WorldWideScience

Sample records for switches electricity

  1. Electrically switched ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, M.A. [Pacific Northwest National Lab., Richland, WA (United States); Schwartz, D.T.; Genders, D.

    1997-10-01

    A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.

  2. Bistable fluidic valve is electrically switched

    Science.gov (United States)

    Fiet, O.; Salvinski, R. J.

    1970-01-01

    Bistable control valve is selectively switched by direct application of an electrical field to divert fluid from one output channel to another. Valve is inexpensive, has no moving parts, and operates on fluids which are relatively poor electrical conductors.

  3. Electrically switched cesium ion exchange

    International Nuclear Information System (INIS)

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.; Schwartz, D.T.; Haight, S.M.; Genders, J.D.

    1997-04-01

    Electrically Switched Ion Exchange (ESIX) is a separation technology being developed as an alternative to conventional ion exchange for removing radionuclides from high-level waste. The ESIX technology, which combines ion exchange and electrochemistry, is geared toward producing electroactive films that are highly selective, regenerable, and long lasting. During the process, ion uptake and elution are controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto a high surface area electrode. This method adds little sodium to the waste stream and minimizes the secondary wastes associated with traditional ion exchange techniques. Development of the ESIX process is well underway for cesium removal using ferrocyanides as the electroactive films. Films having selectivity for perrhenate (a pertechnetate surrogate) over nitrate also have been deposited and tested. A case study for the KE Basin on the Hanford Site was conducted based on the results of the development testing. Engineering design baseline parameters for film deposition, film regeneration, cesium loading, and cesium elution were used for developing a conceptual system. Order of magnitude cost estimates were developed to compare with conventional ion exchange. This case study demonstrated that KE Basin wastewater could be processed continuously with minimal secondary waste and reduced associated disposal costs, as well as lower capital and labor expenditures

  4. Understanding household switching behavior in the retail electricity market

    International Nuclear Information System (INIS)

    Yang, Yingkui

    2014-01-01

    Deregulation of the Danish retail electricity market nearly a decade ago has produced little consumer switching among suppliers or renegotiation of supplier service contracts. From an energy policy perspective, a certain amount of supplier switching is an important indicator of the success of market deregulation. This argues that poor relationship management and a lack of economic benefits are two critical barriers to consumer switching. Latent class analysis indicates that only 11.4% of consumers are non-switchers, whereas 41.1% can be considered potential switchers and approximately one-half (47.5%) can be considered apathetic consumers. We also discuss the managerial implications for both electricity suppliers and policy makers. - Highlights: • This paper investigates the barriers for electricity supplier switching in Denmark. • Four switching barriers were identified. • Relationship management and economic benefits are critical for consumer switching. • Three consumer segments for electricity supplier switching were identified

  5. Photochromic systems as models for opto-electrical switches

    Czech Academy of Sciences Publication Activity Database

    Lutsyk, P.; Sworakowski, J.; Janus, K.; Nešpůrek, Stanislav; Kochalska, Anna

    2010-01-01

    Roč. 522, - (2010), s. 511-528 ISSN 1542-1406 R&D Projects: GA AV ČR KAN401770651 Institutional research plan: CEZ:AV0Z40500505 Keywords : charge carrier transport * molecular material * opto-electrical switch Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.543, year: 2010

  6. Resistance switching induced by electric fields in manganite thin films

    International Nuclear Information System (INIS)

    Villafuerte, M; Juarez, G; Duhalde, S; Golmar, F; Degreef, C L; Heluani, S P

    2007-01-01

    In this work, we investigate the polarity-dependent Electric Pulses Induced Resistive (EPIR) switching phenomenon in thin films driven by electric pulses. Thin films of 0.5 Ca 0.5 MnO 3 (manganite) were deposited by PLD on Si substrate. The transport properties at the interface between the film and metallic electrode are characterized in order to study the resistance switching. Sample thermal treatment and electrical field history are important to be considered for get reproducible EPIR effect. Carriers trapping at the interfaces are considered as a possible explanation of our results

  7. Investment in electricity networks with transmission switching

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer; Philpott, A.B.

    2012-01-01

    allows the solution of large problem instances. The methodology is illustrated by its application to a problem of determining the optimal investment in switching equipment and transmission capacity for an existing network. Computational tests on IEEE test networks with 73 nodes and 118 nodes confirm...

  8. Switching conditions in the electric power system

    International Nuclear Information System (INIS)

    Tsukushi, M.; Hirasawa, K.; Kurosawa, Y.

    1991-01-01

    This paper reports that a circuit breaker must be capable of making, carrying, and interrupting the current under both normal and abnormal conditions, especially in the case of a short-circuit fault. Before installing a circuit breaker, it is necessary to estimate the maximum short-circuit current that can occur in the electric power system and then select a circuit breaker that can interrupt and make the estimated current. Many types of short-circuit faults occur in electric power systems

  9. Investigation of electrically exploded large area foil for current switching

    International Nuclear Information System (INIS)

    Chernyshev, V.K.; Boyko, A.M.; Kostyukov, V.N.; Kuzyaev, A.I.; Kulagin, A.A.; Mamyshev, V.I.; Mezhevov, A.B.; Nechaev, A.I.; Petrukhin, A.A.; Protasov, M.S.; Shevtsov, V.I.; Yakubov, V.B.

    1990-01-01

    The possibility of microsecond ∼40 MA current switching from EMG into a quasiconstant inductive load by an electrically exploded foil is investigated. The copper foil of large area, S ∼ 10 4 cm 2 , was placed between thin-walled insulators into a coaxial transmission line (TL). This paper shows a conceptual device scheme. To feed a foil opening switch (FOS), a disc explosive magnetic generator (DEMG) with 20 μs current rise time was employed. An inductive coaxial load was connected to a FOS at a moment, that was close to the foil vaporization start by means of an axisymmetric explosive current commutator (ECC)

  10. Active RF Pulse Compression Using An Electrically Controlled Semiconductor Switch

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan; Tantawi, Sami; /SLAC

    2007-01-10

    First we review the theory of active pulse compression systems using resonant delay lines. Then we describe the design of an electrically controlled semiconductor active switch. The switch comprises an active window and an overmoded waveguide three-port network. The active window is based on a four-inch silicon wafer which has 960 PIN diodes. These are spatially combined in an overmoded waveguide. We describe the philosophy and design methodology for the three-port network and the active window. We then present the results of using this device to compress 11.4 GHz RF signals with high compression ratios. We show how the system can be used with amplifier like sources, in which one can change the phase of the source by manipulating the input to the source. We also show how the active switch can be used to compress a pulse from an oscillator like sources, which is not possible with passive pulse compression systems.

  11. Electrical modulation and switching of transverse acoustic phonons

    Science.gov (United States)

    Jeong, H.; Jho, Y. D.; Rhim, S. H.; Yee, K. J.; Yoon, S. Y.; Shim, J. P.; Lee, D. S.; Ju, J. W.; Baek, J. H.; Stanton, C. J.

    2016-07-01

    We report on the electrical manipulation of coherent acoustic phonon waves in GaN-based nanoscale piezoelectric heterostructures which are strained both from the pseudomorphic growth at the interfaces as well as through external electric fields. In such structures, transverse symmetry within the c plane hinders both the generation and detection of the transverse acoustic (TA) modes, and usually only longitudinal acoustic phonons are generated by ultrafast displacive screening of potential gradients. We show that even for c -GaN, the combined application of lateral and vertical electric fields can not only switch on the normally forbidden TA mode, but they can also modulate the amplitudes and frequencies of both modes. By comparing the transient differential reflectivity spectra in structures with and without an asymmetric potential distribution, the role of the electrical controllability of phonons was demonstrated as changes to the propagation velocities, the optical birefringence, the electrically polarized TA waves, and the geometrically varying optical sensitivities of phonons.

  12. 49 CFR 236.207 - Electric lock on hand-operated switch; control.

    Science.gov (United States)

    2010-10-01

    ..., AND APPLIANCES Automatic Block Signal Systems Standards § 236.207 Electric lock on hand-operated switch; control. Electric lock on hand-operated switch shall be controlled so that it cannot be unlocked... 49 Transportation 4 2010-10-01 2010-10-01 false Electric lock on hand-operated switch; control...

  13. The Control of Switched Reluctance Motor in Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    2014-05-01

    Full Text Available The control of SRM was discussed: current chopping control, angle position control. This paper presents an inverter circuit and a fuzzy sliding mode control method to minimize the torque fluctuation and noise of the SRM. Based on the experimental results, Using the inverter circuit and fuzzy sliding mode control method can effectively minimize the torque fluctuation and noise of the SRM, For the switched reluctance motor applications in electric vehicles to provide a theoretical basis.

  14. Households' switching behavior between electricity suppliers in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Ek, Kristina; Soederholm, Patrik [Economics Unit, Luleaa University of Technology, 971 87 Luleaa (Sweden)

    2008-12-15

    The overall purpose of this paper is to analyze the factors affecting households' decisions to: (a) switch to a new electricity supplier; and (b) actively renegotiate the electricity contract with the prevailing supplier. The study is based on 536 survey responses from Swedish households and they are analyzed econometrically using probit regression techniques. The analysis is based on a theoretical framework, which embraces both economic and psychological motives behind household decision-making. The results show that households that anticipate significant economic benefits from choosing a more active behavior are also more likely to purse this, while those with smaller potential gains (e.g., households without electric heating) are less likely to change supplier and/or renegotiate their contracts. The impact of overall electricity costs and knowledge about these is particularly important for the latter decision, while respondents that perceive relatively high search and information costs are less likely to switch to an alternative electricity supplier. Moreover, constraints on time, attention, and the ability to process information, may lead to optimizing analyses being replaced by imprecise routines and rules of thumb, and the benefits of the status quo appear to represent one of those simplifying rules. This also opens up for other influences on households' activity such as social interaction and media discourses that raise the attention level. Our results show that these influences are more likely to affect households' choice to switch to new service providers, i.e., the one area of the two investigated here that put the most demand on people's ability to search for and process information. (author)

  15. Electrical Switching of Perovskite Thin-Film Resistors

    Science.gov (United States)

    Liu, Shangqing; Wu, Juan; Ignatiev, Alex

    2010-01-01

    Electronic devices that exploit electrical switching of physical properties of thin films of perovskite materials (especially colossal magnetoresistive materials) have been invented. Unlike some related prior devices, these devices function at room temperature and do not depend on externally applied magnetic fields. Devices of this type can be designed to function as sensors (exhibiting varying electrical resistance in response to varying temperature, magnetic field, electric field, and/or mechanical pressure) and as elements of electronic memories. The underlying principle is that the application of one or more short electrical pulse(s) can induce a reversible, irreversible, or partly reversible change in the electrical, thermal, mechanical, and magnetic properties of a thin perovskite film. The energy in the pulse must be large enough to induce the desired change but not so large as to destroy the film. Depending on the requirements of a specific application, the pulse(s) can have any of a large variety of waveforms (e.g., square, triangular, or sine) and be of positive, negative, or alternating polarity. In some applications, it could be necessary to use multiple pulses to induce successive incremental physical changes. In one class of applications, electrical pulses of suitable shapes, sizes, and polarities are applied to vary the detection sensitivities of sensors. Another class of applications arises in electronic circuits in which certain resistance values are required to be variable: Incorporating the affected resistors into devices of the present type makes it possible to control their resistances electrically over wide ranges, and the lifetimes of electrically variable resistors exceed those of conventional mechanically variable resistors. Another and potentially the most important class of applications is that of resistance-based nonvolatile-memory devices, such as a resistance random access memory (RRAM) described in the immediately following article

  16. Determination of the mechanical thermostat electrical contacts switching quality with sound and vibration analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rejc, Jure; Munih, Marko [University of Ljubljana, Ljubljana (Slovenia)

    2017-05-15

    A mechanical thermostat is a device that switches heating or cooling appliances on or off based on temperature. For this kind of use, electronic or mechanical switching concepts are applied. During the production of electrical contacts, several irregularities can occur leading to improper switching events of the thermostat electrical contacts. This paper presents a non-obstructive method based on the fact that when the switching event occurs it can be heard and felt by human senses. We performed several laboratory tests with two different methods. The first method includes thermostat switch sound signal analysis during the switching event. The second method is based on sampling of the accelerometer signal during the switching event. The results show that the sound analysis approach has great potential. The approach enables an accurate determination of the switching event even if the sampled signal carries also the switching event of the neighbour thermostat.

  17. Field-Controlled Electrical Switch with Liquid Metal.

    Science.gov (United States)

    Wissman, James; Dickey, Michael D; Majidi, Carmel

    2017-12-01

    When immersed in an electrolyte, droplets of Ga-based liquid metal (LM) alloy can be manipulated in ways not possible with conventional electrocapillarity or electrowetting. This study demonstrates how LM electrochemistry can be exploited to coalesce and separate droplets under moderate voltages of ~1-10 V. This novel approach to droplet interaction can be explained with a theory that accounts for oxidation and reduction as well as fluidic instabilities. Based on simulations and experimental analysis, this study finds that droplet separation is governed by a unique limit-point instability that arises from gradients in bipolar electrochemical reactions that lead to gradients in interfacial tension. The LM coalescence and separation are used to create a field-programmable electrical switch. As with conventional relays or flip-flop latch circuits, the system can transition between bistable (separated or coalesced) states, making it useful for memory storage, logic, and shape-programmable circuitry using entirely liquids instead of solid-state materials.

  18. Electrically switched cesium ion exchange. FY 1996 annual report

    International Nuclear Information System (INIS)

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.; Schwartz, D.T.; Haight, S.M.; Genders, D.

    1996-12-01

    An electrochemical method for metal ion separations, called Electrically Switched Ion Exchange, is described. Direct oxidation and reduction of an electroactive film attached to an electrode surface is used to load and unload the film with alkali metal cations. The electroactive films under investigation are Ni hexacyanoferrates, which are deposited on the surface by applying an anodic potential to a Ni electrode in a solution containing the ferricyanide anion. Reported film preparation procedures were modified to produce films with improved capacity and stability. Electrochemical behavior of the derivatized electrodes were investigated using cyclic voltammetry and chronocoulometry. The films show selectivity for Cs in concentrated sodium solutions. Raman spectroscopy was used to monitor changes in oxidation state of the film and imaging experiments have demonstrated that the redox reactions are spatially homogenous across the film. Requirements for a bench scale unit were identified

  19. Electrical switching and memory phenomena observed in redox-gradient dendrimer sandwich devices

    OpenAIRE

    Li, JianChang; Blackstock, Silas C.; Szulczewski, Greg J.

    2005-01-01

    We report on the fabrication of dendrimer sandwich devices with electrical switching and memory properties. The storage media is consisted of a redox-gradient dendrimer layer sandwiched in organic barrier thin films. The dendrimer layer acts as potential well where redox-state changes and consequent electrical transitions of the embedded dendrimer molecules are expected to be effectively triggered and retained, respectively. Experimental results indicated that electrical switching could be re...

  20. Anisotropy of domain switching in prepoled lead titanate zirconate ceramics under multiaxial electrical loading

    Science.gov (United States)

    Liu, Yuan-Ming; Li, Fa-Xin; Fang, Dai-Ning

    2007-01-01

    The authors report an observation of anisotropic domain switching process in prepoled lead titanate zirconate (PZT) ceramics under multiaxial electrical loading. Prepoled PZT blocks were obliquely cut to apply an electric field at discrete angles θ (0°-180°) to the initial poling direction. Both the coercive field and switchable polarization are found to decrease significantly when sinθ increases from zero to unity. The measured strain curves show that most domains that accomplished 180° domain switching actually experienced two successive 90° switching. The oriented domain texture after poling plus the induced nonuniform stress are used to explain the observed domain switching anisotropy.

  1. High-Temperature Switched-Reluctance Electric Motor

    Science.gov (United States)

    Montague, Gerald; Brown, Gerald; Morrison, Carlos; Provenza, Andy; Kascak, Albert; Palazzolo, Alan

    2003-01-01

    An eight-pole radial magnetic bearing has been modified into a switched-reluctance electric motor capable of operating at a speed as high as 8,000 rpm at a temperature as high as 1,000 F (=540 C). The motor (see figure) is an experimental prototype of starter-motor/generator units that have been proposed to be incorporated into advanced gas turbine engines and that could operate without need for lubrication or active cooling. The unique features of this motor are its electromagnet coils and, to some extent, its control software. Heretofore, there has been no commercial-off-the-shelf wire capable of satisfying all of the requirements for fabrication of electromagnet coils capable of operation at temperatures up to 1,000 F (=540 C). The issues addressed in the development of these electromagnet coils included thermal expansion, oxidation, pliability to small bend radii, micro-fretting, dielectric breakdown, tensile strength, potting compound, thermal conduction, and packing factor. For a test, the motor was supported, along with a rotor of 18 lb (.8-kg) mass, 3-in. (.7.6-cm) diameter, 21-in. (.53-cm) length, on bearings packed with high-temperature grease. The motor was located at the mid span of the rotor and wrapped with heaters. The motor stator was instrumented with thermocouples. At the time of reporting the information for this article, the motor had undergone 14 thermal cycles between room temperature and 1,000 F (.540 C) and had accumulated operating time >27.5 hours at 1,000 F (=540 C). The motor-controller hardware includes a personal computer equipped with analog-to-digital input and digital-to-analog output cards. The controller software is a C-language code that implements a switched-reluctance motor-control principle: that is, it causes the coils to be energized in a sequence timed to generate a rotating magnetic flux that creates a torque on a scalloped rotor. The controller can operate in an open- or closed-loop mode. In addition, the software has

  2. Electrical switching in Sb doped Al23Te77 glasses

    Science.gov (United States)

    Pumlianmunga; Ramesh, K.

    2017-08-01

    Bulk glasses (Al23Te77)Sbx (0≤ x≤10) prepared by melt quenching method show a change in switching type from threshold to memory for x≥5. An increase in threshold current (Ith) and a concomitant decrease in threshold voltage (Vth) and resisitivity(ρ) have been observed with the increase of Sb content. Raman spectra of the switched region in memory switching compositions show a red shift with respect to the as prepared glasses whereas in threshold switching compositions no such shift is observed. The magic angle spinning nuclear magnetic resonance (MAS NMR) of 27Al atom shows three different environments for Al ([4]Al, [5]Al and [6]Al). The samples annealed at their respective crystallization temperatures show rapid increase in [4]Al sites by annihilating [5]Al sites. The melts of threshold switching glasses (x≤2.5) quenched in water at room temperature (27 °C) show amorphous structure whereas, the melt of memory switching glasses (x>2.5) solidify into crystalline structure. The higher coordination of Al increases the cross-linking and rigidity. The addition of Sb increases the glass transition(Tg) and decreases the crystallization temperature(Tc). The decrease in the interval between the Tg and Tc eases the transition between the amorphous and crystalline states and improves the memory properties. The temperature rise at the time of switching can be as high as its melting temperature and the material in between the electrodes may melt to form a filament. The filament may consists of temporary (high resistive amorphous) and permanent (high conducting crystalline) units. The ratio between the temporary and the permanent units may decide the switching type. The filament is dominated by the permanent units in memory switching compositions and by the temporary units in threshold switching compositions. The present study suggests that both the threshold and memory switching can be understood by the thermal model and filament formation.

  3. All-electric-controlled spin current switching in single-molecule magnet-tunnel junctions

    Science.gov (United States)

    Zhang, Zheng-Zhong; Shen, Rui; Sheng, Li; Wang, Rui-Qiang; Wang, Bai-Gen; Xing, Ding-Yu

    2011-04-01

    A single-molecule magnet (SMM) coupled to two normal metallic electrodes can both switch spin-up and spin-down electronic currents within two different windows of SMM gate voltage. Such spin current switching in the SMM tunnel junction arises from spin-selected single electron resonant tunneling via the lowest unoccupied molecular orbit of the SMM. Since it is not magnetically controlled but all-electrically controlled, the proposed spin current switching effect may have potential applications in future spintronics.

  4. Electrically switched cesium ion exchange. FY 1997 annual report

    International Nuclear Information System (INIS)

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.

    1997-09-01

    This paper describes the Electrically Switched Ion Exchange (ESIX) separation technology being developed as an alternative to ion exchange for removing radionuclides from high-level waste. Progress in FY 1997 for specific applications of ESIX is also outlined. The ESIX technology, which combines ion exchange and electrochemistry, is geared toward producing electroactive films that are highly selective, regenerable, and long lasting. During the process, ion uptake and elution can be controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto a high surface area electrode. This method adds little sodium to the waste stream and minimizes the secondary wastes associated with traditional ion exchange techniques. Development of the ESIX process is well underway for cesium removal using ferrocyanides as the electroactive films. Films having selectivity for perrhenate (a pertechnetate surrogate) over nitrate also have been deposited and tested. Based on the ferrocyanide film capacity, stability, rate of uptake, and selectivity shown during performance testing, it appears possible to retain a consistent rate of removal and elute cesium into the same elution solution over several load/unload cycles. In batch experiments, metal hexacyanoferrate films showed high selectivities for cesium in concentrated sodium solutions. Cesium uptake was unaffected by Na/Cs molar ratios of up to 2 x 10 4 , and reached equilibrium within 18 hours. During engineering design tests using 60 pores per inch, high surface area nickel electrodes, nickel ferrocyanide films displayed continued durability. losing less than 20% of their capacity after 1500 load/unload cycles. Bench-scale flow system studies showed no change in capacity or performance of the ESIX films at a flow rate up to 13 BV/h, the maximum flow rate tested, and breakthrough curves further supported once-through waste processing. 9 refs., 24 figs

  5. Structural health monitoring of high voltage electrical switch ceramic insulators in seismic areas

    OpenAIRE

    REBILLAT, Marc; BARTHES, Clément; MECHBAL, Nazih; MOSALAM, Khalid M.

    2014-01-01

    International audience; High voltage electrical switches are crucial components to restart rapidly the electrical network right after an earthquake. But there currently exists no automatic procedure to check if these ceramic insulators have suffered after an earthquake, and there exists no method to recertify a given switch. To deploy a vibration-based structural health monitoring method on ceramic insulators a large shake table able to generate accelerations up to 3 g was used. The idea unde...

  6. Modeling the choice to switch from fuelwood to electricity. Implications for giant panda habitat conservation

    Energy Technology Data Exchange (ETDEWEB)

    An, Li; Liu, Jianguo; Linderman, Marc A. [Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 48824 East Lansing, MI (United States); Lupi, Frank [Departments of Agricultural Economics and Fisheries and Wildlife, Michigan State University, 213F Agriculture Hall, 48824 East Lansing, MI (United States); Huang, Jinyan [Wolong Nature Reserve Administration, Wenchuan County, 623002 Sichuan Province (China)

    2002-09-01

    Despite its status as a nature reserve, Wolong Nature Reserve (China) has experienced continued loss of giant panda habitat due to human activities such as fuelwood collection. Electricity, though available throughout Wolong, has not replaced fuelwood as an energy source. We used stated preference data obtained from in-person interviews to estimate a random utility model of the choice of adopting electricity for cooking and heating. Willingness to switch to electricity was explained by demographic and electricity factors (price, voltage, and outage frequency). In addition to price, non-price factors such as voltage and outage frequency significantly affect the demand. Thus, lowering electricity prices and increasing electricity quality would encourage local residents to switch from fuelwood to electricity and should be considered in the mix of policies to promote conservation of panda habitat.

  7. Modeling the choice to switch from fuelwood to electricity. Implications for giant panda habitat conservation

    International Nuclear Information System (INIS)

    An, Li; Liu, Jianguo; Linderman, Marc A.; Lupi, Frank; Huang, Jinyan

    2002-01-01

    Despite its status as a nature reserve, Wolong Nature Reserve (China) has experienced continued loss of giant panda habitat due to human activities such as fuelwood collection. Electricity, though available throughout Wolong, has not replaced fuelwood as an energy source. We used stated preference data obtained from in-person interviews to estimate a random utility model of the choice of adopting electricity for cooking and heating. Willingness to switch to electricity was explained by demographic and electricity factors (price, voltage, and outage frequency). In addition to price, non-price factors such as voltage and outage frequency significantly affect the demand. Thus, lowering electricity prices and increasing electricity quality would encourage local residents to switch from fuelwood to electricity and should be considered in the mix of policies to promote conservation of panda habitat

  8. Field weakening performance of flux-switching machines for hybrid/electric vehicles

    NARCIS (Netherlands)

    Tang, Y.; Paulides, J.J.H.; Lomonova, E.A.

    2015-01-01

    Flux-switching machines (FSMs) are a viable candidate for electric propulsion of hybrid/electric vehicles. This paper investigates the field weakening performance of FSMs. The investigation starts with general torque and voltage expressions, which reveal the relationships between certain parameters

  9. Implementation of Single Phase Soft Switched PFC Converter for Plug-in-Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Aiswariya Sekar

    2015-11-01

    Full Text Available This paper presents a new soft switching boost converter with a passive snubber cell without additional active switches for battery charging systems. The proposed snubber finds its application in the front-end ac-dc converter of Plug-in Hybrid Electric Vehicle (PHEV battery chargers. The proposed auxiliary snubber circuit consists of an inductor, two capacitors and two diodes. The new converter has the advantages of continuous input current, low switching stresses, high voltage gain without extreme duty cycle, minimized charger size and charging time and fewer amounts of cost and electricity drawn from the utility at higher switching frequencies. The switch is made to turn ON by Zero Current Switching (ZCS and turn OFF by Zero Voltage Switching (ZVS. The detailed steady state analysis of the novel ac-dc Zero Current- Zero Voltage Switching (ZC-ZVS boost Power Factor Correction (PFC converter is presented with its operating principle. The experimental prototype of 20 kHz, 100 W converter verifies the theoretical analysis. The power factor of the prototype circuit reaches near unity with an efficiency of 97%, at nominal output power for a ±10% variation in the input voltage and ±20% variation in the snubber component values.

  10. Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials.

    Science.gov (United States)

    Zalden, Peter; Shu, Michael J; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W; Wong, H-S Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M

    2016-08-05

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag_{4}In_{3}Sb_{67}Te_{26}. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales-faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.

  11. Moessbauer Study of Discoloration of Synthetic Resin Covered Electric Switches

    International Nuclear Information System (INIS)

    Kuzmann, E.; Muzsay, I.; Homonnay, Z.; Vertes, A.

    2002-01-01

    57 Fe Moessbauer spectroscopy and X-ray diffractometry were used to investigate brown discoloration and sediments formed on the surface of synthetic resin product covered electronic switches. The Moessbauer measurement revealed that alloyed steels and iron-containing corrosion products are associated with the discolored layers. Iron, and iron corrosion products were shown by both MS and XRD in the sediments formed eventually during the finishing of the synthetic resin products after machining and washing with water solution.

  12. Greenhouse gas emission reduction by means of fuel switching in electricity generation: Addressing the potentials

    International Nuclear Information System (INIS)

    Delarue, Erik; D'haeseleer, William

    2008-01-01

    Many countries committed themselves in the Kyoto protocol to reduce greenhouse gas (GHG) emissions. Some of these targeted emission reductions could result from a switch from coal-fired to gas-fired electricity generation. The focus in this work lies on Western Europe, with the presence of the European Union Emission Trading Scheme (EU ETS). For the switching to occur, several conditions have to be fulfilled. First, an economical incentive must be present, i.e. a sufficiently high European Union Allowance (EUA) price together with a sufficiently low natural gas price. Second, the physical potential for switching must exist, i.e. at a given load, there must remain enough power plants not running to make switching possible. This paper investigates what possibilities exist for switching coal-fired plants for gas-fired plants, dependent on the load level (the latter condition above). A fixed allowance cost and a variable natural gas price are assumed. The method to address GHG emission reduction potentials is first illustrated in a methodological case. Next, the GHG emission reduction potentials are addressed for several Western European countries together with a relative positioning of their electricity generation. GHG emission reduction potentials are also compared with simulation results. GHG emission reduction potentials tend to be significant. The Netherlands have a very widespread switching zone, so GHG emission reduction is practically independent of electricity generation. Other counties, like Germany, Spain and Italy could reduce GHG emissions significantly by switching. With an allowance cost following the switch level of a 50% efficient gas-fired plant and a 40% efficient coal-fired plant in the summer season (like in 2005), the global GHG emission reduction (in the electricity generating sector) for the eight modeled zones could amount to 19%

  13. Electrical Switching in Thin Film Structures Based on Transition Metal Oxides

    Directory of Open Access Journals (Sweden)

    A. Pergament

    2015-01-01

    Full Text Available Electrical switching, manifesting itself in the nonlinear current-voltage characteristics with S- and N-type NDR (negative differential resistance, is inherent in a variety of materials, in particular, transition metal oxides. Although this phenomenon has been known for a long time, recent suggestions to use oxide-based switching elements as neuristor synapses and relaxation-oscillation circuit components have resumed the interest in this area. In the present review, we describe the experimental facts and theoretical models, mainly on the basis of the Mott transition in vanadium dioxide as a model object, of the switching effect with special emphasis on the emerging applied potentialities for oxide electronics.

  14. Development of high electrical resistance persistent current switch for high speed energization system

    International Nuclear Information System (INIS)

    Jizo, Y.; Furuta, Y.; Nakashima, H.

    1986-01-01

    Japanese National Railways is now developing a superconducting magnetically-levitated train system. A persistent current switch is incorporated in the super-conducting magnet used in the magnetically-levitated train. In recent years, the switch has been required to have higher electrical resistance during its off-state in order to realize the high speed energization/de-energization system of the superconducting magnets. The system aims to decrease evaporation volume of liquid helium during the energization/de-energization of the magnet, by means of energizing the superconducting magnet with high current increasing/decreasing rate. Consequently, it would be possible to decrease the dependence of the on-board magnet system upon the ground cooling system. Through the development of a stable superconductive wire material and a coil structure for the persistent current switch using many small model switches which were produced in order to improve their current carrying capacities, the authors have succeeded in manufacturing the high electrical resistance persistent current switch whose electrical resistance was 5 ohms. The switch, of cylindrical shape, has a diameter of about 100mm, a length of about 100mm. These 5 ohm PCSs are now functioning in stable conditions being incorporated in the superconducting magnets of No.2 vehicle of MLU001 at the JNR's Miyazaki test track. Further, the authors are now developing the PCS of still higher resistance values, such as 50 ohms, through studies for stabilization in structural aspects of the winding and obtaining results therefrom

  15. 49 CFR 1242.67 - Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power...

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power purchased/produced for motive power; operating switches... SERVICE FOR RAILROADS 1 Operating Expenses-Transportation § 1242.67 Switch crews; controlling operations...

  16. Machine learning based switching model for electricity load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Shu; Lee, Wei-Jen [Energy Systems Research Center, The University of Texas at Arlington, 416 S. College Street, Arlington, TX 76019 (United States); Chen, Luonan [Department of Electronics, Information and Communication Engineering, Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-0013 (Japan)

    2008-06-15

    In deregulated power markets, forecasting electricity loads is one of the most essential tasks for system planning, operation and decision making. Based on an integration of two machine learning techniques: Bayesian clustering by dynamics (BCD) and support vector regression (SVR), this paper proposes a novel forecasting model for day ahead electricity load forecasting. The proposed model adopts an integrated architecture to handle the non-stationarity of time series. Firstly, a BCD classifier is applied to cluster the input data set into several subsets by the dynamics of the time series in an unsupervised manner. Then, groups of SVRs are used to fit the training data of each subset in a supervised way. The effectiveness of the proposed model is demonstrated with actual data taken from the New York ISO and the Western Farmers Electric Cooperative in Oklahoma. (author)

  17. Machine learning based switching model for electricity load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Fan Shu [Energy Systems Research Center, University of Texas at Arlington, 416 S. College Street, Arlington, TX 76019 (United States); Chen Luonan [Department of Electronics, Information and Communication Engineering, Osaka Sangyo University, 3-1-1 Nakagaito, Daito, Osaka 574-0013 (Japan); Lee, Weijen [Energy Systems Research Center, University of Texas at Arlington, 416 S. College Street, Arlington, TX 76019 (United States)], E-mail: wlee@uta.edu

    2008-06-15

    In deregulated power markets, forecasting electricity loads is one of the most essential tasks for system planning, operation and decision making. Based on an integration of two machine learning techniques: Bayesian clustering by dynamics (BCD) and support vector regression (SVR), this paper proposes a novel forecasting model for day ahead electricity load forecasting. The proposed model adopts an integrated architecture to handle the non-stationarity of time series. Firstly, a BCD classifier is applied to cluster the input data set into several subsets by the dynamics of the time series in an unsupervised manner. Then, groups of SVRs are used to fit the training data of each subset in a supervised way. The effectiveness of the proposed model is demonstrated with actual data taken from the New York ISO and the Western Farmers Electric Cooperative in Oklahoma.

  18. Machine learning based switching model for electricity load forecasting

    International Nuclear Information System (INIS)

    Fan Shu; Chen Luonan; Lee, Weijen

    2008-01-01

    In deregulated power markets, forecasting electricity loads is one of the most essential tasks for system planning, operation and decision making. Based on an integration of two machine learning techniques: Bayesian clustering by dynamics (BCD) and support vector regression (SVR), this paper proposes a novel forecasting model for day ahead electricity load forecasting. The proposed model adopts an integrated architecture to handle the non-stationarity of time series. Firstly, a BCD classifier is applied to cluster the input data set into several subsets by the dynamics of the time series in an unsupervised manner. Then, groups of SVRs are used to fit the training data of each subset in a supervised way. The effectiveness of the proposed model is demonstrated with actual data taken from the New York ISO and the Western Farmers Electric Cooperative in Oklahoma

  19. Evaluation of the contact switch materials in high voltage power supply for generate of underwater shockwave by electrical discharge

    Directory of Open Access Journals (Sweden)

    K Higa

    2016-10-01

    Full Text Available We have developed the high voltage power-supply unit by Cockcroft-Walton circuit for ingenerate high pressure due to underwater shockwave by electrical discharge. This high voltage power supply has the problem of the metal contact switch operation that contact switch stop by melting and bonding due to electrical spark. We have studied the evaluation of materials of contact switch for the reducing electrical energy loss and the problem of contact switch operation. In this research, measurement of discharge voltage and high pressure due to underwater shockwave was carried out using the contact switch made of different materials as brass plate, brass-carbon plate-brass and carbon block. The contact switch made of carbon is effective to reduce energy loss and problem of contactor switch operation.

  20. Availability of the electric drive systems containing flux switching permanent magnet machines

    NARCIS (Netherlands)

    Wang, L.; Sfakianakis, G.; Paulides, J.J.H.; Lomonova, E.A.

    2016-01-01

    This paper investigates how to improve availability of an electrical drive containing a 3-phase 12/10 (12 stator tooth/10 rotor poles) flux switching permanent magnet machine. In this respect, Field-Oriented Control and Space-Vector Pulse-Width-Modulation strategies will be applied with 3-phase

  1. Behavioral aspects of regulation: A discussion on switching and demand response in Turkish electricity market

    International Nuclear Information System (INIS)

    Sirin, Selahattin Murat; Gonul, Mustafa Sinan

    2016-01-01

    Electricity sector has been transformed from state-owned monopolistic utilities to competitive markets with an aim to promote incentives for improving efficiency, reducing costs and increasing service quality to customers. One of the cardinal assumptions of the liberalized and competitive electricity markets is the rational actor, and decision-makers are assumed to make the best decisions that maximize their utility. However, a vast literature on behavioral economics has shown the weakness of economic theory in explaining and predicting individuals’ decision-making behavior. This issue is quite important for competition in electricity markets in which consumers’ preferences have a significant role. Despite its importance, this issue has almost been neglected in Turkey, which has taken major steps in electricity sector restructuring. Therefore, this paper aims to examine switching and demand response behavior in Turkish electricity market by using multiple correspondence and panel data analysis, and findings are discussed in light of the neoclassical and behavioral economics literature. Analyses’ results show that consumers’ switching and demand response behavior is consistent with the neoclassical literature to some extent; however, behavioral factors are also affecting consumers’ decisions. Furthermore, there are systemic problems that hinder effective functioning of the electricity market and restrict competition. - Highlights: • Behavioral economics can provide insights for consumer’ decisions. • Switching and demand response behavior is examined by econometric methods. • Results is consistent with the neoclassical literature to some extent • However, behavioral factors are also affecting consumers’ decisions.

  2. Study on Power Switching Process of a Hybrid Electric Vehicle with In-Wheel Motors

    Directory of Open Access Journals (Sweden)

    Shaohua Wang

    2016-01-01

    Full Text Available Hybrid electric vehicles with in-wheel motors (IWM achieve a variety of driving modes by two power sources—the engine and the IWM. One of the critical problems that exists in such vehicle is the different transient characteristics between the engine and the IWM. Therefore, switching processes between the power sources have noteworthy impacts on vehicle dynamics and driving performance. For the particular switching process of the pure electric mode to the engine driving mode, a specific control strategy coordinating clutch torque, motor torque, and engine torque was proposed to solve drivability issues caused by inconsistent responses of different power sources during the mode transition. The specific switching process could be described as follows: the engine was started by IWM with the clutch serving as a key enabling actuator, dynamic torque compensation through IWM was implemented after engine started, and, meanwhile, engine speed was controlled to track the target speed through the closed loop PID control strategy. The bench tests results showed that the vehicle jerk caused during mode switching was reduced and fast and smooth mode switching was realized, which leads to the improvement of vehicle’s riding comfort.

  3. Electric field-triggered metal-insulator transition resistive switching of bilayered multiphasic VOx

    Science.gov (United States)

    Won, Seokjae; Lee, Sang Yeon; Hwang, Jungyeon; Park, Jucheol; Seo, Hyungtak

    2018-01-01

    Electric field-triggered Mott transition of VO2 for next-generation memory devices with sharp and fast resistance-switching response is considered to be ideal but the formation of single-phase VO2 by common deposition techniques is very challenging. Here, VOx films with a VO2-dominant phase for a Mott transition-based metal-insulator transition (MIT) switching device were successfully fabricated by the combined process of RF magnetron sputtering of V metal and subsequent O2 annealing to form. By performing various material characterizations, including scanning transmission electron microscopy-electron energy loss spectroscopy, the film is determined to have a bilayer structure consisting of a VO2-rich bottom layer acting as the Mott transition switching layer and a V2O5/V2O3 mixed top layer acting as a control layer that suppresses any stray leakage current and improves cyclic performance. This bilayer structure enables excellent electric field-triggered Mott transition-based resistive switching of Pt-VOx-Pt metal-insulator-metal devices with a set/reset current ratio reaching 200, set/reset voltage of less than 2.5 V, and very stable DC cyclic switching upto 120 cycles with a great set/reset current and voltage distribution less than 5% of standard deviation at room temperature, which are specifications applicable for neuromorphic or memory device applications. [Figure not available: see fulltext.

  4. Effect of bipolar electric fatigue on polarization switching in lead-zirconate-titanate ceramics

    Science.gov (United States)

    Zhukov, Sergey; Fedosov, Sergey; Glaum, Julia; Granzow, Torsten; Genenko, Yuri A.; von Seggern, Heinz

    2010-07-01

    From comparison of experimental results on polarization switching in fresh and electrically fatigued lead-zirconate-titanate (PZT) over a wide range of applied fields and switching times it is concluded that fatigue alters the local field distribution inside the sample due to the generation of discrete defects, such as voids and cracks. Such defects have a strong influence on the overall electric field distribution by their shape and dielectric permittivity. On this hypothesis, a new phenomenological model of polarization switching in fatigued PZT is proposed. The model assumes that the fatigued sample can be composed of different local regions which exhibit different field strengths but otherwise can be considered as unfatigued. Consequently the temporal response of a fatigued sample is assumed to be the superposition of the field-dependent temporal responses of unfatigued samples weighted by their respective volume fraction. A certain part of the volume is excluded from the overall switching process due to the domain pinning even at earlier stages of fatigue, which can be recovered by annealing. Suitability of the proposed model is demonstrated by a good correlation between experimental and calculated data for differently fatigued samples. Plausible cause of the formation of such regions is the generation of defects such as microcracks and the change in electrical properties at imperfections such as pores or voids.

  5. Electrically tunable spatially variable switching in ferroelectric liquid crystal/water system

    Science.gov (United States)

    Choudhary, A.; Coondoo, I.; Prakash, J.; Sreenivas, K.; Biradar, A. M.

    2009-04-01

    An unusual switching phenomenon in the region outside conducting patterned area in ferroelectric liquid crystal (FLC) containing about 1-2 wt % of water has been observed. The presence of water in the studied heterogeneous system was confirmed by Fourier transform infrared spectroscopy. The observed optical studies have been emphasized on the "spatially variable switching" phenomenon of the molecules in the nonconducting region of the cell. The observed phenomenon is due to diffusion of water between the smectic layers of the FLC and the interaction of the curved electric field lines with the FLC molecules in the nonconducting region.

  6. The loyalty of industrial clients of gas and electricity: the value rol and switching barriers

    International Nuclear Information System (INIS)

    Garcia Acebron, C.; Vazquez Castelles, R.; Iglesias Arguelles, V.

    2007-01-01

    This paper deals with perceived value and loyalty in a B2 B environment taking account switching barriers. The Spanish energy market has been newly liberalized and many companies offer supply services of natural gas and electricity. The research examines the casual relations between perceived value and two dimensions of loyalty: repurchase intentions and price tolerance. Although our results indicate that suppliers achieve better repurchase intentions by providing value to their customers, they also show that this is insufficient when the aim is to increase customer price tolerance. In this case another moderating variable must be included: the switching barriers. (Author)

  7. Electrically tunable sign of capacitance in planar W-doped vanadium dioxide micro-switches

    Directory of Open Access Journals (Sweden)

    Mohammed Soltani, Mohamed Chaker and Joelle Margot

    2011-01-01

    Full Text Available Negative capacitance (NC in a planar W-doped VO2 micro-switch was observed at room temperature in the low-frequency range 1 kHz–10 MHz. The capacitance changed from positive to negative values as the W-doped VO2 active layer switched from semiconducting to metallic state under applied voltage. In addition, a capacitance–voltage hysteresis was observed as the applied voltage was cycled from −35 to 35 V. These observations suggest that NC results from the increase of the electrically induced conductivity in the active layer. This NC phenomenon could be exploited in advanced multifunctional devices including ultrafast switches, field-effect transistors and memcapacitive systems.

  8. A bidirectional soft switched ultracapacitor interface circuit for hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Farzanehfard, Hosein; Beyragh, Dawood Shekari; Adib, Ehsan [Electrical and Computer Engineering Department, Isfahan University of Technology, Isfahan 84156 (Iran)

    2008-12-15

    Ultracapacitors are used as auxiliary elements beside batteries to increase peak power capability and battery life in hybrid electric vehicles. In such a configuration, a bidirectional high efficiency converter is required as an interface between ultracapacitors and batteries. Since the voltage level of ultracapacitors and batteries are different, the interface must be able to increase or decrease the voltage level in each power flow direction while limiting the current. This paper presents a zero voltage transition (ZVT) buck-and-boost converter for ultracapacitors interface. All the switches in the proposed converter are soft switched to reduce switching losses and increase efficiency. The converter operational modes are analyzed and its performance is discussed. Finally, the experimental results from a 150 W laboratory prototype are presented which justify the theoretical analysis. (author)

  9. Effect of thermal insulation on the electrical characteristics of NbOx threshold switches

    Science.gov (United States)

    Wang, Ziwen; Kumar, Suhas; Wong, H.-S. Philip; Nishi, Yoshio

    2018-02-01

    Threshold switches based on niobium oxide (NbOx) are promising candidates as bidirectional selector devices in crossbar memory arrays and building blocks for neuromorphic computing. Here, it is experimentally demonstrated that the electrical characteristics of NbOx threshold switches can be tuned by engineering the thermal insulation. Increasing the thermal insulation by ˜10× is shown to produce ˜7× reduction in threshold current and ˜45% reduction in threshold voltage. The reduced threshold voltage leads to ˜5× reduction in half-selection leakage, which highlights the effectiveness of reducing half-selection leakage of NbOx selectors by engineering the thermal insulation. A thermal feedback model based on Poole-Frenkel conduction in NbOx can explain the experimental results very well, which also serves as a piece of strong evidence supporting the validity of the Poole-Frenkel based mechanism in NbOx threshold switches.

  10. Electric field controlled reversible magnetic anisotropy switching studied by spin rectification

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hengan; Fan, Xiaolong, E-mail: fanxiaolong@lzu.edu.cn; Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Gui, Y. S.; Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

    2014-03-10

    In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg{sub 1∕3}Nb{sub 2∕3})O{sub 3}-PbTiO{sub 3} substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time.

  11. Electric field controlled reversible magnetic anisotropy switching studied by spin rectification

    International Nuclear Information System (INIS)

    Zhou, Hengan; Fan, Xiaolong; Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng; Gui, Y. S.; Hu, C.-M.

    2014-01-01

    In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg 1∕3 Nb 2∕3 )O 3 -PbTiO 3 substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time

  12. Markov switching of the electricity supply curve and power prices dynamics

    Science.gov (United States)

    Mari, Carlo; Cananà, Lucianna

    2012-02-01

    Regime-switching models seem to well capture the main features of power prices behavior in deregulated markets. In a recent paper, we have proposed an equilibrium methodology to derive electricity prices dynamics from the interplay between supply and demand in a stochastic environment. In particular, assuming that the supply function is described by a power law where the exponent is a two-state strictly positive Markov process, we derived a regime switching dynamics of power prices in which regime switches are induced by transitions between Markov states. In this paper, we provide a dynamical model to describe the random behavior of power prices where the only non-Brownian component of the motion is endogenously introduced by Markov transitions in the exponent of the electricity supply curve. In this context, the stochastic process driving the switching mechanism becomes observable, and we will show that the non-Brownian component of the dynamics induced by transitions from Markov states is responsible for jumps and spikes of very high magnitude. The empirical analysis performed on three Australian markets confirms that the proposed approach seems quite flexible and capable of incorporating the main features of power prices time-series, thus reproducing the first four moments of log-returns empirical distributions in a satisfactory way.

  13. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jason [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yu, Wensong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Sun, Pengwei [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Leslie, Scott [Powerex, Inc., Harrison, OH (United States); Prusia, Duane [Powerex, Inc., Harrison, OH (United States); Arnet, Beat [Azure Dynamics, Oak Park, MI (United States); Smith, Chris [Azure Dynamics, Oak Park, MI (United States); Cogan, Art [Azure Dynamics, Oak Park, MI (United States)

    2012-03-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  14. Marginal abatement cost curve for nitrogen oxides incorporating controls, renewable electricity, energy efficiency, and fuel switching.

    Science.gov (United States)

    Loughlin, Daniel H; Macpherson, Alexander J; Kaufman, Katherine R; Keaveny, Brian N

    2017-10-01

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs are typically developed by sorting control technologies by their relative cost-effectiveness. Other potentially important abatement measures such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS) are often not incorporated into MACCs, as it is difficult to quantify their costs and abatement potential. In this paper, a U.S. energy system model is used to develop a MACC for nitrogen oxides (NO x ) that incorporates both traditional controls and these additional measures. The MACC is decomposed by sector, and the relative cost-effectiveness of RE/EE/FS and traditional controls are compared. RE/EE/FS are shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone. Furthermore, a portion of RE/EE/FS appear to be cost-competitive with traditional controls. Renewable electricity, energy efficiency, and fuel switching can be cost-competitive with traditional air pollutant controls for abating air pollutant emissions. The application of renewable electricity, energy efficiency, and fuel switching is also shown to have the potential to increase emission reductions beyond what is possible when applying traditional controls alone.

  15. Precessional switching of antiferromagnets by electric field induced Dzyaloshinskii-Moriya torque

    Science.gov (United States)

    Kim, T. H.; Grünberg, P.; Han, S. H.; Cho, B. K.

