in mammals has only recently been studied using large scale genomic approaches. We analyzed gene expression in the American black bear, Ursus americanus, using a custom 12,800 cDNA probe microarray to detect differences in expression that occur in heart and liver during winter hibernation in comparison to summer active animals. Results We identified 245 genes in heart and 319 genes in liver that were differentially expressed between winter and summer. The expression of 24 genes was significantly elevated during hibernation in both heart and liver. These genes are mostly involved in lipid catabolism and protein biosynthesis and include RNA binding protein motif 3 (Rbm3, which enhances protein synthesis at mildly hypothermic temperatures. Elevated expression of protein biosynthesis genes suggests induction of translation that may be related to adaptive mechanisms reducing cardiac and muscle atrophies over extended periods of low metabolism and immobility during hibernation in bears. Coordinated reduction of transcription of genes involved in amino acid catabolism suggests redirection of amino acids from catabolic pathways to protein biosynthesis. We identify common for black bears and small mammalian hibernators transcriptional changes in the liver that include induction of genes responsible for fatty acid β oxidation and carbohydrate synthesis and depression of genes involved in lipid biosynthesis, carbohydrate catabolism, cellular respiration and detoxification pathways. Conclusions Our findings show that modulation of gene expression during winter hibernation represents molecular mechanism of adaptation to extreme environments.

  14. White-opaque Switching in Different Mating Type-like Locus Gene Types of Clinical Candida albicans Isolates

    Directory of Open Access Journals (Sweden)

    Hou-Min Li

    2016-01-01

    Conclusions: From these analyses, there were comparatively more C. albicans strains classified into serotype B, and the frequency of opaque phase strains was significant in the clinical isolates from China. Genetic, phenotypic, or drug susceptibility patterns were not significantly different from previous studies. MTL a/α isolates could also undergo WO switching which facilitates their survival.

  15. Genetic Background Modulates Gene Expression Profile Induced by Skin Irradiation in Ptch1 Mice

    International Nuclear Information System (INIS)

    Galvan, Antonella; Noci, Sara; Mancuso, Mariateresa; Pazzaglia, Simonetta; Saran, Anna; Dragani, Tommaso A.

    2008-01-01

    Purpose: Ptch1 germ-line mutations in mice predispose to radiation-induced basal cell carcinoma of the skin, with tumor incidence modulated by the genetic background. Here, we examined the possible mechanisms underlying skin response to radiation in F1 progeny of Ptch1 neo67/+ mice crossed with either skin tumor-susceptible (Car-S) or -resistant (Car-R) mice and X-irradiated (3 Gy) at 2 days of age or left untreated. Methods and Materials: We conducted a gene expression profile analysis in mRNA samples extracted from the skin of irradiated or control mice, using Affymetrix whole mouse genome expression array. Confirmation of the results was done using real-time reverse-transcriptase polymerase chain reaction. Results: Analysis of the gene expression profile of normal skin of F1 mice at 4 weeks of age revealed a similar basal profile in the nonirradiated mice, but alterations in levels of 71 transcripts in irradiated Ptch1 neo67/+ mice of the Car-R cross and modulation of only eight genes in irradiated Ptch1 neo67/+ mice of the Car-S cross. Conclusions: These results indicate that neonatal irradiation causes a persistent change in the gene expression profile of the skin. The tendency of mice genetically resistant to skin tumorigenesis to show a more complex pattern of transcriptional response to radiation than do genetically susceptible mice suggests a role for this response in genetic resistance to basal cell tumorigenesis

  16. Misoprostol modulates the gene expression prostaglandin E2 and oxidative stress markers in myometrial cells.

    Science.gov (United States)

    Konopka, Cristine Kolling; Azzolin, Verônica Farina; Cadoná, Francine Carla; Machado, Alencar Kolinski; Dornelles, Eduardo Bortoluzzi; Barbisan, Fernanda; da Cruz, Ivana Beatrice Mânica

    2016-11-01

    Misoprostol, prostaglandin E1 analogue, used for labour induction. However, one-third of patients who have labour induced with prostaglandins do not reach vaginal delivery. The differential expression of prostaglandin receptors in myometrial cells could account for this differential response. Since delivery physiology also involves modulation of oxidative metabolism that can be potentially affected by pharmacological drugs, in the present investigation the role of misoprostol on expression of prostaglandin receptors, and oxidative markers of myometrial cells was evaluated. Samples of myometrial tissues procured from women with spontaneous (SL) and nonspontaneous (NSL) labours were cultured in vitro and exposed to different concentrations of misoprostol. Gene expression was evaluated by qRT-PCR and oxidative biomarkers were evaluated by spectrophotometric and fluorometric analysis. Cells from SL women presented greater responsiveness to misoprostol, since an upregulation of genes related to increased muscle contraction was observed. Otherwise, cells from NSL women had low responsiveness to misoprostol exposure or even a suppressive effect on the expression of these genes. Oxidative biomarkers that previously have been related to labour physiology were affected by misoprostol treatment: lipoperoxidation and protein carbonylation (PC). However, a decrease in lipoperoxidation was observed only in SL cells treated with low concentrations of misoprostol, whereas a decrease of PC occurred in all samples treated with different misoprostol concentrations. The results suggest a pharmacogenetic effect of misoprostol in labour induction involving differential regulation of EP receptor genes, as well as some minor differential modulation of oxidative metabolism in myometrial cells. Copyright © 2016. Published by Elsevier Inc.

  17. A gain-coefficient switched Alexandrite laser

    International Nuclear Information System (INIS)

    Lee, Chris J; Van der Slot, Peter J M; Boller, Klaus-J

    2013-01-01

    We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ at a repetition rate of 5 Hz.

  18. bc-GenExMiner 3.0: new mining module computes breast cancer gene expression correlation analyses.

    Science.gov (United States)

    Jézéquel, Pascal; Frénel, Jean-Sébastien; Campion, Loïc; Guérin-Charbonnel, Catherine; Gouraud, Wilfried; Ricolleau, Gabriel; Campone, Mario

    2013-01-01

    We recently developed a user-friendly web-based application called bc-GenExMiner (http://bcgenex.centregauducheau.fr), which offered the possibility to evaluate prognostic informativity of genes in breast cancer by means of a 'prognostic module'. In this study, we develop a new module called 'correlation module', which includes three kinds of gene expression correlation analyses. The first one computes correlation coefficient between 2 or more (up to 10) chosen genes. The second one produces two lists of genes that are most correlated (positively and negatively) to a 'tested' gene. A gene ontology (GO) mining function is also proposed to explore GO 'biological process', 'molecular function' and 'cellular component' terms enrichment for the output lists of most correlated genes. The third one explores gene expression correlation between the 15 telomeric and 15 centromeric genes surrounding a 'tested' gene. These correlation analyses can be performed in different groups of patients: all patients (without any subtyping), in molecular subtypes (basal-like, HER2+, luminal A and luminal B) and according to oestrogen receptor status. Validation tests based on published data showed that these automatized analyses lead to results consistent with studies' conclusions. In brief, this new module has been developed to help basic researchers explore molecular mechanisms of breast cancer. DATABASE URL: http://bcgenex.centregauducheau.fr

  19. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

    Directory of Open Access Journals (Sweden)

    David Proud

    Full Text Available Human rhinovirus (HRV infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.

  20. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

    Science.gov (United States)

    Proud, David; Hudy, Magdalena H; Wiehler, Shahina; Zaheer, Raza S; Amin, Minaa A; Pelikan, Jonathan B; Tacon, Claire E; Tonsaker, Tabitha O; Walker, Brandie L; Kooi, Cora; Traves, Suzanne L; Leigh, Richard

    2012-01-01

    Human rhinovirus (HRV) infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD) and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE) modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.

  1. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases.

    Science.gov (United States)

    Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A; Sanz, Ferran; Furlong, Laura I

    2011-01-01

    Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases. The

  2. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    Science.gov (United States)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  3. A modest but significant effect of CGB5 gene promoter polymorphisms in modulating the risk of recurrent miscarriage

    DEFF Research Database (Denmark)

    Rull, Kristiina; Christiansen, Ole Bjarne; Nagirnaja, Liina

    2013-01-01

    To confirm the effect of single nucleotide polymorphisms (SNPs) in chorionic gonadotropin beta (CGB) genes in modulating the susceptibility to recurrent miscarriage (RM) in Danes and in a meta-analysis across Danes and the discovery samples from Estonia and Finland.......To confirm the effect of single nucleotide polymorphisms (SNPs) in chorionic gonadotropin beta (CGB) genes in modulating the susceptibility to recurrent miscarriage (RM) in Danes and in a meta-analysis across Danes and the discovery samples from Estonia and Finland....

  4. Pseudospark switches

    International Nuclear Information System (INIS)

    Billault, P.; Riege, H.; Gulik, M. van; Boggasch, E.; Frank, K.

    1987-01-01

    The pseudospark discharge is bound to a geometrical structure which is particularly well suited for switching high currents and voltages at high power levels. This type of discharge offers the potential for improvement in essentially all areas of switching operation: peak current and current density, current rise, stand-off voltage, reverse current capability, cathode life, and forward drop. The first pseudospark switch was built at CERN at 1981. Since then, the basic switching characteristics of pseudospark chambers have been studied in detail. The main feature of a pseudospark switch is the confinement of the discharge plasma to the device axis. The current transition to the hollow electrodes is spread over a rather large surface area. Another essential feature is the easy and precise triggering of the pseudospark switch from the interior of the hollow electrodes, relatively far from the main discharge gap. Nanosecond delay and jitter values can be achieved with trigger energies of less than 0.1 mJ, although cathode heating is not required. Pseudospark gaps may cover a wide range of high-voltage, high-current, and high-pulse-power switching at repetition rates of many kilohertz. This report reviews the basic researh on pseudospark switches which has been going on at CERN. So far, applications have been developed in the range of thyratron-like medium-power switches at typically 20 to 40 kV and 0.5 to 10 kA. High-current pseudospark switches have been built for a high-power 20 kJ pulse generator which is being used for long-term tests of plasma lenses developed for the future CERN Antiproton Collector (ACOL). The high-current switches have operated for several hundred thousand shots, with 20 to 50 ns jitter at 16 kV charging voltage and more than 100 kA peak current amplitude. (orig.)

  5. Modulation of gene expression in Actinobacillus pleuropneumoniae exposed to bronchoalveolar fluid.

    Directory of Open Access Journals (Sweden)

    Abdul G Lone

    Full Text Available BACKGROUND: Actinobacillus pleuropneumoniae, the causative agent of porcine contagious pleuropneumonia, is an important pathogen of swine throughout the world. It must rapidly overcome the innate pulmonary immune defenses of the pig to cause disease. To better understand this process, the objective of this study was to identify genes that are differentially expressed in a medium that mimics the lung environment early in the infection process. METHODS AND PRINCIPAL FINDINGS: Since bronchoalveolar lavage fluid (BALF contains innate immune and other components found in the lungs, we examined gene expression of a virulent serovar 1 strain of A. pleuropneumoniae after a 30 min exposure to BALF, using DNA microarrays and real-time PCR. The functional classes of genes found to be up-regulated most often in BALF were those encoding proteins involved in energy metabolism, especially anaerobic metabolism, and in cell envelope, DNA, and protein biosynthesis. Transcription of a number of known virulence genes including apxIVA and the gene for SapF, a protein which is involved in resistance to antimicrobial peptides, was also up-regulated in BALF. Seventy-nine percent of the genes that were up-regulated in BALF encoded a known protein product, and of these, 44% had been reported to be either expressed in vivo and/or involved in virulence. CONCLUSIONS: The results of this study suggest that in early stages of infection, A. pleuropneumoniae may modulate expression of genes involved in anaerobic energy generation and in the synthesis of proteins involved in cell wall biogenesis, as well as established virulence factors. Given that many of these genes are thought to be expressed in vivo or involved in virulence, incubation in BALF appears, at least partially, to simulate in vivo conditions and may provide a useful medium for the discovery of novel vaccine or therapeutic targets.

  6. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    Science.gov (United States)

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. Georg Thieme Verlag KG Stuttgart · New York.

  7. The endogenous retroviral insertion in the human complement C4 gene modulates the expression of homologous genes by antisense inhibition.

    Science.gov (United States)

    Schneider, P M; Witzel-Schlömp, K; Rittner, C; Zhang, L

    2001-02-01

    Intron 9 contains the complete endogenous retrovirus HERV-K(C4) as a 6.4-kb insertion in 60% of human C4 genes. The retroviral insertion is in reverse orientation to the C4 coding sequence. Therefore, expression of C4 could lead to the transcription of an antisense RNA, which might protect against exogenous retroviral infections. To test this hypothesis, open reading frames from the HERV sequence were subcloned in sense orientiation into a vector allowing expression of a beta-galactosidase fusion protein. Mouse L cells which had been stably transfected with either the human C4A or C4B gene both carrying the HERV insertion (LC4 cells), and L(Tk-) cells without the C4 gene were transiently transfected either with a retroviral construct or with the wild-type vector. Expression was monitored using an enzymatic assay. We demonstrated that (1) HERV-K(C4) antisense mRNA transcripts are present in cells constitutively expressing C4, (2) expression of retroviral-like constructs is significantly downregulated in cells expressing C4, and (3) this downregulation is further modulated in a dose-dependent fashion following interferon-gamma stimulation of C4 expression. These results support the hypothesis of a genomic antisense strategy mediated by the HERV-K(C4) insertion as a possible defense mechanism against exogenous retroviral infections.

  8. Switching antidepressants

    African Journals Online (AJOL)

    depressive disorder, with response rates of 50-60%. Switching within or between classes of antidepressants is often required in patients with an insufficient response to SSRIs.12 Because they share a similar mechanism of action, the immediate substitution of one SSRI for another is probably the easiest switching option.

  9. Selection for tameness modulates the expression of heme related genes in silver foxes

    Directory of Open Access Journals (Sweden)

    Vilà Carles

    2007-04-01

    Full Text Available Abstract Background The genetic and molecular mechanisms of tameness are largely unknown. A line of silver foxes (Vulpes vulpes selected for non-aggressive behavior has been used in Russia since the 1960's to study the effect of domestication. We have previously compared descendants of these selected (S animals with a group of non-selected (NS silver foxes kept under identical conditions, and showed that changes in the brain transcriptome between the two groups are small. Unexpectedly, many of the genes showing evidence of differential expression between groups were related to hemoproteins. Results In this study, we use quantitative RT-PCR to demonstrate that the activity of heme related genes differ between S and NS foxes in three regions of the brain. Furthermore, our analyses also indicate that changes in mRNA levels of heme related genes can be well described by an additive polygenic effect. We also show that the difference in genetic background between the two lines of foxes is limited, as estimated by mitochondrial DNA divergence. Conclusion Our results indicate that selection for tameness can modify the expression of heme related genes in canid brain regions known to modulate emotions and behavior. The possible involvement of heme related genes in behavior is surprising. It is possible that hemoglobin modulates the behavior of canids by interaction with CO and NO signaling. Another possibility is that hemorphins, known to be produced after enzymatic cleavage of hemoglobin, are responsible for behavioral alterations. Thus, we hypothesize that hemoglobin metabolism can be a functionally relevant aspect of the domestic phenotype in foxes selected for tameness.

  10. Modulation of Type III Secretion System in Pseudomonas aeruginosa: Involvement of the PA4857 Gene Product

    Science.gov (United States)

    Zhu, Miao; Zhao, Jingru; Kang, Huaping; Kong, Weina; Zhao, Yuanyu; Wu, Min; Liang, Haihua

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes serious acute or chronic infections in humans. Acute infections typically involve the type III secretion systems (T3SSs) and bacterial motility, whereas chronic infections are often associated with biofilm formation and the type VI secretion system. To identify new genes required for pathogenesis, a transposon mutagenesis library was constructed and the gene PA4857, named tspR, was found to modulate T3SS gene expression. Deletion of P. aeruginosa tspR reduced the virulence in a mouse acute lung infection model and diminished cytotoxicity. Suppression of T3SS gene expression in the tspR mutant resulted from compromised translation of the T3SS master regulator ExsA. TspR negatively regulated two small RNAs, RsmY and RsmZ, which control RsmA. Our data demonstrated that defects in T3SS expression and biofilm formation in retS mutant could be partially restored by overexpression of tspR. Taken together, our results demonstrated that the newly identified retS-tspR pathway is coordinated with the retS-gacS system, which regulates the genes associated with acute and chronic infections and controls the lifestyle choice of P. aeruginosa. PMID:26858696

  11. Integrated Network Analysis Identifies Fight-Club Nodes as a Class of Hubs Encompassing Key Putative Switch Genes That Induce Major Transcriptome Reprogramming during Grapevine Development[W][OPEN

    Science.gov (United States)

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-01-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named “fight-club hubs” characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named “switch genes” was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. PMID:25490918

  12. Weighted gene co-expression network analysis of expression data of monozygotic twins identifies specific modules and hub genes related to BMI.

    Science.gov (United States)

    Wang, Weijing; Jiang, Wenjie; Hou, Lin; Duan, Haiping; Wu, Yili; Xu, Chunsheng; Tan, Qihua; Li, Shuxia; Zhang, Dongfeng

    2017-11-13

    The therapeutic management of obesity is challenging, hence further elucidating the underlying mechanisms of obesity development and identifying new diagnostic biomarkers and therapeutic targets are urgent and necessary. Here, we performed differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) to identify significant genes and specific modules related to BMI based on gene expression profile data of 7 discordant monozygotic twins. In the differential gene expression analysis, it appeared that 32 differentially expressed genes (DEGs) were with a trend of up-regulation in twins with higher BMI when compared to their siblings. Categories of positive regulation of nitric-oxide synthase biosynthetic process, positive regulation of NF-kappa B import into nucleus, and peroxidase activity were significantly enriched within GO database and NF-kappa B signaling pathway within KEGG database. DEGs of NAMPT, TLR9, PTGS2, HBD, and PCSK1N might be associated with obesity. In the WGCNA, among the total 20 distinct co-expression modules identified, coral1 module (68 genes) had the strongest positive correlation with BMI (r = 0.56, P = 0.04) and disease status (r = 0.56, P = 0.04). Categories of positive regulation of phospholipase activity, high-density lipoprotein particle clearance, chylomicron remnant clearance, reverse cholesterol transport, intermediate-density lipoprotein particle, chylomicron, low-density lipoprotein particle, very-low-density lipoprotein particle, voltage-gated potassium channel complex, cholesterol transporter activity, and neuropeptide hormone activity were significantly enriched within GO database for this module. And alcoholism and cell adhesion molecules pathways were significantly enriched within KEGG database. Several hub genes, such as GAL, ASB9, NPPB, TBX2, IL17C, APOE, ABCG4, and APOC2 were also identified. The module eigengene of saddlebrown module (212 genes) was also significantly

  13. Optical computer switching network

    Science.gov (United States)

    Clymer, B.; Collins, S. A., Jr.

    1985-01-01

    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  14. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells

    Directory of Open Access Journals (Sweden)

    Giuseppe Fiume

    2016-11-01

    Full Text Available The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03% of 63,128 mapped transcripts were differentially expressed in IBTK-shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7% and 698 downregulated (54.3% RNAs. In K562 cells, 1959 (3.1% of 63128 mapped RNAs were differentially expressed in IBTK-shRNA-transduced cells, including 1053 upregulated (53.7% and 906 downregulated (46.3%. Only 137 transcripts (0.22% were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3′- and 5′-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.

  15. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells.

    Science.gov (United States)

    Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana

    2016-11-07

    The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK -shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK -shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3'- and 5'-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.

  16. Gene-to-gene interactions regulate endogenous pain modulation in fibromyalgia patients and healthy controls—antagonistic effects between opioid and serotonin-related genes

    Science.gov (United States)

    Tour, Jeanette; Löfgren, Monika; Mannerkorpi, Kaisa; Gerdle, Björn; Larsson, Anette; Palstam, Annie; Bileviciute-Ljungar, Indre; Bjersing, Jan; Martin, Ingvar; Ernberg, Malin; Schalling, Martin; Kosek, Eva

    2017-01-01

    Abstract Chronic pain is associated with dysfunctional endogenous pain modulation, involving both central opioid and serotonergic (5-HT) signaling. Fibromyalgia (FM) is a chronic pain syndrome, characterized by widespread musculoskeletal pain and reduced exercise-induced hypoalgesia (EIH). In this study, we assessed the effects of 3 functional genetic polymorphisms on EIH in 130 patients with FM and 132 healthy controls. Subjects were genotyped regarding the mu-opioid receptor (OPRM1) gene (rs1799971), the serotonin transporter (5-HTT) gene (5-HTTLPR/rs25531), and the serotonin-1a receptor (5-HT1a) gene (rs6296). The patients with FM had increased pain sensitivity and reduced EIH compared with healthy controls. None of the polymorphisms had an effect on EIH on their own. We found significant gene-to-gene interactions between OPRM1 x 5-HTT and OPRM1 x 5-HT1a regarding activation of EIH, with no statistically significant difference between groups. Better EIH was found in individuals with genetically inferred strong endogenous opioid signaling (OPRM1 G) in combination with weak 5-HT tone (5-HTT low/5-HT1a G), compared with strong 5-HT tone (5-HTT high/5-HT1a CC). Based on the proposed mechanisms of these genetic variants, the findings indicate antagonistic interactions between opioid and serotonergic mechanisms during EIH. Moreover, despite different baseline pain level, similar results were detected in FM and controls, not supporting an altered interaction between opioid and 5-HT mechanisms as the basis for dysfunction of EIH in patients with FM. In summary, our results suggest that, by genetic association, the mu-opioid receptor interacts with 2 major serotonergic structures involved in 5-HT reuptake and release, to modulate EIH. PMID:28282362

  17. Gene-to-gene interactions regulate endogenous pain modulation in fibromyalgia patients and healthy controls-antagonistic effects between opioid and serotonin-related genes.

    Science.gov (United States)

    Tour, Jeanette; Löfgren, Monika; Mannerkorpi, Kaisa; Gerdle, Björn; Larsson, Anette; Palstam, Annie; Bileviciute-Ljungar, Indre; Bjersing, Jan; Martin, Ingvar; Ernberg, Malin; Schalling, Martin; Kosek, Eva

    2017-07-01

    Chronic pain is associated with dysfunctional endogenous pain modulation, involving both central opioid and serotonergic (5-HT) signaling. Fibromyalgia (FM) is a chronic pain syndrome, characterized by widespread musculoskeletal pain and reduced exercise-induced hypoalgesia (EIH). In this study, we assessed the effects of 3 functional genetic polymorphisms on EIH in 130 patients with FM and 132 healthy controls. Subjects were genotyped regarding the mu-opioid receptor (OPRM1) gene (rs1799971), the serotonin transporter (5-HTT) gene (5-HTTLPR/rs25531), and the serotonin-1a receptor (5-HT1a) gene (rs6296). The patients with FM had increased pain sensitivity and reduced EIH compared with healthy controls. None of the polymorphisms had an effect on EIH on their own. We found significant gene-to-gene interactions between OPRM1 x 5-HTT and OPRM1 x 5-HT1a regarding activation of EIH, with no statistically significant difference between groups. Better EIH was found in individuals with genetically inferred strong endogenous opioid signaling (OPRM1 G) in combination with weak 5-HT tone (5-HTT low/5-HT1a G), compared with strong 5-HT tone (5-HTT high/5-HT1a CC). Based on the proposed mechanisms of these genetic variants, the findings indicate antagonistic interactions between opioid and serotonergic mechanisms during EIH. Moreover, despite different baseline pain level, similar results were detected in FM and controls, not supporting an altered interaction between opioid and 5-HT mechanisms as the basis for dysfunction of EIH in patients with FM. In summary, our results suggest that, by genetic association, the mu-opioid receptor interacts with 2 major serotonergic structures involved in 5-HT reuptake and release, to modulate EIH.

  18. ConGEMs: Condensed Gene Co-Expression Module Discovery Through Rule-Based Clustering and Its Application to Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Saurav Mallik

    2017-12-01

    Full Text Available For transcriptomic analysis, there are numerous microarray-based genomic data, especially those generated for cancer research. The typical analysis measures the difference between a cancer sample-group and a matched control group for each transcript or gene. Association rule mining is used to discover interesting item sets through rule-based methodology. Thus, it has advantages to find causal effect relationships between the transcripts. In this work, we introduce two new rule-based similarity measures—weighted rank-based Jaccard and Cosine measures—and then propose a novel computational framework to detect condensed gene co-expression modules ( C o n G E M s through the association rule-based learning system and the weighted similarity scores. In practice, the list of evolved condensed markers that consists of both singular and complex markers in nature depends on the corresponding condensed gene sets in either antecedent or consequent of the rules of the resultant modules. In our evaluation, these markers could be supported by literature evidence, KEGG (Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology annotations. Specifically, we preliminarily identified differentially expressed genes using an empirical Bayes test. A recently developed algorithm—RANWAR—was then utilized to determine the association rules from these genes. Based on that, we computed the integrated similarity scores of these rule-based similarity measures between each rule-pair, and the resultant scores were used for clustering to identify the co-expressed rule-modules. We applied our method to a gene expression dataset for lung squamous cell carcinoma and a genome methylation dataset for uterine cervical carcinogenesis. Our proposed module discovery method produced better results than the traditional gene-module discovery measures. In summary, our proposed rule-based method is useful for exploring biomarker modules from transcriptomic data.

  19. Establishment of the methods for searching eukaryotic gene cis-regulatory modules.

    Science.gov (United States)

    Zhong, Dong; Zhang, Zhen-shu; Liu, Yu-hu; Zheng, Guo-qing; Liu, Xiao-yi; Lu, Yang; Zhao, Gui-jun; Xu, An-long

    2004-02-01

    On the basis of the knowledge of eukaryotic gene regulation, we modified the method in three aspects: (1) Searching the cis-regulatory modules (CRM) according Fasta or Blast sequence with multiple sequence and low E value, followed by mutual scoring of these sequence with Smith-Waterman algorithms and finally by clustering analysis; (2) Searching the transcription factor-binding site using International Union of Pure and Applied Chemistry, Position-Weight Matrix(PWM) and Dyed method; (3) Designing and implementation of data analysis based on the software in Windows 2000 and UNIX using object-oriented technology. The results of analysis of the major histocompatibility complex gene family show that this procedure may accurately locate the regions that contain some of the CRMs.

  20. Multistable decision switches for flexible control of epigenetic differentiation.

    Directory of Open Access Journals (Sweden)

    Raúl Guantes

    2008-11-01

    Full Text Available It is now recognized that molecular circuits with positive feedback can induce two different gene expression states (bistability under the very same cellular conditions. Whether, and how, cells make use of the coexistence of a larger number of stable states (multistability is however largely unknown. Here, we first examine how autoregulation, a common attribute of genetic master regulators, facilitates multistability in two-component circuits. A systematic exploration of these modules' parameter space reveals two classes of molecular switches, involving transitions in bistable (progression switches or multistable (decision switches regimes. We demonstrate the potential of decision switches for multifaceted stimulus processing, including strength, duration, and flexible discrimination. These tasks enhance response specificity, help to store short-term memories of recent signaling events, stabilize transient gene expression, and enable stochastic fate commitment. The relevance of these circuits is further supported by biological data, because we find them in numerous developmental scenarios. Indeed, many of the presented information-processing features of decision switches could ultimately demonstrate a more flexible control of epigenetic differentiation.

  1. Modulation of biofilm exopolysaccharides by the Streptococcus mutans vicX gene

    Directory of Open Access Journals (Sweden)

    Lei eLei

    2015-12-01

    Full Text Available The cariogenic pathogen Streptococcus mutans effectively utilizes dietary sucrose for the synthesis of exopolysaccharide, which act as a scaffold for its biofilm, thus contributing to its pathogenicity, environmental stress tolerance, and antimicrobial resistance. The two-component system VicRK of S. mutans regulates a group of virulence genes that are associated with biofilm matrix synthesis. Knockout of vicX affects biofilm formation, oxidative stress tolerance, and transformation of S. mutans. However, little is known regarding the vicX-modulated structural characteristics of the exopolysaccharides underlying the biofilm formation and the phenotypes of the vicX mutants. Here, we identified the role of vicX in the structural characteristics of the exopolysaccharide matrix and biofilm physiology. The vicX mutant (SmuvicX biofilms seemingly exhibited desertification with architecturally impaired exopolysaccharide-enmeshed cell clusters, compared with the UA159 strain (S. mutans wild type strain. Concomitantly, SmuvicX showed a decrease in water-insoluble glucan (WIG synthesis and in WIG/water-soluble glucan (WSG ratio. Gel permeation chromatography (GPC showed that the WIG isolated from the SmuvicX biofilms had a much lower molecular weight compared with the UA159 strain indicating differences in polysaccharide chain lengths. A monosaccharide composition analysis demonstrated the importance of the vicX gene in the glucose metabolism. We performed metabolite profiling via 1H nuclear magnetic resonance spectroscopy, which showed that several chemical shifts were absent in both WSG and WIG of SmuvicX biofilms compared with the UA159 strain. Thus, the modulation of structural characteristics of exopolysaccharide by vicX provides new insights into the interaction between the exopolysaccharide structure, gene functions, and cariogenicity. Our results suggest that vicX gene modulates the structural characteristics of exopolysaccharide associated with

  2. Compound A, a Selective Glucocorticoid Receptor Modulator, Enhances Heat Shock Protein Hsp70 Gene Promoter Activation

    Science.gov (United States)

    Beck, Ilse M.; Drebert, Zuzanna J.; Hoya-Arias, Ruben; Bahar, Ali A.; Devos, Michael; Clarisse, Dorien; Desmet, Sofie; Bougarne, Nadia; Ruttens, Bart; Gossye, Valerie; Denecker, Geertrui; Lievens, Sam; Bracke, Marc; Tavernier, Jan; Declercq, Wim; Gevaert, Kris; Berghe, Wim Vanden; Haegeman, Guy; De Bosscher, Karolien

    2013-01-01

    Compound A possesses glucocorticoid receptor (GR)-dependent anti-inflammatory properties. Just like classical GR ligands, Compound A can repress NF-κB-mediated gene expression. However, the monomeric Compound A-activated GR is unable to trigger glucocorticoid response element-regulated gene expression. The heat shock response potently activates heat shock factor 1 (HSF1), upregulates Hsp70, a known GR chaperone, and also modulates various aspects of inflammation. We found that the selective GR modulator Compound A and heat shock trigger similar cellular effects in A549 lung epithelial cells. With regard to their anti-inflammatory mechanism, heat shock and Compound A are both able to reduce TNF-stimulated IκBα degradation and NF-κB p65 nuclear translocation. We established an interaction between Compound A-activated GR and Hsp70, but remarkably, although the presence of the Hsp70 chaperone as such appears pivotal for the Compound A-mediated inflammatory gene repression, subsequent novel Hsp70 protein synthesis is uncoupled from an observed CpdA-induced Hsp70 mRNA upregulation and hence obsolete in mediating CpdA’s anti-inflammatory effect. The lack of a Compound A-induced increase in Hsp70 protein levels in A549 cells is not mediated by a rapid proteasomal degradation of Hsp70 or by a Compound A-induced general block on translation. Similar to heat shock, Compound A can upregulate transcription of Hsp70 genes in various cell lines and BALB/c mice. Interestingly, whereas Compound A-dependent Hsp70 promoter activation is GR-dependent but HSF1-independent, heat shock-induced Hsp70 expression alternatively occurs in a GR-independent and HSF1-dependent manner in A549 lung epithelial cells. PMID:23935933

  3. The expression of melanopsin and clock genes in Xenopus laevis melanophores and their modulation by melatonin

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, A.P.C.; Obeid, N.N.; Castrucci, A.M.L.; Visconti, M.A. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-05-25

    Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present peripheral clock characteristics. Using quantitative PCR, we analyzed the pattern of temporal expression of Opn4x and the clock genes Per1, Per2, Bmal1, and Clock in these cells subjected to a 14-h light:10-h dark (14L:10D) regime or constant darkness (DD). Also, in view of the physiological role of melatonin in the dermal melanophores of X. laevis, we determined whether melatonin modulates the expression of these clock genes. These genes show a time-dependent expression pattern when these cells are exposed to 14L:10D, which differs from the pattern observed under DD. Cells kept in DD for 5 days exhibited overall increased mRNA expression for Opn4x and Clock, and a lower expression for Per1, Per2, and Bmal1. When the cells were kept in DD for 5 days and treated with melatonin for 1 h, 24 h before extraction, the mRNA levels tended to decrease for Opn4x and Clock, did not change for Bmal1, and increased for Per1 and Per2 at different Zeitgeber times (ZT). Although these data are limited to one-day data collection, and therefore preliminary, we suggest that the dermal melanophores of X. laevis might have some characteristics of a peripheral clock, and that melatonin modulates, to a certain extent, melanopsin and clock gene expression.

  4. The expression of melanopsin and clock genes in Xenopus laevis melanophores and their modulation by melatonin

    International Nuclear Information System (INIS)

    Bluhm, A.P.C.; Obeid, N.N.; Castrucci, A.M.L.; Visconti, M.A.

    2012-01-01

    Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present peripheral clock characteristics. Using quantitative PCR, we analyzed the pattern of temporal expression of Opn4x and the clock genes Per1, Per2, Bmal1, and Clock in these cells subjected to a 14-h light:10-h dark (14L:10D) regime or constant darkness (DD). Also, in view of the physiological role of melatonin in the dermal melanophores of X. laevis, we determined whether melatonin modulates the expression of these clock genes. These genes show a time-dependent expression pattern when these cells are exposed to 14L:10D, which differs from the pattern observed under DD. Cells kept in DD for 5 days exhibited overall increased mRNA expression for Opn4x and Clock, and a lower expression for Per1, Per2, and Bmal1. When the cells were kept in DD for 5 days and treated with melatonin for 1 h, 24 h before extraction, the mRNA levels tended to decrease for Opn4x and Clock, did not change for Bmal1, and increased for Per1 and Per2 at different Zeitgeber times (ZT). Although these data are limited to one-day data collection, and therefore preliminary, we suggest that the dermal melanophores of X. laevis might have some characteristics of a peripheral clock, and that melatonin modulates, to a certain extent, melanopsin and clock gene expression

  5. Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm.

    Science.gov (United States)

    Nadadur, Rangarajan D; Broman, Michael T; Boukens, Bastiaan; Mazurek, Stefan R; Yang, Xinan; van den Boogaard, Malou; Bekeny, Jenna; Gadek, Margaret; Ward, Tarsha; Zhang, Min; Qiao, Yun; Martin, James F; Seidman, Christine E; Seidman, Jon; Christoffels, Vincent; Efimov, Igor R; McNally, Elizabeth M; Weber, Christopher R; Moskowitz, Ivan P

    2016-08-31

    Cardiac rhythm is extremely robust, generating 2 billion contraction cycles during the average human life span. Transcriptional control of cardiac rhythm is poorly understood. We found that removal of the transcription factor gene Tbx5 from the adult mouse caused primary spontaneous and sustained atrial fibrillation (AF). Atrial cardiomyocytes from the Tbx5-mutant mice exhibited action potential abnormalities, including spontaneous depolarizations, which were rescued by chelating free calcium. We identified a multitiered transcriptional network that linked seven previously defined AF risk loci: TBX5 directly activated PITX2, and TBX5 and PITX2 antagonistically regulated membrane effector genes Scn5a, Gja1, Ryr2, Dsp, and Atp2a2 In addition, reduced Tbx5 dose by adult-specific haploinsufficiency caused decreased target gene expression, myocardial automaticity, and AF inducibility, which were all rescued by Pitx2 haploinsufficiency in mice. These results defined a transcriptional architecture for atrial rhythm control organized as an incoherent feed-forward loop, driven by TBX5 and modulated by PITX2. TBX5/PITX2 interplay provides tight control of atrial rhythm effector gene expression, and perturbation of the co-regulated network caused AF susceptibility. This work provides a model for the molecular mechanisms underpinning the genetic implication of multiple AF genome-wide association studies loci and will contribute to future efforts to stratify patients for AF risk by genotype. Copyright © 2016, American Association for the Advancement of Science.

  6. Pharmacological and Genetic Modulation of REV-ERB Activity and Expression Affects Orexigenic Gene Expression.

    Directory of Open Access Journals (Sweden)

    Ariadna Amador

    Full Text Available The nuclear receptors REV-ERBα and REV-ERBβ are transcription factors that play pivotal roles in the regulation of the circadian rhythm and various metabolic processes. The circadian rhythm is an endogenous mechanism, which generates entrainable biological changes that follow a 24-hour period. It regulates a number of physiological processes, including sleep/wakeful cycles and feeding behaviors. We recently demonstrated that REV-ERB-specific small molecules affect sleep and anxiety. The orexinergic system also plays a significant role in mammalian physiology and behavior, including the regulation of sleep and food intake. Importantly, orexin genes are expressed in a circadian manner. Given these overlaps in function and circadian expression, we wanted to determine whether the REV-ERBs might regulate orexin. We found that acute in vivo modulation of REV-ERB activity, with the REV-ERB-specific synthetic ligand SR9009, affects the circadian expression of orexinergic genes in mice. Long term dosing with SR9009 also suppresses orexinergic gene expression in mice. Finally, REV-ERBβ-deficient mice present with increased orexinergic transcripts. These data suggest that the REV-ERBs may be involved in the repression of orexinergic gene expression.

  7. A fungal symbiont of plant-roots modulates mycotoxin gene expression in the pathogen Fusarium sambucinum.

    Directory of Open Access Journals (Sweden)

    Youssef Ismail

    Full Text Available Fusarium trichothecenes are fungal toxins that cause disease on infected plants and, more importantly, health problems for humans and animals that consume infected fruits or vegetables. Unfortunately, there are few methods for controlling mycotoxin production by fungal pathogens. In this study, we isolated and characterized sixteen Fusarium strains from naturally infected potato plants in the field. Pathogenicity tests were carried out in the greenhouse to evaluate the virulence of the strains on potato plants as well as their trichothecene production capacity, and the most aggressive strain was selected for further studies. This strain, identified as F. sambucinum, was used to determine if trichothecene gene expression was affected by the symbiotic Arbuscular mycorrhizal fungus (AMF Glomus irregulare. AMF form symbioses with plant roots, in particular by improving their mineral nutrient uptake and protecting plants against soil-borne pathogens. We found that that G. irregulare significantly inhibits F. sambucinum growth. We also found, using RT-PCR assays to assess the relative expression of trichothecene genes, that in the presence of the AMF G. irregulare, F. sambucinum genes TRI5 and TRI6 were up-regulated, while TRI4, TRI13 and TRI101 were down-regulated. We conclude that AMF can modulate mycotoxin gene expression by a plant fungal pathogen. This previously undescribed effect may be an important mechanism for biological control and has fascinating implications for advancing our knowledge of plant-microbe interactions and controlling plant pathogens.

  8. Apple juice intervention modulates expression of ARE-dependent genes in rat colon and liver.

    Science.gov (United States)

    Soyalan, Bülent; Minn, Jutta; Schmitz, Hans J; Schrenk, Dieter; Will, Frank; Dietrich, Helmut; Baum, Matthias; Eisenbrand, Gerhard; Janzowski, Christine

    2011-03-01

    The risk of cancer and other degenerative diseases is inversely correlated with consumption of fruits and vegetables. This beneficial effect is mainly attributed to secondary plant constituents such as polyphenols, supposed to play a major role in protection against ROS (reactive oxygen species)-associated toxicity. To elucidate the potential of differently manufactured apple juices (clear AJ/cloudy AJ/smoothie, in comparison with a polyphenol-free control juice) to modulate expression of ARE-dependent genes. In male Sprague-Dawley rats (n = 8/group; 10d juice intervention, 4d wash-out; 4 treatment cycles), expression of target genes (superoxide dismutase, SOD1/SOD2; glutathione peroxidase, GPX1/GPX2; γ-glutamylcysteine ligase, GCLC/GCLM; glutathione reductase, GSR; catalase, CAT; NAD(P)H:quinone oxidoreductase-1, NQO1 and transcription factor erythroid-derived 2-like-2, Nrf2) was quantified with duplex RT-PCR, using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as control. In colon and liver of rats consuming polyphenol-free control juice, rather similar basic expressions were observed (relative GAPDH ratios ranging from 2 to 0.7 and 2.5-0.3, respectively). In the distal colon, apple juice intervention slightly but significantly induced most genes (e.g. GPX2, GSR, CAT, Nrf2; p target genes were not affected or down-regulated (SOD1, SOD2, GCLC/M, GSR), concomitant with the absence of Nrf2 induction. Induction of antioxidant gene expression differed with juice type (cloudy AJ > clear AJ ~ smoothie). Taken together, the results underline the potential of polyphenol-rich apple juice to increase the expression of ARE-dependent antioxidant genes.

  9. Induction of mitotic gene conversion by browning reaction products and its modulation by naturally occurring agents.

    Science.gov (United States)

    Rosin, M P; Stich, H F; Powrie, W D; Wu, C H

    1982-05-01

    Mitotic gene conversion in the D7 strain of Saccharomyces cerevisiae was significantly enhanced by exposure to non-enzymatic browning reaction products. These products were formed during the heating of sugar (caramelization reaction) or sugar-amino acid mixtures (Maillard reaction) at temperatures normally used during the cooking of food. Several modulating factors of this convertogenic activity were identified. These factors included two main groups: (1) trace metals which are widely distributed in the environment; and (2) several cellular enzymatic systems. The convertogenic activities of a heated glucose-lysine mixture and a commercial caramel powder were completely suppresses when yeast were concurrently exposed to these products and to either FeIII or CuII. Equimolar concentrations of MnII or sodium selenite had no effect on the convertogenic activity of the products of either model system. Horse-radish peroxidase, beef liver catalase and rat liver S9 preparations each decreased the frequency of gene conversion induced by the caramel powder and the heated glucose-lysine products. This modulating activity of the enzymes was lost if they were heat-inactivated. These studies indicate the presence of a variety of protective mechanisms which can modify genotoxic components in complex food mixtures.

  10. Nigribactin, a Novel Siderophore from Vibrio nigripulchritudo, Modulates Staphylococcus aureus Virulence Gene Expression

    Directory of Open Access Journals (Sweden)

    Lone Gram

    2012-11-01

    Full Text Available Staphylococcus aureus is a serious human pathogen that employs a number of virulence factors as part of its pathogenesis. The purpose of the present study was to explore marine bacteria as a source of compounds that modulate virulence gene expression in S. aureus. During the global marine Galathea 3 expedition, a strain collection was established comprising bacteria that express antimicrobial activity against Vibrio anguillarum and/or Staphylococcus aureus. Within this collection we searched colony material, culture supernatants, and cell extracts for virulence modulating activity showing that 68 out of 83 marine bacteria (affiliated with the Vibrionaceae and Pseudoalteromonas sp. influenced expression of S. aureus hla encoding α-hemolysin toxin and/or spa encoding Protein A. The isolate that upon initial screening showed the highest degree of interference (crude ethyl acetate extract was a Vibrio nigripulchritudo. Extraction, purification and structural elucidation revealed a novel siderophore, designated nigribactin, which induces spa transcription. The effect of nigribactin on spa expression is likely to be independent from its siderophore activity, as another potent siderophore, enterobactin, failed to influence S. aureus virulence gene expression. This study shows that marine microorganisms produce compounds with potential use in therapeutic strategies targeting virulence rather than viability of human pathogens.

  11. Magnetic switching

    International Nuclear Information System (INIS)

    Kirbie, H.C.

    1989-01-01

    Magnetic switching is a pulse compression technique that uses a saturable inductor (reactor) to pass pulses of energy between two capacitors. A high degree of pulse compression can be achieved in a network when several of these simple, magnetically switched circuits are connected in series. Individual inductors are designed to saturate in cascade as a pulse moves along the network. The technique is particularly useful when a single-pulse network must be very reliable or when a multi-pulse network must operate at a high pulse repetition frequency (PRF). Today, magnetic switches trigger spark gaps, sharpen the risetimes of high energy pulses, power large lasers, and drive high PRF linear induction accelerators. This paper will describe the technique of magnetic pulse compression using simple networks and design equations. A brief review of modern magnetic materials and of their role in magnetic switch design will be presented. 12 refs., 8 figs

  12. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    International Nuclear Information System (INIS)

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph; Youssef, Rimon F.; London, Steven D.; Reddy, Sakamuri V.

    2007-01-01

    the absence of RANKL. Taken together, our results suggest that RANKL signals through TRAF6 and that NFATc1 is a downstream effector of RANKL signaling to modulate MMP-9 gene expression during osteoclast differentiation

  13. Gene-Disease Network Analysis Reveals Functional Modules in Mendelian, Complex and Environmental Diseases

    Science.gov (United States)

    Bauer-Mehren, Anna; Bundschus, Markus; Rautschka, Michael; Mayer, Miguel A.; Sanz, Ferran; Furlong, Laura I.

    2011-01-01

    Background Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. Principal Findings We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. Conclusions For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors

  14. Gene-disease network analysis reveals functional modules in mendelian, complex and environmental diseases.

    Directory of Open Access Journals (Sweden)

    Anna Bauer-Mehren

    Full Text Available BACKGROUND: Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult. PRINCIPAL FINDINGS: We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell. CONCLUSIONS: For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and

  15. The mPer2 clock gene modulates cocaine actions in the mouse circadian system.

    Science.gov (United States)

    Brager, Allison J; Stowie, Adam C; Prosser, Rebecca A; Glass, J David

    2013-04-15

    Cocaine is a potent disruptor of photic and non-photic pathways for circadian entrainment of the master circadian clock of the suprachiasmatic nucleus (SCN). These actions of cocaine likely involve its modulation of molecular (clock gene) components for SCN clock timekeeping. At present, however, the physiological basis of such an interaction is unclear. To address this question, we compared photic and non-photic phase-resetting responses between wild-type (WT) and Per2 mutant mice expressing nonfunctional PER2 protein to systemic and intra-SCN cocaine administrations. In the systemic trials, cocaine was administered i.p. (20 mg/kg) either at midday or prior to a light pulse in the early night to assess its non-photic and photic behavioral phase-resetting actions, respectively. In the intra-SCN trial, cocaine was administered by reverse microdialysis at midday to determine if the SCN is a direct target for its non-photic phase-resetting action. Non-photic phase-advancing responses to i.p. cocaine at midday were significantly (∼3.5-fold) greater in Per2 mutants than WTs. However, the phase-advancing action of intra-SCN cocaine perfusion at midday did not differ between genotypes. In the light pulse trial, Per2 mutants exhibited larger photic phase-delays than did WTs, and the attenuating action of cocaine on this response was proportionately larger than in WTs. These data indicate that the Per2 clock gene is a potent modulator of cocaine's actions in the circadian system. With regard to non-photic phase-resetting, the SCN is confirmed as a direct target of cocaine action; however, Per2 modulation of this effect likely occurs outside of the SCN. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. A dual-loss-modulated intra-cavity frequency-doubled Q-switched and mode-locked Nd:Lu0.15Y0.85VO4/KTP green laser with a single-walled carbon nanotube saturable absorber and an acousto-optic modulator

    International Nuclear Information System (INIS)

    Zhang, Gang; Zhao, Shengzhi; Yang, Kejian; Li, Guiqiu; Li, Dechun; Cheng, Kang; Han, Chao; Zhao, Bin; Wang, Yonggang

    2011-01-01

    By using both a single-walled carbon nanotube saturable absorber (SWCNT-SA) and an acousto-optic (AO) modulator, a dual-loss-modulated intra-cavity frequency-doubled Q-switched and mode-locked (QML) Nd:Lu 0.15 Y 0.85 VO 4 /KTP (KTiOPO 4 ) green laser was demonstrated for the first time. The QML green laser characteristics such as the pulse width and single-pulse energy have been measured for different modulation frequencies of the AO modulator (f p ). In particular, in comparison with the solely passively QML green laser with an SWCNT-SA, the dual-loss-modulated QML green laser can generate a more stable pulse train, a shorter pulse width of the Q-switched envelope, a greater pulse energy and a higher average peak power. For the dual-loss-modulated QML green laser, at a pump power of 7.9 W and a repetition rate of 10 kHz, the pulse width and the pulse energy of the Q-switch envelope and the average peak power of the QML green laser are 50 ns, 20.34 µJ and 15.5 kW, respectively, corresponding to a pulse width compression of 77%, a pulse energy improvement factor of six times and a QML peak power increase factor of 16 times when compared with those for the solely passively QML green laser. The experimental results show that the dual-loss modulation is an efficient method for the generation of a stable QML green laser with an SWCNT-SA

  17. The Autotaxin–Lysophosphatidic Acid Axis Modulates Histone Acetylation and Gene Expression during Oligodendrocyte Differentiation

    Science.gov (United States)

    Wheeler, Natalie A.; Lister, James A.

    2015-01-01

    During development, oligodendrocytes (OLGs), the myelinating cells of the CNS, undergo a stepwise progression during which OLG progenitors, specified from neural stem/progenitor cells, differentiate into fully mature myelinating OLGs. This progression along the OLG lineage is characterized by well synchronized changes in morphology and gene expression patterns. The latter have been found to be particularly critical during the early stages of the lineage, and they have been well described to be regulated by epigenetic mechanisms, especially by the activity of the histone deacetylases HDAC1 and HDAC2. The data presented here identify the extracellular factor autotaxin (ATX) as a novel upstream signal modulating HDAC1/2 activity and gene expression in cells of the OLG lineage. Using the zebrafish as an in vivo model system as well as rodent primary OLG cultures, this functional property of ATX was found to be mediated by its lysophospholipase D (lysoPLD) activity, which has been well characterized to generate the lipid signaling molecule lysophosphatidic acid (LPA). More specifically, the lysoPLD activity of ATX was found to modulate HDAC1/2 regulated gene expression during a time window coinciding with the transition from OLG progenitor to early differentiating OLG. In contrast, HDAC1/2 regulated gene expression during the transition from neural stem/progenitor to OLG progenitor appeared unaffected by ATX and its lysoPLD activity. Thus, together, our data suggest that an ATX–LPA–HDAC1/2 axis regulates OLG differentiation specifically during the transition from OLG progenitor to early differentiating OLG and via a molecular mechanism that is evolutionarily conserved from at least zebrafish to rodent. SIGNIFICANCE STATEMENT The formation of the axon insulating and supporting myelin sheath by differentiating oligodendrocytes (OLGs) in the CNS is considered an essential step during vertebrate development. In addition, loss and/or dysfunction of the myelin sheath has

  18. Identification of Gene Modules Associated with Low Temperatures Response in Bambara Groundnut by Network-Based Analysis.

    Directory of Open Access Journals (Sweden)

    Venkata Suresh Bonthala

    Full Text Available Bambara groundnut (Vigna subterranea (L. Verdc. is an African legume and is a promising underutilized crop with good seed nutritional values. Low temperature stress in a number of African countries at night, such as Botswana, can effect the growth and development of bambara groundnut, leading to losses in potential crop yield. Therefore, in this study we developed a computational pipeline to identify and analyze the genes and gene modules associated with low temperature stress responses in bambara groundnut using the cross-species microarray technique (as bambara groundnut has no microarray chip coupled with network-based analysis. Analyses of the bambara groundnut transcriptome using cross-species gene expression data resulted in the identification of 375 and 659 differentially expressed genes (p<0.01 under the sub-optimal (23°C and very sub-optimal (18°C temperatures, respectively, of which 110 genes are commonly shared between the two stress conditions. The construction of a Highest Reciprocal Rank-based gene co-expression network, followed by its partition using a Heuristic Cluster Chiseling Algorithm resulted in 6 and 7 gene modules in sub-optimal and very sub-optimal temperature stresses being identified, respectively. Modules of sub-optimal temperature stress are principally enriched with carbohydrate and lipid metabolic processes, while most of the modules of very sub-optimal temperature stress are significantly enriched with responses to stimuli and various metabolic processes. Several transcription factors (from MYB, NAC, WRKY, WHIRLY & GATA classes that may regulate the downstream genes involved in response to stimulus in order for the plant to withstand very sub-optimal temperature stress were highlighted. The identified gene modules could be useful in breeding for low-temperature stress tolerant bambara groundnut varieties.

  19. Identification of Gene Modules Associated with Low Temperatures Response in Bambara Groundnut by Network-Based Analysis.

    Science.gov (United States)

    Bonthala, Venkata Suresh; Mayes, Katie; Moreton, Joanna; Blythe, Martin; Wright, Victoria; May, Sean Tobias; Massawe, Festo; Mayes, Sean; Twycross, Jamie

    2016-01-01

    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an African legume and is a promising underutilized crop with good seed nutritional values. Low temperature stress in a number of African countries at night, such as Botswana, can effect the growth and development of bambara groundnut, leading to losses in potential crop yield. Therefore, in this study we developed a computational pipeline to identify and analyze the genes and gene modules associated with low temperature stress responses in bambara groundnut using the cross-species microarray technique (as bambara groundnut has no microarray chip) coupled with network-based analysis. Analyses of the bambara groundnut transcriptome using cross-species gene expression data resulted in the identification of 375 and 659 differentially expressed genes (p<0.01) under the sub-optimal (23°C) and very sub-optimal (18°C) temperatures, respectively, of which 110 genes are commonly shared between the two stress conditions. The construction of a Highest Reciprocal Rank-based gene co-expression network, followed by its partition using a Heuristic Cluster Chiseling Algorithm resulted in 6 and 7 gene modules in sub-optimal and very sub-optimal temperature stresses being identified, respectively. Modules of sub-optimal temperature stress are principally enriched with carbohydrate and lipid metabolic processes, while most of the modules of very sub-optimal temperature stress are significantly enriched with responses to stimuli and various metabolic processes. Several transcription factors (from MYB, NAC, WRKY, WHIRLY & GATA classes) that may regulate the downstream genes involved in response to stimulus in order for the plant to withstand very sub-optimal temperature stress were highlighted. The identified gene modules could be useful in breeding for low-temperature stress tolerant bambara groundnut varieties.

  20. Mesoderm/mesenchyme homeobox gene l promotes vascular smooth muscle cell phenotypic modulation and vascular remodeling.

    Science.gov (United States)

    Wu, Bing; Zhang, Lei; Zhu, Yun-He; Zhang, You-En; Zheng, Fei; Yang, Jian-Ye; Guo, Ling-Yun; Li, Xing-Yuan; Wang, Lu; Tang, Jun-Ming; Chen, Shi-You; Wang, Jia-Ning

    2018-01-15

    To investigate the role of mesoderm/mesenchyme homeobox gene l (Meox1) in vascular smooth muscle cells (SMCs) phenotypic modulation during vascular remodeling. By using immunostaining, Western blot, and histological analyses, we found that Meox1 was up-regulated in PDGF-BB-treated SMCs in vitro and balloon injury-induced arterial SMCs in vivo. Meox1 knockdown by shRNA restored the expression of contractile SMCs phenotype markers including smooth muscle α-actin (α-SMA) and calponin. In contrast, overexpression of Moex1 inhibited α-SMA and calponin expressions while inducing the expressions of synthetic SMCs phenotype markers such as matrix gla protein, osteopontin, and proliferating cell nuclear antigen. Mechanistically, Meox1 mediated the SMCs phenotypic modulation through FAK-ERK1/2 signaling, which appears to induce autophagy in SMCs. In vivo, knockdown of Meox1 attenuated injury-induced neointima formation and promoted SMCs contractile proteins expressions. Meox1 knockdown also reduced the number of proliferating SMCs, suggesting that Meox1 was important for SMCs proliferation in vivo. Moreover, knockdown of Meox1 attenuated ERK1/2 signaling and autophagy markers expressions, suggesting that Meox1 may promote SMCs phenotypic modulation via ERK1/2 signaling-autophagy in vivo. Our data indicated that Meox1 promotes SMCs phenotypic modulation and injury-induced vascular remodeling by regulating the FAK-ERK1/2-autophagy signaling cascade. Thus, targeting Meox1 may be an attractive approach for treating proliferating vascular diseases. Copyright © 2017. Published by Elsevier B.V.

  1. The endocannabinoid gene faah2a modulates stress-associated behavior in zebrafish.

    Directory of Open Access Journals (Sweden)

    Randall G Krug

    Full Text Available The ability to orchestrate appropriate physiological and behavioral responses to stress is important for survival, and is often dysfunctional in neuropsychiatric disorders that account for leading causes of global disability burden. Numerous studies have shown that the endocannabinoid neurotransmitter system is able to regulate stress responses and could serve as a therapeutic target for the management of these disorders. We used quantitative reverse transcriptase-polymerase chain reactions to show that genes encoding enzymes that synthesize (abhd4, gde1, napepld, enzymes that degrade (faah, faah2a, faah2b, and receptors that bind (cnr1, cnr2, gpr55-like endocannabinoids are expressed in zebrafish (Danio rerio. These genes are conserved in many other vertebrates, including humans, but fatty acid amide hydrolase 2 has been lost in mice and rats. We engineered transcription activator-like effector nucleases to create zebrafish with mutations in cnr1 and faah2a to test the role of these genes in modulating stress-associated behavior. We showed that disruption of cnr1 potentiated locomotor responses to hyperosmotic stress. The increased response to stress was consistent with rodent literature and served to validate the use of zebrafish in this field. Moreover, we showed for the first time that disruption of faah2a attenuated the locomotor responses to hyperosmotic stress. This later finding suggests that FAAH2 may be an important mediator of stress responses in non-rodent vertebrates. Accordingly, FAAH and FAAH2 modulators could provide distinct therapeutic options for stress-aggravated disorders.

  2. Recreational music-making modulates the human stress response: a preliminary individualized gene expression strategy.

    Science.gov (United States)

    Bittman, Barry; Berk, Lee; Shannon, Mark; Sharaf, Muhammad; Westengard, Jim; Guegler, Karl J; Ruff, David W

    2005-02-01

    A central component of the complex human biological stress response is the modulation of the neuro-endocrine-immune system with its intricate feedback loops that support homeostatic regulation. Well-documented marked gene expression variability among human and animal subjects coupled with sample collection timing and delayed effects, as well as a host of molecular detection challenges renders the quest for deciphering the human biological stress response challenging from many perspectives. A novel Recreational Music-Making (RMM) program was used in combination with a new strategy for peripheral blood gene expression analysis to assess individualized genomic stress induction signatures. The expression of 45 immune response-related genes was determined using a multiplex preamplification step prior to conventional quantitative Real Time Polymerase Chain Reaction (qRT-PCR) mRNA analysis to characterize the multidimensional biological impact of a 2-phase controlled stress induction/amelioration experimental protocol in 32 randomly assigned individuals. In subjects performing the RMM activity following a 1-hour stress induction protocol, 19 out of 45 markers demonstrated reversal with significant (P = 0.05) Pearson correlations in contrast to 6 out of 45 markers in the resting control group and 0 out of 45 in the ongoing stressor group. The resultant amelioration of stress-induced genomic expression supports the underlying premise that RMM warrants additional consideration as a rational choice within our armamentarium of stress reduction strategies. Modulation of individualized genomic stress induction signatures in peripheral blood presents a new opportunity for elucidating the dynamics of the human stress response.

  3. Arabidopsis ATRX Modulates H3.3 Occupancy and Fine-Tunes Gene Expression

    KAUST Repository

    Duc, Céline

    2017-07-07

    Histones are essential components of the nucleosome, the major chromatin subunit that structures linear DNA molecules and regulates access of other proteins to DNA. Specific histone chaperone complexes control the correct deposition of canonical histones and their variants to modulate nucleosome structure and stability. In this study, we characterize the Arabidopsis Alpha Thalassemia-mental Retardation X-linked (ATRX) ortholog and show that ATRX is involved in histone H3 deposition. Arabidopsis ATRX mutant alleles are viable, but show developmental defects and reduced fertility. Their combination with mutants of the histone H3.3 chaperone HIRA (Histone Regulator A) results in impaired plant survival, suggesting that HIRA and ATRX function in complementary histone deposition pathways. Indeed, ATRX loss of function alters cellular histone H3.3 pools and in consequence modulates the H3.1/H3.3 balance in the cell. H3.3 levels are affected especially at genes characterized by elevated H3.3 occupancy, including the 45S ribosomal DNA (45S rDNA) loci, where loss of ATRX results in altered expression of specific 45S rDNA sequence variants. At the genome-wide scale, our data indicate that ATRX modifies gene expression concomitantly to H3.3 deposition at a set of genes characterized both by elevated H3.3 occupancy and high expression. Altogether, our results show that ATRX is involved in H3.3 deposition and emphasize the role of histone chaperones in adjusting genome expression.

  4. Variation in the human cannabinoid receptor CNR1 gene modulates gaze duration for happy faces

    Directory of Open Access Journals (Sweden)

    Chakrabarti Bhismadev

    2011-06-01

    Full Text Available Abstract Background From an early age, humans look longer at preferred stimuli and also typically look longer at facial expressions of emotion, particularly happy faces. Atypical gaze patterns towards social stimuli are common in autism spectrum conditions (ASC. However, it is unknown whether gaze fixation patterns have any genetic basis. In this study, we tested whether variations in the cannabinoid receptor 1 (CNR1 gene are associated with gaze duration towards happy faces. This gene was selected because CNR1 is a key component of the endocannabinoid system, which is involved in processing reward, and in our previous functional magnetic resonance imaging (fMRI study, we found that variations in CNR1 modulate the striatal response to happy (but not disgust faces. The striatum is involved in guiding gaze to rewarding aspects of a visual scene. We aimed to validate and extend this result in another sample using a different technique (gaze tracking. Methods A total of 30 volunteers (13 males and 17 females from the general population observed dynamic emotional expressions on a screen while their eye movements were recorded. They were genotyped for the identical four single-nucleotide polymorphisms (SNPs in the CNR1 gene tested in our earlier fMRI study. Results Two SNPs (rs806377 and rs806380 were associated with differential gaze duration for happy (but not disgust faces. Importantly, the allelic groups associated with a greater striatal response to happy faces in the fMRI study were associated with longer gaze duration at happy faces. Conclusions These results suggest that CNR1 variations modulate the striatal function that underlies the perception of signals of social reward, such as happy faces. This suggests that CNR1 is a key element in the molecular architecture of perception of certain basic emotions. This may have implications for understanding neurodevelopmental conditions marked by atypical eye contact and facial emotion processing

  5. Variation in the human cannabinoid receptor CNR1 gene modulates gaze duration for happy faces.

    Science.gov (United States)

    Chakrabarti, Bhismadev; Baron-Cohen, Simon

    2011-06-29

    From an early age, humans look longer at preferred stimuli and also typically look longer at facial expressions of emotion, particularly happy faces. Atypical gaze patterns towards social stimuli are common in autism spectrum conditions (ASC). However, it is unknown whether gaze fixation patterns have any genetic basis. In this study, we tested whether variations in the cannabinoid receptor 1 (CNR1) gene are associated with gaze duration towards happy faces. This gene was selected because CNR1 is a key component of the endocannabinoid system, which is involved in processing reward, and in our previous functional magnetic resonance imaging (fMRI) study, we found that variations in CNR1 modulate the striatal response to happy (but not disgust) faces. The striatum is involved in guiding gaze to rewarding aspects of a visual scene. We aimed to validate and extend this result in another sample using a different technique (gaze tracking). A total of 30 volunteers (13 males and 17 females) from the general population observed dynamic emotional expressions on a screen while their eye movements were recorded. They were genotyped for the identical four single-nucleotide polymorphisms (SNPs) in the CNR1 gene tested in our earlier fMRI study. Two SNPs (rs806377 and rs806380) were associated with differential gaze duration for happy (but not disgust) faces. Importantly, the allelic groups associated with a greater striatal response to happy faces in the fMRI study were associated with longer gaze duration at happy faces. These results suggest that CNR1 variations modulate the striatal function that underlies the perception of signals of social reward, such as happy faces. This suggests that CNR1 is a key element in the molecular architecture of perception of certain basic emotions. This may have implications for understanding neurodevelopmental conditions marked by atypical eye contact and facial emotion processing, such as ASC.

  6. Inhibitors of angiotensin-converting enzyme modulate mitosis and gene expression in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M.K.; Baskaran, K.; Molteni, A. [Northwestern Univ. Medical School, Chicago, IL (United States)

    1995-12-01

    The angiotensin-converting enzyme (ACE) inhibitor captopril inhibits mitosis in several cell types that contain ACE and renin activity. In the present study, we evaluated the effect of the ACE inhibitors captopril and CGS 13945 (10{sup {minus}8} to 10{sup {minus}2}M) on proliferation and gene expression in hamster pancreatic duct carcinoma cells in culture. These cells lack renin and ACE activity. Both ACE inhibitors produced a dose-dependent reduction in tumor cell proliferation within 24 hr. Captopril at a concentration of 0.36 mM and CGS 13945 at 150 {mu}M decreased cellular growth rate to approximately half that of the control. Neither drug influenced the viability or the cell cycle distribution of the tumor cells. Slot blot analysis of mRNA for four genes, proliferation associated cell nuclear antigen (PCNA), K-ras, protein kinase C-{Beta} (PKC-{Beta}) and carbonic anhydrase II (CA II) was performed. Both ACE inhibitors increased K-ras expression by a factor of 2, and had no effect on CA II mRNA levels. Captopril also lowered PCNA by 40% and CGS 13945 lowered PKC-{Beta} gene expression to 30% of the control level. The data demonstrate that ACE inhibitors exhibit antimitotic activity and differential gene modulation in hamster pancreatic duct carcinoma cells. The absence of renin and ACE activity in these cells suggests that the antimitotic action of captopril and CGS 13945 is independent of renin-angiotensin regulation. The growth inhibition may occur through downregulation of growth-related gene expression. 27 refs., 5 figs.

  7. Module Anchored Network Inference: A Sequential Module-Based Approach to Novel Gene Network Construction from Genomic Expression Data on Human Disease Mechanism

    Directory of Open Access Journals (Sweden)

    Annamalai Muthiah

    2017-01-01

    Full Text Available Different computational approaches have been examined and compared for inferring network relationships from time-series genomic data on human disease mechanisms under the recent Dialogue on Reverse Engineering Assessment and Methods (DREAM challenge. Many of these approaches infer all possible relationships among all candidate genes, often resulting in extremely crowded candidate network relationships with many more False Positives than True Positives. To overcome this limitation, we introduce a novel approach, Module Anchored Network Inference (MANI, that constructs networks by analyzing sequentially small adjacent building blocks (modules. Using MANI, we inferred a 7-gene adipogenesis network based on time-series gene expression data during adipocyte differentiation. MANI was also applied to infer two 10-gene networks based on time-course perturbation datasets from DREAM3 and DREAM4 challenges. MANI well inferred and distinguished serial, parallel, and time-dependent gene interactions and network cascades in these applications showing a superior performance to other in silico network inference techniques for discovering and reconstructing gene network relationships.

  8. NF-Y recruits both transcription activator and repressor to modulate tissue- and developmental stage-specific expression of human γ-globin gene.

    Directory of Open Access Journals (Sweden)

    Xingguo Zhu

    Full Text Available The human embryonic, fetal and adult β-like globin genes provide a paradigm for tissue- and developmental stage-specific gene regulation. The fetal γ-globin gene is expressed in fetal erythroid cells but is repressed in adult erythroid cells. The molecular mechanism underlying this transcriptional switch during erythroid development is not completely understood. Here, we used a combination of in vitro and in vivo assays to dissect the molecular assemblies of the active and the repressed proximal γ-globin promoter complexes in K562 human erythroleukemia cell line and primary human fetal and adult erythroid cells. We found that the proximal γ-globin promoter complex is assembled by a developmentally regulated, general transcription activator NF-Y bound strongly at the tandem CCAAT motifs near the TATA box. NF-Y recruits to neighboring DNA motifs the developmentally regulated, erythroid transcription activator GATA-2 and general repressor BCL11A, which in turn recruit erythroid repressor GATA-1 and general repressor COUP-TFII to form respectively the NF-Y/GATA-2 transcription activator hub and the BCL11A/COUP-TFII/GATA-1 transcription repressor hub. Both the activator and the repressor hubs are present in both the active and the repressed γ-globin promoter complexes in fetal and adult erythroid cells. Through changes in their levels and respective interactions with the co-activators and co-repressors during erythroid development, the activator and the repressor hubs modulate erythroid- and developmental stage-specific transcription of γ-globin gene.