    2018-05-01

    Antiferromagnetic insulators (AFIs) have attracted much interest from many researchers as promising candidates for use in ultrafast, ultralow-dissipation spintronic devices. As a fast method of reversing magnetization, precessional switching is realized when antiferromagnetic Néel orders l =(s1+s2 )/2 surmount the magnetic anisotropy or potential barrier in a given magnetic system, which is described well by the antiferromagnetic plane pendulum (APP) model. Here, we report that, as an alternative switching scenario, the direct coupling of an electric field with Dzyaloshinskii-Moriya (DM) interaction, which stems from spin-orbit coupling, is exploited for optimal switching. We derive the pendulum equation of motion of antiferromagnets, where DM torque is induced by a pulsed electric field. The temporal DM interaction is found to not only be in the form of magnetic torques (e.g., spin-orbit torque or magnetic field) but also modifies the magnetic potential that limits l 's activity; as a result, appropriate controls (e.g., direction, magnitude, and pulse shape) of the induced DM vector realize deterministic reversal in APP. The results present an approach for the control of a magnetic storage device by means of an electric field.

  16. Kinetics of Domain Switching by Mechanical and Electrical Stimulation in Relaxor-Based Ferroelectrics

    Science.gov (United States)

    Chen, Zibin; Hong, Liang; Wang, Feifei; An, Xianghai; Wang, Xiaolin; Ringer, Simon; Chen, Long-Qing; Luo, Haosu; Liao, Xiaozhou

    2017-12-01

    Ferroelectric materials have been extensively explored for applications in high-density nonvolatile memory devices because of their ferroelectric-ferroelastic domain-switching behavior under electric loading or mechanical stress. However, the existence of ferroelectric and ferroelastic backswitching would cause significant data loss, which affects the reliability of data storage. Here, we apply in situ transmission electron microscopy and phase-field modeling to explore the unique ferroelastic domain-switching kinetics and the origin of this in relaxor-based Pb (Mg1 /3Nb2 /3)O3-33 % PbTiO3 single-crystal pillars under electrical and mechanical stimulations. Results showed that the electric-mechanical hysteresis loop shifted for relaxor-based single-crystal pillars because of the low energy levels of domains in the material and the constraint on the pillars, resulting in various mechanically reversible and irreversible domain-switching states. The phenomenon can potentially be used for advanced bit writing and reading in nonvolatile memories, which effectively overcomes the backswitching problem and broadens the types of ferroelectric materials for nonvolatile memory applications.

  17. Development of High-Speed Switched Reluctance Motor for Electric Power Tools

    Science.gov (United States)

    Nakamura, Kenji; Kumasaka, Yuya; Ichinokura, Osamu

    2017-10-01

    This paper presents design and experimental evaluation of a switched reluctance (SR) motor used for electric power tools. First, characteristics of a previous designed 6/4-pole SR motor is shown and compared to a permanent magnet (PM) motor used in present electric power tools. Next, to further improve characteristics, a 12/8-pole SR motor is designed and evaluated in experiment. It is proved that the performance of the prototype 12/8-pole SR motor is almost comparable or superior to the present PM motor.

  18. A Vector Autoregressive Model for Electricity Prices Subject to Long Memory and Regime Switching

    DEFF Research Database (Denmark)

    Haldrup, Niels; Nielsen, Frank; Nielsen, Morten Ørregaard

    2007-01-01

    A regime dependent VAR model is suggested that allows long memory (fractional integration) in each of the regime states as well as the possibility of fractional cointegra- tion. The model is relevant in describing the price dynamics of electricity prices where the transmission of power is subject...... to occasional congestion periods. For a system of bilat- eral prices non-congestion means that electricity prices are identical whereas congestion makes prices depart. Hence, the joint price dynamics implies switching between essen- tially a univariate price process under non-congestion and a bivariate price...

  19. Control of magnetic relaxation by electric-field-induced ferroelectric phase transition and inhomogeneous domain switching

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Tianxiang; Emori, Satoru; Wang, Xinjun; Hu, Zhongqiang; Xie, Li; Gao, Yuan; Lin, Hwaider; Sun, Nian, E-mail: n.sun@neu.edu [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States); Peng, Bin; Liu, Ming, E-mail: mingliu@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, Xi' an Jiaotong University, Xi' an 710049 (China); Jiao, Jie; Luo, Haosu [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China); Budil, David [Department of Chemistry, Northeastern University, Boston, Massachusetts 02115 (United States); Jones, John G.; Howe, Brandon M.; Brown, Gail J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States)

    2016-01-04

    Electric-field modulation of magnetism in strain-mediated multiferroic heterostructures is considered a promising scheme for enabling memory and magnetic microwave devices with ultralow power consumption. However, it is not well understood how electric-field-induced strain influences magnetic relaxation, an important physical process for device applications. Here, we investigate resonant magnetization dynamics in ferromagnet/ferroelectric multiferroic heterostructures, FeGaB/PMN-PT and NiFe/PMN-PT, in two distinct strain states provided by electric-field-induced ferroelectric phase transition. The strain not only modifies magnetic anisotropy but also magnetic relaxation. In FeGaB/PMN-PT, we observe a nearly two-fold change in intrinsic Gilbert damping by electric field, which is attributed to strain-induced tuning of spin-orbit coupling. By contrast, a small but measurable change in extrinsic linewidth broadening is attributed to inhomogeneous ferroelastic domain switching during the phase transition of the PMN-PT substrate.

  20. Electric polarization switching in an atomically thin binary rock salt structure

    Science.gov (United States)

    Martinez-Castro, Jose; Piantek, Marten; Schubert, Sonja; Persson, Mats; Serrate, David; Hirjibehedin, Cyrus F.

    2018-01-01

    Inducing and controlling electric dipoles is hindered in the ultrathin limit by the finite screening length of surface charges at metal-insulator junctions1-3, although this effect can be circumvented by specially designed interfaces4. Heterostructures of insulating materials hold great promise, as confirmed by perovskite oxide superlattices with compositional substitution to artificially break the structural inversion symmetry5-8. Bringing this concept to the ultrathin limit would substantially broaden the range of materials and functionalities that could be exploited in novel nanoscale device designs. Here, we report that non-zero electric polarization can be induced and reversed in a hysteretic manner in bilayers made of ultrathin insulators whose electric polarization cannot be switched individually. In particular, we explore the interface between ionic rock salt alkali halides such as NaCl or KBr and polar insulating Cu2N terminating bulk copper. The strong compositional asymmetry between the polar Cu2N and the vacuum gap breaks inversion symmetry in the alkali halide layer, inducing out-of-plane dipoles that are stabilized in one orientation (self-poling). The dipole orientation can be reversed by a critical electric field, producing sharp switching of the tunnel current passing through the junction.

  1. Electric Drive Discrete Control System with Automatic Switching-On Reserve for Autonomous Settlement

    Directory of Open Access Journals (Sweden)

    Tsytovich L.I.

    2015-08-01

    Full Text Available The paper aims at developing of control the water supply system’s electric drives for autonomous settlement. The system provides automatic switching to a reserve control channel at refusal of any of the functional elements of the working regulation channel. Usually, such systems have a test signal generator and analyzer to system response to their impact. This result to an increase in the structural redundancy of the system, increase its cost and increase the requirements for the staff qualification. A specific feature of the system is its ability to self-diagnosis of catastrophic malfunctions of scheme’s components and an automatic switching-on the reserve control channels, without applying any test signals to the whole complex of electrical equipment. Multi-zone integrating regulator with frequency-pulse-width modulation realizes this technical solution. Control system structure and signals timing diagrams are presented. The construction principle of adaptive interval-code synchronization device with improved noise stability to control the voltage regulators serving for smooth start-up of asynchronous motors of water pumps is considered as well. Such solution allowing increase noise stability and reliability work of the system in conditions of limited power electrical networks, which is characteristic for the autonomous settlements. The article may be of interest to specialists in the field of power electronics and information electronics, electric drives and process automation.

  2. Reversible electrical resistance switching in GeSbTe thin films : An electrolytic approach without amorphous-crystalline phase-change

    NARCIS (Netherlands)

    Pandian, Ramanathaswamy; Kooi, Bart J.; Palasantzas, George; De Hosson, Jeff Th. M.; Wouters, DJ; Hong, S; Soss, S; Auciello, O

    2008-01-01

    Besides the well-known resistance switching originating from the amorphous-crystalline phase-change in GeSbTe thin films, we demonstrate another switching mechanism named 'polarity-dependent resistance (PDR) switching'. 'Me electrical resistance of the film switches between a low- and high-state

  3. Cyclic Parameter Refinement of 4S-10 Hybrid Flux-Switching Motor for Lightweight Electric Vehicle

    Science.gov (United States)

    Rani, J. Abd; Sulaiman, E.; Kumar, R.

    2017-08-01

    A great deal of attention has been given to the reduction of lighting the vehicle because the lighter the vehicle the energy consumption is comparatively low. Hence, the lightweight electric vehicle was introduced for lower carbon footprint and the sizing of the vehicle itself. One of the components to reduce the weight of the vehicle is the propulsion system which comprised of electric motor functioning as the source of torque to drive the propulsion system of the machine. This paper presents the refinement methodology for the optimized design of the 4S-10P E-Core hybrid excitation flux switching motor. The purpose of the refinement methodology is to improve the torque production of the optimized motor. The result of the successful improvement of the torque production is justifiable for a lightweight electric vehicle to drive the propulsion system.

  4. Directional Congestion and Regime Switching in a Long Memory Model for Electricity Prices

    DEFF Research Database (Denmark)

    Haldrup, Niels; Nielsen, Morten Ø.

    The functioning of electricity markets has experienced increasing complexityas a result of deregulation in recent years. Consequently this affects the multilateral price behaviour across regions with physical exchange of power. It has been documented elsewhere that features such aslong memory...... and regime switching reflecting congestion and non-congestion periods are empirically relevant and hence are features that need to be taken into account when modeling price behavior. In the present paper we further elaborate on the co-existence of long memory and regime switches by focusing on the effect...... that the direction of possible congestion episodes has on the price dynamics. Under non-congestion prices are identical. The direction of possible congestion is identified by the region with excess demand of power through the sign of price differences and hence three different states can be considered: Non...

  5. Insulating oil, electrical for transformers and switches : a national standard of Canada

    International Nuclear Information System (INIS)

    Paniri, S.; Burford, G.; Martin, A.; Adragna, M.

    1997-01-01

    Standard specifications for insulating oil used in power transformers, instrument transformers, bushings, bulk oil circuit breakers, oil circuit reclosers, and switches were provided. The specifications are divided into Class A and Class B depending on the requirement for kinematic viscosity at -40 degrees C. A Class S oil is also introduced for oil circuit breakers. The standards were prepared by the Technical Committee on Transformer and Switch Oils under the jurisdiction of the Steering Committee on Electrical Engineering, and has been formally approved by these committees. It has been also approved as a National Standard of Canada by the Standards Council of Canada. The document provides a list of reference publications, describes the samples and test procedures, properties and delivery requirements. 1 tab

  6. Insulating oil, electrical for transformers and switches : a national standard of Canada; 5. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Paniri, S; Burford, G; Martin, A; Adragna, M [eds.

    1997-09-01

    Standard specifications for insulating oil used in power transformers, instrument transformers, bushings, bulk oil circuit breakers, oil circuit reclosers, and switches were provided. The specifications are divided into Class A and Class B depending on the requirement for kinematic viscosity at -40 degrees C. A Class S oil is also introduced for oil circuit breakers. The standards were prepared by the Technical Committee on Transformer and Switch Oils under the jurisdiction of the Steering Committee on Electrical Engineering, and has been formally approved by these committees. It has been also approved as a National Standard of Canada by the Standards Council of Canada. The document provides a list of reference publications, describes the samples and test procedures, properties and delivery requirements. 1 tab.

  7. Electric-field switching of two-dimensional van der Waals magnets

    Science.gov (United States)

    Jiang, Shengwei; Shan, Jie; Mak, Kin Fai

    2018-05-01

    Controlling magnetism by purely electrical means is a key challenge to better information technology1. A variety of material systems, including ferromagnetic (FM) metals2-4, FM semiconductors5, multiferroics6-8 and magnetoelectric (ME) materials9,10, have been explored for the electric-field control of magnetism. The recent discovery of two-dimensional (2D) van der Waals magnets11,12 has opened a new door for the electrical control of magnetism at the nanometre scale through a van der Waals heterostructure device platform13. Here we demonstrate the control of magnetism in bilayer CrI3, an antiferromagnetic (AFM) semiconductor in its ground state12, by the application of small gate voltages in field-effect devices and the detection of magnetization using magnetic circular dichroism (MCD) microscopy. The applied electric field creates an interlayer potential difference, which results in a large linear ME effect, whose sign depends on the interlayer AFM order. We also achieve a complete and reversible electrical switching between the interlayer AFM and FM states in the vicinity of the interlayer spin-flip transition. The effect originates from the electric-field dependence of the interlayer exchange bias.

  8. A vector autoregressive model for electricity prices subject to long memory and regime switching

    International Nuclear Information System (INIS)

    Haldrup, Niels; Nielsen, Frank S.; Nielsen, Morten Oerregaard

    2010-01-01

    A regime dependent VAR model is suggested that allows long memory (fractional integration) in each of the observed regime states as well as the possibility of fractional cointegration. The model is motivated by the dynamics of electricity prices where the transmission of power is subject to occasional congestion periods. For a system of bilateral prices non-congestion means that electricity prices are identical whereas congestion makes prices depart. Hence, the joint price dynamics implies switching between a univariate price process under non-congestion and a bivariate price process under congestion. At the same time, it is an empirical regularity that electricity prices tend to show a high degree of long memory, and thus that prices may be fractionally cointegrated. Analysis of Nord Pool data shows that even though the prices are identical under non-congestion, the prices are not, in general, fractionally cointegrated in the congestion state. Hence, in most cases price convergence is a property following from regime switching rather than a conventional error correction mechanism. Finally, the suggested model is shown to deliver forecasts that are more precise compared to competing models. (author)

  9. Electromagnetic Analysis and Design of Switched Reluctance Double-Rotor Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Shouliang Han

    2014-10-01

    Full Text Available The double-rotor machine is a kind of multiple input and output electromechanical energy transducer with two electrical ports and two mechanical ports, which is an ideal transmission system for hybrid electric vehicles and has a series of advantages such as integration of power and energy, high efficiency and compaction. In this paper, a switched reluctance double-rotor machine (SRDRM is proposed for hybrid electric vehicles, while no conductor or PM in the middle rotor. This machine not only inherits the merits of switched reluctance machine, such as simple salient rotor structure, high reliability and wide speed range, but also can avoid the outer rotor’s cooling problem effectively. By using an equivalent magnetic circuit model, the function of middle rotor yoke is analyzed. Electromagnetic analyses of the SRDRM are performed with analytical calculations and 2-D finite element methods, including the effects of main parameters on performance. Finally, a 4.4 kW prototype machine is designed and manufactured, and the tests are performed, which validate the proposed design method.

  10. A new two-phase homopolar switched reluctance motor for electric vehicle applications

    Science.gov (United States)

    Tsai, Mi-Ching; Huang, Chien-Chin; Huang, Zheng-Yi

    2003-12-01

    This paper presents a novel 2-phase homopolar switched reluctance motor (SRM), whose design successfully avoids dead-zone problems that afflict low cost 1- and/or 2-phase SRMs. Unlike conventional radial-winding-radial-gap motors, the proposed SRM has an interior stator that is of the pancake type with axial winding. Such a design allows for a high slot-fill factor and is suitable for implementation as a flat pancake-shaped stator. An efficient, compact prototype was produced with TMS320F240 DSP driving control unit. Experimental results indicate that the present SRM design has the potential to be used for electric bicycles and scooters.

  11. Modernization of the Electric Power Systems (transformers, rods and switches) in the Laguna Verde Nuclear Power Plant (Mexico)

    International Nuclear Information System (INIS)

    Gonzalez Solarzano, J. J.; Gabaldon Martin, M. A.; Pallisa Nunez, J.; Florez Ordeonez, A.; Fernandez Corbeira, A.; Prieto Diez, I.

    2010-01-01

    Description of the changes made in the Electric Power Systems as a part of the power increase project in the Laguna Verde Nuclear Power Plant (Mexico). The main electrical changes to make, besides the turbo group, are the main generation transformers, the isolated rods and the generation switch.

  12. A regime-switching copula approach to modeling day-ahead prices in coupled electricity markets

    DEFF Research Database (Denmark)

    Pircalabu, Anca; Benth, Fred Espen

    2017-01-01

    significant evidence of tail dependence in all pairs of interconnected areas we consider. As a first application of the proposed model, we consider the pricing of financial transmission rights, and highlight how the choice of marginal distributions and copula impacts prices. As a second application we......The recent price coupling of many European electricity markets has triggered a fundamental change in the interaction of day-ahead prices, challenging additionally the modeling of the joint behavior of prices in interconnected markets. In this paper we propose a regime-switching AR–GARCH copula...... to model pairs of day-ahead electricity prices in coupled European markets. While capturing key stylized facts empirically substantiated in the literature, this model easily allows us to 1) deviate from the assumption of normal margins and 2) include a more detailed description of the dependence between...

  13. Short Term Electric Production Technology Switching Under Carbon Cap and Trade

    Directory of Open Access Journals (Sweden)

    Donald F. Larson

    2012-10-01

    Full Text Available This study examines fuel switching in electricity production following the introduction of the European Union’s Emissions Trading System (EU ETS for greenhouse gas emissions. A short-run restricted cost equation is estimated with carbon permits, high-carbon fuels, and low carbon fuels as variable inputs. Shadow values and substitution elasticities for carbon-free energy resources from nuclear, hydroelectric and renewable sources are imputed from the cost equation. The empirical analysis examines 12 European countries using monthly data on fuel use, prices, and electricity generation during the first phase of the European Emissions Trading System. Despite low emission permit prices, this study finds statistically significant substitution between fossil fuels and carbon free sources of energy for electric power production. Significant substitution between fossil fuels and nuclear energy also was found. Still, while 18 of the 20 substitution elasticities are statistically significant, they are all less than unity, consistent with limited substitution. Overall, these results suggest that prices for carbon emission permits relative to prices for carbon and carbon free sources of energy do matter but that electric power producers have limited operational flexibility in the short-run to satisfy greenhouse gas emission limits.

  14. Nanomaterials-Enhanced Electrically Switched Ion Exchange Process for Water Treatment

    International Nuclear Information System (INIS)

    Lin, Yuehe; Choi, Daiwon; Wang, Jun; Bontha, Jagannadha R.

    2009-01-01

    The objective of our work is to develop an electrically switched ion exchange (ESIX) system based on conducting polymer/carbon nanotube (CNT) nanocomposites as a new and cost-effective approach for removal of radioactive cesium, chromate, and perchlorate from contaminated groundwater. The ESIX technology combines ion exchange and electrochemistry to provide a selective, reversible method for the removal of target species from wastewater. In this technique, an electroactive ion exchange layer is deposited on a conducting substrate, and ion uptake and elution are controlled directly by modulation of the potential of the layer. ESIX offers the advantages of highly-efficient use of electrical energy combined with no secondary waste generation. Recently, we have improved upon the ESIX process by modifying the conducting substrate with carbon nanotubes prior to the deposition of the electroactive ion exchanger. The nanomaterial-based electroactive ion exchange technology will remove cesium-137, chromate, and perchlorate rapidly from wastewater. The high porosity and high surface area of the electroactive ion exchange nanocomposites results in high loading capacity and minimize interferences for non-target species. Since the ion adsorption/desorption is controlled electrically without generating a secondary waste, this electrically active ion exchange process is a green process technology that will greatly reduce operating costs

  15. Optimal recharging strategy for battery-switch stations for electric vehicles in France

    International Nuclear Information System (INIS)

    Armstrong, M.; El Hajj Moussa, C.; Adnot, J.; Galli, A.; Riviere, P.

    2013-01-01

    Most papers that study the recharging of electric vehicles focus on charging the batteries at home and at the work-place. The alternative is for owners to exchange the battery at a specially equipped battery switch station (BSS). This paper studies strategies for the BSS to buy and sell the electricity through the day-ahead market. We determine what the optimal strategies would have been for a large fleet of EVs in 2010 and 2011, for the V2G and the G2V cases. These give the amount that the BSS should offer to buy or sell each hour of the day. Given the size of the fleet, the quantities of electricity bought and sold will displace the market equilibrium. Using the aggregate offers to buy and the bids to sell on the day-ahead market, we compute what the new prices and volumes transacted would be. While buying electricity for the G2V case incurs a cost, it would have been possible to generate revenue in the V2G case, if the arrivals of the EVs had been evenly spaced during the day. Finally, we compare the total cost of implementing the strategies with the cost of buying the same quantity of electricity from EDF. - Highlights: • Optimal strategies for buying/selling electricity through day-ahead auction market. • Given fleet size power bought and sold would change market price and volume. • New prices computed using aggregate offers to buy/sell power in 2010 and 2011. • Timing of arrival of EVs critical in V2G case. If evenly spaced BSS makes money. • Strategies are very robust even when French and German markets were coupled Nov. 2010

  16. Facile synthesis and electrical switching properties of V{sub 2}O{sub 3} powders

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Haining; Liu, Dongqing, E-mail: dongqingliu@ymail.com; Cheng, Haifeng; Yang, Lixiang; Zhang, Chaoyang; Zheng, Wenwei

    2017-03-15

    Highlights: • Single crystal uniform V{sub 2}O{sub 3} powders have been synthesized without additional surfactant. • Powders were obtained in only 6 h. • Powders exhibit reversible phase transition properties. • Powders have excellent electrical switching properties with resistance changes as large as 10{sup 4}. - Abstract: V{sub 2}O{sub 3} powders were synthesized with mercaptoacetic acid (C{sub 2}H{sub 4}O{sub 2}S) as reducing agent and stabilizer via a facile hydrothermal approach. The crystalline structure, surface morphology, valence state of the derived V{sub 2}O{sub 3} powders were characterized via X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy. It was found that the ratio and reaction time played a duel role in the formation and morphology of the V{sub 2}O{sub 3} powders. The metal-insulator transition properties of V{sub 2}O{sub 3} powders were studied by the differential scanning calorimetry curve and variable temperature Raman spectra. The change in electrical resistance due to the metal-insulator transition was measured from 80 to 240 K using physical property measurement system. The results showed V{sub 2}O{sub 3} samples had excellent electrical switching properties with resistance changes as large as 10{sup 4}. This simple and fast synthesis approach makes the V{sub 2}O{sub 3} powders easily accessible for exploring their fundamental properties and potential applications in novel electronic devices.

  17. Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis

    Directory of Open Access Journals (Sweden)

    Aurelian Crunteanu, Julien Givernaud, Jonathan Leroy, David Mardivirin, Corinne Champeaux, Jean-Christophe Orlianges, Alain Catherinot and Pierre Blondy

    2010-01-01

    Full Text Available Vanadium dioxide is an intensively studied material that undergoes a temperature-induced metal–insulator phase transition accompanied by a large change in electrical resistivity. Electrical switches based on this material show promising properties in terms of speed and broadband operation. The exploration of the failure behavior and reliability of such devices is very important in view of their integration in practical electronic circuits. We performed systematic lifetime investigations of two-terminal switches based on the electrical activation of the metal–insulator transition in VO2 thin films. The devices were integrated in coplanar microwave waveguides (CPWs in series configuration. We detected the evolution of a 10 GHz microwave signal transmitted through the CPW, modulated by the activation of the VO2 switches in both voltage- and current-controlled modes. We demonstrated enhanced lifetime operation of current-controlled VO2-based switching (more than 260 million cycles without failure compared with the voltage-activated mode (breakdown at around 16 million activation cycles. The evolution of the electrical self-oscillations of a VO2-based switch induced in the current-operated mode is a subtle indicator of the material properties modification and can be used to monitor its behavior under various external stresses in sensor applications.

  18. Coexistence of electric field controlled ferromagnetism and resistive switching for TiO{sub 2} film at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Shaoqing; Qin, Hongwei; Bu, Jianpei; Zhu, Gengchang; Xie, Jihao; Hu, Jifan, E-mail: hujf@sdu.edu.cn, E-mail: hu-jf@vip.163.com [School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100 (China)

    2015-08-10

    The Ag/TiO{sub 2}/Nb:SrTiO{sub 3}/Ag device exhibits the coexistence of electric field controlled ferromagnetism and resistive switching at room temperature. The bipolar resistive switching in Ag/TiO{sub 2}/Nb:SrTiO{sub 3}/Ag device may be dominated by the modulation of Schottky-like barrier with the electron injection-trapped/detrapped process at the interface of TiO{sub 2}/Nb:SrTiO{sub 3}. We suggest that the electric field-induced magnetization modulation originates mainly from the creation/annihilation of lots of oxygen vacancies in TiO{sub 2}.

  19. A Sepic Type Switched Mode Power Supply System For Battery Charging In An Electric Tricycle Auto-Rickshaw

    Directory of Open Access Journals (Sweden)

    Kureve

    2017-08-01

    Full Text Available This paper analyzes the plug-in electric tricycle Auto rickshaw battery charging system using a non-isolated DC-DC SEPIC converter which operates as a switched mode power supply SMPS. The control of dc voltage output is by varying the gating pulses duty cycle of the switch in the dc-dc converter using PID controller based PWM technique. The 60 V 30 A DC-DC SEPIC converter is designed to provide non-inverting voltage buck from the rectified AC mains for charging deep cycle battery bank in an electric auto rickshaw. The charger system is implemented using MATLABSimulink.

  20. Impact of variable renewable production on electricity prices in Germany: a Markov switching model

    International Nuclear Information System (INIS)

    Martin de Lagarde, Cyril; Lantz, Frederic

    2016-01-01

    This paper aims at assessing the impact of renewable energy sources (RES) production on electricity spot prices. To do so, we use a two-regime Markov Switching (MS) model, that enables to disentangle the so-called 'merit-order effect' due to wind and solar photovoltaic productions (used in relative share of the electricity demand), depending on the price being high or low. We find that there are effectively two distinct price regimes that are put to light thanks to an inverse hyperbolic sine transformation that allows to treat negative prices. We also show that these two regimes coincide quite well with two regimes for the electricity demand (load). Indeed, when demand is low, prices are low and the merit-order effect is lower than when prices are high, which is consistent with the fact that the inverse supply curve is convex (i.e. has increasing slope). To illustrate this, we computed the mean marginal effects of RES production and load. On average, an increase of 1 GW of wind will decrease the price in regime 1 (resp. 2) by 0.77 euro /MWh (resp. 1 euro /MWh). The influence of solar is slightly weaker, as an extra gigawatt lowers the price of 0.73 euro /MWh in period 1, and 0.96 euro /MWh in regime 2. On the contrary, if the demand increases by 1 GW in regime 1 (resp. 2), the price increases on average by 0.93 euro /MWh (resp. 1.18 euro /MWh). Although we made sure these marginal effects are significantly different from one another, they are much more variable than the estimated coefficients of the model. Also, note that these marginal effects are only valid inside each regime when there is no switching. The latter regime partly corresponds to the high load regime, at the exception of periods during which RES production is high. The impact on volatility could also be observed: the variance of the (transformed) price is higher during the high-price regime than in the low-price one. In addition to the switching of the coefficients, we allowed the probabilities of

  1. An empirical comparison of alternate regime-switching models for electricity spot prices

    Energy Technology Data Exchange (ETDEWEB)

    Janczura, Joanna [Hugo Steinhaus Center, Institute of Mathematics and Computer Science, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Weron, Rafal [Institute of Organization and Management, Wroclaw University of Technology, 50-370 Wroclaw (Poland)

    2010-09-15

    One of the most profound features of electricity spot prices are the price spikes. Markov regime-switching (MRS) models seem to be a natural candidate for modeling this spiky behavior. However, in the studies published so far, the goodness-of-fit of the proposed models has not been a major focus. While most of the models were elegant, their fit to empirical data has either been not examined thoroughly or the signs of a bad fit ignored. With this paper we want to fill the gap. We calibrate and test a range of MRS models in an attempt to find parsimonious specifications that not only address the main characteristics of electricity prices but are statistically sound as well. We find that the best structure is that of an independent spike 3-regime model with time-varying transition probabilities, heteroscedastic diffusion-type base regime dynamics and shifted spike regime distributions. Not only does it allow for a seasonal spike intensity throughout the year and consecutive spikes or price drops, which is consistent with market observations, but also exhibits the 'inverse leverage effect' reported in the literature for spot electricity prices. (author)

  2. An empirical comparison of alternate regime-switching models for electricity spot prices

    International Nuclear Information System (INIS)

    Janczura, Joanna; Weron, Rafal

    2010-01-01

    One of the most profound features of electricity spot prices are the price spikes. Markov regime-switching (MRS) models seem to be a natural candidate for modeling this spiky behavior. However, in the studies published so far, the goodness-of-fit of the proposed models has not been a major focus. While most of the models were elegant, their fit to empirical data has either been not examined thoroughly or the signs of a bad fit ignored. With this paper we want to fill the gap. We calibrate and test a range of MRS models in an attempt to find parsimonious specifications that not only address the main characteristics of electricity prices but are statistically sound as well. We find that the best structure is that of an independent spike 3-regime model with time-varying transition probabilities, heteroscedastic diffusion-type base regime dynamics and shifted spike regime distributions. Not only does it allow for a seasonal spike intensity throughout the year and consecutive spikes or price drops, which is consistent with market observations, but also exhibits the 'inverse leverage effect' reported in the literature for spot electricity prices. (author)

  3. Electrical switching of antiferromagnets via strongly spin-orbit coupled materials

    Science.gov (United States)

    Li, Xi-Lai; Duan, Xiaopeng; Semenov, Yuriy G.; Kim, Ki Wook

    2017-01-01

    Electrically controlled ultra-fast switching of an antiferromagnet (AFM) is shown to be realizable by interfacing it with a material of strong spin-orbit coupling. The proximity interaction between the sublattice magnetic moments of a layered AFM and the spin-polarized free electrons at the interface offers an efficient way to manipulate antiferromagnetic states. A quantitative analysis, using the combination with a topological insulator as an example, demonstrates highly reliable 90° and 180° rotations of AFM magnetic states under two different mechanisms of effective torque generation at the interface. The estimated switching speed and energy requirement are in the ps and aJ ranges, respectively, which are about two-three orders of magnitude better than the ferromagnetic counterparts. The observed differences in the magnetization dynamics may explain the disparate characteristic responses. Unlike the usual precessional/chiral motions in the ferromagnets, those of the AFMs can essentially be described as a damped oscillator with a more direct path. The impact of random thermal fluctuations is also examined.

  4. Fault-tolerant electric drive and space-phasor modulation of flux-switching permanent magnet machine for aerospace application

    NARCIS (Netherlands)

    Wang, L.; Aleksandrov, S.; Tang, Y.; Paulides, J.J.H.; Lomonova, E.A.

    2017-01-01

    This study investigates how to improve the fault tolerance or availability of an electrical drive containing a three-phase 12 stator teeth/10 rotor poles (12/10) the flux-switching permanent magnet machine. In this respect, space-vector modulation and space-phasor modulation will be analysed in this

  5. Column Generation for Transmission Switching of Electricity Networks with Unit Commitment

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer; Philpott, Andy B.

    2011-01-01

    This paper presents the problem of finding the minimum cost dispatch and commitment of power generation units in a transmission network with active switching.We use the term active switching to denote the use of switches to optimize network topology in an operational context. We propose a Dantzig...

  6. New Integrated Multilevel Converter for Switched Reluctance Motor Drives in Plug-in Hybrid Electric Vehicles with Flexible Energy Conversion

    DEFF Research Database (Denmark)

    Gan, Chun; Wu, Jianhua; Hu, Yihua

    2017-01-01

    This paper presents an integrated multilevel converter of switched reluctance motors (SRMs) fed by a modular front-end circuit for plug-in hybrid electric vehicle (PHEV) applications. Several operating modes can be achieved by changing the on-off states of the switches in the front-end circuit......, the battery can be charged by the external AC source or generator when the vehicle is in standstill condition. The SRM-based PHEV can operate at different speeds by coordinating power flow from the generator and battery. Simulation in MATLAB/Simulink and experiments on a three-phase 12/8 SRM confirm...

  7. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure

    Science.gov (United States)

    Cai, Kaiming; Yang, Meiyin; Ju, Hailang; Wang, Sumei; Ji, Yang; Li, Baohe; Edmonds, Kevin William; Sheng, Yu; Zhang, Bao; Zhang, Nan; Liu, Shuai; Zheng, Houzhi; Wang, Kaiyou

    2017-07-01

    All-electrical and programmable manipulations of ferromagnetic bits are highly pursued for the aim of high integration and low energy consumption in modern information technology. Methods based on the spin-orbit torque switching in heavy metal/ferromagnet structures have been proposed with magnetic field, and are heading toward deterministic switching without external magnetic field. Here we demonstrate that an in-plane effective magnetic field can be induced by an electric field without breaking the symmetry of the structure of the thin film, and realize the deterministic magnetization switching in a hybrid ferromagnetic/ferroelectric structure with Pt/Co/Ni/Co/Pt layers on PMN-PT substrate. The effective magnetic field can be reversed by changing the direction of the applied electric field on the PMN-PT substrate, which fully replaces the controllability function of the external magnetic field. The electric field is found to generate an additional spin-orbit torque on the CoNiCo magnets, which is confirmed by macrospin calculations and micromagnetic simulations.

  8. Stackelberg Game Model of Wind Farm and Electric Vehicle Battery Switch Station

    Science.gov (United States)

    Jiang, Zhe; Li, Zhimin; Li, Wenbo; Wang, Mingqiang; Wang, Mengxia

    2017-05-01

    In this paper, a cooperation method between wind farm and Electric vehicle battery switch station (EVBSS) was proposed. In the pursuit of maximizing their own benefits, the cooperation between wind farm and EVBSS was formulated as a Stackelberg game model by treating them as decision makers in different status. As the leader, wind farm will determine the charging/discharging price to induce the charging and discharging behavior of EVBSS reasonably. Through peak load shifting, wind farm could increase its profits by selling more wind power to the power grid during time interval with a higher purchase price. As the follower, EVBSS will charge or discharge according to the price determined by wind farm. Through optimizing the charging /discharging strategy, EVBSS will try to charge with a lower price and discharge with a higher price in order to increase its profits. Since the possible charging /discharging strategy of EVBSS is known, the wind farm will take the strategy into consideration while deciding the charging /discharging price, and will adjust the price accordingly to increase its profits. The case study proved that the proposed cooperation method and model were feasible and effective.

  9. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y. [McMaster University, Hamilton, ON (Canada); Mekky, W. [AMEC NSS, Power and Process America, Toronto (Canada)

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  10. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    International Nuclear Information System (INIS)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y.; Mekky, W.

    2015-01-01

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  11. Development of Electrically Switched Ion Exchange Process for Selective Ion Separations

    International Nuclear Information System (INIS)

    Rassat, Scot D.; Sukamto, Johanes H.; Orth, Rick J.; Lilga, Michael A.; Hallen, Richard T.

    1999-01-01

    The electrically switched ion exchange (ESIX) process, being developed at Pacific Northwest National Laboratory, provides an alternative separation method to selectively remove ions from process and waste streams. In the ESIX process, in which an electroactive ion exchange film is deposited onto a high surface area electrode, uptake and elution are controlled directly by modulating the electrochemical potential of the film. This paper addresses engineering issues necessary to fully develop ESIX for specific industrial alkali cation separation challenges. The cycling and chemical stability and alkali cation selectivity of nickel hexacyanoferrate (NiHCF) electroactive films were investigated. The selectivity of NiHCF was determined using cyclic voltammetry and a quartz crystal microbalance to quantify ion uptake in the film. Separation factors indicated a high selectivity for cesium and a moderate selectivity for potassium in high sodium content solutions. A NiHCF film with improved redox cycling and chemical stability in a simulated pulp mill process stream, a targeted application for ESIX, was also prepared and tested

  12. Intra-day and regime-switching dynamics in electricity price formation

    International Nuclear Information System (INIS)

    Karakatsani, Nektaria V.; Bunn, Derek W.

    2008-01-01

    This paper analyses the complex, non-linear effects of spot price drivers in wholesale electricity markets: their intra-day dynamics and transient irregularities. The context is the UK market, after the reforms introduced in March 2001, analysed with an original set of price drivers reflecting economic, technical, strategic, risk, behavioural and market design effects. Models are estimated separately as daily time-series of the 48 half-hourly trading periods. All coefficients exhibit substantial intra-day variation, relating to the heterogeneity of operating plants and market design aspects. This reveals a market responding to economic fundamentals and plant operating properties, with learning and emergent financial characteristics, as well as some strategic manipulation of capacity, most effectively exercised by the more flexible plants. Using regime-switching parameters, the effects of capacity margin and inter-day capacity adjustment are elucidated, suggesting rent-seeking behaviour, despite the relatively low prices at the time. Overall, high-frequency, aggregate fundamental price models can usefully uncover critical aspects of market performance, evolution and agent behaviour. (author)

  13. Electrically-controlled nonlinear switching and multi-level storage characteristics in WOx film-based memory cells

    Science.gov (United States)

    Duan, W. J.; Wang, J. B.; Zhong, X. L.

    2018-05-01

    Resistive switching random access memory (RRAM) is considered as a promising candidate for the next generation memory due to its scalability, high integration density and non-volatile storage characteristics. Here, the multiple electrical characteristics in Pt/WOx/Pt cells are investigated. Both of the nonlinear switching and multi-level storage can be achieved by setting different compliance current in the same cell. The correlations among the current, time and temperature are analyzed by using contours and 3D surfaces. The switching mechanism is explained in terms of the formation and rupture of conductive filament which is related to oxygen vacancies. The experimental results show that the non-stoichiometric WOx film-based device offers a feasible way for the applications of oxide-based RRAMs.

  14. Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

    OpenAIRE

    Yang Yang; Chao Wang; Quanrang Zhang; Xiaolong He

    2017-01-01

    Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-dow...

  15. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan [Stanford Univ., CA (United States)

    2008-12-01

    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  16. On the Suitability of Interleaved Switched Capacitor Converter as an Interface for Electric Vehicle Dual Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Amjadi, Zahra; Williamson, Sheldon

    2010-09-15

    This paper presents the analysis and novel hybrid controller design for an interleaved 2-quadrant switched capacitor (SC) bidirectional DC/DC converter for a hybrid electric vehicle (HEV) dual energy storage system. The designed novel control strategy enables simpler dynamics compared to a standard buck converter with input filter, good regulation capability, low EMI, lower source current ripple, ease of control, and continuous input current waveform in both buck as well as boost modes of operation.

  17. Dipolar molecules inside C-70: an electric field-driven room-temperature single-molecule switch

    Czech Academy of Sciences Publication Activity Database

    Foroutan-Nejad, C.; Andrushchenko, Valery; Straka, Michal

    2016-01-01

    Roč. 18, č. 48 (2016), s. 32673-32677 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : room-temperature single-molecule switch * electric field * endohedral fullerene * density functional calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.123, year: 2016 http://pubs.rsc.org/en/content/articlepdf/2016/cp/c6cp06986j

  18. Charge trapping at organic/self-assembly molecule interfaces studied by electrical switching behaviour in a crosspoint structure

    International Nuclear Information System (INIS)

    Li Yun; Pan Lijia; Pu Lin; Shi Yi; Liu Chuan; Tsukagoshi, Kazuhito

    2012-01-01

    Charge trapping at organic/self-assembly molecule (SAM) interfaces is studied by the electrical switching behaviour in a crosspoint structure, where interfacial charge trapping tunes the potential barrier of the SAM layer. The sample with rubrene exhibits the write-once read-many-times memory effect, which is due to the interfacial charges trapped at deep states. On the other hand, the sample with 2-amino-4,5-dicyanoimidazole presents recyclable conduction transition, which results from the trapped charges distributed at shallow states. Moreover, the percentage of the charges trapped at shallow states can be estimated from electrical transition levels. (paper)

  19. Charge trapping at organic/self-assembly molecule interfaces studied by electrical switching behaviour in a crosspoint structure

    Science.gov (United States)

    Li, Yun; Liu, Chuan; Pan, Lijia; Pu, Lin; Tsukagoshi, Kazuhito; Shi, Yi

    2012-01-01

    Charge trapping at organic/self-assembly molecule (SAM) interfaces is studied by the electrical switching behaviour in a crosspoint structure, where interfacial charge trapping tunes the potential barrier of the SAM layer. The sample with rubrene exhibits the write-once read-many-times memory effect, which is due to the interfacial charges trapped at deep states. On the other hand, the sample with 2-amino-4,5-dicyanoimidazole presents recyclable conduction transition, which results from the trapped charges distributed at shallow states. Moreover, the percentage of the charges trapped at shallow states can be estimated from electrical transition levels.

  20. Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-10-01

    Full Text Available Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-down and motor braking forces. The control strategy of type two is achieved by simultaneously changing the target braking torque during different mode switch stages and controlling the motor to participate in active coordination control. Finally, the torque coordination control strategy is modeled in MATLAB/Simulink, and the results show that the proposed control strategy has a good effect in reducing the braking torque fluctuation and vehicle shocks during braking mode switches.

  1. Barrier heights, polarization switching, and electrical fatigue in Pb(Zr,Ti)O3 ceramics with different electrodes

    Science.gov (United States)

    Chen, Feng; Schafranek, Robert; Wachau, André; Zhukov, Sergey; Glaum, Julia; Granzow, Torsten; von Seggern, Heinz; Klein, Andreas

    2010-11-01

    The influence of Pt, tin-doped In2O3, and RuO2 electrodes on the electrical fatigue of bulk ceramic Pb(Zr,Ti)O3 (PZT) has been studied. Schottky barrier heights at the ferroelectric/electrode interfaces vary by more than one electronvolt for different electrode materials and do not depend on crystallographic orientation of the interface. Despite different barrier heights, hysteresis loops of polarization, strain, permittivity, and piezoelectric constant and the switching kinetics are identical for all electrodes. A 20% reduction in polarization after 106 bipolar cycles is observed for all the samples. In contrast to PZT thin films, the loss of remanent polarization with bipolar switching cycles does not significantly depend on the electrode material.

  2. Puget Sound Area Electric Reliability Plan. Appendix D, Conservation, Load Management and Fuel Switching Analysis : Draft Environmental Impact Statement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1991-09-01

    Various conservation, load management, and fuel switching programs were considered as ways to reduce or shift system peak load. These programs operate at the end-use level, such as residential water heat. Figure D-1a shows what electricity consumption for water heat looks like on normal and extreme peak days. Load management programs, such as water heat control, are designed to reduce electricity consumption at the time of system peak. On the coldest day in average winter, system load peaks near 8:00 a.m. In a winter with extremely cold weather, electricity consumption increases fr all hours, and the system peak shifts to later in the morning. System load shapes in the Puget Sound area are shown in Figure D-1b for a normal winter peak day (February 2, 1988) and extreme peak day (February 3, 1989). Peak savings from any program are calculated to be the reduction in loads on the entire system at the hour of system peak. Peak savings for all programs are measured at 8:00 a.m. on a normal peak day and 9:00 a.m. on an extreme peak day. On extremely cold day, some water heat load shifts to much later in the morning, with less load available for shedding at the time of system peak. Models of hourly end-use consumption were constructed to simulate the impact of conservation, land management, and fuel switching programs on electricity consumption. Javelin, a time-series simulating package for personal computers, was chosen for the hourly analysis. Both a base case and a program case were simulated. 15 figs., 7 tabs.

  3. Design Comparison of Inner and Outer Rotor of Permanent Magnet Flux Switching Machine for Electric Bicycle Application

    Science.gov (United States)

    Jusoh, L. I.; Sulaiman, E.; Bahrim, F. S.; Kumar, R.

    2017-08-01

    Recent advancements have led to the development of flux switching machines (FSMs) with flux sources within the stators. The advantage of being a single-piece machine with a robust rotor structure makes FSM an excellent choice for speed applications. There are three categories of FSM, namely, the permanent magnet (PM) FSM, the field excitation (FE) FSM, and the hybrid excitation (HE) FSM. The PMFSM and the FEFSM have their respective PM and field excitation coil (FEC) as their key flux sources. Meanwhile, as the name suggests, the HEFSM has a combination of PM and FECs as the flux sources. The PMFSM is a simple and cheap machine, and it has the ability to control variable flux, which would be suitable for an electric bicycle. Thus, this paper will present a design comparison between an inner rotor and an outer rotor for a single-phase permanent magnet flux switching machine with 8S-10P, designed specifically for an electric bicycle. The performance of this machine was validated using the 2D- FEA. As conclusion, the outer-rotor has much higher torque approximately at 54.2% of an innerrotor PMFSM. From the comprehensive analysis of both designs it can be conclude that output performance is lower than the SRM and IPMSM design machine. But, it shows that the possibility to increase the design performance by using “deterministic optimization method”.

  4. Electric Field Distribution and Switching Impulse Discharge under Shield Ball Surface Scratch Defect in an UHVDC Hall

    Directory of Open Access Journals (Sweden)

    Jianghai Geng

    2018-05-01

    Full Text Available The dimension and surface state of shielding fittings in ultra high voltage direct current (UHVDC converter station valve halls have a great influence on their surface electric field and switching impulse characteristics, which are important parameters confirming the air gap distance in the valve hall. The characteristics of impulse discharge under different lengths, dent degrees and burrs around the scratches of Φ1.3 m shield balls with a 2 m sphere-plane gap length were tested, in the UHVDC testing base of the Hebei Electric Power Research Institute. The discharge characteristics under the influence of the surface scratches of the shield ball were obtained. The results demonstrate that the discharge voltage of sphere-plane gap decreases obviously when there are unpolished scratches on the surface of the shield ball. However, when the scratches are polished, the discharge voltage has no significant impact. At the same time, a 1:1 full-scale impulse test model was established based on the finite element method. The electric field intensity and the space electric field distribution of the shield ball were obtained under the influence of scratches with or without burrs. The results of the simulation show that when the surface of the shield ball is smooth, the electric field distribution around it is even. The electric field intensity on the surface of the shield ball increases obviously when there are burrs around the scratches. When there is no burr around the scratches, the length and depth of the scratches have no obvious effect on its electric field distribution. Meanwhile, calculation results are consistent with test results. The results can provide an important basis for the design and optimization of shielding fittings, and technical support for its localization.

  5. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product

    Energy Technology Data Exchange (ETDEWEB)

    Grezes, C.; Alzate, J. G.; Cai, X.; Wang, K. L. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Ebrahimi, F.; Khalili Amiri, P. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Inston, Inc., Los Angeles, California 90024 (United States); Katine, J. A. [HGST, Inc., San Jose, California 95135 (United States); Langer, J.; Ocker, B. [Singulus Technologies AG, Kahl am Main 63796 (Germany)

    2016-01-04

    We report electric-field-induced switching with write energies down to 6 fJ/bit for switching times of 0.5 ns, in nanoscale perpendicular magnetic tunnel junctions (MTJs) with high resistance-area product and diameters down to 50 nm. The ultra-low switching energy is made possible by a thick MgO barrier that ensures negligible spin-transfer torque contributions, along with a reduction of the Ohmic dissipation. We find that the switching voltage and time are insensitive to the junction diameter for high-resistance MTJs, a result accounted for by a macrospin model of purely voltage-induced switching. The measured performance enables integration with same-size CMOS transistors in compact memory and logic integrated circuits.

  6. Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle

    OpenAIRE

    Siavash Sadeghi; Mojtaba Mirsalim; Arash Hassanpour Isfahani

    2010-01-01

    Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicl...

  7. Electric-field assisted switching of magnetization in perpendicularly magnetized (Ga,Mn)As films at high temperatures

    Science.gov (United States)

    Wang, Hailong; Ma, Jialin; Yu, Xueze; Yu, Zhifeng; Zhao, Jianhua

    2017-01-01

    The electric-field effects on the magnetism in perpendicularly magnetized (Ga,Mn)As films at high temperatures have been investigated. An electric-field as high as 0.6 V nm-1 is applied by utilizing a solid-state dielectric Al2O3 film as a gate insulator. The coercive field, saturation magnetization and magnetic anisotropy have been clearly changed by the gate electric-field, which are detected via the anomalous Hall effect. In terms of the Curie temperature, a variation of about 3 K is observed as determined by the temperature derivative of the sheet resistance. In addition, electrical switching of the magnetization assisted by a fixed external magnetic field at 120 K is demonstrated, employing the gate-controlled coercive field. The above experimental results have been attributed to the gate voltage modulation of the hole density in (Ga,Mn)As films, since the ferromagnetism in (Ga,Mn)As is carrier-mediated. The limited modulation magnitude of magnetism is found to result from the strong charge screening effect introduced by the high hole concentration up to 1.10  ×  1021 cm-3, while the variation of the hole density is only about 1.16  ×  1020 cm-3.