  9. SIMULTANEOUS SPACE VECTOR MODULATION DIRECT TORQUE CONTROL OF TWO INDUCTION MOTORS USED IN ELECTRIC VEHICLES BY A NINE-SWITCH INVERTER

    Directory of Open Access Journals (Sweden)

    A. R. SHAMLOU

    2017-12-01

    Full Text Available In this paper, a novel two output nine switch-inverter is proposed in order to increase the synchronization speed of induction motors used in electric vehicles (EVs while improving the efficiency and controllability of the system. The number of switches in the proposed inverter is reduced by 25% compared to double six-switch inverters which conventionally used in EVs. The main characteristics of the considered inverter can be noted as follows: sinusoidal input and outputs, unity output power factor, and specifically, low construction cost due to active switch number reduction. The classical direct torque control method causes torque ripple and speed fluctuations. Therefore, in order to increase accuracy and dynamics of drive system, the SVM-DTC method is proposed, leading to less torque ripple and constant switching frequency. The obtained torque ripple is 2% which is less than the existing structures In order to illustrate advantages of the proposed approach, performance of the EVs in the standard cycles is evaluated.

  10. IKKε modulates RSV-induced NF-κB-dependent gene transcription

    International Nuclear Information System (INIS)

    Bao Xiaoyong; Indukuri, Hemalatha; Liu Tianshuang; Liao Suiling; Tian, Bing; Brasier, Allan R.; Garofalo, Roberto P.; Casola, Antonella

    2010-01-01

    Respiratory syncytial virus (RSV), a negative-strand RNA virus, is the most common cause of epidemic respiratory disease in infants and young children. RSV infection of airway epithelial cells induces the expression of immune/inflammatory genes through the activation of a subset of transcription factors, including Nuclear Factor-κB (NF-κB). In this study we have investigated the role of the non canonical IκB kinase (IKK)ε in modulating RSV-induced NF-κB activation. Our results show that inhibition of IKKε activation results in significant impairment of viral-induced NF-κB-dependent gene expression, through a reduction in NF-κB transcriptional activity, without changes in nuclear translocation or DNA-binding activity. Absence of IKKε results in a significant decrease of RSV-induced NF-κB phosphorylation on serine 536, a post-translational modification important for RSV-induced NF-κB-dependent gene expression, known to regulate NF-κB transcriptional activity without affecting nuclear translocation. This study identifies a novel mechanism by which IKKε regulates viral-induced cellular signaling.

  11. Veratramine modulates AP-1-dependent gene transcription by directly binding to programmable DNA.

    Science.gov (United States)

    Bai, Fang; Liu, Kangdong; Li, Huiliang; Wang, Jiawei; Zhu, Junsheng; Hao, Pei; Zhu, Lili; Zhang, Shoude; Shan, Lei; Ma, Weiya; Bode, Ann M; Zhang, Weidong; Li, Honglin; Dong, Zigang

    2018-01-25

    Because the transcription factor activator protein-1 (AP-1) regulates a variety of protein-encoding genes, it is a participant in many cellular functions, including proliferation, transformation, epithelial mesenchymal transition (EMT), and apoptosis. Inhibitors targeting AP-1 have potential use in the treatment of cancer and other inflammatory diseases. Here, we identify veratramine as a potent natural modulator of AP-1, which selectively binds to a specific site (TRE 5'-TGACTCA-3') of the AP-1 target DNA sequence and regulates AP-1-dependent gene transcription without interfering with cystosolic signaling cascades that might lead to AP-1 activation. Moreover, RNA-seq experiments demonstrate that veratramine does not act on the Hedgehog signaling pathway in contrast to its analogue, cyclopamine, and likely does not harbor the same teratogenicity and toxicity. Additionally, veratramine effectively suppresses EGF-induced AP-1 transactivation and transformation of JB6 P+ cells. Finally, we demonstrate that veratramine inhibits solar-ultraviolet-induced AP-1 activation in mice. The identification of veratramine and new findings in its specific regulation of AP-1 down stream genes pave ways to discovering and designing regulators to regulate transcription factor. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption.

    Science.gov (United States)

    Spanagel, Rainer; Pendyala, Gurudutt; Abarca, Carolina; Zghoul, Tarek; Sanchis-Segura, Carles; Magnone, Maria Chiara; Lascorz, Jesús; Depner, Martin; Holzberg, David; Soyka, Michael; Schreiber, Stefan; Matsuda, Fumihiko; Lathrop, Mark; Schumann, Gunter; Albrecht, Urs

    2005-01-01

    Period (Per) genes are involved in regulation of the circadian clock and are thought to modulate several brain functions. We demonstrate that Per2(Brdm1) mutant mice, which have a deletion in the PAS domain of the Per2 protein, show alterations in the glutamatergic system. Lowered expression of the glutamate transporter Eaat1 is observed in these animals, leading to reduced uptake of glutamate by astrocytes. As a consequence, glutamate levels increase in the extracellular space of Per2(Brdm1) mutant mouse brains. This is accompanied by increased alcohol intake in these animals. In humans, variations of the PER2 gene are associated with regulation of alcohol consumption. Acamprosate, a drug used to prevent craving and relapse in alcoholic patients is thought to act by dampening a hyper-glutamatergic state. This drug reduced augmented glutamate levels and normalized increased alcohol consumption in Per2(Brdm1) mutant mice. Collectively, these data establish glutamate as a link between dysfunction of the circadian clock gene Per2 and enhanced alcohol intake.

  13. Micro-fluidic module for blood cell separation for gene expression radiobiological assays

    International Nuclear Information System (INIS)

    Brengues, Muriel; Gu, Jian; Zenhausern, Frederic

    2015-01-01

    Advances in molecular techniques have improved discovery of biomarkers associated with radiation exposure. Gene expression techniques have been demonstrated as effective tools for biodosimetry, and different assay platforms with different chemistries are now available. One of the main challenges is to integrate the sample preparation processing of these assays into micro-fluidic platforms to be fully automated for point-of-care medical countermeasures in the case of a radiological event. Most of these assays follow the same workflow processing that comprises first the collection of blood samples followed by cellular and molecular sample preparation. The sample preparation is based on the specific reagents of the assay system and depends also on the different subsets of cells population and the type of biomarkers of interest. In this article, the authors present a module for isolation of white blood cells from peripheral blood as a prerequisite for automation of gene expression assays on a micro-fluidic cartridge. For each sample condition, the gene expression platform can be adapted to suit the requirements of the selected assay chemistry (authors)

  14. Integrated Optoelectronic Switching Technology for Fiber-Optic Communications Networks

    National Research Council Canada - National Science Library

    Fan, Regis

    1998-01-01

    .... most of the effort in optical amplifier switch modules have been focused on monolithic switches in which the entire device is fabricated on an InP substrate together with the semiconductor optical amplifiers (SOAs...

  15. Epigenetic codes programming class switch recombination

    Directory of Open Access Journals (Sweden)

    Bharat eVaidyanathan

    2015-09-01

    Full Text Available Class switch recombination imparts B cells with a fitness-associated adaptive advantage during a humoral immune response by using a precision-tailored DNA excision and ligation process to swap the default constant region gene of the antibody with a new one that has unique effector functions. This secondary diversification of the antibody repertoire is a hallmark of the adaptability of B cells when confronted with environmental and pathogenic challenges. Given that the nucleotide sequence of genes during class switching remains unchanged (genetic constraints, it is logical and necessary therefore, to integrate the adaptability of B cells to an epigenetic state, which is dynamic and can be heritably modulated before, after or even during an antibody-dependent immune response. Epigenetic regulation encompasses heritable changes that affect function (phenotype without altering the sequence information embedded in a gene, and include histone, DNA and RNA modifications. Here, we review current literature on how B cells use an epigenetic code language as a means to ensure antibody plasticity in light of pathogenic insults.

  16. Combinational Spinal GAD65 Gene Delivery and Systemic GABA-Mimetic Treatment for Modulation of Spasticity

    Science.gov (United States)

    Kakinohana, Osamu; Hefferan, Michael P.; Miyanohara, Atsushi; Nejime, Tetsuya; Marsala, Silvia; Juhas, Stefan; Juhasova, Jana; Motlik, Jan; Kucharova, Karolina; Strnadel, Jan; Platoshyn, Oleksandr; Lazar, Peter; Galik, Jan; Vinay, Laurent; Marsala, Martin

    2012-01-01

    Background Loss of GABA-mediated pre-synaptic inhibition after spinal injury plays a key role in the progressive increase in spinal reflexes and the appearance of spasticity. Clinical studies show that the use of baclofen (GABAB receptor agonist), while effective in modulating spasticity is associated with major side effects such as general sedation and progressive tolerance development. The goal of the present study was to assess if a combined therapy composed of spinal segment-specific upregulation of GAD65 (glutamate decarboxylase) gene once combined with systemic treatment with tiagabine (GABA uptake inhibitor) will lead to an antispasticity effect and whether such an effect will only be present in GAD65 gene over-expressing spinal segments. Methods/Principal Findings Adult Sprague-Dawley (SD) rats were exposed to transient spinal ischemia (10 min) to induce muscle spasticity. Animals then received lumbar injection of HIV1-CMV-GAD65 lentivirus (LVs) targeting ventral α-motoneuronal pools. At 2–3 weeks after lentivirus delivery animals were treated systemically with tiagabine (4, 10, 20 or 40 mg/kg or vehicle) and the degree of spasticity response measured. In a separate experiment the expression of GAD65 gene after spinal parenchymal delivery of GAD65-lentivirus in naive minipigs was studied. Spastic SD rats receiving spinal injections of the GAD65 gene and treated with systemic tiagabine showed potent and tiagabine-dose-dependent alleviation of spasticity. Neither treatment alone (i.e., GAD65-LVs injection only or tiagabine treatment only) had any significant antispasticity effect nor had any detectable side effect. Measured antispasticity effect correlated with increase in spinal parenchymal GABA synthesis and was restricted to spinal segments overexpressing GAD65 gene. Conclusions/Significance These data show that treatment with orally bioavailable GABA-mimetic drugs if combined with spinal-segment-specific GAD65 gene overexpression can represent a novel

  17. Muscle-specific splicing factors ASD-2 and SUP-12 cooperatively switch alternative pre-mRNA processing patterns of the ADF/cofilin gene in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Genta Ohno

    Full Text Available Pre-mRNAs are often processed in complex patterns in tissue-specific manners to produce a variety of protein isoforms from single genes. However, mechanisms orchestrating the processing of the entire transcript are not well understood. Muscle-specific alternative pre-mRNA processing of the unc-60 gene in Caenorhabditis elegans, encoding two tissue-specific isoforms of ADF/cofilin with distinct biochemical properties in regulating actin organization, provides an excellent in vivo model of complex and tissue-specific pre-mRNA processing; it consists of a single first exon and two separate series of downstream exons. Here we visualize the complex muscle-specific processing pattern of the unc-60 pre-mRNA with asymmetric fluorescence reporter minigenes. By disrupting juxtaposed CUAAC repeats and UGUGUG stretch in intron 1A, we demonstrate that these elements are required for retaining intron 1A, as well as for switching the processing patterns of the entire pre-mRNA from non-muscle-type to muscle-type. Mutations in genes encoding muscle-specific RNA-binding proteins ASD-2 and SUP-12 turned the colour of the unc-60 reporter worms. ASD-2 and SUP-12 proteins specifically and cooperatively bind to CUAAC repeats and UGUGUG stretch in intron 1A, respectively, to form a ternary complex in vitro. Immunohistochemical staining and RT-PCR analyses demonstrate that ASD-2 and SUP-12 are also required for switching the processing patterns of the endogenous unc-60 pre-mRNA from UNC-60A to UNC-60B in muscles. Furthermore, systematic analyses of partially spliced RNAs reveal the actual orders of intron removal for distinct mRNA isoforms. Taken together, our results demonstrate that muscle-specific splicing factors ASD-2 and SUP-12 cooperatively promote muscle-specific processing of the unc-60 gene, and provide insight into the mechanisms of complex pre-mRNA processing; combinatorial regulation of a single splice site by two tissue-specific splicing regulators

  18. Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data

    Directory of Open Access Journals (Sweden)

    Li Min

    2012-05-01

    Full Text Available Abstract Background Identification of protein complexes and functional modules from protein-protein interaction (PPI networks is crucial to understanding the principles of cellular organization and predicting protein functions. In the past few years, many computational methods have been proposed. However, most of them considered the PPI networks as static graphs and overlooked the dynamics inherent within these networks. Moreover, few of them can distinguish between protein complexes and functional modules. Results In this paper, a new framework is proposed to distinguish between protein complexes and functional modules by integrating gene expression data into protein-protein interaction (PPI data. A series of time-sequenced subnetworks (TSNs is constructed according to the time that the interactions were activated. The algorithm TSN-PCD was then developed to identify protein complexes from these TSNs. As protein complexes are significantly related to functional modules, a new algorithm DFM-CIN is proposed to discover functional modules based on the identified complexes. The experimental results show that the combination of temporal gene expression data with PPI data contributes to identifying protein complexes more precisely. A quantitative comparison based on f-measure reveals that our algorithm TSN-PCD outperforms the other previous protein complex discovery algorithms. Furthermore, we evaluate the identified functional modules by using “Biological Process” annotated in GO (Gene Ontology. The validation shows that the identified functional modules are statistically significant in terms of “Biological Process”. More importantly, the relationship between protein complexes and functional modules are studied. Conclusions The proposed framework based on the integration of PPI data and gene expression data makes it possible to identify protein complexes and functional modules more effectively. Moveover, the proposed new framework and

  19. Ocean acidification modulates expression of genes and physiological performance of a marine diatom

    Science.gov (United States)

    Li, Yahe; Zhuang, Shufang; Wu, Yaping; Ren, Honglin; Chen, Fangyi; Lin, Xin; Wang, Kejian; Beardall, John; Gao, Kunshan

    2017-01-01

    Ocean Acidification (OA) is known to affect various aspects of physiological performances of diatoms, but little is known about the underlining molecular mechanisms involved. Here, we show that in the model diatom Phaeodactylum tricornutum, the expression of key genes associated with photosynthetic light harvesting as well as those encoding Rubisco, carbonic anhydrase, NADH dehydrogenase and nitrite reductase, are modulated by OA (1000 μatm, pHnbs 7.83). Growth and photosynthetic carbon fixation were enhanced by elevated CO2. OA treatment decreased the expression of β-carbonic anhydrase (β-ca), which functions in balancing intracellular carbonate chemistry and the CO2 concentrating mechanism (CCM). The expression of the genes encoding fucoxanthin chlorophyll a/c protein (lhcf type (fcp)), mitochondrial ATP synthase (mtATP), ribulose-1, 5-bisphosphate carboxylase/oxygenase large subunit gene (rbcl) and NADH dehydrogenase subunit 2 (ndh2), were down-regulated during the first four days (< 8 generations) after the cells were transferred from LC (cells grown under ambient air condition; 390 μatm; pHnbs 8.19) to OA conditions, with no significant difference between LC and HC treatments with the time elapsed. The expression of nitrite reductase (nir) was up-regulated by the OA treatment. Additionally, the genes for these proteins (NiR, FCP, mtATP synthase, β-CA) showed diel expression patterns. It appeared that the enhanced photosynthetic and growth rates under OA could be attributed to stimulated nitrogen assimilation, increased CO2 availability or saved energy from down-regulation of the CCM and consequently lowered cost of protein synthesis versus that of non-nitrogenous cell components. PMID:28192486

  20. Modulation of tyrosine hydroxylase gene expression in the central nervous system visualized by in situ hybridization

    International Nuclear Information System (INIS)

    Berod, A.; Biguet, N.F.; Dumas, S.; Bloch, B.; Mallet, J.

    1987-01-01

    cDNA probe was used for in situ hybridization studies on histological sections through the locus coeruleus, substantia nigra, and the ventral tegmental area of the rat brain. Experimental conditions were established that yielded no background and no signal when pBR322 was used as control probe. Using the tyrosine hydroxylase probe, the authors ascertained the specificity of the labeling over catecholaminergic cells by denervation experiments and comparison of the hybridization pattern with that of immunoreactivity. The use of 35 S-labeled probe enabled the hybridization signal to be resolved at the cellular level. A single injection of reserpine into the rat led to an increase of the intensity of the autoradiographic signal over the locus coeruleus area, confirming an RNA gel blot analysis. The potential of in situ hybridization to analyze patterns of modulation of gene activity as a result of nervous activity is discussed

  1. SCARA5 and Suprabasin are Hub Genes of Co-expression Network Modules Associated with Peripheral Vein Graft Patency

    Science.gov (United States)

    Kenagy, Richard D; Civelek, M; Kikuchi, Shinsuke; Chen, Lihua; Grieff, A; Sobel, Michael; Lusis, Aldons J; Clowes, Alexander W

    2015-01-01

    Objective About 30% of autogenous vein grafts develop luminal narrowing and fail because of intimal hyperplasia or negative remodeling. We previously found that vein graft cells from patients that later develop stenosis proliferate more in vitro in response to growth factors than cells from patients that maintain patent grafts. To discover novel determinants of vein graft outcome we have analyzed gene expression profiles of these cells using a systems biology approach to cluster the genes into modules based on their co-expression patterns and to correlate the results with growth data from our prior study and with new studies of migration and matrix remodeling. Methods RNA from 4 hour serum- or PDGF-BB-stimulated human saphenous vein cells obtained from the outer vein wall (20 cell lines), was used for microarray analysis of gene expression followed by weighted gene co-expression network analysis. Cell migration in microchemotaxis chambers in response to PDGF-BB and cell-mediated collagen gel contraction in response to serum were also determined. Gene function was determined using siRNA to inhibit gene expression before subjecting cells to growth or collagen gel contraction assays. These cells were derived from samples of the vein grafts obtained at surgery, and the long term fate of these bypass grafts was known. Results Neither migration nor cell-mediated collagen gel contraction showed a correlation with graft outcome. While 1,188 and 1,340 genes were differentially expressed in response to treatment with serum and PDGF, respectively, no single gene was differentially expressed in cells isolated from patients whose grafts stenosed compared to those that remained patent. Network analysis revealed 4 unique groups of genes, which we term modules, associated with PDGF responses, and 20 unique modules associated with serum responses. The “Yellow” and “Skyblue” modules, from PDGF and serum analyses respectively, both correlated with later graft stenosis (P=.005

  2. Neuropeptide S receptor gene variation modulates anterior cingulate cortex Glx levels during CCK-4 induced panic.

    Science.gov (United States)

    Ruland, Tillmann; Domschke, Katharina; Schütte, Valerie; Zavorotnyy, Maxim; Kugel, Harald; Notzon, Swantje; Vennewald, Nadja; Ohrmann, Patricia; Arolt, Volker; Pfleiderer, Bettina; Zwanzger, Peter

    2015-10-01

    An excitatory-inhibitory neurotransmitter dysbalance has been suggested in pathogenesis of panic disorder. The neuropeptide S (NPS) system has been implicated in modulating GABA and glutamate neurotransmission in animal models and to genetically drive altered fear circuit function and an increased risk of panic disorder in humans. Probing a multi-level imaging genetic risk model of panic, in the present magnetic resonance spectroscopy (MRS) study brain glutamate+glutamine (Glx) levels in the bilateral anterior cingulate cortex (ACC) during a pharmacological cholecystokinin tetrapeptide (CCK-4) panic challenge were assessed depending on the functional neuropeptide S receptor gene (NPSR1) rs324981 A/T variant in a final sample of 35 healthy male subjects. The subjective panic response (Panic Symptom Scale; PSS) as well as cortisol and ACTH levels were ascertained throughout the experiment. CCK-4 injection was followed by a strong panic response. A significant time×genotype interaction was detected (p=.008), with significantly lower ACC Glx/Cr levels in T allele carriers as compared to AA homozygotes 5min after injection (p=.003). CCK-4 induced significant HPA axis stimulation, but no effect of genotype was discerned. The present pilot data suggests NPSR1 gene variation to modulate Glx levels in the ACC during acute states of stress and anxiety, with blunted, i.e. possibly maladaptive ACC glutamatergic reactivity in T risk allele carriers. Our results underline the notion of a genetically driven rapid and dynamic response mechanism in the neural regulation of human anxiety and further strengthen the emerging role of the NPS system in anxiety. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  3. RNA-Eluting Surfaces for the Modulation of Gene Expression as A Novel Stent Concept

    Directory of Open Access Journals (Sweden)

    Olivia Koenig

    2017-02-01

    Full Text Available Presently, a new era of drug-eluting stents is continuing to improve late adverse effects such as thrombosis after coronary stent implantation in atherosclerotic vessels. The application of gene expression–modulating stents releasing specific small interfering RNAs (siRNAs or messenger RNAs (mRNAs to the vascular wall might have the potential to improve the regeneration of the vessel wall and to inhibit adverse effects as a new promising therapeutic strategy. Different poly (lactic-co-glycolic acid (PLGA resomers for their ability as an siRNA delivery carrier against intercellular adhesion molecule (ICAM-1 with a depot effect were tested. Biodegradability, hemocompatibility, and high cell viability were found in all PLGAs. We generated PLGA coatings with incorporated siRNA that were able to transfect EA.hy926 and human vascular endothelial cells. Transfected EA.hy926 showed significant siICAM-1 knockdown. Furthermore, co-transfection of siRNA and enhanced green fluorescent protein (eGFP mRNA led to the expression of eGFP as well as to the siRNA transfection. Using our PLGA and siRNA multilayers, we reached high transfection efficiencies in EA.hy926 cells until day six and long-lasting transfection until day 20. Our results indicate that siRNA and mRNA nanoparticles incorporated in PLGA films have the potential for the modulation of gene expression after stent implantation to achieve accelerated regeneration of endothelial cells and to reduce the risk of restenosis.

  4. Role of neurodevelopment involved genes in psychiatric comorbidities and modulation of inflammatory processes in Alzheimer's disease.

    Science.gov (United States)

    Porcelli, Stefano; Crisafulli, Concetta; Donato, Luigi; Calabrò, Marco; Politis, Antonis; Liappas, Ioannis; Albani, Diego; Atti, Anna Rita; Salfi, Raffaele; Raimondi, Ilaria; Forloni, Gianluigi; Papadimitriou, George N; De Ronchi, Diana; Serretti, Alessandro

    2016-11-15

    With the increase of the population's average age, Alzheimer's disease (AD) is becoming one of the most disabling diseases worldwide. Recently, neurodevelopment processes have been involved in the AD etiopathogenesis. Genetic studies in this field could contribute to our knowledge and suggest new molecular targets for possible treatments. Our primary aim was to investigate the associations among single nucleotide polymorphisms (SNPs) within neurodevelopment related genes (BDNF, ST8SIA2, C15orf32, NCAPG2, ESYT2, WDR60, LOC154822, VIPR2, GSK3B, NR1I2, ZNF804A, SP4) and AD. A number of exploratory analyses was also performed to evaluate the associations with the presence of behavioral and psychiatric symptoms of dementia (BPSD), as well as with variations in hematological parameters. Two independent samples were investigated, one of 228 Greek subjects and one sample of 229 Italian subjects, including 156Alzheimer's Disease patients CE patients and 301 healthy controls. All patients were affected by late onset AD (LOAD). None of the analyzed SNPs was associated with AD in our samples. In the exploratory analyses, several genetic variants were associated with inflammation parameters in the Greek sample and in the merged one, suggesting a relationship among these genes and the modulation of inflammation and the immune response. Other exploratory analyses showed associations among several SNPs and psychiatric symptomatology in the Greek sample, suggesting a possible modulation of these variants on psychiatric comorbidities in AD. Although we failed to find a direct relationship between AD and the genetic variants investigated, possible connections with inflammation and psychiatric symptoms were suggested. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Epigenetic switch at atp2a2 and myh7 gene promoters in pressure overload-induced heart failure.

    Directory of Open Access Journals (Sweden)

    Tiziana Angrisano

    Full Text Available Re-induction of fetal genes and/or re-expression of postnatal genes represent hallmarks of pathological cardiac remodeling, and are considered important in the progression of the normal heart towards heart failure (HF. Whether epigenetic modifications are involved in these processes is currently under investigation. Here we hypothesized that histone chromatin modifications may underlie changes in the gene expression program during pressure overload-induced HF. We evaluated chromatin marks at the promoter regions of the sarcoplasmic reticulum Ca2+ATPase (SERCA-2A and β-myosin-heavy chain (β-MHC genes (Atp2a2 and Myh7, respectively in murine hearts after one or eight weeks of pressure overload induced by transverse aortic constriction (TAC. As expected, all TAC hearts displayed a significant reduction in SERCA-2A and a significant induction of β-MHC mRNA levels. Interestingly, opposite histone H3 modifications were identified in the promoter regions of these genes after TAC, including H3 dimethylation (me2 at lysine (K 4 (H3K4me2 and K9 (H3K9me2, H3 trimethylation (me3 at K27 (H3K27me3 and dimethylation (me2 at K36 (H3K36me2. Consistently, a significant reduction of lysine-specific demethylase KDM2A could be found after eight weeks of TAC at the Atp2a2 promoter. Moreover, opposite changes in the recruitment of DNA methylation machinery components (DNA methyltransferases DNMT1 and DNMT3b, and methyl CpG binding protein 2 MeCp2 were found at the Atp2a2 or Myh7 promoters after TAC. Taken together, these results suggest that epigenetic modifications may underlie gene expression reprogramming in the adult murine heart under conditions of pressure overload, and might be involved in the progression of the normal heart towards HF.

  6. Environmental factors as modulators of neurodegeneration: insights from gene-environment interactions in Huntington's disease.

    Science.gov (United States)

    Mo, Christina; Hannan, Anthony J; Renoir, Thibault

    2015-05-01

    Unlike many other neurodegenerative diseases with established gene-environment interactions, Huntington's disease (HD) is viewed as a disorder governed by genetics. The cause of the disease is a highly penetrant tandem repeat expansion encoding an extended polyglutamine tract in the huntingtin protein. In the year 2000, a pioneering study showed that the disease could be delayed in transgenic mice by enriched housing conditions. This review describes subsequent human and preclinical studies identifying environmental modulation of motor, cognitive, affective and other symptoms found in HD. Alongside the behavioral observations we also discuss potential mechanisms and the relevance to other neurodegenerative disorders, including Alzheimer's and Parkinson's disease. In mouse models of HD, increased sensorimotor and cognitive stimulation can delay or ameliorate various endophenotypes. Potential mechanisms include increased trophic support, synaptic plasticity, adult neurogenesis, and other forms of experience-dependent cellular plasticity. Subsequent clinical investigations support a role for lifetime activity levels in modulating the onset and progression of HD. Stress can accelerate memory and olfactory deficits and exacerbate cellular dysfunctions in HD mice. In the absence of effective treatments to slow the course of HD, environmental interventions offer feasible approaches to delay the disease, however further preclinical and human studies are needed in order to generate clinical recommendations. Environmental interventions could be combined with future pharmacological therapies and stimulate the identification of enviromimetics, drugs which mimic or enhance the beneficial effects of cognitive stimulation and physical activity. Copyright © 2015. Published by Elsevier Ltd.

  7. Modulation of Cholesterol-Related Gene Expression by Dietary Fiber Fractions from Edible Mushrooms.

    Science.gov (United States)

    Caz, Víctor; Gil-Ramírez, Alicia; Largo, Carlota; Tabernero, María; Santamaría, Mónica; Martín-Hernández, Roberto; Marín, Francisco R; Reglero, Guillermo; Soler-Rivas, Cristina

    2015-08-26

    Mushrooms are a source of dietary fiber (DF) with a cholesterol-lowering effect. However, their underlying mechanisms are poorly understood. The effect of DF-enriched fractions from three mushrooms species on cholesterol-related expression was studied in vitro. The Pleurotus ostreatus DF fraction (PDF) was used in mice models to assess its potential palliative or preventive effect against hypercholesterolemia. PDF induced a transcriptional response in Caco-2 cells, suggesting a possible cholesterol-lowering effect. In the palliative setting, PDF reduced hepatic triglyceride likely because Dgat1 was downregulated. However, cholesterol-related biochemical data showed no changes and no relation with the observed transcriptional modulation. In the preventive setting, PDF modulated cholesterol-related genes expression in a manner similar to that of simvastatin and ezetimibe in the liver, although no changes in plasma and liver biochemical data were induced. Therefore, PDF may be useful reducing hepatic triglyceride accumulation. Because it induced a molecular response similar to hypocholesterolemic drugs in liver, further dose-dependent studies should be carried out.

  8. Src subfamily kinases regulate nuclear export and degradation of transcription factor Nrf2 to switch off Nrf2-mediated antioxidant activation of cytoprotective gene expression.

    Science.gov (United States)

    Niture, Suryakant K; Jain, Abhinav K; Shelton, Phillip M; Jaiswal, Anil K

    2011-08-19

    Nrf2 (NF-E2-related factor 2) is a nuclear transcription factor that in response to chemical and radiation stress regulates coordinated induction of a battery of cytoprotective gene expressions leading to cellular protection. In this study, we investigated the role of Src kinases in the regulation of Nrf2 and downstream signaling. siRNA-mediated inhibition of Fyn, Src, Yes, and Fgr, but not Lyn, in mouse hepatoma Hepa-1 cells, led to nuclear accumulation of Nrf2 and up-regulation of Nrf2 downstream gene expression. Mouse embryonic fibroblasts with combined deficiency of Fyn/Src/Yes/Fgr supported results from siRNA. In addition, steady-state overexpression of Fyn, Src, and Yes phosphorylated Nrf2Tyr568 that triggered nuclear export and degradation of Nrf2 and down-regulation of Nrf2 downstream gene expression. Exposure of cells to antioxidant, oxidant, or UV radiation increased nuclear import of Fyn, Src, and Yes kinases, which phosphorylated Nrf2Tyr568 resulting in nuclear export and degradation of Nrf2. Further analysis revealed that stress-activated GSK3β acted upstream to the Src kinases and phosphorylated the Src kinases, leading to their nuclear localization and Nrf2 phosphorylation. The overexpression of Src kinases in Hepa-1 cells led to decreased Nrf2, increased apoptosis, and decreased cell survival. Mouse embryonic fibroblasts deficient in Src kinases showed nuclear accumulation of Nrf2, induction of Nrf2 and downstream gene expression, reduced apoptosis, and increased cell survival. The studies together demonstrate that Src kinases play a critical role in nuclear export and degradation of Nrf2, thereby providing a negative feedback mechanism to switch off Nrf2 activation and restore normal cellular homeostasis.

  9. Unusual salt-induced color modulation through aggregation-induced emission switching of a bis-cationic phenylenedivinylene-based π hydrogelator.

    Science.gov (United States)

    Bhattacharya, Santanu; Samanta, Suman K

    2012-12-21

    The synthesis, hydrogelation, and aggregation-induced emission switching of the phenylenedivinylene bis-N-octyl pyridinium salt is described. Hydrogelation occurs as a consequence of π-stacking, van der Waals, and electrostatic interactions that lead to a high gel melting temperature and significant mechanical properties at a very low weight percentage of the gelator. A morphology transition from fiber-to-coil-to-tube was observed depending on the concentration of the gelator. Variation in the added salt type, salt concentrations, or temperature profoundly influenced the order of aggregation of the gelator molecules in aqueous solution. Formation of a novel chromophore assembly in this way leads to an aggregation-induced switch of the emission colors. The emission color switches from sky blue to white to orange depending upon the extent of aggregation through mere addition of external inorganic salts. Remarkably, the salt effect on the assembly of such cationic phenylenedivinylenes in water follow the behavior predicted from the well-known Hofmeister effects. Mechanistic insights for these aggregation processes were obtained through the counterion exchange studies. The aggregation-induced emission switching that leads to a room-temperature white-light emission from a single chromophore in a single solvent (water) is highly promising for optoelectronic applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. G0/G1 switch gene-2 regulates human adipocyte lipolysis by affecting activity and localization of adipose triglyceride lipase

    NARCIS (Netherlands)

    Schweiger, M.; Paar, M.; Eder, C.; Brandis, J.; Moser, E.; Gorkiewisz, G.; Grond, S.; Radner, F.P.W.; Cerk, I.; Cornaciu, I.; Oberer, M.; Kersten, A.H.; Zechner, R.; Zimmermann, M.B.; Lass, A.

    2012-01-01

    The hydrolysis of triglycerides in adipocytes, termed lipolysis, provides free fatty acids as energy fuel. Murine lipolysis largely depends on the activity of adipose triglyceride lipase (ATGL)5, which is regulated by two proteins annotated as comparative gene identification-58 (CGI-58) and G0/G1

  11. TDP-43 Loss-of-Function Causes Neuronal Loss Due to Defective Steroid Receptor-Mediated Gene Program Switching in Drosophila

    Directory of Open Access Journals (Sweden)

    Lies Vanden Broeck

    2013-01-01

    Full Text Available TDP-43 proteinopathy is strongly implicated in the pathogenesis of amyotrophic lateral sclerosis and related neurodegenerative disorders. Whether TDP-43 neurotoxicity is caused by a novel toxic gain-of-function mechanism of the aggregates or by a loss of its normal function is unknown. We increased and decreased expression of TDP-43 (dTDP-43 in Drosophila. Although upregulation of dTDP-43 induced neuronal ubiquitin and dTDP-43-positive inclusions, both up- and downregulated dTDP-43 resulted in selective apoptosis of bursicon neurons and highly similar transcriptome alterations at the pupal-adult transition. Gene network analysis and genetic validation showed that both up- and downregulated dTDP-43 directly and dramatically increased the expression of the neuronal microtubule-associated protein Map205, resulting in cytoplasmic accumulations of the ecdysteroid receptor (EcR and a failure to switch EcR-dependent gene programs from a pupal to adult pattern. We propose that dTDP-43 neurotoxicity is caused by a loss of its normal function.

  12. Circadian modulation of gene expression, but not glutamate uptake, in mouse and rat cortical astrocytes.

    Directory of Open Access Journals (Sweden)

    Christian Beaulé

    2009-10-01

    Full Text Available Circadian clocks control daily rhythms including sleep-wake, hormone secretion, and metabolism. These clocks are based on intracellular transcription-translation feedback loops that sustain daily oscillations of gene expression in many cell types. Mammalian astrocytes display circadian rhythms in the expression of the clock genes Period1 (Per1 and Period2 (Per2. However, a functional role for circadian oscillations in astrocytes is unknown. Because uptake of extrasynaptic glutamate depends on the presence of Per2 in astrocytes, we asked whether glutamate uptake by glia is circadian.We measured glutamate uptake, transcript and protein levels of the astrocyte-specific glutamate transporter, Glast, and the expression of Per1 and Per2 from cultured cortical astrocytes and from explants of somatosensory cortex. We found that glutamate uptake and Glast mRNA and protein expression were significantly reduced in Clock/Clock, Per2- or NPAS2-deficient glia. Uptake was augmented when the medium was supplemented with dibutyryl-cAMP or B27. Critically, glutamate uptake was not circadian in cortical astrocytes cultured from rats or mice or in cortical slices from mice.We conclude that glutamate uptake levels are modulated by CLOCK, PER2, NPAS2, and the composition of the culture medium, and that uptake does not show circadian variations.

  13. BAP1 inhibits the ER stress gene regulatory network and modulates metabolic stress response.

    Science.gov (United States)

    Dai, Fangyan; Lee, Hyemin; Zhang, Yilei; Zhuang, Li; Yao, Hui; Xi, Yuanxin; Xiao, Zhen-Dong; You, M James; Li, Wei; Su, Xiaoping; Gan, Boyi

    2017-03-21

    The endoplasmic reticulum (ER) is classically linked to metabolic homeostasis via the activation of unfolded protein response (UPR), which is instructed by multiple transcriptional regulatory cascades. BRCA1 associated protein 1 (BAP1) is a tumor suppressor with de-ubiquitinating enzyme activity and has been implicated in chromatin regulation of gene expression. Here we show that BAP1 inhibits cell death induced by unresolved metabolic stress. This prosurvival role of BAP1 depends on its de-ubiquitinating activity and correlates with its ability to dampen the metabolic stress-induced UPR transcriptional network. BAP1 inhibits glucose deprivation-induced reactive oxygen species and ATP depletion, two cellular events contributing to the ER stress-induced cell death. In line with this, Bap1 KO mice are more sensitive to tunicamycin-induced renal damage. Mechanically, we show that BAP1 represses metabolic stress-induced UPR and cell death through activating transcription factor 3 (ATF3) and C/EBP homologous protein (CHOP), and reveal that BAP1 binds to ATF3 and CHOP promoters and inhibits their transcription. Taken together, our results establish a previously unappreciated role of BAP1 in modulating the cellular adaptability to metabolic stress and uncover a pivotal function of BAP1 in the regulation of the ER stress gene-regulatory network. Our study may also provide new conceptual framework for further understanding BAP1 function in cancer.

  14. Red Light Modulates Ultraviolet-Induced Gene Expression in the Epidermis of Hairless Mice.

    Science.gov (United States)

    Myakishev-Rempel, Max; Stadler, Istvan; Polesskaya, Oksana; Motiwala, Alifiya S; Nardia, Frances Barg; Mintz, Benjamin; Baranova, Ancha; Zavislan, James; Lanzafame, Raymond J

    2015-10-01

    The purpose of this study was to investigate whether low-level light therapy (LLLT) was capable of modulating expression of ultraviolet (UV) light-responsive genes in vivo. The effects of 670 nm light-emitting diode (LED) array irradiation were investigated in a hairless SHK-1 mouse epidermis model. Mice were given a single dose of UVA/UVB light, or three doses of red light (670 nm @ 8 mW/cm(2) x 312 sec, 2.5 J/cm(2) per session) spread over 24 h along with combinations of pre- and post-UV treatment with red light. Levels of 14 UV-responsive mRNAs were quantified 24 h after UV irradiation by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The transcription of mRNAs encoding for cluster of differentiation molecule 11b (CD11b) (p light alone, whereas expression level of cyclooxygenase (COX)-2 (p light either. Pretreatment with red light significantly modified response of Fos to UV exposure (p light in reducing the transcription levels of CD11b (p light LLLT more often than not causes opposite gene expression changes or reduces those caused by moderate UVA-UVB irradiation.

  15. Maternal Diet Modulates Placenta Growth and Gene Expression in a Mouse Model of Diabetic Pregnancy

    Science.gov (United States)

    Kappen, Claudia; Kruger, Claudia; MacGowan, Jacalyn; Salbaum, J. Michael

    2012-01-01

    Unfavorable maternal diet during pregnancy can predispose the offspring to diseases later in life, such as hypertension, metabolic syndrome, and obesity. However, the molecular basis for this phenomenon of “developmental programming” is poorly understood. We have recently shown that a diet nutritionally optimized for pregnancy can nevertheless be harmful in the context of diabetic pregnancy in the mouse, associated with a high incidence of neural tube defects and intrauterine growth restriction. We hypothesized that placental abnormalities may contribute to impaired fetal growth in these pregnancies, and therefore investigated the role of maternal diet in the placenta. LabDiet 5015 diet was associated with reduced placental growth, commencing at midgestation, when compared to pregnancies in which the diabetic dam was fed LabDiet 5001 maintenance chow. Furthermore, by quantitative RT-PCR we identify 34 genes whose expression in placenta at midgestation is modulated by diet, diabetes, or both, establishing biomarkers for gene-environment interactions in the placenta. These results implicate maternal diet as an important factor in pregnancy complications and suggest that the early phases of placenta development could be a critical time window for developmental origins of adult disease. PMID:22701643

  16. A new strategy for exploring the hierarchical structure of cancers by adaptively partitioning functional modules from gene expression network.

    Science.gov (United States)

    Xu, Junmei; Jing, Runyu; Liu, Yuan; Dong, Yongcheng; Wen, Zhining; Li, Menglong

    2016-06-28

    The interactions among the genes within a disease are helpful for better understanding the hierarchical structure of the complex biological system of it. Most of the current methodologies need the information of known interactions between genes or proteins to create the network connections. However, these methods meet the limitations in clinical cancer researches because different cancers not only share the common interactions among the genes but also own their specific interactions distinguished from each other. Moreover, it is still difficult to decide the boundaries of the sub-networks. Therefore, we proposed a strategy to construct a gene network by using the sparse inverse covariance matrix of gene expression data, and divide it into a series of functional modules by an adaptive partition algorithm. The strategy was validated by using the microarray data of three cancers and the RNA-sequencing data of glioblastoma. The different modules in the network exhibited specific functions in cancers progression. Moreover, based on the gene expression profiles in the modules, the risk of death was well predicted in the clustering analysis and the binary classification, indicating that our strategy can be benefit for investigating the cancer mechanisms and promoting the clinical applications of network-based methodologies in cancer researches.

  17. The evolutionary host switches of Polychromophilus: a multi-gene phylogeny of the bat malaria genus suggests a second invasion of mammals by a haemosporidian parasite

    Science.gov (United States)

    2012-01-01

    Background The majority of Haemosporida species infect birds or reptiles, but many important genera, including Plasmodium, infect mammals. Dipteran vectors shared by avian, reptilian and mammalian Haemosporida, suggest multiple invasions of Mammalia during haemosporidian evolution; yet, phylogenetic analyses have detected only a single invasion event. Until now, several important mammal-infecting genera have been absent in these analyses. This study focuses on the evolutionary origin of Polychromophilus, a unique malaria genus that only infects bats (Microchiroptera) and is transmitted by bat flies (Nycteribiidae). Methods Two species of Polychromophilus were obtained from wild bats caught in Switzerland. These were molecularly characterized using four genes (asl, clpc, coI, cytb) from the three different genomes (nucleus, apicoplast, mitochondrion). These data were then combined with data of 60 taxa of Haemosporida available in GenBank. Bayesian inference, maximum likelihood and a range of rooting methods were used to test specific hypotheses concerning the phylogenetic relationships between Polychromophilus and the other haemosporidian genera. Results The Polychromophilus melanipherus and Polychromophilus murinus samples show genetically distinct patterns and group according to species. The Bayesian tree topology suggests that the monophyletic clade of Polychromophilus falls within the avian/saurian clade of Plasmodium and directed hypothesis testing confirms the Plasmodium origin. Conclusion Polychromophilus' ancestor was most likely a bird- or reptile-infecting Plasmodium before it switched to bats. The invasion of mammals as hosts has, therefore, not been a unique event in the evolutionary history of Haemosporida, despite the suspected costs of adapting to a new host. This was, moreover, accompanied by a switch in dipteran host. PMID:22356874

  18. PPARα gene polymorphisms modulate the association between physical activity and cardiometabolic risk.

    Science.gov (United States)

    Halder, I; Champlin, J; Sheu, L; Goodpaster, B H; Manuck, S B; Ferrell, R E; Muldoon, M F

    2014-07-01

    Habitual physical activity is understood to help prevent type 2 diabetes and atherosclerotic cardiovascular disease via beneficial effects on both metabolism and the vascular system. However, individuals do not have uniform cardiometabolic responses to physical activity. Here we explore the extent to which variation in the proliferator-activated receptor-alpha (PPARα) gene, which modulates carbohydrate and lipid metabolism, vascular function, and inflammation, predicts the overall cardiometabolic risk (CMR) profile of individuals engaging in various levels of physical activity. 917 unrelated, community volunteers (52% female, of Non-Hispanic European ancestry) aged 30-54 years, participated in the cross-sectional study. Subjects were genotyped for 5 single nucleotide polymorphisms in the PPARα gene, from which common haplotypes were defined. A continuous measure of CMR was calculated as an aggregate of 5 traditional risk factors: waist circumference, resting blood pressure, fasting serum triglycerides, HDL-cholesterol and glucose. Regression models were used to examine the main and interactive effects of physical activity and genetic variation on CMR. One common PPARα haplotype (H-23) was associated with a higher CMR. This association was moderated by daily physical activity (B = -0.11, SE = 0.053, t = -2.05, P = 0.04). Increased physical activity was associated with a steeper reduction of CMR in persons carrying the otherwise detrimental H-23 haplotype. Variations in the PPARα gene appear to magnify the cardiometabolic benefits of habitual physical activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The ATP-Dependent RNA Helicase DDX3X Modulates Herpes Simplex Virus 1 Gene Expression.

    Science.gov (United States)

    Khadivjam, Bita; Stegen, Camille; Hogue-Racine, Marc-Aurèle; El Bilali, Nabil; Döhner, Katinka; Sodeik, Beate; Lippé, Roger

    2017-04-15

    The human protein DDX3X is a DEAD box ATP-dependent RNA helicase that regulates transcription, mRNA maturation, and mRNA export and translation. DDX3X concomitantly modulates the replication of several RNA viruses and promotes innate immunity. We previously showed that herpes simplex virus 1 (HSV-1), a human DNA virus, incorporates DDX3X into its mature particles and that DDX3X is required for optimal HSV-1 infectivity. Here, we show that viral gene expression, replication, and propagation depend on optimal DDX3X protein levels. Surprisingly, DDX3X from incoming viral particles was not required for the early stages of the HSV-1 infection, but, rather, the protein controlled the assembly of new viral particles. This was independent of the previously reported ability of DDX3X to stimulate interferon type I production. Instead, both the lack and overexpression of DDX3X disturbed viral gene transcription and thus subsequent genome replication. This suggests that in addition to its effect on RNA viruses, DDX3X impacts DNA viruses such as HSV-1 by an interferon-independent pathway. IMPORTANCE Viruses interact with a variety of cellular proteins to complete their life cycle. Among them is DDX3X, an RNA helicase that participates in most aspects of RNA biology, including transcription, splicing, nuclear export, and translation. Several RNA viruses and a limited number of DNA viruses are known to manipulate DDX3X for their own benefit. In contrast, DDX3X is also known to promote interferon production to limit viral propagation. Here, we show that DDX3X, which we previously identified in mature HSV-1 virions, stimulates HSV-1 gene expression and, consequently, virion assembly by a process that is independent of its ability to promote the interferon pathway. Copyright © 2017 American Society for Microbiology.

  20. Musashi1 modulates cell proliferation genes in the medulloblastoma cell line Daoy

    Directory of Open Access Journals (Sweden)

    Hung Jaclyn Y

    2008-09-01

    Full Text Available Abstract Background Musashi1 (Msi1 is an RNA binding protein with a central role during nervous system development and stem cell maintenance. High levels of Msi1 have been reported in several malignancies including brain tumors thereby associating Msi1 and cancer. Methods We used the human medulloblastoma cell line Daoy as model system in this study to knock down the expression of Msi1 and determine the effects upon soft agar growth and neurophere formation. Quantitative RT-PCR was conducted to evaluate the expression of cell proliferation, differentiation and survival genes in Msi1 depleted Daoy cells. Results We observed that MSI1 expression was elevated in Daoy cells cultured as neurospheres compared to those grown as monolayer. These data indicated that Msi1 might be involved in regulating proliferation in cancer cells. Here we show that shRNA mediated Msi1 depletion in Daoy cells notably impaired their ability to form colonies in soft agar and to grow as neurospheres in culture. Moreover, differential expression of a group of Notch, Hedgehog and Wnt pathway related genes including MYCN, FOS, NOTCH2, SMO, CDKN1A, CCND2, CCND1, and DKK1, was also found in the Msi1 knockdown, demonstrating that Msi1 modulated the expression of a subset of cell proliferation, differentiation and survival genes in Daoy. Conclusion Our data suggested that Msi1 may promote cancer cell proliferation and survival as its loss seems to have a detrimental effect in the maintenance of medulloblastoma cancer cells. In this regard, Msi1 might be a positive regulator of tumor progression and a potential target for therapy.

  1. Optical fiber switch

    Science.gov (United States)

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  2. Coulomb Blockade Plasmonic Switch.

    Science.gov (United States)

    Xiang, Dao; Wu, Jian; Gordon, Reuven

    2017-04-12

    Tunnel resistance can be modulated with bias via the Coulomb blockade effect, which gives a highly nonlinear response current. Here we investigate the optical response of a metal-insulator-nanoparticle-insulator-metal structure and show switching of a plasmonic gap from insulator to conductor via Coulomb blockade. By introducing a sufficiently large charging energy in the tunnelling gap, the Coulomb blockade allows for a conductor (tunneling) to insulator (capacitor) transition. The tunnelling electrons can be delocalized over the nanocapacitor again when a high energy penalty is added with bias. We demonstrate that this has a huge impact on the plasmonic resonance of a 0.51 nm tunneling gap with ∼70% change in normalized optical loss. Because this structure has a tiny capacitance, there is potential to harness the effect for high-speed switching.

  3. Fresh Frozen Plasma Modulates Brain Gene Expression in a Swine Model of Traumatic Brain Injury and Shock

    DEFF Research Database (Denmark)

    Sillesen, Martin; Bambakidis, Ted; Dekker, Simone E

    2017-01-01

    BACKGROUND: Resuscitation with fresh frozen plasma (FFP) decreases brain lesion size and swelling in a swine model of traumatic brain injury and hemorrhagic shock. We hypothesized that brain gene expression profiles after traumatic brain injury and hemorrhagic shock would be modulated by FFP resu...

  4. Dissection of a QTL hotspot on mouse distal chromosome 1 that modulates neurobehavioral phenotypes and gene expression.

    Directory of Open Access Journals (Sweden)

    Khyobeni Mozhui

    2008-11-01

    Full Text Available A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1 that corresponds to human Chr 1q21-q23. This region is highly enriched in quantitative trait loci (QTLs that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1, and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility. Here, we ask whether this QTL-rich region on Chr 1 (Qrr1 consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p and a distal part (Qrr1d, each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of approximately 20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes.

  5. A σE-Mediated Temperature Gauge Controls a Switch from LuxR-Mediated Virulence Gene Expression to Thermal Stress Adaptation in Vibrio alginolyticus.

    Directory of Open Access Journals (Sweden)

    Dan Gu

    2016-06-01

    Full Text Available In vibrios, the expression of virulence factors is often controlled by LuxR, the master quorum-sensing regulator. Here, we investigate the interplay between LuxR and σE, an alternative sigma factor, during the control of virulence-related gene expression and adaptations to temperature elevations in the zoonotic pathogen Vibrio alginolyticus. An rpoE null V. alginolyticus mutant was unable to adapt to various stresses and was survival-deficient in fish. In wild type V. alginolyticus, the expression of LuxR-regulated virulence factors increased as the temperature was increased from 22°C to 37°C, but mutants lacking σE did not respond to temperature, indicating that σE is critical for the temperature-dependent upregulation of virulence genes. Further analyses revealed that σE binds directly to -10 and -35 elements in the luxR promoter that drive its transcription. ChIP assays showed that σE binds to the promoter regions of luxR, rpoH and rpoE at high temperatures (e.g., 30°C and 37°C. However, at higher temperatures (42°C that induce thermal stress, σE binding to the luxR promoter decreased, while its binding to the rpoH and rpoE promoters was unchanged. Thus, the temperature-dependent binding of σE to distinct promoters appears to underlie a σE-controlled switch between the expression of virulence genes and adaptation to thermal stress. This study illustrates how a conserved temperature response mechanism integrates into quorum-sensing circuits to regulate both virulence and stress adaptation.

  6. Pax4 is not essential for beta-cell differentiation in zebrafish embryos but modulates alpha-cell generation by repressing arx gene expression.

    Science.gov (United States)

    Djiotsa, Joachim; Verbruggen, Vincianne; Giacomotto, Jean; Ishibashi, Minaka; Manning, Elisabeth; Rinkwitz, Silke; Manfroid, Isabelle; Voz, Marianne L; Peers, Bernard

    2012-12-17

    Genetic studies in mouse have demonstrated the crucial function of PAX4 in pancreatic cell differentiation. This transcription factor specifies β- and δ-cell fate at the expense of α-cell identity by repressing Arx gene expression and ectopic expression of PAX4 in α-cells is sufficient to convert them into β-cells. Surprisingly, no Pax4 orthologous gene can be found in chicken and Xenopus tropicalis raising the question of the function of pax4 gene in lower vertebrates such as in fish. In the present study, we have analyzed the expression and the function of the orthologous pax4 gene in zebrafish. pax4 gene is transiently expressed in the pancreas of zebrafish embryos and is mostly restricted to endocrine precursors as well as to some differentiating δ- and ε-cells but was not detected in differentiating β-cells. pax4 knock-down in zebrafish embryos caused a significant increase in α-cells number while having no apparent effect on β- and δ-cell differentiation. This rise of α-cells is due to an up-regulation of the Arx transcription factor. Conversely, knock-down of arx caused to a complete loss of α-cells and a concomitant increase of pax4 expression but had no effect on the number of β- and δ-cells. In addition to the mutual repression between Arx and Pax4, these two transcription factors negatively regulate the transcription of their own gene. Interestingly, disruption of pax4 RNA splicing or of arx RNA splicing by morpholinos targeting exon-intron junction sites caused a blockage of the altered transcripts in cell nuclei allowing an easy characterization of the arx- and pax4-deficient cells. Such analyses demonstrated that arx knock-down in zebrafish does not lead to a switch of cell fate, as reported in mouse, but rather blocks the cells in their differentiation process towards α-cells. In zebrafish, pax4 is not required for the generation of the first β- and δ-cells deriving from the dorsal pancreatic bud, unlike its crucial role in the

  7. Gene Transfer and Modulation for the Production of Food with Enhanced Quali-Quantitative Values: Potentials, Promises and Achievements

    Directory of Open Access Journals (Sweden)

    Malgorzata Karbarz

    2013-01-01

    Full Text Available We present an overview of the research and achievements of applications of molecular tools based on gene transfer and gene modulation (gene knock-down and knock-out, aimed at enhancing food production, improving food properties and producing various valuable compounds for human nutrition. Selected cases of genetically manipulated plants (biofortification and allergene silencing and animals (fish and livestock are examined. Promises and accomplishments are considered when giving topic examples of the potentials offered by some applications of molecular biology for obtaining goods, among them milk, with enhanced value, and of their impact on society at large.

  8. Systems toxicology of chemically induced liver and kidney injuries: histopathology‐associated gene co‐expression modules

    Science.gov (United States)

    Te, Jerez A.; AbdulHameed, Mohamed Diwan M.

    2016-01-01

    Abstract Organ injuries caused by environmental chemical exposures or use of pharmaceutical drugs pose a serious health risk that may be difficult to assess because of a lack of non‐invasive diagnostic tests. Mapping chemical injuries to organ‐specific histopathology outcomes via biomarkers will provide a foundation for designing precise and robust diagnostic tests. We identified co‐expressed genes (modules) specific to injury endpoints using the Open Toxicogenomics Project‐Genomics Assisted Toxicity Evaluation System (TG‐GATEs) – a toxicogenomics database containing organ‐specific gene expression data matched to dose‐ and time‐dependent chemical exposures and adverse histopathology assessments in Sprague–Dawley rats. We proposed a protocol for selecting gene modules associated with chemical‐induced injuries that classify 11 liver and eight kidney histopathology endpoints based on dose‐dependent activation of the identified modules. We showed that the activation of the modules for a particular chemical exposure condition, i.e., chemical‐time‐dose combination, correlated with the severity of histopathological damage in a dose‐dependent manner. Furthermore, the modules could distinguish different types of injuries caused by chemical exposures as well as determine whether the injury module activation was specific to the tissue of origin (liver and kidney). The generated modules provide a link between toxic chemical exposures, different molecular initiating events among underlying molecular pathways and resultant organ damage. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons, Ltd. PMID:26725466

  9. Mouse Obox and Crxos modulate preimplantation transcriptional profiles revealing similarity between paralogous mouse and human homeobox genes

    Directory of Open Access Journals (Sweden)

    Amy H. Royall

    2018-01-01

    Full Text Available Abstract Background ETCHbox genes are eutherian-specific homeobox genes expressed during preimplantation development at a time when the first cell lineage decisions are being made. The mouse has an unusual repertoire of ETCHbox genes with several gene families lost in evolution and the remaining two, Crxos and Obox, greatly divergent in sequence and number. Each has undergone duplication to give a double homeodomain Crxos locus and a large cluster of over 60 Obox loci. The gene content differences between species raise important questions about how evolution can tolerate loss of genes implicated in key developmental events. Results We find that Crxos internal duplication occurred in the mouse lineage, while Obox duplication was stepwise, generating subgroups with distinct sequence and expression. Ectopic expression of three Obox genes and a Crxos transcript in primary mouse embryonic cells followed by transcriptome sequencing allowed investigation into their functional roles. We find distinct transcriptomic influences for different Obox subgroups and Crxos, including modulation of genes related to zygotic genome activation and preparation for blastocyst formation. Comparison with similar experiments performed using human homeobox genes reveals striking overlap between genes downstream of mouse Crxos and genes downstream of human ARGFX. Conclusions Mouse Crxos and human ARGFX homeobox genes are paralogous rather than orthologous, yet they have evolved to regulate a common set of genes. This suggests there was compensation of function alongside gene loss through co-option of a different locus. Functional compensation by non-orthologous genes with dissimilar sequences is unusual but may indicate underlying distributed robustness. Compensation may be driven by the strong evolutionary pressure for successful early embryo development.

  10. A Close Loop Low-Power and High Speed 130 nm CMOS Sample and Hold Circuit Based on Switched Capacitor for ADC Module

    Science.gov (United States)

    Nasir, Z.; Ruslan, S. H.

    2017-08-01

    A sample and hold (S/H) block is typically used as an analogue to digital interface in the analogue to digital converter (ADC) system. Since ADC is widely used in processing signals, the power consumption of the ADC must be lowered to conserve energy. Therefore the S/H circuit must be of a low powered too. Sampling phase and hold phase are the two phases of the operation cycle of the S/H circuit. Switched capacitor (SC) techniques have been developed in order to allow the integration on a single silicon chip of both digital and analogue functions. By controlling switches around the SC, the SC circuit works by passing charge into and out of a capacitor. SC circuits are suitable for on chip implementations because they replace a resistor with switches and capacitors. In this research, a closed-loop sample and hold circuit based on SC is designed and simulated with Cadence EDA tools. The schematic, layout, and simulation of the circuit is done using generic Silterra 130 nm technology file. All the analysis is done using Virtuoso Analog Design Environment. Layout and schematic are drawn using Virtuoso Schematic Editor and Virtuoso Layout Editor, Calibre is used for post layout simulation. The closed loop S/H circuit based on SC is successfully designed and able to sample and hold the analogue input waveform. The power consumption of the circuit is 0.919 mW and the propagation delay is 64.96 ps.

  11. Performance of a 10 kV, 625 kA, 85 kJ energy discharge module utilizing a solid dielectric switch

    Science.gov (United States)

    Richardson, R. A.; Cravey, W. R.; Goerz, D. A.

    We have designed and tested an 87-kJ energy discharge system consisting of two 720-(mu)F, 11-kV capacitors discharged through parallel coaxial cables into a 250 nH load. Data will be presented on the current and voltage waveforms, with calculated values of the system inductance and resistance. The bank uses a solid dielectric switch punctured by an explosive bridge wire (EBW) to initiate the discharge. With the capacitors charged to 9 kV, a 625-kA peak current is sent through the load with a ringing frequency of 6.8 kHz. The coaxial cables used to transmit the current to the load are 3 m in length. Both RG-217 and YK-198 cable types were tested, which have an inductance of 74 nH/ft and 35 nH/ft respectively. Normal operation requires that each cable carry 52 kA. The cables were tested to 100 kA each by connecting fewer cables to the load, and gradually increasing the charge voltage. The solid dielectric switch was chosen for high reliability. Details of the switch will be describes and data on its performance will be presented.

  12. Electron collisions in gas switches

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1989-01-01

    Many technologies rely on the conduction/insulation properties of gaseous matter for their successful operation. Many others (e.g., pulsed power technologies) rely on the rapid change (switching or modulation) of the properties of gaseous matter from an insulator to a conductor and vice versa. Studies of electron collision processes in gases aided the development of pulsed power gas switches, and in this paper we shall briefly illustrate the kind of knowledge on electron collision processes which is needed to optimize the performance of such switching devices. To this end, we shall refer to three types of gas switches: spark gap closing, self-sustained diffuse discharge closing, and externally-sustained diffuse discharge opening. 24 refs., 15 figs., 2 tabs

  13. Cannabidiol Modulates the Expression of Alzheimer's Disease-Related Genes in Mesenchymal Stem Cells.

    Science.gov (United States)

    Libro, Rosaliana; Diomede, Francesca; Scionti, Domenico; Piattelli, Adriano; Grassi, Gianpaolo; Pollastro, Federica; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2016-12-23

    Mesenchymal stem cells (MSCs) have emerged as a promising tool for the treatment of several neurodegenerative disorders, including Alzheimer's disease (AD). The main neuropathological hallmarks of AD are senile plaques, composed of amyloid beta (Aβ), and neurofibrillary tangles, formed by hyperphosphorylated tau. However, current therapies for AD have shown limited efficacy. In this study, we evaluated whether pre-treatment with cannabidiol (CBD), at 5 μM concentration, modulated the transcriptional profile of MSCs derived from gingiva (GMSCs) in order to improve their therapeutic potential, by performing a transcriptomic analysis by the next-generation sequencing (NGS) platform. By comparing the expression profiles between GMSCs treated with CBD (CBD-GMSCs) and control GMSCs (CTR-GMSCs), we found that CBD led to the downregulation of genes linked to AD, including genes coding for the kinases responsible of tau phosphorylation and for the secretases involved in Aβ generation. In parallel, immunocytochemistry analysis has shown that CBD inhibited the expression of GSK3β, a central player in AD pathogenesis, by promoting PI3K/Akt signalling. In order to understand through which receptor CBD exerted these effects, we have performed pre-treatments with receptor antagonists for the cannabinoid receptors (SR141716A and AM630) or for the vanilloid receptor 1 (TRPVI). Here, we have proved that TRPV1 was able to mediate the modulatory effect of CBD on the PI3K/Akt/GSK3β axis. In conclusion, we have found that pre-treatment with CBD prevented the expression of proteins potentially involved in tau phosphorylation and Aβ production in GMSCs. Therefore, we suggested that GMSCs preconditioned with CBD possess a molecular profile that might be more beneficial for the treatment of AD.

  14. Cannabidiol Modulates the Expression of Alzheimer’s Disease-Related Genes in Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Rosaliana Libro

    2016-12-01

    Full Text Available Mesenchymal stem cells (MSCs have emerged as a promising tool for the treatment of several neurodegenerative disorders, including Alzheimer’s disease (AD. The main neuropathological hallmarks of AD are senile plaques, composed of amyloid beta (Aβ, and neurofibrillary tangles, formed by hyperphosphorylated tau. However, current therapies for AD have shown limited efficacy. In this study, we evaluated whether pre-treatment with cannabidiol (CBD, at 5 μM concentration, modulated the transcriptional profile of MSCs derived from gingiva (GMSCs in order to improve their therapeutic potential, by performing a transcriptomic analysis by the next-generation sequencing (NGS platform. By comparing the expression profiles between GMSCs treated with CBD (CBD-GMSCs and control GMSCs (CTR-GMSCs, we found that CBD led to the downregulation of genes linked to AD, including genes coding for the kinases responsible of tau phosphorylation and for the secretases involved in Aβ generation. In parallel, immunocytochemistry analysis has shown that CBD inhibited the expression of GSK3β, a central player in AD pathogenesis, by promoting PI3K/Akt signalling. In order to understand through which receptor CBD exerted these effects, we have performed pre-treatments with receptor antagonists for the cannabinoid receptors (SR141716A and AM630 or for the vanilloid receptor 1 (TRPVI. Here, we have proved that TRPV1 was able to mediate the modulatory effect of CBD on the PI3K/Akt/GSK3β axis. In conclusion, we have found that pre-treatment with CBD prevented the expression of proteins potentially involved in tau phosphorylation and Aβ production in GMSCs. Therefore, we suggested that GMSCs preconditioned with CBD possess a molecular profile that might be more beneficial for the treatment of AD.

  15. miR-25 targets the modulator of apoptosis 1 gene in lung cancer.

    Science.gov (United States)

    Wu, Tangwei; Chen, Weiqun; Kong, Deyong; Li, Xiaoyi; Lu, Hongda; Liu, Shuiyi; Wang, Jing; Du, Lili; Kong, Qingzhi; Huang, Xiaodong; Lu, Zhongxin

    2015-08-01

    To determine the role of miR-25 in non-small cell lung cancer (NSCLC), we first detected miR-25 expression in clinical specimens and lung cancer cell lines by quantitative real-time polymerase chain reaction. The levels of miR-25 were elevated in the plasma of NSCLC patients and NSCLC cell lines. Transfection of A549 and 95-D cells with a miR-25 inhibitor resulted in reduced cell proliferation and enhanced apoptosis. Moreover, the modulator of apoptosis 1 (MOAP1) gene was identified as a novel target of miR-25. The ability of miR-25 to promote cell proliferation and block apoptosis is attributable to its effect on MOAP1 suppression. In addition, miR-25 antagomir significantly inhibited lung cancer growth via upregulation of MOAP1 in a mouse xenograft model. Collectively, these data demonstrate that miR-25 is an important biomarker for lung cancer, and miR-25 promotes cell proliferation and inhibits apoptosis in NSCLC cells by negatively regulating MOAP1 expression. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-04-05

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.

  17. Inhibition of lipolysis in the novel transgenic quail model overexpressing G0/G1 switch gene 2 in the adipose tissue during feed restriction.

    Directory of Open Access Journals (Sweden)

    Sangsu Shin

    Full Text Available In addition to the issue of obesity in humans, the production of low-fat meat from domestic animals is important in the agricultural industry to satisfy consumer demand. Understanding the regulation of lipolysis in adipose tissue could advance our knowledge to potentially solve both issues. Although the G0/G1 switch gene 2 (G0S2 was recently identified as an inhibitor of adipose triglyceride lipase (ATGL in vitro, its role in vivo has not been fully clarified. This study was conducted to investigate the role of G0S2 gene in vivo by using two independent transgenic quail lines during different energy conditions. Unexpectedly, G0S2 overexpression had a negligible effect on plasma NEFA concentration, fat cell size and fat pad weight under ad libitum feeding condition when adipose lipolytic activity is minimal. A two-week feed restriction in non-transgenic quail expectedly caused increased plasma NEFA concentration and dramatically reduced fat cell size and fat pad weight. Contrary, G0S2 overexpression under a feed restriction resulted in a significantly less elevation of plasma NEFA concentration and smaller reductions in fat pad weights and fat cell size compared to non-transgenic quail, demonstrating inhibition of lipolysis and resistance to loss of fat by G0S2. Excessive G0S2 inhibits lipolysis in vivo during active lipolytic conditions, such as food restriction and fasting, suggesting G0S2 as a potential target for treatment of obesity. In addition, transgenic quail are novel models for studying lipid metabolism and mechanisms of obesity.

  18. Lactobacillus reuteri-specific immunoregulatory gene rsiR modulates histamine production and immunomodulation by Lactobacillus reuteri.

    Science.gov (United States)

    Hemarajata, P; Gao, C; Pflughoeft, K J; Thomas, C M; Saulnier, D M; Spinler, J K; Versalovic, J

    2013-12-01

    Human microbiome-derived strains of Lactobacillus reuteri potently suppress proinflammatory cytokines like human tumor necrosis factor (TNF) by converting the amino acid l-histidine to the biogenic amine histamine. Histamine suppresses mitogen-activated protein (MAP) kinase activation and cytokine production by signaling via histamine receptor type 2 (H2) on myeloid cells. Investigations of the gene expression profiles of immunomodulatory L. reuteri ATCC PTA 6475 highlighted numerous genes that were highly expressed during the stationary phase of growth, when TNF suppression is most potent. One such gene was found to be a regulator of genes involved in histidine-histamine metabolism by this probiotic species. During the course of these studies, this gene was renamed the Lactobacillus reuteri-specific immunoregulatory (rsiR) gene. The rsiR gene is essential for human TNF suppression by L. reuteri and expression of the histidine decarboxylase (hdc) gene cluster on the L. reuteri chromosome. Inactivation of rsiR resulted in diminished TNF suppression in vitro and reduced anti-inflammatory effects in vivo in a trinitrobenzene sulfonic acid (TNBS)-induced mouse model of acute colitis. A L. reuteri strain lacking an intact rsiR gene was unable to suppress colitis and resulted in greater concentrations of serum amyloid A (SAA) in the bloodstream of affected animals. The PhdcAB promoter region targeted by rsiR was defined by reporter gene experiments. These studies support the presence of a regulatory gene, rsiR, which modulates the expression of a gene cluster known to mediate immunoregulation by probiotics at the transcriptional level. These findings may point the way toward new strategies for controlling gene expression in probiotics by dietary interventions or microbiome manipulation.