  8. The Effects of Coal Switching and Improvements in Electricity Production Efficiency and Consumption on CO2 Mitigation Goals in China

    Directory of Open Access Journals (Sweden)

    Li Li

    2015-07-01

    Full Text Available Although the average CO2 emission for a person in China is only about 1/4 that of a person in the US, the government of China still made a commitment to ensure that CO2 emissions will reach their peak in 2030 because of the ever-increasing pressure of global warming. In this work, we examined the effects of coal switching, efficiency improvements in thermal power generation and the electricity consumption of economic activities on realizing this goal. An improved STIRPAT model was developed to create the scenarios. In order to make the estimated elasticities more consistent with different variables selected to construct the formulation, a double-layer STIRPAT model was constructed, and by integrating the two equations obtained by regressing the series in each layer, we finally got the equation to describe the long-run relationship among CO2 emissions (Ic, the share of coal in overall energy consumption (FMC, coal intensity of thermal power generation (CIp and electricity intensity of GDP (EIelec. The long term elasticities represented by the equation show that the growth of CO2 emissions in China is quite sensitive to FMC, CIp and EIelec. After that, five scenarios were developed in order to examine the effects of China’s possible different CO2 emission reduction policies, focusing on improving FMC, CIp and EIelec respectively. Through a rigorous analysis, we found that in order to realize the committed CO2 emissions mitigating goal, China should obviously accelerate the pace in switching from coal to low carbon fuels, coupled with a consistent improvement in electricity efficiency of economic activities and a slightly slower improvement in the coal efficiency of thermal power generation.

  9. An ultrafast programmable electrical tester for enabling time-resolved, sub-nanosecond switching dynamics and programming of nanoscale memory devices

    Science.gov (United States)

    Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu

    2017-12-01

    Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag5In5Sb60Te30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.

  10. Heterogeneous in situ polymerization of polyaniline (PANI) nanofibers on cotton textiles: Improved electrical conductivity, electrical switching, and tuning properties.

    Science.gov (United States)

    Tissera, Nadeeka D; Wijesena, Ruchira N; Rathnayake, Samantha; de Silva, Rohini M; de Silva, K M Nalin

    2018-04-15

    Electrically conductive cotton fabric was fabricated by in situ one pot oxidative polymerization of aniline. Using a simple heterogeneous polymerization method, polyaniline (PANI) nano fibers with an average fiber diameter of 40-75 nm were grafted in situ onto cotton fabric. The electrical conductivity of the PANI nanofiber grafted fabric was improved 10 fold compared to fabric grafted with PANI nanoclusters having an average cluster size of 145-315 nm. The surface morphology of the cotton fibers was characterized using SEM and AFM. Electrical conductivity of PANI nanofibers on the cotton textile was further improved from 76 kΏ/cm to 1 kΏ/cm by increasing the HCl concentration from 1 M to 3 M in the polymerization medium. PANI grafted cotton fabrics were analyzed using FTIR, and the data showed the presence of polyaniline functional groups on the treated fabric. Further evidence was present for the chemical interaction of PANI with cellulose. Dopant level and morphology dependent electron transition behavior of PANI nanostructures grafted on cotton fabric was further characterized using UV-vis spectroscopy. The electrical conductivity of the PANI nano fiber grafted cotton fabric can be tuned by immersing the fabric in pH 2 and pH 6 solutions for multiple cycles. Copyright © 2018. Published by Elsevier Ltd.

  11. Fast magnetization switching in GaMnAs induced by electrical fields

    Czech Academy of Sciences Publication Activity Database

    Balestriere, P.; Devolder, T.; Kim, J.-V.; Lecoeur, P.; Wunderlich, Joerg; Novák, Vít; Jungwirth, Tomáš; Chappert, C.

    2011-01-01

    Roč. 99, č. 24 (2011), 242505/1-242505/3 ISSN 0003-6951 R&D Projects: GA MŠk LC510; GA MŠk(CZ) 7E08087 EU Projects: European Commission(XE) 214499 - NAMASTE; European Commission(XE) 268066 - 0MSPIN Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : magnet ization switching * ferromagnetic semiconductors Subject RIV: BM - Solid Matter Physics ; Magnet ism Impact factor: 3.844, year: 2011

  12. Net metering study of switching effects on electromechanical meters[Report prepared for the Measurement Canada Electricity Net Metering Project

    Energy Technology Data Exchange (ETDEWEB)

    Van Overberghe, L. [Measurement Canada, London, ON (Canada)

    2006-03-03

    The feasibility of introducing net metering in the electricity sector was evaluated with particular reference to a project administered by Measurement Canada and Electro-Federation Canada (MicroPower Connect) in collaboration with Natural Resources Canada. The objective of the Measurement Canada Electricity Net Metering Project is to identify and eliminate the barriers introduced by the Electricity and Gas Inspection Act regarding the introduction of net metering. The purpose was to design a device that would allow rotation reversal in a residential electromechanical single phase meter. The device should approximate any fluctuations found in a typical net metering system. A series of tests were conducted to understand the influences, on errors, of forward-to-reverse and reverse-to-forward transitions, specifically to find evidence of error migration and mechanical stress. The project was designed to find and measure the effects of forward reverse switching on an electromechanical meter resulting from a change in energy flow. Twenty metres were calibrated in the forward direction in series from light load to high load. Power factor was not adjustable. Test points were then applied in both the forward and reverse directions. The exercise yielded individual errors which were aggregated to show average found errors after 3,000 transitions. Small shifts in errors were apparent and there was no evidence to support a disk flutter theory. refs., tabs., figs.

  13. Three-Phase High-Power and Zero-Current-Switching OBC for Plug-In Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Cheng-Shan Wang

    2015-06-01

    Full Text Available In this paper, an interleaved high-power zero-current-switching (ZCS onboard charger (OBC based on the three-phase single-switch buck rectifier is proposed for application to plug-in electric vehicles (EVs. The multi-resonant structure is used to achieve high efficiency and high power density, which are necessary to reduce the volume and weight of the OBC. This study focuses on the border conditions of ZCS converting with a battery load, which means the variation ranges of the output voltage and current are very large. Furthermore, a novel hybrid control method combining pulse frequency modulation (PFM and pulse width modulation (PWM together is presented to ensure a driving frequency higher than 10 kHz, and this will reduce the unexpected inner resonant power flow and decrease the total harmonic distortion (THD of the input current under a light load at the end of the charging process. Finally, a prototype is established, and experiments are carried out. According to the experimental results, the conversion efficiency is higher than 93.5%, the THD about 4.3% and power factor (PF 0.98 under the maximum power output condition. Besides, a three-stage charging process is also carried out the experimental platform.

  14. Design comparison of single phase outer and inner-rotor hybrid excitation flux switching motor for hybrid electric vehicles

    Science.gov (United States)

    Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal

    2015-05-01

    In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.

  15. Multiobjective optimal placement of switches and protective devices in electric power distribution systems using ant colony optimization

    Energy Technology Data Exchange (ETDEWEB)

    Tippachon, Wiwat; Rerkpreedapong, Dulpichet [Department of Electrical Engineering, Kasetsart University, 50 Phaholyothin Rd., Ladyao, Jatujak, Bangkok 10900 (Thailand)

    2009-07-15

    This paper presents a multiobjective optimization methodology to optimally place switches and protective devices in electric power distribution networks. Identifying the type and location of them is a combinatorial optimization problem described by a nonlinear and nondifferential function. The multiobjective ant colony optimization (MACO) has been applied to this problem to minimize the total cost while simultaneously minimize two distribution network reliability indices including system average interruption frequency index (SAIFI) and system interruption duration index (SAIDI). Actual distribution feeders are used in the tests, and test results have shown that the algorithm can determine the set of optimal nondominated solutions. It allows the utility to obtain the optimal type and location of devices to achieve the best system reliability with the lowest cost. (author)

  16. Hydrogen-induced electrical and optical switching in Pd capped Pr ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. In this study, modification in the properties of hydrogen-induced switchable mirror based on Pr nanoparticle layers is reported. The reversible changes in hydrogen-induced electrical and optical properties of Pd capped Pr nanoparticle layers have been studied as a function of hydrogenation time and compared.

  17. Tailored emails prompt electric vehicle owners to engage with tariff switching information

    Science.gov (United States)

    Nicolson, Moira; Huebner, Gesche M.; Shipworth, David; Elam, Simon

    2017-06-01

    The carbon intensity of the electricity used to charge an electric vehicle (EV) is dependent on when in the day charging occurs. However, persuading EV owners to adopt incentives to charge during off-peak hours is challenging. Here we show that governments could exploit the 'window of opportunity' created when people purchase their first EV to promote time-of-use tariffs. Email recipients (n = 7,038 EV owners) were more likely to click-through to an information webpage when the email emphasized specific reductions in home-charging costs versus general bill savings. However, the 'window of opportunity' for maximizing potential adoption is short; email open rates declined from over 70% immediately after purchase to 40% for recipients owning their EV for over three months. These results demonstrate the potential of prompts to change behaviours for which opt-out enrolment (where enrolment is automatic unless people explicitly opt out) would be unethical or less effective.

  18. Switched causual modeling of transmission with clutch in hybrid electric vehicles

    OpenAIRE

    LHOMME, W; TRIGUI, R; DELARU, P; JEANNERET, B; BOUSCAUROL, A; BADIN, F

    2008-01-01

    Certain difficulties arise when attempting to model a clutch in a power train transmission due to its nonlinear behavior. Two different states have to be taken into account-the first being when the clutch is locked and the second being when the clutch is slipping. In this paper, a clutch model is developed using the Energetic Macroscopic Representation, which is, in turn, used in the modeling of complete hybrid electric vehicles (HEVs). Two different models are used, and a specific condition ...

  19. Feasibility of Imaging Tissue Electrical Conductivity by Switching Field Gradients with MRI.

    Science.gov (United States)

    Gibbs, Eric; Liu, Chunlei

    2015-12-01

    Tissue conductivity is a biophysical marker of tissue structure and physiology. Present methods of measuring tissue conductivity are limited. Electrical impedance tomography, and magnetic resonance electrical impedance tomography rely on passing external current through the object being imaged, which prevents its use in most human imaging. Recently, the RF field used for MR excitation has been used to non-invasively measure tissue conductivity. This technique is promising, but conductivity at higher frequencies is less sensitive to tissue structure. Measuring tissue conductivity non-invasively at low frequencies remains elusive. It has been proposed that eddy currents generated during the rise and decay of gradient pulses could act as a current source to map low-frequency conductivity. This work centers on a gradient echo pulse sequence that uses large gradients prior to excitation to create eddy currents. The electric and magnetic fields during a gradient pulse are simulated by a finite-difference time-domain simulation. The sequence is also tested with a phantom and an animal MRI scanner equipped with gradients of high gradient strengths and slew rate. The simulation demonstrates that eddy currents in materials with conductivity similar to biological tissue decay with a half-life on the order of nanoseconds and any eddy currents generated prior to excitation decay completely before influencing the RF signal. Gradient-induced eddy currents can influence phase accumulation after excitation but the effect is too small to image. The animal scanner images show no measurable phase accumulation. Measuring low-frequency conductivity by gradient-induced eddy currents is presently unfeasible.

  20. A regime-switching stochastic volatility model for forecasting electricity prices

    DEFF Research Database (Denmark)

    Exterkate, Peter; Knapik, Oskar

    In a recent review paper, Weron (2014) pinpoints several crucial challenges outstanding in the area of electricity price forecasting. This research attempts to address all of them by i) showing the importance of considering fundamental price drivers in modeling, ii) developing new techniques for ...... on explanatory variables. Bayesian inference is explored in order to obtain predictive densities. The main focus of the paper is on shorttime density forecasting in Nord Pool intraday market. We show that the proposed model outperforms several benchmark models at this task....

  1. Vibration mitigation for in-wheel switched reluctance motor driven electric vehicle with dynamic vibration absorbing structures

    Science.gov (United States)

    Qin, Yechen; He, Chenchen; Shao, Xinxin; Du, Haiping; Xiang, Changle; Dong, Mingming

    2018-04-01

    This paper presents a new approach for vibration mitigation based on a dynamic vibration absorbing structure (DVAS) for electric vehicles (EVs) that use in-wheel switched reluctance motors (SRMs). The proposed approach aims to alleviate the negative effects of vibration caused by the unbalanced electromagnetic force (UMEF) that arises from road excitations. The analytical model of SRMs is first formulated using Fourier series, and then a model of the coupled longitudinal-vertical dynamics is developed taking into consideration the external excitations consisting of the aerodynamic drag force and road unevenness. In addition, numerical simulations for a conventional SRM-suspension system and two novel DVASs are carried out for varying road levels specified by ISO standards and vehicle velocities. The results of the comparison reveal that a 35% improvement in ride comfort, 30% improvement of road handling, and 68% improvement in air gap between rotor and stator can be achieved by adopting the novel DVAS compared to the conventional SRM-suspension system. Finally, multi-body simulation (MBS) is performed using LMS Motion to validate the feasibility of the proposed DVAS. Analysis of the results shows that the proposed method can augment the effective application of SRMs in EVs.

  2. Influence of Different Rotor Teeth Shapes on the Performance of Flux Switching Permanent Magnet Machines Used for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2014-12-01

    Full Text Available This paper investigated a 12-slot/11-pole flux switching permanent magnet (FSPM machine used for electric vehicles (EVs. Five novel rotor teeth shapes are proposed and researched to reduce the cogging torque and torque ripple of the FSPM machine. These rotor teeth shapes are notched teeth, stepped teeth, eccentric teeth, combination of notched and stepped teeth, and combination of notched and eccentric teeth. They are applied on the rotor and optimized, respectively. The influences of different rotor teeth shapes on cogging torque, torque ripple and electromagnetic torque are analyzed by the 2-D finite-element method (FEM. Then, the performance of FSPMs with different rotor teeth shapes are compared and evaluated comprehensively from the points of view of cogging torque, torque ripple, electromagnetic torque, flux linkage, back electromotive force (EMF, and so on. The results show that the presented rotor teeth shapes, especially the combination of stepped and notched teeth, can greatly reduce the cogging torque and torque ripple with only slight changes in the average electromagnetic torque.

  3. Electrical switching phenomenon and memory effect in the semiconductor chalcogenide glass Ge0.10 As0.20 Te0.70

    International Nuclear Information System (INIS)

    Haro, M.; Marquez, E.; Villares, P.; Jimenez-Garay, R.

    1987-01-01

    Electrical switching phenomenon, as well as the memory effect in the semiconductor chalcogenide glass Ge 0.10 As 0.20 Te 0.70 has been studied. A device with a plano-punctual interelectrode configuration has been designed and built, so that the electrical stimuli may be applied correctly. This device permits adequate positioning of the upper electrode, as well as contact pressure regulation. The I-V characteristics in the OFF-state have been obtained, showing a marked non-linear character. Equally, a relation has been found between the threshold voltage and electrical resistance parameters, indicating that the electrical power giving rise to the phenomenon is constant. Finally, memory effects showing a sudden reduction in electrical resistance, as well as interelectrode filaments, have been observed. (author)

  4. SIMULTANEOUS SPACE VECTOR MODULATION DIRECT TORQUE CONTROL OF TWO INDUCTION MOTORS USED IN ELECTRIC VEHICLES BY A NINE-SWITCH INVERTER

    Directory of Open Access Journals (Sweden)

    A. R. SHAMLOU

    2017-12-01

    Full Text Available In this paper, a novel two output nine switch-inverter is proposed in order to increase the synchronization speed of induction motors used in electric vehicles (EVs while improving the efficiency and controllability of the system. The number of switches in the proposed inverter is reduced by 25% compared to double six-switch inverters which conventionally used in EVs. The main characteristics of the considered inverter can be noted as follows: sinusoidal input and outputs, unity output power factor, and specifically, low construction cost due to active switch number reduction. The classical direct torque control method causes torque ripple and speed fluctuations. Therefore, in order to increase accuracy and dynamics of drive system, the SVM-DTC method is proposed, leading to less torque ripple and constant switching frequency. The obtained torque ripple is 2% which is less than the existing structures In order to illustrate advantages of the proposed approach, performance of the EVs in the standard cycles is evaluated.

  5. Investigation of a Co-Axial Dual-Mechanical Ports Flux-Switching Permanent Magnet Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Wei Hua

    2015-12-01

    Full Text Available In this paper, a co-axial dual-mechanical ports flux-switching permanent magnet (CADMP-FSPM machine for hybrid electric vehicles (HEVs is proposed and investigated, which is comprised of two conventional co-axial FSPM machines, namely one high-speed inner rotor machine and one low-speed outer rotor machine and a non-magnetic ring sandwiched in between. Firstly, the topology and operation principle of the CADMP-FSPM machine are introduced; secondly, the control system of the proposed electronically-controlled continuously-variable transmission (E-CVT system is given; thirdly, the key design specifications of the CADMP-FSPM machine are determined based on a conventional dual-mechanical ports (DMP machine with a wound inner rotor. Fourthly, the performances of the CADMP-FSPM machine and the normal DMP machine under the same overall volume are compared, and the results indicate that the CADMP-FSPM machine has advantages over the conventional DMP machine in the elimination of brushes and slip rings, improved thermal dissipation conditions for the inner rotor, direct-driven operation, more flexible modes, lower cogging torque and torque ripple, lower total harmonic distortion (THD values of phase PM flux linkage and phase electro-motive force (EMF, higher torque output capability and is suitable for the E-CVT systems. Finally, the pros and cons of the CADMP-FSPM machine are highlighted. This paper lays a theoretical foundation for further research on CADMP-FSPM machines used for HEVs.

  6. Electromechanical magnetization switching

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Eugene M. [Department of Physics and Astronomy, Lehman College and Graduate School, The City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Jaafar, Reem [Department of Mathematics, Engineering and Computer Science, LaGuardia Community College, The City University of New York, 31-10 Thomson Avenue, Long Island City, New York 11101 (United States)

    2015-03-14

    We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained.

  7. Electromechanical magnetization switching

    International Nuclear Information System (INIS)

    Chudnovsky, Eugene M.; Jaafar, Reem

    2015-01-01

    We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained

  8. The influence of electrical resistivity, magnetic field strength, boundary conditions, and injection conditions on the behavior of the magnetically injected plasma in the PBFA-II opening switch

    International Nuclear Information System (INIS)

    Watrous, J.J.; Frese, M.H.

    1993-01-01

    The Plasma Opening Switch used on PBFA-II uses a source plasma which is injected into the inter-electrode gap along the field lines of a modest-strength applied poloidal magnetic field. The distribution of this plasma within the gap plays an important role in the behavior of the switch. Knowledge of this distribution is critical for performing relevant switch calculations and for interpreting experimental data. In the work reported here, the influence on that distribution of the plasma electrical resistivity, the applied magnetic field strength, and the boundary and injection conditions have been investigated with the 2 1/2-dimensional magnetohydrodynamics simulation code, MACH2. The injected plasma has density in the 10 14 cm -3 range and temperature in the several eV range. In this parameter regime, the classical collision time scale is on the order of 10 ns, which, when compared to the 100 ns time scale of the inflowing plasma, means that the plasma is classically collisionless. However, mechanisms other than classical collisions are likely to contribute to electrical resistivity. The authors have investigated the effect of an anomalous resistivity which scales with the plasma frequency, varying the scaling from the electron plasma frequency to the ion plasma frequency. They will compare these results with results based on the assumption of an ideal plasma, and discuss other anomalous resistivity models

  9. Battery switch for downhole tools

    Science.gov (United States)

    Boling, Brian E.

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  10. Effects of doping concentration ratio on electrical characterization in pseudomorphic HEMT-based MMIC switches for ICT system

    Science.gov (United States)

    Mun, Jae-Kyoung; Oh, Jung-Hun; Sung, Ho-Kun; Wang, Cong

    2015-12-01

    The effects of the doping concentration ratios between upper and lower silicon planar-doping layers on the DC and RF characteristics of the double planar doped pseudomorphic high electron mobility transistors (pHEMTs) are investigated. From the device simulation, an increase of maximum extrinsic transconductance and a decrease of total on- and off-state capacitances are observed, as well as an increase of the upper to lower planar-doping concentration ratios (UTLPDR), which give rise to an enhancement of the switching speed and isolation characteristics. On the basis of simulation results, two types of pHEMTs are fabricated with two different UTLPDRs of 4:1 and 1:2. After applying these two types' pHEMTs, single-pole-double-throw (SPDT) transmitter/receiver monolithic microwave integrated circuit (MMIC) switches are also designed and fabricated. The SPDT MMIC switch with a 4:1 UTLPDR shows an insertion loss of 0.58 dB, isolation of 40.2 dB, and switching speed of 100 ns, respectively, which correspondingly indicate a 0.23 dB lower insertion loss, 2.90 dB higher isolation and 2.5 times faster switching speed than those of 1:2 UTLPDR at frequency range of 2-6 GHz. From the simulation results and comparative studies, we propose that the UTLPDR must be greater than 4:1 for the best switching performance. With the abovementioned excellent performances, the proposed switch would be quite promising in the application of information and communications technology system.

  11. Heavy metal multilayers for switching of magnetic unit via electrical current without magnetic field, method and applications

    Science.gov (United States)

    Ma, Qinli; Li, Yufan; Chien, Chia-ling

    2018-02-20

    Provided is an electric-current-controllable magnetic unit, including: a substrate, an electric-current channel disposed on the substrate, the electric-current channel including a composite heavy-metal multilayer comprising at least one heavy-metal; a capping layer disposed over the electric-current channel; and at least one ferromagnetic layer disposed between the electric-current channel and the capping layer.

  12. CRADA Final Report for CRADA Number ORNL98-0521 : Development of an Electric Bus Inverter Based on ORNL Auxiliary Resonant Tank (ART) Soft-Switching Technology; TOPICAL

    International Nuclear Information System (INIS)

    Ayers, C.W.

    2001-01-01

    The Power Electronics and Electric Machinery Research Center (PEEMRC) of Oak Ridge National Laboratory (ORNL) has for many years been developing technologies for power converters for motor drives and many other applications. Some of the research goals are to improve efficiency and reduce audible and electromagnetic interference noise generation for inverters and the driven loads. The converters are being required to produce more power with reduced weight and volume, which requires improvements in heat removal from the electronics, as well as improved circuit designs that have fewer electrical losses. PEEMRC has recently developed and patented a soft-switching inverter topology called an Auxiliary Resonant Tank (ART), and this design has been tested and proven at ORNL using a 10-kW laboratory prototype. The objective of this project was to develop, test, and install the ART inverter technology in an electric transit bus with the final goal of evaluating performance of the ORNL inverter under field conditions in a vehicle. A scaled-up inverter with the capacity to drive a 22-e bus was built based on the 10-kW ORNL laboratory prototype ART soft-switching inverter. Most (if not all) commercially available inverters for traction drive and other applications use hard-switching inverters. A Cooperative Research and Development Agreement was established with the Chattanooga Area Regional Transit Authority (CARTA), the Electric Transit Vehicle Institute (ETVI), and Advanced Vehicle Systems (AVS), all of Chattanooga, along with ORNL. CARTA, which maintains and operates the public transit system in Chattanooga, provided an area for testing the vehicle alongside other similar vehicles in the normal operating environment. ETVI offers capabilities in standardized testing and reporting and also provides exposure in the electric transit vehicle arena for ORNL's technologies. The third Chattanooga partner, (AVS) manufactures all-electric and hybrid electric transit buses using

  13. The nanocoherer: an electrically and mechanically resettable resistive switching device based on gold clusters assembled on paper

    Science.gov (United States)

    Minnai, Chloé; Mirigliano, Matteo; Brown, Simon A.; Milani, Paolo

    2018-03-01

    We report the realization of a resettable resistive switching device based on a nanostructured film fabricated by supersonic cluster beam deposition of gold clusters on plain paper substrates. Through the application of suitable voltage ramps, we obtain, in the same device, either a complex pattern of resistive switchings, or reproducible and stable switchings between low resistance and high resistance states, with an amplitude up to five orders of magnitude. Our device retains a state of internal resistance following the history of the applied voltage similar to that reported for memristors. The two different switching regimes in the same device are both stable, the transition between them is reversible, and it can be controlled by applying voltage ramps or by mechanical deformation of the substrate. The device behavior can be related to the formation, growth and breaking of junctions between the loosely aggregated gold clusters forming the nanostructured films. The fact that our cluster-assembled device is mechanically resettable suggests that it can be considered as the analog of the coherer: a switching device based on metallic powders used for the first radio communication system.

  14. ELECTRIC MOTOR DIAGNOSTICS OF SWITCHES BASED ON THE NEURAL NETWORK DATA MODELING THE SPECTRAL DECOMPOSITION OF THE CURRENTS

    Directory of Open Access Journals (Sweden)

    O. M. Shvets

    2009-07-01

    Full Text Available The method of automated diagnostics of electric motors is offered. It uses a neural network revealing the electric motor faults on the basis of analysis of frequency spectrum of current flowing through the motor.

  15. The influence of the switch from fossil fuels to solar and wind energy on the electricity prices in Germany

    NARCIS (Netherlands)

    A.B. Dorsman (Andre); A. Khoshrou (Abdolrahman); E.J. Pauwels (Eric)

    2016-01-01

    textabstractGermany is actively pursuing a switch from fossil fuel to renewables, the so-called Energiewende (energy transition). Due to the fact that the supply of wind and solar energy is less predictable than the supply of fossil fuel, stabilizing the grid has become more challenging. On sunny

  16. Switching Device Dead Time Optimization of Resonant Double-Sided LCC Wireless Charging System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2017-11-01

    Full Text Available Aiming at the reduction of the influence of the dead time setting on power level and efficiency of the inverter of double-sided LCC resonant wireless power transfer (WPT system, a dead time soft switching optimization method for metal–oxide–semiconductor field-effect transistor (MOSFET is proposed. At first, the mathematic description of double-sided LCC resonant wireless charging system is established, and the operating mode is analyzed as well, deducing the quantitative characteristic that the secondary side compensation capacitor C2 can be adjusted to ensure that the circuit is inductive. A dead time optimization design method is proposed, contributing to achieving zero-voltage switching (ZVS of the inverter, which is closely related to the performance of the WPT system. In the end, a prototype is built. The experimental results verify that dead time calculated by this optimized method can ensure the soft switching of the inverter MOSFET and promote the power and efficiency of the WPT.

  17. Electric Substations

    Data.gov (United States)

    Department of Homeland Security — Substations. Substations are facilities and equipment that switch, transform, or regulate electric voltage. The Substations feature class includes taps, a location...

  18. Development and application of an empirical formula for the high temperature behavior of ferroelectric ceramics switched by electric field at room temperature

    Directory of Open Access Journals (Sweden)

    Dae Won Ji

    2017-05-01

    Full Text Available The strain changes during temperature rise of a poled lead titanate zirconate rectangular parallelepiped switched by electric field at room temperature are obtained by integrating thermal expansion coefficients that are measured using an invar-specimen. By estimating and analyzing pyroelectric and thermal expansion coefficients, first-order differential equations are constructed for polarization and strain changes during temperature increase. The solutions to the differential equations are found and used to calculate the high temperature behavior of the materials. It is shown that the predictions are well compared with measured responses. Finally, the developed formulae are applied to calculate strain butterfly loops from a polarization hysteresis loop at a high temperature.

  19. Avalanche photoconductive switching

    Science.gov (United States)

    Pocha, M. D.; Druce, R. L.; Wilson, M. J.; Hofer, W. W.

    This paper describes work being done at Lawrence Livermore National Laboratory on the avalanche mode of operation of laser triggered photoconductive switches. We have been able to generate pulses with amplitudes of 2 kV to 35 kV and rise times of 300 to 500 ps, and with a switching gain (energy of output electrical pulse vs energy of trigger optical pulse) of 10(exp 3) to over 10(exp 5). Switches with two very different physical configurations and with two different illumination wavelengths (1.06 micrometer, 890 nm) exhibit very similar behavior. The avalanche switching behavior, therefore, appears to be related to the material parameters rather than the optical wavelength or switch geometry. Considerable further work needs to be done to fully characterize and understand this mode of operation.

  20. Avalanche photoconductive switching

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M.D.; Druce, R.L.; Wilson, M.J.; Hofer, W.W.

    1989-01-01

    This paper describes work being done at Lawrence Livermore National Laboratory on the avalanche mode of operation of laser triggered photoconductive switches. We have been able to generate pulses with amplitudes of 2 kV--35 kV and rise times of 300--500 ps, and with a switching gain (energy of output electrical pulse vs energy of trigger optical pulse) of 10{sup 3} to over 10{sup 5}. Switches with two very different physical configurations and with two different illumination wavelengths (1.06 {mu}m, 890 nm) exhibit very similar behavior. The avalanche switching behavior, therefore, appears to be related to the material parameters rather than the optical wavelength or switch geometry. Considerable further work needs to be done to fully characterize and understand this mode of operation. 3 refs., 6 figs.

  1. Electric-field control of tri-state phase transformation with a selective dual-ion switch

    Science.gov (United States)

    Lu, Nianpeng; Zhang, Pengfei; Zhang, Qinghua; Qiao, Ruimin; He, Qing; Li, Hao-Bo; Wang, Yujia; Guo, Jingwen; Zhang, Ding; Duan, Zheng; Li, Zhuolu; Wang, Meng; Yang, Shuzhen; Yan, Mingzhe; Arenholz, Elke; Zhou, Shuyun; Yang, Wanli; Gu, Lin; Nan, Ce-Wen; Wu, Jian; Tokura, Yoshinori; Yu, Pu

    2017-06-01

    Materials can be transformed from one crystalline phase to another by using an electric field to control ion transfer, in a process that can be harnessed in applications such as batteries, smart windows and fuel cells. Increasing the number of transferrable ion species and of accessible crystalline phases could in principle greatly enrich material functionality. However, studies have so far focused mainly on the evolution and control of single ionic species (for example, oxygen, hydrogen or lithium ions). Here we describe the reversible and non-volatile electric-field control of dual-ion (oxygen and hydrogen) phase transformations, with associated electrochromic and magnetoelectric effects. We show that controlling the insertion and extraction of oxygen and hydrogen ions independently of each other can direct reversible phase transformations among three different material phases: the perovskite SrCoO3-δ (ref. 12), the brownmillerite SrCoO2.5 (ref. 13), and a hitherto-unexplored phase, HSrCoO2.5. By analysing the distinct optical absorption properties of these phases, we demonstrate selective manipulation of spectral transparency in the visible-light and infrared regions, revealing a dual-band electrochromic effect that could see application in smart windows. Moreover, the starkly different magnetic and electric properties of the three phases—HSrCoO2.5 is a weakly ferromagnetic insulator, SrCoO3-δ is a ferromagnetic metal, and SrCoO2.5 is an antiferromagnetic insulator—enable an unusual form of magnetoelectric coupling, allowing electric-field control of three different magnetic ground states. These findings open up opportunities for the electric-field control of multistate phase transformations with rich functionalities.

  2. MATHEMATIC SIMULATION OF TRANSIENT PROCESS IN A.C. – SYSTEM “ELECTRIC TRACTION NETWORK – LOCOMOTIVE” 1. SWITCH ON LOCOMOTIVE’S POWER CONVERTER IN “FREE PLAY” MODE; PARAMETERS ESTIMATION

    Directory of Open Access Journals (Sweden)

    T. M. Mishchenko

    2010-11-01

    Full Text Available In the article the electric circuit of substitution and mathematical model of the system of alternating current «traction substation − traction mains − electric locomotive DS 3» at switching its power transformer on in the idle mode are presented. Numerical determinations of parameters of traction substation, rails, contact network and transformer are executed; in so doing a special attention is paid to the estimation of dispersion inductance for the primary winding of transformer.

  3. MATHEMATIC SIMULATION OF TRANSIENT PROCESS IN A.C. – SYSTEM “ELECTRIC TRACTION NETWORK – LOCOMOTIVE” 1. SWITCH ON LOCOMOTIVE’S POWER CONVERTER IN “FREE PLAY” MODE; PARAMETERS ESTIMATION

    OpenAIRE

    T. M. Mishchenko; A. I. Kiiko

    2010-01-01

    In the article the electric circuit of substitution and mathematical model of the system of alternating current «traction substation − traction mains − electric locomotive DS 3» at switching its power transformer on in the idle mode are presented. Numerical determinations of parameters of traction substation, rails, contact network and transformer are executed; in so doing a special attention is paid to the estimation of dispersion inductance for the primary winding of transformer.

  4. Scenarios for Deep Carbon Emission Reductions from Electricity by 2050 in Western North America using the Switch Electric Power Sector Planning Model: California's Carbon Challenge Phase II, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, James; Mileva, Ana; Johnston, Josiah; Kammen, Daniel; Wei, Max; Greenblatt, Jeffrey

    2014-01-01

    This study used a state-of-the-art planning model called SWITCH for the electric power system to investigate the evolution of the power systems of California and western North America from present-day to 2050 in the context of deep decarbonization of the economy. Researchers concluded that drastic power system carbon emission reductions were feasible by 2050 under a wide range of possible futures. The average cost of power in 2050 would range between $149 to $232 per megawatt hour across scenarios, a 21 to 88 percent increase relative to a business-as-usual scenario, and a 38 to 115 percent increase relative to the present-day cost of power. The power system would need to undergo sweeping change to rapidly decarbonize. Between present-day and 2030 the evolution of the Western Electricity Coordinating Council power system was dominated by implementing aggressive energy efficiency measures, installing renewable energy and gas-fired generation facilities and retiring coal-fired generation. Deploying wind, solar and geothermal power in the 2040 timeframe reduced power system emissions by displacing gas-fired generation. This trend continued for wind and solar in the 2050 timeframe but was accompanied by large amounts of new storage and long-distance high-voltage transmission capacity. Electricity storage was used primarily to move solar energy from the daytime into the night to charge electric vehicles and meet demand from electrified heating. Transmission capacity over the California border increased by 40 - 220 percent by 2050, implying that transmission siting, permitting, and regional cooperation will become increasingly important. California remained a net electricity importer in all scenarios investigated. Wind and solar power were key elements in power system decarbonization in 2050 if no new nuclear capacity was built. The amount of installed gas capacity remained relatively constant between present-day and 2050, although carbon capture and sequestration was

  5. All printed transparent electrodes through an electrical switching mechanism: A convincing alternative to indium-tin-oxide, silver and vacuum

    DEFF Research Database (Denmark)

    Larsen-Olsen, Thue Trofod; Søndergaard, Roar; Norrman, Kion

    2012-01-01

    Here we show polymer solar cells manufactured using only printing and coating of abundant materials directly on flexible plastic substrates or barrier foil using only roll-to-roll methods. Central to the development is a particular roll-to-roll compatible post-processing step that converts...... the pristine and non-functional multilayer-coated stack into a functional solar cell through formation of a charge selective interface, in situ, following a short electrical pulse with a high current density. After the fast post-processing step the device stack becomes active and all devices are functional...

  6. Know-How on design of switching regulator

    International Nuclear Information System (INIS)

    1985-08-01

    This book introduces switching regulator from base to application, which deals with fundamentals of switching regulator such as the reason of boom about switching regulator, understanding simple circuit without electric transformer and decision of circuit type with input voltage and output voltage, configuration and characteristic of switching regulator, a concrete design of switching regulator, pulse width control circuit and protection circuit, concrete circuit examples of switching power and the point of switching regulator.

  7. Exciter switch

    Science.gov (United States)

    Mcpeak, W. L.

    1975-01-01

    A new exciter switch assembly has been installed at the three DSN 64-m deep space stations. This assembly provides for switching Block III and Block IV exciters to either the high-power or 20-kW transmitters in either dual-carrier or single-carrier mode. In the dual-carrier mode, it provides for balancing the two drive signals from a single control panel located in the transmitter local control and remote control consoles. In addition to the improved switching capabilities, extensive monitoring of both the exciter switch assembly and Transmitter Subsystem is provided by the exciter switch monitor and display assemblies.

  8. The loyalty of industrial clients of gas and electricity: the value rol and switching barriers; La fidelizacion de clientes industriales de gas natural y electricidad: El papel del valor recibido y las barreras al cambio

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Acebron, C.; Vazquez Castelles, R.; Iglesias Arguelles, V.

    2007-07-01

    This paper deals with perceived value and loyalty in a B2 B environment taking account switching barriers. The Spanish energy market has been newly liberalized and many companies offer supply services of natural gas and electricity. The research examines the casual relations between perceived value and two dimensions of loyalty: repurchase intentions and price tolerance. Although our results indicate that suppliers achieve better repurchase intentions by providing value to their customers, they also show that this is insufficient when the aim is to increase customer price tolerance. In this case another moderating variable must be included: the switching barriers. (Author)

  9. All-metallic electrically gated 2H-TaSe2 thin-film switches and logic circuits

    International Nuclear Information System (INIS)

    Renteria, J.; Jiang, C.; Yan, Z.; Samnakay, R.; Goli, P.; Pope, T. R.; Salguero, T. T.; Wickramaratne, D.; Lake, R. K.; Khitun, A. G.; Balandin, A. A.

    2014-01-01

    We report the fabrication and performance of all-metallic three-terminal devices with tantalum diselenide thin-film conducting channels. For this proof-of-concept demonstration, the layers of 2H-TaSe 2 were exfoliated mechanically from single crystals grown by the chemical vapor transport method. Devices with nanometer-scale thicknesses exhibit strongly non-linear current-voltage characteristics, unusual optical response, and electrical gating at room temperature. We have found that the drain-source current in thin-film 2H-TaSe 2 –Ti/Au devices reproducibly shows an abrupt transition from a highly resistive to a conductive state, with the threshold tunable via the gate voltage. Such current-voltage characteristics can be used, in principle, for implementing radiation-hard all-metallic logic circuits. These results may open new application space for thin films of van der Waals materials

  10. All-metallic electrically gated 2H-TaSe2 thin-film switches and logic circuits

    Science.gov (United States)

    Renteria, J.; Samnakay, R.; Jiang, C.; Pope, T. R.; Goli, P.; Yan, Z.; Wickramaratne, D.; Salguero, T. T.; Khitun, A. G.; Lake, R. K.; Balandin, A. A.

    2014-01-01

    We report the fabrication and performance of all-metallic three-terminal devices with tantalum diselenide thin-film conducting channels. For this proof-of-concept demonstration, the layers of 2H-TaSe2 were exfoliated mechanically from single crystals grown by the chemical vapor transport method. Devices with nanometer-scale thicknesses exhibit strongly non-linear current-voltage characteristics, unusual optical response, and electrical gating at room temperature. We have found that the drain-source current in thin-film 2H-TaSe2-Ti/Au devices reproducibly shows an abrupt transition from a highly resistive to a conductive state, with the threshold tunable via the gate voltage. Such current-voltage characteristics can be used, in principle, for implementing radiation-hard all-metallic logic circuits. These results may open new application space for thin films of van der Waals materials.

  11. All-metallic electrically gated 2H-TaSe{sub 2} thin-film switches and logic circuits

    Energy Technology Data Exchange (ETDEWEB)

    Renteria, J.; Jiang, C.; Yan, Z. [Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Samnakay, R.; Goli, P. [Materials Science and Engineering Program, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Pope, T. R.; Salguero, T. T. [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States); Wickramaratne, D.; Lake, R. K. [Laboratory for Terascale and Terahertz Electronics, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Khitun, A. G. [Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Materials Science and Engineering Program, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Balandin, A. A., E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory, Department of Electrical Engineering, Bourns College of Engineering, University of California–Riverside, Riverside, California 92521 (United States); Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States)

    2014-01-21

    We report the fabrication and performance of all-metallic three-terminal devices with tantalum diselenide thin-film conducting channels. For this proof-of-concept demonstration, the layers of 2H-TaSe{sub 2} were exfoliated mechanically from single crystals grown by the chemical vapor transport method. Devices with nanometer-scale thicknesses exhibit strongly non-linear current-voltage characteristics, unusual optical response, and electrical gating at room temperature. We have found that the drain-source current in thin-film 2H-TaSe{sub 2}–Ti/Au devices reproducibly shows an abrupt transition from a highly resistive to a conductive state, with the threshold tunable via the gate voltage. Such current-voltage characteristics can be used, in principle, for implementing radiation-hard all-metallic logic circuits. These results may open new application space for thin films of van der Waals materials.

  12. Magnetocrystalline anisotropy and its electric-field-assisted switching of Heusler-compound-based perpendicular magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Bai, Zhaoqiang; Wu, Qingyun; Zeng, Minggang; Feng, Yuan Ping; Shen, Lei; Cai, Yongqing; Han, Guchang

    2014-01-01

    Employing density functional theory combined with the non-equilibrium Green's function formalism, we systematically investigate the structural, magnetic and magnetoelectric properties of the Co 2 FeAl(CFA)/MgO interface, as well as the spin-dependent transport characteristics of the CFA/MgO/CFA perpendicular magnetic tunnel junctions (p-MTJs). We find that the structure of the CFA/MgO interface with the oxygen-top FeAl termination has high thermal stability, which is protected by the thermodynamic equilibrium limit. Furthermore, this structure is found to have perpendicular magnetocrystalline anisotropy (MCA). Giant electric-field-assisted modifications of this interfacial MCA through magnetoelectric coupling are demonstrated with an MCA coefficient of up to 10 −7 erg V −1 cm. In addition, our non-collinear spin transport calculations of the CFA/MgO/CFA p-MTJ predict a good magnetoresistance performance of the device. (paper)

  13. Application of multi-model control with fuzzy switching to a micro hydro-electrical power plant

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, Issam; Doubabi, Said [Laboratory of Electric Systems and Telecommunications (LEST), Faculty of Sciences and Technologies of Marrakesh, Cadi Ayyad University, BP 549, Av Abdelkarim Elkhattabi, Gueliz, Marrakesh (Morocco); Essounbouli, Najib; Hamzaoui, Abdelaziz [CReSTIC, Reims University, 9, rue de Quebec B.P. 396, F-10026 Troyes cedex (France)

    2010-09-15

    Modelling hydraulic turbine generating systems is not an easy task because they are non-linear and uncertain where the operating points are time varying. One way to overcome this problem is to use Takagi-Sugeno (TS) models, which offer the possibility to apply some tools from linear control theory, whereas those models are composed of linear models connected by a fuzzy activation function. This paper presents an approach to model and control a micro hydro power plant considered as a non-linear system using TS fuzzy systems. A TS fuzzy system with local models is used to obtain a global model of the studied plant. Then, to combine efficiency and simplicity of design, PI controllers are synthesised for each considered operating point to be used as conclusion of an electrical load TS Fuzzy controller. The latter ensures the global stability and desired performance despite the change of operating point. The proposed approach (model and controller) is tested on a laboratory prototype, where the obtained results show their efficiency and their capability to ensure good performance despite the non-linear nature of the plant. (author)

  14. ''Positive'' and ''negative'' electric-pulse-induced reversible resistance switching effect in Pr0.7Ca0.3MnO3 films

    International Nuclear Information System (INIS)

    Wang, Q.; Chen, L.D.; Li, X.M.; Shang, D.S.; Wu, Z.H.

    2007-01-01

    ''Negative'' electric-pulse-induced reversible resistance (EPIR) switching phenomenon was found in In/PCMO/Pt sandwich, in which the high resistance can be written with positive voltage pulses, and the low resistance can be reset using negative voltage pulses (the positive voltage direction is defined as going from the top electrode to the bottom electrode). This is just the opposite from the ''positive'' EPIR effect in Ag/PCMO/Pt sandwich, in which the high resistance can be written only with negative voltage pulses, and the low resistance can be reset using positive voltage pulses. The I-V hysteresis curves of In/PCMO/Pt and Ag/PCMO/Pt sandwiches also show opposite directions, i.e., counterclockwise and clockwise under a negative voltage region for indium and Ag electrode systems, respectively. C-V characteristics show that the barrier does not exist in Ag/PCMO/Pt sandwich, while In/PCMO/Pt sandwich exhibits an obvious Schottky-like barrier. We suggest that in the negative EPIR behavior in In/PCMO/Pt structure, the resistance states are mainly controlled changing the Schottky-like barrier at the interface with the weak effect of carrier trapping process, while the positive EPIR behavior in Ag/PCMO/Pt sandwich mainly depends on the carrier trapping process at the interface. (orig.)

  15. Recent developments in switching theory

    CERN Document Server

    Mukhopadhyay, Amar

    2013-01-01

    Electrical Science Series: Recent Developments in Switching Theory covers the progress in the study of the switching theory. The book discusses the simplified proof of Post's theorem on completeness of logic primitives; the role of feedback in combinational switching circuits; and the systematic procedure for the design of Lupanov decoding networks. The text also describes the classical results on counting theorems and their application to the classification of switching functions under different notions of equivalence, including linear and affine equivalences. The development of abstract har

  16. Pseudospark switches

    International Nuclear Information System (INIS)

    Billault, P.; Riege, H.; Gulik, M. van; Boggasch, E.; Frank, K.

    1987-01-01

    The pseudospark discharge is bound to a geometrical structure which is particularly well suited for switching high currents and voltages at high power levels. This type of discharge offers the potential for improvement in essentially all areas of switching operation: peak current and current density, current rise, stand-off voltage, reverse current capability, cathode life, and forward drop. The first pseudospark switch was built at CERN at 1981. Since then, the basic switching characteristics of pseudospark chambers have been studied in detail. The main feature of a pseudospark switch is the confinement of the discharge plasma to the device axis. The current transition to the hollow electrodes is spread over a rather large surface area. Another essential feature is the easy and precise triggering of the pseudospark switch from the interior of the hollow electrodes, relatively far from the main discharge gap. Nanosecond delay and jitter values can be achieved with trigger energies of less than 0.1 mJ, although cathode heating is not required. Pseudospark gaps may cover a wide range of high-voltage, high-current, and high-pulse-power switching at repetition rates of many kilohertz. This report reviews the basic researh on pseudospark switches which has been going on at CERN. So far, applications have been developed in the range of thyratron-like medium-power switches at typically 20 to 40 kV and 0.5 to 10 kA. High-current pseudospark switches have been built for a high-power 20 kJ pulse generator which is being used for long-term tests of plasma lenses developed for the future CERN Antiproton Collector (ACOL). The high-current switches have operated for several hundred thousand shots, with 20 to 50 ns jitter at 16 kV charging voltage and more than 100 kA peak current amplitude. (orig.)

  17. Impact of electrically formed interfacial layer and improved memory characteristics of IrOx/high-κx/W structures containing AlOx, GdOx, HfOx, and TaOx switching materials.

    Science.gov (United States)

    Prakash, Amit; Maikap, Siddheswar; Banerjee, Writam; Jana, Debanjan; Lai, Chao-Sung

    2013-09-06

    Improved switching characteristics were obtained from high-κ oxides AlOx, GdOx, HfOx, and TaOx in IrOx/high-κx/W structures because of a layer that formed at the IrOx/high-κx interface under external positive bias. The surface roughness and morphology of the bottom electrode in these devices were observed by atomic force microscopy. Device size was investigated using high-resolution transmission electron microscopy. More than 100 repeatable consecutive switching cycles were observed for positive-formatted memory devices compared with that of the negative-formatted devices (only five unstable cycles) because it contained an electrically formed interfacial layer that controlled 'SET/RESET' current overshoot. This phenomenon was independent of the switching material in the device. The electrically formed oxygen-rich interfacial layer at the IrOx/high-κx interface improved switching in both via-hole and cross-point structures. The switching mechanism was attributed to filamentary conduction and oxygen ion migration. Using the positive-formatted design approach, cross-point memory in an IrOx/AlOx/W structure was fabricated. This cross-point memory exhibited forming-free, uniform switching for >1,000 consecutive dc cycles with a small voltage/current operation of ±2 V/200 μA and high yield of >95% switchable with a large resistance ratio of >100. These properties make this cross-point memory particularly promising for high-density applications. Furthermore, this memory device also showed multilevel capability with a switching current as low as 10 μA and a RESET current of 137 μA, good pulse read endurance of each level (>105 cycles), and data retention of >104 s at a low current compliance of 50 μA at 85°C. Our improvement of the switching characteristics of this resistive memory device will aid in the design of memory stacks for practical applications.