  19. Modulation of radiation-induced base excision repair pathway gene expression by melatonin

    Directory of Open Access Journals (Sweden)

    Saeed Rezapoor

    2017-01-01

    Full Text Available Objective: Approximately 70% of all cancer patients receive radiotherapy. Although radiotherapy is effective in killing cancer cells, it has adverse effects on normal cells as well. Melatonin (MLT as a potent antioxidant and anti-inflammatory agent has been proposed to stimulate DNA repair capacity. We investigated the capability of MLT in the modification of radiation-induced DNA damage in rat peripheral blood cells. Materials and Methods: In this experimental study, male rats (n = 162 were divided into 27 groups (n = 6 in each group including: irradiation only, vehicle only, vehicle with irradiation, 100 mg/kg MLT alone, 100 mg/kg MLT plus irradiation in 3 different time points, and control. Subsequently, they were irradiated with a single whole-body X-ray radiation dose of 2 and 8 Gy at a dose rate of 200 MU/min. Rats were given an intraperitoneal injection of MLT or the same volume of vehicle alone 1 h prior to irradiation. Blood samples were also taken 8, 24, and 48 h postirradiation, in order to measure the 8-oxoguanine glycosylase1 (Ogg1, Apex1, and Xrcc1 expression using quantitative real-time-polymerase chain reaction. Results: Exposing to the ionizing radiation resulted in downregulation of Ogg1, Apex1, and Xrcc1 gene expression. The most obvious suppression was observed in 8 h after exposure. Pretreatments with MLT were able to upregulate these genes when compared to the irradiation-only and vehicle plus irradiation groups (P < 0.05 in all time points. Conclusion: Our results suggested that MLT in mentioned dose may result in modulation of Ogg1, Apex1, and Xrcc1 gene expression in peripheral blood cells to reduce X-ray irradiation-induced DNA damage. Therefore, administration of MLT may increase the normal tissue tolerance to radiation through enhancing the cell DNA repair capacity. We believed that MLT could play a radiation toxicity reduction role in patients who have undergone radiation treatment as a part of cancer radiotherapy.

  20. Thermomchromic Reaction-Induced Reversible Upconversion Emission Modulation for Switching Devices and Tunable Upconversion Emission Based on Defect Engineering of WO3:Yb3+,Er3+ Phosphor.

    Science.gov (United States)

    Ruan, Jiufeng; Yang, Zhengwen; Huang, Anjun; Zhang, Hailu; Qiu, Jianbei; Song, Zhiguo

    2018-05-02

    Reversible luminescence modulation of upconversion phosphors has the potential applications as photoswitches and optical memory and data storage devices. Previously, the photochromic reaction was extensively used for the realization of reversible luminescence modulation. It is very necessary to develop other approaches such as thermomchromic reaction to obtain the reversible upconversion luminescence modulation. In this work, the WO 3 :Yb 3+ ,Er 3+ phosphors with various colors were prepared at various temperatures, exhibiting tunable upconversion luminescence attributed to the formation of oxygen vacancies in the host. Upon heat treatment in the reducing atmosphere or air, the WO 3 :Yb 3+ ,Er 3+ phosphors show a reversible thermomchromic property. The reversible upconversion luminescence modulation of WO 3 :Yb 3+ ,Er 3+ phosphors was observed based on thermomchromic reaction. Additionally, the upconversion luminescence modulation is maintained after several cycles, indicating its excellent stability. The WO 3 :Yb 3+ ,Er 3+ phosphors with reversible upconversion luminescence and excellent reproducibility have potential applications as the photoswitches and optical memory and data storage devices.

  1. IGBT: a solid state switch

    International Nuclear Information System (INIS)

    Chatroux, D.; Maury, J.; Hennevin, B.

    1993-01-01

    A Copper Vapour Laser Power Supply has been designed using a solid state switch consisting in eighteen Isolated Gate Bipolar Transistors (IGBT), -1200 volts, 400 Amps, each-in parallel. This paper presents the Isolated Gate Bipolar Transistor (IGBTs) replaced in the Power Electronic components evolution, and describes the IGBT conduction mechanism, presents the parallel association of IGBTs, and studies the application of these components to a Copper Vapour Laser Power Supply. The storage capacitor voltage is 820 volts, the peak current of the solid state switch is 17.000 Amps. The switch is connected on the primary of a step-up transformer, followed by a magnetic modulator. The reset of the magnetic modulator is provided by part of the laser reflected energy with a patented circuit. The charging circuit is a resonant circuit with a charge controlled by an IGBT switch. When the switch is open, the inductance energy is free-wheeled by an additional winding and does not extend the charging phase of the storage capacitor. The design allows the storage capacitor voltage to be very well regulated. This circuit is also patented. The electric pulse in the laser has 30.000 Volt peak voltage, 2000 Amp peak current, and is 200 nanoseconds long, for a 200 Watt optical power Copper Vapour Laser

  2. Regulation of gene expression by PRA-910, a novel progesterone receptor modulator, in T47D cells.

    Science.gov (United States)

    Bray, Jeffrey D; Zhang, Zhiming; Winneker, Richard C; Lyttle, C Richard

    2003-11-01

    Progestins play an important role in women's health and are used in oral contraception, hormone therapy, and treatment of reproductive disorders. The effects of progestins upon gene expression in breast epithelium are poorly understood. In an attempt to characterize the molecular mechanism of progestin action, we used a gene expression profiling approach to examine the action of a novel progestin in the T47D cell model, a human breast cancer cell line. PRA-910 is a novel, nonsteroidal progesterone receptor modulator (PRM) with species-specific activities identified in a screen for selective PRMs. To understand the mechanism of action for PRA-910 in T47D cells, we compared its gene regulation to progesterone (P4) and RU486 through Affymetrix U95A GeneChip analysis and TaqMan RT-PCR. PRA-910, P4, and RU486 regulated 50, 108, and 16 genes by threefold or greater versus vehicle, respectively, with 18 genes having similar regulation for P4 and PRA-910. These data confirm and extend previous findings for T47D cells. We also obtained time course, concentration-response, cyclohexamide sensitivity, and PR-specificity data for two progestin-regulated genes, ATP1A1 and CLDN8. Our data demonstrate that PRA-910 has a unique gene regulation profile distinct from both P4 and RU486. Further investigation of the underlying mechanism for these differences is ongoing.

  3. Reprogramming of gene expression during compression wood formation in pine: Coordinated modulation of S-adenosylmethionine, lignin and lignan related genes

    Directory of Open Access Journals (Sweden)

    Villalobos David P

    2012-06-01

    Full Text Available Abstract Background Transcript profiling of differentiating secondary xylem has allowed us to draw a general picture of the genes involved in wood formation. However, our knowledge is still limited about the regulatory mechanisms that coordinate and modulate the different pathways providing substrates during xylogenesis. The development of compression wood in conifers constitutes an exceptional model for these studies. Although differential expression of a few genes in differentiating compression wood compared to normal or opposite wood has been reported, the broad range of features that distinguish this reaction wood suggest that the expression of a larger set of genes would be modified. Results By combining the construction of different cDNA libraries with microarray analyses we have identified a total of 496 genes in maritime pine (Pinus pinaster, Ait. that change in expression during differentiation of compression wood (331 up-regulated and 165 down-regulated compared to opposite wood. Samples from different provenances collected in different years and geographic locations were integrated into the analyses to mitigate the effects of multiple sources of variability. This strategy allowed us to define a group of genes that are consistently associated with compression wood formation. Correlating with the deposition of a thicker secondary cell wall that characterizes compression wood development, the expression of a number of genes involved in synthesis of cellulose, hemicellulose, lignin and lignans was up-regulated. Further analysis of a set of these genes involved in S-adenosylmethionine metabolism, ammonium recycling, and lignin and lignans biosynthesis showed changes in expression levels in parallel to the levels of lignin accumulation in cells undergoing xylogenesis in vivo and in vitro. Conclusions The comparative transcriptomic analysis reported here have revealed a broad spectrum of coordinated transcriptional modulation of genes

  4. The carboxy-terminal domain of Dictyostelium C-module-binding factor is an independent gene regulatory entity.

    Directory of Open Access Journals (Sweden)

    Jörg Lucas

    Full Text Available The C-module-binding factor (CbfA is a multidomain protein that belongs to the family of jumonji-type (JmjC transcription regulators. In the social amoeba Dictyostelium discoideum, CbfA regulates gene expression during the unicellular growth phase and multicellular development. CbfA and a related D. discoideum CbfA-like protein, CbfB, share a paralogous domain arrangement that includes the JmjC domain, presumably a chromatin-remodeling activity, and two zinc finger-like (ZF motifs. On the other hand, the CbfA and CbfB proteins have completely different carboxy-terminal domains, suggesting that the plasticity of such domains may have contributed to the adaptation of the CbfA-like transcription factors to the rapid genome evolution in the dictyostelid clade. To support this hypothesis we performed DNA microarray and real-time RT-PCR measurements and found that CbfA regulates at least 160 genes during the vegetative growth of D. discoideum cells. Functional annotation of these genes revealed that CbfA predominantly controls the expression of gene products involved in housekeeping functions, such as carbohydrate, purine nucleoside/nucleotide, and amino acid metabolism. The CbfA protein displays two different mechanisms of gene regulation. The expression of one set of CbfA-dependent genes requires at least the JmjC/ZF domain of the CbfA protein and thus may depend on chromatin modulation. Regulation of the larger group of genes, however, does not depend on the entire CbfA protein and requires only the carboxy-terminal domain of CbfA (CbfA-CTD. An AT-hook motif located in CbfA-CTD, which is known to mediate DNA binding to A+T-rich sequences in vitro, contributed to CbfA-CTD-dependent gene regulatory functions in vivo.

  5. Spermine modulates the expression of two probable polyamine transporter genes and determines growth responses to cadaverine in Arabidopsis.

    Science.gov (United States)

    Sagor, G H M; Berberich, Thomas; Kojima, Seiji; Niitsu, Masaru; Kusano, Tomonobu

    2016-06-01

    Two genes, LAT1 and OCT1 , are likely to be involved in polyamine transport in Arabidopsis. Endogenous spermine levels modulate their expression and determine the sensitivity to cadaverine. Arabidopsis spermine (Spm) synthase (SPMS) gene-deficient mutant was previously shown to be rather resistant to the diamine cadaverine (Cad). Furthermore, a mutant deficient in polyamine oxidase 4 gene, accumulating about twofold more of Spm than wild type plants, showed increased sensitivity to Cad. It suggests that endogenous Spm content determines growth responses to Cad in Arabidopsis thaliana. Here, we showed that Arabidopsis seedlings pretreated with Spm absorbs more Cad and has shorter root growth, and that the transgenic Arabidopsis plants overexpressing the SPMS gene are hypersensitive to Cad, further supporting the above idea. The transgenic Arabidopsis overexpressing L-Amino acid Transporter 1 (LAT1) absorbed more Cad and showed increased Cad sensitivity, suggesting that LAT1 functions as a Cad importer. Recently, other research group reported that Organic Cation Transporter 1 (OCT1) is a causal gene which determines the Cad sensitivity of various Arabidopsis accessions. Furthermore, their results suggested that OCT1 is involved in Cad efflux. Thus we monitored the expression of OCT1 and LAT1 during the above experiments. Based on the results, we proposed a model in which the level of Spm content modulates the expression of OCT1 and LAT1, and determines Cad sensitivity of Arabidopsis.

  6. Small-molecule screen identifies modulators of EWS/FLI1 target gene expression and cell survival in Ewing's sarcoma.

    Science.gov (United States)

    Boro, Aleksandar; Prêtre, Kathya; Rechfeld, Florian; Thalhammer, Verena; Oesch, Susanne; Wachtel, Marco; Schäfer, Beat W; Niggli, Felix K

    2012-11-01

    Ewing's sarcoma family of tumors (EFT) is characterized by the presence of chromosomal translocations leading to the expression of oncogenic transcription factors such as, in the majority of cases, EWS/FLI1. Because of its key role in Ewing's sarcoma development and maintenance, EWS/FLI1 represents an attractive therapeutic target. Here, we characterize PHLDA1 as a novel direct target gene whose expression is repressed by EWS/FLI1. Using this gene and additional specific well-characterized target genes such as NROB1, NKX2.2 and CAV1, all activated by EWS/FLI1, as a read-out system, we screened a small-molecule compound library enriched for FDA-approved drugs that modulated the expression of EWS/FLI1 target genes. Among a hit-list of nine well-known drugs such as camptothecin, fenretinide, etoposide and doxorubicin, we also identified the kinase inhibitor midostaurin (PKC412). Subsequent experiments demonstrated that midostaurin is able to induce apoptosis in a panel of six Ewing's sarcoma cell lines in vitro and can significantly suppress xenograft tumor growth in vivo. These results suggest that midostaurin might be a novel drug that is active against Ewing's cells, which might act by modulating the expression of EWS/FLI1 target genes. Copyright © 2012 UICC.

  7. Vascular injury post stent implantation: different gene expression modulation in human umbilical vein endothelial cells (HUVECs model.

    Directory of Open Access Journals (Sweden)

    Jonica Campolo

    Full Text Available To explore whether stent procedure may influence transcriptional response of endothelium, we applied different physical (flow changes and/or mechanical (stent application stimuli to human endothelial cells in a laminar flow bioreactor (LFB system. Gene expression analysis was then evaluated in each experimental condition. Human umbilical vein endothelial cells (HUVECs were submitted to low and physiological (1 and 10 dyne/cm(2 shear stress in absence (AS or presence (PS of stent positioning in a LFB system for 24 h. Different expressed genes, coming from Affymetrix results, were identified based on one-way ANOVA analysis with p values 3 in modulus. Low shear stress was compared with physiological one in AS and PS conditions. Two major groups include 32 probes commonly expressed in both 1AS versus 10AS and 1PS versus 10PS comparison, and 115 probes consisting of 83 in addition to the previous 32, expressed only in 1PS versus 10PS comparison. Genes related to cytoskeleton, extracellular matrix, and cholesterol transport/metabolism are differently regulated in 1PS versus 10PS condition. Inflammatory and apoptotic mediators seems to be, instead, closely modulated by changes in flow (1 versus 10, independently of stent application. Low shear stress together with stent procedure are the experimental conditions that mainly modulate the highest number of genes in our human endothelial model. Those genes belong to pathways specifically involved in the endothelial dysfunction.

  8. Broad modulation of gene expression in CD4{sup +} lymphocyte subpopulations in response to low doses of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gruel, G.; Voisin, P.; Vaurijoux, A.; Roch-Lefevre, S.; Gregoire, E.; Voisin, P.; Roy, L. [IRSN, Serv Radiobiol et Epidemiol, Lab Dosimetrie Biol, F-92262 Fontenay Aux Roses (France); Maltere, P.; Petat, C.; Gidrol, X. [CEA, Serv Genom Fonctionnelle, F-91057 Evry (France)

    2008-07-01

    To compare the responses of the different lymphocyte subtypes after an exposure of whole blood to low doses of ionizing radiation, we examined variations in gene expression in different lymphocyte subpopulations using micro-array technology. Blood samples from five healthy donors were independently exposed to 0 (sham irradiation), 0.05 and 0.5 Gy of ionizing radiation. Three and 24 h after exposure, CD56{sup +}, CD4{sup +} and CD8{sup +} cells were negatively isolated. RNA from each set of experimental conditions was competitively hybridized on 25 k oligonucleotide micro-arrays. Modifications of gene expression were measured after both intervals and in all cell types. Twenty-four hours after exposure to 0.5 Gy, we observed an induction of the expression of BAX, PCNA, GADD45, DDB2 and CDKN1A. However, the numbers of modulated genes greatly differed between cell types. In particular, 3 h after exposure to doses as low as 0.05 Gy, the number of down-modulated genes was 10 times greater for CD4{sup +} cells than for all other cell types. Moreover, most of these repressed genes were taking part in the cell processes of protein biosynthesis and oxidative phosphorylation. The results suggest that several biological pathways in CD4{sup +} cells could be sensitive to low doses of radiation. Therefore, specifically studying CD4{sup +} cells could help to understand the mechanisms involved in low-dose response and allow their detection. (authors)

  9. Quantification of gene expression modulation at the human genome wide induced by low doses of ionizing radiations

    International Nuclear Information System (INIS)

    Nosel, Ingrid

    2013-01-01

    The main goal of this study is to identify the molecular mechanisms involved in the response to low doses of ionizing radiation by using oligonucleotide micro-arrays. The results presented in this study demonstrate the relevance of this tool in the characterization of changes in gene expression at low doses of g radiation. All experimentations conducted were conducted on T CD4+ human lymphocytes. From this model we tried to characterize in 600 minutes after irradiation the molecular players in response to a dose range of 5 and 500 mGy. In this study, we highlight two types of molecular response. First, a dose-dependent response to irradiation involving groups of genes whose proteins are implicated in the response to DNA damage and in the p53 signaling pathway. The expression of the majority of the genes is modulated from 100 mGy. The second type of response is independent of the irradiation dose and the proteins encoded are involved in the mechanism of oxidative phosphorylation. Some of these genes could potentially be regulated by a family of transcription factor with an ETS domain. These ETS factors are known to be potential targets of the MAPKinase pathway. All these genes are modulated from 5 mGy and are therefore potential molecular players involved in the cellular response to ionizing stress with a low intensity. (author)

  10. Alpha-mangostin promotes myoblast differentiation by modulating the gene-expression profile in C2C12 cells.

    Science.gov (United States)

    Horiba, Taro; Katsukawa, Masahiro; Abe, Keiko; Nakai, Yuji

    2014-01-01

    Alpha-mangostin, a xanthone contained mostly in mangosteen pericarp, has been reported to exert various biological functions. However, little is known about involvement of this xanthone in the muscle differentiation process. Here, we report the effect of α-mangostin on murine skeletal muscle-derived C2C12 myoblasts. α-mangostin stimulated myoblast differentiation leading to myotube formation. DNA microarray analysis revealed that genes associated with myoblast differentiation and muscle cell component formation were up-regulated in α-mangostin-treated cells. These results indicate that α-mangostin promotes myoblast differentiation through modulating the gene-expression profile in myoblasts.

  11. Reduction-sensitive lipopolyamines as a novel nonviral gene delivery system for modulated release of DNA with improved transgene expression.

    Science.gov (United States)

    Byk, G; Wetzer, B; Frederic, M; Dubertret, C; Pitard, B; Jaslin, G; Scherman, D

    2000-11-16

    We have designed and synthesized original cationic lipids for modulated release of DNA from cationic lipid/DNA complexes. Our rationale was that modulated degradation of the lipids during or after penetration into the cell could improve the trafficking of DNA to the nucleus resulting in increased transgene expression. The new reduction-sensitive lipopolyamines (RSL) harbor a disulfide bridge within different positions in the backbone of the lipids as biosensitive function. A useful synthetic method was developed to obtain, with very good yields and reproducibility, unsymmetrical disulfide-bridged molecules, starting from symmetrical disulfides and thiols. The new lipopolyamines are good candidates as carriers of therapeutic genes for in vivo gene delivery. To optimize the transfection efficiency in these novel series, we have carried out structure-activity relationship studies by placing the disulfide bridge at different positions in the backbone of the cationic lipid and by systematic variation of lipid chain length. Results indicate that the transfection level can be modulated as a function of the location of the disulfide bridge in the molecule. We suggest that an early release of DNA during or after penetration into the cell, probably promoted by reduction of a disulfide bridge placed between the polyamine and the lipid, implies a total loss of transfection efficiency. On the other hand, proper modulation of DNA release by inserting the disulfide bridge between one lipid chain and the rest of the molecule brings about increased transfection efficiency as compared to previously described nondegradable lipopolyamine analogues. Finally, preliminary physicochemical characterization of the complexes demonstrates that DNA release from complexes can be modulated as a function of the surrounding reducing conditions of the complexes and of the localization of the disulfide bridge within the lipopolyamine. Our results suggest that RSL is a promising new approach for gene

  12. 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression.

    Science.gov (United States)

    Lewis, Phillip L; Green, Richard M; Shah, Ramille N

    2018-03-15

    Three dimensional (3D) printing is highly amenable to the fabrication of tissue-engineered organs of a repetitive microstructure such as the liver. The creation of uniform and geometrically repetitive tissue scaffolds can also allow for the control over cellular aggregation and nutrient diffusion. However, the effect of differing geometries, while controlling for pore size, has yet to be investigated in the context of hepatocyte function. In this study, we show the ability to precisely control pore geometry of 3D-printed gelatin scaffolds. An undifferentiated hepatocyte cell line (HUH7) demonstrated high viability and proliferation when seeded on 3D-printed scaffolds of two different geometries. However, hepatocyte specific functions (albumin secretion, CYP activity, and bile transport) increases in more interconnected 3D-printed gelatin cultures compared to a less interconnected geometry and to 2D controls. Additionally, we also illustrate the disparity between gene expression and protein function in simple 2D culture modes, and that recreation of a physiologically mimetic 3D environment is necessary to induce both expression and function of cultured hepatocytes. Three dimensional (3D) printing provides tissue engineers the ability spatially pattern cells and materials in precise geometries, however the biological effects of scaffold geometry on soft tissues such as the liver have not been rigorously investigated. In this manuscript, we describe a method to 3D print gelatin into well-defined repetitive geometries that show clear differences in biological effects on seeded hepatocytes. We show that a relatively simple and widely used biomaterial, such as gelatin, can significantly modulate biological processes when fabricated into specific 3D geometries. Furthermore, this study expands upon past research into hepatocyte aggregation by demonstrating how it can be manipulated to enhance protein function, and how function and expression may not precisely correlate in

  13. Hysteresis controller with constant switching frequency

    DEFF Research Database (Denmark)

    Poulsen, Søren; Andersen, Michael Andreas E.

    2005-01-01

    Switch mode audio power amplifiers are showing up on market in still greater numbers because of advantages in form of high efficiency and low total system cost, especially for high power amplifiers. Several different modulator topologies have been made, ranging from standard PWM to various self......-oscillating and digital modulators. Performance in terms of low distortion, noise and dynamic range differs significantly with the modulator topology used. Highest system performance is generally achieved with analog modulators made as a modulator loop including at least the power stage of the amplifier, because...... of benefits from continuous time operation and non-quantized resolution. This type of modulator uses no external carrier signal, and is called self-oscillating modulators. The work presented in this paper refers to switch mode audio power amplifier, but can be used within a wide range of DC-DC or DC...

  14. Using evolutionary conserved modules in gene networks as a strategy to leverage high throughput gene expression queries.

    Directory of Open Access Journals (Sweden)

    Jeanne M Serb

    Full Text Available BACKGROUND: Large-scale gene expression studies have not yielded the expected insight into genetic networks that control complex processes. These anticipated discoveries have been limited not by technology, but by a lack of effective strategies to investigate the data in a manageable and meaningful way. Previous work suggests that using a pre-determined seed-network of gene relationships to query large-scale expression datasets is an effective way to generate candidate genes for further study and network expansion or enrichment. Based on the evolutionary conservation of gene relationships, we test the hypothesis that a seed network derived from studies of retinal cell determination in the fly, Drosophila melanogaster, will be an effective way to identify novel candidate genes for their role in mouse retinal development. METHODOLOGY/PRINCIPAL FINDINGS: Our results demonstrate that a number of gene relationships regulating retinal cell differentiation in the fly are identifiable as pairwise correlations between genes from developing mouse retina. In addition, we demonstrate that our extracted seed-network of correlated mouse genes is an effective tool for querying datasets and provides a context to generate hypotheses. Our query identified 46 genes correlated with our extracted seed-network members. Approximately 54% of these candidates had been previously linked to the developing brain and 33% had been previously linked to the developing retina. Five of six candidate genes investigated further were validated by experiments examining spatial and temporal protein expression in the developing retina. CONCLUSIONS/SIGNIFICANCE: We present an effective strategy for pursuing a systems biology approach that utilizes an evolutionary comparative framework between two model organisms, fly and mouse. Future implementation of this strategy will be useful to determine the extent of network conservation, not just gene conservation, between species and will

  15. The dietary isothiocyanate sulforaphane modulates gene expression and alternative gene splicing in a PTEN null preclinical murine model of prostate cancer

    Directory of Open Access Journals (Sweden)

    Ball Richard Y

    2010-07-01

    Full Text Available Abstract Background Dietary or therapeutic interventions to counteract the loss of PTEN expression could contribute to the prevention of prostate carcinogenesis or reduce the rate of cancer progression. In this study, we investigate the interaction between sulforaphane, a dietary isothiocyanate derived from broccoli, PTEN expression and gene expression in pre malignant prostate tissue. Results We initially describe heterogeneity in expression of PTEN in non-malignant prostate tissue of men deemed to be at risk of prostate cancer. We subsequently use the mouse prostate-specific PTEN deletion model, to show that sulforaphane suppresses transcriptional changes induced by PTEN deletion and induces additional changes in gene expression associated with cell cycle arrest and apoptosis in PTEN null tissue, but has no effect on transcription in wild type tissue. Comparative analyses of changes in gene expression in mouse and human prostate tissue indicate that similar changes can be induced in humans with a broccoli-rich diet. Global analyses of exon expression demonstrated that sulforaphane interacts with PTEN deletion to modulate alternative gene splicing, illustrated through a more detailed analysis of DMBT1 splicing. Conclusion To our knowledge, this is the first report of how diet may perturb changes in transcription induced by PTEN deletion, and the effects of diet on global patterns of alternative gene splicing. The study exemplifies the complex interaction between diet, genotype and gene expression, and the multiple modes of action of small bioactive dietary components.

  16. Portable Userspace Virtual Filesystem Switch

    Directory of Open Access Journals (Sweden)

    Łukasz Faber

    2013-01-01

    Full Text Available Multiple different filesystems — including disk-based, network, distributed, abstract — arean integral part of every operating system. They are usually written as kernel modules and abstracted to the user via a virtual filesystem switch. In this paper we analyse the feasibility of reimplementing the virtual filesystem switch as a userspace daemon and applicability of this approach in real-life usage. Such reimplementation will require a way to virtualise processes behaviour related to filesystem operations. The problem is non-trivial, as we assume limited capabilities of the VFS switch implemented in userspace. We present a layered architecture comprising of a monitoring process, the VFS abstraction and real filesystem implementations. All working in userspace. Then, we evaluate this solution in four areas: portability, feasibility, usability and performance. Our results demonstrate possible gains in using the userspace-based approach with monolithic kernels, but also underline problems that are encountered in this approach.

  17. Step into the Groove: Engineered Transcription Factors as Modulators of Gene Expression

    NARCIS (Netherlands)

    Visser, Astrid E.; Verschure, Pernette J.; Gommans, Willemijn M.; Haisma, Hidde J.; Rots, Marianne G.; Hall, JC; Dunlap, JC; Friedmann, T; VanHeyningen,

    2006-01-01

    Increasing knowledge about the influence of dysregulated gene expression in causing numerous diseases opens up new possibilities for the development of innovative therapeutics. In this chapter, we first describe different mechanisms of misregulated gene expression resulting in various

  18. Step into the groove : engineered transcription factors as modulators of gene expression

    NARCIS (Netherlands)

    Visser, A.E.; Verschure, P.J.; Gommans, W.M.; Haisma, H.J.; Rots, M.G.

    2006-01-01

    Increasing knowledge about the influence of dysregulated gene expression in causing numerous diseases opens up new possibilities for the development of innovative therapeutics. In this chapter, we first describe different mechanisms of misregulated gene expression resulting in various

  19. A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes.

    Science.gov (United States)

    Zheng, Lei; Liu, Guifeng; Meng, Xiangnan; Liu, Yujia; Ji, Xiaoyu; Li, Yanbang; Nie, Xianguang; Wang, Yucheng

    2013-07-01

    WRKY transcription factors are involved in various biological processes, such as development, metabolism and responses to stress. However, their exact roles in abiotic stress tolerance are largely unknown. Here, we demonstrated a working model for the function of a WRKY gene (ThWRKY4) from Tamarix hispida in the stress response. ThWRKY4 is highly induced by abscisic acid (ABA), salt and drought in the early period of stress (stress for 3, 6, or 9 h), which can be regulated by ABF (ABRE binding factors) and Dof (DNA binding with one finger), and also can be crossregulated by other WRKYs and autoregulated as well. Overexpression of ThWRKY4 conferred tolerance to salt, oxidative and ABA treatment in transgenic plants. ThWRKY4 can improve the tolerance to salt and ABA treatment by improving activities of superoxide dismutase and peroxidase, decreasing levels of O2 (-) and H2O2, reducing electrolyte leakage, keeping the loss of chlorophyll, and protecting cells from death. Microarray analyses showed that overexpression of ThWRKY4 in Arabidopsis leads to 165 and 100 genes significantly up- and downregulated, respectively. Promoter scanning analysis revealed that ThWRKY4 regulates the gene expression via binding to W-box motifs present in their promoter regions. This study shows that ThWRKY4 functions as a transcription factor to positively modulate abiotic stress tolerances, and is involved in modulating reactive oxygen species.

  20. Vitamin A and feeding statuses modulate the insulin-regulated gene expression in Zucker lean and fatty primary rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available Unattended hepatic insulin resistance predisposes individuals to dyslipidemia, type 2 diabetes and many other metabolic complications. The mechanism of hepatic insulin resistance at the gene expression level remains unrevealed. To examine the effects of vitamin A (VA, total energy intake and feeding conditions on the insulin-regulated gene expression in primary hepatocytes of Zucker lean (ZL and fatty (ZF rats, we analyze the expression levels of hepatic model genes in response to the treatments of insulin and retinoic acid (RA. We report that the insulin- and RA-regulated glucokinase, sterol regulatory element-binding protein-1c and cytosolic form of phosphoenolpyruvate carboxykinase expressions are impaired in hepatocytes of ZF rats fed chow or a VA sufficient (VAS diet ad libitum. The impairments are partially corrected when ZF rats are fed a VA deficient (VAD diet ad libitum or pair-fed a VAS diet to the intake of their VAD counterparts in non-fasting conditions. Interestingly in the pair-fed ZL and ZF rats, transient overeating on the last day of pair-feeding regimen changes the expression levels of some VA catabolic genes, and impairs the insulin- and RA-regulated gene expression in hepatocytes. These results demonstrate that VA and feeding statuses modulate the hepatic insulin sensitivity at the gene expression level.

  1. A large scale survey reveals that chromosomal copy-number alterations significantly affect gene modules involved in cancer initiation and progression

    Directory of Open Access Journals (Sweden)

    Cigudosa Juan C

    2011-05-01

    Full Text Available Abstract Background Recent observations point towards the existence of a large number of neighborhoods composed of functionally-related gene modules that lie together in the genome. This local component in the distribution of the functionality across chromosomes is probably affecting the own chromosomal architecture by limiting the possibilities in which genes can be arranged and distributed across the genome. As a direct consequence of this fact it is therefore presumable that diseases such as cancer, harboring DNA copy number alterations (CNAs, will have a symptomatology strongly dependent on modules of functionally-related genes rather than on a unique "important" gene. Methods We carried out a systematic analysis of more than 140,000 observations of CNAs in cancers and searched by enrichments in gene functional modules associated to high frequencies of loss or gains. Results The analysis of CNAs in cancers clearly demonstrates the existence of a significant pattern of loss of gene modules functionally related to cancer initiation and progression along with the amplification of modules of genes related to unspecific defense against xenobiotics (probably chemotherapeutical agents. With the extension of this analysis to an Array-CGH dataset (glioblastomas from The Cancer Genome Atlas we demonstrate the validity of this approach to investigate the functional impact of CNAs. Conclusions The presented results indicate promising clinical and therapeutic implications. Our findings also directly point out to the necessity of adopting a function-centric, rather a gene-centric, view in the understanding of phenotypes or diseases harboring CNAs.

  2. Calcitonin gene-related peptide modulates heat nociception in the human brain - An fMRI study in healthy volunteers

    DEFF Research Database (Denmark)

    Asghar, Mohammad Sohail; Becerra, Lino; Larsson, Henrik B.W.

    2016-01-01

    Background: Intravenous infusion of calcitonin-gene-related-peptide (CGRP) provokes headache and migraine in humans. Mechanisms underlying CGRP-induced headache are not fully clarified and it is unknown to what extent CGRP modulates nociceptive processing in the brain. To elucidate this we record...... cortex. Sumatriptan injection reversed these changes. Conclusion: The changes in BOLD-signals in the brain after CGRP infusion suggests that systemic CGRP modulates nociceptive transmission in the trigeminal pain pathways in response to noxious heat stimuli.......Background: Intravenous infusion of calcitonin-gene-related-peptide (CGRP) provokes headache and migraine in humans. Mechanisms underlying CGRP-induced headache are not fully clarified and it is unknown to what extent CGRP modulates nociceptive processing in the brain. To elucidate this we recorded...... blood-oxygenation-level-dependent (BOLD) signals in the brain by functional MRI after infusion of CGRP in a double-blind placebo-controlled crossover study of 27 healthy volunteers. BOLD-signals were recorded in response to noxious heat stimuli in the V1-area of the trigeminal nerve. In addition, we...

  3. Switched on!

    CERN Multimedia

    2008-01-01

    Like a star arriving on stage, impatiently followed by each member of CERN personnel and by millions of eyes around the world, the first beam of protons has circulated in the LHC. After years in the making and months of increasing anticipation, today the work of hundreds of people has borne fruit. WELL DONE to all! Successfully steered around the 27 kilometres of the world’s most powerful particle accelerator at 10:28 this morning, this first beam of protons circulating in the ring marks a key moment in the transition from over two decades of preparation to a new era of scientific discovery. "It’s a fantastic moment," said the LHC project leader Lyn Evans, "we can now look forward to a new era of understanding about the origins and evolution of the universe". Starting up a major new particle accelerator takes much more than flipping a switch. Thousands of individual elements have to work in harmony, timings have to be synchronize...

  4. β2-adrenergic agonists modulate TNF-α induced astrocytic inflammatory gene expression and brain inflammatory cell populations

    Science.gov (United States)

    2014-01-01

    Background The NF-κB signaling pathway orchestrates many of the intricate aspects of neuroinflammation. Astrocytic β2-adrenergic receptors have emerged as potential regulators in central nervous system inflammation and are potential targets for pharmacological modulation. The aim of this study was to elucidate the crosstalk between astrocytic β2-adrenergic receptors and the TNF-α induced inflammatory gene program. Methods Proinflammatory conditions were generated by the administration of TNF-α. Genes that are susceptible to astrocytic crosstalk between β2-adrenergic receptors (stimulated by clenbuterol) and TNF-α were identified by qPCR-macroarray-based gene expression analysis in a human 1321 N1 astrocytoma cell line. Transcriptional patterns of the identified genes in vitro were validated by RT-PCR on the 1321 N1 cell line as well as on primary rat astrocytes. In vivo expression patterns were examined by intracerebroventricular administration of clenbuterol and/or TNF-α in rats. To examine the impact on the inflammatory cell content of the brain we performed extensive FACS analysis of rat brain immune cells after intracerebroventricular clenbuterol and/or TNF-α administration. Results Parallel transcriptional patterns in vivo and in vitro confirmed the relevance of astrocytic β2-adrenergic receptors as modulators of brain inflammatory responses. Importantly, we observed pronounced effects of β2-adrenergic receptor agonists and TNF-α on IL-6, CXCL2, CXCL3, VCAM1, and ICAM1 expression, suggesting a role in inflammatory brain cell homeostasis. Extensive FACS-analysis of inflammatory cell content in the brain demonstrated that clenbuterol/TNF-α co-administration skewed the T cell population towards a double negative phenotype and induced a shift in the myeloid brain cell population towards a neutrophilic predominance. Conclusions Our results show that astrocytic β2-adrenergic receptors are potent regulators of astrocytic TNF-α-activated genes in

  5. A Voltage Doubler Circuit to Extend the Soft-switching Range of Dual Active Bridge Converters

    DEFF Research Database (Denmark)

    Qin, Zian; Shen, Yanfeng; Wang, Huai

    2017-01-01

    shift modulation in DAB. Thus the soft switching range is extended. The soft switching boundary conditions are derived. A map to show the soft switching or hard switching in the full load and voltage range is obtained. The feasibility and effectiveness of the proposed method is finally verified...

  6. Language switch costs in sentence comprehension depend on language dominance: Evidence from self-paced reading

    NARCIS (Netherlands)

    Bultena, S.S.; Dijkstra, A.F.J.; Hell, J.G. van

    2015-01-01

    This study investigated two prominent issues in the comprehension of language switches. First, how does language switching direction affect switch costs in sentence context? Second, are switch costs modulated by L2 proficiency and cross-linguistic activation? We conducted a self-paced reading task

  7. Photoresistance switching of plasmonic nanopores.

    Science.gov (United States)

    Li, Yi; Nicoli, Francesca; Chen, Chang; Lagae, Liesbet; Groeseneken, Guido; Stakenborg, Tim; Zandbergen, Henny W; Dekker, Cees; Van Dorpe, Pol; Jonsson, Magnus P

    2015-01-14

    Fast and reversible modulation of ion flow through nanosized apertures is important for many nanofluidic applications, including sensing and separation systems. Here, we present the first demonstration of a reversible plasmon-controlled nanofluidic valve. We show that plasmonic nanopores (solid-state nanopores integrated with metal nanocavities) can be used as a fluidic switch upon optical excitation. We systematically investigate the effects of laser illumination of single plasmonic nanopores and experimentally demonstrate photoresistance switching where fluidic transport and ion flow are switched on or off. This is manifested as a large (∼ 1-2 orders of magnitude) increase in the ionic nanopore resistance and an accompanying current rectification upon illumination at high laser powers (tens of milliwatts). At lower laser powers, the resistance decreases monotonically with increasing power, followed by an abrupt transition to high resistances at a certain threshold power. A similar rapid transition, although at a lower threshold power, is observed when the power is instead swept from high to low power. This hysteretic behavior is found to be dependent on the rate of the power sweep. The photoresistance switching effect is attributed to plasmon-induced formation and growth of nanobubbles that reversibly block the ionic current through the nanopore from one side of the membrane. This explanation is corroborated by finite-element simulations of a nanobubble in the nanopore that show the switching and the rectification.

  8. Dietary Intervention by Phytochemicals and Their Role in Modulating Coding and Non-Coding Genes in Cancer.

    Science.gov (United States)

    Budisan, Liviuta; Gulei, Diana; Zanoaga, Oana Mihaela; Irimie, Alexandra Iulia; Sergiu, Chira; Braicu, Cornelia; Gherman, Claudia Diana; Berindan-Neagoe, Ioana

    2017-06-01

    Phytochemicals are natural compounds synthesized as secondary metabolites in plants, representing an important source of molecules with a wide range of therapeutic applications. These natural agents are important regulators of key pathological processes/conditions, including cancer, as they are able to modulate the expression of coding and non-coding transcripts with an oncogenic or tumour suppressor role. These natural agents are currently exploited for the development of therapeutic strategies alone or in tandem with conventional treatments for cancer. The aim of this paper is to review the recent studies regarding the role of these natural phytochemicals in different processes related to cancer inhibition, including apoptosis activation, angiogenesis and metastasis suppression. From the large palette of phytochemicals we selected epigallocatechin gallate (EGCG), caffeic acid phenethyl ester (CAPE), genistein, morin and kaempferol, due to their increased activity in modulating multiple coding and non-coding genes, targeting the main hallmarks of cancer.

  9. Dietary Intervention by Phytochemicals and Their Role in Modulating Coding and Non-Coding Genes in Cancer

    Directory of Open Access Journals (Sweden)

    Liviuta Budisan

    2017-06-01

    Full Text Available Phytochemicals are natural compounds synthesized as secondary metabolites in plants, representing an important source of molecules with a wide range of therapeutic applications. These natural agents are important regulators of key pathological processes/conditions, including cancer, as they are able to modulate the expression of coding and non-coding transcripts with an oncogenic or tumour suppressor role. These natural agents are currently exploited for the development of therapeutic strategies alone or in tandem with conventional treatments for cancer. The aim of this paper is to review the recent studies regarding the role of these natural phytochemicals in different processes related to cancer inhibition, including apoptosis activation, angiogenesis and metastasis suppression. From the large palette of phytochemicals we selected epigallocatechin gallate (EGCG, caffeic acid phenethyl ester (CAPE, genistein, morin and kaempferol, due to their increased activity in modulating multiple coding and non-coding genes, targeting the main hallmarks of cancer.

  10. Pronounced expression of the lipolytic inhibitor G0/G1 Switch Gene 2 (G0S2) in adipose tissue from brown bears (Ursus arctos) prior to hibernation.

    Science.gov (United States)

    Jessen, Niels; Nielsen, Thomas S; Vendelbo, Mikkel H; Viggers, Rikke; Støen, Ole-Gunnar; Evans, Alina; Frøbert, Ole

    2016-04-01

    Prior to hibernation, the brown bear (Ursus arctos) exhibits unparalleled weight gain. Unlike humans, weight gain in bears is associated with lower levels of circulating free fatty acids (FFA) and increased insulin sensitivity. Understanding how free-ranging brown bears suppress lipolysis when gaining weight may therefore provide novel insight toward the development of human therapies. Blood and subcutaneous adipose tissue were collected from immobilized free-ranging brown bears (fitted with GPS-collars) during hibernation in winter and from the same bears during the active period in summer in Dalarna, Sweden. The expression of lipid droplet-associated proteins in adipose tissue was examined under the hypothesis that bears suppress lipolysis during summer while gaining weight by increased expression of negative regulators of lipolysis. Adipose triglyceride lipase (ATGL) expression did not differ between seasons, but in contrast, the expression of ATGL coactivator Comparative gene identification-58 (CGI-58) was lower in summer. In addition, the expression of the negative regulators of lipolysis, G0S2 and cell-death inducing DNA fragmentation factor-a-like effector (CIDE)C markedly increased during summer. Free-ranging brown bears display potent upregulation of inhibitors of lipolysis in adipose tissue during summer. This is a potential mechanism for increased insulin sensitivity during weight gain and G0S2 may serve as a target to modulate insulin sensitivity. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  11. Pharmacological modulation of humoral immunity in a nonhuman primate model of AAV gene transfer for hemophilia B.

    Science.gov (United States)

    Mingozzi, Federico; Chen, Yifeng; Murphy, Samuel L; Edmonson, Shyrie C; Tai, Alex; Price, Sandra D; Metzger, Mark E; Zhou, Shangzhen; Wright, J Fraser; Donahue, Robert E; Dunbar, Cynthia E; High, Katherine A

    2012-07-01

    Liver gene transfer for hemophilia B has shown very promising results in recent clinical studies. A potential complication of gene-based treatments for hemophilia and other inherited disorders, however, is the development of neutralizing antibodies (NAb) against the therapeutic transgene. The risk of developing NAb to the coagulation factor IX (F.IX) transgene product following adeno-associated virus (AAV)-mediated hepatic gene transfer for hemophilia is small but not absent, as formation of inhibitory antibodies to F.IX is observed in experimental animals following liver gene transfer. Thus, strategies to modulate antitransgene NAb responses are needed. Here, we used the anti-B cell monoclonal antibody rituximab (rtx) in combination with cyclosporine A (CsA) to eradicate anti-human F.IX NAb in rhesus macaques previously injected intravenously with AAV8 vectors expressing human F.IX. A short course of immunosuppression (IS) resulted in eradication of anti-F.IX NAb with restoration of plasma F.IX transgene product detection. In one animal, following IS anti-AAV6 antibodies also dropped below detection, allowing for successful AAV vector readministration and resulting in high levels (60% or normal) of F.IX transgene product in plasma. Though the number of animals is small, this study supports for the safety and efficacy of B cell-targeting therapies to eradicate NAb developed following AAV-mediated gene transfer.

  12. Novel sequence variations in LAMA2 and SGCG genes modulating cis-acting regulatory elements and RNA secondary structure

    Directory of Open Access Journals (Sweden)

    Olfa Siala

    2010-01-01

    Full Text Available In this study, we detected new sequence variations in LAMA2 and SGCG genes in 5 ethnic populations, and analysed their effect on enhancer composition and mRNA structure. PCR amplification and DNA sequencing were performed and followed by bioinformatics analyses using ESEfinder as well as MFOLD software. We found 3 novel sequence variations in the LAMA2 (c.3174+22_23insAT and c.6085 +12delA and SGCG (c.*102A/C genes. These variations were present in 210 tested healthy controls from Tunisian, Moroccan, Algerian, Lebanese and French populations suggesting that they represent novel polymorphisms within LAMA2 and SGCG genes sequences. ESEfinder showed that the c.*102A/C substitution created a new exon splicing enhancer in the 3'UTR of SGCG genes, whereas the c.6085 +12delA deletion was situated in the base pairing region between LAMA2 mRNA and the U1snRNA spliceosomal components. The RNA structure analyses showed that both variations modulated RNA secondary structure. Our results are suggestive of correlations between mRNA folding and the recruitment of spliceosomal components mediating splicing, including SR proteins. The contribution of common sequence variations to mRNA structural and functional diversity will contribute to a better study of gene expression.

  13. A class of circadian long non-coding RNAs mark enhancers modulating long-range circadian gene regulation.

    Science.gov (United States)

    Fan, Zenghua; Zhao, Meng; Joshi, Parth D; Li, Ping; Zhang, Yan; Guo, Weimin; Xu, Yichi; Wang, Haifang; Zhao, Zhihu; Yan, Jun

    2017-06-02

    Circadian rhythm exerts its influence on animal physiology and behavior by regulating gene expression at various levels. Here we systematically explored circadian long non-coding RNAs (lncRNAs) in mouse liver and examined their circadian regulation. We found that a significant proportion of circadian lncRNAs are expressed at enhancer regions, mostly bound by two key circadian transcription factors, BMAL1 and REV-ERBα. These circadian lncRNAs showed similar circadian phases with their nearby genes. The extent of their nuclear localization is higher than protein coding genes but less than enhancer RNAs. The association between enhancer and circadian lncRNAs is also observed in tissues other than liver. Comparative analysis between mouse and rat circadian liver transcriptomes showed that circadian transcription at lncRNA loci tends to be conserved despite of low sequence conservation of lncRNAs. One such circadian lncRNA termed lnc-Crot led us to identify a super-enhancer region interacting with a cluster of genes involved in circadian regulation of metabolism through long-range interactions. Further experiments showed that lnc-Crot locus has enhancer function independent of lnc-Crot's transcription. Our results suggest that the enhancer-associated circadian lncRNAs mark the genomic loci modulating long-range circadian gene regulation and shed new lights on the evolutionary origin of lncRNAs. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Green tea catechins potentiate the effect of antibiotics and modulate adherence and gene expression in Porphyromonas gingivalis.

    Science.gov (United States)

    Fournier-Larente, Jade; Morin, Marie-Pierre; Grenier, Daniel

    2016-05-01

    A number of studies have brought evidence that green tea catechins may contribute to periodontal health. The objective of this study was to investigate the ability of a green tea extract and its principal constituent epigallocatechin-3-gallate (EGCG) to potentiate the antibacterial effects of antibiotics (metronidazole, tetracycline) against Porphyromonas gingivalis, and to modulate the adherence to oral epithelial cells and expression of genes coding for virulence factors and the high temperature requirement A (HtrA) stress protein in P. gingivalis. A broth microdilution assay was used to determine the antibacterial activity of the green tea extract and EGCG. The synergistic effects of either compounds in association with metronidazole or tetracycline were evaluated using the checkerboard technique. A fluorescent assay was used to determine bacterial adherence to oral epithelial cells. The modulation of gene expression in P. gingivalis was evaluated by quantitative RT-PCR. The Vibrio harveyi bioassay was used for monitoring quorum sensing inhibitory activity. The MIC values of the green tea extract on P. gingivalis ranged from 250 to 1000 μg/ml, while those of EGCG ranged from 125 to 500 μg/ml. A marked synergistic effect on P. gingivalis growth was observed for the green tea extract or EGCG in combination with metronidazole. Both the green tea extract and EGCG caused a dose-dependent inhibition of P. gingivalis adherence to oral epithelial cells. On the one hand, green tea extract and EGCG dose-dependently inhibited the expression of several P. gingivalis genes involved in host colonization (fimA, hagA, hagB), tissue destruction (rgpA, kgp), and heme acquisition (hem). On the other hand, both compounds increased the expression of the stress protein htrA gene. The ability of the green tea extract and EGCG to inhibit quorum sensing may contribute to the modulation of gene expression. This study explored the preventive and therapeutic potential of green tea

  15. Iris transillumination defect and its gene modulators do not correlate with intraocular pressure in the BXD family of mice.

    Science.gov (United States)

    Lu, Hong; Lu, Lu; Williams, Robert W; Jablonski, Monica M

    2016-01-01

    Intraocular pressure (IOP) is currently the only treatable phenotype associated with primary open angle glaucoma (POAG). Our group has developed the BXD murine panel for identifying genetic modulators of the various endophenotypes of glaucoma, including pigment dispersion, IOP, and retinal ganglion cell (RGC) death. The BXD family consists of the inbred progeny of crosses between the C57BL/6J (B6) strain and the glaucoma-prone DBA/2J (D2) strain that has mutations in Tyrp1 and Gpnmb. The role of these genes in the iris transillumination defect (TID) has been well documented; however, their possible roles in modulating IOP during glaucoma onset and progression are yet not well understood. We used the IOP data sets and the Eye M430v2 (Sep08) RMA Database available on GeneNetwork to determine whether mutations in Tyrp1 and Gpnmb or TIDs have a direct role in the elevation of IOP in the BXD family. We also determined whether TIDs and IOP are coregulated. As expected, Tyrp1 and Gpnmb expression levels showed a high degree of correlation with TIDs. However, there was no correlation between the expression of these genes and IOP. Moreover, unlike TIDs, IOP did not map to either the Tyrp1 or Gpnmb locus. Although the Tyrp1 and Gpnmb mutations in BXD strains are a prerequisite for the development of TID, they are not required for or associated with elevated IOP. Genetic modulators of IOP thus may be independently identified using the full array of BXD mice without concern for the presence of TIDs or mutations in Typr1 and/or Gpnmb.

  16. alpha2- to beta3-Adrenoceptor switch in 3T3-L1 preadipocytes and adipocytes: modulation by testosterone, 17beta-estradiol, and progesterone.

    Science.gov (United States)

    Monjo, Marta; Pujol, Esperanza; Roca, Pilar

    2005-07-01

    Sex steroid hormones are important factors in the determination of fat distribution and accumulation. The aim of this study was to investigate the effect of testosterone (T), 17beta-estradiol (17betaE), and progesterone (P) on adrenergic receptor (AR) gene expression in 3T3-L1 preadipocytes and adipocytes and their relation to the proliferation and differentiation processes. Our data clearly show that alpha(2A)-AR was the highest AR subtype expressed in preadipocytes, whereas in mature adipocytes was by far beta(3)-AR. In the differentiation process to adipocytes, alpha(2A)-AR expression was decreased to 0.3-fold (P distribution.

  17. Unravelling the molecular basis for light modulated cellulase gene expression - the role of photoreceptors in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Schmoll Monika

    2012-03-01

    Full Text Available Abstract Background Light represents an important environmental cue, which exerts considerable influence on the metabolism of fungi. Studies with the biotechnological fungal workhorse Trichoderma reesei (Hypocrea jecorina have revealed an interconnection between transcriptional regulation of cellulolytic enzymes and the light response. Neurospora crassa has been used as a model organism to study light and circadian rhythm biology. We therefore investigated whether light also regulates transcriptional regulation of cellulolytic enzymes in N. crassa. Results We show that the N. crassa photoreceptor genes wc-1, wc-2 and vvd are involved in regulation of cellulase gene expression, indicating that this phenomenon is conserved among filamentous fungi. The negative effect of VVD on production of cellulolytic enzymes is thereby accomplished by its role in photoadaptation and hence its function in White collar complex (WCC formation. In contrast, the induction of vvd expression by the WCC does not seem to be crucial in this process. Additionally, we found that WC-1 and WC-2 not only act as a complex, but also have individual functions upon growth on cellulose. Conclusions Genome wide transcriptome analysis of photoreceptor mutants and evaluation of results by analysis of mutant strains identified several candidate genes likely to play a role in light modulated cellulase gene expression. Genes with functions in amino acid metabolism, glycogen metabolism, energy supply and protein folding are enriched among genes with decreased expression levels in the wc-1 and wc-2 mutants. The ability to properly respond to amino acid starvation, i. e. up-regulation of the cross pathway control protein cpc-1, was found to be beneficial for cellulase gene expression. Our results further suggest a contribution of oxidative depolymerization of cellulose to plant cell wall degradation in N. crassa.

  18. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    Science.gov (United States)

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  19. Portfolio Selection with Jumps under Regime Switching

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2010-01-01

    Full Text Available We investigate a continuous-time version of the mean-variance portfolio selection model with jumps under regime switching. The portfolio selection is proposed and analyzed for a market consisting of one bank account and multiple stocks. The random regime switching is assumed to be independent of the underlying Brownian motion and jump processes. A Markov chain modulated diffusion formulation is employed to model the problem.

  20. Obesity modulates inflammation and lipid metabolism oocyte gene expression: A single cell transcriptome perspective

    Science.gov (United States)

    This study aimed to compare oocyte gene expression profiles and follicular fluid (FF) content from overweight/obese (OW) women and normal weight (NW) women who were undergoing fertility treatments. Using single cell transcriptomic analyses, we investigated oocyte gene expression using RNA-seq. Serum...

  1. A precisely regulated gene expression cassette potently modulates metastasis and survival in multiple solid cancers.

    Directory of Open Access Journals (Sweden)

    Kun Yu

    2008-07-01

    Full Text Available Successful tumor development and progression involves the complex interplay of both pro- and anti-oncogenic signaling pathways. Genetic components balancing these opposing activities are likely to require tight regulation, because even subtle alterations in their expression may disrupt this balance with major consequences for various cancer-associated phenotypes. Here, we describe a cassette of cancer-specific genes exhibiting precise transcriptional control in solid tumors. Mining a database of tumor gene expression profiles from six different tissues, we identified 48 genes exhibiting highly restricted levels of gene expression variation in tumors (n = 270 compared to nonmalignant tissues (n = 71. Comprising genes linked to multiple cancer-related pathways, the restricted expression of this "Poised Gene Cassette" (PGC was robustly validated across 11 independent cohorts of approximately 1,300 samples from multiple cancer types. In three separate experimental models, subtle alterations in PGC expression were consistently associated with significant differences in metastatic and invasive potential. We functionally confirmed this association in siRNA knockdown experiments of five PGC genes (p53CSV, MAP3K11, MTCH2, CPSF6, and SKIP, which either directly enhanced the invasive capacities or inhibited the proliferation of AGS cancer cells. In primary tumors, similar subtle alterations in PGC expression were also repeatedly associated with clinical outcome in multiple cohorts. Taken collectively, these findings support the existence of a common set of precisely controlled genes in solid tumors. Since inducing small activity changes in these genes may prove sufficient to potently influence various tumor phenotypes such as metastasis, targeting such precisely regulated genes may represent a promising avenue for novel anti-cancer therapies.

  2. Rosiglitazone and AS601245 decrease cell adhesion and migration through modulation of specific gene expression in human colon cancer cells.

    Directory of Open Access Journals (Sweden)

    Angelo Cerbone

    Full Text Available PPARs are nuclear receptors activated by ligands. Activation of PPARγ leads to a reduction of adhesion and motility in some cancer models. PPARγ transcriptional activity can be negatively regulated by JNK-mediated phosphorylation. We postulated that the use of agents able to inhibit JNK activity could increase the effectiveness of PPARγ ligands. We analysed the effects of rosiglitazone (PPARγ ligand and AS601245 (a selective JNK inhibitor alone or in association on adhesion and migration of CaCo-2, HT29, and SW480 human colon cancer cells and investigated, through microarray analysis, the genes involved in these processes. Cell adhesion and migration was strongly inhibited by rosiglitazone and AS601245. Combined treatment with the two compounds resulted in a greater reduction of the adhesion and migration capacity. Affymetrix analysis in CaCo-2 cells revealed that some genes which were highly modulated by the combined treatment could be involved in these biological responses. Rosiglitazone, AS601245 and combined treatment down-regulated the expression of fibrinogen chains in all three cell lines. Moreover, rosiglitazone, alone or in association with AS601245, caused a decrease in the fibrinogen release. ARHGEF7/β-PIX gene was highly down-regulated by combined treatment, and western blot analysis revealed that β-PIX protein is down-modulated in CaCo-2, HT29 and SW480 cells, also. Transfection of cells with β-PIX gene completely abrogated the inhibitory effect on cell migration, determined by rosiglitazone, AS601245 and combined treatment. Results demonstrated that β-PIX protein is involved in the inhibition of cell migration and sustaining the positive interaction between PPARγ ligands and anti-inflammatory agents in humans.

  3. Performance Analysis of a Four-Switch Three-Phase Grid-Side Converter with Modulation Simplification in a Doubly-Fed Induction Generator-Based Wind Turbine (DFIG-WT with Different External Disturbances

    Directory of Open Access Journals (Sweden)

    Kai Ni

    2017-05-01

    Full Text Available This paper investigates the performance of a fault-tolerant four-switch three-phase (FSTP grid-side converter (GSC in a doubly-fed induction generator-based wind turbine (DFIG-WT. The space vector pulse width modulation (SVPWM technique is simplified and unified duty ratios are used for controlling the FSTP GSC. Steady DC-bus voltage, sinusoidal three-phase grid currents and unity power factor are obtained. In addition, the balance of capacitor voltages is accomplished based on the analysis of current flows at the midpoint of DC bus in different operational modes. Besides, external disturbances such as fluctuating wind speed and grid voltage sag are considered to test its fault-tolerant ability. Furthermore, the effects of fluctuating wind speed on the performance of DFIG-WT system are explained according to an approximate expression of the turbine torque. The performance of the proposed FSTP GSC is simulated in Matlab/Simulink 2016a based on a detailed 1.5 MW DFIG-WT Simulink model. Experiments are carried out on a 2 kW platform by using a discrete signal processor (DSP TMS320F28335 controller to validate the reliability of DFIG-WT for the cases with step change of the stator active power and grid voltage sag, respectively.

  4. Transcriptome analysis of sugar beet root maggot (Tetanops myopaeformis) genes modulated by the Beta vulgaris host.

    Science.gov (United States)

    Li, Haiyan; Smigocki, Ann C

    2018-04-01

    Sugar beet root maggot (SBRM, Tetanops myopaeformis von Röder) is a major but poorly understood insect pest of sugar beet (Beta vulgaris L.). The molecular mechanisms underlying plant defense responses are well documented, however, little information is available about complementary mechanisms for insect adaptive responses to overcome host resistance. To date, no studies have been published on SBRM gene expression profiling. Suppressive subtractive hybridization (SSH) generated more than 300 SBRM ESTs differentially expressed in the interaction of the pest with a moderately resistant (F1016) and a susceptible (F1010) sugar beet line. Blast2GO v. 3.2 search indicated that over 40% of the differentially expressed genes had known functions, primarily driven by fruit fly D. melanogaster genes. Expression patterns of 18 selected EST clones were confirmed by RT-PCR analysis. Gene Ontology (GO) analysis predicted a dominance of metabolic and catalytic genes involved in the interaction of SBRM with its host. SBRM genes functioning during development, regulation, cellular process, signaling and under stress conditions were annotated. SBRM genes that were common or unique in response to resistant or susceptible interactions with the host were identified and their possible roles in insect responses to the host are discussed. © Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Insect Science published by John Wiley & Sons Australia, Ltd on behalf of Institute of Zoology, Chinese Academy of Sciences.

  5. Genome-wide modulation of gene transcription in ovarian carcinoma cells by a new mithramycin analogue.

    Directory of Open Access Journals (Sweden)

    Carolina Vizcaíno

    Full Text Available Ovarian cancer has a poor prognosis due to intrinsic or acquired resistance to some cytotoxic drugs, raising the interest in new DNA-binding agents such as mithramycin analogues as potential chemotherapeutic agents in gynecological cancer. Using a genome-wide approach, we have analyzed gene expression in A2780 human ovarian carcinoma cells treated with the novel mithramycin analogue DIG-MSK (demycarosyl-3D-β-D-digitoxosyl-mithramycin SK that binds to C+G-rich DNA sequences. Nanomolar concentrations of DIG-MSK abrogated the expression of genes involved in a variety of cell processes including transcription regulation and tumor development, which resulted in cell death. Some of those genes have been associated with cell proliferation and poor prognosis in ovarian cancer. Sp1 transcription factor regulated most of the genes that were down-regulated by the drug, as well as the up-regulation of other genes mainly involved in response to cell stress. The effect of DIG-MSK in the control of gene expression by other transcription factors was also explored. Some of them, such as CREB, E2F and EGR1, also recognize C/G-rich regions in gene promoters, which encompass potential DIG-MSK binding sites. DIG-MSK affected several biological processes and molecular functions related to transcription and its cellular regulation in A2780 cells, including transcription factor activity. This new compound might be a promising drug for the treatment of ovarian cancer.

  6. MicroRNA-10 modulates Hox genes expression during Nile tilapia embryonic development.

    Science.gov (United States)

    Giusti, Juliana; Pinhal, Danillo; Moxon, Simon; Campos, Camila Lovaglio; Münsterberg, Andrea; Martins, Cesar

    2016-05-01

    Hox gene clusters encode a family of transcription factors that govern anterior-posterior axis patterning during embryogenesis in all bilaterian animals. The time and place of Hox gene expression are largely determined by the relative position of each gene within its cluster. Furthermore, Hox genes were shown to have their expression fine-tuned by regulatory microRNAs (miRNAs). However, the mechanisms of miRNA-mediated regulation of these transcription factors during fish early development remain largely unknown. Here we have profiled three highly expressed miR-10 family members of Nile tilapia at early embryonic development, determined their genomic organization as well as performed functional experiments for validation of target genes. Quantitative analysis during developmental stages showed miR-10 family expression negatively correlates with the expression of HoxA3a, HoxB3a and HoxD10a genes, as expected for bona fide miRNA-mRNA interactions. Moreover, luciferase assays demonstrated that HoxB3a and HoxD10a are targeted by miR-10b-5p. Overall, our data indicate that the miR-10 family directly regulates members of the Hox gene family during Nile tilapia embryogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Coordinations between gene modules control the operation of plant amino acid metabolic networks

    Directory of Open Access Journals (Sweden)

    Galili Gad

    2009-01-01

    Full Text Available Abstract Background Being sessile organisms, plants should adjust their metabolism to dynamic changes in their environment. Such adjustments need particular coordination in branched metabolic networks in which a given metabolite can be converted into multiple other metabolites via different enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid metabolic networks in plants in response to environmental stresses, using publicly available microarray results. Results Using our "Gene Coordination" approach, we have identified in Arabidopsis plants two oppositely regulated groups of "highly coordinated" genes within the branched Asp-family network of Arabidopsis plants, which metabolizes the amino acids Lys, Met, Thr, Ile and Gly, as well as a single group of "highly coordinated" genes within the branched aromatic amino acid metabolic network, which metabolizes the amino acids Trp, Phe and Tyr. These genes possess highly coordinated adjustable negative and positive expression responses to various stress cues, which apparently regulate adjustable metabolic shifts between competing branches of these networks. We also provide evidence implying that these highly coordinated genes are central to impose intra- and inter-network interactions between the Asp-family and aromatic amino acid metabolic networks as well as differential system interactions with other growth promoting and stress-associated genome-wide genes. Conclusion Our novel Gene Coordination elucidates that branched amino acid metabolic networks in plants are regulated by specific groups of highly coordinated genes that possess adjustable intra-network, inter-network and genome-wide transcriptional interactions. We also hypothesize that such transcriptional interactions enable regulatory metabolic adjustments needed for adaptation to the stresses.

  8. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    Science.gov (United States)

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  9. Gene expression changes of single skeletal muscle fibers in response to modulation of the mitochondrial calcium uniporter (MCU

    Directory of Open Access Journals (Sweden)

    Francesco Chemello

    2015-09-01

    Full Text Available The mitochondrial calcium uniporter (MCU gene codifies for the inner mitochondrial membrane (IMM channel responsible for mitochondrial Ca2+ uptake. Cytosolic Ca2+ transients are involved in sarcomere contraction through cycles of release and storage in the sarcoplasmic reticulum. In addition cytosolic Ca2+ regulates various signaling cascades that eventually lead to gene expression reprogramming. Mitochondria are strategically placed in close contact with the ER/SR, thus cytosolic Ca2+ transients elicit large increases in the [Ca2+] of the mitochondrial matrix ([Ca2+]mt. Mitochondrial Ca2+ uptake regulates energy production and cell survival. In addition, we recently showed that MCU-dependent mitochondrial Ca2+ uptake controls skeletal muscle trophism. In the same report, we dissected the effects of MCU-dependent mitochondrial Ca2+ uptake on gene expression through microarray gene expression analysis upon modulation of MCU expression by in vivo AAV infection. Analyses were performed on single skeletal muscle fibers at two time points (7 and 14 days post-AAV injection. Raw and normalized data are available on the GEO database (http://www.ncbi.nlm.nih.gov/geo/ (GSE60931.

  10. Functional Diets Modulate lncRNA-Coding RNAs and Gene Interactions in the Intestine of Rainbow Trout Oncorhynchus mykiss.

    Science.gov (United States)

    Núñez-Acuña, Gustavo; Détrée, Camille; Gallardo-Escárate, Cristian; Gonçalves, Ana Teresa

    2017-06-01

    The advent of functional genomics has sparked the interest in inferring the function of non-coding regions from the transcriptome in non-model species. However, numerous biological processes remain understudied from this perspective, including intestinal immunity in farmed fish. The aim of this study was to infer long non-coding RNA (lncRNAs) expression profiles in rainbow trout (Oncorhynchus mykiss) fed for 30 days with functional diets based on pre- and probiotics. For this, whole transcriptome sequencing was conducted through Illumina technology, and lncRNAs were mined to evaluate transcriptional activity in conjunction with known protein sequences. To detect differentially expressed transcripts, 880 novels and 9067 previously described O. mykiss lncRNAs were used. Expression levels and genome co-localization correlations with coding genes were also analyzed. Significant differences in gene expression were primarily found in the probiotic diet, which had a twofold downregulation of lncRNAs compared to other treatments. Notable differences by diet were also evidenced between the coding genes of distinct metabolic processes. In contrast, genome co-localization of lncRNAs with coding genes was similar for all diets. This study contributes novel knowledge regarding lncRNAs in fish, suggesting key roles in salmons fed with in-feed additives with the capacity to modulate the intestinal homeostasis and host health.

  11. ABA Represses the Expression of Cell Cycle Genes and May Modulate the Development of Endodormancy in Grapevine Buds

    Directory of Open Access Journals (Sweden)

    Ricardo Vergara

    2017-05-01

    Full Text Available Recently, the plant hormone abscisic acid (ABA has been implicated as a key player in the regulation of endodormancy (ED in grapevine buds (Vitis vinifera L. In this study, we show that in the vine, the expression of genes related to the biosynthesis of ABA (VvNCED1; VvNCED2 and the content of ABA are significantly higher in the latent bud than at the shoot apex, while the expression of an ABA catabolic gene (VvA8H3 showed no significant difference between either organ. A negative correlation between the content of ABA and transcript levels of cell cycle genes (CCG was found in both tissues. This result suggested that ABA may negatively regulate the expression of CCG in meristematic tissues of grapevines. To test this proposition, the effect of ABA on the expression of CCG was analyzed in two meristematic tissues of the vine: somatic embryos and shoot apexes. The results indicated that cell cycle progression is repressed by ABA in both organs, since it down-regulated the expression of genes encoding cyclin-dependent kinases (VvCDKB1, VvCDKB2 and genes encoding cyclins of type A (VvCYCA1, VvCYCA2, VvCYCA3, B (VvCYCB, and D (VvCYCD3.2a and up-regulated the expression of VvICK5, a gene encoding an inhibitor of CDKs. During ED, the content of ABA increased, and the expression of CCG decreased. Moreover, the dormancy-breaking compound hydrogen cyanamide (HC reduced the content of ABA and up-regulated the expression of CCG, this last effect was abolished when HC and ABA were co-applied. Taken together, these results suggest that ABA-mediated repression of CCG transcription may be part of the mechanism through which ABA modulates the development of ED in grapevine buds.

  12. A 5'-regulatory region and two coding region polymorphisms modulate promoter activity and gene expression of the growth suppressor gene ZBED6 in cattle.