  18. A level switch with a sound tube

    OpenAIRE

    赤池, 誠規

    2017-01-01

    Level switches are sensor with an electrical contact output at a specific liquid, powder or bulk level. Most of traditional level switches are not suitable for harsh environments. The level switch in this study connects a loudspeaker on top end of the sound tube. When liquid, powder or bulk closes bottom end of the sound tube, the level switch turns on. The level switch is suitable for harsh environments and easy to install. The aim of this study is to propose a level switch with a sound tube...

  19. Can switching fuels save water? A life cycle quantification of freshwater consumption for Texas coal- and natural gas-fired electricity

    International Nuclear Information System (INIS)

    Grubert, Emily A; Beach, Fred C; Webber, Michael E

    2012-01-01

    Thermal electricity generation is a major consumer of freshwater for cooling, fuel extraction and air emissions controls, but the life cycle water impacts of different fossil fuel cycles are not well understood. Much of the existing literature relies on decades-old estimates for water intensity, particularly regarding water consumed for fuel extraction. This work uses contemporary data from specific resource basins and power plants in Texas to evaluate water intensity at three major stages of coal and natural gas fuel cycles: fuel extraction, power plant cooling and power plant emissions controls. In particular, the water intensity of fuel extraction is quantified for Texas lignite, conventional natural gas and 11 unconventional natural gas basins in Texas, including major second-order impacts associated with multi-stage hydraulic fracturing. Despite the rise of this water-intensive natural gas extraction method, natural gas extraction appears to consume less freshwater than coal per unit of energy extracted in Texas because of the high water intensity of Texas lignite extraction. This work uses new resource basin and power plant level water intensity data to estimate the potential effects of coal to natural gas fuel switching in Texas’ power sector, a shift under consideration due to potential environmental benefits and very low natural gas prices. Replacing Texas’ coal-fired power plants with natural gas combined cycle plants (NGCCs) would reduce annual freshwater consumption in the state by an estimated 53 billion gallons per year, or 60% of Texas coal power’s water footprint, largely due to the higher efficiency of NGCCs. (letter)

  20. Electricity

    CERN Document Server

    Basford, Leslie

    2013-01-01

    Electricity Made Simple covers the fundamental principles underlying every aspect of electricity. The book discusses current; resistance including its measurement, Kirchhoff's laws, and resistors; electroheat, electromagnetics and electrochemistry; and the motor and generator effects of electromagnetic forces. The text also describes alternating current, circuits and inductors, alternating current circuits, and a.c. generators and motors. Other methods of generating electromagnetic forces are also considered. The book is useful for electrical engineering students.

  1. A Piezoelectric Cryogenic Heat Switch

    Science.gov (United States)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  2. Switching Phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Mazza, M. G.; Kumar, P.; Plerou, V.; Preis, T.; Stokely, K.; Xu, L.

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines can suddenly "switch" from one behavior to another, even though they possess no perfect metronome in time. As if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many temporal patterns in physics, economics, and medicine and even begin to characterize the switching phenomena that enable a system to pass from one state to another. We discuss some applications of correlated randomness to understanding switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water's anomalies are related to a switching point (which is not unlike the "tipping point" immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not "outliers" (another Gladwell immortalization).

  3. Modernization of the Electric Power Systems (transformers, rods and switches) in the Laguna Verde Nuclear Power Plant (Mexico); Modernizacion de los Sistemas Electricos de Potencia (Transformadores de Principales, Interruptor de Generacion, Barras de Fase Aislada) de la Central Nuclear de Laguna Verde (Mexico)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Solarzano, J. J.; Gabaldon Martin, M. A.; Pallisa Nunez, J.; Florez Ordeonez, A.; Fernandez Corbeira, A.; Prieto Diez, I.

    2010-07-01

    Description of the changes made in the Electric Power Systems as a part of the power increase project in the Laguna Verde Nuclear Power Plant (Mexico). The main electrical changes to make, besides the turbo group, are the main generation transformers, the isolated rods and the generation switch.

  4. Electricity

    International Nuclear Information System (INIS)

    Tombs, F.

    1983-01-01

    The subject is discussed, with particular reference to the electricity industry in the United Kingdom, under the headings; importance and scope of the industry's work; future fuel supplies (estimated indigenous fossil fuels reserves); outlook for UK energy supplies; problems of future generating capacity and fuel mix (energy policy; construction programme; economics and pricing; contribution of nuclear power - thermal and fast reactors; problems of conversion of oil-burning to coal-burning plant). (U.K.)

  5. Optical fiber switch

    Science.gov (United States)

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  6. AN ANALYTICAL STUDY OF SWITCHING TRACTION MOTORS

    Directory of Open Access Journals (Sweden)

    V. M. Bezruchenko

    2010-03-01

    Full Text Available The analytical study of switching of the tractive engines of electric locomotives is conducted. It is found that the obtained curves of change of current of the sections commuted correspond to the theory of average rectilinear switching. By means of the proposed method it is possible on the stage of design of tractive engines to forecast the quality of switching and to correct it timely.

  7. Energy storage, compression, and switching. Vol. 2

    International Nuclear Information System (INIS)

    Nardi, V.; Bostick, W.H.; Sahlin, H.

    1983-01-01

    This book is a compilation of papers presented at the Second International Conference on Energy Storage, Compression, and Switching, which was held in order to assemble active researchers with a major interest in plasma physics, electron beams, electric and magnetic energy storage systems, high voltage and high current switches, free-electron lasers, and pellet implosion plasma focus. Topics covered include: Slow systems: 50-60 Hz machinery, homopolar generators, slow capacitors, inductors, and solid state switches; Intermediate systems: fast capacitor banks; superconducting storage and switching; gas, vacuum, and dielectric switching; nonlinear (magnetic) switching; imploding liners capacitors; explosive generators; and fuses; and Fast systems: Marx, Blumlein, oil, water, and pressurized water dielectrics; switches; magnetic insulation; electron beams; and plasmas

  8. Electrical, Magnetic, Thermal Modeling and Analysis of a 5000A Solid-State Switch Module and Its Application as a DC Circuit Breaker

    OpenAIRE

    Zhou, Xigen

    2005-01-01

    This dissertation presents a systematic design and demonstration of a novel solid-state DC circuit breaker. The mechanical circuit breaker is widely used in power systems to protect industrial equipment during fault or abnormal conditions. Compared with the slow and high-maintenance mechanical circuit breaker, the solid-state circuit breaker is capable of high-speed interruption of high currents without generating an arc, hence it is maintenance-free. Both the switch and the tripping unit ...

  9. Novel RF-MEMS capacitive switching structures

    NARCIS (Netherlands)

    Rottenberg, X.; Jansen, Henricus V.; Fiorini, P.; De Raedt, W.; Tilmans, H.A.C.

    2002-01-01

    This paper reports on novel RF-MEMS capacitive switching devices implementing an electrically floating metal layer covering the dielectric to ensure intimate contact with the bridge in the down state. This results in an optimal switch down capacitance and allows optimisation of the down/up

  10. EDITORIAL: Molecular switches at surfaces Molecular switches at surfaces

    Science.gov (United States)

    Weinelt, Martin; von Oppen, Felix

    2012-10-01

    In nature, molecules exploit interaction with their environment to realize complex functionalities on the nanometer length scale. Physical, chemical and/or biological specificity is frequently achieved by the switching of molecules between microscopically different states. Paradigmatic examples are the energy production in proton pumps of bacteria or the signal conversion in human vision, which rely on switching molecules between different configurations or conformations by external stimuli. The remarkable reproducibility and unparalleled fatigue resistance of these natural processes makes it highly desirable to emulate nature and develop artificial systems with molecular functionalities. A promising avenue towards this goal is to anchor the molecular switches at surfaces, offering new pathways to control their functional properties, to apply electrical contacts, or to integrate switches into larger systems. Anchoring at surfaces allows one to access the full range from individual molecular switches to self-assembled monolayers of well-defined geometry and to customize the coupling between molecules and substrate or between adsorbed molecules. Progress in this field requires both synthesis and preparation of appropriate molecular systems and control over suitable external stimuli, such as light, heat, or electrical currents. To optimize switching and generate function, it is essential to unravel the geometric structure, the electronic properties and the dynamic interactions of the molecular switches on surfaces. This special section, Molecular Switches at Surfaces, collects 17 contributions describing different aspects of this research field. They analyze elementary processes, both in single molecules and in ensembles of molecules, which involve molecular switching and concomitant changes of optical, electronic, or magnetic properties. Two topical reviews summarize the current status, including both challenges and achievements in the field of molecular switches on

  11. Key Drivers of PPPs in Electricity Generation in Developing Countries : Cross-Country Evidence of Switching between PPP Investment in Fossil Fuel and Renewable-Based Generation

    OpenAIRE

    Vagliasindi, Maria

    2012-01-01

    This paper presents new global evidence on the key determinants of public-private partnership investment in electricity generated by fossil fuels and renewable energy based on a panel data analysis for 105 developing countries over a period of 16 years from 1993 to 2008. It aims to identify the key factors affecting private investors' decision to enter electricity generation, through probi...

  12. Electric drives

    CERN Document Server

    Boldea, Ion

    2005-01-01

    ENERGY CONVERSION IN ELECTRIC DRIVESElectric Drives: A DefinitionApplication Range of Electric DrivesEnergy Savings Pay Off RapidlyGlobal Energy Savings Through PEC DrivesMotor/Mechanical Load MatchMotion/Time Profile MatchLoad Dynamics and StabilityMultiquadrant OperationPerformance IndexesProblemsELECTRIC MOTORS FOR DRIVESElectric Drives: A Typical ConfigurationElectric Motors for DrivesDC Brush MotorsConventional AC MotorsPower Electronic Converter Dependent MotorsEnergy Conversion in Electric Motors/GeneratorsPOWER ELECTRONIC CONVERTERS (PECs) FOR DRIVESPower Electronic Switches (PESs)The

  13. EYE CONTROLLED SWITCHING USING CIRCULAR HOUGH TRANSFORM

    OpenAIRE

    Sagar Lakhmani

    2014-01-01

    The paper presents hands free interface between electrical appliances or devices. This technology is intended to replace conventional switching devices for the use of disabled. It is a new way to interact with the electrical or electronic devices that we use in our daily life. The paper illustrates how the movement of eye cornea and blinking can be used for switching the devices. The basic Circle Detection algorithm is used to determine the position of eye. Eye blinking is used...

  14. High voltage switches having one or more floating conductor layers

    Science.gov (United States)

    Werne, Roger W.; Sampayan, Stephen; Harris, John Richardson

    2015-11-24

    This patent document discloses high voltage switches that include one or more electrically floating conductor layers that are isolated from one another in the dielectric medium between the top and bottom switch electrodes. The presence of the one or more electrically floating conductor layers between the top and bottom switch electrodes allow the dielectric medium between the top and bottom switch electrodes to exhibit a higher breakdown voltage than the breakdown voltage when the one or more electrically floating conductor layers are not present between the top and bottom switch electrodes. This increased breakdown voltage in the presence of one or more electrically floating conductor layers in a dielectric medium enables the switch to supply a higher voltage for various high voltage circuits and electric systems.

  15. Streamer model for high voltage water switches

    International Nuclear Information System (INIS)

    Sazama, F.J.; Kenyon, V.L. III

    1979-01-01

    An electrical switch model for high voltage water switches has been developed which predicts streamer-switching effects that correlate well with water-switch data from Casino over the past four years and with switch data from recent Aurora/AMP experiments. Preclosure rounding and postclosure resistive damping of pulseforming line voltage waveforms are explained in terms of spatially-extensive, capacitive-coupling of the conducting streamers as they propagate across the gap and in terms of time-dependent streamer resistance and inductance. The arc resistance of the Casino water switch and of a gas switch under test on Casino was determined by computer fit to be 0.5 +- 0.1 ohms and 0.3 +- 0.06 ohms respectively, during the time of peak current in the power pulse. Energy lost in the water switch during the first pulse is 18% of that stored in the pulseforming line while similar energy lost in the gas switch is 11%. The model is described, computer transient analyses are compared with observed water and gas switch data and the results - switch resistance, inductance and energy loss during the primary power pulse - are presented

  16. Stochastic multistep polarization switching in ferroelectrics

    Science.gov (United States)

    Genenko, Y. A.; Khachaturyan, R.; Schultheiß, J.; Ossipov, A.; Daniels, J. E.; Koruza, J.

    2018-04-01

    Consecutive stochastic 90° polarization switching events, clearly resolved in recent experiments, are described by a nucleation and growth multistep model. It extends the classical Kolmogorov-Avrami-Ishibashi approach and includes possible consecutive 90°- and parallel 180° switching events. The model predicts the results of simultaneous time-resolved macroscopic measurements of polarization and strain, performed on a tetragonal Pb (Zr ,Ti ) O3 ceramic in a wide range of electric fields over a time domain of seven orders of magnitude. It allows the determination of the fractions of individual switching processes, their characteristic switching times, activation fields, and respective Avrami indices.

  17. Electricity of machine tool

    International Nuclear Information System (INIS)

    Gijeon media editorial department

    1977-10-01

    This book is divided into three parts. The first part deals with electricity machine, which can taints from generator to motor, motor a power source of machine tool, electricity machine for machine tool such as switch in main circuit, automatic machine, a knife switch and pushing button, snap switch, protection device, timer, solenoid, and rectifier. The second part handles wiring diagram. This concludes basic electricity circuit of machine tool, electricity wiring diagram in your machine like milling machine, planer and grinding machine. The third part introduces fault diagnosis of machine, which gives the practical solution according to fault diagnosis and the diagnostic method with voltage and resistance measurement by tester.

  18. Vehicle electrical system state controller

    Science.gov (United States)

    Bissontz, Jay E.

    2017-10-17

    A motor vehicle electrical power distribution system includes a plurality of distribution sub-systems, an electrical power storage sub-system and a plurality of switching devices for selective connection of elements of and loads on the power distribution system to the electrical power storage sub-system. A state transition initiator provides inputs to control system operation of switching devices to change the states of the power distribution system. The state transition initiator has a plurality of positions selection of which can initiate a state transition. The state transition initiator can emulate a four position rotary ignition switch. Fail safe power cutoff switches provide high voltage switching device protection.

  19. Electric-pulse-induced resistance switching effect in the bulk of La0.5Ca0.5MnO3 ceramics

    Directory of Open Access Journals (Sweden)

    M. L. Wu

    2014-04-01

    Full Text Available In the majority of contributions, the electrical–pulse-induced resistance (EPIR switching effect of perovskite manganites is thought to originate from the extrinsic interfacial Schottky barrier between the metal electrode and the surface of sample. In this work, La0.5Ca0.5MnO3 (LCMO ceramic samples were synthesized by solid state reaction and the transport properties, especially, the EPIR effect and memristor behavior were investigated under 4-wire method using silver-glue as electrodes. Although the I-V characteristic of LCMO shows an ohmic linearity under the 4-wire mode at room temperature, a stable and remarkable EPIR can still be observed when the pulse voltage is more than a critical value. This bulk EPIR effect is novel for rare - earth doped manganites.

  20. Analytical Modeling and Simulation of Four-Switch Hybrid Power Filter Working with Sixfold Switching Symmetry

    Czech Academy of Sciences Publication Activity Database

    Tlustý, J.; Škramlík, Jiří; Švec, J.; Valouch, Viktor

    2012-01-01

    Roč. 2012, č. 292178 (2012), s. 1-17 ISSN 1024-123X Institutional support: RVO:61388998 Keywords : analytical modeling * four-switch hybrid power filter * sixfold switching symmetry Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.383, year: 2012 http://www.hindawi.com/journals/mpe/2012/292178/

  1. The Recharging Infrastructure Needs for Long Distance Travel by Electric Vehicles: A Comparison of Battery-Switching and Quick-Charging Stations

    DEFF Research Database (Denmark)

    Christensen, Linda; Jensen, Thomas Christian; Kaplan, Sigal

    2017-01-01

    of electric vehicles is beneficial when considering economic costs and benefits for operators and users, tax redistribution, and environmental externalities, even with a relatively modest market share; (ii) the number of required recharging stations for satisfaction of the travel demand is at the magnitude...

  2. MATHEMATIC SIMULATION OF TRANSIENT PROCESS IN A. C – SYSTEM “ELECTRIC – TRACTION – NETWORK – LOCOMOTIVE” 2. SWITCH ON THE MAIN LOCOMOTIVE’S POWER CONVERTER IN “FREE PAY” MODE; DEFINITION AND ANALYSIS CURRENT SURGE OF MAGNETIZATION

    Directory of Open Access Journals (Sweden)

    T. M. Mischenko

    2010-12-01

    Full Text Available The article is a continuation of analysis of mathematical models for AC systems, in which the elements of electric-traction network and switch-on of power transformer in an idling mode are gradually connected. The numerical calculations and analysis of current of transformer magnetization are executed.

  3. Switched on!

    CERN Multimedia

    2008-01-01

    Like a star arriving on stage, impatiently followed by each member of CERN personnel and by millions of eyes around the world, the first beam of protons has circulated in the LHC. After years in the making and months of increasing anticipation, today the work of hundreds of people has borne fruit. WELL DONE to all! Successfully steered around the 27 kilometres of the world’s most powerful particle accelerator at 10:28 this morning, this first beam of protons circulating in the ring marks a key moment in the transition from over two decades of preparation to a new era of scientific discovery. "It’s a fantastic moment," said the LHC project leader Lyn Evans, "we can now look forward to a new era of understanding about the origins and evolution of the universe". Starting up a major new particle accelerator takes much more than flipping a switch. Thousands of individual elements have to work in harmony, timings have to be synchronize...

  4. IGBT: a solid state switch

    International Nuclear Information System (INIS)

    Chatroux, D.; Maury, J.; Hennevin, B.

    1993-01-01

    A Copper Vapour Laser Power Supply has been designed using a solid state switch consisting in eighteen Isolated Gate Bipolar Transistors (IGBT), -1200 volts, 400 Amps, each-in parallel. This paper presents the Isolated Gate Bipolar Transistor (IGBTs) replaced in the Power Electronic components evolution, and describes the IGBT conduction mechanism, presents the parallel association of IGBTs, and studies the application of these components to a Copper Vapour Laser Power Supply. The storage capacitor voltage is 820 volts, the peak current of the solid state switch is 17.000 Amps. The switch is connected on the primary of a step-up transformer, followed by a magnetic modulator. The reset of the magnetic modulator is provided by part of the laser reflected energy with a patented circuit. The charging circuit is a resonant circuit with a charge controlled by an IGBT switch. When the switch is open, the inductance energy is free-wheeled by an additional winding and does not extend the charging phase of the storage capacitor. The design allows the storage capacitor voltage to be very well regulated. This circuit is also patented. The electric pulse in the laser has 30.000 Volt peak voltage, 2000 Amp peak current, and is 200 nanoseconds long, for a 200 Watt optical power Copper Vapour Laser

  5. Field-induced resistance switching at metal/perovskite manganese oxide interface

    International Nuclear Information System (INIS)

    Ohkubo, I.; Tsubouchi, K.; Harada, T.; Kumigashira, H.; Itaka, K.; Matsumoto, Y.; Ohnishi, T.; Lippmaa, M.; Koinuma, H.; Oshima, M.

    2008-01-01

    Planar type metal/insulator/metal structures composed of an epitaxial perovskite manganese oxide layer and various metal electrodes were prepared for electric-field-induced resistance switching. Only the electrode pairs including Al show good resistance switching and the switching ratio reaches its maximum of 1000. This resistance switching occurs around the interface between Al electrodes and epitaxial perovskite manganese oxide thin films

  6. Digital switched hydraulics

    Science.gov (United States)

    Pan, Min; Plummer, Andrew

    2018-06-01

    This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.

  7. Photo-switching element

    Energy Technology Data Exchange (ETDEWEB)

    Masaki, Yuichi

    1987-10-31

    Photo-input MOS transistor (Photo-switching element) cannot give enough ON/OFF ratio but requires an auxiliary condenser for a certain type of application. In addition, PN junction of amorphous silicon is not practical because it gives high leak current resulting in low electromotive force. In this invention, a solar cell was constructed with a lower electrode consisting of a transparent electro-conducting film, a photosensitive part consisting of an amorphous Si layer of p-i-n layer construction, and an upper metal electrode consisting of Cr or Nichrome, and a thin film transistor was placed on the solar cell, and further the upper metal electrode was co-used as a gate electrode of the thin film transistor; this set-up of this invention enabled to attain an efficient photo-electric conversion of the incident light, high electromotive force of the solar cell, and the transistor with high ON/OFF ratio. (3 figs)

  8. The gradual nature of threshold switching

    International Nuclear Information System (INIS)

    Wimmer, M; Salinga, M

    2014-01-01

    The recent commercialization of electronic memories based on phase change materials proved the usability of this peculiar family of materials for application purposes. More advanced data storage and computing concepts, however, demand a deeper understanding especially of the electrical properties of the amorphous phase and the switching behaviour. In this work, we investigate the temporal evolution of the current through the amorphous state of the prototypical phase change material, Ge 2 Sb 2 Te 5 , under constant voltage. A custom-made electrical tester allows the measurement of delay times over five orders of magnitude, as well as the transient states of electrical excitation prior to the actual threshold switching. We recognize a continuous current increase over time prior to the actual threshold-switching event to be a good measure for the electrical excitation. A clear correlation between a significant rise in pre-switching-current and the later occurrence of threshold switching can be observed. This way, we found experimental evidence for the existence of an absolute minimum for the threshold voltage (or electric field respectively) holding also for time scales far beyond the measurement range. (paper)

  9. Electricity sequence control

    International Nuclear Information System (INIS)

    Shin, Heung Ryeol

    2010-03-01

    The contents of the book are introduction of control system, like classification and control signal, introduction of electricity power switch, such as push-button and detection switch sensor for induction type and capacitance type machinery for control, solenoid valve, expression of sequence and type of electricity circuit about using diagram, time chart, marking and term, logic circuit like Yes, No, and, or and equivalence logic, basic electricity circuit, electricity sequence control, added condition, special program control about choice and jump of program, motor control, extra circuit on repeat circuit, pause circuit in a conveyer, safety regulations and rule about classification of electricity disaster and protective device for insulation.

  10. Optical Multidimensional Switching for Data Center Networks

    OpenAIRE

    Kamchevska, Valerija; Galili, Michael; Oxenløwe, Leif Katsuo; Berger, Michael Stübert

    2017-01-01

    Optical switches are known for the ability to provide high bandwidth connectivity at a relatively low power consumption and low latency. Several recent demonstrations on optical data center architectures confirm the potential for introducing all-optical switching within the data center, thus avoiding power hungry optical-electrical-optical conversions at each node. This Ph.D. thesis focuses precisely on the application of optical technologies in data center networks where optics is not only u...

  11. A solid-state dielectric elastomer switch for soft logic

    Energy Technology Data Exchange (ETDEWEB)

    Chau, Nixon [Biomimetics Laboratory, Auckland Bioengineering Institute, The University of Auckland, Level 6, 70 Symonds Street, Auckland 1010 (New Zealand); Slipher, Geoffrey A., E-mail: geoffrey.a.slipher.civ@mail.mil; Mrozek, Randy A. [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States); O' Brien, Benjamin M. [StretchSense, Ltd., 27 Walls Rd., Penrose, Auckland 1061 (New Zealand); Anderson, Iain A. [Biomimetics Laboratory, Auckland Bioengineering Institute, The University of Auckland, Level 6, 70 Symonds Street, Auckland 1010 (New Zealand); StretchSense, Ltd., 27 Walls Rd., Penrose, Auckland 1061 (New Zealand); Department of Engineering Science, School of Engineering, The University of Auckland, Level 3, 70 Symonds Street, Auckland 1010 (New Zealand)

    2016-03-07

    In this paper, we describe a stretchable solid-state electronic switching material that operates at high voltage potentials, as well as a switch material benchmarking technique that utilizes a modular dielectric elastomer (artificial muscle) ring oscillator. The solid-state switching material was integrated into our oscillator, which self-started after 16 s and performed 5 oscillations at a frequency of 1.05 Hz with 3.25 kV DC input. Our materials-by-design approach for the nickel filled polydimethylsiloxane based switch has resulted in significant improvements over previous carbon grease-based switches in four key areas, namely, sharpness of switching behavior upon applied stretch, magnitude of electrical resistance change, ease of manufacture, and production rate. Switch lifetime was demonstrated to be in the range of tens to hundreds of cycles with the current process. An interesting and potentially useful strain-based switching hysteresis behavior is also presented.

  12. Stabilization of a Nb3Sn persistent current switch

    International Nuclear Information System (INIS)

    Urata, M.; Maeda, H.; Nakayama, S.; Yoneda, E.; Oda, Y.; Kumano, T.; Aoki, N.; Tomisaki, T.; Kabashima, S.

    1993-01-01

    A 2000 A class Nb 3 Sn persistent current switch has been successfully fabricated in the Toshiba R and D Center. The Nb tube processed conductor with Cu-10 wt.% Ni matrix has been developed for the switch in the Showa Electric Wire and Cable Co. Ltd. The magnetic instability which was observed in the previous 35 Ω Nb 3 Sn persistent current switch was improved in the present switch. The problem of quench current degradation and flux jump on magnetization, emerged in the previous switch, were confirmed to be solved. In the fast ramp, however, the switch degrades from the calculated results assuming the self field ac loss. In the Nb 3 Sn reaction process, Sn in the bronze diffuses into the Nb tube, which decreases the switch resistance. It was observed by a computer aided micro analysis (CMA) that Ni in the CuNi matrix precipitated on the Nb tube, which slightly reduced the switch resistance. (orig.)

  13. A solid-state dielectric elastomer switch for soft logic

    International Nuclear Information System (INIS)

    Chau, Nixon; Slipher, Geoffrey A.; Mrozek, Randy A.; O'Brien, Benjamin M.; Anderson, Iain A.

    2016-01-01

    In this paper, we describe a stretchable solid-state electronic switching material that operates at high voltage potentials, as well as a switch material benchmarking technique that utilizes a modular dielectric elastomer (artificial muscle) ring oscillator. The solid-state switching material was integrated into our oscillator, which self-started after 16 s and performed 5 oscillations at a frequency of 1.05 Hz with 3.25 kV DC input. Our materials-by-design approach for the nickel filled polydimethylsiloxane based switch has resulted in significant improvements over previous carbon grease-based switches in four key areas, namely, sharpness of switching behavior upon applied stretch, magnitude of electrical resistance change, ease of manufacture, and production rate. Switch lifetime was demonstrated to be in the range of tens to hundreds of cycles with the current process. An interesting and potentially useful strain-based switching hysteresis behavior is also presented.

  14. Modeling and analysis of the Rimfire gas switch

    International Nuclear Information System (INIS)

    Gahl, John M.; Kemp, Mark A.; Struve, Kenneth William; Curry, Randy D.; McDonald, Ken F.

    2005-01-01

    Many accelerators at Sandia National Laboratories utilize the Rimfire gas switch for high-voltage, high-power switching. Future accelerators will have increased performance requirements for switching elements. When designing improved versions of the Rimfire switch, there is a need for quick and accurate simulation of the electrical effects of geometry changes. This paper presents an advanced circuit model of the Rimfire switch that can be used for these simulations. The development of the model is shown along with comparisons to past models and experimental results.

  15. Isolated and soft-switched power converter

    Science.gov (United States)

    Peng, Fang Zheng; Adams, Donald Joe

    2002-01-01

    An isolated and soft-switched power converter is used for DC/DC and DC/DC/AC power conversion. The power converter includes two resonant tank circuits coupled back-to-back through an isolation transformer. Each resonant tank circuit includes a pair of resonant capacitors connected in series as a resonant leg, a pair of tank capacitors connected in series as a tank leg, and a pair of switching devices with anti-parallel clamping diodes coupled in series as resonant switches and clamping devices for the resonant leg. The power converter is well suited for DC/DC and DC/DC/AC power conversion applications in which high-voltage isolation, DC to DC voltage boost, bidirectional power flow, and a minimal number of conventional switching components are important design objectives. For example, the power converter is especially well suited to electric vehicle applications and load-side electric generation and storage systems, and other applications in which these objectives are important. The power converter may be used for many different applications, including electric vehicles, hybrid combustion/electric vehicles, fuel-cell powered vehicles with low-voltage starting, remote power sources utilizing low-voltage DC power sources, such as photovoltaics and others, electric power backup systems, and load-side electric storage and generation systems.

  16. Method and system for operating an electric motor

    Science.gov (United States)

    Gallegos-Lopez, Gabriel; Hiti, Silva; Perisic, Milun

    2013-01-22

    Methods and systems for operating an electric motor having a plurality of windings with an inverter having a plurality of switches coupled to a voltage source are provided. A first plurality of switching vectors is applied to the plurality of switches. The first plurality of switching vectors includes a first ratio of first magnitude switching vectors to second magnitude switching vectors. A direct current (DC) current associated with the voltage source is monitored during the applying of the first plurality of switching vectors to the plurality of switches. A second ratio of the first magnitude switching vectors to the second magnitude switching vectors is selected based on the monitoring of the DC current associated with the voltage source. A second plurality of switching vectors is applied to the plurality of switches. The second plurality of switching vectors includes the second ratio of the first magnitude switching vectors to the second magnitude switching vectors.

  17. Latching micro optical switch

    Science.gov (United States)

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  18. Proceedings of the switched power workshop

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1988-01-01

    These proceedings contain most of the presentations given at a workshop on the current state of research in techniques for switched power acceleration. The proceedings are divided, as was the workshop itself, into two parts. Part 1, contains the latest results from a number of groups active in switched power research. The major topic here is a method for switching externally supplied power onto a transmission line. Advocates for vacuum photodiode switching, solid state switching, gas switching, and synthetic pulse generation are all presented. Other important areas of research described in this section concern: external electrical and laser pulsing systems; the properties of the created electromagnetic pulse; structures used for transporting the electromagnetic pulse to the region where the electron beam is located; and possible applications. Part 2 of the proceedings considers the problem of designing a high brightness electron gun using switched power as the power source. This is an important first step in demonstrating the usefulness of switched power techniques for accelerator physics. In addition such a gun could have immediate practical importance for advanced acceleration studies since the brightness could exceed that of present sources by several orders of magnitude. I would like to take this opportunity to thank Kathleen Tuohy and Patricia Tuttle for their assistance in organizing and running the workshop. Their tireless efforts contribute greatly to a very productive meeting

  19. Electric engineering introduction

    International Nuclear Information System (INIS)

    An, Byeong Won; Eom, Sang Ho

    1999-03-01

    It is divided into nine chapters, which includes electricity theory such as structure of material and current, nature of electricity, static, magnetic force and magnetic attraction, attraction of current and a storage battery, electric circuit on a direct current circuit, single phase circuit and 3-phase current circuit electricity machine like DC generator, DC motor, alternator, electric transformer, single-phase induction motor, 3-phase induction motor, synchronous motor, synchro electric machine, semiconductor such as diode, transistor, FET, UJT, silicon symmetrical switch, electronic circuit like smoothing circuit and Bistable MV. circuit, automatic control, measurement of electricity, electric application and safety.

  20. Optically triggered high voltage switch network and method for switching a high voltage

    Science.gov (United States)

    El-Sharkawi, Mohamed A.; Andexler, George; Silberkleit, Lee I.

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  1. Optically triggered high voltage switch network and method for switching a high voltage

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkawi, Mohamed A. (Renton, WA); Andexler, George (Everett, WA); Silberkleit, Lee I. (Mountlake Terrace, WA)

    1993-01-19

    An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

  2. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-07-03

    Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6HSiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators.

  3. Intrinsic nanofilamentation in resistive switching

    KAUST Repository

    Wu, Xing

    2013-03-15

    Resistive switching materials are promising candidates for nonvolatile data storage and reconfiguration of electronic applications. Intensive studies have been carried out on sandwiched metal-insulator-metal structures to achieve high density on-chip circuitry and non-volatile memory storage. Here, we provide insight into the mechanisms that govern highly reproducible controlled resistive switching via a nanofilament by using an asymmetric metal-insulator-semiconductor structure. In-situ transmission electron microscopy is used to study in real-time the physical structure and analyze the chemical composition of the nanofilament dynamically during resistive switching. Electrical stressing using an external voltage was applied by a tungsten tip to the nanosized devices having hafnium oxide (HfO2) as the insulator layer. The formation and rupture of the nanofilaments result in up to three orders of magnitude change in the current flowing through the dielectric during the switching event. Oxygen vacancies and metal atoms from the anode constitute the chemistry of the nanofilament.

  4. Large aperture optical switching devices

    International Nuclear Information System (INIS)

    Goldhar, J.; Henesian, M.A.

    1983-01-01

    We have developed a new approach to constructing large aperture optical switches for next generation inertial confinement fusion lasers. A transparent plasma electrode formed in low pressure ionized gas acts as a conductive coating to allow the uniform charging of the optical faces of an electro-optic material. In this manner large electric fields can be applied longitudinally to large aperture, high aspect ratio Pockels cells. We propose a four-electrode geometry to create the necessary high conductivity plasma sheets, and have demonstrated fast (less than 10 nsec) switching in a 5x5 cm aperture KD*P Pockels cell with such a design. Detaid modelling of Pockels cell performance with plasma electrodes has been carried out for 15 and 30 cm aperture designs

  5. Parasitic resistive switching uncovered from complementary resistive switching in single active-layer oxide memory device

    Science.gov (United States)

    Zhu, Lisha; Hu, Wei; Gao, Chao; Guo, Yongcai

    2017-12-01

    This paper reports the reversible transition processes between the bipolar and complementary resistive switching (CRS) characteristics on the binary metal-oxide resistive memory devices of Pt/HfO x /TiN and Pt/TaO x /TiN by applying the appropriate bias voltages. More interestingly, by controlling the amplitude of the negative bias, the parasitic resistive switching effect exhibiting repeatable switching behavior is uncovered from the CRS behavior. The electrical observation of the parasitic resistive switching effect can be explained by the controlled size of the conductive filament. This work confirms the transformation and interrelationship among the bipolar, parasitic, and CRS effects, and thus provides new insight into the understanding of the physical mechanism of the binary metal-oxide resistive switching memory devices.

  6. Electric vehicle speed control

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, W.R.; Mc Auliffe, G.N.; Schlageter, G.A.

    1987-06-23

    This patent describes an electric vehicle driven by a DC motor. The vehicle has a field winding, an electric resistance element in circuit with the field winding, a switch in the circuit operative when closed to place. The element in parallel with the field winding weakens the field and increases potential motor speed. Also are relay means for operating the switch, means to determine motor speed, computer means for determining whether the motor speed is increasing or decreasing, and means for operating the relay means to close the switch at a first speed. If the motor speed is increased, it actuates the switch at a second speed lower than the first speed but only if switch has been closed previously and motor speed is decreasing.

  7. Photo-stimulated resistive switching of ZnO nanorods

    International Nuclear Information System (INIS)

    Park, Jinjoo; Lee, Seunghyup; Yong, Kijung

    2012-01-01

    Resistive switching memory devices are promising candidates for emerging memory technologies because they yield outstanding device performance. Storage mechanisms for achieving high-density memory applications have been developed; however, so far many of them exhibit typical resistive switching behavior from the limited controlling conditions. In this study, we introduce photons as an unconventional stimulus for activating resistive switching behaviors. First, we compare the resistive switching behavior in light and dark conditions to describe how resistive switching memories can benefit from photons. Second, we drive the switching of resistance not by the electrical stimulus but only by the modulation of photon. ZnO nanorods were employed as a model system to demonstrate photo-stimulated resistive switching in high-surface-area nanomaterials, in which photo-driven surface states strongly affect their photoconductivity and resistance states. (paper)

  8. Nano- and micro-electromechanical switch dynamics

    International Nuclear Information System (INIS)

    Pulskamp, Jeffrey S; Proie, Robert M; Polcawich, Ronald G

    2013-01-01

    This paper reports theoretical analysis and experimental results on the dynamics of piezoelectric MEMS mechanical logic relays. The multiple degree of freedom analytical model, based on modal decomposition, utilizes modal parameters obtained from finite element analysis and an analytical model of piezoelectric actuation. The model accounts for exact device geometry, damping, drive waveform variables, and high electric field piezoelectric nonlinearity. The piezoelectrically excited modal force is calculated directly and provides insight into design optimization for switching speed. The model accurately predicts the propagation delay dependence on actuation voltage of mechanically distinct relay designs. The model explains the observed discrepancies in switching speed of these devices relative to single degree of freedom switching speed models and suggests the strong potential for improved switching speed performance in relays designed for mechanical logic and RF circuits through the exploitation of higher order vibrational modes. (paper)

  9. Delayed switching applied to memristor neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Frank Z.; Yang Xiao; Lim Guan [Future Computing Group, School of Computing, University of Kent, Canterbury (United Kingdom); Helian Na [School of Computer Science, University of Hertfordshire, Hatfield (United Kingdom); Wu Sining [Xyratex, Havant (United Kingdom); Guo Yike [Department of Computing, Imperial College, London (United Kingdom); Rashid, Md Mamunur [CERN, Geneva (Switzerland)

    2012-04-01

    Magnetic flux and electric charge are linked in a memristor. We reported recently that a memristor has a peculiar effect in which the switching takes place with a time delay because a memristor possesses a certain inertia. This effect was named the ''delayed switching effect.'' In this work, we elaborate on the importance of delayed switching in a brain-like computer using memristor neural networks. The effect is used to control the switching of a memristor synapse between two neurons that fire together (the Hebbian rule). A theoretical formula is found, and the design is verified by a simulation. We have also built an experimental setup consisting of electronic memristive synapses and electronic neurons.

  10. Delayed switching applied to memristor neural networks

    International Nuclear Information System (INIS)

    Wang, Frank Z.; Yang Xiao; Lim Guan; Helian Na; Wu Sining; Guo Yike; Rashid, Md Mamunur

    2012-01-01

    Magnetic flux and electric charge are linked in a memristor. We reported recently that a memristor has a peculiar effect in which the switching takes place with a time delay because a memristor possesses a certain inertia. This effect was named the ''delayed switching effect.'' In this work, we elaborate on the importance of delayed switching in a brain-like computer using memristor neural networks. The effect is used to control the switching of a memristor synapse between two neurons that fire together (the Hebbian rule). A theoretical formula is found, and the design is verified by a simulation. We have also built an experimental setup consisting of electronic memristive synapses and electronic neurons.

  11. Variable reluctance switch avoids contact corrosion and contact bounce

    Science.gov (United States)

    Watson, P. C.

    1967-01-01

    Variable reluctance switch avoids contact corrosion and bounce in a hostile environment. It consists of a wire-wound magnetic core and moveable bridge piece that alters the core flux pattern to produce an electrical output useful for switching control media.

  12. Optical packet switching in HPC : an analysis of applications performance

    NARCIS (Netherlands)

    Meyer, Hugo; Sancho, Jose Carlos; Mrdakovic, Milica; Miao, Wang; Calabretta, Nicola

    2018-01-01

    Optical Packet Switches (OPS) could provide the needed low latency transmissions in today large data centers. OPS can deliver lower latency and higher bandwidth than traditional electrical switches. These features are needed for parallel High Performance Computing (HPC) applications. For this

  13. Nanoeletromechanical switch and logic circuits formed therefrom

    Science.gov (United States)

    Nordquist, Christopher D [Albuquerque, NM; Czaplewski, David A [Albuquerque, NM

    2010-05-18

    A nanoelectromechanical (NEM) switch is formed on a substrate with a source electrode containing a suspended electrically-conductive beam which is anchored to the substrate at each end. This beam, which can be formed of ruthenium, bows laterally in response to a voltage applied between a pair of gate electrodes and the source electrode to form an electrical connection between the source electrode and a drain electrode located near a midpoint of the beam. Another pair of gate electrodes and another drain electrode can be located on an opposite side of the beam to allow for switching in an opposite direction. The NEM switch can be used to form digital logic circuits including NAND gates, NOR gates, programmable logic gates, and SRAM and DRAM memory cells which can be used in place of conventional CMOS circuits, or in combination therewith.

  14. Attaching Copper Wires to Magnetic-Reed-Switch Leads

    Science.gov (United States)

    Kamila, Rudolf

    1987-01-01

    Bonding method reliably joins copper wires to short iron-alloy leads from glass-encased dry magnetic-reed switch without disturbing integrity of glass-to-metal seal. Joint resistant to high temperatures and has low electrical resistance.

  15. Minimization of switching frequency oscillation of voltage inverter

    Czech Academy of Sciences Publication Activity Database

    Večerka, Tomáš

    2011-01-01

    Roč. 56, č. 2 (2011), s. 125-140 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20570509 Keywords : switching frequency * pulse-width modulation * induction motors Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  16. Switching, storage, and erasure effects in a superconducting thin film

    International Nuclear Information System (INIS)

    Testardi, L.R.

    1976-01-01

    Thin niobium films can be switched from a superconducting to a resistive state permanently by application of a short electrical pulse. Application of a short pulse of opposite polarity returns the film to the superconducting state

  17. A smart microelectromechanical sensor and switch triggered by gas

    KAUST Repository

    Bouchaala, Adam M.; Jaber, Nizar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I.

    2016-01-01

    device based on a single microstructure. Specifically, we demonstrate a smart resonant gas (mass) sensor, which in addition to being capable of quantifying the amount of absorbed gas, can be autonomously triggered as an electrical switch upon exceeding a

  18. Multiple application coded switch development report

    International Nuclear Information System (INIS)

    Bernal, E.L.; Kestly, J.D.

    1979-03-01

    The development of the Multiple Application Coded Switch (MACS) and its related controller are documented; the functional and electrical characteristics are described; the interface requirements defined, and a troubleshooting guide provided. The system was designed for the Safe Secure Trailer System used for secure transportation of nuclear material

  19. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in ``avalanche`` mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into ``avalanche`` mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (< 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6--35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs.

  20. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in avalanche'' mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into avalanche'' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (< 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6--35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs.

  1. Subnanosecond photoconductive switching in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.; Pocha, M.D.; Griffin, K.L.

    1990-01-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential of GaAs to act as a closing switch in avalanche'' mode at high fields. We have observed switch closing times of less than 200 psec with 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into an avalanche'' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large are (1 sq cm) and small area (<1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300--1300 psec at voltages of 6-35 kV. We will present experimental results for linear, lock on and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation. 3 refs., 11 figs.

  2. Subnanosecond photoconductive switching in GaAs

    Science.gov (United States)

    Druce, R. L.; Pocha, M. D.; Griffin, K. L.

    1991-04-01

    We are conducting research in photoconductive switching for the purpose of generating microwave pulses with amplitudes up to 50 kV. This technology has direct application to impulse radar and HPM sources. We are exploiting the very fast recombination rates of Gallium Arsenide (GaAs) to explore the potential of GaAs as an on-off switch when operating in the linear mode (the linear mode is defined such that one carrier pair is generated for each photon absorbed). In addition, we are exploring the potential GaAs to act as a closing switch in 'avalanche' mode at high fields. We have observed switch closing times of less than 200 psec with a 100 psec duration laser pulse and opening times of less than 400 psec with neutron irradiated GaAs at fields of tens of kV/cm. If the field is increased and the laser energy decreased, the laser can be used to trigger photoconductive switches into 'avalanche' mode of operation in which carrier multiplication occurs. This mode of operation is quite promising since the switches close in less than 1 nsec while realizing significant energy gain (ratio of electrical energy in the pulse to optical trigger energy). We are currently investigating both large area (1 sq cm) and small area (less than 1 sq mm) switches illuminated by GaAlAs laser diodes at 900 nm and Nd:YAG lasers at 1.06 micrometers. Preliminary results indicate that the closing time of the avalanche switches depends primarily on the material properties of the devices with closing times of 300-1300 psec at voltages of 6-35 kV. We will present experimental results for linear, lock on, and avalanche mode operation of GaAs photoconductive switches and how these pulses may be applied to microwave generation.

  3. Optical packet switched networks

    DEFF Research Database (Denmark)

    Hansen, Peter Bukhave

    1999-01-01

    Optical packet switched networks are investigated with emphasis on the performance of the packet switch blocks. Initially, the network context of the optical packet switched network is described showing that a packet network will provide transparency, flexibility and bridge the granularity gap...... in interferometric wavelength converters is investigated showing that a 10 Gbit/s 19 4x4 swich blocks can be cascaded at a BER of 10-14. An analytical traffic model enables the calculation of the traffice performance of a WDM packet network. Hereby the importance of WDM and wavelegth conversion in the switch blocks...... is established as a flexible means to reduce the optical buffer, e.g., the number of fibre delay lines for a 16x16 switch block is reduced from 23 to 6 by going from 2 to 8 wavelength channels pr. inlet. Additionally, a component count analysis is carried out to illustrate the trade-offs in the switch block...

  4. Saturated Switching Systems

    CERN Document Server

    Benzaouia, Abdellah

    2012-01-01

    Saturated Switching Systems treats the problem of actuator saturation, inherent in all dynamical systems by using two approaches: positive invariance in which the controller is designed to work within a region of non-saturating linear behaviour; and saturation technique which allows saturation but guarantees asymptotic stability. The results obtained are extended from the linear systems in which they were first developed to switching systems with uncertainties, 2D switching systems, switching systems with Markovian jumping and switching systems of the Takagi-Sugeno type. The text represents a thoroughly referenced distillation of results obtained in this field during the last decade. The selected tool for analysis and design of stabilizing controllers is based on multiple Lyapunov functions and linear matrix inequalities. All the results are illustrated with numerical examples and figures many of them being modelled using MATLAB®. Saturated Switching Systems will be of interest to academic researchers in con...

  5. Effective switching frequency multiplier inverter

    Science.gov (United States)

    Su, Gui-Jia [Oak Ridge, TN; Peng, Fang Z [Okemos, MI

    2007-08-07

    A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

  6. FreeSWITCH Cookbook

    CERN Document Server

    Minessale, Anthony

    2012-01-01

    This is a problem-solution approach to take your FreeSWITCH skills to the next level, where everything is explained in a practical way. If you are a system administrator, hobbyist, or someone who uses FreeSWITCH on a regular basis, this book is for you. Whether you are a FreeSWITCH expert or just getting started, this book will take your skills to the next level.

  7. Elements of magnetic switching

    International Nuclear Information System (INIS)

    Aaland, K.

    1983-01-01

    This chapter describes magnetic switching as a method of connecting a capacitor bank (source) to a load; reviews several successful applications of magnetic switching, and discusses switching transformers, limitations and future possibilities. Some of the inflexibility and especially the high cost of magnetic materials may be overcome with the availability of the new splash cooled ribbons (Metglas). Experience has shown that magnetics works despite shock, radiation or noise interferences

  8. Pemodelan Markov Switching Autoregressive

    OpenAIRE

    Ariyani, Fiqria Devi; Warsito, Budi; Yasin, Hasbi

    2014-01-01

    Transition from depreciation to appreciation of exchange rate is one of regime switching that ignored by classic time series model, such as ARIMA, ARCH, or GARCH. Therefore, economic variables are modeled by Markov Switching Autoregressive (MSAR) which consider the regime switching. MLE is not applicable to parameters estimation because regime is an unobservable variable. So that filtering and smoothing process are applied to see the regime probabilities of observation. Using this model, tran...