    Directory of Open Access Journals (Sweden)

    Yong-Zhen Huang

    Full Text Available Zinc finger, BED-type containing 6 (ZBED6 is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. Polymorphisms in its promoter and coding regions are likely to impact ZBED6 transcription and growth traits. In this study, rapid amplification of 5' cDNA ends (5'-RACE analysis revealed two transcription start sites (TSS for the bovine ZBED6 starting within exon 1 of the ZC3H11A gene (TSS-1 and upstream of the translation start codon of the ZBED6 gene (TSS-2. There was one SNP in the promoter and two missense mutations in the coding region of the bovine ZBED6 by sequencing of the pooled DNA samples (Pool-Seq, n = 100. The promoter and coding region are the key regions for gene function; polymorphisms in these regions can alter gene expression. Quantitative real-time PCR (qPCR analysis showed that ZBED6 has a broad tissue distribution in cattle and is highly expressed in skeletal muscle. Eleven promoter-detection vectors were constructed, which enabled the cloning of putative promoter sequences and analysis of ZBED6 transcriptional activity by luciferase reporter gene assays. The core region of the basal promoter of bovine ZBED6 is located within region -866 to -556. The activity of WT-826G-pGL3 in driving reporter gene transcription is significantly higher than that of the M-826A-pGL3 construct (P < 0.01. Analysis of gene expression patterns in homozygous full-sibling Chinese Qinchuan cattle showed that the mutant-type Hap-AGG exhibited a lower mRNA level than the wild-type Hap-GCA (P < 0.05 in longissimus dorsi muscle (LDM. Moreover, ZBED6 mRNA expression was low in C2C12 cells overexpressing the mutant-type ZBED6 (pcDNA3.1(+-Hap-GG (P < 0.01. Our results suggest that the polymorphisms in the promoter and coding regions may modulate the promoter activity and gene expression of bovine ZBED6 in the skeletal muscles of these cattle breeds.

  13. Serotonin receptor gene (HTR2A T102C polymorphism modulates individuals’ perspective taking ability and autistic-like traits

    Directory of Open Access Journals (Sweden)

    Pingyuan eGong

    2015-10-01

    Full Text Available Previous studies have indicated that empathic traits, such as perspective taking, are associated with the levels of serotonin in the brain and with autism spectrum conditions. Inspired by the finding that the serotonin receptor 2A gene (HTR2A modulates the availability of serotonin, this study investigated to what extent HTR2A modulates individuals’ perspective taking ability and autistic-like traits. To examine the associations of the functional HTR2A polymorphism T102C (rs6313 with individuals’ perspective taking ability and autistic-like traits, we differentiated individuals according to this polymorphism and measured empathic and autistic-like traits with Interpersonal Reactivity Index (IRI and Autism-Spectrum Quotient (AQ scale in 523 Chinese people. The results indicated that this polymorphism was significantly associated with the scores on Perspective Taking and Personal Distress subscales of IRI, and Communication subscale of AQ. Individuals with a greater number of the C alleles were less likely to spontaneously adopt the point of view of others, more likely to be anxious when observing the pain endured by others, and more likely to have communication problems. Moreover, the genotype effect on communication problems was mediated by individuals’ perspective taking ability. These findings provide evidence that the HTR2A T102C polymorphism is a predictor of individual differences in empathic and autistic-like traits and highlight the role of the gene in the connection between perspective taking and autistic-like traits.

  14. Modulation at Age of Onset in Tunisian Huntington Disease Patients: Implication of New Modifier Genes

    Directory of Open Access Journals (Sweden)

    Dorra Hmida-Ben Brahim

    2014-01-01

    Full Text Available Huntington’s disease (HD is an autosomal dominant neurodegenerative disorder. The causative mutation is an expansion of more than 36 CAG repeats in the first exon of IT15 gene. Many studies have shown that the IT15 interacts with several modifier genes to regulate the age at onset (AO of HD. Our study aims to investigate the implication of CAG expansion and 9 modifiers in the age at onset variance of 15 HD Tunisian patients and to establish the correlation between these modifiers genes and the AO of this disease. Despite the small number of studied patients, this report consists of the first North African study in Huntington disease patients. Our results approve a specific effect of modifiers genes in each population.

  15. Researchers use Modified CRISPR Systems to Modulate Gene Expression on a Genomic Scale

    Science.gov (United States)

    Cancer Target Discovery and Development Network (CTD2) researchers at the University of California, San Francisco, developed a CRISPR system that can regulate both gene repression and activation with fewer off-target effects.

  16. Modulation of Keratinocyte Gene Expression and Differentiation by PPAR-Selective Ligands and Tetradecylthioacetic Acid

    DEFF Research Database (Denmark)

    Westergaard, M; Henningsen, J; Svendsen, M L

    2001-01-01

    Peroxisome proliferator-activated receptors (PPARs) are pleiotropic regulators of growth and differentiation of many cell types. We have performed a comprehensive analysis of the expression of PPARs, transcriptional cofactors, and marker genes during differentiation of normal human keratinocytes ...

  17. Identification of gene expression signature modulated by nicotinamide in a mouse bladder cancer model.

    Directory of Open Access Journals (Sweden)

    Seon-Kyu Kim

    Full Text Available BACKGROUND: Urinary bladder cancer is often a result of exposure to chemical carcinogens such as cigarette smoking. Because of histological similarity, chemically-induced rodent cancer model was largely used for human bladder cancer studies. Previous investigations have suggested that nicotinamide, water-soluble vitamin B3, may play a key role in cancer prevention through its activities in cellular repair. However, to date, evidence towards identifying the genetic alterations of nicotinamide in cancer prevention has not been provided. Here, we search for the molecular signatures of cancer prevention by nicotinamide using a N-butyl-N-(4-hydroxybutyl-nitrosamine (BBN-induced urinary bladder cancer model in mice. METHODOLOGY/PRINCIPAL FINDINGS: Via microarray gene expression profiling of 20 mice and 233 human bladder samples, we performed various statistical analyses and immunohistochemical staining for validation. The expression patterns of 893 genes associated with nicotinamide activity in cancer prevention were identified by microarray data analysis. Gene network analyses of these 893 genes revealed that the Myc and its associated genes may be the most important regulator of bladder cancer prevention, and the gene expression signature correlated well with protein expression data. Comparison of gene expression between human and mouse revealed that BBN-induced mouse bladder cancers exhibited gene expression profiles that were more similar to those of invasive human bladder cancers than to those of non-invasive human bladder cancers. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that nicotinamide plays an important role as a chemo-preventive and therapeutic agent in bladder cancer through the regulation of the Myc oncogenic signature. Nicotinamide may represent a promising therapeutic modality in patients with muscle-invasive bladder cancer.

  18. Epigenetic modulation of gene expression governs the brain���s response to injury

    OpenAIRE

    Simon, Roger P.

    2015-01-01

    Mild stress from ischemia, seizure, hypothermia, or infection can produce a transient neuroprotected state in the brain. In the neuroprotected state, the brain responds differently to a severe stress and sustains less injury. At the genomic level, the response of the neuroprotected brain to a severe stress is characterized by widespread differential regulation of genes with diverse functions. This reprogramming of gene expression observed in the neuroprotected brain in response to a stress is...

  19. Venezuelan equine encephalitis virus infection causes modulation of inflammatory and immune response genes in mouse brain

    Directory of Open Access Journals (Sweden)

    Puri Raj K

    2008-06-01

    Full Text Available Abstract Background Neurovirulent Venezuelan equine encephalitis virus (VEEV causes lethal encephalitis in equines and is transmitted to humans by mosquitoes. VEEV is highly infectious when transmitted by aerosol and has been developed as a bio-warfare agent, making it an important pathogen to study from a military and civilian standpoint. Molecular mechanisms of VEE pathogenesis are poorly understood. To study these, the gene expression profile of VEEV infected mouse brains was investigated. Changes in gene expression were correlated with histological changes in the brain. In addition, a molecular framework of changes in gene expression associated with progression of the disease was studied. Results Our results demonstrate that genes related to important immune pathways such as antigen presentation, inflammation, apoptosis and response to virus (Cxcl10, CxCl11, Ccl5, Ifr7, Ifi27 Oas1b, Fcerg1,Mif, Clusterin and MHC class II were upregulated as a result of virus infection. The number of over-expressed genes (>1.5-fold level increased as the disease progressed (from 197, 296, 400, to 1086 at 24, 48, 72 and 96 hours post infection, respectively. Conclusion Identification of differentially expressed genes in brain will help in the understanding of VEEV-induced pathogenesis and selection of biomarkers for diagnosis and targeted therapy of VEEV-induced neurodegeneration.

  20. Nitric oxide-induced murine hematopoietic stem cell fate involves multiple signaling proteins, gene expression, and redox modulation.

    Science.gov (United States)

    Nogueira-Pedro, Amanda; Dias, Carolina C; Regina, Helena; Segreto, C; Addios, Priscilla C; Lungato, Lisandro; D'Almeida, Vania; Barros, Carlos C; Higa, Elisa M S; Buri, Marcus V; Ferreira, Alice T; Paredes-Gamero, Edgar Julian

    2014-11-01

    There are a growing number of reports showing the influence of redox modulation in cellular signaling. Although the regulation of hematopoiesis by reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been described, their direct participation in the differentiation of hematopoietic stem cells (HSCs) remains unclear. In this work, the direct role of nitric oxide (NO(•)), a RNS, in the modulation of hematopoiesis was investigated using two sources of NO(•) , one produced by endothelial cells stimulated with carbachol in vitro and another using the NO(•)-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) in vivo. Two main NO(•) effects were observed: proliferation of HSCs-especially of the short-term HSCs-and its commitment and terminal differentiation to the myeloid lineage. NO(•)-induced proliferation was characterized by the increase in the number of cycling HSCs and hematopoietic progenitor cells positive to BrdU and Ki-67, upregulation of Notch-1, Cx43, PECAM-1, CaR, ERK1/2, Akt, p38, PKC, and c-Myc. NO(•)-induced HSCs differentiation was characterized by the increase in granulocytic-macrophage progenitors, granulocyte-macrophage colony forming units, mature myeloid cells, upregulation of PU.1, and C/EBPα genes concomitantly to the downregulation of GATA-3 and Ikz-3 genes, activation of Stat5 and downregulation of the other analyzed proteins mentioned above. Also, redox status modulation differed between proliferation and differentiation responses, which is likely associated with the transition of the proliferative to differentiation status. Our findings provide evidence of the role of NO(•) in inducing HSCs proliferation and myeloid differentiation involving multiple signaling. © 2014 AlphaMed Press.

  1. Immune Reactions against Gene Gun Vaccines Are Differentially Modulated by Distinct Dendritic Cell Subsets in the Skin.

    Directory of Open Access Journals (Sweden)

    Corinna Stefanie Weber

    Full Text Available The skin accommodates multiple dendritic cell (DC subsets with remarkable functional diversity. Immune reactions are initiated and modulated by the triggering of DC by pathogen-associated or endogenous danger signals. In contrast to these processes, the influence of intrinsic features of protein antigens on the strength and type of immune responses is much less understood. Therefore, we investigated the involvement of distinct DC subsets in immune reactions against two structurally different model antigens, E. coli beta-galactosidase (betaGal and chicken ovalbumin (OVA under otherwise identical conditions. After epicutaneous administration of the respective DNA vaccines with a gene gun, wild type mice induced robust immune responses against both antigens. However, ablation of langerin+ DC almost abolished IgG1 and cytotoxic T lymphocytes against betaGal but enhanced T cell and antibody responses against OVA. We identified epidermal Langerhans cells (LC as the subset responsible for the suppression of anti-OVA reactions and found regulatory T cells critically involved in this process. In contrast, reactions against betaGal were not affected by the selective elimination of LC, indicating that this antigen required a different langerin+ DC subset. The opposing findings obtained with OVA and betaGal vaccines were not due to immune-modulating activities of either the plasmid DNA or the antigen gene products, nor did the differential cellular localization, size or dose of the two proteins account for the opposite effects. Thus, skin-borne protein antigens may be differentially handled by distinct DC subsets, and, in this way, intrinsic features of the antigen can participate in immune modulation.

  2. Meta-analyses of genes modulating intracellular T3 bio-availability reveal a possible role for the DIO3 gene in osteoarthritis susceptibility.

    Science.gov (United States)

    Meulenbelt, Ingrid; Bos, Steffan D; Chapman, Kay; van der Breggen, Ruud; Houwing-Duistermaat, Jeanine J; Kremer, Dennis; Kloppenburg, Margreet; Carr, Andrew; Tsezou, Aspasia; González, Antonio; Loughlin, John; Slagboom, P Eline

    2011-01-01

    To study whether common genetic variants of the genes involved in the complex regulatory mechanism determining the intracellular bio-availability of T3 influence osteoarthritis onset. In total 17 genetic variants within the genes encoding WD40-repeat/SOCS-box protein 1, ubiquitin specific protease 33, thyroid hormone receptor α, deiodinase, iodothyronine, type III (DIO3) and Indian hedgehog were measured and associated with osteoarthritis in a meta-analyses in European populations from the UK, The Netherlands, Greece and Spain containing a total of 3252 osteoarthritis cases and 2132 controls. The minor allele of the DIO3 variant rs945006 showed suggestive evidence for protective association in the overall meta-analyses, which was supported by individual osteoarthritis studies and osteoarthritis subtypes. The association appeared most significant in cases with knee and/or hip with an allelic OR of 0.81 (95% CI 0.70 to 0.930) with a nominal p value of 0.004 and a permutation-based corrected p value for multiple testing of 0.039. The findings suggest that the DIO3 gene modulates osteoarthritis disease risk; however, additional studies are necessary to replicate our findings. To elucidate the molecular mechanisms focus should be on the local adaptation to T3 availability either during the endochondral ossification process or during ageing of the articular cartilage.

  3. 160 Gbit/s optical packet switching using a silicon chip

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Galili, Michael

    2012-01-01

    We have successfully demonstrated 160 Gbit/s all-optical packet switching based on cross-phase modulation using a silicon chip. Error free performance is achieved for the 4-to-1 switched 160 Gbit/s packet.......We have successfully demonstrated 160 Gbit/s all-optical packet switching based on cross-phase modulation using a silicon chip. Error free performance is achieved for the 4-to-1 switched 160 Gbit/s packet....

  4. Green tea polyphenols reduce body weight in rats by modulating obesity-related genes.

    Directory of Open Access Journals (Sweden)

    Chuanwen Lu

    Full Text Available Beneficial effects of green tea polyphenols (GTP against obesity have been reported, however, the mechanism of this protection is not clear. Therefore, the objective of this study was to identify GTP-targeted genes in obesity using the high-fat-diet-induced obese rat model. A total of three groups (n = 12/group of Sprague Dawley (SD female rats were tested, including the control group (rats fed with low-fat diet, the HF group (rats fed with high-fat diet, and the HF+GTP group (rats fed with high-fat diet and GTP in drinking water. The HF group increased body weight as compared to the control group. Supplementation of GTP in the drinking water in the HF+GTP group reduced body weight as compared to the HF group. RNA from liver samples was extracted for gene expression analysis. A total of eighty-four genes related to obesity were analyzed using PCR array. Compared to the rats in the control group, the rats in the HF group had the expression levels of 12 genes with significant changes, including 3 orexigenic genes (Agrp, Ghrl, and Nr3c1; 7 anorectic genes (Apoa4, Cntf, Ghr, IL-1β, Ins1, Lepr, and Sort; and 2 genes that relate to energy expenditure (Adcyap1r1 and Adrb1. Intriguingly, the HF+GTP group restored the expression levels of these genes in the high-fat-induced obese rats. The protein expression levels of IL-1β and IL-6 in the serum samples from the control, HF, and HF+GTP groups confirmed the results of gene expression. Furthermore, the protein expression levels of superoxide dismutase-1 (SOD1 and catechol-O-methyltransferase (COMT also showed GTP-regulated protective changes in this obese rat model. Collectively, this study revealed the beneficial effects of GTP on body weight via regulating obesity-related genes, anti-inflammation, anti-oxidant capacity, and estrogen-related actions in high-fat-induced obese rats.

  5. Evolution of the ability to modulate host chemokine networks via gene duplication in human cytomegalovirus (HCMV).

    Science.gov (United States)

    Scarborough, Jessica A; Paul, John R; Spencer, Juliet V

    2017-07-01

    Human cytomegalovirus (HCMV) is a widespread pathogen that is particularly skillful at evading immune detection and defense mechanisms, largely due to extensive co-evolution with its host. One aspect of this co-evolution involves the acquisition of virally encoded G protein-coupled receptors (GPCRs) with homology to the chemokine receptor family. GPCRs are the largest family of cell surface proteins, found in organisms from yeast to humans, and they regulate a variety of cellular processes including development, sensory perception, and immune cell trafficking. The US27 and US28 genes are encoded by human and primate CMVs, but homologs are not found in the genomes of viruses infecting rodents or other species. Phylogenetic analysis was used to investigate the US27 and US28 genes, which are adjacent in the unique short (US) region of the HCMV genome, and their relationship to one another and to human chemokine receptor genes. The results indicate that both US27 and US28 share the same common ancestor with human chemokine receptor CX3CR1, suggesting that a single host gene was captured and a subsequent viral gene duplication event occurred. The US28 gene product (pUS28) has maintained the function of the ancestral gene and has the ability to bind and signal in response to CX3CL1/fractalkine, the natural ligand for CX3CR1. In contrast, pUS27 does not bind to any known chemokine ligand, and the sequence has diverged significantly, highlighted by the fact that pUS27 currently exhibits greater sequence similarity to human CCR1. While the evolutionary advantage of the gene duplication and neofunctionalization event remains unclear, the US27 and US28 genes are highly conserved among different HCMV strains and retained even in laboratory strains that have lost many virulence genes, suggesting that US27 and US28 have each evolved distinct, important functions during virus infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Noradrenergic modulation of gonadotrophin-inhibitory hormone gene expression in the brain of Japanese quail.

    Science.gov (United States)

    Tobari, Y; Kansaku, N; Tsutsui, K

    2017-08-01

    Gonadotrophin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that inhibits gonadotrophin synthesis and release in birds and mammals. In Japanese quail, GnIH neurones express the noradrenergic receptor and receive noradrenergic innervation. Treatment with noradrenaline (NA) stimulates GnIH release from diencephalic tissue blocks in vitro. However, the effects of NA on hypothalamic GnIH gene expression have not been determined. We investigated noradrenergic regulation of GnIH gene expression in the brain of male quail using the selective noradrenergic neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4). We first showed that DSP-4 reduced the number of noradrenergic (dopamine-β-hydroxylase immunoreactive) cells in the locus coeruleus (LoC) and specifically lowered the NA concentration in the hypothalamus of male quail. Other monoamines, such as dopamine and serotonin, were not affected by drug treatment. DSP-4 did not decrease the numbers of noradrenergic cells of the lateral tegmental cell group, nor the plasma NA concentration. Decreased hypothalamic NA levels after DSP-4 treatment did not change GnIH gene expression in the brains of quail during their interaction with conspecifics. On the other hand, GnIH gene expression increased in the brains of quail socially isolated for 1 hour after DSP-4 treatment. These results suggest that some noradrenergic neurones have inhibitory effects on GnIH gene expression of the hypothalamus in solitary quail. © 2017 British Society for Neuroendocrinology.

  7. Modulation of gene expression in a human cell line caused by poliovirus, vaccinia virus and interferon

    Directory of Open Access Journals (Sweden)

    Hoddevik Gunnar

    2007-03-01

    Full Text Available Abstract Background The project was initiated to describe the response of a human embryonic fibroblast cell line to the replication of two different viruses, and, more specifically, to look for candidate genes involved in viral defense. For this purpose, the cells were synchronously infected with poliovirus in the absence or presence of interferon-alpha, or with vaccinia virus, a virus that is not inhibited by interferon. By comparing the changes in transcriptosome due to these different challenges, it should be possible to suggest genes that might be involved in defense. Results The viral titers were sufficient to yield productive infection in a majority of the cells. The cells were harvested in triplicate at various time-points, and the transcriptosome compared with mock infected cells using oligo-based, global 35 k microarrays. While there was very limited similarities in the response to the different viruses, a large proportion of the genes up-regulated by interferon-alpha were also up-regulated by poliovirus. Interferon-alpha inhibited poliovirus replication, but there were no signs of any interferons being induced by poliovirus. The observations suggest that the cells do launch an antiviral response to poliovirus in the absence of interferon. Analyses of the data led to a list of candidate antiviral genes. Functional information was limited, or absent, for most of the candidate genes. Conclusion The data are relevant for our understanding of how the cells respond to poliovirus and vaccinia virus infection. More annotations, and more microarray studies with related viruses, are required in order to narrow the list of putative defence-related genes.

  8. Epigenetic Modulation of Brain Gene Networks for Cocaine and Alcohol Abuse

    Directory of Open Access Journals (Sweden)

    Sean P Farris

    2015-05-01

    Full Text Available Cocaine and alcohol are two substances of abuse that prominently affect the central nervous system (CNS. Repeated exposure to cocaine and alcohol leads to longstanding changes in gene expression, and subsequent functional CNS plasticity, throughout multiple brain regions. Epigenetic modifications of histones are one proposed mechanism guiding these enduring changes to the transcriptome. Characterizing the large number of available biological relationships as network models can reveal unexpected biochemical relationships. Clustering analysis of variation from whole-genome sequencing of gene expression (RNA-Seq and histone H3 lysine 4 trimethylation (H3K4me3 events (ChIP-Seq revealed the underlying structure of the transcriptional and epigenomic landscape within hippocampal postmortem brain tissue of drug abusers and control cases. Distinct sets of interrelated networks for cocaine and alcohol abuse were determined for each abusive substance. The network approach identified subsets of functionally related genes that are regulated in agreement with H3K4me3 changes, suggesting cause and effect relationships between this epigenetic mark and gene expression. Gene expression networks consisted of recognized substrates for addiction, such as the dopamine- and cAMP-regulated neuronal phosphoprotein PPP1R1B / DARPP-32 and the vesicular glutamate transporter SLC17A7 / VGLUT1 as well as potentially novel molecular targets for substance abuse. Through a systems biology based approach our results illustrate the utility of integrating epigenetic and transcript expression to establish relevant biological networks in the human brain for addiction. Future work with laboratory models may clarify the functional relevance of these gene networks for cocaine and alcohol, and provide a framework for the development of medications for the treatment of addiction.

  9. Microsatellites in the Eukaryotic DNA Mismatch Repair Genes as Modulators of Evolutionary Mutation Rate

    Science.gov (United States)

    Chang, Dong Kyung; Metzgar, David; Wills, Christopher; Boland, C. Richard

    2003-01-01

    All "minor" components of the human DNA mismatch repair (MMR) system-MSH3, MSH6, PMS2, and the recently discovered MLH3-contain mononucleotide microsatellites in their coding sequences. This intriguing finding contrasts with the situation found in the major components of the DNA MMR system-MSH2 and MLH1-and, in fact, most human genes. Although eukaryotic genomes are rich in microsatellites, non-triplet microsatellites are rare in coding regions. The recurring presence of exonal mononucleotide repeat sequences within a single family of human genes would therefore be considered exceptional.

  10. Characterization of Chemically Induced Liver Injuries Using Gene Co-Expression Modules

    Science.gov (United States)

    2014-09-16

    fluocinolone acetonide, hydrocortisone 3. PDE4 inhibitors Piclamilast, roflumilast, rolipram 4. HMG-CoA reductase inhibitors Cerivastatin, fluvastatin 5. DNA ...metals, low dose Lead(IV) acetate, sodium arsenite 9. H+/K+- ATPase inhibitors Pentoprazole, rabeprazole doi:10.1371/journal.pone.0107230.t002 Gene Co... transformed the log ratios into Z-scores. The Z-score of gene i under condition j is given by Zi,j~ LRi,j{SLRT s , ð1Þ where the average ,…. runs over

  11. Grapevine rootstocks differentially affect the rate of ripening and modulate auxin-related genes in Cabernet Sauvignon berries

    Directory of Open Access Journals (Sweden)

    Massimiliano eCorso

    2016-02-01

    Full Text Available In modern viticulture, grafting commercial grapevine varieties on interspecific rootstocks is a common practice required for conferring resistance to many biotic and abiotic stresses. Nevertheless, the use of rootstocks to gain these essential traits is also known to impact grape berry development and quality, although the underlying mechanisms are still poorly understood. In grape berries, the onset of ripening (véraison is regulated by a complex network of mobile signals including hormones such as auxins, ethylene, abscisic acid and brassinosteroids. Recently, a new rootstock, designated M4, was selected based on its enhanced tolerance to water stress and medium vigour. This study investigates the effect of M4 on Cabernet Sauvignon (CS berry development in comparison to the commercial 1103P rootstock. Physical and biochemical parameters showed that the ripening rate of CS berries is faster when grafted onto M4. A multifactorial analysis performed on mRNA-Seq data obtained from skin and pulp of berries grown in both graft combinations revealed that genes controlling auxin action (ARF and Aux/IAA represent one of main categories affected by the rootstock genotype. Considering that the level of auxin tightly regulates the transcription of these genes, we investigated the behaviour of the main gene families involved in auxin biosynthesis and conjugation. Molecular and biochemical analyses confirmed a link between the rate of berry development and the modulation of auxin metabolism. Moreover the data indicate that this phenomenon appears to be particularly pronounced in skin tissue in comparison to the flesh.

  12. Grapevine Rootstocks Differentially Affect the Rate of Ripening and Modulate Auxin-Related Genes in Cabernet Sauvignon Berries.

    Science.gov (United States)

    Corso, Massimiliano; Vannozzi, Alessandro; Ziliotto, Fiorenza; Zouine, Mohamed; Maza, Elie; Nicolato, Tommaso; Vitulo, Nicola; Meggio, Franco; Valle, Giorgio; Bouzayen, Mondher; Müller, Maren; Munné-Bosch, Sergi; Lucchin, Margherita; Bonghi, Claudio

    2016-01-01

    In modern viticulture, grafting commercial grapevine varieties on interspecific rootstocks is a common practice required for conferring resistance to many biotic and abiotic stresses. Nevertheless, the use of rootstocks to gain these essential traits is also known to impact grape berry development and quality, although the underlying mechanisms are still poorly understood. In grape berries, the onset of ripening (véraison) is regulated by a complex network of mobile signals including hormones such as auxins, ethylene, abscisic acid, and brassinosteroids. Recently, a new rootstock, designated M4, was selected based on its enhanced tolerance to water stress and medium vigor. This study investigates the effect of M4 on Cabernet Sauvignon (CS) berry development in comparison to the commercial 1103P rootstock. Physical and biochemical parameters showed that the ripening rate of CS berries is faster when grafted onto M4. A multifactorial analysis performed on mRNA-Seq data obtained from skin and pulp of berries grown in both graft combinations revealed that genes controlling auxin action (ARF and Aux/IAA) represent one of main categories affected by the rootstock genotype. Considering that the level of auxin tightly regulates the transcription of these genes, we investigated the behavior of the main gene families involved in auxin biosynthesis and conjugation. Molecular and biochemical analyses confirmed a link between the rate of berry development and the modulation of auxin metabolism. Moreover, the data indicate that this phenomenon appears to be particularly pronounced in skin tissue in comparison to the flesh.

  13. The intrauterine metabolic environment modulates the gene expression pattern in fetal rat islets: prevention by maternal taurine supplementation.

    Science.gov (United States)

    Reusens, B; Sparre, T; Kalbe, L; Bouckenooghe, T; Theys, N; Kruhøffer, M; Orntoft, T F; Nerup, J; Remacle, C

    2008-05-01

    Events during fetal life may in critical time windows programme tissue development leading to organ dysfunction with potentially harmful consequences in adulthood such as diabetes. In rats, the beta cell mass of progeny from dams fed with a low-protein (LP) diet during gestation is decreased at birth and metabolic perturbation lasts through adulthood even though a normal diet is given after birth or after weaning. Maternal and fetal plasma taurine levels are suboptimal. Maternal taurine supplementation prevents these induced abnormalities. In this study, we aimed to reveal changes in gene expression in fetal islets affected by the LP diet and how taurine may prevent these changes. Pregnant Wistar rats were fed an LP diet (8% [wt/wt] protein) supplemented or not with taurine in the drinking water or a control diet (20% [wt/wt] protein). At 21.5 days of gestation, fetal pancreases were removed, digested and cultured for 7 days. Neoformed islets were collected and transcriptome analysis was performed. Maternal LP diet significantly changed the expression of more than 10% of the genes. Tricarboxylic acid cycle and ATP production were highly targeted, but so too were cell proliferation and defence. Maternal taurine supplementation normalised the expression of all altered genes. Development of the beta cells and particularly their respiration is modulated by the intrauterine environment, which may epigenetically modify expression of the genome and programme the beta cell towards a pre-diabetic phenotype. This mis-programming by maternal LP diet was prevented by early taurine intervention.

  14. The ACE gene D/I polymorphism as a modulator of severity of cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Marson Fernando A L

    2012-08-01

    Full Text Available Abstract Background Cystic Fibrosis (CF is a monogenic disease with complex expression because of the action of genetic and environmental factors. We investigated whether the ACE gene D/I polymorphism is associated with severity of CF. Methods A cross-sectional study was performed, from 2009 to 2011, at University of Campinas – UNICAMP. We analyzed 180 patients for the most frequent mutations in the CFTR gene, presence of the ACE gene D/I polymorphism and clinical characteristics of CF. Results There was an association of the D/D genotype with early initiation of clinical manifestations (OR: 1.519, CI: 1.074 to 2.146, bacterium Burkholderia cepacia colonization (OR: 3.309, CI: 1.476 to 6.256 and Bhalla score (BS (p = 0.015. The association was observed in subgroups of patients which were defined by their CFTR mutation genotype (all patients; subgroup I: no mutation detected; subgroup II: one CFTR allele identified to mutation class I, II or III; subgroup III: both CFTR alleles identified to mutation class I, II and/or III. Conclusion An association between the D allele in the ACE gene and the severity of CF was found in our study.

  15. Preimplantation embryo-secreted factors modulate maternal gene expression in rat uterus.

    Science.gov (United States)

    Yamagami, Kazuki; Islam, M Rashedul; Yoshii, Yuka; Mori, Kazuki; Tashiro, Kosuke; Yamauchi, Nobuhiko

    2016-05-01

    In mammalian reproduction, embryo implantation into the uterus is spatiotemporally regulated by a complex process triggered by a number of factors. Although previous studies have suggested that uterine receptivity is mediated by blastocyst-derived factors, specific functions of embryos remain to be defined during preimplantation. Therefore, the present study was conducted to identify the maternal genes regulated by embryo-secreted factors in the rat uterus. RNA-sequencing (RNA-seq) data revealed that 10 genes are up-regulated in the delayed implantation uterus compared with the pseudopregnancy uterus. The RNA-seq results were further verified by real-time quantitative polymerase chain reaction. Sulf1 expression is significantly (P uterus, although Areg, Calca, Fxyd4 and Lamc3 show a definite but non-statistically significant increase in their expression levels. During early pregnancy, the levels of Areg, Calca, Fxyd4, Lamc3 and Sulf1 expression at 3.5 days post coitus (dpc) are significantly (P < 0.05) higher than those at 1.5 dpc. Treatment with embryo-conditioned media revealed that Lamc3 and Sulf1 are up-regulated compared with the other genes studied. Thus, embryo-derived factors regulate maternal gene expression, with Lamc3 and Sulf1 possibly being suitable markers for a response study of embryo-secreted factors to improve our understanding of embryo-maternal communication.

  16. The Brugada Syndrome Susceptibility Gene HEY2 Modulates Cardiac Transmural Ion Channel Patterning and Electrical Heterogeneity

    NARCIS (Netherlands)

    Veerman, Christiaan C.; Podliesna, Svitlana; Tadros, Rafik; Lodder, Elisabeth M.; Mengarelli, Isabella; de Jonge, Berend; Beekman, Leander; Barc, Julien; Wilders, Ronald; Wilde, Arthur A.; Boukens, Bastiaan J.; Coronel, Ruben; Verkerk, Arie; Remme, Carol Ann; Bezzina, Connie R.

    2017-01-01

    Genome-wide association studies previously identified an association of rs9388451 at chromosome 6q22.3 (near HEY2) with Brugada syndrome. The causal gene and underlying mechanism remain unresolved. We used an integrative approach entailing transcriptomic studies in human hearts and

  17. Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm

    NARCIS (Netherlands)

    Nadadur, Rangarajan D.; Broman, Michael T.; Boukens, Bastiaan; Mazurek, Stefan R.; Yang, Xinan; van den Boogaard, Malou; Bekeny, Jenna; Gadek, Margaret; Ward, Tarsha; Zhang, Min; Qiao, Yun; Martin, James F.; Seidman, Christine E.; Seidman, Jon; Christoffels, Vincent; Efimov, Igor R.; McNally, Elizabeth M.; Weber, Christopher R.; Moskowitz, Ivan P.

    2016-01-01

    Cardiac rhythm is extremely robust, generating 2 billion contraction cycles during the average human life span. Transcriptional control of cardiac rhythm is poorly understood. We found that removal of the transcription factor gene Tbx5 from the adult mouse caused primary spontaneous and sustained

  18. Common variants of the genes encoding erythropoietin and its receptor modulate cognitive performance in schizophrenia

    DEFF Research Database (Denmark)

    Kästner, Anne; Grube, Sabrina; El-Kordi, Ahmed

    2012-01-01

    ) genotypes with cognitive functions. To prove this hypothesis, schizophrenic patients (N > 1000) were genotyped for 5' upstream-located gene variants, EPO SNP rs1617640 (T/G) and EPORSTR(GA)(n). Associations of these variants were obtained for cognitive processing speed, fine motor skills and short...