  9. Mathematical modeling of a passively Q-switched diode laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2009-11-01

    A mathematical model describing the dynamic emission of the intracavity frequency doubling (IFD) of a gain-switched InGaAs/GaAs/KTP and a gain-switched mode-locked two-sections tapered ridge-waveguide InGaAs/GaAs diode laser has been presented. The IFD of a gain-switched and a gain-switched mode-locked two-sections diode laser is modeled where one section is electrically pumped to proved gain while the second section is unpumped (reverse biased) to provide a saturable absorber. (author)

  10. Transient-Switch-Signal Suppressor

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Circuit delays transmission of switch-opening or switch-closing signal until after preset suppression time. Used to prevent transmission of undesired momentary switch signal. Basic mode of operation simple. Beginning of switch signal initiates timing sequence. If switch signal persists after preset suppression time, circuit transmits switch signal to external circuitry. If switch signal no longer present after suppression time, switch signal deemed transient, and circuit does not pass signal on to external circuitry, as though no transient switch signal. Suppression time preset at value large enough to allow for damping of underlying pressure wave or other mechanical transient.

  11. Atomic battery with beam switching

    International Nuclear Information System (INIS)

    Edling, E.A.; McKenna, R.P.; Peterick, E.Th. Jr.; Trexler, F.D.

    1984-01-01

    An electric power generating apparatus that is powered primarily by the emission of electrically charged particles from radio-active materials enclosed in an evacuated vessel of glass or the like. An arrangement of reflecting electrodes causes a beam of particles to switch back and forth at a high frequency between two collecting electrodes that are connected to a resonating tuned primary circuit consisting of an inductor with resonating capacitor. The reflecting electrodes are energized in the proper phase relationship to the collecting electrodes to insure sustained oscillation by means of a secondary winding coupled inductively to the primary winding and connected to the reflecting electrodes. Power may be drawn from the circuit at a stepped down voltage from a power take-off winding that is coupled to the primary winding. The disclosure also describes a collecting electrode arrangement consisting of multiple spatially separated electrodes which together serve to capture a maximum of the available particle energy. A self-starting arrangement for start of oscillations is described. A specially adapted version of the invention utilizes two complementary beams of oppositely charged particles which are switched alternatingly between the collecting electrodes

  12. Optimal switching using coherent control

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Heuck, Mikkel; Mørk, Jesper

    2013-01-01

    that the switching time, in general, is not limited by the cavity lifetime. Therefore, the total energy required for switching is a more relevant figure of merit than the switching speed, and for a particular two-pulse switching scheme we use calculus of variations to optimize the switching in terms of input energy....

  13. Resistance switching in silver - manganite contacts

    International Nuclear Information System (INIS)

    Gomez-Marlasca, F; Levy, P

    2009-01-01

    We investigate the electric pulse induced resistance switching in a transition metal oxide-metal contact at room temperature - a non volatile, reversible and multilevel memory device. Using a simple multiterminal configuration, we find that the complementary effect -in which the contact resistance of each pulsed electrode displays variations of opposite sign- is strongly influenced by the history of the pulsing procedure. Loops performed by varying the magnitude and sign of the stimulus at each pulsed electrode allow to disentangle their sole contribution at different stages of the process. Electromigration of oxygen ions and vacancies is discussed as participating at the core of the underlying mechanisms for resistance switching.

  14. Resistance switching in silver - manganite contacts

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Marlasca, F [Materia Condensada GIA GAIANN CAC -CNEA, and Instituto de Nanociencia y Nanotecnologia, CNEA, Gral Paz 1499 (1650) San Martin, Pcia. Buenos Aires (Argentina); Levy, P, E-mail: levy@cnea.gov.a

    2009-05-01

    We investigate the electric pulse induced resistance switching in a transition metal oxide-metal contact at room temperature - a non volatile, reversible and multilevel memory device. Using a simple multiterminal configuration, we find that the complementary effect -in which the contact resistance of each pulsed electrode displays variations of opposite sign- is strongly influenced by the history of the pulsing procedure. Loops performed by varying the magnitude and sign of the stimulus at each pulsed electrode allow to disentangle their sole contribution at different stages of the process. Electromigration of oxygen ions and vacancies is discussed as participating at the core of the underlying mechanisms for resistance switching.

  15. Switched reluctance motor drives

    Indian Academy of Sciences (India)

    Davis RM, Ray WF, Blake RJ 1981 Inverter drive for switched reluctance: circuits and component ratings. Inst. Elec. Eng. Proc. B128: 126-136. Ehsani M. 1991 Position Sensor elimination technique for the switched reluctance motor drive. US Patent No. 5,072,166. Ehsani M, Ramani K R 1993 Direct control strategies based ...

  16. Manually operated coded switch

    International Nuclear Information System (INIS)

    Barnette, J.H.

    1978-01-01

    The disclosure related to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made

  17. Switch on, switch off: stiction in nanoelectromechanical switches

    KAUST Repository

    Wagner, Till J W

    2013-06-13

    We present a theoretical investigation of stiction in nanoscale electromechanical contact switches. We develop a mathematical model to describe the deflection of a cantilever beam in response to both electrostatic and van der Waals forces. Particular focus is given to the question of whether adhesive van der Waals forces cause the cantilever to remain in the \\'ON\\' state even when the electrostatic forces are removed. In contrast to previous studies, our theory accounts for deflections with large slopes (i.e. geometrically nonlinear). We solve the resulting equations numerically to study how a cantilever beam adheres to a rigid electrode: transitions between \\'free\\', \\'pinned\\' and \\'clamped\\' states are shown to be discontinuous and to exhibit significant hysteresis. Our findings are compared to previous results from linearized models and the implications for nanoelectromechanical cantilever switch design are discussed. © 2013 IOP Publishing Ltd.

  18. Domain switching in single-phase multiferroics

    Science.gov (United States)

    Jia, Tingting; Cheng, Zhenxiang; Zhao, Hongyang; Kimura, Hideo

    2018-06-01

    Multiferroics are a time-honoured research subject by reason for their tremendous application potential in the information industry, such as in multi-state information storage devices and new types of sensors. An outburst of studies on multiferroicity has been witnessed in the 21st century, although this field has a long research history since the 19th century. Multiferroicity has now become one of the hottest research topics in condensed matter physics and materials science. Numerous efforts have been made to investigate the cross-coupling phenomena among ferroic orders such as ferroelectricity, (anti-)ferromagnetism, and ferroelasticity, especially the coupling between electric and magnetic orderings that would account for the magnetoelectric (ME) effect in multiferroic materials. The magnetoelectric properties and coupling behavior of single phase multiferroics are dominated by their domain structures. It was also noted that, however, the multiferroic materials exhibit very complicated domain structures. Studies on domain structure characterization and domain switching are a crucial step in the exploration of approaches to the control and manipulation of magnetic (electric) properties using an electric (magnetic) field or other means. In this review, following a concise outline of our current basic knowledge on the magnetoelectric (ME) effect, we summarize some important research activities on domain switching in single-phase multiferroic materials in the form of single crystals and thin films, especially domain switching behavior involving strain and the related physics in the last decade. We also introduce recent developments in characterization techniques for domain structures of ferroelectric or multiferroic materials, which have significantly advanced our understanding of domain switching dynamics and interactions. The effects of a series of issues such as electric field, magnetic field, and stress effects on domain switching are been discussed as well. It

  19. electric vehicle

    Directory of Open Access Journals (Sweden)

    W. R. Lee

    1999-01-01

    Full Text Available A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an optimization problem with switching times and speed as decision variables. This is an unconventional optimization problem. However, by using the control parametrization enhancing technique (CPET, it is shown that this unconventional optimization is equivalent to a conventional optimal parameter selection problem. Numerical examples are solved using the proposed method.

  20. 35-kV GaAs subnanosecond photoconductive switches

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M.D.; Druce, R.L. (Lawrence Livermore National Lab., CA (United States))

    1990-12-01

    Photoconductive switches are one of the few devices that allow the generation of high-voltage electrical pulses with subnanosecond rise time. The authors are exploring high-voltage, fast-pulse generation using GaAs photoconductive switches. They have been able to generate 35-kV pulses with rise times as short as 135 ps using 5-mm gap switches and have achieved electric field hold-off of greater than 100 kV/cm. They have also been able to generate an approximately 500-ps FWHM on/off electrical pulse with an amplitude of approximately 3 kV using neutron-irradiated GaAs having short carrier life times. This paper describes the experimental results and discusses fabrication of switches and the diagnostics used to measure these fast signals. They also describe the experience with the nonlinear lock-on and avalanche modes of operation observed in GaAs.

  1. Electrical Safety for Non-Electricians

    Science.gov (United States)

    ... handled cement finishing floats • Metal ladders • Raised dump truck beds • Scaffolding But electrical hazards are also at ... must be grounded. Your employer must check all electric systems, including wiring and switches, to be sure ...

  2. A numerical simulation model of valence-change-based resistive switching

    OpenAIRE

    Marchewka, Astrid

    2017-01-01

    Due to their superior scalability and performance, nanoscale resistive switches based on the valence-change mechanism are considered promising candidates for future nonvolatile memory and logic applications. These devices are metal-oxide-metal structures that can be reversibly switched between different resistance states by electrical signals. Typically, they contain one Schottky-like and one ohmic-like metal-oxide contact and exhibit bipolar switching. The switching mechanism and the initial...

  3. Energy losses in switches

    International Nuclear Information System (INIS)

    Martin, T.H.; Seamen, J.F.; Jobe, D.O.

    1993-01-01

    The authors experiments show energy losses between 2 and 10 times that of the resistive time predictions. The experiments used hydrogen, helium, air, nitrogen, SF 6 polyethylene, and water for the switching dielectric. Previously underestimated switch losses have caused over predicting the accelerator outputs. Accurate estimation of these losses is now necessary for new high-efficiency pulsed power devices where the switching losses constitute the major portion of the total energy loss. They found that the switch energy losses scale as (V peak I peak ) 1.1846 . When using this scaling, the energy losses in any of the tested dielectrics are almost the same. This relationship is valid for several orders of magnitude and suggested a theoretical basis for these results. Currents up to .65 MA, with voltages to 3 MV were applied to various gaps during these experiments. The authors data and the developed theory indicates that the switch power loss continues for a much longer time than the resistive time, with peak power loss generally occurring at peak current in a ranging discharge instead of the early current time. All of the experiments were circuit code modeled after developing a new switch loss version based on the theory. The circuit code predicts switch energy loss and peak currents as a function of time. During analysis of the data they noticed slight constant offsets between the theory and data that depended on the dielectric. They modified the plasma conductivity for each tested dielectric to lessen this offset

  4. JUNOS Enterprise Switching

    CERN Document Server

    Reynolds, Harry

    2009-01-01

    JUNOS Enterprise Switching is the only detailed technical book on Juniper Networks' new Ethernet-switching EX product platform. With this book, you'll learn all about the hardware and ASIC design prowess of the EX platform, as well as the JUNOS Software that powers it. Not only is this extremely practical book a useful, hands-on manual to the EX platform, it also makes an excellent study guide for certification exams in the JNTCP enterprise tracks. The authors have based JUNOS Enterprise Switching on their own Juniper training practices and programs, as well as the configuration, maintenanc

  5. Switch mode power supply

    International Nuclear Information System (INIS)

    Kim, Hui Jun

    1993-06-01

    This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.

  6. Operation of a homeostatic sleep switch.

    Science.gov (United States)

    Pimentel, Diogo; Donlea, Jeffrey M; Talbot, Clifford B; Song, Seoho M; Thurston, Alexander J F; Miesenböck, Gero

    2016-08-18

    Sleep disconnects animals from the external world, at considerable risks and costs that must be offset by a vital benefit. Insight into this mysterious benefit will come from understanding sleep homeostasis: to monitor sleep need, an internal bookkeeper must track physiological changes that are linked to the core function of sleep. In Drosophila, a crucial component of the machinery for sleep homeostasis is a cluster of neurons innervating the dorsal fan-shaped body (dFB) of the central complex. Artificial activation of these cells induces sleep, whereas reductions in excitability cause insomnia. dFB neurons in sleep-deprived flies tend to be electrically active, with high input resistances and long membrane time constants, while neurons in rested flies tend to be electrically silent. Correlative evidence thus supports the simple view that homeostatic sleep control works by switching sleep-promoting neurons between active and quiescent states. Here we demonstrate state switching by dFB neurons, identify dopamine as a neuromodulator that operates the switch, and delineate the switching mechanism. Arousing dopamine caused transient hyperpolarization of dFB neurons within tens of milliseconds and lasting excitability suppression within minutes. Both effects were transduced by Dop1R2 receptors and mediated by potassium conductances. The switch to electrical silence involved the downregulation of voltage-gated A-type currents carried by Shaker and Shab, and the upregulation of voltage-independent leak currents through a two-pore-domain potassium channel that we term Sandman. Sandman is encoded by the CG8713 gene and translocates to the plasma membrane in response to dopamine. dFB-restricted interference with the expression of Shaker or Sandman decreased or increased sleep, respectively, by slowing the repetitive discharge of dFB neurons in the ON state or blocking their entry into the OFF state. Biophysical changes in a small population of neurons are thus linked to the

  7. Resistance switching at the nanometre scale in amorphous carbon

    International Nuclear Information System (INIS)

    Sebastian, Abu; Rossel, Christophe; Pozidis, Haralampos; Eleftheriou, Evangelos; Pauza, Andrew; Shelby, Robert M; RodrIguez, Arantxa Fraile

    2011-01-01

    The electrical transport and resistance switching mechanism in amorphous carbon (a-C) is investigated at the nanoscale. The electrical conduction in a-C thin films is shown to be captured well by a Poole-Frenkel transport model that involves nonisolated traps. Moreover, at high electric fields a field-induced threshold switching phenomenon is observed. The following resistance change is attributed to Joule heating and subsequent localized thermal annealing. We demonstrate that the mechanism is mostly due to clustering of the existing sp 2 sites within the sp 3 matrix. The electrical conduction behaviour, field-induced switching and Joule-heating-induced rearrangement of atomic order resulting in a resistance change are all reminiscent of conventional phase-change memory materials. This suggests the potential of a-C as a similar nonvolatile memory candidate material.

  8. Complementary resistive switching in BaTiO{sub 3}/NiO bilayer with opposite switching polarities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Institut d’Electronique de Micro-électronique et de Nanotechnologie (IEMN), CNRS, Université des Sciences et Technologies de Lille, avenue Poincaré, BP 60069, 59652, Villeneuve d’Ascq cedex (France); Wei, Xianhua, E-mail: weixianhua@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Lei, Yao [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronics Science and Technology of China, Chengdu 610054 (China); Yuan, Xincai [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Zeng, Huizhong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronics Science and Technology of China, Chengdu 610054 (China)

    2016-12-15

    Graphical abstract: Au/BaTiO{sub 3}/NiO/Pt bilayer device shows complementary resistive switching (CRS) without electroforming which is mainly ascribed to anti-serial stack of two RRAM cells with bipolar behaviors. - Highlights: • Complementary resistive switching (CRS) has been investigated in Au/BaTiO{sub 3}/NiO/Pt by stacking the two elements with different switching types. • The realization of complementary resistive switching (CRS) is mainly ascribed to the anti-serial stack of two RRAM cells with bipolar behaviors. • Complementary resistive switching (CRS) in bilayer is effective to solve the sneak current problem briefly and economically. - Abstract: Resistive switching behaviors have been investigated in the Au/BaTiO{sub 3}/NiO/Pt structure by stacking the two elements with different switching types. The conducting atomic force microscope measurements on BaTiO{sub 3} thin films and NiO thin films suggest that with the same active resistive switching region, the switching polarities in the two semiconductors are opposite to each other. It is in agreement with the bipolar hysteresis I–V curves with opposite switching polarities for single-layer devices. The bilayer devices show complementary resistive switching (CRS) without electroforming and unipolar resistive switching (URS) after electroforming. The coexistence of CRS and URS is mainly ascribed to the co-effect of electric field and Joule heating mechanisms, indicating that changeable of resistance in this device is dominated by the redistribution of oxygen vacancies in BaTiO{sub 3} and the formation, disruption, restoration of conducting filaments in NiO. CRS in bilayer with opposite switching polarities is effective to solve the sneak current without the introduction of any selector elements or an additional metal electrode.

  9. Launched electrons in plasma opening switches

    International Nuclear Information System (INIS)

    Mendel, C.W. Jr.; Rochau, G.E.; Sweeney, M.A.; McDaniel, D.H.; Quintenz, J.P.; Savage, M.E.; Lindman, E.L.; Kindel, J.M.

    1989-01-01

    Plasma opening switches have provided a means to improve the characteristics of super-power pulse generators. Recent advances involving plasma control with fast and slow magnetic fields have made these switches more versatile, allowing for improved switch uniformity, triggering, and opening current levels that are set by the level of auxiliary fields. Such switches necessarily involve breaks in the translational symmetry of the transmission line geometry and therefore affect the electron flow characteristics of the line. These symmetry breaks are the result of high electric field regions caused by plasma conductors remaining in the transmission line, ion beams crossing the line, or auxilliary magnetic field regions. Symmetry breaks cause the canonical momentum of the electrons to change, thereby moving them away from the cathode. Additional electrons are pulled from the cathode into the magnetically insulated flow, resulting in an excess of electron flow over that expected for the voltage and line current downstream of the switch. We call these electrons ''launched electrons''. Unless they are recaptured at the cathode or else are fed into the load and used beneficially, they cause a large power loss downstream. This paper will show examples of SuperMite and PBFA II data showing these losses, explain the tools we are using to study them, and discuss the mechanisms we will employ to mitigate the problem. The losses will be reduced primarily by reducing the amount of launched electron flow. 7 refs., 9 figs

  10. Electric-Field-Tunable Ferroelastic Control of Nonvolatile Resistivity and Ferromagnetic Switching in Multiferroic La0.67Ca0.33MnO3/[PbMg1/3Nb2/3O3] 0.7[PbTiO3]0.3 Heterostructures

    Science.gov (United States)

    Zheng, Ming; Zheng, Ren-Kui

    2016-04-01

    The electric-field-modulated nonvolatile resistivity and magnetization switching in elastically coupled La0.67Ca0.33MnO3 films grown on (111)-oriented 0.7 Pb (Mg1 /3Nb2 /3)O3-0.3 PbTiO3 substrates is achieved through the ferroelastic effect. By taking advantage of the 180° ferroelectric and non-180° ferroelastic domain switching, we identify that such changes in order parameters stem from domain-switching-induced strain rather than accumulation or depletion of charge carriers at the interface. Specifically, the strong correlation between the ferroelastic strain and the magnetic field is manifested not only by the strain-tunable magnetoresistance effect but also by the magnetically manipulated strain effect, which is essentially driven by the electronic phase separation. These findings present a potential strategy for elucidating the essential physics of the ferroelastic-strain effect and delivering prototype devices for energy-efficient and nonvolatile information storage.

  11. Low prepulse, high power density water dielectric switching

    International Nuclear Information System (INIS)

    Johnson, D.L.; VanDevender, J.P.; Martin, T.H.

    1979-01-01

    Prepulse voltage suppression has proven difficult in high power, high voltage accelerators employing self-breakdown water dielectric switches. A novel and cost effective water switch has been developed at Sandia Laboratories which reduces prepulse voltage by reducing the capacity across the switch. This prepulse suppression switch causes energy formerly stored in the switch capacity and dissipated in the arc to be useful output energy. The switching technique also allows the pulse forming lines to be stacked in parallel and electrically isolated from the load after the line has been discharged. The switch consists of a ground plane, with several holes, inserted between the switch electrodes. The output line switch electrodes extend through the holes and face electrodes on the pulse forming line (PFL). The capacity between the PFL and the output transmission line is reduced by about 80%. The gap spacing between the output line electrode and the hole in the ground plane is adjusted so that breakdown occurs after the main pulse and provides a crow bar between the load and the source. Performance data from the Proto II, Mite and Ripple test facilities are presented

  12. Particle in cell simulation of peaking switch for breakdown evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Umbarkar, Sachin B.; Bindu, S.; Mangalvedekar, H.A.; Saxena, A.; Singh, N.M., E-mail: sachin.b.umbarkar@gmail.com [Department of Electric Engineering, Veermata Jijabai Technological Institute, Mumbai (India); Sharma, Archana; Saroj, P.C.; Mittal, K.C. [Accelerator Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Marx generator connected to peaking capacitor and peaking switch can generate Ultra-Wideband (UWB) radiation. A new peaking switch is designed for converting the existing nanosecond Marx generator to a UWB source. The paper explains the particle in cell (PIC) simulation for this peaking switch, using MAGIC 3D software. This peaking switch electrode is made up of copper tungsten material and is fixed inside the hermitically sealed derlin material. The switch can withstand a gas pressure up to 13.5 kg/cm{sup 2}. The lower electrode of the switch is connected to the last stage of the Marx generator. Initially Marx generator (without peaking stage) in air; gives the output pulse with peak amplitude of 113.75 kV and pulse rise time of 25 ns. Thus, we design a new peaking switch to improve the rise time of output pulse and to pressurize this peaking switch separately (i.e. Marx and peaking switch is at different pressure). The PIC simulation gives the particle charge density, current density, E counter plot, emitted electron current, and particle energy along the axis of gap between electrodes. The charge injection and electric field dependence on ionic dissociation phenomenon are briefly analyzed using this simulation. The model is simulated with different gases (N{sub 2}, H{sub 2}, and Air) under different pressure (2 kg/cm{sup 2}, 5 kg/cm{sup 2}, 10 kg/cm{sup 2}). (author)

  13. Optical switching systems using nanostructures

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2004-01-01

    High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems.......High capacity multiservice optical networks require compact and efficient switches. The potential benefits of optical switch elements based on nanostructured material are reviewed considering various material systems....

  14. BCP selector valves and limit switches

    International Nuclear Information System (INIS)

    Rippy, G.L.

    1995-01-01

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Electrical/Instrumentation systems for the BCP stream function as required by project criteria. Specifically, the test will verify the operation of the solenoid valves and associated limit switches installed for the BCP portion of W-OO7H. This equipment is part of the B-Plant Process Condensate Treatment Facility

  15. Electricity and Man (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Asimov, Isaac

    1974-01-01

    Our whole industrial civilization depends upon cheap energy streaking out in all directions and under fingertip controls—and that would be very difficult without electric current. It would take enormous ingenuity to find substitutes. If all electricity were shut off, then all electronic devices would be dead. Electric lights would darken. Aluminum would become a rare metal. All factories would have to develop power sources on the spot and would have to switch to primitive, mechanical controls. Every house and every farm would have to give up items we have come to take for granted—not only electric lights, but electric irons, electric toasters, electric water pumps, electric control of furnaces, and so on.

  16. A simple self-breaking 2 MV gas switch

    Energy Technology Data Exchange (ETDEWEB)

    Di Capua, M.S.; Freytag, E.K.; Dixon, W.R.; Hawley, R.A.

    1987-06-29

    We describe a simple self-breaking 2 MV gas master switch for the LLNL 2 MV general purpose relativistic electron beam (REB) accelerator. The switch cavity has been hollowed out in a 17.8 cm-thick acrylic slab. The switch gap is 3.55 cm. At 2 MV the maximum field at the cathode is 740 kV cm/sup -1/ and the maximum envelope field is 172 kV cm/sup -1/. The maximum measured switching voltage is 1.90 +- 0.1 MV (10 bar abs). The minimum switching voltage is 1.1 MV (4.3 bar abs). The operating characteristics break away from the 89 kV/(cm atm) dc breakdown strength of SF/sub 6/ at 5 bar abs. Careful electrical and mechanical design as well as strict quality control during assembly and operation have resulted in reliable and reproducible operation.

  17. Electronically commutated serial-parallel switching for motor windings

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2012-03-27

    A method and a circuit for controlling an ac machine comprises controlling a full bridge network of commutation switches which are connected between a multiphase voltage source and the phase windings to switch the phase windings between a parallel connection and a series connection while providing commutation discharge paths for electrical current resulting from inductance in the phase windings. This provides extra torque for starting a vehicle from lower battery current.

  18. Electric field-induced resistive switching, magnetism, and photoresponse modulation in a Pt/Co0.03Zn0.97O/Nb:SrTiO3 multi-function heterostructure

    Science.gov (United States)

    Luo, Zhipeng; Pei, Ling; Li, Meiya; Zhu, Yongdan; Xie, Shuai; Cheng, Xiangyang; Liu, Jiaxian; Ding, Huaqi; Xiong, Rui

    2018-04-01

    A Co0.03Zn0.97O (CZO) thin film was epitaxially grown on a Nb doped (001) SrTiO3 (NSTO) single-crystal substrate by pulsed laser deposition to form a Pt/CZO/NSTO heterostructure. This device exhibits stable bipolar resistive switching, well retention and endurance, multilevel memories, and a resistance ratio of high resistance state (HRS)/low resistance state (LRS) up to 7 × 105. Under the illumination of a 405 nm laser, the HRS of the device showed distinct photoelectricity with an open-circuit voltage of 0.5 V. A stronger ferromagnetism was observed at the HRS than at the LRS. The above phenomenon is attributable to the accumulation and migration of oxygen vacancies at the interface of CZO/NSTO. Our results demonstrated a pathway towards making multifunctional devices that simultaneously exhibit resistive switching, photoelectricity, and ferromagnetism.

  19. Energy reversible switching from amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.; Smith, Casey; Hussain, Muhammad Mustafa

    2013-01-01

    We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young's modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young's modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.

  20. Energy reversible switching from amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-08-01

    We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young\\'s modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young\\'s modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.

  1. Simulation of plasma erosion opening switches

    International Nuclear Information System (INIS)

    Mason, R.J.; Jones, M.E.

    1988-01-01

    The plasma erosion opening switch (PEOS) has been studied with the ANTHEM and ISIS implicit simulation codes. The switch consists of plasma fill injected into a transmission line. The plasma initially shorts out the circuit, but eventually it is removed by self-electrical forces, allowing for the delivery of energy to a load. ANTHEM models the plasma by multiple fluids with electron inertia retained, or by the particle-in-cell (PIC) technique. ISIS is an optimized PIC code. Both codes determine electric and magnetic fields by the implicit moment method. This allows for the study of long time full-switch behavior with simulational zone sizes and time steps that are large compared to a Debye length and plasma period, respectively. Thus, the authors have modeled switch behavior at densities ranging from 5 x 10 11 to 5 x 10 14 electrons/cm -3 over drive pulses ranging from 5 to 250 ns. Here, the magnetic field rose linearly from zero to 0.8 or 3.0 Tesla. Switch gaps spanned from 1.0 to 8.0 cm, and inner radii ranged from 0.5 to 20.0 cm. Opening dynamics is shown to depend sensitively on the assumed electron emission thresholds at the cathode, and on the effective conductivity of the anode. The particle simulations predict broader current channels than the multi-fluid calculations - reasons for this are discussed. The effect of numerical diffusion in implicit simulations is examined. The response to realistic load impedances (10 Ohms for Sandia National Laboratory's PBFA II accelerator) of the opening characteristics is described. Advantages from plasma fill near the load are investigated. The action of preset initial magnetic fields aligned with the power flow, and of trigger magnetic fields for controlled removal of the plasma is discussed

  2. Optical computer switching network

    Science.gov (United States)

    Clymer, B.; Collins, S. A., Jr.

    1985-01-01

    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  3. Manufacturing fuel-switching capability, 1988

    International Nuclear Information System (INIS)

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs

  4. Manufacturing fuel-switching capability, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  5. Stochastic Switching Dynamics

    DEFF Research Database (Denmark)

    Simonsen, Maria

    This thesis treats stochastic systems with switching dynamics. Models with these characteristics are studied from several perspectives. Initially in a simple framework given in the form of stochastic differential equations and, later, in an extended form which fits into the framework of sliding...... mode control. It is investigated how to understand and interpret solutions to models of switched systems, which are exposed to discontinuous dynamics and uncertainties (primarily) in the form of white noise. The goal is to gain knowledge about the performance of the system by interpreting the solution...

  6. High frequency modulation circuits based on photoconductive wide bandgap switches

    Science.gov (United States)

    Sampayan, Stephen

    2018-02-13

    Methods, systems, and devices for high voltage and/or high frequency modulation. In one aspect, an optoelectronic modulation system includes an array of two or more photoconductive switch units each including a wide bandgap photoconductive material coupled between a first electrode and a second electrode, a light source optically coupled to the WBGP material of each photoconductive switch unit via a light path, in which the light path splits into multiple light paths to optically interface with each WBGP material, such that a time delay of emitted light exists along each subsequent split light path, and in which the WBGP material conducts an electrical signal when a light signal is transmitted to the WBGP material, and an output to transmit the electrical signal conducted by each photoconductive switch unit. The time delay of the photons emitted through the light path is substantially equivalent to the time delay of the electrical signal.

  7. Very high plasma switches. Basic plasma physics and switch technology

    International Nuclear Information System (INIS)

    Doucet, H.J.; Roche, M.; Buzzi, J.M.

    1988-01-01

    A review of some high power switches recently developed for very high power technology is made with a special attention to the aspects of plasma physics involved in the mechanisms, which determine the limits of the possible switching parameters

  8. Analysis of aceismatic properties of switch boards

    International Nuclear Information System (INIS)

    Tabuchi, Yoji; Nishikawa, Atsushi

    1986-01-01

    Recently, in order to limit the disaster at the time of earthquakes to the minimum, the aseismatic properties of electric facilities have been regarded as important. By the development and spread of CAE simulation and experimental modal analysis, aseismatic analysis has become feasible also in design section. Taking an example of the switch boards of rigid construction, which have been used mainly for nuclear power plants, the analysis of the aseismatic properties is explained. In the switch boards of rigid construction, the probability of causing resonance behavior due to earthquakes is decreased by making the structure rigid, thus the aseismatic properties are heightened. In the switch boards of rigid construction, the primary natural frequency is heightened usually to above 20 Hz considering earthquake movement and the response of buildings (in the range from 0.5 to 10 Hz). Since the switch boards of rigid construction can be treated as a rigid body in the examination of structural strength, generally static analysis is carried out. The dimensions and weight tend to be large for increasing the rigidity. In most cases, standard equipment can be adopted if the fixing is made strong. The modal analysis of the natural vibration, static stress analysis and time history response analysis were carried out by finite element method. Also the vibration test on a large vibration table was made. The results are reported. (Kako, I.)

  9. Ultrafast gas switching experiments

    International Nuclear Information System (INIS)

    Frost, C.A.; Martin, T.H.; Patterson, P.E.; Rinehart, L.F.; Rohwein, G.J.; Roose, L.D.; Aurand, J.F.; Buttram, M.T.

    1993-01-01

    We describe recent experiments which studied the physics of ultrafast gas breakdown under the extreme overvoltages which occur when a high pressure gas switch is pulse charged to hundreds of kV in 1 ns or less. The highly overvolted peaking gaps produce powerful electromagnetic pulses with risetimes Khz at > 100 kV/m E field

  10. An integrated circuit switch

    Science.gov (United States)

    Bonin, E. L.

    1969-01-01

    Multi-chip integrated circuit switch consists of a GaAs photon-emitting diode in close proximity with S1 phototransistor. A high current gain is obtained when the transistor has a high forward common-emitter current gain.

  11. The Octopus switch

    NARCIS (Netherlands)

    Havinga, Paul J.M.

    2000-01-01

    This chapter1 discusses the interconnection architecture of the Mobile Digital Companion. The approach to build a low-power handheld multimedia computer presented here is to have autonomous, reconfigurable modules such as network, video and audio devices, interconnected by a switch rather than by a

  12. Untriggered water switching

    International Nuclear Information System (INIS)

    Van Devender, J.P.; Martin, T.H.

    Recent experiments indicate that synchronous untriggered multichannel switching in water will permit the development of relatively simple, ultra-low impedance, short pulse, relativistic electron beam (REB) accelerators. These experiments resulted in the delivery of a 1.5 MV, 0.75 MA, 15 ns pulse into a two-ohm line with a current risetime of 2 x 10 14 A/sec. The apparatus consisted of a 3 MV Marx generator and a series of three 112 cm wide strip water lines separated by two edge-plane water-gap switches. The Marx generator charged the first line in less than 400 ns. The first switch then formed five or more channels. The second line was charged in 60 ns and broke down with 10 to 25 channels at a mean field of 1.6 MV/cm. The closure time of each spark channel along both switches was measured with a streak camera and showed low jitter. The resulting fast pulse line construction is simpler and should provide considerable costs savings from previous designs. Multiples of these low impedance lines in parallel can be employed to obtain power levels in the 10 14 W range for REB fusion studies. (U.S.)

  13. Complementary resistive switching in BaTiO3/NiO bilayer with opposite switching polarities

    Science.gov (United States)

    Li, Shuo; Wei, Xianhua; Lei, Yao; Yuan, Xincai; Zeng, Huizhong

    2016-12-01

    Resistive switching behaviors have been investigated in the Au/BaTiO3/NiO/Pt structure by stacking the two elements with different switching types. The conducting atomic force microscope measurements on BaTiO3 thin films and NiO thin films suggest that with the same active resistive switching region, the switching polarities in the two semiconductors are opposite to each other. It is in agreement with the bipolar hysteresis I-V curves with opposite switching polarities for single-layer devices. The bilayer devices show complementary resistive switching (CRS) without electroforming and unipolar resistive switching (URS) after electroforming. The coexistence of CRS and URS is mainly ascribed to the co-effect of electric field and Joule heating mechanisms, indicating that changeable of resistance in this device is dominated by the redistribution of oxygen vacancies in BaTiO3 and the formation, disruption, restoration of conducting filaments in NiO. CRS in bilayer with opposite switching polarities is effective to solve the sneak current without the introduction of any selector elements or an additional metal electrode.

  14. Control synthesis of switched systems

    CERN Document Server

    Zhao, Xudong; Niu, Ben; Wu, Tingting

    2017-01-01

    This book offers its readers a detailed overview of the synthesis of switched systems, with a focus on switching stabilization and intelligent control. The problems investigated are not only previously unsolved theoretically but also of practical importance in many applications: voltage conversion, naval piloting and navigation and robotics, for example. The book considers general switched-system models and provides more efficient design methods to bring together theory and application more closely than was possible using classical methods. It also discusses several different classes of switched systems. For general switched linear systems and switched nonlinear systems comprising unstable subsystems, it introduces novel ideas such as invariant subspace theory and the time-scheduled Lyapunov function method of designing switching signals to stabilize the underlying systems. For some typical switched nonlinear systems affected by various complex dynamics, the book proposes novel design approaches based on inte...

  15. Synchronization Between Two Different Switched Chaotic Systems By Switching Control

    Directory of Open Access Journals (Sweden)

    Du Li Ming

    2016-01-01

    Full Text Available This paper is concerned with the synchronization problem of two different switched chaotic systems, considering the general case that the master-slave switched chaotic systems have uncertainties. Two basic problems are considered: one is projective synchronization of switched chaotic systems under arbitrary switching; the other is projective synchronization of switched chaotic systems by design of switching when synchronization cannot achieved by using any subsystems alone. For the two problems, common Lyapunov function method and multiple Lyapunov function method are used respectively, an adaptive control scheme has been presented, some sufficient synchronization conditions are attainted, and the switching signal is designed. Finally, the numerical simulation is provide to show the effectiveness of our method.

  16. Uncertainty quantification in capacitive RF MEMS switches

    Science.gov (United States)

    Pax, Benjamin J.

    Development of radio frequency micro electrical-mechanical systems (RF MEMS) has led to novel approaches to implement electrical circuitry. The introduction of capacitive MEMS switches, in particular, has shown promise in low-loss, low-power devices. However, the promise of MEMS switches has not yet been completely realized. RF-MEMS switches are known to fail after only a few months of operation, and nominally similar designs show wide variability in lifetime. Modeling switch operation using nominal or as-designed parameters cannot predict the statistical spread in the number of cycles to failure, and probabilistic methods are necessary. A Bayesian framework for calibration, validation and prediction offers an integrated approach to quantifying the uncertainty in predictions of MEMS switch performance. The objective of this thesis is to use the Bayesian framework to predict the creep-related deflection of the PRISM RF-MEMS switch over several thousand hours of operation. The PRISM switch used in this thesis is the focus of research at Purdue's PRISM center, and is a capacitive contacting RF-MEMS switch. It employs a fixed-fixed nickel membrane which is electrostatically actuated by applying voltage between the membrane and a pull-down electrode. Creep plays a central role in the reliability of this switch. The focus of this thesis is on the creep model, which is calibrated against experimental data measured for a frog-leg varactor fabricated and characterized at Purdue University. Creep plasticity is modeled using plate element theory with electrostatic forces being generated using either parallel plate approximations where appropriate, or solving for the full 3D potential field. For the latter, structure-electrostatics interaction is determined through immersed boundary method. A probabilistic framework using generalized polynomial chaos (gPC) is used to create surrogate models to mitigate the costly full physics simulations, and Bayesian calibration and forward

  17. Response switching and self-efficacy in Peer Instruction classrooms

    Science.gov (United States)

    Miller, Kelly; Schell, Julie; Ho, Andrew; Lukoff, Brian; Mazur, Eric

    2015-06-01

    Peer Instruction, a well-known student-centered teaching method, engages students during class through structured, frequent questioning and is often facilitated by classroom response systems. The central feature of any Peer Instruction class is a conceptual question designed to help resolve student misconceptions about subject matter. We provide students two opportunities to answer each question—once after a round of individual reflection and then again after a discussion round with a peer. The second round provides students the choice to "switch" their original response to a different answer. The percentage of right answers typically increases after peer discussion: most students who answer incorrectly in the individual round switch to the correct answer after the peer discussion. However, for any given question there are also students who switch their initially right answer to a wrong answer and students who switch their initially wrong answer to a different wrong answer. In this study, we analyze response switching over one semester of an introductory electricity and magnetism course taught using Peer Instruction at Harvard University. Two key features emerge from our analysis: First, response switching correlates with academic self-efficacy. Students with low self-efficacy switch their responses more than students with high self-efficacy. Second, switching also correlates with the difficulty of the question; students switch to incorrect responses more often when the question is difficult. These findings indicate that instructors may need to provide greater support for difficult questions, such as supplying cues during lectures, increasing times for discussions, or ensuring effective pairing (such as having a student with one right answer in the pair). Additionally, the connection between response switching and self-efficacy motivates interventions to increase student self-efficacy at the beginning of the semester by helping students develop early mastery or

  18. Quasi-Resonant Full-Wave Zero-Current Switching Buck Converter Design, Simulation and Application

    OpenAIRE

    Yanik, G.; Isen, E.

    2015-01-01

    —This paper presents a full wave quasi-resonant zerocurrent switching buck converter design, simulation and application. The converter control uses with zero-current switching (ZCS) technique to decrease the switching losses. Comparing to conventional buck converter, resonant buck converter includes a resonant tank equipped with resonant inductor and capacitor. The converter is analyzed in mathematical for each subintervals. Depending on the desired input and output electrical quantities, con...

  19. Laser activated superconducting switch

    International Nuclear Information System (INIS)

    Wolf, A.A.

    1976-01-01

    A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity

  20. Coulomb Blockade Plasmonic Switch.

    Science.gov (United States)

    Xiang, Dao; Wu, Jian; Gordon, Reuven

    2017-04-12

    Tunnel resistance can be modulated with bias via the Coulomb blockade effect, which gives a highly nonlinear response current. Here we investigate the optical response of a metal-insulator-nanoparticle-insulator-metal structure and show switching of a plasmonic gap from insulator to conductor via Coulomb blockade. By introducing a sufficiently large charging energy in the tunnelling gap, the Coulomb blockade allows for a conductor (tunneling) to insulator (capacitor) transition. The tunnelling electrons can be delocalized over the nanocapacitor again when a high energy penalty is added with bias. We demonstrate that this has a huge impact on the plasmonic resonance of a 0.51 nm tunneling gap with ∼70% change in normalized optical loss. Because this structure has a tiny capacitance, there is potential to harness the effect for high-speed switching.

  1. Cryogenic switched MOSFET characterization

    Science.gov (United States)

    1981-01-01

    Both p channel and n channel enhancement mode MOSFETs can be readily switched on and off at temperatures as low as 2.8 K so that switch sampled readout of a VLWIR Ge:Ga focal plane is electronically possible. Noise levels as low as 100 rms electrons per sample (independent of sample rate) can be achieved using existing p channel MOSFETs, at overall rates up to 30,000 samples/second per multiplexed channel (e.g., 32 detectors at a rate of almost 1,000 frames/second). Run of the mill devices, including very low power dissipation n channel FETs would still permit noise levels of the order of 500 electrons/sample.

  2. Practical switching power supply design

    CERN Document Server

    Brown, Martin C

    1990-01-01

    Take the ""black magic"" out of switching power supplies with Practical Switching Power Supply Design! This is a comprehensive ""hands-on"" guide to the theory behind, and design of, PWM and resonant switching supplies. You'll find information on switching supply operation and selecting an appropriate topology for your application. There's extensive coverage of buck, boost, flyback, push-pull, half bridge, and full bridge regulator circuits. Special attention is given to semiconductors used in switching supplies. RFI/EMI reduction, grounding, testing, and safety standards are also deta

  3. Composite Material Switches

    Science.gov (United States)

    Javadi, Hamid (Inventor)

    2002-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  4. MCT/MOSFET Switch

    Science.gov (United States)

    Rippel, Wally E.

    1990-01-01

    Metal-oxide/semiconductor-controlled thyristor (MCT) and metal-oxide/semiconductor field-effect transistor (MOSFET) connected in switching circuit to obtain better performance. Offers high utilization of silicon, low forward voltage drop during "on" period of operating cycle, fast turnon and turnoff, and large turnoff safe operating area. Includes ability to operate at high temperatures, high static blocking voltage, and ease of drive.

  5. Python Switch Statement

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available The Python programming language does not have a built in switch/case control structure as found in many other high level programming languages. It is thought by some that this is a deficiency in the language, and the control structure should be added. This paper demonstrates that not only is the control structure not needed, but that the methods available in Python are more expressive than built in case statements in other high level languages.

  6. Ferroelectric switching of elastin

    Science.gov (United States)

    Liu, Yuanming; Cai, Hong-Ling; Zelisko, Matthew; Wang, Yunjie; Sun, Jinglan; Yan, Fei; Ma, Feiyue; Wang, Peiqi; Chen, Qian Nataly; Zheng, Hairong; Meng, Xiangjian; Sharma, Pradeep; Zhang, Yanhang; Li, Jiangyu

    2014-01-01

    Ferroelectricity has long been speculated to have important biological functions, although its very existence in biology has never been firmly established. Here, we present compelling evidence that elastin, the key ECM protein found in connective tissues, is ferroelectric, and we elucidate the molecular mechanism of its switching. Nanoscale piezoresponse force microscopy and macroscopic pyroelectric measurements both show that elastin retains ferroelectricity at 473 K, with polarization on the order of 1 μC/cm2, whereas coarse-grained molecular dynamics simulations predict similar polarization with a Curie temperature of 580 K, which is higher than most synthetic molecular ferroelectrics. The polarization of elastin is found to be intrinsic in tropoelastin at the monomer level, analogous to the unit cell level polarization in classical perovskite ferroelectrics, and it switches via thermally activated cooperative rotation of dipoles. Our study sheds light onto a long-standing question on ferroelectric switching in biology and establishes ferroelectricity as an important biophysical property of proteins. This is a critical first step toward resolving its physiological significance and pathological implications. PMID:24958890

  7. Carbon nanotube network-silicon oxide non-volatile switches.

    Science.gov (United States)

    Liao, Albert D; Araujo, Paulo T; Xu, Runjie; Dresselhaus, Mildred S

    2014-12-08

    The integration of carbon nanotubes with silicon is important for their incorporation into next-generation nano-electronics. Here we demonstrate a non-volatile switch that utilizes carbon nanotube networks to electrically contact a conductive nanocrystal silicon filament in silicon dioxide. We form this device by biasing a nanotube network until it physically breaks in vacuum, creating the conductive silicon filament connected across a small nano-gap. From Raman spectroscopy, we observe coalescence of nanotubes during breakdown, which stabilizes the system to form very small gaps in the network~15 nm. We report that carbon nanotubes themselves are involved in switching the device to a high resistive state. Calculations reveal that this switching event occurs at ~600 °C, the temperature associated with the oxidation of nanotubes. Therefore, we propose that, in switching to a resistive state, the nanotube oxidizes by extracting oxygen from the substrate.

  8. Neutron and gamma irradiation effects on power semiconductor switches

    Science.gov (United States)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  9. Neutron and gamma irradiation effects on power semiconductor switches

    International Nuclear Information System (INIS)

    Schwarze, G.E.; Frasca, A.J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN bipolar junction transistors (BJTs), and metal-oxide-semiconductor field effect transistors (MOSFETs)

  10. Helical EMG module with explosive current opening switches

    International Nuclear Information System (INIS)

    Chernyshev, V.K.; Vakhrushev, V.V.; Volkov, G.I.; Ivanov, V.A.; Fetisov, I.K.

    1990-01-01

    To carry out the experimental work to study plasma properties, electromagnetic sources with 10 6 to 10 8 J of stored energy delivered to the load in microsecond time, are required. Among the current electromagnetic storage devices, the explosive magnetic generators (EMG) are of the largest energy capacity. The disadvantages of this type of generators is relatively long time (ten of microseconds) of electromagnetic energy cumulation in the deformable circuit. To reduce the time of energy transfer to the load to a microsecond range the switching scheme is generally used, where the cumulation circuit and that of the load are separated and connected in parallel via a switching element (opening switch) providing generation of desired power. In this paper, some ways and means of designing opening switches to generate high current pulses have been investigated. The opening switches to generate high current pulses have been investigated. The opening switches which operation is based on mechanic destruction of the conductor using high explosive, have the highest and most reliable performance. The authors have explored the mechanic disruption of a thin conductor (foil), the technique based on throwing the foil at the ribbed barrier of electric insulator material. The report presents the data obtained in studying the operation of this type of opening switch having cylindrical shape, 200 mm in diameter and 200 mm long, designed for generation of 5.5 MA current pulse in the load

  11. Polarity-dependent reversible resistance switching in Ge-Sb-Te phase-change thin films

    NARCIS (Netherlands)

    Pandian, Ramanathaswamy; Kooi, Bart J.; Palasantzas, George; De Hosson, Jeff T. M.; Pauza, Andrew

    2007-01-01

    In this paper, we demonstrate reversible resistance switching in a capacitorlike cell using a Ge-Sb-Te film that does not rely on amorphous-crystalline phase change. The polarity of the applied electric field switches the cell resistance between lower- and higher-resistance states, as was observed

  12. Resistance switching at the interface of LaAlO3/SrTiO3

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Zhao, J.L.; Sun, J.R.

    2010-01-01

    At the interface of LaAlO3/SrTiO3 with film thickness of 3 unit cells or greater, a reproducible electric-field-induced bipolar resistance switching of the interfacial conduction is observed on nanometer scale by a biased conducting atomic force microscopy under vacuum environment. The switching ...

  13. 35-kV GaAs subnanosecond photoconductive switches

    Science.gov (United States)

    Pocha, Michael D.; Druce, Robert L.

    1990-12-01

    High-voltage, fast-pulse generation using GaAs photoconductive switches is investigated. It is possible to to generate 35-kV pulses with risetimes as short as 135 ps using 5-mm gap switches, and electric field hold-off of greater than 100 kV/cm is achieved. An approximately 500-ps FWHM on/off electrical pulse is generated with an amplitude of approximately 3 kV using neutron-irradiated GaAs having short carrier lifetimes. Experimental results are described, and fabrication of switches and the diagnostics used to measure these fast signals are discussed. Experience with the nonlinear lock-on and avalanche modes of operation observed in GaAs is also described.

  14. Nanoscale mechanical switching of ferroelectric polarization via flexoelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yijia; Hong, Zijian; Britson, Jason; Chen, Long-Qing [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-01-12

    Flexoelectric coefficient is a fourth-rank tensor arising from the coupling between strain gradient and electric polarization and thus exists in all crystals. It is generally ignored for macroscopic crystals due to its small magnitude. However, at the nanoscale, flexoelectric contributions may become significant and can potentially be utilized for device applications. Using the phase-field method, we study the mechanical switching of electric polarization in ferroelectric thin films by a strain gradient created via an atomic force microscope tip. Our simulation results show good agreement with existing experimental observations. We examine the competition between the piezoelectric and flexoelectric effects and provide an understanding of the role of flexoelectricity in the polarization switching. Also, by changing the pressure and film thickness, we reveal that the flexoelectric field at the film bottom can be used as a criterion to determine whether domain switching may happen under a mechanical force.

  15. The phenomenon of voltage controlled switching in disordered superconductors

    International Nuclear Information System (INIS)

    Ghosh, Sanjib; De Munshi, D

    2014-01-01

    The superconductor-to-insulator transition (SIT) is a phenomenon occurring in highly disordered superconductors and may be useful in the development of superconducting switches. The SIT has been demonstrated to be induced by different external parameters: temperature, magnetic field, electric field, etc. However, the electric field induced SIT (ESIT), which has been experimentally demonstrated for some specific materials, holds particular promise for practical device development. Here, we demonstrate, from theoretical considerations, the occurrence of the ESIT. We also propose a general switching device architecture using the ESIT and study some of its universal behavior, such as the effects of sample size, disorder strength and temperature on the switching action. This work provides a general framework for the development of such a device. (paper)

  16. Rotation sensor switch

    International Nuclear Information System (INIS)

    Sevec, J.B.

    1978-01-01

    A protective device to provide a warning if a piece of rotating machinery slows or stops is comprised of a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal

  17. 49 CFR 236.757 - Lock, electric.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lock, electric. 236.757 Section 236.757... Lock, electric. A device to prevent or restrict the movement of a lever, a switch or a movable bridge, unless the locking member is withdrawn by an electrical device, such as an electromagnet, solenoid or...

  18. High-speed 2 × 2 silicon-based electro-optic switch with nanosecond switch time

    International Nuclear Information System (INIS)

    Xue-Jun, Xu; Shao-Wu, Chen; Hai-Hua, Xu; Yang, Sun; Yu-De, Yu; Jin-Zhong, Yu; Qi-Ming, Wang

    2009-01-01

    A 2 × 2 electro-optic switch is experimentally demonstrated using the optical structure of a Mach–Zehnder interferometer (MZI) based on a submicron rib waveguide and the electrical structure of a PIN diode on silicon-on-insulator (SOI). The switch behaviour is achieved through the plasma dispersion effect of silicon. The device has a modulation arm of 1 mm in length and cross-section of 400 nm×340 nm. The measurement results show that the switch has a V π L π figure of merit of 0.145 V·cm and the extinction ratios of two output ports and cross talk are 40 dB, 28 dB and −28 dB, respectively. A 3 dB modulation bandwidth of 90 MHz and a switch time of 6.8 ns for the rise edge and 2.7 ns for the fall edge are also demonstrated

  19. Switching speed limitations of high power IGBT modules

    DEFF Research Database (Denmark)

    Incau, Bogdan Ioan; Trintis, Ionut; Munk-Nielsen, Stig

    2015-01-01

    for the blocking dc-link voltage. Switching losses are analyzed upon a considerable variation of resistor value from turn-on gate driver side. Short circuit operations are investigated along with safe operating area for entire module to validate electrical capabilities under extreme conditions....

  20. Energy conversion loops for flux-switching PM machine analysis

    NARCIS (Netherlands)

    Ilhan, E.; Motoasca, T.E.; Paulides, J.J.H.; Lomonova, E.

    2012-01-01

    Induction and synchronous machines have traditionally been the first choice of automotive manufacturers for electric/hybrid vehicles. However, these conventional machines are not able anymore to meet the increasing demands for a higher energy density due to space limitation in cars. Flux-switching

  1. High voltage fast switches for nuclear applications

    International Nuclear Information System (INIS)

    Chatroux, D.; Lausenaz, Y.; Villard, J.F.; Lafore, D.

    1999-01-01

    SILVA process consists in a selective ionization of the 235 uranium isotope, using laser beams generated by dye lasers pumped by copper vapour laser (C.V.L.). SILVA involves power electronic for 3 power supplies: - copper vapour laser power supply, - extraction power supply to generate the electric field in the vapour, and - electron beam power supply for vapour generation. This article reviews the main switches that are proposed on the market or are on development and that could be used in SILVA power supplies. The SILVA technical requirements are: high power, high voltage and very short pulses (200 ns width). (A.C.)

  2. Spin Switching via Quantum Dot Spin Valves

    Science.gov (United States)

    Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.

    2018-01-01

    We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.

  3. Investigation on properties of ultrafast switching in a bulk gallium arsenide avalanche semiconductor switch

    International Nuclear Information System (INIS)

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Yuan, Xuelin

    2014-01-01

    Properties of ultrafast switching in a bulk gallium arsenide (GaAs) avalanche semiconductor switch based on semi-insulating wafer, triggered by an optical pulse, were analyzed using physics-based numerical simulations. It has been demonstrated that when a voltage with amplitude of 5.2 kV is applied, after an exciting optical pulse with energy of 1 μJ arrival, the structure with thickness of 650 μm reaches a high conductivity state within 110 ps. Carriers are created due to photons absorption, and electrons and holes drift to anode and cathode terminals, respectively. Static ionizing domains appear both at anode and cathode terminals, and create impact-generated carriers which contribute to the formation of electron-hole plasma along entire channel. When the electric field in plasma region increases above the critical value (∼4 kV/cm) at which the electrons drift velocity peaks, a domain comes into being. An increase in carrier concentration due to avalanche multiplication in the domains reduces the domain width and results in the formation of an additional domain as soon as the field outside the domains increases above ∼4 kV/cm. The formation and evolution of multiple powerfully avalanching domains observed in the simulations are the physical reasons of ultrafast switching. The switch exhibits delayed breakdown with the characteristics affected by biased electric field, current density, and optical pulse energy. The dependence of threshold energy of the exciting optical pulse on the biased electric field is discussed

  4. MENGAPA PERUSAHAAN MELAKUKAN AUDITOR SWITCH?

    Directory of Open Access Journals (Sweden)

    Kadek Sumadi

    2011-01-01

    Full Text Available The existence of a large number of accounting firms allowsprovides companies choices whether to stay with current firm or switchto another accounting firm. Decision of Minister of FinanceNo.423/KMK.06/2002 states that a company must switch auditor afterfive years of consecutive assignment. This is mandatory. The questionrises when a company voluntarily switches its auditor. Why does thishappen?One of the reasons is that management does not satisfy withauditor opinion, except for unqualified opinion. New management teamwould directly or indirectly encourage auditor switch to align accountingand reporting policies. Moreover an expanding company expects positivereaction when it does auditor switch. Profitability is also one reason fora company to switch auditor, for example, when a company earns moreprofit it tends to hire more credible auditor. On the other hand, when thecompany faces a financial distress, it probably would switch auditor aswell.

  5. Electrostatically actuated resonant switches for earthquake detection

    KAUST Repository

    Ramini, Abdallah H.

    2013-04-01

    The modeling and design of electrostatically actuated resonant switches (EARS) for earthquake and seismic applications are presented. The basic concepts are based on operating an electrically actuated resonator close to instability bands of frequency, where it is forced to collapse (pull-in) if operated within these bands. By careful tuning, the resonator can be made to enter the instability zone upon the detection of the earthquake signal, thereby pulling-in as a switch. Such a switching action can be functionalized for useful functionalities, such as shutting off gas pipelines in the case of earthquakes, or can be used to activate a network of sensors for seismic activity recording in health monitoring applications. By placing a resonator on a printed circuit board (PCB) of a natural frequency close to that of the earthquake\\'s frequency, we show significant improvement on the detection limit of the EARS lowering it considerably to less than 60% of the EARS by itself without the PCB. © 2013 IEEE.

  6. Low-Crosstalk Composite Optical Crosspoint Switches

    Science.gov (United States)

    Pan, Jing-Jong; Liang, Frank

    1993-01-01

    Composite optical switch includes two elementary optical switches in tandem, plus optical absorbers. Like elementary optical switches, composite optical switches assembled into switch matrix. Performance enhanced by increasing number of elementary switches. Advantage of concept: crosstalk reduced to acceptably low level at moderate cost of doubling number of elementary switches rather than at greater cost of tightening manufacturing tolerances and exerting more-precise control over operating conditions.

  7. Compound semiconductor optical waveguide switch

    Science.gov (United States)

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  8. Electrically Tunable Plasmonic Resonances with Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Ni, Xingjie

    2012-01-01

    Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance.......Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance....

  9. Low-temperature DC-contact piezoelectric switch operable in high magnetic fields

    CERN Document Server

    Kaltenbacher, T; Doser, M; Kellerbauer, A; Pribyl, W

    2013-01-01

    A piezoelectric single-pole single-throw (SPST) switch has been developed, since there is no satisfying commercial low-resistance, high current DC-contact RF switch available which is operable at 4.2K and in a high magnetic field of at least 0.5T. This piezoelectric switch shows very low insertion loss of less than -0.1dB within a bandwidth of 100MHz when operated at 4.2K. The switch could also be used to mechanically disconnect and connect electrodes or electrical circuits from one another.

  10. Low-temperature DC-contact piezoelectric switch operable in high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenbacher, Thomas, E-mail: thomas.kaltenbacher@cern.ch [Physics and Accelerator Departments, CERN, 1211 Geneva 23 (Switzerland); Institute of Electronics, Graz University of Technology, Inffeldgasse 12, 8010 Graz (Austria); Caspers, Fritz; Doser, Michael [Physics and Accelerator Departments, CERN, 1211 Geneva 23 (Switzerland); Kellerbauer, Alban [Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg (Germany); Pribyl, Wolfgang [Institute of Electronics, Graz University of Technology, Inffeldgasse 12, 8010 Graz (Austria)

    2013-11-21

    A piezoelectric single-pole single-throw (SPST) switch has been developed, since there is no satisfying commercial low-resistance, high current DC-contact RF switch available which is operable at 4.2 K and in a high magnetic field of at least 0.5 T. This piezoelectric switch shows very low insertion loss of less than −0.1 dB within a bandwidth of 100 MHz when operated at 4.2 K. The switch could also be used to mechanically disconnect and connect electrodes or electrical circuits from one another.

  11. Neuromorphic atomic switch networks.

    Directory of Open Access Journals (Sweden)

    Audrius V Avizienis

    Full Text Available Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system.

  12. Software Switching for Data Acquisition

    CERN Multimedia

    CERN. Geneva; Malone, David

    2016-01-01

    In this talk we discuss the feasibility of replacing telecom-class routers with a topology of commodity servers acting as software switches in data acquisition. We extend the popular software switch, Open vSwitch, with a dedicated, throughput-oriented buffering mechanism. We compare the performance under heavy many-to-one congestion to typical Ethernet switches and evaluate the scalability when building larger topologies, exploiting the integration with software-defined networking technologies. Please note that David Malone will speak on behalf of Grzegorz Jereczek.

  13. Quantum switching of polarization in mesoscopic ferroelectrics

    International Nuclear Information System (INIS)

    Sa de Melo, C.A.

    1996-01-01

    A single domain of a uniaxial ferroelectric grain may be thought of as a classical permanent memory. At the mesoscopic level this system may experience considerable quantum fluctuations due to tunneling between two possible memory states, thus destroying the classical permanent memory effect. To study these quantum effects the concrete example of a mesoscopic uniaxial ferroelectric grain is discussed, where the orientation of the electric polarization determines two possible memory states. The possibility of quantum switching of the polarization in mesoscopic uniaxial ferroelectric grains is thus proposed. To determine the degree of memory loss, the tunneling rate between the two polarization states is calculated at zero temperature both in the absence and in the presence of an external static electric field. In addition, a discussion of crossover temperature between thermally activated behavior and quantum tunneling behavior is presented. And finally, environmental effects (phonons, defects, and surfaces) are also considered. copyright 1996 The American Physical Society

  14. Reversible Resistance Switching Effect in Amorphous Ge1Sb4Te7 Thin Films without Phase Transformation

    International Nuclear Information System (INIS)

    Hua-Jun, Sun; Li-Song, Hou; Yi-Qun, Wu; Xiao-Dong, Tang

    2009-01-01

    We demonstrate a reversible resistance switching effect that does not rely on amorphous-crystalline phase transformation in a nanoscale capacitor-like cell using Ge 1 Sb 4 Te 7 films as the working material. The polarity and amplitude of the applied electric voltage switches the cell resistance between low- and high-resistance states, as revealed in the current-voltage characteristics of the film by conductive atomic force microscopy (CAFM). This reversible SET/RESET switching effect is induced by voltage pulses and their polarity. The change of electrical resistance due to the switching effect is approximately two orders of magnitude

  15. Ab initio investigation of the switching behavior of the dithiole-benzene nano-molecular wire

    International Nuclear Information System (INIS)

    Darvish Ganji, M.; Rungger, I.

    2008-01-01

    We report a first-principle study of electrical transport and switching behavior in a single molecular conductor consisting of a dithiole-benzene sandwiched between two Au( 100) electrodes. Ab initio total energy calculations reveal dithiole-benzene molecules on a gold surface, contacted by a monoatomic gold scanning tunneling microscope tip to have two classes of low energy conformations with differing symmetries. Lateral motion of the tip or excitation of the molecule cause it 10 change from one conformation class to the other and to switch between a strongly and a weakly conducting state. Thus, surprisingly. despite their apparent simplicity, these Au-dithiole-benzene -Au nano wires are shown to be electrically bi-stable switches, the smallest two-terminal molecular switches to date. The projected density of states and transmission coefficients are analyzed, and it suggests that the variation of the coupling between the molecule and the electrodes with external bias leads to switching behavior

  16. Switching and ruling; Schalten und walten

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzburger, Heiko

    2013-04-15

    The year 2012 was a record year for the photovoltaics in Germany. Since mid-2012, the reduction of the feed-in tariff for solar power put the solar market under pressure. While in the past as much solar power should be fed in the power distribution system, own consumption, self-management and storage are paramount in the future. Self-generated solar power is highly profitable. The inverter is the control center for the own consumption. This inverter is considered as the heart of the solar generator and the interface to the electricity grid. SMA Solar Technology AG (Niestetal, Federal Republic of Germany) offers the Sunny Home Manager as an inverter for the power consumption in buildings. This inverter conducts the solar electricity to the consumers in the building such as the washing machine, dishwasher, refrigerator or heat pump. Due to an opportune switching on or switching off of these consumers, domestic consumption rate of solar power can be increased up to 40 %.

  17. Multi-polar resistance switching and memory effect in copper phthalocyanine junctions

    International Nuclear Information System (INIS)

    Qiao Shi-Zhu; Kang Shi-Shou; Li Qiang; Zhong Hai; Kang Yun; Yu Shu-Yun; Han Guang-Bing; Yan Shi-Shen; Mei Liang-Mo; Qin Yu-Feng

    2014-01-01

    Copper phthalocyanine junctions, fabricated by magnetron sputtering and evaporating methods, show multi-polar (unipolar and bipolar) resistance switching and the memory effect. The multi-polar resistance switching has not been observed simultaneously in one organic material before. With both electrodes being cobalt, the unipolar resistance switching is universal. The high resistance state is switched to the low resistance state when the bias reaches the set voltage. Generally, the set voltage increases with the thickness of copper phthalocyanine and decreases with increasing dwell time of bias. Moreover, the low resistance state could be switched to the high resistance state by absorbing the phonon energy. The stability of the low resistance state could be tuned by different electrodes. In Au/copper phthalocyanine/Co system, the low resistance state is far more stable, and the bipolar resistance switching is found. Temperature dependence of electrical transport measurements demonstrates that there are no obvious differences in the electrical transport mechanism before and after the resistance switching. They fit quite well with Mott variable range hopping theory. The effect of Al 2 O 3 on the resistance switching is excluded by control experiments. The holes trapping and detrapping in copper phthalocyanine layer are responsible for the resistance switching, and the interfacial effect between electrodes and copper phthalocyanine layer affects the memory effect. (interdisciplinary physics and related areas of science and technology)

  18. Hybrid switch for resonant power converters

    Science.gov (United States)

    Lai, Jih-Sheng; Yu, Wensong

    2014-09-09

    A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.

  19. LCT protective dump-switch tests

    International Nuclear Information System (INIS)

    Parsons, W.M.

    1981-01-01

    Each of the six coils in the Large Coil Task (LCT) has a separate power supply, dump resistor, and switching circuit. Each switching circuit contains five switches, two of which are redundant. The three remaining switches perform separate duties in an emergency dump situation. These three switches were tested to determine their ability to meet the LCT conditions

  20. Circuit switched optical networks

    DEFF Research Database (Denmark)

    Kloch, Allan

    2003-01-01

    Some of the most important components required for enabling optical networking are investigated through both experiments and modelling. These all-optical components are the wavelength converter, the regenerator and the space switch. When these devices become "off-the-shelf" products, optical cross......, it is expected that the optical solution will offer an economical benefit for hight bit rate networks. This thesis begins with a discussion of the expected impact on communications systems from the rapidly growing IP traffic, which is expected to become the dominant source for traffic. IP traffic has some...... characteristics, which are best supported by an optical network. The interest for such an optical network is exemplified by the formation of the ACTS OPEN project which aim was to investigate the feasibility of an optical network covering Europe. Part of the work presented in this thesis is carried out within...

  1. Switching behaviour of individual Ag-TCNQ nanowires: an in situ transmission electron microscopy study

    Science.gov (United States)

    Ran, Ke; Rösner, Benedikt; Butz, Benjamin; Fink, Rainer H.; Spiecker, Erdmann

    2016-10-01

    The organic semiconductor silver-tetracyanoquinodimethane (Ag-TCNQ) exhibits electrical switching and memory characteristics. Employing a scanning tunnelling microscopy setup inside a transmission electron microscope, the switching behaviour of individual Ag-TCNQ nanowires (NWs) is investigated in detail. For a large number of NWs, the switching between a high (OFF) and a low (ON) resistance state was successfully stimulated by negative bias sweeps. Fitting the experimental I-V curves with a Schottky emission function makes the switching features prominent and thus enables a direct evaluation of the switching process. A memory cycle including writing, reading and erasing features is demonstrated at an individual NW. Moreover, electronic failure mechanisms due to Joule heating are discussed. These findings have a significant impact on our understanding of the switching behaviour of Ag-TCNQ.

  2. Improved switch-resistor packaging

    Science.gov (United States)

    Redmerski, R. E.

    1980-01-01

    Packaging approach makes resistors more accessible and easily identified with specific switches. Failures are repaired more quickly because of improved accessibility. Typical board includes one resistor that acts as circuit breaker, and others are positioned so that their values can be easily measured when switch is operated. Approach saves weight by using less wire and saves valuable panel space.

  3. Superconductivity, energy storage and switching

    International Nuclear Information System (INIS)

    Laquer, H.L.

    1974-01-01

    The phenomenon of superconductivity can contribute to the technology of energy storage and switching in two distinct ways. On one hand the zero resistivity of the superconductor can produce essentially infinite time constants so that an inductive storage system can be charged from very low power sources. On the other hand, the recovery of finite resistivity in a normal-going superconducting switch can take place in extremely short times, so that a system can be made to deliver energy at a very high power level. Topics reviewed include: physics of superconductivity, limits to switching speed of superconductors, physical and engineering properties of superconducting materials and assemblies, switching methods, load impedance considerations, refrigeration economics, limitations imposed by present day and near term technology, performance of existing and planned energy storage systems, and a comparison with some alternative methods of storing and switching energy. (U.S.)

  4. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.; Smith, Casey; Hussain, Muhammad Mustafa

    2013-01-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  5. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-04-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  6. Semi-conductor switches

    International Nuclear Information System (INIS)

    1981-01-01

    Methods are described of improving certain electrical characteristics of bidirectional thyristors by selective irradiation of the boundary region between current-carrying portions of the device. Irradiation, preferably by electrons but also by neutrons, gamma radiation or protons, causes carrier lifetime reducing lattice defects. (U.K.)

  7. Switching Phenomena in a System with No Switches

    Science.gov (United States)

    Preis, Tobias; Stanley, H. Eugene

    2010-02-01

    It is widely believed that switching phenomena require switches, but this is actually not true. For an intriguing variety of switching phenomena in nature, the underlying complex system abruptly changes from one state to another in a highly discontinuous fashion. For example, financial market fluctuations are characterized by many abrupt switchings creating increasing trends ("bubble formation") and decreasing trends ("financial collapse"). Such switching occurs on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for a few seconds. We analyze a database containing 13,991,275 German DAX Future transactions recorded with a time resolution of 10 msec. For comparison, a database providing 2,592,531 of all S&P500 daily closing prices is used. We ask whether these ubiquitous switching phenomena have quantifiable features independent of the time horizon studied. We find striking scale-free behavior of the volatility after each switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of fluctuations in transaction volume and time intervals between trades. We show that these financial market switching processes have properties similar to those of phase transitions. We suggest that the well-known catastrophic bubbles that occur on large time scales—such as the most recent financial crisis—are no outliers but single dramatic representatives caused by the switching between upward and downward trends on time scales varying over nine orders of magnitude from very large (≈102 days) down to very small (≈10 ms).

  8. Method and device for current driven electric energy conversion

    DEFF Research Database (Denmark)

    2012-01-01

    Device comprising an electric power converter circuit for converting electric energy. The converter circuit comprises a switch arrangement with two or more controllable electric switches connected in a switching configuration and controlled so as to provide a current drive of electric energy from...... configurations such as half bridge buck, full bridge buck, half bridge boost, or full bridge boost. A current driven conversion is advantageous for high efficient energy conversion from current sources such as solar cells or where a voltage source is connected through long cables, e.g. powerline cables for long...... an associated electric source connected to a set of input terminals. This is obtained by the two or more electric swiches being connected and controlled to short-circuit the input terminals during a part of a switching period. Further, a low pass filter with a capacitor and an inductor are provided to low pass...

  9. Method and system for a gas tube switch-based voltage source high voltage direct current transmission system

    Science.gov (United States)

    She, Xu; Chokhawala, Rahul Shantilal; Zhou, Rui; Zhang, Di; Sommerer, Timothy John; Bray, James William

    2016-12-13

    A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of the one or more gas tube switching devices during a first portion of an operational cycle and "switch off" the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.

  10. Nonvolatile Resistive Switching Memory Utilizing Cobalt Embedded in Gelatin

    Directory of Open Access Journals (Sweden)

    Cheng-Jung Lee

    2017-12-01

    Full Text Available This study investigates the preparation and electrical properties of Al/cobalt-embedded gelatin (CoG/ indium tin oxide (ITO resistive switching memories. Co. elements can be uniformly distributed in gelatin without a conventional dispersion procedure, as confirmed through energy dispersive X-ray analyzer and X-ray photoelectron spectroscopy observations. With an appropriate Co. concentration, Co. ions can assist the formation of an interfacial AlOx layer and improve the memory properties. High ON/OFF ratio, good retention capability, and good endurance switching cycles are demonstrated with 1 M Co. concentration, in contrast to 0.5 M and 2 M memory devices. This result can be attributed to the suitable thickness of the interfacial AlOx layer, which acts as an oxygen reservoir and stores and releases oxygen during switching. The Co. element in a solution-processed gelatin matrix has high potential for bio-electronic applications.

  11. DETERMINANT OF DOWNWARD AUDITOR SWITCHING

    Directory of Open Access Journals (Sweden)

    Totok Budisantoso

    2017-12-01

    Full Text Available Abstract: Determinant of Downward Auditor Switching. This study examines the factors that influence downward auditor switching in five ASEAN countries. Fixed effect logistic regression was used as analytical method. This study found that opinion shopping occurred in ASEAN, especially in distress companies. Companies with complex businesses will retain the Big Four auditors to reduce complexity and audit costs. Audit and public committees serve as guardians of auditor quality. On the other hand, shareholders failed to maintain audit quality. It indicates that there is entrenchment effect in auditor switching.

  12. Enhanced Thermo-Optical Switching of Paraffin-Wax Composite Spots under Laser Heating.

    Science.gov (United States)

    Said, Asmaa; Salah, Abeer; Fattah, Gamal Abdel

    2017-05-12

    Thermo-optical switches are of particular significance in communications networks where increasingly high switching speeds are required. Phase change materials (PCMs), in particular those based on paraffin wax, provide wealth of exciting applications with unusual thermally-induced switching properties, only limited by paraffin's rather low thermal conductivity. In this paper, the use of different carbon fillers as thermal conductivity enhancers for paraffin has been investigated, and a novel structure based on spot of paraffin wax as a thermo-optic switch is presented. Thermo-optical switching parameters are enhanced with the addition of graphite and graphene, due to the extreme thermal conductivity of the carbon fillers. Differential Scanning Calorimetry (DSC) and Scanning electron microscope (SEM) are performed on paraffin wax composites, and specific heat capacities are calculated based on DSC measurements. Thermo-optical switching based on transmission is measured as a function of the host concentration under conventional electric heating and laser heating of paraffin-carbon fillers composites. Further enhancements in thermo-optical switching parameters are studied under Nd:YAG laser heating. This novel structure can be used in future networks with huge bandwidth requirements and electric noise free remote aerial laser switching applications.

  13. Voltage-Driven Magnetization Switching and Spin Pumping in Weyl Semimetals

    Science.gov (United States)

    Kurebayashi, Daichi; Nomura, Kentaro

    2016-10-01

    We demonstrate electrical magnetization switching and spin pumping in magnetically doped Weyl semimetals. The Weyl semimetal is a three-dimensional gapless topological material, known to have nontrivial coupling between the charge and the magnetization due to the chiral anomaly. By solving the Landau-Lifshitz-Gilbert equation for a multilayer structure of a Weyl semimetal, an insulator and a metal while taking the charge-magnetization coupling into account, magnetization dynamics is analyzed. It is shown that the magnetization dynamics can be driven by the electric voltage. Consequently, switching of the magnetization with a pulsed electric voltage can be achieved, as well as precession motion with an applied oscillating electric voltage. The effect requires only a short voltage pulse and may therefore be energetically favorable for us in spintronics devices compared to conventional spin-transfer torque switching.

  14. High current vacuum closing switch

    International Nuclear Information System (INIS)

    Dolgachev, G.I.; Maslennikov, D.D.; Romanov, A.S.; Ushakov, A.G.

    2005-01-01

    The paper proposes a powerful pulsed closing vacuum switch for high current commutation consisting of series of the vacuum diodes with near 1 mm gaps having closing time determined by the gaps shortening with the near-electrode plasmas [ru

  15. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [State Univ. of New York (SUNY), Plattsburgh, NY (United States); Univ. of California, Davis, CA (United States)

    2012-01-20

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.

  16. Switching of chirality by light

    NARCIS (Netherlands)

    Feringa, B.L.; Schoevaars, A.M; Jager, W.F.; de Lange, B.; Huck, N.P.M.

    1996-01-01

    Optically active photoresponsive molecules are described by which control of chirality is achieved by light. These chiroptical molecular switches are based on inherently dissymmetric overcrowded alkenes and the synthesis, resolution and dynamic stereochemical properties are discussed. Introduction

  17. Aurora oil switch upgrade program

    International Nuclear Information System (INIS)

    Warren, T.

    1989-03-01

    This report describes the short pulse synchronization requirements, the original Aurora trigger scheme, and the PI/SNLA approach to improving the synchronization. It also describes the oil switching design study undertaken as the first phase of the program. A discussion of oil-switch closure analysis and the conceptual design motivated by this analysis are presented. This paper also describes the oil-switch trigger pulser tests required to validate the concept. This includes the design of the testing facility, a description of the test goals, and a discussion of the results. This paper finally describes oil-switch trigger pulser testing on one of the four Aurora Blumlein modules, which includes the hardware design and operation, the testing goals, hardware installation, and test results. 9 refs., 26 figs

  18. Solid state bistable power switch

    Science.gov (United States)

    Bartko, J.; Shulman, H.

    1970-01-01

    Tin and copper provide high current and switching time capabilities for high-current resettable fuses. They show the best performance for trip current and degree of reliability, and have low coefficients of thermal expansion.

  19. Intrinsic nanofilamentation in resistive switching

    KAUST Repository

    Wu, Xing; Cha, Dong Kyu; Bosman, Michel; Raghavan, Nagarajan; Migas, Dmitri B.; Borisenko, Victor E.; Zhang, Xixiang; Li, Kun; Pey, Kin-Leong

    2013-01-01

    -chip circuitry and non-volatile memory storage. Here, we provide insight into the mechanisms that govern highly reproducible controlled resistive switching via a nanofilament by using an asymmetric metal-insulator-semiconductor structure. In-situ transmission

  20. Electron collisions in gas switches

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1989-01-01

    Many technologies rely on the conduction/insulation properties of gaseous matter for their successful operation. Many others (e.g., pulsed power technologies) rely on the rapid change (switching or modulation) of the properties of gaseous matter from an insulator to a conductor and vice versa. Studies of electron collision processes in gases aided the development of pulsed power gas switches, and in this paper we shall briefly illustrate the kind of knowledge on electron collision processes which is needed to optimize the performance of such switching devices. To this end, we shall refer to three types of gas switches: spark gap closing, self-sustained diffuse discharge closing, and externally-sustained diffuse discharge opening. 24 refs., 15 figs., 2 tabs

  1. High PRF high current switch

    Science.gov (United States)

    Moran, Stuart L.; Hutcherson, R. Kenneth

    1990-03-27

    A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.

  2. Effect of texturing on polarization switching dynamics in ferroelectric ceramics

    Science.gov (United States)

    Zhukov, Sergey; Genenko, Yuri A.; Koruza, Jurij; Schultheiß, Jan; von Seggern, Heinz; Sakamoto, Wataru; Ichikawa, Hiroki; Murata, Tatsuro; Hayashi, Koichiro; Yogo, Toshinobu

    2016-01-01

    Highly (100),(001)-oriented (Ba0.85Ca0.15)TiO3 (BCT) lead-free piezoelectric ceramics were fabricated by the reactive templated grain growth method using a mixture of plate-like CaTiO3 and BaTiO3 particles. Piezoelectric properties of the ceramics with a high degree of texture were found to be considerably enhanced compared with the BCT ceramics with a low degree of texture. With increasing the Lotgering factor from 26% up to 94%, the piezoelectric properties develop towards the properties of a single crystal. The dynamics of polarization switching was studied over a broad time domain of 8 orders of magnitude and was found to strongly depend on the degree of orientation of the ceramics. Samples with a high degree of texture exhibited 2-3 orders of magnitude faster polarization switching, as compared with the ones with a low degree of texture. This was rationalized by means of the Inhomogeneous Field Mechanism model as a result of the narrower statistical distribution of the local electric field values in textured media, which promotes a more coherent switching process. The extracted microscopic parameters of switching revealed a decrease of the critical nucleus energy in systems with a high degree of texture providing more favorable switching conditions related to the enhanced ferroelectric properties of the textured material.

  3. Measurement of resistance switching dynamics in copper sulfide memristor structures

    Science.gov (United States)

    McCreery, Kaitlin; Olson, Matthew; Teitsworth, Stephen

    Resistance switching materials are the subject of current research in large part for their potential to enable novel computing devices and architectures such as resistance random access memories and neuromorphic chips. A common feature of memristive structures is the hysteretic switching between high and low resistance states which is induced by the application of a sufficiently large electric field. Here, we describe a relatively simple wet chemistry process to fabricate Cu2 S / Cu memristive structures with Cu2 S film thickness ranging up to 150 micron. In this case, resistance switching is believed to be mediated by electromigration of Cu ions from the Cu substrate into the Cu2 S film. Hysteretic current-voltage curves are measured and reveal switching voltages of about 0.8 Volts with a relatively large variance and independent of film thickness. In order to gain insight into the dynamics and variability of the switching process, we have measured the time-dependent current response to voltage pulses of varying height and duration with a time resolution of 1 ns. The transient response consists of a deterministic RC component as well as stochastically varying abrupt current steps that occur within a few microseconds of the pulse application.

  4. Chromatic interocular-switch rivalry.

    Science.gov (United States)

    Christiansen, Jens H; D'Antona, Anthony D; Shevell, Steven K

    2017-05-01

    Interocular-switch rivalry (also known as stimulus rivalry) is a kind of binocular rivalry in which two rivalrous images are swapped between the eyes several times a second. The result is stable periods of one image and then the other, with stable intervals that span many eye swaps (Logothetis, Leopold, & Sheinberg, 1996). Previous work used this close kin of binocular rivalry with rivalrous forms. Experiments here test whether chromatic interocular-switch rivalry, in which the swapped stimuli differ in only chromaticity, results in slow alternation between two colors. Swapping equiluminant rivalrous chromaticities at 3.75 Hz resulted in slow perceptual color alternation, with one or the other color often continuously visible for two seconds or longer (during which there were 15+ eye swaps). A well-known theory for sustained percepts from interocular-switch rivalry with form is inhibitory competition between binocular neurons driven by monocular neurons with matched orientation tuning in each eye; such binocular neurons would produce a stable response when a given orientation is swapped between the eyes. A similar model can account for the percepts here from chromatic interocular-switch rivalry and is underpinned by the neurophysiological finding that color-preferring binocular neurons are driven by monocular neurons from each eye with well-matched chromatic selectivity (Peirce, Solomon, Forte, & Lennie, 2008). In contrast to chromatic interocular-switch rivalry, luminance interocular-switch rivalry with swapped stimuli that differ in only luminance did not result in slowly alternating percepts of different brightnesses.

  5. Dedication of Stotz-Kontakt switches for Spanish utility owners

    International Nuclear Information System (INIS)

    Lopez Vergara, T.; Martin de la Torre, M.; Alminana, J.

    1996-01-01

    The Spanish Utility Owners Group commissioned Empresarios Agrupados to perform the work for the dedication of the S280 series of Stotz-KONTAKT switches and two of its possible accessories. As a results of this process, the components can be used in safety-related applications in the conditions and locations expected. This article describes the different phases of the dedication process: Technical Evaluation considering the application of switches as new or alternative elements, Acceptance Process and Purchasing Documentation. It sets out the main conclusion drawn from each phase. It also includes details of the activities performed by Empresarios Agrupados as part of the seismic qualification of components: selection of the sample to be tested, the definition of electrical tests before and after the seismic test, and the mounting, electrical powering, operating requirements and monitoring of components during seismic tests. (Author)

  6. A smart microelectromechanical sensor and switch triggered by gas

    KAUST Repository

    Bouchaala, Adam M.

    2016-07-05

    There is an increasing interest to realize smarter sensors and actuators that can deliver a multitude of sophisticated functionalities while being compact in size and of low cost. We report here combining both sensing and actuation on the same device based on a single microstructure. Specifically, we demonstrate a smart resonant gas (mass) sensor, which in addition to being capable of quantifying the amount of absorbed gas, can be autonomously triggered as an electrical switch upon exceeding a preset threshold of absorbed gas. Toward this, an electrostatically actuated polymer microbeam is fabricated and is then functionalized with a metal-organic framework, namely, HKUST-1. The microbeam is demonstrated to absorb vapors up to a certain threshold, after which is shown to collapse through the dynamic pull-in instability. Upon pull-in, the microstructure can be made to act as an electrical switch to achieve desirable actions, such as alarming.

  7. A smart microelectromechanical sensor and switch triggered by gas

    Science.gov (United States)

    Bouchaala, Adam; Jaber, Nizar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I.

    2016-07-01

    There is an increasing interest to realize smarter sensors and actuators that can deliver a multitude of sophisticated functionalities while being compact in size and of low cost. We report here combining both sensing and actuation on the same device based on a single microstructure. Specifically, we demonstrate a smart resonant gas (mass) sensor, which in addition to being capable of quantifying the amount of absorbed gas, can be autonomously triggered as an electrical switch upon exceeding a preset threshold of absorbed gas. Toward this, an electrostatically actuated polymer microbeam is fabricated and is then functionalized with a metal-organic framework, namely, HKUST-1. The microbeam is demonstrated to absorb vapors up to a certain threshold, after which is shown to collapse through the dynamic pull-in instability. Upon pull-in, the microstructure can be made to act as an electrical switch to achieve desirable actions, such as alarming.

  8. Electric vehicle system for charging and supplying electrical power

    Science.gov (United States)

    Su, Gui Jia

    2010-06-08

    A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.

  9. Optimal Transmission Line Switching under Geomagnetic Disturbances

    International Nuclear Information System (INIS)

    Lu, Mowen; Nagarajan, Harsha; Yamangil, Emre; Bent, Russell; Backhaus, Scott

    2017-01-01

    Recently, there have been increasing concerns about how geomagnetic disturbances (GMDs) impact electrical power systems. Geomagnetically-induced currents (GICs) can saturate transformers, induce hot spot heating and increase reactive power losses. These effects can potentially cause catastrophic damage to transformers and severely impact the ability of a power system to deliver power. To address this problem, we develop a model of GIC impacts to power systems that includes 1) GIC thermal capacity of transformers as a function of normal Alternating Current (AC) and 2) reactive power losses as a function of GIC. We also use this model to derive an optimization problem that protects power systems from GIC impacts through line switching, generator dispatch, and load shedding. We then employ state-of-the-art convex relaxations of AC power flow equations to lower bound the objective. We demonstrate the approach on a modified RTS96 system and UIUC 150-bus system and show that line switching is an effective means to mitigate GIC impacts. We also provide a sensitivity analysis of decisions with respect to GMD direction.

  10. Magnetically switched power supply system for lasers

    Science.gov (United States)

    Pacala, Thomas J. (Inventor)

    1987-01-01

    A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.

  11. CONTROL OF BOUNCING IN RF MEMS SWITCHES USING DOUBLE ELECTRODE

    KAUST Repository

    Abdul Rahim, Farhan

    2014-01-01

    MEMS based mechanical switches are seen to be the likely replacements for CMOS based switches due to the several advantages that these mechanical switches have over CMOS switches. Mechanical switches can be used in systems under extreme conditions

  12. Pulsed power opening switch research at the University of New Mexico

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1987-01-01

    Opening switch research at the University of New Mexico (UNM) is directed toward moderate-current (--10 kA) devices with potential applications to high-power charged particle accelerators. Two devices with the capacity for controlling gigawatt high-voltage circuits, the grid-controlled plasma flow switch and the scanned-beam switch, are under investigation. Both switches are conceptually simple; they involve little collective physics and are within the capabilities of current technology. In the plasma flow switch, the flux of electrons into a high-voltage power gap is controlled by a low-voltage control grid. Plasma generation is external to, and independent of, the power circuit. In the closed phase, plasma fills the gap so that the switch has a low on-state impedance. Pulse repetition rates in the megahertz range should be feasible. In single-shot proof-of-principle experiments, a small area switch modulated a 3-MW circuit; a 20-ns opening time was observed. The scanned-beam switch will utilize electric field deflection to direct the power of a sheet electron beam. The beam is to be alternately scanned to two inverse diodes connected to output transmission lines. The switch is expected to generate continuous-wave pulse trains for applications such as high-frequency induction linacs. Theoretical studies indicate that 10-GW devices in the 100-MHz range with 70-percent efficiency should be technologically feasible

  13. Experimental Results from a Laser-Triggered, Gas-Insulated, Spark-Gap Switch

    Science.gov (United States)

    Camacho, J. F.; Ruden, E. L.; Domonkos, M. T.

    2017-10-01

    We are performing experiments on a laser-triggered spark-gap switch with the goal of studying the transition from photoionization to current conduction. The discharge of current through the switch is triggered by a focused 532-nm wavelength beam from a Q-switched Nd:YAG laser with a pulse duration of about 10 ns. The trigger pulse is delivered along the longitudinal axis of the switch, and the focal spot can be placed anywhere along the axis of the 5-mm, gas-insulated gap between the switch electrodes. The switch test bed is designed to support a variety of working gases (e.g., Ar, N2) over a range of pressures. Electrical and optical diagnostics are used to measure switch performance as a function of parameters such as charge voltage, trigger pulse energy, insulating gas pressure, and gas species. A Mach-Zehnder imaging interferometer system operating at 532 nm is being used to obtain interferograms of the discharge plasma in the switch. We are also developing a 1064-nm interferometry diagnostic in an attempt to measure plasma free electron and neutral gas density profiles simultaneously within the switch gap. Results from our most recent experiments will be presented.

  14. Anomalous resistivity in the plasma opening switch

    Energy Technology Data Exchange (ETDEWEB)

    Dolgachev, G I; Zakatov, L P; Kalinin, Yu G; Kingsep, A S; Nitishinskij, M S; Ushakov, A G [Kurchatov Institute, Moscow (Russian Federation). Applied Physics Division

    1997-12-31

    Experimental studies and modelling together with analytical considerations of anomalous resistivity in the plasma opening switch (POS) are being pursued to improve the understanding of the physical mechanism of the POS conduction phase. Experiments have been undertaken for a `microsecond` POS of coaxial geometry. Measurements of Stark broadening of the H{sub {alpha}} line allowed turbulent oscillations in plasma to be found at the conductivity stage. A comparison with the modelling including low-frequency (ion-acoustic) turbulence and Doppler broadening (neutral gas temperature 1-3 eV) the electric field value to be estimated to 10-30 kV/cm. The turbulent field increased toward the cathode up to 50 kV/cm in the near-cathode layer. (author). 3 figs., 14 refs.

  15. Conductive polymer switch for controlling superconductivity

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Riley, D.R.; Zhao, J.; Grassi, J.; Lo, K.; Jones, C.

    1994-01-01

    The preparation of a hybrid conducting polymer/high-temperature superconductor device consisting of a polypyrrole coated YBa 2 Cu 3 O 7-σ microbridge is reported. Electrochemical techniques are exploited to alter the oxidation state of the polymer and, in doing so, it is found for the first time that superconductivity can be modulated in a controllable and reproducible fashion by a polymer layout. Whereas the neutral (insulating) polypyrrole only slightly influences the electrical properties of the underlying YBa 2 Cu 3 O 7-σ film, the oxidized (conductive) polymer depresses T c by up to 50K. In a similar fashion, the oxidation state of the polymer is found to reversibly modulate the magnitude of J c , the superconducting critical current. Thus, a new type of molecule switch for controlling superconductivity is demonstrated

  16. Switched capacitor DC-DC converter with switch conductance modulation and Pesudo-fixed frequency control

    DEFF Research Database (Denmark)

    Larsen, Dennis Øland; Vinter, Martin; Jørgensen, Ivan Harald Holger

    A switched capacitor dc-dc converter with frequency-planned control is presented. By splitting the output stage switches in eight segments the output voltage can be regulated with a combination of switching frequency and switch conductance. This allows for switching at predetermined frequencies, 31...

  17. A Switch Is Not a Switch: Syntactically-Driven Bilingual Language Control

    Science.gov (United States)

    Gollan, Tamar H.; Goldrick, Matthew

    2018-01-01

    The current study investigated the possibility that language switches could be relatively automatically triggered by context. "Single-word switches," in which bilinguals switched languages on a single word in midsentence and then immediately switched back, were contrasted with more complete "whole-language switches," in which…

  18. Principles of broadband switching and networking

    CERN Document Server

    Liew, Soung C

    2010-01-01

    An authoritative introduction to the roles of switching and transmission in broadband integrated services networks Principles of Broadband Switching and Networking explains the design and analysis of switch architectures suitable for broadband integrated services networks, emphasizing packet-switched interconnection networks with distributed routing algorithms. The text examines the mathematical properties of these networks, rather than specific implementation technologies. Although the pedagogical explanations in this book are in the context of switches, many of the fundamenta

  19. Switch on to sustainability

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    Following a series of measures taken to foster a green policy for the Laboratory, CERN Management has recently appointed an Energy Issues Coordinator. While it's hard to imagine magic solutions that would substantially decrease the energy consumption of the research accelerators, it is certainly within our reach to re-use thermal “waste” energy and to optimise infrastructure to become more sustainable and eco-friendly. Real eco-projects are in the making.   CERN's electricity consumption is considerable, equivalent to a third of Geneva's. Over 95% is used by the accelerators and other research facilities. CERN also consumes gas for heating, fuel and gas for cars, and water for sanitary use and accelerator cooling. “It's our responsibility to keep our energy consumption and hence our impact on the environment as low as possible,” says Helfried Burckhart, recently appointed as CERN’s Energy Issues Coordinator. &am...

  20. Resistive switching in TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lin

    2011-10-26

    The continuing improved performance of the digital electronic devices requires new memory technologies which should be inexpensively fabricated for higher integration capacity, faster operation, and low power consumption. Resistive random access memory has great potential to become the front runner as the non volatile memory technology. The resistance states stored in such cell can remain for long time and can be read out none-destructively by a very small electrical pulse. In this work the typically two terminal memory cells containing a thin TiO{sub 2} layer are studied. Polycrystalline TiO{sub 2} thin films are deposited with atomic layer deposition and magnetron reactive sputtering processes, which are both physically and electrically characterized. The resistive switching cells are constructed in a metal/TiO{sub 2}/metal structure. Electroforming process initiate the cell from the beginning good insulator to a real memory cell to program the resistive states. Multilevel resistive bipolar switching controlled by current compliance is the common characteristic observed in these cells, which is potentially to be used as so called multi-bit memory cells to improve the memory capacity. With different top electrodes of Pt, Cu, Ag the resistive switching behaviors are studied. The switching behaviors are different depending on the top metal such as the minimum current compliance, the endurance of the programmed resistance states and the morphology change during the switching. The temperature dependence of different resistance states are investigated. A reduction of the activation energy and their possible conduction mechanisms is discussed on the base of the basic current conduction models. It is found that the resistance state transfers from semiconductor to metallic property with the reducing resistances. The calculated temperature coefficients of their metallic states on the Cu/TiO{sub 2}/Pt and Ag/TiO{sub 2}/Pt are very close to the reported literature data

  1. Transparent ceramic photo-optical semiconductor high power switches

    Science.gov (United States)

    Werne, Roger W.; Sullivan, James S.; Landingham, Richard L.

    2016-01-19

    A photoconductive semiconductor switch according to one embodiment includes a structure of sintered nanoparticles of a high band gap material exhibiting a lower electrical resistance when excited by light relative to an electrical resistance thereof when not exposed to the light. A method according to one embodiment includes creating a mixture comprising particles, at least one dopant, and at least one solvent; adding the mixture to a mold; forming a green structure in the mold; and sintering the green structure to form a transparent ceramic. Additional system, methods and products are also presented.

  2. ELECTROMAGNETIC AND THERMAL SIMULATIONS FOR THE SWITCH REGION OF A COMPACT PROTON ACCELERATOR

    International Nuclear Information System (INIS)

    Wang, L; Caporaso, G J; Sullivan, J S

    2007-01-01

    A compact proton accelerator for medical applications is being developed at Lawrence Livermore National Laboratory. The accelerator architecture is based on the dielectric wall accelerator (DWA) concept. One critical area to consider is the switch region. Electric field simulations and thermal calculations of the switch area were performed to help determine the operating limits of rmed SiC switches. Different geometries were considered for the field simulation including the shape of the thin Indium solder meniscus between the electrodes and SiC. Electric field simulations were also utilized to demonstrate how the field stress could be reduced. Both transient and steady steady-state thermal simulations were analyzed to find the average power capability of the switches

  3. Frequency response function of motors for switching noise energy with a new experimental approach

    International Nuclear Information System (INIS)

    Kim, Hyunsu; Yoon, Jong-Yun

    2017-01-01

    Switching energy in electrical vehicles can create serious noise from the motors. However, the characteristics of switching noise in vehicle motors are not clear due to the complexity of measuring them. This study proposes a new experimental method to investigate the switching noise energy of a vehicle motor based on frequency response functions. A function generator-amplifier system is used to gen- erate the switching energy instead of the complex battery-inverter system that has previously been used to examine the noise energy characteristics. Even though newly adapted experimental method is simple, the switching noise energy was explicitly investigated under various input signals. Thus, this simple new method can be used to investigate the dynamic characteristics of noise energy in a vehicle motor

  4. Investigations and Simulations of All optical Switches in linear state Based on Photonic Crystal Directional Coupler

    Directory of Open Access Journals (Sweden)

    S. Maktoobi

    2014-10-01

    Full Text Available Switching is a principle process in digital computers and signal processing systems. The growth of optical signal processing systems, draws particular attention to design of ultra-fast optical switches. In this paper, All Optical Switches in linear state Based On photonic crystal Directional coupler is analyzed and simulated. Among different methods, the finite difference time domain method (FDTD is a preferable method and is used. We have studied the application of photonic crystal lattices, the physics of optical switching and photonic crystal Directional coupler. In this paper, Electric field intensity and the power output that are two factors to improve the switching performance and the device efficiency are investigated and simulated. All simulations are performed by COMSOL software.