  19. Modulation of genes involved in inflammation and cell death in atherosclerosis-susceptible mice

    NARCIS (Netherlands)

    Zadelaar, Anna Susanne Maria

    2006-01-01

    In this thesis we focus on atherosclerosis as the main cause of cardiovascular disease. Since inflammation and cell death are important processes in the onset and progression of atherosclerosis, we investigate the role of several genes involved in inflammation and cell death in the vessel wall and

  20. NF45 and NF90 Bind HIV-1 RNA and Modulate HIV Gene Expression

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-02-01

    Full Text Available A previous proteomic screen in our laboratory identified nuclear factor 45 (NF45 and nuclear factor 90 (NF90 as potential cellular factors involved in human immunodeficiency virus type 1 (HIV-1 replication. Both are RNA binding proteins that regulate gene expression; and NF90 has been shown to regulate the expression of cyclin T1 which is required for Tat-dependent trans-activation of viral gene expression. In this study the roles of NF45 and NF90 in HIV replication were investigated through overexpression studies. Ectopic expression of either factor potentiated HIV infection, gene expression, and virus production. Deletion of the RNA binding domains of NF45 and NF90 diminished the enhancement of HIV infection and gene expression. Both proteins were found to interact with the HIV RNA. RNA decay assays demonstrated that NF90, but not NF45, increased the half-life of the HIV RNA. Overall, these studies indicate that both NF45 and NF90 potentiate HIV infection through their RNA binding domains.

  1. Alcohol Consumption Modulates Host Defense in Rhesus Macaques by Altering Gene Expression in Circulating Leukocytes.

    Science.gov (United States)

    Barr, Tasha; Girke, Thomas; Sureshchandra, Suhas; Nguyen, Christina; Grant, Kathleen; Messaoudi, Ilhem

    2016-01-01

    Several lines of evidence indicate that chronic alcohol use disorder leads to increased susceptibility to several viral and bacterial infections, whereas moderate alcohol consumption decreases the incidence of colds and improves immune responses to some pathogens. In line with these observations, we recently showed that heavy ethanol intake (average blood ethanol concentrations > 80 mg/dl) suppressed, whereas moderate alcohol consumption (blood ethanol concentrations consumption. To uncover the molecular basis for impaired immunity with heavy alcohol consumption and enhanced immune response with moderate alcohol consumption, we performed a transcriptome analysis using PBMCs isolated on day 7 post-modified vaccinia Ankara vaccination, the earliest time point at which we detected differences in T cell and Ab responses. Overall, chronic heavy alcohol consumption reduced the expression of immune genes involved in response to infection and wound healing and increased the expression of genes associated with the development of lung inflammatory disease and cancer. In contrast, chronic moderate alcohol consumption upregulated the expression of genes involved in immune response and reduced the expression of genes involved in cancer. To uncover mechanisms underlying the alterations in PBMC transcriptomes, we profiled the expression of microRNAs within the same samples. Chronic heavy ethanol consumption altered the levels of several microRNAs involved in cancer and immunity and known to regulate the expression of mRNAs differentially expressed in our data set. Copyright © 2015 by The American Association of Immunologists, Inc.

  2. Bioinformatics Identification of Modules of Transcription Factor Binding Sites in Alzheimer's Disease-Related Genes by In Silico Promoter Analysis and Microarrays

    Directory of Open Access Journals (Sweden)

    Regina Augustin

    2011-01-01

    Full Text Available The molecular mechanisms and genetic risk factors underlying Alzheimer's disease (AD pathogenesis are only partly understood. To identify new factors, which may contribute to AD, different approaches are taken including proteomics, genetics, and functional genomics. Here, we used a bioinformatics approach and found that distinct AD-related genes share modules of transcription factor binding sites, suggesting a transcriptional coregulation. To detect additional coregulated genes, which may potentially contribute to AD, we established a new bioinformatics workflow with known multivariate methods like support vector machines, biclustering, and predicted transcription factor binding site modules by using in silico analysis and over 400 expression arrays from human and mouse. Two significant modules are composed of three transcription factor families: CTCF, SP1F, and EGRF/ZBPF, which are conserved between human and mouse APP promoter sequences. The specific combination of in silico promoter and multivariate analysis can identify regulation mechanisms of genes involved in multifactorial diseases.

  3. FGF23 modulates the effects of erythropoietin on gene expression in renal epithelial cells

    Directory of Open Access Journals (Sweden)

    Yashiro M

    2018-04-01

    Full Text Available Mitsuru Yashiro,1 Masaki Ohya,1 Toru Mima,1 Yumi Ueda,2 Yuri Nakashima,1 Kazuki Kawakami,1 Yohei Ishizawa,2 Shuto Yamamoto,1 Sou Kobayashi,1 Takurou Yano,1 Yusuke Tanaka,1 Kouji Okuda,1 Tomohiro Sonou,1 Tomohiro Shoshihara,1 Yuko Iwashita,1 Yu Iwashita,1 Kouichi Tatsuta,1 Ryo Matoba,2 Shigeo Negi,1 Takashi Shigematsu1 1Department of Nephrology, Wakayama Medical University, Wakayama, Japan; 2DNA Chip Research Inc., Minato, Japan Background: FGF23 plays an important role in calcium–phosphorus metabolism. Other roles of FGF23 have recently been reported, such as commitment to myocardium enlargement and immunological roles in the spleen. In this study, we aimed to identify the roles of FGF23 in the kidneys other than calcium–phosphorus metabolism. Methods: DNA microarrays and bioinformatics tools were used to analyze gene expression in mIMCD3 mouse renal tubule cells following treatment with FGF23, erythropoietin and/or an inhibitor of ERK. Results: Three protein-coding genes were upregulated and 12 were downregulated in response to FGF23. Following bioinformatics analysis of these genes, PPARγ and STAT3 were identified as candidate transcript factors for mediating their upregulation, and STAT1 as a candidate for mediating their downregulation. Because STAT1 and STAT3 also mediate erythropoietin signaling, we investigated whether FGF23 and erythropoietin might show interactive effects in these cells. Of the 15 genes regulated by FGF23, 11 were upregulated by erythropoietin; 10 of these were downregulated following cotreatment with FGF23. Inhibition of ERK, an intracellular mediator of FGF23, reversed the effects of FGF23. However, FGF23 did not influence STAT1 phosphorylation, suggesting that it impinges on erythropoietin signaling through other mechanisms. Conclusion: Our results suggest cross talk between erythropoietin and FGF23 signaling in the regulation of renal epithelial cells. Keywords: FGF23, STAT1, PPARγ, DNA microarray

  4. Modulation of coxsackie and adenovirus receptor expression for gene transfer to normal and dystrophic skeletal muscle.

    Science.gov (United States)

    Larochelle, Nancy; Teng, Qingshan; Gilbert, Rénald; Deol, Jatinderpal R; Karpati, George; Holland, Paul C; Nalbantoglu, Josephine

    2010-03-01

    Efficient adenovirus (AdV)-mediated gene transfer is possible only in immature muscle or regenerating muscle, suggesting that a developmentally regulated event plays a major role in limiting AdV uptake in mature skeletal muscle. Previously, we showed that the expression of the primary coxsackie and adenovirus receptor (CAR) is severely down-regulated during muscle maturation and that, in muscle-specific CAR transgenic mice, there is significant enhancement of AdV-mediated gene transfer to mature skeletal muscle. To evaluate whether increasing CAR expression can also augment gene transfer to dystrophic muscle that has many regenerating fibers, we crossed CAR transgenics with dystrophin-deficient mice (mdx/CAR). We also tested a two-step protocol in which CAR levels were increased in the target muscle, prior to administration of AdV, through the use of recombinant adeno-associated virus (AAV2) expressing CAR. Lastly, we assessed the effect of histone deacetylase inhibitors on CAR and AdV transduction efficiency in myoblasts and mdx muscle. Although somewhat higher rates of transduction can be achieved in adult mdx mice than in normal mice as a result of ongoing muscle regeneration in these animals, CAR expression in the mdx background (mdx/CAR transgenics) still markedly improved the susceptibility of mature muscle to AdV-mediated gene transfer of dystrophin. Prior administration of AAV2-CAR to normal muscle led to significantly increased transduction by subsequent injection of AdV. The histone deacetylase inhibitor valproate increased CAR transcript and protein levels in myoblasts and mdx muscle, and also increased AdV-mediated gene transfer. We have developed a method of increasing CAR levels in both normal and regenerating muscle.

  5. New tools for Mendelian disease gene identification: PhenoDB variant analysis module; and GeneMatcher, a web-based tool for linking investigators with an interest in the same gene.

    Science.gov (United States)

    Sobreira, Nara; Schiettecatte, François; Boehm, Corinne; Valle, David; Hamosh, Ada

    2015-04-01

    Identifying the causative variant from among the thousands identified by whole-exome sequencing or whole-genome sequencing is a formidable challenge. To make this process as efficient and flexible as possible, we have developed a Variant Analysis Module coupled to our previously described Web-based phenotype intake tool, PhenoDB (http://researchphenodb.net and http://phenodb.org). When a small number of candidate-causative variants have been identified in a study of a particular patient or family, a second, more difficult challenge becomes proof of causality for any given variant. One approach to this problem is to find other cases with a similar phenotype and mutations in the same candidate gene. Alternatively, it may be possible to develop biological evidence for causality, an approach that is assisted by making connections to basic scientists studying the gene of interest, often in the setting of a model organism. Both of these strategies benefit from an open access, online site where individual clinicians and investigators could post genes of interest. To this end, we developed GeneMatcher (http://genematcher.org), a freely accessible Website that enables connections between clinicians and researchers across the world who share an interest in the same gene(s). © 2015 WILEY PERIODICALS, INC.

  6. Controller Architectures for Switching

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2009-01-01

    This paper investigate different controller architectures in connection with controller switching. The controller switching is derived by using the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization. A number of different architectures for the implementation of the YJBK parameterization...... are described and applied in connection with controller switching. An architecture that does not include inversion of the coprime factors is introduced. This architecture will make controller switching particular simple....

  7. The landscape of isoform switches in human cancers

    DEFF Research Database (Denmark)

    Vitting-Seerup, Kristoffer; Sandelin, Albin Gustav

    2017-01-01

    developed methods for identification and visualization of isoform switches with predicted functional consequences. Using these methods, we characterized isoform switching in RNA-seq data from >5,500 cancer patients covering 12 solid cancer types. Isoform switches with potential functional consequences were...... common, affecting approximately 19% of multiple transcript genes. Among these, isoform switches leading to loss of DNA sequence encoding protein domains were more frequent than expected, particularly in pancancer switches. We identified several isoform switches as powerful biomarkers: 31 switches were...... highly predictive of patient survival independent of cancer types. Our data constitute an important resource for cancer researchers, available through interactive web tools. Moreover, our methods, available as an R package, enable systematic analysis of isoform switches from other RNA-seq datasets...

  8. Artificial OFF-Riboswitches That Downregulate Internal Ribosome Entry without Hybridization Switches in a Eukaryotic Cell-Free Translation System.

    Science.gov (United States)

    Ogawa, Atsushi; Masuoka, Hiroki; Ota, Tsubasa

    2017-09-15

    We constructed novel artificial riboswitches that function in a eukaryotic translation system (wheat germ extract), by rationally implanting an in vitro-selected aptamer into the intergenic internal ribosome entry site (IRES) of Plautia stali intestine virus. These eukaryotic OFF-riboswitches (OFF-eRSs) ligand-dose-dependently downregulate IRES-mediated translation without hybridization switches, which typical riboswitches utilize for gene regulation. The hybridization-switch-free mechanism not only allows for easy design but also requires less energy for regulation, resulting in a higher switching efficiency than hybridization-switch-based OFF-eRSs provide. In addition, even a small ligand such as theophylline can induce satisfactory repression, in contrast to other types of OFF-eRSs that modulate the 5' cap-dependent canonical translation. Because our proposed hybridization-switch-free OFF-eRSs are based on a versatile IRES that functions well in many types of eukaryotic translation systems, they would be widely usable elements for synthetic gene circuits in both cell-free and cell-based synthetic biology.

  9. Ru-Os dyads based on a mixed bipyridine-terpyridine bridging ligand: modulation of the rate of energy transfer and pH-induced luminescence switching in the infrared domain.

    Science.gov (United States)

    Bar, Manoranjan; Maity, Dinesh; Deb, Sourav; Das, Shyamal; Baitalik, Sujoy

    2017-10-03

    A series of heterobimetallic complexes of compositions [(bpy/phen) 2 Ru(dipy-Hbzim-tpy)Os (tpy-PhCH 3 /H 2 pbbzim)] 4+ (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, tpy-PhCH 3 = 4'-(4-methylphenyl)-2,2':6',2''-terpyridine and H 2 pbbzim = 2,6-bis(benzimidazole-2-yl)pyridine)), derived from a heteroditopic bpy-tpy bridging ligand, were synthesized and thoroughly characterized in this work. The heterometallic complexes exhibit two successive one-electron reversible metal-centered oxidations corresponding to Os II /Os III at lower potential and Ru II /Ru III at higher potential. All the four dyads exhibit very intense, ligand centered absorption bands in the UV region and moderately intense MLCT bands in the visible region. The dyads also show intense infrared emission with the emission maximum spanning between 734 nm and 775 nm with reasonably long room temperature lifetimes varying between 30 ns and 104 ns. Both steady state and time resolved luminescence spectroscopic investigations indicate that efficient and fast intramolecular energy transfer from the 3 MLCT state of the Ru(ii) center to the Os-center takes place in all the four dyads. In addition, the rate of energy transfer was found to depend on the terminal ligand on the Os-site. Due to the presence of a number of imidazole NH protons in the dyads, significant modulation of both the ground and excited state properties of the complexes was made possible by varying the pH of the solution. By varying the terminal ligand, pH-induced "on-off", "off-off-on" and "on-off-on" emission switching of the complexes was nicely demonstrated in the infrared region.

  10. Crystal Structure of an Integron Gene Cassette-Associated Protein from Vibrio cholerae Identifies a Cationic Drug-Binding Module

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Chandrika N.; Harrop, Stephen J.; Boucher, Yan; Hassan, Karl A.; Di Leo, Rosa; Xu, Xiaohui; Cui, Hong; Savchenko, Alexei; Chang, Changsoo; Labbate, Maurizio; Paulsen, Ian T.; Stokes, H.W.; Curmi, Paul M.G.; Mabbutt, Bridget C. (MIT); (UT-Australia); (Macquarie); (Toronto); (New South)

    2012-02-15

    The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes. We report the 1.8 {angstrom} crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators. Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.

  11. Crystal structure of an integron gene cassette-associated protein from Vibrio cholerae identifies a cationic drug-binding module.

    Directory of Open Access Journals (Sweden)

    Chandrika N Deshpande

    2011-03-01

    Full Text Available The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes.We report the 1.8 Å crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators.Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.

  12. miR-16 targets transcriptional corepressor SMRT and modulates NF-kappaB-regulated transactivation of interleukin-8 gene.

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    Full Text Available The signaling pathways associated with the Toll-like receptors (TLRs and nuclear factor-kappaB (NF-κB are essential to pro-inflammatory cytokine and chemokine expression, as well as initiating innate epithelial immune responses. The TLR/NF-κB signaling pathways must be stringently controlled through an intricate network of positive and negative regulatory elements. MicroRNAs (miRNAs are non-coding small RNAs that regulate the stability and/or translation of protein-coding mRNAs. Herein we report that miR-16 promotes NF-κB-regulated transactivation of the IL-8 gene by suppression of the silencing mediator for retinoid and thyroid hormone receptor (SMRT. LPS stimulation activated miR-16 gene transcription in human monocytes (U937 and biliary epithelial cells (H69 through MAPK-dependent mechanisms. Transfection of cells with the miR-16 precursor promoted LPS-induced production of IL-8, IL-6, and IL-1α, without a significant effect on their RNA stability. Instead, an increase in NF-κB-regulated transactivation of the IL-8 gene was confirmed in cells following transfection of miR-16 precursor. Importantly, miR-16 targeted the 3'-untranslated region of SMRT and caused translational suppression of SMRT. LPS decreased SMRT expression via upregulation of miR-16. Moreover, functional manipulation of SMRT altered NF-κB-regulated transactivation of LPS-induced IL-8 expression. These data suggest that miR-16 targets SMRT and modulates NF-κB-regulated transactivation of the IL-8 gene.

  13. The cardiac calsequestrin gene transcription is modulated at the promoter by NFAT and MEF-2 transcription factors.

    Directory of Open Access Journals (Sweden)

    Rafael Estrada-Avilés

    Full Text Available Calsequestrin-2 (CASQ2 is the main Ca2+-binding protein inside the sarcoplasmic reticulum of cardiomyocytes. Previously, we demonstrated that MEF-2 and SRF binding sites within the human CASQ2 gene (hCASQ2 promoter region are functional in neonatal cardiomyocytes. In this work, we investigated if the calcineurin/NFAT pathway regulates hCASQ2 expression in neonatal cardiomyocytes. The inhibition of NFAT dephosphorylation with CsA or INCA-6, reduced both the luciferase activity of hCASQ2 promoter constructs (-3102/+176 bp and -288/+176 bp and the CASQ2 mRNA levels in neonatal rat cardiomyocytes. Additionally, NFATc1 and NFATc3 over-expressing neonatal cardiomyocytes showed a 2-3-fold increase in luciferase activity of both hCASQ2 promoter constructs, which was prevented by CsA treatment. Site-directed mutagenesis of the -133 bp MEF-2 binding site prevented trans-activation of hCASQ2 promoter constructs induced by NFAT overexpression. Chromatin Immunoprecipitation (ChIP assays revealed NFAT and MEF-2 enrichment within the -288 bp to +76 bp of the hCASQ2 gene promoter. Besides, a direct interaction between NFAT and MEF-2 proteins was demonstrated by protein co-immunoprecipitation experiments. Taken together, these data demonstrate that NFAT interacts with MEF-2 bound to the -133 bp binding site at the hCASQ2 gene promoter. In conclusion, in this work, we demonstrate that the Ca2+-calcineurin/NFAT pathway modulates the transcription of the hCASQ2 gene in neonatal cardiomyocytes.

  14. Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data

    Directory of Open Access Journals (Sweden)

    Sivaganesan Siva

    2007-08-01

    Full Text Available Abstract Background Transcriptional modules (TM consist of groups of co-regulated genes and transcription factors (TF regulating their expression. Two high-throughput (HT experimental technologies, gene expression microarrays and Chromatin Immuno-Precipitation on Chip (ChIP-chip, are capable of producing data informative about expression regulatory mechanism on a genome scale. The optimal approach to joint modeling of data generated by these two complementary biological assays, with the goal of identifying and characterizing TMs, is an important open problem in computational biomedicine. Results We developed and validated a novel probabilistic model and related computational procedure for identifying TMs by jointly modeling gene expression and ChIP-chip binding data. We demonstrate an improved functional coherence of the TMs produced by the new method when compared to either analyzing expression or ChIP-chip data separately or to alternative approaches for joint analysis. We also demonstrate the ability of the new algorithm to identify novel regulatory relationships not revealed by ChIP-chip data alone. The new computational procedure can be used in more or less the same way as one would use simple hierarchical clustering without performing any special transformation of data prior to the analysis. The R and C-source code for implementing our algorithm is incorporated within the R package gimmR which is freely available at http://eh3.uc.edu/gimm. Conclusion Our results indicate that, whenever available, ChIP-chip and expression data should be analyzed within the unified probabilistic modeling framework, which will likely result in improved clusters of co-regulated genes and improved ability to detect meaningful regulatory relationships. Given the good statistical properties and the ease of use, the new computational procedure offers a worthy new tool for reconstructing transcriptional regulatory networks.

  15. Epigenetic modulation of gene expression governs the brain's response to injury.

    Science.gov (United States)

    Simon, Roger P

    2016-06-20

    Mild stress from ischemia, seizure, hypothermia, or infection can produce a transient neuroprotected state in the brain. In the neuroprotected state, the brain responds differently to a severe stress and sustains less injury. At the genomic level, the response of the neuroprotected brain to a severe stress is characterized by widespread differential regulation of genes with diverse functions. This reprogramming of gene expression observed in the neuroprotected brain in response to a stress is consistent with an epigenetic model of regulation mediated by changes in DNA methylation and histone modification. Here, we summarize our evolving understanding of the molecular basis for endogenous neuroprotection and review recent findings that implicate DNA methylation and protein mediators of histone modification as epigenetic regulators of the brain's response to injury. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Epigenetic modulation of gene expression governs the brain’s response to injury

    Science.gov (United States)

    Simon, Roger P.

    2016-01-01

    Mild stress from ischemia, seizure, hypothermia, or infection can produce a transient neuroprotected state in the brain. In the neuroprotected state, the brain responds differently to a severe stress and sustains less injury. At the genomic level, the response of the neuroprotected brain to a severe stress is characterized by widespread differential regulation of genes with diverse functions. This reprogramming of gene expression observed in the neuroprotected brain in response to a stress is consistent with an epigenetic model of regulation mediated by changes in DNA methylation and histone modification. Here, we summarize our evolving understanding of the molecular basis for endogenous neuroprotection and review recent findings that implicate DNA methylation and protein mediators of histone modification as epigenetic regulators of the brain’s response to injury. PMID:26739198

  17. Scavenger receptor class A member 5 (SCARA5) and suprabasin (SBSN) are hub genes of coexpression network modules associated with peripheral vein graft patency.

    Science.gov (United States)

    Kenagy, Richard D; Civelek, Mete; Kikuchi, Shinsuke; Chen, Lihua; Grieff, Anthony; Sobel, Michael; Lusis, Aldons J; Clowes, Alexander W

    2016-07-01

    Approximately 30% of autogenous vein grafts develop luminal narrowing and fail because of intimal hyperplasia or negative remodeling. We previously found that vein graft cells from patients who later develop stenosis proliferate more in vitro in response to growth factors than cells from patients who maintain patent grafts. To discover novel determinants of vein graft outcome, we have analyzed gene expression profiles of these cells using a systems biology approach to cluster the genes into modules by their coexpression patterns and to correlate the results with growth data from our prior study and with new studies of migration and matrix remodeling. RNA from 4-hour serum- or platelet-derived growth factor (PDGF)-BB-stimulated human saphenous vein cells obtained from the outer vein wall (20 cell lines) was used for microarray analysis of gene expression, followed by weighted gene coexpression network analysis. Cell migration in microchemotaxis chambers in response to PDGF-BB and cell-mediated collagen gel contraction in response to serum were also determined. Gene function was determined using short-interfering RNA to inhibit gene expression before subjecting cells to growth or collagen gel contraction assays. These cells were derived from samples of the vein grafts obtained at surgery, and the long-term fate of these bypass grafts was known. Neither migration nor cell-mediated collagen gel contraction showed a correlation with graft outcome. Although 1188 and 1340 genes were differentially expressed in response to treatment with serum and PDGF, respectively, no single gene was differentially expressed in cells isolated from patients whose grafts stenosed compared with those that remained patent. Network analysis revealed four unique groups of genes, which we term modules, associated with PDGF responses, and 20 unique modules associated with serum responses. The "yellow" and "skyblue" modules, from PDGF and serum analyses, respectively, correlated with later graft

  18. Epigenetic Modulation of Brain Gene Networks for Cocaine and Alcohol Abuse

    OpenAIRE

    Sean P Farris; Robert Adron Harris; Igor ePonomarev

    2015-01-01

    Cocaine and alcohol are two substances of abuse that prominently affect the central nervous system (CNS). Repeated exposure to cocaine and alcohol leads to longstanding changes in gene expression, and subsequent functional CNS plasticity, throughout multiple brain regions. Epigenetic modifications of histones are one proposed mechanism guiding these enduring changes to the transcriptome. Characterizing the large number of available biological relationships as network models can reveal unexpec...

  19. Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness

    Science.gov (United States)

    Kerwin, Rachel; Feusier, Julie; Corwin, Jason; Rubin, Matthew; Lin, Catherine; Muok, Alise; Larson, Brandon; Li, Baohua; Joseph, Bindu; Francisco, Marta; Copeland, Daniel; Weinig, Cynthia; Kliebenstein, Daniel J

    2015-01-01

    Natural populations persist in complex environments, where biotic stressors, such as pathogen and insect communities, fluctuate temporally and spatially. These shifting biotic pressures generate heterogeneous selective forces that can maintain standing natural variation within a species. To directly test if genes containing causal variation for the Arabidopsis thaliana defensive compounds, glucosinolates (GSL) control field fitness and are therefore subject to natural selection, we conducted a multi-year field trial using lines that vary in only specific causal genes. Interestingly, we found that variation in these naturally polymorphic GSL genes affected fitness in each of our environments but the pattern fluctuated such that highly fit genotypes in one trial displayed lower fitness in another and that no GSL genotype or genotypes consistently out-performed the others. This was true both across locations and within the same location across years. These results indicate that environmental heterogeneity may contribute to the maintenance of GSL variation observed within Arabidopsis thaliana. DOI: http://dx.doi.org/10.7554/eLife.05604.001 PMID:25867014

  20. Exercise Prevents Diaphragm Wasting Induced by Cigarette Smoke through Modulation of Antioxidant Genes and Metalloproteinases

    Directory of Open Access Journals (Sweden)

    Gracielle Vieira Ramos

    2018-01-01

    Full Text Available Background. The present study aimed to analyze the effects of physical training on an antioxidant canonical pathway and metalloproteinases activity in diaphragm muscle in a model of cigarette smoke-induced chronic obstructive pulmonary disease (COPD. Methods. Male mice were randomized into control, smoke, exercise, and exercise + smoke groups, which were maintained in trial period of 24 weeks. Gene expression of kelch-like ECH-associated protein 1; nuclear factor erythroid-2 like 2; and heme-oxygenase1 by polymerase chain reaction was performed. Metalloproteinases 2 and 9 activities were analyzed by zymography. Exercise capacity was evaluated by treadmill exercise test before and after the protocol. Results. Aerobic training inhibited diaphragm muscle wasting induced by cigarette smoke exposure. This inhibition was associated with improved aerobic capacity in those animals that were submitted to 24 weeks of aerobic training, when compared to the control and smoke groups, which were not submitted to training. The aerobic training also downregulated the increase of matrix metalloproteinases (MMP-2 and MMP-9 and upregulated antioxidant genes, such as nuclear factor erythroid-2 like 2 (NRF2 and heme-oxygenase1 (HMOX1, in exercise + smoke group compared to smoke group. Conclusions. Treadmill aerobic training protects diaphragm muscle wasting induced by cigarette smoke exposure involving upregulation of antioxidant genes and downregulation of matrix metalloproteinases.

  1. A Prader-Willi locus lncRNA cloud modulates diurnal genes and energy expenditure.

    Science.gov (United States)

    Powell, Weston T; Coulson, Rochelle L; Crary, Florence K; Wong, Spencer S; Ach, Robert A; Tsang, Peter; Alice Yamada, N; Yasui, Dag H; Lasalle, Janine M

    2013-11-01

    Prader-Willi syndrome (PWS), a genetic disorder of obesity, intellectual disability and sleep abnormalities, is caused by loss of non-coding RNAs on paternal chromosome 15q11-q13. The imprinted minimal PWS locus encompasses a long non-coding RNA (lncRNA) transcript processed into multiple SNORD116 small nucleolar RNAs and the spliced exons of the host gene, 116HG. However, both the molecular function and the disease relevance of the spliced lncRNA 116HG are unknown. Here, we show that 116HG forms a subnuclear RNA cloud that co-purifies with the transcriptional activator RBBP5 and active metabolic genes, remains tethered to the site of its transcription and increases in size in post-natal neurons and during sleep. Snord116del mice lacking 116HG exhibited increased energy expenditure corresponding to the dysregulation of diurnally expressed Mtor and circadian genes Clock, Cry1 and Per2. These combined genomic and metabolic analyses demonstrate that 116HG regulates the diurnal energy expenditure of the brain. These novel molecular insights into the energy imbalance in PWS should lead to improved therapies and understanding of lncRNA roles in complex neurodevelopmental and metabolic disorders.

  2. USP7 Attenuates Hepatic Gluconeogenesis Through Modulation of FoxO1 Gene Promoter Occupancy

    Science.gov (United States)

    Hall, Jessica A.; Tabata, Mitsuhisa; Rodgers, Joseph T.

    2014-01-01

    Hepatic forkhead protein FoxO1 is a key component of systemic glucose homeostasis via its ability to regulate the transcription of rate-limiting enzymes in gluconeogenesis. Important in the regulation of FoxO1 transcriptional activity are the modifying/demodifying enzymes that lead to posttranslational modification. Here, we demonstrate the functional interaction and regulation of FoxO1 by herpesvirus-associated ubiquitin-specific protease 7 (USP7; also known as herpesvirus-associated ubiquitin-specific protease, HAUSP), a deubiquitinating enzyme. We show that USP7-mediated mono-deubiquitination of FoxO1 results in suppression of FoxO1 transcriptional activity through decreased FoxO1 occupancy on the promoters of gluconeogenic genes. Knockdown of USP7 in primary hepatocytes leads to increased expression of FoxO1-target gluconeogenic genes and elevated glucose production. Consistent with this, USP7 gain-of-function suppresses the fasting/cAMP-induced activation of gluconeogenic genes in hepatocyte cells and in mouse liver, resulting in decreased hepatic glucose production. Notably, we show that the effects of USP7 on hepatic glucose metabolism depend on FoxO1. Together, these results place FoxO1 under the intimate regulation of deubiquitination and glucose metabolic control with important implication in diseases such as diabetes. PMID:24694308

  3. Developmental and genetic modulation of arsenic biotransformation: A gene by environment interaction?

    International Nuclear Information System (INIS)

    Meza, Mercedes; Gandolfi, A. Jay; Klimecki, Walter T.

    2007-01-01

    The complexity of arsenic toxicology has confounded the identification of specific pathways of disease causation. One focal point of arsenic research is aimed at fully characterizing arsenic biotransformation in humans, a process that appears to be quite variable, producing a mixture of several arsenic species with greatly differing toxic potencies. In an effort to characterize genetic determinants of variability in arsenic biotransformation, a genetic association study of 135 subjects in western Sonora, Mexico was performed by testing 23 polymorphic sites in three arsenic biotransformation candidate genes. One gene, arsenic 3 methyltransferase (AS3MT), was strongly associated with the ratio of urinary dimethylarsinic acid to monomethylarsonic acid (D/M) in children (7-11 years) but not in adults (18-79 years). Subsequent analyses revealed that the high D/M values associated with variant AS3MT alleles were primarily due to lower levels of monomethylarsonic acid as percent of total urinary arsenic (%MMA5). In light of several reports of arsenic-induced disease being associated with relatively high %MMA5 levels, these findings raise the possibility that variant AS3MT individuals may suffer less risk from arsenic exposure than non-variant individuals. These analyses also provide evidence that, in this population, regardless of AS3MT variant status, children tend to have lower %MMA5 values than adults, suggesting that the global developmental regulation of arsenic biotransformation may interact with genetic variants in metabolic genes to result in novel genetic effects such as those in this report

  4. Multistage switching hardware and software implementations for student experiment purpose

    Science.gov (United States)

    Sani, A.; Suherman

    2018-02-01

    Current communication and internet networks are underpinned by the switching technologies that interconnect one network to the others. Students’ understanding on networks rely on how they conver the theories. However, understanding theories without touching the reality may exert spots in the overall knowledge. This paper reports the progress of the multistage switching design and implementation for student laboratory activities. The hardware and software designs are based on three stages clos switching architecture with modular 2x2 switches, controlled by an arduino microcontroller. The designed modules can also be extended for batcher and bayan switch, and working on circuit and packet switching systems. The circuit analysis and simulation show that the blocking probability for each switch combinations can be obtained by generating random or patterned traffics. The mathematic model and simulation analysis shows 16.4% blocking probability differences as the traffic generation is uniform. The circuits design components and interfacing solution have been identified to allow next step implementation.

  5. Photo-stimulated resistive switching of ZnO nanorods

    International Nuclear Information System (INIS)

    Park, Jinjoo; Lee, Seunghyup; Yong, Kijung

    2012-01-01

    Resistive switching memory devices are promising candidates for emerging memory technologies because they yield outstanding device performance. Storage mechanisms for achieving high-density memory applications have been developed; however, so far many of them exhibit typical resistive switching behavior from the limited controlling conditions. In this study, we introduce photons as an unconventional stimulus for activating resistive switching behaviors. First, we compare the resistive switching behavior in light and dark conditions to describe how resistive switching memories can benefit from photons. Second, we drive the switching of resistance not by the electrical stimulus but only by the modulation of photon. ZnO nanorods were employed as a model system to demonstrate photo-stimulated resistive switching in high-surface-area nanomaterials, in which photo-driven surface states strongly affect their photoconductivity and resistance states. (paper)

  6. A new solid-state passive switch for neodymium lasers

    Science.gov (United States)

    Ziul'Kov, V. A.; Kazachenko, A. E.; Kotov, S. G.; Kovalev, D. V.; Stavrov, A. A.

    1992-07-01

    A new passive modulator based on CuInS2(1-x)Se2x-doped glass is proposed for Q-switching in neodymium lasers. It is noted that these solid-state passive switches can operate in a wide spectral range and do not require the use of semiconductor compounds of high optical quality.

  7. Integrating genome-wide genetic variations and monocyte expression data reveals trans-regulated gene modules in humans.

    Directory of Open Access Journals (Sweden)

    Maxime Rotival

    2011-12-01

    Full Text Available One major expectation from the transcriptome in humans is to characterize the biological basis of associations identified by genome-wide association studies. So far, few cis expression quantitative trait loci (eQTLs have been reliably related to disease susceptibility. Trans-regulating mechanisms may play a more prominent role in disease susceptibility. We analyzed 12,808 genes detected in at least 5% of circulating monocyte samples from a population-based sample of 1,490 European unrelated subjects. We applied a method of extraction of expression patterns-independent component analysis-to identify sets of co-regulated genes. These patterns were then related to 675,350 SNPs to identify major trans-acting regulators. We detected three genomic regions significantly associated with co-regulated gene modules. Association of these loci with multiple expression traits was replicated in Cardiogenics, an independent study in which expression profiles of monocytes were available in 758 subjects. The locus 12q13 (lead SNP rs11171739, previously identified as a type 1 diabetes locus, was associated with a pattern including two cis eQTLs, RPS26 and SUOX, and 5 trans eQTLs, one of which (MADCAM1 is a potential candidate for mediating T1D susceptibility. The locus 12q24 (lead SNP rs653178, which has demonstrated extensive disease pleiotropy, including type 1 diabetes, hypertension, and celiac disease, was associated to a pattern strongly correlating to blood pressure level. The strongest trans eQTL in this pattern was CRIP1, a known marker of cellular proliferation in cancer. The locus 12q15 (lead SNP rs11177644 was associated with a pattern driven by two cis eQTLs, LYZ and YEATS4, and including 34 trans eQTLs, several of them tumor-related genes. This study shows that a method exploiting the structure of co-expressions among