  5. Frequency response function of motors for switching noise energy with a new experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunsu [Ensemble Center for Automotive Research, Seoul (Korea, Republic of); Yoon, Jong-Yun [Incheon National University, Incheon (Korea, Republic of)

    2017-06-15

    Switching energy in electrical vehicles can create serious noise from the motors. However, the characteristics of switching noise in vehicle motors are not clear due to the complexity of measuring them. This study proposes a new experimental method to investigate the switching noise energy of a vehicle motor based on frequency response functions. A function generator-amplifier system is used to gen- erate the switching energy instead of the complex battery-inverter system that has previously been used to examine the noise energy characteristics. Even though newly adapted experimental method is simple, the switching noise energy was explicitly investigated under various input signals. Thus, this simple new method can be used to investigate the dynamic characteristics of noise energy in a vehicle motor.

  6. Switching dynamics of TaOx-based threshold switching devices

    Science.gov (United States)

    Goodwill, Jonathan M.; Gala, Darshil K.; Bain, James A.; Skowronski, Marek

    2018-03-01

    Bi-stable volatile switching devices are being used as access devices in solid-state memory arrays and as the active part of compact oscillators. Such structures exhibit two stable states of resistance and switch between them at a critical value of voltage or current. A typical resistance transient under a constant amplitude voltage pulse starts with a slow decrease followed by a rapid drop and leveling off at a low steady state value. This behavior prompted the interpretation of initial delay and fast transition as due to two different processes. Here, we show that the entire transient including incubation time, transition time, and the final resistance values in TaOx-based switching can be explained by one process, namely, Joule heating with the rapid transition due to the thermal runaway. The time, which is required for the device in the conducting state to relax back to the stable high resistance one, is also consistent with the proposed mechanism.

  7. Electric current - frequency converter

    International Nuclear Information System (INIS)

    Kumahara, Tadashi; Kinbana, Setsuro.

    1967-01-01

    Herein disclosed is an improved simple electric current-frequency converter, the input current and output frequency linearity of which is widened to a range of four to five figures while compensating, for temperature. The converter may be used for computor processing and for telemetering the output signals from a nuclear reactor. The converter is an astable multivibrator which includes charging circuits comprising emitter-voltage compensated NPN transistors, a charged voltage detecting circuit of temperature compensated field effect transistors, and a transistor switching circuit for generating switching pulses independent of temperature. The converter exhibited a 0.7% frequency change within a range of 5 - 45 0 C and less than a 0.1% frequency drift after six hours of operation when the input current was maintained constant. (Yamaguchi, T.)

  8. 46 CFR 113.35-7 - Electric engine order telegraph systems; operations.

    Science.gov (United States)

    2010-10-01

    ... transmitter handle automatically connects that transmitter electrically to the engineroom indicator and simultaneously disconnects electrically all other transmitters. The reply pointers of all transmitters must... manually operated transfer switch which will disconnect the system in the unattended navigating bridge must...

  9. Long-term RF burn-in effects on dielectric charging of MEMS capacitive switches

    KAUST Repository

    Molinero, David G.; Luo, Xi; Shen, Chao; Palego, Cristiano; Hwang, James; Goldsmith, Charles L.

    2013-01-01

    This paper experimentally quantified the long-term effects of RF burn-in, in terms of burn-in and recovery times, and found the effects to be semipermanent. Specifically, most of the benefit could be realized after approximately 20 min of RF burn-in, which would then last for several months. Additionally, since similar effects were observed on both real and faux switches, the effects appeared to be of electrical rather than mechanical nature. These encouraging results should facilitate the application of the switches in RF systems, where high RF power could be periodically applied to rejuvenate the switches. © 2001-2011 IEEE.

  10. Resistive switching memories in MoS{sub 2} nanosphere assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiao-Yong, E-mail: xxxy@yzu.edu.cn, E-mail: xcxseu@seu.edu.cn, E-mail: jghu@yzu.edu.cn [School of Physics Science and Technology, Yangzhou University, Yangzhou 225002 (China); State Key Laboratory of Bioelectronics and School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Yin, Zong-You [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Xu, Chun-Xiang, E-mail: xxxy@yzu.edu.cn, E-mail: xcxseu@seu.edu.cn, E-mail: jghu@yzu.edu.cn; Dai, Jun [State Key Laboratory of Bioelectronics and School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China); Hu, Jing-Guo, E-mail: xxxy@yzu.edu.cn, E-mail: xcxseu@seu.edu.cn, E-mail: jghu@yzu.edu.cn [School of Physics Science and Technology, Yangzhou University, Yangzhou 225002 (China)

    2014-01-20

    A resistive switching memory device consisting of reduced graphene oxide and indium tin oxide as top/bottom two electrodes, separated by dielectric MoS{sub 2} nanosphere assemblies as the active interlayer, was fabricated. This device exhibits the rewritable nonvolatile resistive switching with low SET/RESET voltage (∼2 V), high ON/OFF resistance ratio (∼10{sup 4}), and superior electrical bistability, introducing a potential application in data storage field. The resistance switching mechanism was analyzed in the assumptive model of the electron tunneling across the polarized potential barriers.

  11. Optimization design of the main switch in 12 MeV linear induction accelerator

    International Nuclear Information System (INIS)

    Li Xin; Wang Jinsheng; Ding Hensong; Ye Yi

    2004-01-01

    A method for optimization design of the main switch (using in 12 MeV linear induction accelerator) was introduced. The switch's inductance was decreased from 63.7 nH to 35 nH by optimizing the configuration of the main switch and the size of the electric poles so that the accelerating cavity can get a better rising time of 27 ns. The accelerator's performance can be effectively improved through this method, the feasibility of the method is also proved by testing

  12. Long-term RF burn-in effects on dielectric charging of MEMS capacitive switches

    KAUST Repository

    Molinero, David G.

    2013-03-01

    This paper experimentally quantified the long-term effects of RF burn-in, in terms of burn-in and recovery times, and found the effects to be semipermanent. Specifically, most of the benefit could be realized after approximately 20 min of RF burn-in, which would then last for several months. Additionally, since similar effects were observed on both real and faux switches, the effects appeared to be of electrical rather than mechanical nature. These encouraging results should facilitate the application of the switches in RF systems, where high RF power could be periodically applied to rejuvenate the switches. © 2001-2011 IEEE.

  13. A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching.

    Science.gov (United States)

    Lin, Yuanhai; Zhang, Xinping; Fang, Xiaohui; Liang, Shuyan

    2016-01-21

    We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different dependence on the polarization of optical electric fields. The cross-plasmon resonance based on the interaction between the perpendicularly stacked gold nanowires and its Fano-coupling with Rayleigh anomaly is the dominant mechanism for such a high-contrast optical switching device.

  14. Three-terminal resistive switching memory in a transparent vertical-configuration device

    International Nuclear Information System (INIS)

    Ungureanu, Mariana; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2014-01-01

    The resistive switching phenomenon has attracted much attention recently for memory applications. It describes the reversible change in the resistance of a dielectric between two non-volatile states by the application of electrical pulses. Typical resistive switching memories are two-terminal devices formed by an oxide layer placed between two metal electrodes. Here, we report on the fabrication and operation of a three-terminal resistive switching memory that works as a reconfigurable logic component and offers an increased logic density on chip. The three-terminal memory device we present is transparent and could be further incorporated in transparent computing electronic technologies

  15. Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells

    International Nuclear Information System (INIS)

    Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel; Sebastian, Abu

    2016-01-01

    In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge 2 Sb 2 Te 5 nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters

  16. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Science.gov (United States)

    . Fueling and Driving Options Plug-in hybrid electric vehicle batteries can be charged by an outside sized hybrid electric vehicle. If the vehicle is driven a shorter distance than its all-electric range drives the wheels almost all of the time, but the vehicle can switch to work like a parallel hybrid at

  17. Computerized precision control of a synchronous high voltage discharge switch for the beam separation system of the LEP e+/e- collider

    International Nuclear Information System (INIS)

    Dieperink, J.H.; Finnigan, A.; Kalbreier, W.; Keizer, R.L.; Laffin, M.; Mertens, V.

    1989-01-01

    Electrostatic separators are used to separate the beams in LEP. The counter-rotating beams are eventually brought into collision in the four low beta insertions, using switches to discharge simultaneously four high voltage (HV) circuits. Each switch consists of four spark gaps mounted in a pressure vessel. A reduction of the gap widths below the self ignition instance by electric motors results in the initiation of the discharges. Synchronization is ensured by the electrical coupling of the electrodes connected to the ground. The design and performance of the computerized precision control of the discharge switch are described. The dynamic characteristics of the prototype switch are also presented. 5 refs., 5 figs

  18. Mountain Plains Learning Experience Guide: Electrical Wiring. Course: Electrical Wiring Rough-In.

    Science.gov (United States)

    Arneson, R.; And Others

    One of two individualized courses included in an electrical wiring curriculum, this course covers electrical installations that are generally hidden within the structure. The course is comprised of four units: (1) Outlet and Switch Boxes, (2) Wiring, (3) Service Entrance, and (4) Signal and Low Voltage Systems. Each unit begins with a Unit…

  19. Mountain Plains Learning Experience Guide: Electrical Wiring. Course: Electrical Wiring Trim-Out.

    Science.gov (United States)

    Arneson, R.; And Others

    One of two individualized courses included in an electrical wiring curriculum, this course covers electrical materials installation for the trim-out stage. The course is comprised of five units: (1) Outlets, (2) Fixtures, (3) Switches, (4) Appliances, and (5) Miscellaneous. Each unit begins with a Unit Learning Experience Guide that gives…

  20. CMOS integrated switching power converters

    CERN Document Server

    Villar-Pique, Gerard

    2011-01-01

    This book describes the structured design and optimization of efficient, energy processing integrated circuits. The approach is multidisciplinary, covering the monolithic integration of IC design techniques, power electronics and control theory. In particular, this book enables readers to conceive, synthesize, design and implement integrated circuits with high-density high-efficiency on-chip switching power regulators. Topics covered encompass the structured design of the on-chip power supply, efficiency optimization, IC-compatible power inductors and capacitors, power MOSFET switches and effi

  1. All-fiber polarization switch

    Science.gov (United States)

    Knape, Harald; Margulis, Walter

    2007-03-01

    We report an all-fiber polarization switch made out of silica-based microstructured fiber suitable for Q-switching all-fiber lasers. Nanosecond high-voltage pulses are used to heat and expand an internal electrode to cause λ/2-polarization rotation in less than 10 ns for 1.5 μm light. The 10 cm long component has an experimentally measured optical insertion loss of 0.2 dB and a 0-10 kHz repetition frequency capacity and has been durability tested for more than 109 pulses.

  2. Anti-parallel polarization switching in a triglycine sulfate organic ferroelectric insulator: The role of surface charges

    Science.gov (United States)

    Ma, He; Wu, Zhuangchun; Peng, Dongwen; Wang, Yaojin; Wang, Yiping; Yang, Ying; Yuan, Guoliang

    2018-04-01

    Four consecutive ferroelectric polarization switchings and an abnormal ring-like domain pattern can be introduced by a single tip bias of a piezoresponse force microscope in the (010) triglycine sulfate (TGS) crystal. The external electric field anti-parallel to the original polarization induces the first polarization switching; however, the surface charges of TGS can move toward the tip location and induce the second polarization switching once the tip bias is removed. The two switchings allow a ring-like pattern composed of the central domain with downward polarization and the outer domain with upward polarization. Once the two domains disappear gradually as a result of depolarization, the other two polarization switchings occur one by one at the TGS where the tip contacts. However, the backswitching phenomenon does not occur when the external electric field is parallel to the original polarization. These results can be explained according to the surface charges instead of the charges injected inside.

  3. Switched reluctance drive for mass application

    Energy Technology Data Exchange (ETDEWEB)

    Bitchkov, M.G.; Ilinski, N.F.; Sementchuk, V.A. [Moscow Power Engineering Inst. (Russian Federation)

    2000-07-01

    Variable speed drives (VSDs) are the most effective means for energy saving in many practical applications particularly in pumps, fans, compressors, conveyors, etc. Up to now the only wide used VSD is a frequency controlled electric drive with AC induction motor. A switched reluctance drive (SRD) having noticeable advantages such as simple construction, low cost, high reliability, high efficiency, etc. still does not compete with traditional AC drives mainly because of the following unsolved problems: complexity of proper control, necessity of a rotor position sensor, poor acoustic characteristics. Results of R and D project realised in Moscow Power Engineering Institute in co-operation with Jaroslavl electric machine-building plant allowed to overcome the above mentioned problems and to obtain reliable low cost sensorless SRD with high efficiency and acceptable acoustic characteristics. The original sensorless SRD version is based on current measuring and exploiting a specially organized observer that provides a stable drive operation within broad speed-torque ranges. Acoustic SRD characteristics were improved by means of proper current pulses shape control. Small increasing the time of current pulse trailing edge allowed to decrease the noise level to 70 dB(A) and brought the SRD to a vary smooth operation even at a low speed. (orig.)

  4. Two-dimensional modeling of x-ray output from switched foil implosions on Procyon

    Science.gov (United States)

    Bowers, R. L.; Nakafuji, G.; Greene, A. E.; McLenithan, K. D.; Peterson, D. L.; Roderick, N. F.

    1996-09-01

    A series of two-dimensional radiation magnetohydrodynamic calculations are presented of a Z-pinch implosion using a plasma flow switch. Results from a recent experiment using the high explosive driven generator Procyon, which delivered 16.5 MA to a plasma flow switch and switched about 15 MA into a static load, are used to study the implosion of a 29 mg load foil [J. H. Goforth et al., ``Review of the Procyon Explosive Pulsed Power System,'' in Ninth IEEE Pulsed Power Conference, June 1993, Albuquerque, edited by K. R. Prestwich and W. L. Baker (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1993), p. 36]. The interaction of the switch with the load plasma and the effects of background plasma on the total radiation output is examined. Models which assume ideal switching are also included. Also included are the effects of perturbations in the load plasma which may be associated with initial vaporization of the load foil. If the background plasma density in the switch region and in the load region does not affect the dynamics, the pinch is predicted to produce a total radiation output of about 4 MJ. Including perturbations of the load plasma associated with switching and assuming a background plasma density after switching in excess of 10-7 g/cm3 results in a total output from the pinch of about 0.6 MJ.

  5. Digital to analog resistive switching transition induced by graphene buffer layer in strontium titanate based devices.

    Science.gov (United States)

    Wan, Tao; Qu, Bo; Du, Haiwei; Lin, Xi; Lin, Qianru; Wang, Da-Wei; Cazorla, Claudio; Li, Sean; Liu, Sidong; Chu, Dewei

    2018-02-15

    Resistive switching behaviour can be classified into digital and analog switching based on its abrupt and gradual resistance change characteristics. Realizing the transition from digital to analog switching in the same device is essential for understanding and controlling the performance of the devices with various switching mechanisms. Here, we investigate the resistive switching in a device made with strontium titanate (SrTiO 3 ) nanoparticles using X-ray diffractometry, scanning electron microscopy, Raman spectroscopy, and direct electrical measurements. It is found that the well-known rupture/formation of Ag filaments is responsible for the digital switching in the device with Ag as the top electrode. To modulate the switching performance, we insert a reduced graphene oxide layer between SrTiO 3 and the bottom FTO electrode owing to its good barrier property for the diffusion of Ag ions and high out-of-plane resistance. In this case, resistive switching is changed from digital to analog as determined by the modulation of interfacial resistance under applied voltage. Based on that controllable resistance, potentiation and depression behaviours are implemented as well. This study opens up new ways for the design of multifunctional devices which are promising for memory and neuromorphic computing applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    Science.gov (United States)

    Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2013-11-26

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  7. Thermal switching of the electrical conductivity of Si(111)([Formula

    DEFF Research Database (Denmark)

    Wells, J W; Kallehauge, Jesper; Hofmann, Ph

    2007-01-01

    The temperature-dependent surface conductivity of the Si(111)([Formula: see text])Ag surface was measured using a microscopic four-point probe. The conductivity was found to undergo a sharp increase of about three orders of magnitude when the system was heated above about 220 K. This strong...... conductivity change is reversible and attributed to the phase transition which is generally believed to occur on this surface. It is also shown that, in order to find the true surface conductivity, it is necessary to separate it from the contribution of the bulk and space charge layer. In this work......, this is achieved by using a finite-element model. A percolating network of Ag islands on Si(111) was also studied and a much simpler behaviour (compared to that of Si(111)([Formula: see text])Ag) was found. The temperature-dependent conductivity of this system was found to display typical metallic behaviour...

  8. Electrical machines and drives

    CERN Document Server

    Hindmarsh, John

    2002-01-01

    Recent years have brought substantial developments in electrical drive technology, with the appearance of highly rated, very-high-speed power-electronic switches, combined with microcomputer control systems.This popular textbook has been thoroughly revised and updated in the light of these changes. It retains its successful formula of teaching through worked examples, which are put in context with concise explanations of theory, revision of equations and discussion of the engineering implications. Numerous problems are also provided, with answers supplied.The third edition in

  9. Electrical machines & their applications

    CERN Document Server

    Hindmarsh, J

    1984-01-01

    A self-contained, comprehensive and unified treatment of electrical machines, including consideration of their control characteristics in both conventional and semiconductor switched circuits. This new edition has been expanded and updated to include material which reflects current thinking and practice. All references have been updated to conform to the latest national (BS) and international (IEC) recommendations and a new appendix has been added which deals more fully with the theory of permanent-magnets, recognising the growing importance of permanent-magnet machines. The text is so arra

  10. Switching a Perpendicular Ferromagnetic Layer by Competing Spin Currents

    Science.gov (United States)

    Ma, Qinli; Li, Yufan; Gopman, D. B.; Kabanov, Yu. P.; Shull, R. D.; Chien, C. L.

    2018-03-01

    An ultimate goal of spintronics is to control magnetism via electrical means. One promising way is to utilize a current-induced spin-orbit torque (SOT) originating from the strong spin-orbit coupling in heavy metals and their interfaces to switch a single perpendicularly magnetized ferromagnetic layer at room temperature. However, experimental realization of SOT switching to date requires an additional in-plane magnetic field, or other more complex measures, thus severely limiting its prospects. Here we present a novel structure consisting of two heavy metals that delivers competing spin currents of opposite spin indices. Instead of just canceling the pure spin current and the associated SOTs as one expects and corroborated by the widely accepted SOTs, such devices manifest the ability to switch the perpendicular CoFeB magnetization solely with an in-plane current without any magnetic field. Magnetic domain imaging reveals selective asymmetrical domain wall motion under a current. Our discovery not only paves the way for the application of SOT in nonvolatile technologies, but also poses questions on the underlying mechanism of the commonly believed SOT-induced switching phenomenon.

  11. Implementation of Bin Packing Model for Reed Switch Production Planning

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Rainier Romero [Polytechnic University of Baja California, Calle de la Claridad S/N, Col Plutarco Elias Calles, Mexicali, B. C., 21376 (Mexico); Burtseva, Larysa [Engineering Institute, Autonomous University of Baja California, Calle de la Normal S/N, Col. Insurgentes Este, Mexicali, BC, 21280 (Mexico)

    2010-06-17

    This paper presents a form to resolve a real problem of efficient material election in reed switch manufacturing. The carrying out of the consumer demands depends on the stochastic results of the classification process where each lot of switches is distributed into bins according to an electric measure value. Various glass types are employed for the switch manufacturing. The effect caused by the glass type variation on the switch classification results was investigated. Based on real data statistic analysis, the problem is reduced to the lot number minimizing taking into consideration the glass type, and interpreted as a bin packing problem generalization. On difference to the classic bin packing problem, in the considered case, an item represents a set of pieces; a container is divided into a number of bins (sub-containers); the bin capacity is variable; there are the assignment restrictions between bins and sets of pieces; the items are allowed to be fragmented into bins and containers. The problem has a high complexity. A heuristic offline algorithm is proposed to find the quantity, types and packing sequence of containers, the item fragments associated with containers and bins. The bin capacities do not affect the algorithm.

  12. Implementation of Bin Packing Model for Reed Switch Production Planning

    International Nuclear Information System (INIS)

    Parra, Rainier Romero; Burtseva, Larysa

    2010-01-01

    This paper presents a form to resolve a real problem of efficient material election in reed switch manufacturing. The carrying out of the consumer demands depends on the stochastic results of the classification process where each lot of switches is distributed into bins according to an electric measure value. Various glass types are employed for the switch manufacturing. The effect caused by the glass type variation on the switch classification results was investigated. Based on real data statistic analysis, the problem is reduced to the lot number minimizing taking into consideration the glass type, and interpreted as a bin packing problem generalization. On difference to the classic bin packing problem, in the considered case, an item represents a set of pieces; a container is divided into a number of bins (sub-containers); the bin capacity is variable; there are the assignment restrictions between bins and sets of pieces; the items are allowed to be fragmented into bins and containers. The problem has a high complexity. A heuristic offline algorithm is proposed to find the quantity, types and packing sequence of containers, the item fragments associated with containers and bins. The bin capacities do not affect the algorithm.

  13. Industry switching in developing countries

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Tarp, Finn

    2013-01-01

    Firm turnover (i.e., firm entry and exit) is a well-recognized source of sector-level productivity growth. In contrast, the role and importance of firms that switch activities from one sector to another is not well understood. Firm switchers are likely to be unique, differing from both newly esta...

  14. Nanoscale organic ferroelectric resistive switches

    NARCIS (Netherlands)

    Khikhlovskyi, V.; Wang, R.; Breemen, A.J.J.M. van; Gelinck, G.H.; Janssen, R.A.J.; Kemerink, M.

    2014-01-01

    Organic ferroelectric resistive switches function by grace of nanoscale phase separation in a blend of a semiconducting and a ferroelectric polymer that is sandwiched between metallic electrodes. In this work, various scanning probe techniques are combined with numerical modeling to unravel their

  15. Design of convergent switched systems

    NARCIS (Netherlands)

    Berg, van den R.A.; Pogromsky, A.Y.; Leonov, G.A.; Rooda, J.E.; Pettersen, K.Y.; Gravdahl, J.T.; Nijmeijer, H.

    2006-01-01

    In this paper we deal with the problem of rendering hybrid/nonlinear systems into convergent closed-loop systems by means of a feedback law or switching rules. We illustrate our approach to this problem by means of two examples: the anti-windup design for a marginally stable system with input

  16. Incorrect predictions reduce switch costs.

    Science.gov (United States)

    Kleinsorge, Thomas; Scheil, Juliane

    2015-07-01

    In three experiments, we combined two sources of conflict within a modified task-switching procedure. The first source of conflict was the one inherent in any task switching situation, namely the conflict between a task set activated by the recent performance of another task and the task set needed to perform the actually relevant task. The second source of conflict was induced by requiring participants to guess aspects of the upcoming task (Exps. 1 & 2: task identity; Exp. 3: position of task precue). In case of an incorrect guess, a conflict accrues between the representation of the guessed task and the actually relevant task. In Experiments 1 and 2, incorrect guesses led to an overall increase of reaction times and error rates, but they reduced task switch costs compared to conditions in which participants predicted the correct task. In Experiment 3, incorrect guesses resulted in faster performance overall and to a selective decrease of reaction times in task switch trials when the cue-target interval was long. We interpret these findings in terms of an enhanced level of controlled processing induced by a combination of two sources of conflict converging upon the same target of cognitive control. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Multiuser switched diversity scheduling schemes

    KAUST Repository

    Shaqfeh, Mohammad; Alnuweiri, Hussein M.; Alouini, Mohamed-Slim

    2012-01-01

    Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions. © 2012 IEEE.

  18. Stability of Randomly Switched Diffusions

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Leth, John-Josef; Gholami, Mehdi

    2012-01-01

    This paper provides a sufficient criterion for ε-moment stability (boundedness) and ergodicity for a class of systems comprising a finite set of diffusions among which switching is governed by a continuous time Markov chain. Stability/instability properties for each separate subsystem are assumed...

  19. Industry Switching in Developing Countries

    DEFF Research Database (Denmark)

    Newman, Carol; Rand, John; Tarp, Finn

    Firm turnover (i.e. firm entry and exit) is a well-recognized source of sectorlevel productivity growth across developing and developed countries. In contrast, the role and importance of firms switching activities from one sector to another is little understood. Firm switchers are likely...

  20. Charge transport through molecular switches

    International Nuclear Information System (INIS)

    Jan van der Molen, Sense; Liljeroth, Peter

    2010-01-01

    We review the fascinating research on charge transport through switchable molecules. In the past decade, detailed investigations have been performed on a great variety of molecular switches, including mechanically interlocked switches (rotaxanes and catenanes), redox-active molecules and photochromic switches (e.g. azobenzenes and diarylethenes). To probe these molecules, both individually and in self-assembled monolayers (SAMs), a broad set of methods have been developed. These range from low temperature scanning tunneling microscopy (STM) via two-terminal break junctions to larger scale SAM-based devices. It is generally found that the electronic coupling between molecules and electrodes has a profound influence on the properties of such molecular junctions. For example, an intrinsically switchable molecule may lose its functionality after it is contacted. Vice versa, switchable two-terminal devices may be created using passive molecules ('extrinsic switching'). Developing a detailed understanding of the relation between coupling and switchability will be of key importance for both future research and technology. (topical review)

  1. Charge transport through molecular switches

    Energy Technology Data Exchange (ETDEWEB)

    Jan van der Molen, Sense [Kamerlingh Onnes Laboratorium, Leiden University, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Liljeroth, Peter, E-mail: molen@physics.leidenuniv.n [Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, University of Utrecht, PO Box 80000, 3508 TA Utrecht (Netherlands)

    2010-04-07

    We review the fascinating research on charge transport through switchable molecules. In the past decade, detailed investigations have been performed on a great variety of molecular switches, including mechanically interlocked switches (rotaxanes and catenanes), redox-active molecules and photochromic switches (e.g. azobenzenes and diarylethenes). To probe these molecules, both individually and in self-assembled monolayers (SAMs), a broad set of methods have been developed. These range from low temperature scanning tunneling microscopy (STM) via two-terminal break junctions to larger scale SAM-based devices. It is generally found that the electronic coupling between molecules and electrodes has a profound influence on the properties of such molecular junctions. For example, an intrinsically switchable molecule may lose its functionality after it is contacted. Vice versa, switchable two-terminal devices may be created using passive molecules ('extrinsic switching'). Developing a detailed understanding of the relation between coupling and switchability will be of key importance for both future research and technology. (topical review)

  2. The Atlas load protection switch

    CERN Document Server

    Davis, H A; Dorr, G; Martínez, M; Gribble, R F; Nielsen, K E; Pierce, D; Parsons, W M

    1999-01-01

    Atlas is a high-energy pulsed-power facility under development to study materials properties and hydrodynamics experiments under extreme conditions. Atlas will implode heavy liner loads (m~45 gm) with a peak current of 27-32 MA delivered in 4 mu s, and is energized by 96, 240 kV Marx generators storing a total of 23 MJ. A key design requirement for Atlas is obtaining useful data for 95601130f all loads installed on the machine. Materials response calculations show current from a prefire can damage the load requiring expensive and time consuming replacement. Therefore, we have incorporated a set of fast-acting mechanical switches in the Atlas design to reduce the probability of a prefire damaging the load. These switches, referred to as the load protection switches, short the load through a very low inductance path during system charge. Once the capacitors have reached full charge, the switches open on a time scale short compared to the bank charge time, allowing current to flow to the load when the trigger pu...

  3. Multiuser switched diversity scheduling schemes

    KAUST Repository

    Shaqfeh, Mohammad

    2012-09-01

    Multiuser switched-diversity scheduling schemes were recently proposed in order to overcome the heavy feedback requirements of conventional opportunistic scheduling schemes by applying a threshold-based, distributed, and ordered scheduling mechanism. The main idea behind these schemes is that slight reduction in the prospected multiuser diversity gains is an acceptable trade-off for great savings in terms of required channel-state-information feedback messages. In this work, we characterize the achievable rate region of multiuser switched diversity systems and compare it with the rate region of full feedback multiuser diversity systems. We propose also a novel proportional fair multiuser switched-based scheduling scheme and we demonstrate that it can be optimized using a practical and distributed method to obtain the feedback thresholds. We finally demonstrate by numerical examples that switched-diversity scheduling schemes operate within 0.3 bits/sec/Hz from the ultimate network capacity of full feedback systems in Rayleigh fading conditions. © 2012 IEEE.

  4. High voltage MOSFET switching circuit

    Science.gov (United States)

    McEwan, Thomas E.

    1994-01-01

    The problem of source lead inductance in a MOSFET switching circuit is compensated for by adding an inductor to the gate circuit. The gate circuit inductor produces an inductive spike which counters the source lead inductive drop to produce a rectangular drive voltage waveform at the internal gate-source terminals of the MOSFET.

  5. High-speed electro-optic switch with -80 dB crosstalk

    Science.gov (United States)

    Pan, J. J.; Su, W. H.; Xu, J. Y.; Grove, C. H.

    1992-01-01

    Special device modeling, design and layout, and precision processing controls were employed to fabricate new balanced-bridge 2x2 and 4x4 switches on X-cut, Y-propagation LiNbO3 substrate using Ti indiffused optical waveguides. The best of these devices achieved extinction ratio and crosstalk isolation of better than 93 dB electrically (46.5 dB optically). The new switches demonstrate good reproducibility with electrical crosstalk less than -80 dB.

  6. Line Capacity Expansion and Transmission Switching in Power Systems With Large-Scale Wind Power

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer; Bronmo, Geir; Philpott, Andy B.

    2013-01-01

    In 2020 electricity production from wind power should constitute nearly 50% of electricity demand in Denmark. In this paper we look at optimal expansion of the transmission network in order to integrate 50% wind power in the system, while minimizing total fixed investment cost and expected cost...... of power generation. We allow for active switching of transmission elements to reduce congestion effects caused by Kirchhoff's voltage law. Results show that actively switching transmission lines may yield a better utilization of transmission networks with large-scale wind power and increase wind power...

  7. Resistive switching via the converse magnetoelectric effect in ferromagnetic multilayers on ferroelectric substrates.

    Science.gov (United States)

    Pertsev, N A; Kohlstedt, H

    2010-11-26

    A voltage-controlled resistive switching is predicted for ferromagnetic multilayers and spin valves mechanically coupled to a ferroelectric substrate. The switching between low- and high-resistance states results from the strain-driven magnetization reorientations by about 90°, which are shown to occur in ferromagnetic layers with a high magnetostriction and weak cubic magnetocrystalline anisotropy. Such reorientations, not requiring external magnetic fields, can be realized experimentally by applying moderate electric field to a thick substrate (bulk or membrane type) made of a relaxor ferroelectric having ultrahigh piezoelectric coefficients. The proposed multiferroic hybrids exhibiting giant magnetoresistance may be employed as electric-write nonvolatile magnetic memory cells with nondestructive readout.

  8. Instantaneous Switching Processes in Quasi-Linear Circuits

    Directory of Open Access Journals (Sweden)

    Rositsa Angelova

    2004-01-01

    Full Text Available The paper considers instantaneous processes in electrical circuits produced by the stepwise change of the capacitance of the capacitor and the inductance of the inductor and by the switching on and switching off of the circuit. In order to determine the set of electrical circuits, for which it is possible to explicitly obtain the values of the currents and the voltages at the end of the instantaneous process, a classification of the networks with nonlinear elements is introduced in the paper. The instantaneous switching process in the moment t0 is approximated when T->t0 with a sequence of processes in the interval [t0, T]. For quasi-linear inductive and capacitive circuits; we present the type of the system satisfied by the currents and the voltages, the charges, as well as the fluxes in the interval [t0, T]. From this system, after passage to the limit T->t0, we obtain the formulas for the values of the circuits at the end of the instantaneous process. The obtained results are applied for the analysis of particular processes.

  9. Switch-connected HyperX network

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip

    2018-02-13

    A network system includes a plurality of sub-network planes and global switches. The sub-network planes have a same network topology as each other. Each of the sub-network planes includes edge switches. Each of the edge switches has N ports. Each of the global switches is configured to connect a group of edge switches at a same location in the sub-network planes. In each of the sub-network planes, some of the N ports of each of the edge switches are connected to end nodes, and others of the N ports are connected to other edge switches in the same sub-network plane, other of the N ports are connected to at least one of the global switches.

  10. Fault tolerant operation of switched reluctance machine

    Science.gov (United States)

    Wang, Wei

    The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and

  11. Compact electrically controlled broadband liquid crystal photonic bandgap fiber polarizer

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm.......An electrically controlled liquid crystal photonic-bandgap fiber polarizer is experimentally demonstrated. A maximum 21.3dB electrically tunable polarization extinction ratio is achieved with 45° rotatable transmission axis as well as switched on and off in 1300nm–1600nm....

  12. Isolated converter with synchronized switching leg

    NARCIS (Netherlands)

    2003-01-01

    An amplification device is disclosed providing a way of integrating a switch mode power supply and a class D amplifier (switch mode amplifier). This results in the usage of basically one magnetic component (1), one major energy storage element (4) and switches (20, 30) that are controlled in such a

  13. Mechanism of single atom switch on silicon

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Stokbro, Kurt; Thirstrup, C.

    1998-01-01

    We demonstrate single atom switch on silicon which operates by displacement of a hydrogen atom on the silicon (100) surface at room temperature. We find two principal effects by which the switch is controlled: a pronounced maximum of the switching probability as function of sample bias...

  14. A CW Gunn diode bistable switching element.

    Science.gov (United States)

    Hurtado, M.; Rosenbaum, F. J.

    1972-01-01

    Experiments with a current-controlled bistable switching element using a CW Gunn diode are reported. Switching rates of the order of 10 MHz have been obtained. Switching is initiated by current pulses of short duration (5-10 ns). Rise times of the order of several nanoseconds could be obtained.

  15. A gain-coefficient switched Alexandrite laser

    International Nuclear Information System (INIS)

    Lee, Chris J; Van der Slot, Peter J M; Boller, Klaus-J

    2013-01-01

    We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ at a repetition rate of 5 Hz.

  16. 47 CFR 69.106 - Local switching.

    Science.gov (United States)

    2010-10-01

    ... foreign services that use local exchange switching facilities. (c) If end users of an interstate or... local exchange carriers shall establish rate elements for local switching as follows: (1) Price cap... use local exchange switching facilities for the provision of interstate or foreign services. The...

  17. Caffeine improves anticipatory processes in task switching

    NARCIS (Netherlands)

    Tieges, Zoe; Snel, Jan; Kok, Albert; Wijnen, Jasper G.; Lorist, Monicque M.; Ridderinkhof, K. Richard

    We studied the effects of moderate amounts of caffeine on task switching and task maintenance using mixed-task (AABB) blocks, in which participants alternated predictably between two tasks, and single-task (AAAA, BBBB) blocks. Switch costs refer to longer reaction times (RT) on task switch trials

  18. Bootstrapped Low-Voltage Analog Switches

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1999-01-01

    Novel low-voltage constant-impedance analog switch circuits are proposed. The switch element is a single MOSFET, and constant-impedance operation is obtained using simple circuits to adjust the gate and bulk voltages relative to the switched signal. Low-voltage (1-volt) operation is made feasible...

  19. Control and synchronisation in switched arrival systems

    NARCIS (Netherlands)

    Rem, B.; Armbruster, H.D.

    2003-01-01

    A chaotic model of a production flow called the switched arrival system is extended to include switching times and maintenance. The probability distribution of the chaotic return times is calculated. Scheduling maintenance, loss of production due to switching, and control of the chaotic dynamics is

  20. Impact Analysis of Electrical Current Characteristics in Relay Function for Electrical and Electronic Protection

    International Nuclear Information System (INIS)

    Syirrazie Che Soh; Harzawadi Hasim

    2013-01-01

    This paper is to study effect of electrical current on relay reaction, which has coil and switch inside the relay. An analysis on the electrical current will be conducted to determine current limitation for relay activation purpose. The result of analysis showing that current characteristic of relay and applied load will present their affect to the relay function performance. Finding from this result will bring the idea to develop a suitable design circuit for electrical and electronic protection. (author)

  1. 75 FR 14097 - Revision to Electric Reliability Organization Definition of Bulk Electric System

    Science.gov (United States)

    2010-03-24

    ... electrical failure of a 138 kV motor operated switch on a 138 kV-13 kV transformer located in the ReliabilityFirst region resulted in the tripping of two transformers, one due to the electrical failure and the... Commission 18 CFR Part 40 [Docket No. RM09-18-000; 130 FERC ] 61,204] Revision to Electric Reliability...

  2. Resistive switching in polycrystalline YMnO3 thin films

    Directory of Open Access Journals (Sweden)

    A. Bogusz

    2014-10-01

    Full Text Available We report a unipolar, nonvolatile resistive switching in polycrystalline YMnO3 thin films grown by pulsed laser deposition and sandwiched between Au top and Ti/Pt bottom electrodes. The ratio of the resistance in the OFF and ON state is larger than 103. The observed phenomena can be attributed to the formation and rupture of conductive filaments within the multiferroic YMnO3 film. The generation of conductive paths under applied electric field is discussed in terms of the presence of grain boundaries and charged domain walls inherently formed in hexagonal YMnO3. Our findings suggest that engineering of the ferroelectric domains might be a promising route for designing and fabrication of novel resistive switching devices.

  3. Very High Frequency Switch-Mode Power Supplies

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre

    The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply...... these electronic devices. This calls for new technologies in order to miniaturize the power electronics of today. One way to do this is by increasing the switching frequency dramatically and develop very high frequency switch mode power supplies. If these converters can be designed to operate efficiently, a huge...... size, weight and cost reduction can be achieved due to the smaller energy storing elements needed at these frequencies. The research presented in this thesis focuses on exactly this. First various technologies for miniaturization of power supplies are studied, e.g. piezo electric transformers, wide...

  4. Resistance switching in epitaxial SrCoOx thin films

    Science.gov (United States)

    Tambunan, Octolia T.; Parwanta, Kadek J.; Acharya, Susant K.; Lee, Bo Wha; Jung, Chang Uk; Kim, Yeon Soo; Park, Bae Ho; Jeong, Huiseong; Park, Ji-Yong; Cho, Myung Rae; Park, Yun Daniel; Choi, Woo Seok; Kim, Dong-Wook; Jin, Hyunwoo; Lee, Suyoun; Song, Seul Ji; Kang, Sung-Jin; Kim, Miyoung; Hwang, Cheol Seong

    2014-08-01

    We observed bipolar switching behavior from an epitaxial strontium cobaltite film grown on a SrTiO3 (001) substrate. The crystal structure of strontium cobaltite has been known to undergo topotactic phase transformation between two distinct phases: insulating brownmillerite (SrCoO2.5) and conducting perovskite (SrCoO3-δ) depending on the oxygen content. The current-voltage characteristics of the strontium cobaltite film showed that it could have a reversible insulator-to-metal transition triggered by electrical bias voltage. We propose that the resistance switching in the SrCoOx thin film could be related to the topotactic phase transformation and the peculiar structure of SrCoO2.5.

  5. Resistance switching in epitaxial SrCoOx thin films

    International Nuclear Information System (INIS)

    Tambunan, Octolia T.; Parwanta, Kadek J.; Acharya, Susant K.; Lee, Bo Wha; Jung, Chang Uk; Kim, Yeon Soo; Park, Bae Ho; Jeong, Huiseong; Park, Ji-Yong; Cho, Myung Rae; Park, Yun Daniel; Choi, Woo Seok; Kim, Dong-Wook; Jin, Hyunwoo; Lee, Suyoun; Song, Seul Ji; Kang, Sung-Jin; Kim, Miyoung; Hwang, Cheol Seong

    2014-01-01

    We observed bipolar switching behavior from an epitaxial strontium cobaltite film grown on a SrTiO 3 (001) substrate. The crystal structure of strontium cobaltite has been known to undergo topotactic phase transformation between two distinct phases: insulating brownmillerite (SrCoO 2.5 ) and conducting perovskite (SrCoO 3−δ ) depending on the oxygen content. The current–voltage characteristics of the strontium cobaltite film showed that it could have a reversible insulator-to-metal transition triggered by electrical bias voltage. We propose that the resistance switching in the SrCoO x thin film could be related to the topotactic phase transformation and the peculiar structure of SrCoO 2.5

  6. Parametric studies on the harvested energy of piezoelectric switching techniques

    International Nuclear Information System (INIS)

    Neubauer, M; Krack, M; Wallaschek, J

    2010-01-01

    Piezoelectric energy harvesting techniques have experienced increasing research effort during the last few years. Possible applications including wireless, fully autonomous electronic devices, such as sensors, have attracted great interest. The key aspect of harvesting techniques is the amount of converted and stored energy, because the energy source and the conversion rate is limited. In particular, switching techniques offer many parameters that can be optimized. It is therefore crucial to examine the influence of these parameters in a precise manner. This paper addresses an accurate analytical modeling approach, facilitating the calculation of standard-DC and parallel SSHI-DC energy harvesting circuits. In particular the influence of the frequency ratio between the excitation and the electrical resonance of the switching LR-branch, and the voltage gaps across the rectifier diodes are studied in detail. Additionally a comparison with the SSDI damping network is performed. The relationship between energy harvesting and damping is indicated in this paper

  7. A nonlinear HP-type complementary resistive switch

    Directory of Open Access Journals (Sweden)

    Paul K. Radtke

    2016-05-01

    Full Text Available Resistive Switching (RS is the change in resistance of a dielectric under the influence of an external current or electric field. This change is non-volatile, and the basis of both the memristor and resistive random access memory. In the latter, high integration densities favor the anti-serial combination of two RS-elements to a single cell, termed the complementary resistive switch (CRS. Motivated by the irregular shape of the filament protruding into the device, we suggest a nonlinearity in the resistance-interpolation function, characterized by a single parameter p. Thereby the original HP-memristor is expanded upon. We numerically simulate and analytically solve this model. Further, the nonlinearity allows for its application to the CRS.

  8. A nonlinear HP-type complementary resistive switch

    Science.gov (United States)

    Radtke, Paul K.; Schimansky-Geier, Lutz

    2016-05-01

    Resistive Switching (RS) is the change in resistance of a dielectric under the influence of an external current or electric field. This change is non-volatile, and the basis of both the memristor and resistive random access memory. In the latter, high integration densities favor the anti-serial combination of two RS-elements to a single cell, termed the complementary resistive switch (CRS). Motivated by the irregular shape of the filament protruding into the device, we suggest a nonlinearity in the resistance-interpolation function, characterized by a single parameter p. Thereby the original HP-memristor is expanded upon. We numerically simulate and analytically solve this model. Further, the nonlinearity allows for its application to the CRS.

  9. Fuselage panel noise attenuation by piezoelectric switching control

    International Nuclear Information System (INIS)

    Makihara, Kanjuro; Onoda, Junjiro; Minesugi, Kenji; Miyakawa, Takeya

    2010-01-01

    This paper describes a problem that we encountered in our noise attenuation project and our solution for it. We intend to attenuate low-frequency noise that transmits through aircraft fuselage panels. Our method of noise attenuation is implemented with a piezoelectric semi-active system having a selective switch instead of an active energy-supply system. The semi-active controller is based on the predicted sound pressure distribution obtained from acoustic emission analysis. Experiments and numerical simulations demonstrate that the semi-active method attenuates acoustic levels of not only the simple monochromatic noise but also of broadband noise. We reveal that tuning the electrical parameters in the circuit is the key to effective noise attenuation, to overcome the acoustic excitation problem due to sharp switching actions, as well as to control chattering problems. The results obtained from this investigation provide meaningful insights into designing noise attenuation systems for comfortable aircraft cabin environments

  10. Optimization of multi-branch switched diversity systems

    KAUST Repository

    Nam, Haewoon; Alouini, Mohamed-Slim

    2009-01-01

    A performance optimization based on the optimal switching threshold(s) for a multi-branch switched diversity system is discussed in this paper. For the conventional multi-branch switched diversity system with a single switching threshold

  11. Electronic logic to enhance switch reliability in detecting openings and closures of redundant switches

    Science.gov (United States)

    Cooper, James A.

    1986-01-01

    A logic circuit is used to enhance redundant switch reliability. Two or more switches are monitored for logical high or low output. The output for the logic circuit produces a redundant and failsafe representation of the switch outputs. When both switch outputs are high, the output is high. Similarly, when both switch outputs are low, the logic circuit's output is low. When the output states of the two switches do not agree, the circuit resolves the conflict by memorizing the last output state which both switches were simultaneously in and produces the logical complement of this output state. Thus, the logic circuit of the present invention allows the redundant switches to be treated as if they were in parallel when the switches are open and as if they were in series when the switches are closed. A failsafe system having maximum reliability is thereby produced.

  12. Shape memory thermal conduction switch

    Science.gov (United States)

    Vaidyanathan, Rajan (Inventor); Krishnan, Vinu (Inventor); Notardonato, William U. (Inventor)

    2010-01-01

    A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.

  13. Negation switching invariant signed graphs

    Directory of Open Access Journals (Sweden)

    Deepa Sinha

    2014-04-01

    Full Text Available A signed graph (or, $sigraph$ in short is a graph G in which each edge x carries a value $\\sigma(x \\in \\{-, +\\}$ called its sign. Given a sigraph S, the negation $\\eta(S$ of the sigraph S is a sigraph obtained from S by reversing the sign of every edge of S. Two sigraphs $S_{1}$ and $S_{2}$ on the same underlying graph are switching equivalent if it is possible to assign signs `+' (`plus' or `-' (`minus' to vertices of $S_{1}$ such that by reversing the sign of each of its edges that has received opposite signs at its ends, one obtains $S_{2}$. In this paper, we characterize sigraphs which are negation switching invariant and also see for what sigraphs, S and $\\eta (S$ are signed isomorphic.

  14. Switch for Good Community Program

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Tabitha [Balfour Beatty Military Housing Management LLC, Newtown Square, PA (United States); Amran, Martha [WattzOn, Inc., Mountain View, CA (United States)

    2013-11-19

    Switch4Good is an energy-savings program that helps residents reduce consumption from behavior changes; it was co-developed by Balfour Beatty Military Housing Management (BB) and WattzOn in Phase I of this grant. The program was offered at 11 Navy bases. Three customer engagement strategies were evaluated, and it was found that Digital Nudges (a combination of monthly consumption statements with frequent messaging via text or email) was most cost-effective. The program was delivered on-time and on-budget, and its success is based on the teamwork of local BB staff and the WattzOn team. The following graphic shows Switch4Good “by the numbers”, e.g. the scale of operations achieved during Phase I.

  15. Pulsed laser triggered high speed microfluidic switch

    Science.gov (United States)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  16. Secure videoconferencing equipment switching system and method

    Science.gov (United States)

    Hansen, Michael E [Livermore, CA

    2009-01-13

    A switching system and method are provided to facilitate use of videoconference facilities over a plurality of security levels. The system includes a switch coupled to a plurality of codecs and communication networks. Audio/Visual peripheral components are connected to the switch. The switch couples control and data signals between the Audio/Visual peripheral components and one but nor both of the plurality of codecs. The switch additionally couples communication networks of the appropriate security level to each of the codecs. In this manner, a videoconferencing facility is provided for use on both secure and non-secure networks.

  17. Electrical power system WP-04

    Science.gov (United States)

    Nored, Donald L.

    1990-01-01

    Viewgraphs on Space Station Freedom Electrical Power System (EPS) WP-40 are presented. Topics covered include: key EPS technical requirements; photovoltaic power module systems; solar array assembly; blanket containment box and box positioning subassemblies; solar cell; bypass diode assembly; Kapton with atomic oxygen resistant coating; sequential shunt unit; gimbal assembly; energy storage subsystem; thermal control subsystem; direct current switching unit; integrated equipment assembly; PV cargo element; PMAD system; and PMC and AC architecture.

  18. Design and Simulation of an RF-MEMS Switch and analysis of its Electromagnetic aspect in realtion to stress

    Directory of Open Access Journals (Sweden)

    Amna Riaz

    2018-01-01

    Full Text Available Microelectromechanical Systems (MEMS are devices made up of several electrical and mechanical components. They consist of mechanical functions (sensing, thermal, inertial and electrical functions (switching, decision making on a single chip made by microfabrication methods. These chips exhibit combined properties of the two functions. The size of system has characteristic dimensions less than 1mm but more than 1μm. The configuration of these components determine the final deliverables of the switch. MEMS can be designed to meet user requirements on any level from microbiological application such as biomedical transducers or tissue engineering, to mechanical systems such as microfluidic diagnoses or chemical fuel cells. The low cost, small mass and minimal power consumption of the MEMS makes it possible to readily integrate to any kind of system in any environment. MEMS are faster, better and cheaper. They offer excellent electrical performances. MEMS working at Radio frequencies are RF MEMS. RF-MEMS switches find huge market in the modern telecommunication networks, biological, automobiles, satellites and defense systems because of their lower power consumptions at relatively higher frequencies and better electrical performances. But the reliability is the major hurdle in the fate of RF MEMS switches. Reliability mainly arises due to the presence of residual stresses, charging current, fatigue and creep and contact degradation. The presence of residual stresses in switches the S-Parameters of the switches are affected badly and the residual stress affects the final planarity of the fabricated structure. Design and simulation of an RF-MEMS switch is proposed considering the residual stresses in both on and off state. The operating frequency band is being optimized and the best possible feasible fabrication technique for the proposed switch design is being analyzed. S-Parameters are calculated and a comparison for the switches with stress and

  19. Switching strategies to optimize search

    International Nuclear Information System (INIS)

    Shlesinger, Michael F

    2016-01-01

    Search strategies are explored when the search time is fixed, success is probabilistic and the estimate for success can diminish with time if there is not a successful result. Under the time constraint the problem is to find the optimal time to switch a search strategy or search location. Several variables are taken into account, including cost, gain, rate of success if a target is present and the probability that a target is present. (paper: interdisciplinary statistical mechanics)

  20. Correlated randomness and switching phenomena

    Science.gov (United States)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Kumar, P.; Plerou, V.; Preis, T.

    2010-08-01

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines have no perfect metronome in time and no perfect spatial architecture-crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned structures in space. Further, many of these processes and structures have the remarkable feature of “switching” from one behavior to another as if by magic. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many spatial and temporal patterns in biology, medicine, and economics and even begin to characterize the switching phenomena that enables a system to pass from one state to another. Inspired by principles developed by A. Nihat Berker and scores of other statistical physicists in recent years, we discuss some applications of correlated randomness to understand switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water’s anomalies are related to a switching point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not “outliers” (another Gladwell immortalization). Though more speculative, we support the idea of disease as arising from some kind of yet-to-be-understood complex switching phenomenon, by discussing data on selected examples, including heart disease and Alzheimer disease.

  1. Fast superconducting magnetic field switch

    Science.gov (United States)

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  2. Fast superconducting magnetic field switch

    International Nuclear Information System (INIS)

    Goren, Y.; Mahale, N.K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  3. Coating possibilities for magnetic switches

    International Nuclear Information System (INIS)

    Sharp, D.J.; Harjes, H.C.; Mann, G.A.; Morgan, F.A.

    1990-01-01

    High average power magnetic pulse compression systems are now being considered for use in several applications such as the High Power Radiation Source (HiPoRS) project. Such systems will require high reliability magnetic switches (saturable inductors) that are very efficient and have long lifetimes. One of the weakest components in magnetic switches is their interlaminar insulation. Considerations related to dielectric breakdown, thermal management of compact designs, and economical approaches for achieving these needs must be addressed. Various dielectric insulation and coating materials have been applied to Metglas foil in an attempt to solve the complex technical and practical problems associated with large magnetic switch structures. This work reports various needs, studies, results, and proposals in selecting and evaluating continuous coating approaches for magnetic foil. Techniques such as electrophoretic polymer deposition and surface chemical oxidation are discussed. We also propose continuous photofabrication processes for applying dielectric ribs or spacers to the foil which permit circulation of dielectric liquids for cooling during repetitive operation. 10 refs., 8 figs., 11 tabs

  4. Analytical Performance Evaluation of Different Switch Solutions

    Directory of Open Access Journals (Sweden)

    Francisco Sans

    2013-01-01

    Full Text Available The virtualization of the network access layer has opened new doors in how we perceive networks. With this virtualization of the network, it is possible to transform a regular PC with several network interface cards into a switch. PC-based switches are becoming an alternative to off-the-shelf switches, since they are cheaper. For this reason, it is important to evaluate the performance of PC-based switches. In this paper, we present a performance evaluation of two PC-based switches, using Open vSwitch and LiSA, and compare their performance with an off-the-shelf Cisco switch. The RTT, throughput, and fairness for UDP are measured for both Ethernet and Fast Ethernet technologies. From this research, we can conclude that the Cisco switch presents the best performance, and both PC-based switches have similar performance. Between Open vSwitch and LiSA, Open vSwitch represents a better choice since it has more features and is currently actively developed.

  5. Optical Multidimensional Switching for Data Center Networks

    DEFF Research Database (Denmark)

    Kamchevska, Valerija

    2017-01-01

    . Software controlled switching using an on-chip integrated fiber switch is demonstrated and enabling of additional network functionalities such as multicast and optical grooming is experimentally confirmed. Altogether this work demonstrates the potential of optical switching technologies...... for the purpose of deploying optical switching within the network. First, the Hi-Ring data center architecture is proposed. It is based on optical multidimensional switching nodes that provide switching in hierarchically layered space, wavelength and time domain. The performance of the Hi-Ring architecture...... is evaluated experimentally and successful switching of both high capacity wavelength connections and time-shared subwavelengthconnections is demonstrated. Error-free performance is also achieved when transmitting 7 Tbit/s using multicore fiber, confirming the ability to scale the network. Moreover...

  6. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  7. Synchronization in complex networks with switching topology

    International Nuclear Information System (INIS)

    Wang, Lei; Wang, Qing-guo

    2011-01-01

    This Letter investigates synchronization issues of complex dynamical networks with switching topology. By constructing a common Lyapunov function, we show that local and global synchronization for a linearly coupled network with switching topology can be evaluated by the time average of second smallest eigenvalues corresponding to the Laplacians of switching topology. This result is quite powerful and can be further used to explore various switching cases for complex dynamical networks. Numerical simulations illustrate the effectiveness of the obtained results in the end. -- Highlights: → Synchronization of complex networks with switching topology is investigated. → A common Lyapunov function is established for synchronization of switching network. → The common Lyapunov function is not necessary to monotonically decrease with time. → Synchronization is determined by the second smallest eigenvalue of its Laplacian. → Synchronization criterion can be used to investigate various switching cases.

  8. THE MATHEMATIC STIMULATION OF TRANSIENT PROCESS IN A.C. – SYSTEM “ELECTRIC-TRACTION NETWORK – LOCOMOTIVE” 3. SWITCHING ON MAIN POWER CONVERTER IN “FREE PLAY” MODE; THE ANALYSIS OF VOLTS AND CURRENTS IN THE POWER SUPPLY INPUT SYSTEM

    Directory of Open Access Journals (Sweden)

    T. M. Mischenko

    2011-05-01

    Full Text Available The article is a continuation of analysis of the electric equivalent AC circuit «traction substation − device of transversal compensation − electric-traction network − electric locomotive DS 3» and the influence on a power transformer in the idle mode, depending on the feeder voltage and the distance of an electric locomotive from a traction substation. The numeral calculations are performed and the voltage and current values in the electric power supply system are analyzed.

  9. THE MATHEMATIC STIMULATION OF TRANSIENT PROCESS IN A.C. – SYSTEM “ELECTRIC-TRACTION NETWORK – LOCOMOTIVE” 3. SWITCHING ON MAIN POWER CONVERTER IN “FREE PLAY” MODE; THE ANALYSIS OF VOLTS AND CURRENTS IN THE POWER SUPPLY INPUT SYSTEM

    OpenAIRE

    T. M. Mischenko

    2011-01-01

    The article is a continuation of analysis of the electric equivalent AC circuit «traction substation − device of transversal compensation − electric-traction network − electric locomotive DS 3» and the influence on a power transformer in the idle mode, depending on the feeder voltage and the distance of an electric locomotive from a traction substation. The numeral calculations are performed and the voltage and current values in the electric power supply system are analyzed.

  10. Power quality improvement in highly varying loads using thyristor-switched capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Poshtan, M. [Petroleum Inst., Abu Dhabi (United Arab Emirates). Dept. of Electrical Engineering; Mokhtari, H.; Esmaeili, A. [Sharif Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Electrical Engineering

    2007-07-01

    Ordinary contactor-based-capacitor (CBC) banks may not be able to response quickly enough in highly varying electrical loads such as welding machines or arc furnace loads. Thyristor-switched capacitor (TSC) banks are therefore used to compensate for reactive power of highly varying loads. In this paper, the performance of a TSC was compared to CBC banks. The 2 systems, were also compared in terms of energy saving in transmission systems. Simulations carried out using PSCAD/EMTDC software showed that there was a considerable difference in the performance of the 2 systems. The shortcomings of existing CBC systems include slow response of mechanical switching systems; problem of switching more than one bank into the system; and, voltage/current transients during on-off switching. 3 refs., 6 tabs., 14 figs.

  11. Design and finite element method analysis of laterally actuated multi-value nano electromechanical switches

    KAUST Repository

    Kloub, Hussam; Smith, Casey; Hussain, Muhammad Mustafa

    2011-01-01

    We report on the design and modeling of novel nano electromechanical switches suitable for implementing reset/set flip-flops, AND, NOR, and XNOR Boolean functions. Multiple logic operations can be implemented using only one switching action enabling parallel data processing; a feature that renders this design competitive with complementary metal oxide semiconductor and superior to conventional nano-electromechanical switches in terms of functionality per device footprint. The structural architecture of the newly designed switch consists of a pinned flexural beam structure which allows low strain lateral actuation for enhanced mechanical integrity. Reliable control of on-state electrical current density is achieved through the use of metal-metal contacts, true parallel beam deflection, and lithographically defined contact area to prevent possible device welding. Dynamic response as a function of device dimensions numerically investigated using ANSYS and MatLab Simulink. © 2011 The Japan Society of Applied Physics.

  12. Design and finite element method analysis of laterally actuated multi-value nano electromechanical switches

    KAUST Repository

    Kloub, Hussam

    2011-09-01

    We report on the design and modeling of novel nano electromechanical switches suitable for implementing reset/set flip-flops, AND, NOR, and XNOR Boolean functions. Multiple logic operations can be implemented using only one switching action enabling parallel data processing; a feature that renders this design competitive with complementary metal oxide semiconductor and superior to conventional nano-electromechanical switches in terms of functionality per device footprint. The structural architecture of the newly designed switch consists of a pinned flexural beam structure which allows low strain lateral actuation for enhanced mechanical integrity. Reliable control of on-state electrical current density is achieved through the use of metal-metal contacts, true parallel beam deflection, and lithographically defined contact area to prevent possible device welding. Dynamic response as a function of device dimensions numerically investigated using ANSYS and MatLab Simulink. © 2011 The Japan Society of Applied Physics.

  13. Software-Controlled Next Generation Optical Circuit Switching for HPC and Cloud Computing Datacenters

    Directory of Open Access Journals (Sweden)

    Muhammad Imran

    2015-11-01

    Full Text Available In this paper, we consider the performance of optical circuit switching (OCS systems designed for data center networks by using network-level simulation. Recent proposals have used OCS in data center networks but the relatively slow switching times of OCS-MEMS switches (10–100 ms and the latencies of control planes in these approaches have limited their use to the largest data center networks with workloads that last several seconds. Herein, we extend the applicability and generality of these studies by considering dynamically changing short-lived circuits in software-controlled OCS switches, using the faster switching technologies that are now available. The modelled switch architecture features fast optical switches in a single hop topology with a centralized, software-defined optical control plane. We model different workloads with various traffic aggregation parameters to investigate the performance of such designs across usage patterns. Our results show that, with suitable choices for the OCS system parameters, delay performance comparable to that of electrical data center networks can be obtained.

  14. Electrical contacts principles and applications

    CERN Document Server

    Slade, Paul G

    2013-01-01

    Covering the theory, application, and testing of contact materials, Electrical Contacts: Principles and Applications, Second Edition introduces a thorough discussion on making electric contact and contact interface conduction; presents a general outline of, and measurement techniques for, important corrosion mechanisms; considers the results of contact wear when plug-in connections are made and broken; investigates the effect of thin noble metal plating on electronic connections; and relates crucial considerations for making high- and low-power contact joints. It examines contact use in switch

  15. Electricity Theory

    International Nuclear Information System (INIS)

    Gong, Ha Soung

    2006-12-01

    The text book composed of five parts, which are summary of this book, arrangement of electricity theory including electricity nad magnetism, a direct current, and alternating current. It has two dictionary electricity terms for a synonym. The last is an appendix. It is for preparing for test of officer, electricity engineer and fire fighting engineer.

  16. Variable-Reluctance Motor For Electric Vehicles

    Science.gov (United States)

    Lang, Jeffrey H.

    1987-01-01

    Report describes research on variable-reluctance electric-motor drive for eventual use in electric-vehicle propulsion. Primary design and performance criteria were torque and power output per unit mass of motor, cost, and drive efficiency. For each criterion, optimized drive design developed, and designs unified to yield single electric-vehicle drive. Scaled-down motor performed as expected. Prototype of paraplegic lift operated by toggle switch and joystick. Lift plugs into household electrical outlet for recharging when not in use.

  17. Effect of oxyfluorinated multi-walled carbon nanotube additives on positive temperature coefficient/negative temperature coefficient behavior in high-density polyethylene polymeric switches

    International Nuclear Information System (INIS)

    Bai, Byong Chol; Kang, Seok Chang; Im, Ji Sun; Lee, Se Hyun; Lee, Young-Seak

    2011-01-01

    Graphical abstract: The electrical properties of MWCNT-filled HDPE polymeric switches and their effect on oxyfluorination. Highlights: → Oxyfluorinated MWCNTs were used to reduce the PTC/NTC phenomenon in MWCNT-filled HDPE polymeric switches. → Electron mobility is difficult in MWCNT particles when the number of oxygen functional groups (C-O, C=O) increases by oxyfluorination. → A mechanism of improved electrical properties of oxyfluorinated MWCNT-filled HDPE polymeric switches was suggested. -- Abstract: Multi-walled carbon nanotubes (MWCNTs) were embedded into high-density polyethylene (HDPE) to improve the electrical properties of HDPE polymeric switches. The MWCNT surfaces were modified by oxyfluorination to improve their positive temperature coefficient (PTC) and negative temperature coefficient (NTC) behaviors in HDPE polymeric switches. HDPE polymeric switches exhibit poor electron mobility between MWCNT particles when the number of oxygen functional groups is increased by oxyfluorination. Thus, the PTC intensity of HDPE polymeric switches was increased by the destruction of the electrical conductivity network. The oxyfluorination of MWCNTs also leads to weak NTC behavior in the MWCNT-filled HDPE polymeric switches. This result is attributed to the reduction of the mutual attraction between the MWCNT particles at the melting temperature of HDPE, which results from a decrease in the surface free energy of the C-F bond in MWCNT particles.

  18. Fuel switching in power-plants: Modelling and impact on the analysis of energy projects

    International Nuclear Information System (INIS)

    Varympopiotis, G.; Tolis, A.; Rentizelas, A.

    2014-01-01

    Highlights: • The impact of fuel-switching in electricity generation is researched. • 15 Scenarios of fuel-technology combinations are compared using a computational model. • Fuel-switching results to higher yields compared to single-fuelled plants. • Plants with natural gas combined cycle and solid fuel supercritical boilers are optimal. • Fuel-switching, offers higher flexibility and security of fuel supply. - Abstract: In electricity markets, where conditions are uncertain, the choice of the best technology and the optimisation of production processes may not anymore be enough to ensure optimal investment yield of energy business plans. Providing some aspects of flexibility might enhance their financial performance; fuel switching may prove to be an alternative option, offering operational flexibility over time, as well as significant financial benefits. Traditional investment analysis methods are considered marginally useful to analyse this case. Instead, the recent tools of time-dependent investment analysis are more appropriate, since they are not inherently restricted to immediate, irreversible decisions. In the present work, a time-dependent computational model is presented and applied in the case study of the Greek Power Sector, in order to estimate the potential advantages of the fuel switching concept. Moreover, the optimal timing of switching is derived, to ensure increasing yields of an average-capacity power-plant. The results of the research indicate significant financial benefits anticipated in most scenarios from applying fuel switching, compared to single-fuelled electricity generation units. Security of fuel supply and enhanced flexibility may also be offered to the power plant since more than one technology and fuels may be engaged

  19. Leaking electricity in domestic appliances

    International Nuclear Information System (INIS)

    Meier, Alan; Rosen, Karen

    1999-01-01

    Many types of home electronic equipment draw electric power when switched off or not performing their principal functions. Standby power use (or ''leaking electricity'') for most appliances ranges from 1 - 20 watts. Even though standby use of each device is small, the combined standby power use of all appliances in a home can easily exceed 50 watts. Leaking electricity is already responsible for 5 to 10 percent of residential electricity use in the United States and over 10 percent in Japan. An increasing number of white goods also have standby power requirements. There is a growing international effort to limit standby power to around one watt per device. New and existing technologies are available to meet this target at little or no extra cost

  20. An Electrically Switchable Metal-Organic Framework

    Science.gov (United States)

    Fernandez, Carlos A.; Martin, Paul C.; Schaef, Todd; Bowden, Mark E.; Thallapally, Praveen K.; Dang, Liem; Xu, Wu; Chen, Xilin; McGrail, B. Peter

    2014-08-01

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in a reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.

  1. Modeling spot markets for electricity and pricing electricity derivatives

    Science.gov (United States)

    Ning, Yumei

    Spot prices for electricity have been very volatile with dramatic price spikes occurring in restructured market. The task of forecasting electricity prices and managing price risk presents a new challenge for market players. The objectives of this dissertation are: (1) to develop a stochastic model of price behavior and predict price spikes; (2) to examine the effect of weather forecasts on forecasted prices; (3) to price electricity options and value generation capacity. The volatile behavior of prices can be represented by a stochastic regime-switching model. In the model, the means of the high-price and low-price regimes and the probabilities of switching from one regime to the other are specified as functions of daily peak load. The probability of switching to the high-price regime is positively related to load, but is still not high enough at the highest loads to predict price spikes accurately. An application of this model shows how the structure of the Pennsylvania-New Jersey-Maryland market changed when market-based offers were allowed, resulting in higher price spikes. An ARIMA model including temperature, seasonal, and weekly effects is estimated to forecast daily peak load. Forecasts of load under different assumptions about weather patterns are used to predict changes of price behavior given the regime-switching model of prices. Results show that the range of temperature forecasts from a normal summer to an extremely warm summer cause relatively small increases in temperature (+1.5%) and load (+3.0%). In contrast, the increases in prices are large (+20%). The conclusion is that the seasonal outlook forecasts provided by NOAA are potentially valuable for predicting prices in electricity markets. The traditional option models, based on Geometric Brownian Motion are not appropriate for electricity prices. An option model using the regime-switching framework is developed to value a European call option. The model includes volatility risk and allows changes

  2. Architecture and evaluation of software-defined optical switching matrix for hybrid data centers

    DEFF Research Database (Denmark)

    Mehmeri, Victor; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    2016-01-01

    A software architecture is proposed for hybrid packet/optical data centers employing programmable NETCONF-enabled optical switching matrix, and a performance evaluation is presented comparing hybrid and electrical-only architectures for elephant flows under different traffic patterns. Network...

  3. Some studies on the deformation of the membrane in an RF MEMS switch

    NARCIS (Netherlands)

    Ambati, Vijaya Raghav; Asheim, Andreas; van den Berg, Jan Bouwe; van Gennip, Yves; Gerasimov, Tymofiy; Hlod, Andriy; Planqué, Bob; van der Schans, Martin; van der Stelt, Sjors; Vargas Rivera, Michelangelo; Vondenhoff, Erwin; Bokhove, Onno; Hurink, Johann; Meinsma, Gjerrit; Stolk, Chris; Vellekoop, Michel

    2008-01-01

    Radio Frequency (RF) switches of Micro Electro Mechanical Systems (MEMS) are appealing to the mobile industry because of their energy efficiency and ability to accommodate more frequency bands. However, the electromechanical coupling of the electrical circuit to the mechanical components in RF MEMS

  4. Switching of the polarization of ferroelectric-ferroelastic gadolinium molybdate in a magnetic field

    Science.gov (United States)

    Yakushkin, E. D.

    2017-10-01

    A change in the character of the electric switching of polydomain ferroelectric-ferroelastic gadolinium molybdate in an external magnetic field has been detected. This change has been attributed to a magnetically stimulated increase in the pinning of domain walls. Under certain conditions, the loop of switchable polarization is degenerated into an ellipse characteristic of a linear insulator with leakage current.

  5. A switched-reluctance motor for aerospace application: Design, analysis and results

    NARCIS (Netherlands)

    Tursini, M.; Villani, M.; Fabri, G.; Di Leonardo, L.

    2017-01-01

    This paper presents a five-phase switched reluctance motor designed to satisfy the requirements of flap actuators in medium size aircrafts, a real example of the more electric aircraft trend. In normal conditions the machine operates with two phases conducting simultaneously but it is designed to

  6. Few photon switching with slow light in hollow fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Balic, Vlatko

    2009-01-01

    Cold atoms confined inside a hollow-core photonic-crystal fiber with core diameters of a few photon wavelengths are a promising medium for studying nonlinear optical interactions at extremely low light levels. The high electric field intensity per photon and interaction lengths not limited...... by diffraction are some of the unique features of this system. Here, we present the results of our first nonlinear optics experiments in this system including a demonstration of an all-optical switch that is activated at energies corresponding to few hundred optical photons per pulse....

  7. Floating electrode microelectromechanical system capacitive switches: A different actuation mechanism

    Science.gov (United States)

    Papaioannou, G.; Giacomozzi, F.; Papandreou, E.; Margesin, B.

    2011-08-01

    The paper investigates the actuation mechanism in floating electrode microelectromechanical system capacitive switches. It is demonstrated that in the pull-in state, the device operation turns from voltage to current controlled actuation. The current arises from Poole-Frenkel mechanism in the dielectric film and Fowler-Nordheim in the bridge-floating electrode air gap. The pull-out voltage seems to arise from the abrupt decrease of Fowler-Nordheim electric field intensity. This mechanism seems to be responsible for the very small difference with respect to the pull-in voltage.

  8. Current-Driven Switch-Mode Audio Power Amplifiers

    DEFF Research Database (Denmark)

    Knott, Arnold; Buhl, Niels Christian; Andersen, Michael A. E.

    2012-01-01

    The conversion of electrical energy into sound waves by electromechanical transducers is proportional to the current through the coil of the transducer. However virtually all audio power amplifiers provide a controlled voltage through the interface to the transducer. This paper is presenting...... a switch-mode audio power amplifier not only providing controlled current but also being supplied by current. This results in an output filter size reduction by a factor of 6. The implemented prototype shows decent audio performance with THD + N below 0.1 %....

  9. Contribution to high voltage matrix switches reliability

    International Nuclear Information System (INIS)

    Lausenaz, Yvan

    2000-01-01

    Nowadays, power electronic equipment requirements are important, concerning performances, quality and reliability. On the other hand, costs have to be reduced in order to satisfy the market rules. To provide cheap, reliability and performances, many standard components with mass production are developed. But the construction of specific products must be considered following these two different points: in one band you can produce specific components, with delay, over-cost problems and eventuality quality and reliability problems, in the other and you can use standard components in a adapted topologies. The CEA of Pierrelatte has adopted this last technique of power electronic conception for the development of these high voltage pulsed power converters. The technique consists in using standard components and to associate them in series and in parallel. The matrix constitutes high voltage macro-switch where electrical parameters are distributed between the synchronized components. This study deals with the reliability of these structures. It brings up the high reliability aspect of MOSFETs matrix associations. Thanks to several homemade test facilities, we obtained lots of data concerning the components we use. The understanding of defects propagation mechanisms in matrix structures has allowed us to put forwards the necessity of robust drive system, adapted clamping voltage protection, and careful geometrical construction. All these reliability considerations in matrix associations have notably allowed the construction of a new matrix structure regrouping all solutions insuring reliability. Reliable and robust, this product has already reaches the industrial stage. (author) [fr

  10. Enhancement of resistive switching properties in Al2O3 bilayer-based atomic switches: multilevel resistive switching

    Science.gov (United States)

    Vishwanath, Sujaya Kumar; Woo, Hyunsuk; Jeon, Sanghun

    2018-06-01

    Atomic switches are considered to be building blocks for future non-volatile data storage and internet of things. However, obtaining device structures capable of ultrahigh density data storage, high endurance, and long data retention, and more importantly, understanding the switching mechanisms are still a challenge for atomic switches. Here, we achieved improved resistive switching performance in a bilayer structure containing aluminum oxide, with an oxygen-deficient oxide as the top switching layer and stoichiometric oxide as the bottom switching layer, using atomic layer deposition. This bilayer device showed a high on/off ratio (105) with better endurance (∼2000 cycles) and longer data retention (104 s) than single-oxide layers. In addition, depending on the compliance current, the bilayer device could be operated in four different resistance states. Furthermore, the depth profiles of the hourglass-shaped conductive filament of the bilayer device was observed by conductive atomic force microscopy.

  11. MODERN ELECTRIC CARS OF TESLA MOTORS COMPANY

    Directory of Open Access Journals (Sweden)

    O. F. Vynakov

    2016-08-01

    Full Text Available This overview article shows the advantages of a modern electric car as compared with internal combustion cars by the example of the electric vehicles of Tesla Motors Company. It (в смысле- статья describes the history of this firm, provides technical and tactical characteristics of three modifications of electric vehicles produced by Tesla Motors. Modern electric cars are not less powerful than cars with combustion engines both in speed and acceleration amount. They are reliable, economical and safe in operation. With every year the maximum range of an electric car is increasing and its battery charging time is decreasing.Solving the problem of environmental safety, the governments of most countries are trying to encourage people to switch to electric cars by creating subsidy programs, lending and abolition of taxation. Therefore, the advent of an electric vehicle in all major cities of the world is inevitable.

  12. Radiation-sensitive switching circuits

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.H.; Cockshott, C.P.

    1976-03-16

    A radiation-sensitive switching circuit has a light emitting diode which supplies light to a photo-transistor, the light being interrupted from time to time. When the photo-transistor is illuminated, current builds up and when this current reaches a predetermined value, a trigger circuit changes state. The peak output of the photo-transistor is measured and the trigger circuit is arranged to change state when the output of the device is a set proportion of the peak output, so as to allow for aging of the components. The circuit is designed to control the ignition system in an automobile engine.

  13. Radiation-sensitive switching circuits

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.H.; Cockshott, C.P.

    1976-03-16

    A radiation-sensitive switching circuit includes a light emitting diode which from time to time illuminates a photo-transistor, the photo-transistor serving when its output reaches a predetermined value to operate a trigger circuit. In order to allow for aging of the components, the current flow through the diode is increased when the output from the transistor falls below a known level. Conveniently, this is achieved by having a transistor in parallel with the diode, and turning the transistor off when the output from the phototransistor becomes too low. The circuit is designed to control the ignition system in an automobile engine.

  14. Threshold Switching Induced by Controllable Fragmentation in Silver Nanowire Networks.

    Science.gov (United States)

    Wan, Tao; Pan, Ying; Du, Haiwei; Qu, Bo; Yi, Jiabao; Chu, Dewei

    2018-01-24

    Silver nanowire (Ag NW) networks have been widely studied because of a great potential in various electronic devices. However, nanowires usually undergo a fragmentation process at elevated temperatures due to the Rayleigh instability that is a result of reduction of surface/interface energy. In this case, the nanowires become completely insulating due to the formation of randomly distributed Ag particles with a large distance and further applications are hindered. Herein, we demonstrate a novel concept based on the combination of ultraviolet/ozone irradiation and a low-temperature annealing process to effectively utilize and control the fragmentation behavior to realize the resistive switching performances. In contrast to the conventional fragmentation, the designed Ag/AgO x interface facilitates a unique morphology of short nanorod-like segments or chains of tiny Ag nanoparticles with a very small spacing distance, providing conduction paths for achieving the tunneling process between the isolated fragments under the electric field. On the basis of this specific morphology, the Ag NW network has a tunable resistance and shows volatile threshold switching characteristics with a high selectivity, which is the ON/OFF current ratio in selector devices. Our concept exploits a new function of Ag NW network, i.e., resistive switching, which can be developed by designing a controllable fragmentation.

  15. Graphene and its derivatives: switching ON and OFF.

    Science.gov (United States)

    Chen, Yu; Zhang, Bin; Liu, Gang; Zhuang, Xiaodong; Kang, En-Tang

    2012-07-07

    As the thinnest material ever known in the universe, graphene has been attracting tremendous amount of attention in both materials science and condensed-matter physics since its successful isolation a few years ago. This one-atom-thick two-dimensional pseudo-infinite nano-crystal consists of sp(2)-hybridized aromatic carbon atoms covalently packed into a continuous hexagonal lattice. Graphene exhibits a range of unique properties, viz., high three-dimensional aspect ratio and large specific surface area, superior mechanical stiffness and flexibility, remarkable optical transmittance, extraordinary thermal response and excellent electronic transport properties, promising its applications in the next generation electronics. To switch graphene and its derivatives between ON and OFF states in nanoelectronic memory devices, various techniques have been developed to manipulate the carbon atomic sheets via introducing the valence-conduction bandgap and to enhance their processability. In this article, we review the utilization of electrically, thermally and chemically modified graphene and its polymer-functionalized derivatives for switching and information storage applications. The challenges posed on the development of novel graphene materials and further enhancements of the device switching performance have also been discussed.

  16. Stateless multicast switching in software defined networks

    OpenAIRE

    Reed, Martin J.; Al-Naday, Mays; Thomos, Nikolaos; Trossen, Dirk; Petropoulos, George; Spirou, Spiros

    2016-01-01

    Multicast data delivery can significantly reduce traffic in operators' networks, but has been limited in deployment due to concerns such as the scalability of state management. This paper shows how multicast can be implemented in contemporary software defined networking (SDN) switches, with less state than existing unicast switching strategies, by utilising a Bloom Filter (BF) based switching technique. Furthermore, the proposed mechanism uses only proactive rule insertion, and thus, is not l...

  17. Monitoring Mellanox Infiniband SX6036 switches

    CERN Document Server

    Agapiou, Marinos

    2017-01-01

    The SX6036 switches addressed by my project, are part of a fully non-blocking fat-tree cluster consisting of 72 servers and 6 Mellanox SX6036 Infiniband switches. My project is about retrieving the appropriate metrics from the Infiniband switch cluster, ingesting the data to Collectd and after my data are being transfered to CERN Database, they are being visualized via Grafana Dashboards.

  18. Optical switches based on surface plasmons

    International Nuclear Information System (INIS)

    Chen Cong; Wang Pei; Yuan Guanghui; Wang Xiaolei; Min Changjun; Deng Yan; Lu Yonghua; Ming Hai

    2008-01-01

    Great attention is being paid to surface plasmons (SPs) because of their potential applications in sensors, data storage and bio-photonics. Recently, more and more optical switches based on surface plasmon effects have been demonstrated either by simulation or experimentally. This article describes the principles, advantages and disadvantages of various types of optical switches based on SPs, in particular the all-optical switches. (authors)

  19. A new switched power linac structure

    International Nuclear Information System (INIS)

    Villa, F.

    1989-03-01

    A new pulse power structure has been described that utilizes an easily accessible rectilinear switch. The new structure is more ''forgiving'' (as far as risetime is concerned) than the radial line transformer, and contains fewer switching structures/unit length. The combination of the new structure with the switch proposed seems to offer interesting possibilities for a future linear collider. 13 refs., 6 figs., 2 tabs

  20. Switching induced oscillations in the logistic map

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Makisha P.S. [Department of Chemistry, Williams College, Williamstown, MA 01267 (United States); Peacock-Lopez, Enrique, E-mail: epeacock@williams.ed [Department of Chemistry, Williams College, Williamstown, MA 01267 (United States)

    2010-02-08

    In ecological modeling, seasonality can be represented as a switching between different environmental conditions. This switching strategy can be related to the so-called Parrondian games, where the alternation of two losing games yield a winning game. Hence we can consider two dynamics that, by themselves, yield undesirable behaviors, but when alternated yield a desirable oscillatory behavior. In this case, we also consider a noisy switching strategy and find that the desirable oscillatory behavior prevails.

  1. Ultrafast pulse generation in photoconductive switches

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Dykaar, D. R.

    1996-01-01

    Carrier and field dynamics in photoconductive switches are investigated by electrooptic sampling and voltage-dependent reflectivity measurements. We show that the nonuniform field distribution due to the two-dimensional nature of coplanar photoconductive switches, in combination with the large di...... difference in the mobilities of holes and electrons, determine the pronounced polarity dependence. Our measurements indicate that the pulse generation mechanism is a rapid voltage breakdown across the photoconductive switch and not a local field breakdown...

  2. A magnetically switched kicker for proton extraction

    International Nuclear Information System (INIS)

    Dinkel, J.; Biggs, J.

    1989-03-01

    The application of magnetic current amplification and switching techniques to the generation of precise high current pulses for switching magnets is described. The square loop characteristic of Metglas tape wound cores at high excitation levels provides excellent switching characteristics for microsecond pulses. The rugged and passive nature of this type pulser makes it possible to locate the final stages of amplification at the load for maximum efficiency. 12 refs., 8 figs

  3. Qualification of electric equipments for nuclear power plants

    International Nuclear Information System (INIS)

    Chauvin, G.; Raimondo, E.

    1983-03-01

    Description of the testing equipment, testing methods and standards of the resistance to seisms of electrical equipments (switches, pump motors, electrovalves, ...) for electronuclear power plants in France. Presentation of the French design and construction rules for electrical devices in the domestic and export nuclear market (resistance to thermodynamical and chemical stresses, to seisms, etc...) [fr

  4. Electric emissions from electrical appliances

    International Nuclear Information System (INIS)

    Leitgeb, N.; Cech, R.; Schroettner, J.

    2008-01-01

    Electric emissions from electric appliances are frequently considered negligible, and standards consider electric appliances to comply without testing. By investigating 122 household devices of 63 different categories, it could be shown that emitted electric field levels do not justify general disregard. Electric reference values can be exceeded up to 11-fold. By numerical dosimetry with homogeneous human models, induced intra-corporal electric current densities were determined and factors calculated to elevate reference levels to accounting for reduced induction efficiency of inhomogeneous fields. These factors were found not high enough to allow generally concluding on compliance with basic restrictions without testing. Electric appliances usually simultaneously emit both electric and magnetic fields exposing almost the same body region. Since the sum of induced current densities is limited, one field component reduces the available margin for the other. Therefore, superposition of electric current densities induced by either field would merit consideration. (authors)

  5. Atomic crystals resistive switching memory

    International Nuclear Information System (INIS)

    Liu Chunsen; Zhang David Wei; Zhou Peng

    2017-01-01

    Facing the growing data storage and computing demands, a high accessing speed memory with low power and non-volatile character is urgently needed. Resistive access random memory with 4F 2 cell size, switching in sub-nanosecond, cycling endurances of over 10 12 cycles, and information retention exceeding 10 years, is considered as promising next-generation non-volatile memory. However, the energy per bit is still too high to compete against static random access memory and dynamic random access memory. The sneak leakage path and metal film sheet resistance issues hinder the further scaling down. The variation of resistance between different devices and even various cycles in the same device, hold resistive access random memory back from commercialization. The emerging of atomic crystals, possessing fine interface without dangling bonds in low dimension, can provide atomic level solutions for the obsessional issues. Moreover, the unique properties of atomic crystals also enable new type resistive switching memories, which provide a brand-new direction for the resistive access random memory. (topical reviews)

  6. Heat switch technology for cryogenic thermal management

    Science.gov (United States)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  7. The increased importance of sector switching

    DEFF Research Database (Denmark)

    Frederiksen, Anders; Hansen, Jesper Rosenberg

    2017-01-01

    Sector switching is an important phenomenon that casts light on public–private differences. Yet our knowledge about its prevalence and trends is limited. We study sector switching using unique Danish register-based employer–employee data covering more than 25 years. We find that sector switching...... constitutes 18.5% of all job-to-job mobility, and the trend is increasing both from public to private and from private to public. Sector switching is also generally increasing for middle managers, but for administrative professionals only the flows from private to public increase and for top managers only...... the flows from public to private increase....

  8. Wireless Nanoionic-Based Radio Frequency Switch

    Science.gov (United States)

    Nessel, James A. (Inventor); Miranda, Felix A (Inventor)

    2017-01-01

    A nanoionic switch connected to one or more rectenna modules is disclosed. The rectenna module is configured to receive a wireless signal and apply a first bias to change a state of the nanoionic switch from a first state to a second state. The rectenna module can receive a second wireless signal and apply a second bias to change the nanoionic switch from the second state back to the first state. The first bias is generally opposite of the first bias. The rectenna module accordingly permits operation of the nanoionic switch without onboard power.

  9. Low-Voltage Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Bidari, E.; Keskin, M.; Maloberti, F.

    1999-01-01

    Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications.......Switched-capacitor stages are described which can function with very low (typically 1 V) supply voltages, without using voltage boosting or switched op-amps. Simulations indicate that high performance may be achieved using these circuits in filter or data converter applications....

  10. Clocking Scheme for Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1998-01-01

    A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed.......A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed....

  11. Simplified design of switching power supplies

    CERN Document Server

    Lenk, John

    1995-01-01

    * Describes the operation of each circuit in detail * Examines a wide selection of external components that modify the IC package characteristics * Provides hands-on, essential information for designing a switching power supply Simplified Design of Switching Power Supplies is an all-inclusive, one-stop guide to switching power-supply design. Step-by-step instructions and diagrams render this book essential for the student and the experimenter, as well as the design professional. Simplified Design of Switching Power Supplies concentrates on the use of IC regulators. All popular forms of swit

  12. Electricity Customers

    Science.gov (United States)

    Residential, commercial, and industrial customers each account for roughly one-third of the nation’s electricity use. The transportation sector also accounts for a small fraction of electricity, although it could increase.

  13. Design and Advanced Control of Switched Reluctance Motors

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand

    The introduction of mainly power electronics and cheap micro computers have made the Switched Reluctance Machine (SRM), which is in focus in this thesis, a feasible alternative to traditional electrical machines like the induction- and DC-motor which have been the dominating electrical machines...... to a standard induction motor, and from the test it is seen that the nominal efficiency of the SRM is 83 % compared to only 72 % for the induction motor. During the work with this thesis some follow-ups are done which were not specified in the main-goals. But these is very important contributions in the SR...... and a static characterization system developed. To simulate and analyze the electromagnetic performance of different variations of SRMs, in for instance SRDaS, is a general dynamical model derived, which also takes into account SRMs having permanent magnets. The parameters for the models are obtained with 2D...

  14. Layered memristive and memcapacitive switches for printable electronics

    Science.gov (United States)

    Bessonov, Alexander A.; Kirikova, Marina N.; Petukhov, Dmitrii I.; Allen, Mark; Ryhänen, Tapani; Bailey, Marc J. A.

    2015-02-01

    Novel computing technologies that imitate the principles of biological neural systems may offer low power consumption along with distinct cognitive and learning advantages. The development of reliable memristive devices capable of storing multiple states of information has opened up new applications such as neuromorphic circuits and adaptive systems. At the same time, the explosive growth of the printed electronics industry has expedited the search for advanced memory materials suitable for manufacturing flexible devices. Here, we demonstrate that solution-processed MoOx/MoS2 and WOx/WS2 heterostructures sandwiched between two printed silver electrodes exhibit an unprecedentedly large and tunable electrical resistance range from 102 to 108 Ω combined with low programming voltages of 0.1-0.2 V. The bipolar resistive switching, with a concurrent capacitive contribution, is governed by an ultrathin (mechanisms of synaptic plasticity are implemented by applying a sequence of electrical pulses.

  15. Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls

    OpenAIRE

    Choi, Tae-Hoon; Oh, Seung-Won; Park, Young-Jin; Choi, Yeongyu; Yoon, Tae-Hoon

    2016-01-01

    We report a simple method for reducing the response time of a fringe-field switching liquid crystal cell by using two-dimensional confinement of the liquid crystals. Through both numerical calculations and experiments, we show that the switching speed can be increased by several fold in a fringe-field switching cell by simply using a rubbing angle of zero, which causes virtual walls to be built when an electric field is applied between the interdigitated electrodes and the common electrode, w...

  16. Demonstration of Ultra-Fast Switching in Nano metallic Resistive Switching Memory Devices

    International Nuclear Information System (INIS)

    Yang, Y.

    2016-01-01

    Interdependency of switching voltage and time creates a dilemma/obstacle for most resistive switching memories, which indicates low switching voltage and ultra-fast switching time cannot be simultaneously achieved. In this paper, an ultra-fast (sub-100 ns) yet low switching voltage resistive switching memory device (“nano metallic ReRAM”) was demonstrated. Experimental switching voltage is found independent of pulse width (intrinsic device property) when the pulse is long but shows abrupt time dependence (“cliff”) as pulse width approaches characteristic RC time of memory device (extrinsic device property). Both experiment and simulation show that the onset of cliff behavior is dependent on physical device size and parasitic resistance, which is expected to diminish as technology nodes shrink down. We believe this study provides solid evidence that nano metallic resistive switching memory can be reliably operated at low voltage and ultra-fast regime, thus beneficial to future memory technology.

  17. Galvanotactic behavior of Tetrahymena pyriformis under electric fields

    International Nuclear Information System (INIS)

    Kim, Dal Hyung; Kim, Paul Seung Soo; Kim, Min Jun; Lee, Kyoungwoo; Kim, JinSeok

    2013-01-01

    Tetrahymena pyriformis, a eukaryotic ciliate, swims toward a cathode in straight or cross-shaped microchannels under an applied electric field, a behavioral response called cathodal galvanotaxis. In straight channel experiments, a one-dimensional electric field was applied, and the galvanotactic swimming behavior of Tetrahymena pyriformis was observed and described in detail while the polarity of this field is switched. In most individual cases, the cell would immediately switch its direction toward the cathode; however, exceptional cases have been observed where cells exhibit a turning delay or do not turn after a polarity switch. In cross-channel experiments, feedback control using vision-based tracking was used to steer a cell in the microchannel intersection using a two-dimensional electric field generated by four electrodes placed at four ends of the cross channel. The motivation for this work is to study the swimming behavior of Tetrahymena pyriformis as a microrobot under the control of electric fields. (paper)

  18. Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field

    Science.gov (United States)

    Park, Sung Min; Wang, Bo; Das, Saikat; Chae, Seung Chul; Chung, Jin-Seok; Yoon, Jong-Gul; Chen, Long-Qing; Yang, Sang Mo; Noh, Tae Won

    2018-05-01

    Flexoelectricity is an electromechanical coupling between electrical polarization and a strain gradient1 that enables mechanical manipulation of polarization without applying an electrical bias2,3. Recently, flexoelectricity was directly demonstrated by mechanically switching the out-of-plane polarization of a uniaxial system with a scanning probe microscope tip3,4. However, the successful application of flexoelectricity in low-symmetry multiaxial ferroelectrics and therefore active manipulation of multiple domains via flexoelectricity have not yet been achieved. Here, we demonstrate that the symmetry-breaking flexoelectricity offers a powerful route for the selective control of multiple domain switching pathways in multiaxial ferroelectric materials. Specifically, we use a trailing flexoelectric field that is created by the motion of a mechanically loaded scanning probe microscope tip. By controlling the SPM scan direction, we can deterministically select either stable 71° ferroelastic switching or 180° ferroelectric switching in a multiferroic magnetoelectric BiFeO3 thin film. Phase-field simulations reveal that the amplified in-plane trailing flexoelectric field is essential for this domain engineering. Moreover, we show that mechanically switched domains have a good retention property. This work opens a new avenue for the deterministic selection of nanoscale ferroelectric domains in low-symmetry materials for non-volatile magnetoelectric devices and multilevel data storage.

  19. Electro-optical switching of liquid crystals of graphene oxide

    Science.gov (United States)

    Song, Jang-Kun

    Electric field effects on aqueous graphene-oxide (GO) dispersions are reviewed in this chapter. In isotropic and biphasic regimes of GO dispersions, in which the inter-particle friction is low, GO particles sensitively respond to the application of electric field, producing field-induced optical birefringence. The electro-optical sensitivity dramatically decreases as the phase transits to the nematic phase; the increasing inter-particle friction hinders the rotational switching of GO particles. The corresponding Kerr coefficient reaches the maximum near the isotropic to biphasic transition concentration, at which the Kerr coefficient is found be c.a. 1:8 · 10-5 mV-2, the highest value ever reported in all Kerr materials. The exceptionally large Kerr effect arises from the Maxwell- Wagner polarization of GO particles with an extremely large aspect ratio and a thick electrical double layer (EDL). The polarization sensitively depends on the ratio of surface and bulk conductivities in dispersions. As a result, low ion concentration in bulk solvent is highly required to achieve a quality electro-optical switching in GO dispersions. Spontaneous vinylogous carboxylic reaction in GO particles produces H+ ions, resulting in spontaneous degradation of electro-optical response with time, hence the removal of residual ions by using a centrifuge cleaning process significantly improves the electro-optical sensitivity. GO particle size is another important parameter for the Kerr coefficient and the response time. The best performance is observed in a GO dispersion with c.a. 0.5 μm mean size. Dielectrophoretic migration of GO particles can be also used to manipulate GO particles in solution. Using these unique features of GO dispersions, one can fabricate GO liquid crystal devices similar to conventional liquid crystal displays; the large Kerr effect allows fabricating a low power device working at extremely low electric fields.

  20. N-state random switching based on quantum tunnelling

    Science.gov (United States)

    Bernardo Gavito, Ramón; Jiménez Urbanos, Fernando; Roberts, Jonathan; Sexton, James; Astbury, Benjamin; Shokeir, Hamzah; McGrath, Thomas; Noori, Yasir J.; Woodhead, Christopher S.; Missous, Mohamed; Roedig, Utz; Young, Robert J.

    2017-08-01

    In this work, we show how the hysteretic behaviour of resonant tunnelling diodes (RTDs) can be exploited for new functionalities. In particular, the RTDs exhibit a stochastic 2-state switching mechanism that could be useful for random number generation and cryptographic applications. This behaviour can be scaled to N-bit switching, by connecting various RTDs in series. The InGaAs/AlAs RTDs used in our experiments display very sharp negative differential resistance (NDR) peaks at room temperature which show hysteresis cycles that, rather than having a fixed switching threshold, show a probability distribution about a central value. We propose to use this intrinsic uncertainty emerging from the quantum nature of the RTDs as a source of randomness. We show that a combination of two RTDs in series results in devices with three-state outputs and discuss the possibility of scaling to N-state devices by subsequent series connections of RTDs, which we demonstrate for the up to the 4-state case. In this work, we suggest using that the intrinsic uncertainty in the conduction paths of resonant tunnelling diodes can behave as a source of randomness that can be integrated into current electronics to produce on-chip true random number generators. The N-shaped I-V characteristic of RTDs results in a two-level random voltage output when driven with current pulse trains. Electrical characterisation and randomness testing of the devices was conducted in order to determine the validity of the true randomness assumption. Based on the results obtained for the single RTD case, we suggest the possibility of using multi-well devices to generate N-state random switching devices for their use in random number generation or multi-valued logic devices.